1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 *	     James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 *	Support for enhanced MLS infrastructure.
11 *	Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 *	Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 *      Added support for NetLabel
20 *      Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 *  Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 *  Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 *  Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40#include <linux/kernel.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/sched.h>
48#include <linux/audit.h>
49#include <linux/vmalloc.h>
50#include <linux/lsm_hooks.h>
51#include <net/netlabel.h>
52
53#include "flask.h"
54#include "avc.h"
55#include "avc_ss.h"
56#include "security.h"
57#include "context.h"
58#include "policydb.h"
59#include "sidtab.h"
60#include "services.h"
61#include "conditional.h"
62#include "mls.h"
63#include "objsec.h"
64#include "netlabel.h"
65#include "xfrm.h"
66#include "ebitmap.h"
67#include "audit.h"
68#include "policycap_names.h"
69#include "ima.h"
70
71struct selinux_policy_convert_data {
72	struct convert_context_args args;
73	struct sidtab_convert_params sidtab_params;
74};
75
76/* Forward declaration. */
77static int context_struct_to_string(struct policydb *policydb,
78				    struct context *context,
79				    char **scontext,
80				    u32 *scontext_len);
81
82static int sidtab_entry_to_string(struct policydb *policydb,
83				  struct sidtab *sidtab,
84				  struct sidtab_entry *entry,
85				  char **scontext,
86				  u32 *scontext_len);
87
88static void context_struct_compute_av(struct policydb *policydb,
89				      struct context *scontext,
90				      struct context *tcontext,
91				      u16 tclass,
92				      struct av_decision *avd,
93				      struct extended_perms *xperms);
94
95static int selinux_set_mapping(struct policydb *pol,
96			       const struct security_class_mapping *map,
97			       struct selinux_map *out_map)
98{
99	u16 i, j;
100	bool print_unknown_handle = false;
101
102	/* Find number of classes in the input mapping */
103	if (!map)
104		return -EINVAL;
105	i = 0;
106	while (map[i].name)
107		i++;
108
109	/* Allocate space for the class records, plus one for class zero */
110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111	if (!out_map->mapping)
112		return -ENOMEM;
113
114	/* Store the raw class and permission values */
115	j = 0;
116	while (map[j].name) {
117		const struct security_class_mapping *p_in = map + (j++);
118		struct selinux_mapping *p_out = out_map->mapping + j;
119		u16 k;
120
121		/* An empty class string skips ahead */
122		if (!strcmp(p_in->name, "")) {
123			p_out->num_perms = 0;
124			continue;
125		}
126
127		p_out->value = string_to_security_class(pol, p_in->name);
128		if (!p_out->value) {
129			pr_info("SELinux:  Class %s not defined in policy.\n",
130			       p_in->name);
131			if (pol->reject_unknown)
132				goto err;
133			p_out->num_perms = 0;
134			print_unknown_handle = true;
135			continue;
136		}
137
138		k = 0;
139		while (p_in->perms[k]) {
140			/* An empty permission string skips ahead */
141			if (!*p_in->perms[k]) {
142				k++;
143				continue;
144			}
145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146							    p_in->perms[k]);
147			if (!p_out->perms[k]) {
148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
149				       p_in->perms[k], p_in->name);
150				if (pol->reject_unknown)
151					goto err;
152				print_unknown_handle = true;
153			}
154
155			k++;
156		}
157		p_out->num_perms = k;
158	}
159
160	if (print_unknown_handle)
161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162		       pol->allow_unknown ? "allowed" : "denied");
163
164	out_map->size = i;
165	return 0;
166err:
167	kfree(out_map->mapping);
168	out_map->mapping = NULL;
169	return -EINVAL;
170}
171
172/*
173 * Get real, policy values from mapped values
174 */
175
176static u16 unmap_class(struct selinux_map *map, u16 tclass)
177{
178	if (tclass < map->size)
179		return map->mapping[tclass].value;
180
181	return tclass;
182}
183
184/*
185 * Get kernel value for class from its policy value
186 */
187static u16 map_class(struct selinux_map *map, u16 pol_value)
188{
189	u16 i;
190
191	for (i = 1; i < map->size; i++) {
192		if (map->mapping[i].value == pol_value)
193			return i;
194	}
195
196	return SECCLASS_NULL;
197}
198
199static void map_decision(struct selinux_map *map,
200			 u16 tclass, struct av_decision *avd,
201			 int allow_unknown)
202{
203	if (tclass < map->size) {
204		struct selinux_mapping *mapping = &map->mapping[tclass];
205		unsigned int i, n = mapping->num_perms;
206		u32 result;
207
208		for (i = 0, result = 0; i < n; i++) {
209			if (avd->allowed & mapping->perms[i])
210				result |= (u32)1<<i;
211			if (allow_unknown && !mapping->perms[i])
212				result |= (u32)1<<i;
213		}
214		avd->allowed = result;
215
216		for (i = 0, result = 0; i < n; i++)
217			if (avd->auditallow & mapping->perms[i])
218				result |= (u32)1<<i;
219		avd->auditallow = result;
220
221		for (i = 0, result = 0; i < n; i++) {
222			if (avd->auditdeny & mapping->perms[i])
223				result |= (u32)1<<i;
224			if (!allow_unknown && !mapping->perms[i])
225				result |= (u32)1<<i;
226		}
227		/*
228		 * In case the kernel has a bug and requests a permission
229		 * between num_perms and the maximum permission number, we
230		 * should audit that denial
231		 */
232		for (; i < (sizeof(u32)*8); i++)
233			result |= (u32)1<<i;
234		avd->auditdeny = result;
235	}
236}
237
238int security_mls_enabled(void)
239{
240	int mls_enabled;
241	struct selinux_policy *policy;
242
243	if (!selinux_initialized())
244		return 0;
245
246	rcu_read_lock();
247	policy = rcu_dereference(selinux_state.policy);
248	mls_enabled = policy->policydb.mls_enabled;
249	rcu_read_unlock();
250	return mls_enabled;
251}
252
253/*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast...  It is used by the validatetrans rules
259 * only.  For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition.  All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
264static int constraint_expr_eval(struct policydb *policydb,
265				struct context *scontext,
266				struct context *tcontext,
267				struct context *xcontext,
268				struct constraint_expr *cexpr)
269{
270	u32 val1, val2;
271	struct context *c;
272	struct role_datum *r1, *r2;
273	struct mls_level *l1, *l2;
274	struct constraint_expr *e;
275	int s[CEXPR_MAXDEPTH];
276	int sp = -1;
277
278	for (e = cexpr; e; e = e->next) {
279		switch (e->expr_type) {
280		case CEXPR_NOT:
281			BUG_ON(sp < 0);
282			s[sp] = !s[sp];
283			break;
284		case CEXPR_AND:
285			BUG_ON(sp < 1);
286			sp--;
287			s[sp] &= s[sp + 1];
288			break;
289		case CEXPR_OR:
290			BUG_ON(sp < 1);
291			sp--;
292			s[sp] |= s[sp + 1];
293			break;
294		case CEXPR_ATTR:
295			if (sp == (CEXPR_MAXDEPTH - 1))
296				return 0;
297			switch (e->attr) {
298			case CEXPR_USER:
299				val1 = scontext->user;
300				val2 = tcontext->user;
301				break;
302			case CEXPR_TYPE:
303				val1 = scontext->type;
304				val2 = tcontext->type;
305				break;
306			case CEXPR_ROLE:
307				val1 = scontext->role;
308				val2 = tcontext->role;
309				r1 = policydb->role_val_to_struct[val1 - 1];
310				r2 = policydb->role_val_to_struct[val2 - 1];
311				switch (e->op) {
312				case CEXPR_DOM:
313					s[++sp] = ebitmap_get_bit(&r1->dominates,
314								  val2 - 1);
315					continue;
316				case CEXPR_DOMBY:
317					s[++sp] = ebitmap_get_bit(&r2->dominates,
318								  val1 - 1);
319					continue;
320				case CEXPR_INCOMP:
321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322								    val2 - 1) &&
323						   !ebitmap_get_bit(&r2->dominates,
324								    val1 - 1));
325					continue;
326				default:
327					break;
328				}
329				break;
330			case CEXPR_L1L2:
331				l1 = &(scontext->range.level[0]);
332				l2 = &(tcontext->range.level[0]);
333				goto mls_ops;
334			case CEXPR_L1H2:
335				l1 = &(scontext->range.level[0]);
336				l2 = &(tcontext->range.level[1]);
337				goto mls_ops;
338			case CEXPR_H1L2:
339				l1 = &(scontext->range.level[1]);
340				l2 = &(tcontext->range.level[0]);
341				goto mls_ops;
342			case CEXPR_H1H2:
343				l1 = &(scontext->range.level[1]);
344				l2 = &(tcontext->range.level[1]);
345				goto mls_ops;
346			case CEXPR_L1H1:
347				l1 = &(scontext->range.level[0]);
348				l2 = &(scontext->range.level[1]);
349				goto mls_ops;
350			case CEXPR_L2H2:
351				l1 = &(tcontext->range.level[0]);
352				l2 = &(tcontext->range.level[1]);
353				goto mls_ops;
354mls_ops:
355				switch (e->op) {
356				case CEXPR_EQ:
357					s[++sp] = mls_level_eq(l1, l2);
358					continue;
359				case CEXPR_NEQ:
360					s[++sp] = !mls_level_eq(l1, l2);
361					continue;
362				case CEXPR_DOM:
363					s[++sp] = mls_level_dom(l1, l2);
364					continue;
365				case CEXPR_DOMBY:
366					s[++sp] = mls_level_dom(l2, l1);
367					continue;
368				case CEXPR_INCOMP:
369					s[++sp] = mls_level_incomp(l2, l1);
370					continue;
371				default:
372					BUG();
373					return 0;
374				}
375				break;
376			default:
377				BUG();
378				return 0;
379			}
380
381			switch (e->op) {
382			case CEXPR_EQ:
383				s[++sp] = (val1 == val2);
384				break;
385			case CEXPR_NEQ:
386				s[++sp] = (val1 != val2);
387				break;
388			default:
389				BUG();
390				return 0;
391			}
392			break;
393		case CEXPR_NAMES:
394			if (sp == (CEXPR_MAXDEPTH-1))
395				return 0;
396			c = scontext;
397			if (e->attr & CEXPR_TARGET)
398				c = tcontext;
399			else if (e->attr & CEXPR_XTARGET) {
400				c = xcontext;
401				if (!c) {
402					BUG();
403					return 0;
404				}
405			}
406			if (e->attr & CEXPR_USER)
407				val1 = c->user;
408			else if (e->attr & CEXPR_ROLE)
409				val1 = c->role;
410			else if (e->attr & CEXPR_TYPE)
411				val1 = c->type;
412			else {
413				BUG();
414				return 0;
415			}
416
417			switch (e->op) {
418			case CEXPR_EQ:
419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420				break;
421			case CEXPR_NEQ:
422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423				break;
424			default:
425				BUG();
426				return 0;
427			}
428			break;
429		default:
430			BUG();
431			return 0;
432		}
433	}
434
435	BUG_ON(sp != 0);
436	return s[0];
437}
438
439/*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
443static int dump_masked_av_helper(void *k, void *d, void *args)
444{
445	struct perm_datum *pdatum = d;
446	char **permission_names = args;
447
448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450	permission_names[pdatum->value - 1] = (char *)k;
451
452	return 0;
453}
454
455static void security_dump_masked_av(struct policydb *policydb,
456				    struct context *scontext,
457				    struct context *tcontext,
458				    u16 tclass,
459				    u32 permissions,
460				    const char *reason)
461{
462	struct common_datum *common_dat;
463	struct class_datum *tclass_dat;
464	struct audit_buffer *ab;
465	char *tclass_name;
466	char *scontext_name = NULL;
467	char *tcontext_name = NULL;
468	char *permission_names[32];
469	int index;
470	u32 length;
471	bool need_comma = false;
472
473	if (!permissions)
474		return;
475
476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
478	common_dat = tclass_dat->comdatum;
479
480	/* init permission_names */
481	if (common_dat &&
482	    hashtab_map(&common_dat->permissions.table,
483			dump_masked_av_helper, permission_names) < 0)
484		goto out;
485
486	if (hashtab_map(&tclass_dat->permissions.table,
487			dump_masked_av_helper, permission_names) < 0)
488		goto out;
489
490	/* get scontext/tcontext in text form */
491	if (context_struct_to_string(policydb, scontext,
492				     &scontext_name, &length) < 0)
493		goto out;
494
495	if (context_struct_to_string(policydb, tcontext,
496				     &tcontext_name, &length) < 0)
497		goto out;
498
499	/* audit a message */
500	ab = audit_log_start(audit_context(),
501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
502	if (!ab)
503		goto out;
504
505	audit_log_format(ab, "op=security_compute_av reason=%s "
506			 "scontext=%s tcontext=%s tclass=%s perms=",
507			 reason, scontext_name, tcontext_name, tclass_name);
508
509	for (index = 0; index < 32; index++) {
510		u32 mask = (1 << index);
511
512		if ((mask & permissions) == 0)
513			continue;
514
515		audit_log_format(ab, "%s%s",
516				 need_comma ? "," : "",
517				 permission_names[index]
518				 ? permission_names[index] : "????");
519		need_comma = true;
520	}
521	audit_log_end(ab);
522out:
523	/* release scontext/tcontext */
524	kfree(tcontext_name);
525	kfree(scontext_name);
526}
527
528/*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
532static void type_attribute_bounds_av(struct policydb *policydb,
533				     struct context *scontext,
534				     struct context *tcontext,
535				     u16 tclass,
536				     struct av_decision *avd)
537{
538	struct context lo_scontext;
539	struct context lo_tcontext, *tcontextp = tcontext;
540	struct av_decision lo_avd;
541	struct type_datum *source;
542	struct type_datum *target;
543	u32 masked = 0;
544
545	source = policydb->type_val_to_struct[scontext->type - 1];
546	BUG_ON(!source);
547
548	if (!source->bounds)
549		return;
550
551	target = policydb->type_val_to_struct[tcontext->type - 1];
552	BUG_ON(!target);
553
554	memset(&lo_avd, 0, sizeof(lo_avd));
555
556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557	lo_scontext.type = source->bounds;
558
559	if (target->bounds) {
560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561		lo_tcontext.type = target->bounds;
562		tcontextp = &lo_tcontext;
563	}
564
565	context_struct_compute_av(policydb, &lo_scontext,
566				  tcontextp,
567				  tclass,
568				  &lo_avd,
569				  NULL);
570
571	masked = ~lo_avd.allowed & avd->allowed;
572
573	if (likely(!masked))
574		return;		/* no masked permission */
575
576	/* mask violated permissions */
577	avd->allowed &= ~masked;
578
579	/* audit masked permissions */
580	security_dump_masked_av(policydb, scontext, tcontext,
581				tclass, masked, "bounds");
582}
583
584/*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
588void services_compute_xperms_drivers(
589		struct extended_perms *xperms,
590		struct avtab_node *node)
591{
592	unsigned int i;
593
594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595		/* if one or more driver has all permissions allowed */
596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599		/* if allowing permissions within a driver */
600		security_xperm_set(xperms->drivers.p,
601					node->datum.u.xperms->driver);
602	}
603
604	xperms->len = 1;
605}
606
607/*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
611static void context_struct_compute_av(struct policydb *policydb,
612				      struct context *scontext,
613				      struct context *tcontext,
614				      u16 tclass,
615				      struct av_decision *avd,
616				      struct extended_perms *xperms)
617{
618	struct constraint_node *constraint;
619	struct role_allow *ra;
620	struct avtab_key avkey;
621	struct avtab_node *node;
622	struct class_datum *tclass_datum;
623	struct ebitmap *sattr, *tattr;
624	struct ebitmap_node *snode, *tnode;
625	unsigned int i, j;
626
627	avd->allowed = 0;
628	avd->auditallow = 0;
629	avd->auditdeny = 0xffffffff;
630	if (xperms) {
631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632		xperms->len = 0;
633	}
634
635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636		if (printk_ratelimit())
637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
638		return;
639	}
640
641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
642
643	/*
644	 * If a specific type enforcement rule was defined for
645	 * this permission check, then use it.
646	 */
647	avkey.target_class = tclass;
648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651	ebitmap_for_each_positive_bit(sattr, snode, i) {
652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
653			avkey.source_type = i + 1;
654			avkey.target_type = j + 1;
655			for (node = avtab_search_node(&policydb->te_avtab,
656						      &avkey);
657			     node;
658			     node = avtab_search_node_next(node, avkey.specified)) {
659				if (node->key.specified == AVTAB_ALLOWED)
660					avd->allowed |= node->datum.u.data;
661				else if (node->key.specified == AVTAB_AUDITALLOW)
662					avd->auditallow |= node->datum.u.data;
663				else if (node->key.specified == AVTAB_AUDITDENY)
664					avd->auditdeny &= node->datum.u.data;
665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
666					services_compute_xperms_drivers(xperms, node);
667			}
668
669			/* Check conditional av table for additional permissions */
670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
671					avd, xperms);
672
673		}
674	}
675
676	/*
677	 * Remove any permissions prohibited by a constraint (this includes
678	 * the MLS policy).
679	 */
680	constraint = tclass_datum->constraints;
681	while (constraint) {
682		if ((constraint->permissions & (avd->allowed)) &&
683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684					  constraint->expr)) {
685			avd->allowed &= ~(constraint->permissions);
686		}
687		constraint = constraint->next;
688	}
689
690	/*
691	 * If checking process transition permission and the
692	 * role is changing, then check the (current_role, new_role)
693	 * pair.
694	 */
695	if (tclass == policydb->process_class &&
696	    (avd->allowed & policydb->process_trans_perms) &&
697	    scontext->role != tcontext->role) {
698		for (ra = policydb->role_allow; ra; ra = ra->next) {
699			if (scontext->role == ra->role &&
700			    tcontext->role == ra->new_role)
701				break;
702		}
703		if (!ra)
704			avd->allowed &= ~policydb->process_trans_perms;
705	}
706
707	/*
708	 * If the given source and target types have boundary
709	 * constraint, lazy checks have to mask any violated
710	 * permission and notice it to userspace via audit.
711	 */
712	type_attribute_bounds_av(policydb, scontext, tcontext,
713				 tclass, avd);
714}
715
716static int security_validtrans_handle_fail(struct selinux_policy *policy,
717					struct sidtab_entry *oentry,
718					struct sidtab_entry *nentry,
719					struct sidtab_entry *tentry,
720					u16 tclass)
721{
722	struct policydb *p = &policy->policydb;
723	struct sidtab *sidtab = policy->sidtab;
724	char *o = NULL, *n = NULL, *t = NULL;
725	u32 olen, nlen, tlen;
726
727	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728		goto out;
729	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730		goto out;
731	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732		goto out;
733	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734		  "op=security_validate_transition seresult=denied"
735		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737out:
738	kfree(o);
739	kfree(n);
740	kfree(t);
741
742	if (!enforcing_enabled())
743		return 0;
744	return -EPERM;
745}
746
747static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748					  u16 orig_tclass, bool user)
749{
750	struct selinux_policy *policy;
751	struct policydb *policydb;
752	struct sidtab *sidtab;
753	struct sidtab_entry *oentry;
754	struct sidtab_entry *nentry;
755	struct sidtab_entry *tentry;
756	struct class_datum *tclass_datum;
757	struct constraint_node *constraint;
758	u16 tclass;
759	int rc = 0;
760
761
762	if (!selinux_initialized())
763		return 0;
764
765	rcu_read_lock();
766
767	policy = rcu_dereference(selinux_state.policy);
768	policydb = &policy->policydb;
769	sidtab = policy->sidtab;
770
771	if (!user)
772		tclass = unmap_class(&policy->map, orig_tclass);
773	else
774		tclass = orig_tclass;
775
776	if (!tclass || tclass > policydb->p_classes.nprim) {
777		rc = -EINVAL;
778		goto out;
779	}
780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782	oentry = sidtab_search_entry(sidtab, oldsid);
783	if (!oentry) {
784		pr_err("SELinux: %s:  unrecognized SID %d\n",
785			__func__, oldsid);
786		rc = -EINVAL;
787		goto out;
788	}
789
790	nentry = sidtab_search_entry(sidtab, newsid);
791	if (!nentry) {
792		pr_err("SELinux: %s:  unrecognized SID %d\n",
793			__func__, newsid);
794		rc = -EINVAL;
795		goto out;
796	}
797
798	tentry = sidtab_search_entry(sidtab, tasksid);
799	if (!tentry) {
800		pr_err("SELinux: %s:  unrecognized SID %d\n",
801			__func__, tasksid);
802		rc = -EINVAL;
803		goto out;
804	}
805
806	constraint = tclass_datum->validatetrans;
807	while (constraint) {
808		if (!constraint_expr_eval(policydb, &oentry->context,
809					  &nentry->context, &tentry->context,
810					  constraint->expr)) {
811			if (user)
812				rc = -EPERM;
813			else
814				rc = security_validtrans_handle_fail(policy,
815								oentry,
816								nentry,
817								tentry,
818								tclass);
819			goto out;
820		}
821		constraint = constraint->next;
822	}
823
824out:
825	rcu_read_unlock();
826	return rc;
827}
828
829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830				      u16 tclass)
831{
832	return security_compute_validatetrans(oldsid, newsid, tasksid,
833					      tclass, true);
834}
835
836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837				 u16 orig_tclass)
838{
839	return security_compute_validatetrans(oldsid, newsid, tasksid,
840					      orig_tclass, false);
841}
842
843/*
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
848 *
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
851 */
852int security_bounded_transition(u32 old_sid, u32 new_sid)
853{
854	struct selinux_policy *policy;
855	struct policydb *policydb;
856	struct sidtab *sidtab;
857	struct sidtab_entry *old_entry, *new_entry;
858	struct type_datum *type;
859	u32 index;
860	int rc;
861
862	if (!selinux_initialized())
863		return 0;
864
865	rcu_read_lock();
866	policy = rcu_dereference(selinux_state.policy);
867	policydb = &policy->policydb;
868	sidtab = policy->sidtab;
869
870	rc = -EINVAL;
871	old_entry = sidtab_search_entry(sidtab, old_sid);
872	if (!old_entry) {
873		pr_err("SELinux: %s: unrecognized SID %u\n",
874		       __func__, old_sid);
875		goto out;
876	}
877
878	rc = -EINVAL;
879	new_entry = sidtab_search_entry(sidtab, new_sid);
880	if (!new_entry) {
881		pr_err("SELinux: %s: unrecognized SID %u\n",
882		       __func__, new_sid);
883		goto out;
884	}
885
886	rc = 0;
887	/* type/domain unchanged */
888	if (old_entry->context.type == new_entry->context.type)
889		goto out;
890
891	index = new_entry->context.type;
892	while (true) {
893		type = policydb->type_val_to_struct[index - 1];
894		BUG_ON(!type);
895
896		/* not bounded anymore */
897		rc = -EPERM;
898		if (!type->bounds)
899			break;
900
901		/* @newsid is bounded by @oldsid */
902		rc = 0;
903		if (type->bounds == old_entry->context.type)
904			break;
905
906		index = type->bounds;
907	}
908
909	if (rc) {
910		char *old_name = NULL;
911		char *new_name = NULL;
912		u32 length;
913
914		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915					    &old_name, &length) &&
916		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
917					    &new_name, &length)) {
918			audit_log(audit_context(),
919				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
920				  "op=security_bounded_transition "
921				  "seresult=denied "
922				  "oldcontext=%s newcontext=%s",
923				  old_name, new_name);
924		}
925		kfree(new_name);
926		kfree(old_name);
927	}
928out:
929	rcu_read_unlock();
930
931	return rc;
932}
933
934static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935{
936	avd->allowed = 0;
937	avd->auditallow = 0;
938	avd->auditdeny = 0xffffffff;
939	if (policy)
940		avd->seqno = policy->latest_granting;
941	else
942		avd->seqno = 0;
943	avd->flags = 0;
944}
945
946void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947					struct avtab_node *node)
948{
949	unsigned int i;
950
951	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952		if (xpermd->driver != node->datum.u.xperms->driver)
953			return;
954	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955		if (!security_xperm_test(node->datum.u.xperms->perms.p,
956					xpermd->driver))
957			return;
958	} else {
959		BUG();
960	}
961
962	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963		xpermd->used |= XPERMS_ALLOWED;
964		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965			memset(xpermd->allowed->p, 0xff,
966					sizeof(xpermd->allowed->p));
967		}
968		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970				xpermd->allowed->p[i] |=
971					node->datum.u.xperms->perms.p[i];
972		}
973	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974		xpermd->used |= XPERMS_AUDITALLOW;
975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976			memset(xpermd->auditallow->p, 0xff,
977					sizeof(xpermd->auditallow->p));
978		}
979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981				xpermd->auditallow->p[i] |=
982					node->datum.u.xperms->perms.p[i];
983		}
984	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985		xpermd->used |= XPERMS_DONTAUDIT;
986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987			memset(xpermd->dontaudit->p, 0xff,
988					sizeof(xpermd->dontaudit->p));
989		}
990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992				xpermd->dontaudit->p[i] |=
993					node->datum.u.xperms->perms.p[i];
994		}
995	} else {
996		BUG();
997	}
998}
999
1000void security_compute_xperms_decision(u32 ssid,
1001				      u32 tsid,
1002				      u16 orig_tclass,
1003				      u8 driver,
1004				      struct extended_perms_decision *xpermd)
1005{
1006	struct selinux_policy *policy;
1007	struct policydb *policydb;
1008	struct sidtab *sidtab;
1009	u16 tclass;
1010	struct context *scontext, *tcontext;
1011	struct avtab_key avkey;
1012	struct avtab_node *node;
1013	struct ebitmap *sattr, *tattr;
1014	struct ebitmap_node *snode, *tnode;
1015	unsigned int i, j;
1016
1017	xpermd->driver = driver;
1018	xpermd->used = 0;
1019	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023	rcu_read_lock();
1024	if (!selinux_initialized())
1025		goto allow;
1026
1027	policy = rcu_dereference(selinux_state.policy);
1028	policydb = &policy->policydb;
1029	sidtab = policy->sidtab;
1030
1031	scontext = sidtab_search(sidtab, ssid);
1032	if (!scontext) {
1033		pr_err("SELinux: %s:  unrecognized SID %d\n",
1034		       __func__, ssid);
1035		goto out;
1036	}
1037
1038	tcontext = sidtab_search(sidtab, tsid);
1039	if (!tcontext) {
1040		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041		       __func__, tsid);
1042		goto out;
1043	}
1044
1045	tclass = unmap_class(&policy->map, orig_tclass);
1046	if (unlikely(orig_tclass && !tclass)) {
1047		if (policydb->allow_unknown)
1048			goto allow;
1049		goto out;
1050	}
1051
1052
1053	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1055		goto out;
1056	}
1057
1058	avkey.target_class = tclass;
1059	avkey.specified = AVTAB_XPERMS;
1060	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062	ebitmap_for_each_positive_bit(sattr, snode, i) {
1063		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064			avkey.source_type = i + 1;
1065			avkey.target_type = j + 1;
1066			for (node = avtab_search_node(&policydb->te_avtab,
1067						      &avkey);
1068			     node;
1069			     node = avtab_search_node_next(node, avkey.specified))
1070				services_compute_xperms_decision(xpermd, node);
1071
1072			cond_compute_xperms(&policydb->te_cond_avtab,
1073						&avkey, xpermd);
1074		}
1075	}
1076out:
1077	rcu_read_unlock();
1078	return;
1079allow:
1080	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081	goto out;
1082}
1083
1084/**
1085 * security_compute_av - Compute access vector decisions.
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
1095void security_compute_av(u32 ssid,
1096			 u32 tsid,
1097			 u16 orig_tclass,
1098			 struct av_decision *avd,
1099			 struct extended_perms *xperms)
1100{
1101	struct selinux_policy *policy;
1102	struct policydb *policydb;
1103	struct sidtab *sidtab;
1104	u16 tclass;
1105	struct context *scontext = NULL, *tcontext = NULL;
1106
1107	rcu_read_lock();
1108	policy = rcu_dereference(selinux_state.policy);
1109	avd_init(policy, avd);
1110	xperms->len = 0;
1111	if (!selinux_initialized())
1112		goto allow;
1113
1114	policydb = &policy->policydb;
1115	sidtab = policy->sidtab;
1116
1117	scontext = sidtab_search(sidtab, ssid);
1118	if (!scontext) {
1119		pr_err("SELinux: %s:  unrecognized SID %d\n",
1120		       __func__, ssid);
1121		goto out;
1122	}
1123
1124	/* permissive domain? */
1125	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126		avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128	tcontext = sidtab_search(sidtab, tsid);
1129	if (!tcontext) {
1130		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131		       __func__, tsid);
1132		goto out;
1133	}
1134
1135	tclass = unmap_class(&policy->map, orig_tclass);
1136	if (unlikely(orig_tclass && !tclass)) {
1137		if (policydb->allow_unknown)
1138			goto allow;
1139		goto out;
1140	}
1141	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142				  xperms);
1143	map_decision(&policy->map, orig_tclass, avd,
1144		     policydb->allow_unknown);
1145out:
1146	rcu_read_unlock();
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
1158	struct selinux_policy *policy;
1159	struct policydb *policydb;
1160	struct sidtab *sidtab;
1161	struct context *scontext = NULL, *tcontext = NULL;
1162
1163	rcu_read_lock();
1164	policy = rcu_dereference(selinux_state.policy);
1165	avd_init(policy, avd);
1166	if (!selinux_initialized())
1167		goto allow;
1168
1169	policydb = &policy->policydb;
1170	sidtab = policy->sidtab;
1171
1172	scontext = sidtab_search(sidtab, ssid);
1173	if (!scontext) {
1174		pr_err("SELinux: %s:  unrecognized SID %d\n",
1175		       __func__, ssid);
1176		goto out;
1177	}
1178
1179	/* permissive domain? */
1180	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181		avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183	tcontext = sidtab_search(sidtab, tsid);
1184	if (!tcontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, tsid);
1187		goto out;
1188	}
1189
1190	if (unlikely(!tclass)) {
1191		if (policydb->allow_unknown)
1192			goto allow;
1193		goto out;
1194	}
1195
1196	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197				  NULL);
1198 out:
1199	rcu_read_unlock();
1200	return;
1201allow:
1202	avd->allowed = 0xffffffff;
1203	goto out;
1204}
1205
1206/*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size.  Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
1213static int context_struct_to_string(struct policydb *p,
1214				    struct context *context,
1215				    char **scontext, u32 *scontext_len)
1216{
1217	char *scontextp;
1218
1219	if (scontext)
1220		*scontext = NULL;
1221	*scontext_len = 0;
1222
1223	if (context->len) {
1224		*scontext_len = context->len;
1225		if (scontext) {
1226			*scontext = kstrdup(context->str, GFP_ATOMIC);
1227			if (!(*scontext))
1228				return -ENOMEM;
1229		}
1230		return 0;
1231	}
1232
1233	/* Compute the size of the context. */
1234	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237	*scontext_len += mls_compute_context_len(p, context);
1238
1239	if (!scontext)
1240		return 0;
1241
1242	/* Allocate space for the context; caller must free this space. */
1243	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244	if (!scontextp)
1245		return -ENOMEM;
1246	*scontext = scontextp;
1247
1248	/*
1249	 * Copy the user name, role name and type name into the context.
1250	 */
1251	scontextp += sprintf(scontextp, "%s:%s:%s",
1252		sym_name(p, SYM_USERS, context->user - 1),
1253		sym_name(p, SYM_ROLES, context->role - 1),
1254		sym_name(p, SYM_TYPES, context->type - 1));
1255
1256	mls_sid_to_context(p, context, &scontextp);
1257
1258	*scontextp = 0;
1259
1260	return 0;
1261}
1262
1263static int sidtab_entry_to_string(struct policydb *p,
1264				  struct sidtab *sidtab,
1265				  struct sidtab_entry *entry,
1266				  char **scontext, u32 *scontext_len)
1267{
1268	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270	if (rc != -ENOENT)
1271		return rc;
1272
1273	rc = context_struct_to_string(p, &entry->context, scontext,
1274				      scontext_len);
1275	if (!rc && scontext)
1276		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277	return rc;
1278}
1279
1280#include "initial_sid_to_string.h"
1281
1282int security_sidtab_hash_stats(char *page)
1283{
1284	struct selinux_policy *policy;
1285	int rc;
1286
1287	if (!selinux_initialized()) {
1288		pr_err("SELinux: %s:  called before initial load_policy\n",
1289		       __func__);
1290		return -EINVAL;
1291	}
1292
1293	rcu_read_lock();
1294	policy = rcu_dereference(selinux_state.policy);
1295	rc = sidtab_hash_stats(policy->sidtab, page);
1296	rcu_read_unlock();
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(u32 sid, char **scontext,
1309					u32 *scontext_len, int force,
1310					int only_invalid)
1311{
1312	struct selinux_policy *policy;
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized()) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s = initial_sid_to_string[sid];
1326
1327			if (!s)
1328				return -EINVAL;
1329			*scontext_len = strlen(s) + 1;
1330			if (!scontext)
1331				return 0;
1332			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333			if (!scontextp)
1334				return -ENOMEM;
1335			*scontext = scontextp;
1336			return 0;
1337		}
1338		pr_err("SELinux: %s:  called before initial "
1339		       "load_policy on unknown SID %d\n", __func__, sid);
1340		return -EINVAL;
1341	}
1342	rcu_read_lock();
1343	policy = rcu_dereference(selinux_state.policy);
1344	policydb = &policy->policydb;
1345	sidtab = policy->sidtab;
1346
1347	if (force)
1348		entry = sidtab_search_entry_force(sidtab, sid);
1349	else
1350		entry = sidtab_search_entry(sidtab, sid);
1351	if (!entry) {
1352		pr_err("SELinux: %s:  unrecognized SID %d\n",
1353			__func__, sid);
1354		rc = -EINVAL;
1355		goto out_unlock;
1356	}
1357	if (only_invalid && !entry->context.len)
1358		goto out_unlock;
1359
1360	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1361				    scontext_len);
1362
1363out_unlock:
1364	rcu_read_unlock();
1365	return rc;
1366
1367}
1368
1369/**
1370 * security_sid_to_context - Obtain a context for a given SID.
1371 * @sid: security identifier, SID
1372 * @scontext: security context
1373 * @scontext_len: length in bytes
1374 *
1375 * Write the string representation of the context associated with @sid
1376 * into a dynamically allocated string of the correct size.  Set @scontext
1377 * to point to this string and set @scontext_len to the length of the string.
1378 */
1379int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1380{
1381	return security_sid_to_context_core(sid, scontext,
1382					    scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(u32 sid,
1386				  char **scontext, u32 *scontext_len)
1387{
1388	return security_sid_to_context_core(sid, scontext,
1389					    scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(u32 sid,
1406				  char **scontext, u32 *scontext_len)
1407{
1408	return security_sid_to_context_core(sid, scontext,
1409					    scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416				    struct sidtab *sidtabp,
1417				    char *scontext,
1418				    struct context *ctx,
1419				    u32 def_sid)
1420{
1421	struct role_datum *role;
1422	struct type_datum *typdatum;
1423	struct user_datum *usrdatum;
1424	char *scontextp, *p, oldc;
1425	int rc = 0;
1426
1427	context_init(ctx);
1428
1429	/* Parse the security context. */
1430
1431	rc = -EINVAL;
1432	scontextp = scontext;
1433
1434	/* Extract the user. */
1435	p = scontextp;
1436	while (*p && *p != ':')
1437		p++;
1438
1439	if (*p == 0)
1440		goto out;
1441
1442	*p++ = 0;
1443
1444	usrdatum = symtab_search(&pol->p_users, scontextp);
1445	if (!usrdatum)
1446		goto out;
1447
1448	ctx->user = usrdatum->value;
1449
1450	/* Extract role. */
1451	scontextp = p;
1452	while (*p && *p != ':')
1453		p++;
1454
1455	if (*p == 0)
1456		goto out;
1457
1458	*p++ = 0;
1459
1460	role = symtab_search(&pol->p_roles, scontextp);
1461	if (!role)
1462		goto out;
1463	ctx->role = role->value;
1464
1465	/* Extract type. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469	oldc = *p;
1470	*p++ = 0;
1471
1472	typdatum = symtab_search(&pol->p_types, scontextp);
1473	if (!typdatum || typdatum->attribute)
1474		goto out;
1475
1476	ctx->type = typdatum->value;
1477
1478	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479	if (rc)
1480		goto out;
1481
1482	/* Check the validity of the new context. */
1483	rc = -EINVAL;
1484	if (!policydb_context_isvalid(pol, ctx))
1485		goto out;
1486	rc = 0;
1487out:
1488	if (rc)
1489		context_destroy(ctx);
1490	return rc;
1491}
1492
1493static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1494					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1495					int force)
1496{
1497	struct selinux_policy *policy;
1498	struct policydb *policydb;
1499	struct sidtab *sidtab;
1500	char *scontext2, *str = NULL;
1501	struct context context;
1502	int rc = 0;
1503
1504	/* An empty security context is never valid. */
1505	if (!scontext_len)
1506		return -EINVAL;
1507
1508	/* Copy the string to allow changes and ensure a NUL terminator */
1509	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510	if (!scontext2)
1511		return -ENOMEM;
1512
1513	if (!selinux_initialized()) {
1514		u32 i;
1515
1516		for (i = 1; i < SECINITSID_NUM; i++) {
1517			const char *s = initial_sid_to_string[i];
1518
1519			if (s && !strcmp(s, scontext2)) {
1520				*sid = i;
1521				goto out;
1522			}
1523		}
1524		*sid = SECINITSID_KERNEL;
1525		goto out;
1526	}
1527	*sid = SECSID_NULL;
1528
1529	if (force) {
1530		/* Save another copy for storing in uninterpreted form */
1531		rc = -ENOMEM;
1532		str = kstrdup(scontext2, gfp_flags);
1533		if (!str)
1534			goto out;
1535	}
1536retry:
1537	rcu_read_lock();
1538	policy = rcu_dereference(selinux_state.policy);
1539	policydb = &policy->policydb;
1540	sidtab = policy->sidtab;
1541	rc = string_to_context_struct(policydb, sidtab, scontext2,
1542				      &context, def_sid);
1543	if (rc == -EINVAL && force) {
1544		context.str = str;
1545		context.len = strlen(str) + 1;
1546		str = NULL;
1547	} else if (rc)
1548		goto out_unlock;
1549	rc = sidtab_context_to_sid(sidtab, &context, sid);
1550	if (rc == -ESTALE) {
1551		rcu_read_unlock();
1552		if (context.str) {
1553			str = context.str;
1554			context.str = NULL;
1555		}
1556		context_destroy(&context);
1557		goto retry;
1558	}
1559	context_destroy(&context);
1560out_unlock:
1561	rcu_read_unlock();
1562out:
1563	kfree(scontext2);
1564	kfree(str);
1565	return rc;
1566}
1567
1568/**
1569 * security_context_to_sid - Obtain a SID for a given security context.
1570 * @scontext: security context
1571 * @scontext_len: length in bytes
1572 * @sid: security identifier, SID
1573 * @gfp: context for the allocation
1574 *
1575 * Obtains a SID associated with the security context that
1576 * has the string representation specified by @scontext.
1577 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1578 * memory is available, or 0 on success.
1579 */
1580int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1581			    gfp_t gfp)
1582{
1583	return security_context_to_sid_core(scontext, scontext_len,
1584					    sid, SECSID_NULL, gfp, 0);
1585}
1586
1587int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1588{
1589	return security_context_to_sid(scontext, strlen(scontext),
1590				       sid, gfp);
1591}
1592
1593/**
1594 * security_context_to_sid_default - Obtain a SID for a given security context,
1595 * falling back to specified default if needed.
1596 *
1597 * @scontext: security context
1598 * @scontext_len: length in bytes
1599 * @sid: security identifier, SID
1600 * @def_sid: default SID to assign on error
1601 * @gfp_flags: the allocator get-free-page (GFP) flags
1602 *
1603 * Obtains a SID associated with the security context that
1604 * has the string representation specified by @scontext.
1605 * The default SID is passed to the MLS layer to be used to allow
1606 * kernel labeling of the MLS field if the MLS field is not present
1607 * (for upgrading to MLS without full relabel).
1608 * Implicitly forces adding of the context even if it cannot be mapped yet.
1609 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1610 * memory is available, or 0 on success.
1611 */
1612int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1613				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1614{
1615	return security_context_to_sid_core(scontext, scontext_len,
1616					    sid, def_sid, gfp_flags, 1);
1617}
1618
1619int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1620				  u32 *sid)
1621{
1622	return security_context_to_sid_core(scontext, scontext_len,
1623					    sid, SECSID_NULL, GFP_KERNEL, 1);
1624}
1625
1626static int compute_sid_handle_invalid_context(
1627	struct selinux_policy *policy,
1628	struct sidtab_entry *sentry,
1629	struct sidtab_entry *tentry,
1630	u16 tclass,
1631	struct context *newcontext)
1632{
1633	struct policydb *policydb = &policy->policydb;
1634	struct sidtab *sidtab = policy->sidtab;
1635	char *s = NULL, *t = NULL, *n = NULL;
1636	u32 slen, tlen, nlen;
1637	struct audit_buffer *ab;
1638
1639	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1640		goto out;
1641	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1642		goto out;
1643	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1644		goto out;
1645	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1646	if (!ab)
1647		goto out;
1648	audit_log_format(ab,
1649			 "op=security_compute_sid invalid_context=");
1650	/* no need to record the NUL with untrusted strings */
1651	audit_log_n_untrustedstring(ab, n, nlen - 1);
1652	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1653			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1654	audit_log_end(ab);
1655out:
1656	kfree(s);
1657	kfree(t);
1658	kfree(n);
1659	if (!enforcing_enabled())
1660		return 0;
1661	return -EACCES;
1662}
1663
1664static void filename_compute_type(struct policydb *policydb,
1665				  struct context *newcontext,
1666				  u32 stype, u32 ttype, u16 tclass,
1667				  const char *objname)
1668{
1669	struct filename_trans_key ft;
1670	struct filename_trans_datum *datum;
1671
1672	/*
1673	 * Most filename trans rules are going to live in specific directories
1674	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1675	 * if the ttype does not contain any rules.
1676	 */
1677	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1678		return;
1679
1680	ft.ttype = ttype;
1681	ft.tclass = tclass;
1682	ft.name = objname;
1683
1684	datum = policydb_filenametr_search(policydb, &ft);
1685	while (datum) {
1686		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1687			newcontext->type = datum->otype;
1688			return;
1689		}
1690		datum = datum->next;
1691	}
1692}
1693
1694static int security_compute_sid(u32 ssid,
1695				u32 tsid,
1696				u16 orig_tclass,
1697				u16 specified,
1698				const char *objname,
1699				u32 *out_sid,
1700				bool kern)
1701{
1702	struct selinux_policy *policy;
1703	struct policydb *policydb;
1704	struct sidtab *sidtab;
1705	struct class_datum *cladatum;
1706	struct context *scontext, *tcontext, newcontext;
1707	struct sidtab_entry *sentry, *tentry;
1708	struct avtab_key avkey;
1709	struct avtab_node *avnode, *node;
1710	u16 tclass;
1711	int rc = 0;
1712	bool sock;
1713
1714	if (!selinux_initialized()) {
1715		switch (orig_tclass) {
1716		case SECCLASS_PROCESS: /* kernel value */
1717			*out_sid = ssid;
1718			break;
1719		default:
1720			*out_sid = tsid;
1721			break;
1722		}
1723		goto out;
1724	}
1725
1726retry:
1727	cladatum = NULL;
1728	context_init(&newcontext);
1729
1730	rcu_read_lock();
1731
1732	policy = rcu_dereference(selinux_state.policy);
1733
1734	if (kern) {
1735		tclass = unmap_class(&policy->map, orig_tclass);
1736		sock = security_is_socket_class(orig_tclass);
1737	} else {
1738		tclass = orig_tclass;
1739		sock = security_is_socket_class(map_class(&policy->map,
1740							  tclass));
1741	}
1742
1743	policydb = &policy->policydb;
1744	sidtab = policy->sidtab;
1745
1746	sentry = sidtab_search_entry(sidtab, ssid);
1747	if (!sentry) {
1748		pr_err("SELinux: %s:  unrecognized SID %d\n",
1749		       __func__, ssid);
1750		rc = -EINVAL;
1751		goto out_unlock;
1752	}
1753	tentry = sidtab_search_entry(sidtab, tsid);
1754	if (!tentry) {
1755		pr_err("SELinux: %s:  unrecognized SID %d\n",
1756		       __func__, tsid);
1757		rc = -EINVAL;
1758		goto out_unlock;
1759	}
1760
1761	scontext = &sentry->context;
1762	tcontext = &tentry->context;
1763
1764	if (tclass && tclass <= policydb->p_classes.nprim)
1765		cladatum = policydb->class_val_to_struct[tclass - 1];
1766
1767	/* Set the user identity. */
1768	switch (specified) {
1769	case AVTAB_TRANSITION:
1770	case AVTAB_CHANGE:
1771		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1772			newcontext.user = tcontext->user;
1773		} else {
1774			/* notice this gets both DEFAULT_SOURCE and unset */
1775			/* Use the process user identity. */
1776			newcontext.user = scontext->user;
1777		}
1778		break;
1779	case AVTAB_MEMBER:
1780		/* Use the related object owner. */
1781		newcontext.user = tcontext->user;
1782		break;
1783	}
1784
1785	/* Set the role to default values. */
1786	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1787		newcontext.role = scontext->role;
1788	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1789		newcontext.role = tcontext->role;
1790	} else {
1791		if ((tclass == policydb->process_class) || sock)
1792			newcontext.role = scontext->role;
1793		else
1794			newcontext.role = OBJECT_R_VAL;
1795	}
1796
1797	/* Set the type to default values. */
1798	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1799		newcontext.type = scontext->type;
1800	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1801		newcontext.type = tcontext->type;
1802	} else {
1803		if ((tclass == policydb->process_class) || sock) {
1804			/* Use the type of process. */
1805			newcontext.type = scontext->type;
1806		} else {
1807			/* Use the type of the related object. */
1808			newcontext.type = tcontext->type;
1809		}
1810	}
1811
1812	/* Look for a type transition/member/change rule. */
1813	avkey.source_type = scontext->type;
1814	avkey.target_type = tcontext->type;
1815	avkey.target_class = tclass;
1816	avkey.specified = specified;
1817	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1818
1819	/* If no permanent rule, also check for enabled conditional rules */
1820	if (!avnode) {
1821		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1822		for (; node; node = avtab_search_node_next(node, specified)) {
1823			if (node->key.specified & AVTAB_ENABLED) {
1824				avnode = node;
1825				break;
1826			}
1827		}
1828	}
1829
1830	if (avnode) {
1831		/* Use the type from the type transition/member/change rule. */
1832		newcontext.type = avnode->datum.u.data;
1833	}
1834
1835	/* if we have a objname this is a file trans check so check those rules */
1836	if (objname)
1837		filename_compute_type(policydb, &newcontext, scontext->type,
1838				      tcontext->type, tclass, objname);
1839
1840	/* Check for class-specific changes. */
1841	if (specified & AVTAB_TRANSITION) {
1842		/* Look for a role transition rule. */
1843		struct role_trans_datum *rtd;
1844		struct role_trans_key rtk = {
1845			.role = scontext->role,
1846			.type = tcontext->type,
1847			.tclass = tclass,
1848		};
1849
1850		rtd = policydb_roletr_search(policydb, &rtk);
1851		if (rtd)
1852			newcontext.role = rtd->new_role;
1853	}
1854
1855	/* Set the MLS attributes.
1856	   This is done last because it may allocate memory. */
1857	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1858			     &newcontext, sock);
1859	if (rc)
1860		goto out_unlock;
1861
1862	/* Check the validity of the context. */
1863	if (!policydb_context_isvalid(policydb, &newcontext)) {
1864		rc = compute_sid_handle_invalid_context(policy, sentry,
1865							tentry, tclass,
1866							&newcontext);
1867		if (rc)
1868			goto out_unlock;
1869	}
1870	/* Obtain the sid for the context. */
1871	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1872	if (rc == -ESTALE) {
1873		rcu_read_unlock();
1874		context_destroy(&newcontext);
1875		goto retry;
1876	}
1877out_unlock:
1878	rcu_read_unlock();
1879	context_destroy(&newcontext);
1880out:
1881	return rc;
1882}
1883
1884/**
1885 * security_transition_sid - Compute the SID for a new subject/object.
1886 * @ssid: source security identifier
1887 * @tsid: target security identifier
1888 * @tclass: target security class
1889 * @qstr: object name
1890 * @out_sid: security identifier for new subject/object
1891 *
1892 * Compute a SID to use for labeling a new subject or object in the
1893 * class @tclass based on a SID pair (@ssid, @tsid).
1894 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1895 * if insufficient memory is available, or %0 if the new SID was
1896 * computed successfully.
1897 */
1898int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1899			    const struct qstr *qstr, u32 *out_sid)
1900{
1901	return security_compute_sid(ssid, tsid, tclass,
1902				    AVTAB_TRANSITION,
1903				    qstr ? qstr->name : NULL, out_sid, true);
1904}
1905
1906int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1907				 const char *objname, u32 *out_sid)
1908{
1909	return security_compute_sid(ssid, tsid, tclass,
1910				    AVTAB_TRANSITION,
1911				    objname, out_sid, false);
1912}
1913
1914/**
1915 * security_member_sid - Compute the SID for member selection.
1916 * @ssid: source security identifier
1917 * @tsid: target security identifier
1918 * @tclass: target security class
1919 * @out_sid: security identifier for selected member
1920 *
1921 * Compute a SID to use when selecting a member of a polyinstantiated
1922 * object of class @tclass based on a SID pair (@ssid, @tsid).
1923 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1924 * if insufficient memory is available, or %0 if the SID was
1925 * computed successfully.
1926 */
1927int security_member_sid(u32 ssid,
1928			u32 tsid,
1929			u16 tclass,
1930			u32 *out_sid)
1931{
1932	return security_compute_sid(ssid, tsid, tclass,
1933				    AVTAB_MEMBER, NULL,
1934				    out_sid, false);
1935}
1936
1937/**
1938 * security_change_sid - Compute the SID for object relabeling.
1939 * @ssid: source security identifier
1940 * @tsid: target security identifier
1941 * @tclass: target security class
1942 * @out_sid: security identifier for selected member
1943 *
1944 * Compute a SID to use for relabeling an object of class @tclass
1945 * based on a SID pair (@ssid, @tsid).
1946 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1947 * if insufficient memory is available, or %0 if the SID was
1948 * computed successfully.
1949 */
1950int security_change_sid(u32 ssid,
1951			u32 tsid,
1952			u16 tclass,
1953			u32 *out_sid)
1954{
1955	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1956				    out_sid, false);
1957}
1958
1959static inline int convert_context_handle_invalid_context(
1960	struct policydb *policydb,
1961	struct context *context)
1962{
1963	char *s;
1964	u32 len;
1965
1966	if (enforcing_enabled())
1967		return -EINVAL;
1968
1969	if (!context_struct_to_string(policydb, context, &s, &len)) {
1970		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1971			s);
1972		kfree(s);
1973	}
1974	return 0;
1975}
1976
1977/**
1978 * services_convert_context - Convert a security context across policies.
1979 * @args: populated convert_context_args struct
1980 * @oldc: original context
1981 * @newc: converted context
1982 * @gfp_flags: allocation flags
1983 *
1984 * Convert the values in the security context structure @oldc from the values
1985 * specified in the policy @args->oldp to the values specified in the policy
1986 * @args->newp, storing the new context in @newc, and verifying that the
1987 * context is valid under the new policy.
1988 */
1989int services_convert_context(struct convert_context_args *args,
1990			     struct context *oldc, struct context *newc,
1991			     gfp_t gfp_flags)
1992{
1993	struct ocontext *oc;
1994	struct role_datum *role;
1995	struct type_datum *typdatum;
1996	struct user_datum *usrdatum;
1997	char *s;
1998	u32 len;
1999	int rc;
2000
2001	if (oldc->str) {
2002		s = kstrdup(oldc->str, gfp_flags);
2003		if (!s)
2004			return -ENOMEM;
2005
2006		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2007		if (rc == -EINVAL) {
2008			/*
2009			 * Retain string representation for later mapping.
2010			 *
2011			 * IMPORTANT: We need to copy the contents of oldc->str
2012			 * back into s again because string_to_context_struct()
2013			 * may have garbled it.
2014			 */
2015			memcpy(s, oldc->str, oldc->len);
2016			context_init(newc);
2017			newc->str = s;
2018			newc->len = oldc->len;
2019			return 0;
2020		}
2021		kfree(s);
2022		if (rc) {
2023			/* Other error condition, e.g. ENOMEM. */
2024			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2025			       oldc->str, -rc);
2026			return rc;
2027		}
2028		pr_info("SELinux:  Context %s became valid (mapped).\n",
2029			oldc->str);
2030		return 0;
2031	}
2032
2033	context_init(newc);
2034
2035	/* Convert the user. */
2036	usrdatum = symtab_search(&args->newp->p_users,
2037				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2038	if (!usrdatum)
2039		goto bad;
2040	newc->user = usrdatum->value;
2041
2042	/* Convert the role. */
2043	role = symtab_search(&args->newp->p_roles,
2044			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2045	if (!role)
2046		goto bad;
2047	newc->role = role->value;
2048
2049	/* Convert the type. */
2050	typdatum = symtab_search(&args->newp->p_types,
2051				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2052	if (!typdatum)
2053		goto bad;
2054	newc->type = typdatum->value;
2055
2056	/* Convert the MLS fields if dealing with MLS policies */
2057	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2058		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2059		if (rc)
2060			goto bad;
2061	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2062		/*
2063		 * Switching between non-MLS and MLS policy:
2064		 * ensure that the MLS fields of the context for all
2065		 * existing entries in the sidtab are filled in with a
2066		 * suitable default value, likely taken from one of the
2067		 * initial SIDs.
2068		 */
2069		oc = args->newp->ocontexts[OCON_ISID];
2070		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2071			oc = oc->next;
2072		if (!oc) {
2073			pr_err("SELinux:  unable to look up"
2074				" the initial SIDs list\n");
2075			goto bad;
2076		}
2077		rc = mls_range_set(newc, &oc->context[0].range);
2078		if (rc)
2079			goto bad;
2080	}
2081
2082	/* Check the validity of the new context. */
2083	if (!policydb_context_isvalid(args->newp, newc)) {
2084		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2085		if (rc)
2086			goto bad;
2087	}
2088
2089	return 0;
2090bad:
2091	/* Map old representation to string and save it. */
2092	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2093	if (rc)
2094		return rc;
2095	context_destroy(newc);
2096	newc->str = s;
2097	newc->len = len;
2098	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2099		newc->str);
2100	return 0;
2101}
2102
2103static void security_load_policycaps(struct selinux_policy *policy)
2104{
2105	struct policydb *p;
2106	unsigned int i;
2107	struct ebitmap_node *node;
2108
2109	p = &policy->policydb;
2110
2111	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2112		WRITE_ONCE(selinux_state.policycap[i],
2113			ebitmap_get_bit(&p->policycaps, i));
2114
2115	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2116		pr_info("SELinux:  policy capability %s=%d\n",
2117			selinux_policycap_names[i],
2118			ebitmap_get_bit(&p->policycaps, i));
2119
2120	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2121		if (i >= ARRAY_SIZE(selinux_policycap_names))
2122			pr_info("SELinux:  unknown policy capability %u\n",
2123				i);
2124	}
2125}
2126
2127static int security_preserve_bools(struct selinux_policy *oldpolicy,
2128				struct selinux_policy *newpolicy);
2129
2130static void selinux_policy_free(struct selinux_policy *policy)
2131{
2132	if (!policy)
2133		return;
2134
2135	sidtab_destroy(policy->sidtab);
2136	kfree(policy->map.mapping);
2137	policydb_destroy(&policy->policydb);
2138	kfree(policy->sidtab);
2139	kfree(policy);
2140}
2141
2142static void selinux_policy_cond_free(struct selinux_policy *policy)
2143{
2144	cond_policydb_destroy_dup(&policy->policydb);
2145	kfree(policy);
2146}
2147
2148void selinux_policy_cancel(struct selinux_load_state *load_state)
2149{
2150	struct selinux_state *state = &selinux_state;
2151	struct selinux_policy *oldpolicy;
2152
2153	oldpolicy = rcu_dereference_protected(state->policy,
2154					lockdep_is_held(&state->policy_mutex));
2155
2156	sidtab_cancel_convert(oldpolicy->sidtab);
2157	selinux_policy_free(load_state->policy);
2158	kfree(load_state->convert_data);
2159}
2160
2161static void selinux_notify_policy_change(u32 seqno)
2162{
2163	/* Flush external caches and notify userspace of policy load */
2164	avc_ss_reset(seqno);
2165	selnl_notify_policyload(seqno);
2166	selinux_status_update_policyload(seqno);
2167	selinux_netlbl_cache_invalidate();
2168	selinux_xfrm_notify_policyload();
2169	selinux_ima_measure_state_locked();
2170}
2171
2172void selinux_policy_commit(struct selinux_load_state *load_state)
2173{
2174	struct selinux_state *state = &selinux_state;
2175	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2176	unsigned long flags;
2177	u32 seqno;
2178
2179	oldpolicy = rcu_dereference_protected(state->policy,
2180					lockdep_is_held(&state->policy_mutex));
2181
2182	/* If switching between different policy types, log MLS status */
2183	if (oldpolicy) {
2184		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2185			pr_info("SELinux: Disabling MLS support...\n");
2186		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2187			pr_info("SELinux: Enabling MLS support...\n");
2188	}
2189
2190	/* Set latest granting seqno for new policy. */
2191	if (oldpolicy)
2192		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2193	else
2194		newpolicy->latest_granting = 1;
2195	seqno = newpolicy->latest_granting;
2196
2197	/* Install the new policy. */
2198	if (oldpolicy) {
2199		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2200		rcu_assign_pointer(state->policy, newpolicy);
2201		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2202	} else {
2203		rcu_assign_pointer(state->policy, newpolicy);
2204	}
2205
2206	/* Load the policycaps from the new policy */
2207	security_load_policycaps(newpolicy);
2208
2209	if (!selinux_initialized()) {
2210		/*
2211		 * After first policy load, the security server is
2212		 * marked as initialized and ready to handle requests and
2213		 * any objects created prior to policy load are then labeled.
2214		 */
2215		selinux_mark_initialized();
2216		selinux_complete_init();
2217	}
2218
2219	/* Free the old policy */
2220	synchronize_rcu();
2221	selinux_policy_free(oldpolicy);
2222	kfree(load_state->convert_data);
2223
2224	/* Notify others of the policy change */
2225	selinux_notify_policy_change(seqno);
2226}
2227
2228/**
2229 * security_load_policy - Load a security policy configuration.
2230 * @data: binary policy data
2231 * @len: length of data in bytes
2232 * @load_state: policy load state
2233 *
2234 * Load a new set of security policy configuration data,
2235 * validate it and convert the SID table as necessary.
2236 * This function will flush the access vector cache after
2237 * loading the new policy.
2238 */
2239int security_load_policy(void *data, size_t len,
2240			 struct selinux_load_state *load_state)
2241{
2242	struct selinux_state *state = &selinux_state;
2243	struct selinux_policy *newpolicy, *oldpolicy;
2244	struct selinux_policy_convert_data *convert_data;
2245	int rc = 0;
2246	struct policy_file file = { data, len }, *fp = &file;
2247
2248	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2249	if (!newpolicy)
2250		return -ENOMEM;
2251
2252	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2253	if (!newpolicy->sidtab) {
2254		rc = -ENOMEM;
2255		goto err_policy;
2256	}
2257
2258	rc = policydb_read(&newpolicy->policydb, fp);
2259	if (rc)
2260		goto err_sidtab;
2261
2262	newpolicy->policydb.len = len;
2263	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2264				&newpolicy->map);
2265	if (rc)
2266		goto err_policydb;
2267
2268	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2269	if (rc) {
2270		pr_err("SELinux:  unable to load the initial SIDs\n");
2271		goto err_mapping;
2272	}
2273
2274	if (!selinux_initialized()) {
2275		/* First policy load, so no need to preserve state from old policy */
2276		load_state->policy = newpolicy;
2277		load_state->convert_data = NULL;
2278		return 0;
2279	}
2280
2281	oldpolicy = rcu_dereference_protected(state->policy,
2282					lockdep_is_held(&state->policy_mutex));
2283
2284	/* Preserve active boolean values from the old policy */
2285	rc = security_preserve_bools(oldpolicy, newpolicy);
2286	if (rc) {
2287		pr_err("SELinux:  unable to preserve booleans\n");
2288		goto err_free_isids;
2289	}
2290
2291	/*
2292	 * Convert the internal representations of contexts
2293	 * in the new SID table.
2294	 */
2295
2296	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2297	if (!convert_data) {
2298		rc = -ENOMEM;
2299		goto err_free_isids;
2300	}
2301
2302	convert_data->args.oldp = &oldpolicy->policydb;
2303	convert_data->args.newp = &newpolicy->policydb;
2304
2305	convert_data->sidtab_params.args = &convert_data->args;
2306	convert_data->sidtab_params.target = newpolicy->sidtab;
2307
2308	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2309	if (rc) {
2310		pr_err("SELinux:  unable to convert the internal"
2311			" representation of contexts in the new SID"
2312			" table\n");
2313		goto err_free_convert_data;
2314	}
2315
2316	load_state->policy = newpolicy;
2317	load_state->convert_data = convert_data;
2318	return 0;
2319
2320err_free_convert_data:
2321	kfree(convert_data);
2322err_free_isids:
2323	sidtab_destroy(newpolicy->sidtab);
2324err_mapping:
2325	kfree(newpolicy->map.mapping);
2326err_policydb:
2327	policydb_destroy(&newpolicy->policydb);
2328err_sidtab:
2329	kfree(newpolicy->sidtab);
2330err_policy:
2331	kfree(newpolicy);
2332
2333	return rc;
2334}
2335
2336/**
2337 * ocontext_to_sid - Helper to safely get sid for an ocontext
2338 * @sidtab: SID table
2339 * @c: ocontext structure
2340 * @index: index of the context entry (0 or 1)
2341 * @out_sid: pointer to the resulting SID value
2342 *
2343 * For all ocontexts except OCON_ISID the SID fields are populated
2344 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2345 * operation, this helper must be used to do that safely.
2346 *
2347 * WARNING: This function may return -ESTALE, indicating that the caller
2348 * must retry the operation after re-acquiring the policy pointer!
2349 */
2350static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2351			   size_t index, u32 *out_sid)
2352{
2353	int rc;
2354	u32 sid;
2355
2356	/* Ensure the associated sidtab entry is visible to this thread. */
2357	sid = smp_load_acquire(&c->sid[index]);
2358	if (!sid) {
2359		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2360		if (rc)
2361			return rc;
2362
2363		/*
2364		 * Ensure the new sidtab entry is visible to other threads
2365		 * when they see the SID.
2366		 */
2367		smp_store_release(&c->sid[index], sid);
2368	}
2369	*out_sid = sid;
2370	return 0;
2371}
2372
2373/**
2374 * security_port_sid - Obtain the SID for a port.
2375 * @protocol: protocol number
2376 * @port: port number
2377 * @out_sid: security identifier
2378 */
2379int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2380{
2381	struct selinux_policy *policy;
2382	struct policydb *policydb;
2383	struct sidtab *sidtab;
2384	struct ocontext *c;
2385	int rc;
2386
2387	if (!selinux_initialized()) {
2388		*out_sid = SECINITSID_PORT;
2389		return 0;
2390	}
2391
2392retry:
2393	rc = 0;
2394	rcu_read_lock();
2395	policy = rcu_dereference(selinux_state.policy);
2396	policydb = &policy->policydb;
2397	sidtab = policy->sidtab;
2398
2399	c = policydb->ocontexts[OCON_PORT];
2400	while (c) {
2401		if (c->u.port.protocol == protocol &&
2402		    c->u.port.low_port <= port &&
2403		    c->u.port.high_port >= port)
2404			break;
2405		c = c->next;
2406	}
2407
2408	if (c) {
2409		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2410		if (rc == -ESTALE) {
2411			rcu_read_unlock();
2412			goto retry;
2413		}
2414		if (rc)
2415			goto out;
2416	} else {
2417		*out_sid = SECINITSID_PORT;
2418	}
2419
2420out:
2421	rcu_read_unlock();
2422	return rc;
2423}
2424
2425/**
2426 * security_ib_pkey_sid - Obtain the SID for a pkey.
2427 * @subnet_prefix: Subnet Prefix
2428 * @pkey_num: pkey number
2429 * @out_sid: security identifier
2430 */
2431int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2432{
2433	struct selinux_policy *policy;
2434	struct policydb *policydb;
2435	struct sidtab *sidtab;
2436	struct ocontext *c;
2437	int rc;
2438
2439	if (!selinux_initialized()) {
2440		*out_sid = SECINITSID_UNLABELED;
2441		return 0;
2442	}
2443
2444retry:
2445	rc = 0;
2446	rcu_read_lock();
2447	policy = rcu_dereference(selinux_state.policy);
2448	policydb = &policy->policydb;
2449	sidtab = policy->sidtab;
2450
2451	c = policydb->ocontexts[OCON_IBPKEY];
2452	while (c) {
2453		if (c->u.ibpkey.low_pkey <= pkey_num &&
2454		    c->u.ibpkey.high_pkey >= pkey_num &&
2455		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2456			break;
2457
2458		c = c->next;
2459	}
2460
2461	if (c) {
2462		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2463		if (rc == -ESTALE) {
2464			rcu_read_unlock();
2465			goto retry;
2466		}
2467		if (rc)
2468			goto out;
2469	} else
2470		*out_sid = SECINITSID_UNLABELED;
2471
2472out:
2473	rcu_read_unlock();
2474	return rc;
2475}
2476
2477/**
2478 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2479 * @dev_name: device name
2480 * @port_num: port number
2481 * @out_sid: security identifier
2482 */
2483int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2484{
2485	struct selinux_policy *policy;
2486	struct policydb *policydb;
2487	struct sidtab *sidtab;
2488	struct ocontext *c;
2489	int rc;
2490
2491	if (!selinux_initialized()) {
2492		*out_sid = SECINITSID_UNLABELED;
2493		return 0;
2494	}
2495
2496retry:
2497	rc = 0;
2498	rcu_read_lock();
2499	policy = rcu_dereference(selinux_state.policy);
2500	policydb = &policy->policydb;
2501	sidtab = policy->sidtab;
2502
2503	c = policydb->ocontexts[OCON_IBENDPORT];
2504	while (c) {
2505		if (c->u.ibendport.port == port_num &&
2506		    !strncmp(c->u.ibendport.dev_name,
2507			     dev_name,
2508			     IB_DEVICE_NAME_MAX))
2509			break;
2510
2511		c = c->next;
2512	}
2513
2514	if (c) {
2515		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2516		if (rc == -ESTALE) {
2517			rcu_read_unlock();
2518			goto retry;
2519		}
2520		if (rc)
2521			goto out;
2522	} else
2523		*out_sid = SECINITSID_UNLABELED;
2524
2525out:
2526	rcu_read_unlock();
2527	return rc;
2528}
2529
2530/**
2531 * security_netif_sid - Obtain the SID for a network interface.
2532 * @name: interface name
2533 * @if_sid: interface SID
2534 */
2535int security_netif_sid(char *name, u32 *if_sid)
2536{
2537	struct selinux_policy *policy;
2538	struct policydb *policydb;
2539	struct sidtab *sidtab;
2540	int rc;
2541	struct ocontext *c;
2542
2543	if (!selinux_initialized()) {
2544		*if_sid = SECINITSID_NETIF;
2545		return 0;
2546	}
2547
2548retry:
2549	rc = 0;
2550	rcu_read_lock();
2551	policy = rcu_dereference(selinux_state.policy);
2552	policydb = &policy->policydb;
2553	sidtab = policy->sidtab;
2554
2555	c = policydb->ocontexts[OCON_NETIF];
2556	while (c) {
2557		if (strcmp(name, c->u.name) == 0)
2558			break;
2559		c = c->next;
2560	}
2561
2562	if (c) {
2563		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2564		if (rc == -ESTALE) {
2565			rcu_read_unlock();
2566			goto retry;
2567		}
2568		if (rc)
2569			goto out;
2570	} else
2571		*if_sid = SECINITSID_NETIF;
2572
2573out:
2574	rcu_read_unlock();
2575	return rc;
2576}
2577
2578static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2579{
2580	int i, fail = 0;
2581
2582	for (i = 0; i < 4; i++)
2583		if (addr[i] != (input[i] & mask[i])) {
2584			fail = 1;
2585			break;
2586		}
2587
2588	return !fail;
2589}
2590
2591/**
2592 * security_node_sid - Obtain the SID for a node (host).
2593 * @domain: communication domain aka address family
2594 * @addrp: address
2595 * @addrlen: address length in bytes
2596 * @out_sid: security identifier
2597 */
2598int security_node_sid(u16 domain,
2599		      void *addrp,
2600		      u32 addrlen,
2601		      u32 *out_sid)
2602{
2603	struct selinux_policy *policy;
2604	struct policydb *policydb;
2605	struct sidtab *sidtab;
2606	int rc;
2607	struct ocontext *c;
2608
2609	if (!selinux_initialized()) {
2610		*out_sid = SECINITSID_NODE;
2611		return 0;
2612	}
2613
2614retry:
2615	rcu_read_lock();
2616	policy = rcu_dereference(selinux_state.policy);
2617	policydb = &policy->policydb;
2618	sidtab = policy->sidtab;
2619
2620	switch (domain) {
2621	case AF_INET: {
2622		u32 addr;
2623
2624		rc = -EINVAL;
2625		if (addrlen != sizeof(u32))
2626			goto out;
2627
2628		addr = *((u32 *)addrp);
2629
2630		c = policydb->ocontexts[OCON_NODE];
2631		while (c) {
2632			if (c->u.node.addr == (addr & c->u.node.mask))
2633				break;
2634			c = c->next;
2635		}
2636		break;
2637	}
2638
2639	case AF_INET6:
2640		rc = -EINVAL;
2641		if (addrlen != sizeof(u64) * 2)
2642			goto out;
2643		c = policydb->ocontexts[OCON_NODE6];
2644		while (c) {
2645			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2646						c->u.node6.mask))
2647				break;
2648			c = c->next;
2649		}
2650		break;
2651
2652	default:
2653		rc = 0;
2654		*out_sid = SECINITSID_NODE;
2655		goto out;
2656	}
2657
2658	if (c) {
2659		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2660		if (rc == -ESTALE) {
2661			rcu_read_unlock();
2662			goto retry;
2663		}
2664		if (rc)
2665			goto out;
2666	} else {
2667		*out_sid = SECINITSID_NODE;
2668	}
2669
2670	rc = 0;
2671out:
2672	rcu_read_unlock();
2673	return rc;
2674}
2675
2676#define SIDS_NEL 25
2677
2678/**
2679 * security_get_user_sids - Obtain reachable SIDs for a user.
2680 * @fromsid: starting SID
2681 * @username: username
2682 * @sids: array of reachable SIDs for user
2683 * @nel: number of elements in @sids
2684 *
2685 * Generate the set of SIDs for legal security contexts
2686 * for a given user that can be reached by @fromsid.
2687 * Set *@sids to point to a dynamically allocated
2688 * array containing the set of SIDs.  Set *@nel to the
2689 * number of elements in the array.
2690 */
2691
2692int security_get_user_sids(u32 fromsid,
2693			   char *username,
2694			   u32 **sids,
2695			   u32 *nel)
2696{
2697	struct selinux_policy *policy;
2698	struct policydb *policydb;
2699	struct sidtab *sidtab;
2700	struct context *fromcon, usercon;
2701	u32 *mysids = NULL, *mysids2, sid;
2702	u32 i, j, mynel, maxnel = SIDS_NEL;
2703	struct user_datum *user;
2704	struct role_datum *role;
2705	struct ebitmap_node *rnode, *tnode;
2706	int rc;
2707
2708	*sids = NULL;
2709	*nel = 0;
2710
2711	if (!selinux_initialized())
2712		return 0;
2713
2714	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2715	if (!mysids)
2716		return -ENOMEM;
2717
2718retry:
2719	mynel = 0;
2720	rcu_read_lock();
2721	policy = rcu_dereference(selinux_state.policy);
2722	policydb = &policy->policydb;
2723	sidtab = policy->sidtab;
2724
2725	context_init(&usercon);
2726
2727	rc = -EINVAL;
2728	fromcon = sidtab_search(sidtab, fromsid);
2729	if (!fromcon)
2730		goto out_unlock;
2731
2732	rc = -EINVAL;
2733	user = symtab_search(&policydb->p_users, username);
2734	if (!user)
2735		goto out_unlock;
2736
2737	usercon.user = user->value;
2738
2739	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2740		role = policydb->role_val_to_struct[i];
2741		usercon.role = i + 1;
2742		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2743			usercon.type = j + 1;
2744
2745			if (mls_setup_user_range(policydb, fromcon, user,
2746						 &usercon))
2747				continue;
2748
2749			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2750			if (rc == -ESTALE) {
2751				rcu_read_unlock();
2752				goto retry;
2753			}
2754			if (rc)
2755				goto out_unlock;
2756			if (mynel < maxnel) {
2757				mysids[mynel++] = sid;
2758			} else {
2759				rc = -ENOMEM;
2760				maxnel += SIDS_NEL;
2761				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2762				if (!mysids2)
2763					goto out_unlock;
2764				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2765				kfree(mysids);
2766				mysids = mysids2;
2767				mysids[mynel++] = sid;
2768			}
2769		}
2770	}
2771	rc = 0;
2772out_unlock:
2773	rcu_read_unlock();
2774	if (rc || !mynel) {
2775		kfree(mysids);
2776		return rc;
2777	}
2778
2779	rc = -ENOMEM;
2780	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2781	if (!mysids2) {
2782		kfree(mysids);
2783		return rc;
2784	}
2785	for (i = 0, j = 0; i < mynel; i++) {
2786		struct av_decision dummy_avd;
2787		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2788					  SECCLASS_PROCESS, /* kernel value */
2789					  PROCESS__TRANSITION, AVC_STRICT,
2790					  &dummy_avd);
2791		if (!rc)
2792			mysids2[j++] = mysids[i];
2793		cond_resched();
2794	}
2795	kfree(mysids);
2796	*sids = mysids2;
2797	*nel = j;
2798	return 0;
2799}
2800
2801/**
2802 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2803 * @policy: policy
2804 * @fstype: filesystem type
2805 * @path: path from root of mount
2806 * @orig_sclass: file security class
2807 * @sid: SID for path
2808 *
2809 * Obtain a SID to use for a file in a filesystem that
2810 * cannot support xattr or use a fixed labeling behavior like
2811 * transition SIDs or task SIDs.
2812 *
2813 * WARNING: This function may return -ESTALE, indicating that the caller
2814 * must retry the operation after re-acquiring the policy pointer!
2815 */
2816static inline int __security_genfs_sid(struct selinux_policy *policy,
2817				       const char *fstype,
2818				       const char *path,
2819				       u16 orig_sclass,
2820				       u32 *sid)
2821{
2822	struct policydb *policydb = &policy->policydb;
2823	struct sidtab *sidtab = policy->sidtab;
2824	u16 sclass;
2825	struct genfs *genfs;
2826	struct ocontext *c;
2827	int cmp = 0;
2828
2829	while (path[0] == '/' && path[1] == '/')
2830		path++;
2831
2832	sclass = unmap_class(&policy->map, orig_sclass);
2833	*sid = SECINITSID_UNLABELED;
2834
2835	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2836		cmp = strcmp(fstype, genfs->fstype);
2837		if (cmp <= 0)
2838			break;
2839	}
2840
2841	if (!genfs || cmp)
2842		return -ENOENT;
2843
2844	for (c = genfs->head; c; c = c->next) {
2845		size_t len = strlen(c->u.name);
2846		if ((!c->v.sclass || sclass == c->v.sclass) &&
2847		    (strncmp(c->u.name, path, len) == 0))
2848			break;
2849	}
2850
2851	if (!c)
2852		return -ENOENT;
2853
2854	return ocontext_to_sid(sidtab, c, 0, sid);
2855}
2856
2857/**
2858 * security_genfs_sid - Obtain a SID for a file in a filesystem
2859 * @fstype: filesystem type
2860 * @path: path from root of mount
2861 * @orig_sclass: file security class
2862 * @sid: SID for path
2863 *
2864 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2865 * it afterward.
2866 */
2867int security_genfs_sid(const char *fstype,
2868		       const char *path,
2869		       u16 orig_sclass,
2870		       u32 *sid)
2871{
2872	struct selinux_policy *policy;
2873	int retval;
2874
2875	if (!selinux_initialized()) {
2876		*sid = SECINITSID_UNLABELED;
2877		return 0;
2878	}
2879
2880	do {
2881		rcu_read_lock();
2882		policy = rcu_dereference(selinux_state.policy);
2883		retval = __security_genfs_sid(policy, fstype, path,
2884					      orig_sclass, sid);
2885		rcu_read_unlock();
2886	} while (retval == -ESTALE);
2887	return retval;
2888}
2889
2890int selinux_policy_genfs_sid(struct selinux_policy *policy,
2891			const char *fstype,
2892			const char *path,
2893			u16 orig_sclass,
2894			u32 *sid)
2895{
2896	/* no lock required, policy is not yet accessible by other threads */
2897	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2898}
2899
2900/**
2901 * security_fs_use - Determine how to handle labeling for a filesystem.
2902 * @sb: superblock in question
2903 */
2904int security_fs_use(struct super_block *sb)
2905{
2906	struct selinux_policy *policy;
2907	struct policydb *policydb;
2908	struct sidtab *sidtab;
2909	int rc;
2910	struct ocontext *c;
2911	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2912	const char *fstype = sb->s_type->name;
2913
2914	if (!selinux_initialized()) {
2915		sbsec->behavior = SECURITY_FS_USE_NONE;
2916		sbsec->sid = SECINITSID_UNLABELED;
2917		return 0;
2918	}
2919
2920retry:
2921	rcu_read_lock();
2922	policy = rcu_dereference(selinux_state.policy);
2923	policydb = &policy->policydb;
2924	sidtab = policy->sidtab;
2925
2926	c = policydb->ocontexts[OCON_FSUSE];
2927	while (c) {
2928		if (strcmp(fstype, c->u.name) == 0)
2929			break;
2930		c = c->next;
2931	}
2932
2933	if (c) {
2934		sbsec->behavior = c->v.behavior;
2935		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2936		if (rc == -ESTALE) {
2937			rcu_read_unlock();
2938			goto retry;
2939		}
2940		if (rc)
2941			goto out;
2942	} else {
2943		rc = __security_genfs_sid(policy, fstype, "/",
2944					SECCLASS_DIR, &sbsec->sid);
2945		if (rc == -ESTALE) {
2946			rcu_read_unlock();
2947			goto retry;
2948		}
2949		if (rc) {
2950			sbsec->behavior = SECURITY_FS_USE_NONE;
2951			rc = 0;
2952		} else {
2953			sbsec->behavior = SECURITY_FS_USE_GENFS;
2954		}
2955	}
2956
2957out:
2958	rcu_read_unlock();
2959	return rc;
2960}
2961
2962int security_get_bools(struct selinux_policy *policy,
2963		       u32 *len, char ***names, int **values)
2964{
2965	struct policydb *policydb;
2966	u32 i;
2967	int rc;
2968
2969	policydb = &policy->policydb;
2970
2971	*names = NULL;
2972	*values = NULL;
2973
2974	rc = 0;
2975	*len = policydb->p_bools.nprim;
2976	if (!*len)
2977		goto out;
2978
2979	rc = -ENOMEM;
2980	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2981	if (!*names)
2982		goto err;
2983
2984	rc = -ENOMEM;
2985	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2986	if (!*values)
2987		goto err;
2988
2989	for (i = 0; i < *len; i++) {
2990		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2991
2992		rc = -ENOMEM;
2993		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2994				      GFP_ATOMIC);
2995		if (!(*names)[i])
2996			goto err;
2997	}
2998	rc = 0;
2999out:
3000	return rc;
3001err:
3002	if (*names) {
3003		for (i = 0; i < *len; i++)
3004			kfree((*names)[i]);
3005		kfree(*names);
3006	}
3007	kfree(*values);
3008	*len = 0;
3009	*names = NULL;
3010	*values = NULL;
3011	goto out;
3012}
3013
3014
3015int security_set_bools(u32 len, int *values)
3016{
3017	struct selinux_state *state = &selinux_state;
3018	struct selinux_policy *newpolicy, *oldpolicy;
3019	int rc;
3020	u32 i, seqno = 0;
3021
3022	if (!selinux_initialized())
3023		return -EINVAL;
3024
3025	oldpolicy = rcu_dereference_protected(state->policy,
3026					lockdep_is_held(&state->policy_mutex));
3027
3028	/* Consistency check on number of booleans, should never fail */
3029	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3030		return -EINVAL;
3031
3032	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3033	if (!newpolicy)
3034		return -ENOMEM;
3035
3036	/*
3037	 * Deep copy only the parts of the policydb that might be
3038	 * modified as a result of changing booleans.
3039	 */
3040	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3041	if (rc) {
3042		kfree(newpolicy);
3043		return -ENOMEM;
3044	}
3045
3046	/* Update the boolean states in the copy */
3047	for (i = 0; i < len; i++) {
3048		int new_state = !!values[i];
3049		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3050
3051		if (new_state != old_state) {
3052			audit_log(audit_context(), GFP_ATOMIC,
3053				AUDIT_MAC_CONFIG_CHANGE,
3054				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3055				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3056				new_state,
3057				old_state,
3058				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3059				audit_get_sessionid(current));
3060			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3061		}
3062	}
3063
3064	/* Re-evaluate the conditional rules in the copy */
3065	evaluate_cond_nodes(&newpolicy->policydb);
3066
3067	/* Set latest granting seqno for new policy */
3068	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3069	seqno = newpolicy->latest_granting;
3070
3071	/* Install the new policy */
3072	rcu_assign_pointer(state->policy, newpolicy);
3073
3074	/*
3075	 * Free the conditional portions of the old policydb
3076	 * that were copied for the new policy, and the oldpolicy
3077	 * structure itself but not what it references.
3078	 */
3079	synchronize_rcu();
3080	selinux_policy_cond_free(oldpolicy);
3081
3082	/* Notify others of the policy change */
3083	selinux_notify_policy_change(seqno);
3084	return 0;
3085}
3086
3087int security_get_bool_value(u32 index)
3088{
3089	struct selinux_policy *policy;
3090	struct policydb *policydb;
3091	int rc;
3092	u32 len;
3093
3094	if (!selinux_initialized())
3095		return 0;
3096
3097	rcu_read_lock();
3098	policy = rcu_dereference(selinux_state.policy);
3099	policydb = &policy->policydb;
3100
3101	rc = -EFAULT;
3102	len = policydb->p_bools.nprim;
3103	if (index >= len)
3104		goto out;
3105
3106	rc = policydb->bool_val_to_struct[index]->state;
3107out:
3108	rcu_read_unlock();
3109	return rc;
3110}
3111
3112static int security_preserve_bools(struct selinux_policy *oldpolicy,
3113				struct selinux_policy *newpolicy)
3114{
3115	int rc, *bvalues = NULL;
3116	char **bnames = NULL;
3117	struct cond_bool_datum *booldatum;
3118	u32 i, nbools = 0;
3119
3120	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3121	if (rc)
3122		goto out;
3123	for (i = 0; i < nbools; i++) {
3124		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3125					bnames[i]);
3126		if (booldatum)
3127			booldatum->state = bvalues[i];
3128	}
3129	evaluate_cond_nodes(&newpolicy->policydb);
3130
3131out:
3132	if (bnames) {
3133		for (i = 0; i < nbools; i++)
3134			kfree(bnames[i]);
3135	}
3136	kfree(bnames);
3137	kfree(bvalues);
3138	return rc;
3139}
3140
3141/*
3142 * security_sid_mls_copy() - computes a new sid based on the given
3143 * sid and the mls portion of mls_sid.
3144 */
3145int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3146{
3147	struct selinux_policy *policy;
3148	struct policydb *policydb;
3149	struct sidtab *sidtab;
3150	struct context *context1;
3151	struct context *context2;
3152	struct context newcon;
3153	char *s;
3154	u32 len;
3155	int rc;
3156
3157	if (!selinux_initialized()) {
3158		*new_sid = sid;
3159		return 0;
3160	}
3161
3162retry:
3163	rc = 0;
3164	context_init(&newcon);
3165
3166	rcu_read_lock();
3167	policy = rcu_dereference(selinux_state.policy);
3168	policydb = &policy->policydb;
3169	sidtab = policy->sidtab;
3170
3171	if (!policydb->mls_enabled) {
3172		*new_sid = sid;
3173		goto out_unlock;
3174	}
3175
3176	rc = -EINVAL;
3177	context1 = sidtab_search(sidtab, sid);
3178	if (!context1) {
3179		pr_err("SELinux: %s:  unrecognized SID %d\n",
3180			__func__, sid);
3181		goto out_unlock;
3182	}
3183
3184	rc = -EINVAL;
3185	context2 = sidtab_search(sidtab, mls_sid);
3186	if (!context2) {
3187		pr_err("SELinux: %s:  unrecognized SID %d\n",
3188			__func__, mls_sid);
3189		goto out_unlock;
3190	}
3191
3192	newcon.user = context1->user;
3193	newcon.role = context1->role;
3194	newcon.type = context1->type;
3195	rc = mls_context_cpy(&newcon, context2);
3196	if (rc)
3197		goto out_unlock;
3198
3199	/* Check the validity of the new context. */
3200	if (!policydb_context_isvalid(policydb, &newcon)) {
3201		rc = convert_context_handle_invalid_context(policydb,
3202							&newcon);
3203		if (rc) {
3204			if (!context_struct_to_string(policydb, &newcon, &s,
3205						      &len)) {
3206				struct audit_buffer *ab;
3207
3208				ab = audit_log_start(audit_context(),
3209						     GFP_ATOMIC,
3210						     AUDIT_SELINUX_ERR);
3211				audit_log_format(ab,
3212						 "op=security_sid_mls_copy invalid_context=");
3213				/* don't record NUL with untrusted strings */
3214				audit_log_n_untrustedstring(ab, s, len - 1);
3215				audit_log_end(ab);
3216				kfree(s);
3217			}
3218			goto out_unlock;
3219		}
3220	}
3221	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3222	if (rc == -ESTALE) {
3223		rcu_read_unlock();
3224		context_destroy(&newcon);
3225		goto retry;
3226	}
3227out_unlock:
3228	rcu_read_unlock();
3229	context_destroy(&newcon);
3230	return rc;
3231}
3232
3233/**
3234 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3235 * @nlbl_sid: NetLabel SID
3236 * @nlbl_type: NetLabel labeling protocol type
3237 * @xfrm_sid: XFRM SID
3238 * @peer_sid: network peer sid
3239 *
3240 * Description:
3241 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3242 * resolved into a single SID it is returned via @peer_sid and the function
3243 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3244 * returns a negative value.  A table summarizing the behavior is below:
3245 *
3246 *                                 | function return |      @sid
3247 *   ------------------------------+-----------------+-----------------
3248 *   no peer labels                |        0        |    SECSID_NULL
3249 *   single peer label             |        0        |    <peer_label>
3250 *   multiple, consistent labels   |        0        |    <peer_label>
3251 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3252 *
3253 */
3254int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3255				 u32 xfrm_sid,
3256				 u32 *peer_sid)
3257{
3258	struct selinux_policy *policy;
3259	struct policydb *policydb;
3260	struct sidtab *sidtab;
3261	int rc;
3262	struct context *nlbl_ctx;
3263	struct context *xfrm_ctx;
3264
3265	*peer_sid = SECSID_NULL;
3266
3267	/* handle the common (which also happens to be the set of easy) cases
3268	 * right away, these two if statements catch everything involving a
3269	 * single or absent peer SID/label */
3270	if (xfrm_sid == SECSID_NULL) {
3271		*peer_sid = nlbl_sid;
3272		return 0;
3273	}
3274	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3275	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3276	 * is present */
3277	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3278		*peer_sid = xfrm_sid;
3279		return 0;
3280	}
3281
3282	if (!selinux_initialized())
3283		return 0;
3284
3285	rcu_read_lock();
3286	policy = rcu_dereference(selinux_state.policy);
3287	policydb = &policy->policydb;
3288	sidtab = policy->sidtab;
3289
3290	/*
3291	 * We don't need to check initialized here since the only way both
3292	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3293	 * security server was initialized and state->initialized was true.
3294	 */
3295	if (!policydb->mls_enabled) {
3296		rc = 0;
3297		goto out;
3298	}
3299
3300	rc = -EINVAL;
3301	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3302	if (!nlbl_ctx) {
3303		pr_err("SELinux: %s:  unrecognized SID %d\n",
3304		       __func__, nlbl_sid);
3305		goto out;
3306	}
3307	rc = -EINVAL;
3308	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3309	if (!xfrm_ctx) {
3310		pr_err("SELinux: %s:  unrecognized SID %d\n",
3311		       __func__, xfrm_sid);
3312		goto out;
3313	}
3314	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3315	if (rc)
3316		goto out;
3317
3318	/* at present NetLabel SIDs/labels really only carry MLS
3319	 * information so if the MLS portion of the NetLabel SID
3320	 * matches the MLS portion of the labeled XFRM SID/label
3321	 * then pass along the XFRM SID as it is the most
3322	 * expressive */
3323	*peer_sid = xfrm_sid;
3324out:
3325	rcu_read_unlock();
3326	return rc;
3327}
3328
3329static int get_classes_callback(void *k, void *d, void *args)
3330{
3331	struct class_datum *datum = d;
3332	char *name = k, **classes = args;
3333	u32 value = datum->value - 1;
3334
3335	classes[value] = kstrdup(name, GFP_ATOMIC);
3336	if (!classes[value])
3337		return -ENOMEM;
3338
3339	return 0;
3340}
3341
3342int security_get_classes(struct selinux_policy *policy,
3343			 char ***classes, u32 *nclasses)
3344{
3345	struct policydb *policydb;
3346	int rc;
3347
3348	policydb = &policy->policydb;
3349
3350	rc = -ENOMEM;
3351	*nclasses = policydb->p_classes.nprim;
3352	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3353	if (!*classes)
3354		goto out;
3355
3356	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3357			 *classes);
3358	if (rc) {
3359		u32 i;
3360
3361		for (i = 0; i < *nclasses; i++)
3362			kfree((*classes)[i]);
3363		kfree(*classes);
3364	}
3365
3366out:
3367	return rc;
3368}
3369
3370static int get_permissions_callback(void *k, void *d, void *args)
3371{
3372	struct perm_datum *datum = d;
3373	char *name = k, **perms = args;
3374	u32 value = datum->value - 1;
3375
3376	perms[value] = kstrdup(name, GFP_ATOMIC);
3377	if (!perms[value])
3378		return -ENOMEM;
3379
3380	return 0;
3381}
3382
3383int security_get_permissions(struct selinux_policy *policy,
3384			     const char *class, char ***perms, u32 *nperms)
3385{
3386	struct policydb *policydb;
3387	u32 i;
3388	int rc;
3389	struct class_datum *match;
3390
3391	policydb = &policy->policydb;
3392
3393	rc = -EINVAL;
3394	match = symtab_search(&policydb->p_classes, class);
3395	if (!match) {
3396		pr_err("SELinux: %s:  unrecognized class %s\n",
3397			__func__, class);
3398		goto out;
3399	}
3400
3401	rc = -ENOMEM;
3402	*nperms = match->permissions.nprim;
3403	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3404	if (!*perms)
3405		goto out;
3406
3407	if (match->comdatum) {
3408		rc = hashtab_map(&match->comdatum->permissions.table,
3409				 get_permissions_callback, *perms);
3410		if (rc)
3411			goto err;
3412	}
3413
3414	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3415			 *perms);
3416	if (rc)
3417		goto err;
3418
3419out:
3420	return rc;
3421
3422err:
3423	for (i = 0; i < *nperms; i++)
3424		kfree((*perms)[i]);
3425	kfree(*perms);
3426	return rc;
3427}
3428
3429int security_get_reject_unknown(void)
3430{
3431	struct selinux_policy *policy;
3432	int value;
3433
3434	if (!selinux_initialized())
3435		return 0;
3436
3437	rcu_read_lock();
3438	policy = rcu_dereference(selinux_state.policy);
3439	value = policy->policydb.reject_unknown;
3440	rcu_read_unlock();
3441	return value;
3442}
3443
3444int security_get_allow_unknown(void)
3445{
3446	struct selinux_policy *policy;
3447	int value;
3448
3449	if (!selinux_initialized())
3450		return 0;
3451
3452	rcu_read_lock();
3453	policy = rcu_dereference(selinux_state.policy);
3454	value = policy->policydb.allow_unknown;
3455	rcu_read_unlock();
3456	return value;
3457}
3458
3459/**
3460 * security_policycap_supported - Check for a specific policy capability
3461 * @req_cap: capability
3462 *
3463 * Description:
3464 * This function queries the currently loaded policy to see if it supports the
3465 * capability specified by @req_cap.  Returns true (1) if the capability is
3466 * supported, false (0) if it isn't supported.
3467 *
3468 */
3469int security_policycap_supported(unsigned int req_cap)
3470{
3471	struct selinux_policy *policy;
3472	int rc;
3473
3474	if (!selinux_initialized())
3475		return 0;
3476
3477	rcu_read_lock();
3478	policy = rcu_dereference(selinux_state.policy);
3479	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3480	rcu_read_unlock();
3481
3482	return rc;
3483}
3484
3485struct selinux_audit_rule {
3486	u32 au_seqno;
3487	struct context au_ctxt;
3488};
3489
3490void selinux_audit_rule_free(void *vrule)
3491{
3492	struct selinux_audit_rule *rule = vrule;
3493
3494	if (rule) {
3495		context_destroy(&rule->au_ctxt);
3496		kfree(rule);
3497	}
3498}
3499
3500int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3501{
3502	struct selinux_state *state = &selinux_state;
3503	struct selinux_policy *policy;
3504	struct policydb *policydb;
3505	struct selinux_audit_rule *tmprule;
3506	struct role_datum *roledatum;
3507	struct type_datum *typedatum;
3508	struct user_datum *userdatum;
3509	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3510	int rc = 0;
3511
3512	*rule = NULL;
3513
3514	if (!selinux_initialized())
3515		return -EOPNOTSUPP;
3516
3517	switch (field) {
3518	case AUDIT_SUBJ_USER:
3519	case AUDIT_SUBJ_ROLE:
3520	case AUDIT_SUBJ_TYPE:
3521	case AUDIT_OBJ_USER:
3522	case AUDIT_OBJ_ROLE:
3523	case AUDIT_OBJ_TYPE:
3524		/* only 'equals' and 'not equals' fit user, role, and type */
3525		if (op != Audit_equal && op != Audit_not_equal)
3526			return -EINVAL;
3527		break;
3528	case AUDIT_SUBJ_SEN:
3529	case AUDIT_SUBJ_CLR:
3530	case AUDIT_OBJ_LEV_LOW:
3531	case AUDIT_OBJ_LEV_HIGH:
3532		/* we do not allow a range, indicated by the presence of '-' */
3533		if (strchr(rulestr, '-'))
3534			return -EINVAL;
3535		break;
3536	default:
3537		/* only the above fields are valid */
3538		return -EINVAL;
3539	}
3540
3541	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3542	if (!tmprule)
3543		return -ENOMEM;
3544	context_init(&tmprule->au_ctxt);
3545
3546	rcu_read_lock();
3547	policy = rcu_dereference(state->policy);
3548	policydb = &policy->policydb;
3549	tmprule->au_seqno = policy->latest_granting;
3550	switch (field) {
3551	case AUDIT_SUBJ_USER:
3552	case AUDIT_OBJ_USER:
3553		userdatum = symtab_search(&policydb->p_users, rulestr);
3554		if (!userdatum) {
3555			rc = -EINVAL;
3556			goto err;
3557		}
3558		tmprule->au_ctxt.user = userdatum->value;
3559		break;
3560	case AUDIT_SUBJ_ROLE:
3561	case AUDIT_OBJ_ROLE:
3562		roledatum = symtab_search(&policydb->p_roles, rulestr);
3563		if (!roledatum) {
3564			rc = -EINVAL;
3565			goto err;
3566		}
3567		tmprule->au_ctxt.role = roledatum->value;
3568		break;
3569	case AUDIT_SUBJ_TYPE:
3570	case AUDIT_OBJ_TYPE:
3571		typedatum = symtab_search(&policydb->p_types, rulestr);
3572		if (!typedatum) {
3573			rc = -EINVAL;
3574			goto err;
3575		}
3576		tmprule->au_ctxt.type = typedatum->value;
3577		break;
3578	case AUDIT_SUBJ_SEN:
3579	case AUDIT_SUBJ_CLR:
3580	case AUDIT_OBJ_LEV_LOW:
3581	case AUDIT_OBJ_LEV_HIGH:
3582		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3583				     GFP_ATOMIC);
3584		if (rc)
3585			goto err;
3586		break;
3587	}
3588	rcu_read_unlock();
3589
3590	*rule = tmprule;
3591	return 0;
3592
3593err:
3594	rcu_read_unlock();
3595	selinux_audit_rule_free(tmprule);
3596	*rule = NULL;
3597	return rc;
3598}
3599
3600/* Check to see if the rule contains any selinux fields */
3601int selinux_audit_rule_known(struct audit_krule *rule)
3602{
3603	u32 i;
3604
3605	for (i = 0; i < rule->field_count; i++) {
3606		struct audit_field *f = &rule->fields[i];
3607		switch (f->type) {
3608		case AUDIT_SUBJ_USER:
3609		case AUDIT_SUBJ_ROLE:
3610		case AUDIT_SUBJ_TYPE:
3611		case AUDIT_SUBJ_SEN:
3612		case AUDIT_SUBJ_CLR:
3613		case AUDIT_OBJ_USER:
3614		case AUDIT_OBJ_ROLE:
3615		case AUDIT_OBJ_TYPE:
3616		case AUDIT_OBJ_LEV_LOW:
3617		case AUDIT_OBJ_LEV_HIGH:
3618			return 1;
3619		}
3620	}
3621
3622	return 0;
3623}
3624
3625int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3626{
3627	struct selinux_state *state = &selinux_state;
3628	struct selinux_policy *policy;
3629	struct context *ctxt;
3630	struct mls_level *level;
3631	struct selinux_audit_rule *rule = vrule;
3632	int match = 0;
3633
3634	if (unlikely(!rule)) {
3635		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3636		return -ENOENT;
3637	}
3638
3639	if (!selinux_initialized())
3640		return 0;
3641
3642	rcu_read_lock();
3643
3644	policy = rcu_dereference(state->policy);
3645
3646	if (rule->au_seqno < policy->latest_granting) {
3647		match = -ESTALE;
3648		goto out;
3649	}
3650
3651	ctxt = sidtab_search(policy->sidtab, sid);
3652	if (unlikely(!ctxt)) {
3653		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3654			  sid);
3655		match = -ENOENT;
3656		goto out;
3657	}
3658
3659	/* a field/op pair that is not caught here will simply fall through
3660	   without a match */
3661	switch (field) {
3662	case AUDIT_SUBJ_USER:
3663	case AUDIT_OBJ_USER:
3664		switch (op) {
3665		case Audit_equal:
3666			match = (ctxt->user == rule->au_ctxt.user);
3667			break;
3668		case Audit_not_equal:
3669			match = (ctxt->user != rule->au_ctxt.user);
3670			break;
3671		}
3672		break;
3673	case AUDIT_SUBJ_ROLE:
3674	case AUDIT_OBJ_ROLE:
3675		switch (op) {
3676		case Audit_equal:
3677			match = (ctxt->role == rule->au_ctxt.role);
3678			break;
3679		case Audit_not_equal:
3680			match = (ctxt->role != rule->au_ctxt.role);
3681			break;
3682		}
3683		break;
3684	case AUDIT_SUBJ_TYPE:
3685	case AUDIT_OBJ_TYPE:
3686		switch (op) {
3687		case Audit_equal:
3688			match = (ctxt->type == rule->au_ctxt.type);
3689			break;
3690		case Audit_not_equal:
3691			match = (ctxt->type != rule->au_ctxt.type);
3692			break;
3693		}
3694		break;
3695	case AUDIT_SUBJ_SEN:
3696	case AUDIT_SUBJ_CLR:
3697	case AUDIT_OBJ_LEV_LOW:
3698	case AUDIT_OBJ_LEV_HIGH:
3699		level = ((field == AUDIT_SUBJ_SEN ||
3700			  field == AUDIT_OBJ_LEV_LOW) ?
3701			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3702		switch (op) {
3703		case Audit_equal:
3704			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3705					     level);
3706			break;
3707		case Audit_not_equal:
3708			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3709					      level);
3710			break;
3711		case Audit_lt:
3712			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3713					       level) &&
3714				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3715					       level));
3716			break;
3717		case Audit_le:
3718			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3719					      level);
3720			break;
3721		case Audit_gt:
3722			match = (mls_level_dom(level,
3723					      &rule->au_ctxt.range.level[0]) &&
3724				 !mls_level_eq(level,
3725					       &rule->au_ctxt.range.level[0]));
3726			break;
3727		case Audit_ge:
3728			match = mls_level_dom(level,
3729					      &rule->au_ctxt.range.level[0]);
3730			break;
3731		}
3732	}
3733
3734out:
3735	rcu_read_unlock();
3736	return match;
3737}
3738
3739static int aurule_avc_callback(u32 event)
3740{
3741	if (event == AVC_CALLBACK_RESET)
3742		return audit_update_lsm_rules();
3743	return 0;
3744}
3745
3746static int __init aurule_init(void)
3747{
3748	int err;
3749
3750	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3751	if (err)
3752		panic("avc_add_callback() failed, error %d\n", err);
3753
3754	return err;
3755}
3756__initcall(aurule_init);
3757
3758#ifdef CONFIG_NETLABEL
3759/**
3760 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3761 * @secattr: the NetLabel packet security attributes
3762 * @sid: the SELinux SID
3763 *
3764 * Description:
3765 * Attempt to cache the context in @ctx, which was derived from the packet in
3766 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3767 * already been initialized.
3768 *
3769 */
3770static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3771				      u32 sid)
3772{
3773	u32 *sid_cache;
3774
3775	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3776	if (sid_cache == NULL)
3777		return;
3778	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3779	if (secattr->cache == NULL) {
3780		kfree(sid_cache);
3781		return;
3782	}
3783
3784	*sid_cache = sid;
3785	secattr->cache->free = kfree;
3786	secattr->cache->data = sid_cache;
3787	secattr->flags |= NETLBL_SECATTR_CACHE;
3788}
3789
3790/**
3791 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3792 * @secattr: the NetLabel packet security attributes
3793 * @sid: the SELinux SID
3794 *
3795 * Description:
3796 * Convert the given NetLabel security attributes in @secattr into a
3797 * SELinux SID.  If the @secattr field does not contain a full SELinux
3798 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3799 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3800 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3801 * conversion for future lookups.  Returns zero on success, negative values on
3802 * failure.
3803 *
3804 */
3805int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3806				   u32 *sid)
3807{
3808	struct selinux_policy *policy;
3809	struct policydb *policydb;
3810	struct sidtab *sidtab;
3811	int rc;
3812	struct context *ctx;
3813	struct context ctx_new;
3814
3815	if (!selinux_initialized()) {
3816		*sid = SECSID_NULL;
3817		return 0;
3818	}
3819
3820retry:
3821	rc = 0;
3822	rcu_read_lock();
3823	policy = rcu_dereference(selinux_state.policy);
3824	policydb = &policy->policydb;
3825	sidtab = policy->sidtab;
3826
3827	if (secattr->flags & NETLBL_SECATTR_CACHE)
3828		*sid = *(u32 *)secattr->cache->data;
3829	else if (secattr->flags & NETLBL_SECATTR_SECID)
3830		*sid = secattr->attr.secid;
3831	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3832		rc = -EIDRM;
3833		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3834		if (ctx == NULL)
3835			goto out;
3836
3837		context_init(&ctx_new);
3838		ctx_new.user = ctx->user;
3839		ctx_new.role = ctx->role;
3840		ctx_new.type = ctx->type;
3841		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3842		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3843			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3844			if (rc)
3845				goto out;
3846		}
3847		rc = -EIDRM;
3848		if (!mls_context_isvalid(policydb, &ctx_new)) {
3849			ebitmap_destroy(&ctx_new.range.level[0].cat);
3850			goto out;
3851		}
3852
3853		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3854		ebitmap_destroy(&ctx_new.range.level[0].cat);
3855		if (rc == -ESTALE) {
3856			rcu_read_unlock();
3857			goto retry;
3858		}
3859		if (rc)
3860			goto out;
3861
3862		security_netlbl_cache_add(secattr, *sid);
3863	} else
3864		*sid = SECSID_NULL;
3865
3866out:
3867	rcu_read_unlock();
3868	return rc;
3869}
3870
3871/**
3872 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3873 * @sid: the SELinux SID
3874 * @secattr: the NetLabel packet security attributes
3875 *
3876 * Description:
3877 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3878 * Returns zero on success, negative values on failure.
3879 *
3880 */
3881int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3882{
3883	struct selinux_policy *policy;
3884	struct policydb *policydb;
3885	int rc;
3886	struct context *ctx;
3887
3888	if (!selinux_initialized())
3889		return 0;
3890
3891	rcu_read_lock();
3892	policy = rcu_dereference(selinux_state.policy);
3893	policydb = &policy->policydb;
3894
3895	rc = -ENOENT;
3896	ctx = sidtab_search(policy->sidtab, sid);
3897	if (ctx == NULL)
3898		goto out;
3899
3900	rc = -ENOMEM;
3901	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3902				  GFP_ATOMIC);
3903	if (secattr->domain == NULL)
3904		goto out;
3905
3906	secattr->attr.secid = sid;
3907	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3908	mls_export_netlbl_lvl(policydb, ctx, secattr);
3909	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3910out:
3911	rcu_read_unlock();
3912	return rc;
3913}
3914#endif /* CONFIG_NETLABEL */
3915
3916/**
3917 * __security_read_policy - read the policy.
3918 * @policy: SELinux policy
3919 * @data: binary policy data
3920 * @len: length of data in bytes
3921 *
3922 */
3923static int __security_read_policy(struct selinux_policy *policy,
3924				  void *data, size_t *len)
3925{
3926	int rc;
3927	struct policy_file fp;
3928
3929	fp.data = data;
3930	fp.len = *len;
3931
3932	rc = policydb_write(&policy->policydb, &fp);
3933	if (rc)
3934		return rc;
3935
3936	*len = (unsigned long)fp.data - (unsigned long)data;
3937	return 0;
3938}
3939
3940/**
3941 * security_read_policy - read the policy.
3942 * @data: binary policy data
3943 * @len: length of data in bytes
3944 *
3945 */
3946int security_read_policy(void **data, size_t *len)
3947{
3948	struct selinux_state *state = &selinux_state;
3949	struct selinux_policy *policy;
3950
3951	policy = rcu_dereference_protected(
3952			state->policy, lockdep_is_held(&state->policy_mutex));
3953	if (!policy)
3954		return -EINVAL;
3955
3956	*len = policy->policydb.len;
3957	*data = vmalloc_user(*len);
3958	if (!*data)
3959		return -ENOMEM;
3960
3961	return __security_read_policy(policy, *data, len);
3962}
3963
3964/**
3965 * security_read_state_kernel - read the policy.
3966 * @data: binary policy data
3967 * @len: length of data in bytes
3968 *
3969 * Allocates kernel memory for reading SELinux policy.
3970 * This function is for internal use only and should not
3971 * be used for returning data to user space.
3972 *
3973 * This function must be called with policy_mutex held.
3974 */
3975int security_read_state_kernel(void **data, size_t *len)
3976{
3977	int err;
3978	struct selinux_state *state = &selinux_state;
3979	struct selinux_policy *policy;
3980
3981	policy = rcu_dereference_protected(
3982			state->policy, lockdep_is_held(&state->policy_mutex));
3983	if (!policy)
3984		return -EINVAL;
3985
3986	*len = policy->policydb.len;
3987	*data = vmalloc(*len);
3988	if (!*data)
3989		return -ENOMEM;
3990
3991	err = __security_read_policy(policy, *data, len);
3992	if (err) {
3993		vfree(*data);
3994		*data = NULL;
3995		*len = 0;
3996	}
3997	return err;
3998}
3999