xref: /kernel/linux/linux-6.6/security/security.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10 */
11
12#define pr_fmt(fmt) "LSM: " fmt
13
14#include <linux/bpf.h>
15#include <linux/capability.h>
16#include <linux/dcache.h>
17#include <linux/export.h>
18#include <linux/init.h>
19#include <linux/kernel.h>
20#include <linux/kernel_read_file.h>
21#include <linux/lsm_hooks.h>
22#include <linux/integrity.h>
23#include <linux/ima.h>
24#include <linux/evm.h>
25#include <linux/fsnotify.h>
26#include <linux/mman.h>
27#include <linux/mount.h>
28#include <linux/personality.h>
29#include <linux/backing-dev.h>
30#include <linux/string.h>
31#include <linux/msg.h>
32#include <net/flow.h>
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37/*
38 * These are descriptions of the reasons that can be passed to the
39 * security_locked_down() LSM hook. Placing this array here allows
40 * all security modules to use the same descriptions for auditing
41 * purposes.
42 */
43const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
44	[LOCKDOWN_NONE] = "none",
45	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
46	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
47	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
48	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
49	[LOCKDOWN_HIBERNATION] = "hibernation",
50	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
51	[LOCKDOWN_IOPORT] = "raw io port access",
52	[LOCKDOWN_MSR] = "raw MSR access",
53	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
54	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
55	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59	[LOCKDOWN_DEBUGFS] = "debugfs access",
60	[LOCKDOWN_XMON_WR] = "xmon write access",
61	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
64	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
65	[LOCKDOWN_KCORE] = "/proc/kcore access",
66	[LOCKDOWN_KPROBES] = "use of kprobes",
67	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
68	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
69	[LOCKDOWN_PERF] = "unsafe use of perf",
70	[LOCKDOWN_TRACEFS] = "use of tracefs",
71	[LOCKDOWN_XMON_RW] = "xmon read and write access",
72	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
73	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
74};
75
76struct security_hook_heads security_hook_heads __ro_after_init;
77static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
78
79static struct kmem_cache *lsm_file_cache;
80static struct kmem_cache *lsm_inode_cache;
81
82char *lsm_names;
83static struct lsm_blob_sizes blob_sizes __ro_after_init;
84
85/* Boot-time LSM user choice */
86static __initdata const char *chosen_lsm_order;
87static __initdata const char *chosen_major_lsm;
88
89static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
90
91/* Ordered list of LSMs to initialize. */
92static __initdata struct lsm_info **ordered_lsms;
93static __initdata struct lsm_info *exclusive;
94
95static __initdata bool debug;
96#define init_debug(...)						\
97	do {							\
98		if (debug)					\
99			pr_info(__VA_ARGS__);			\
100	} while (0)
101
102static bool __init is_enabled(struct lsm_info *lsm)
103{
104	if (!lsm->enabled)
105		return false;
106
107	return *lsm->enabled;
108}
109
110/* Mark an LSM's enabled flag. */
111static int lsm_enabled_true __initdata = 1;
112static int lsm_enabled_false __initdata = 0;
113static void __init set_enabled(struct lsm_info *lsm, bool enabled)
114{
115	/*
116	 * When an LSM hasn't configured an enable variable, we can use
117	 * a hard-coded location for storing the default enabled state.
118	 */
119	if (!lsm->enabled) {
120		if (enabled)
121			lsm->enabled = &lsm_enabled_true;
122		else
123			lsm->enabled = &lsm_enabled_false;
124	} else if (lsm->enabled == &lsm_enabled_true) {
125		if (!enabled)
126			lsm->enabled = &lsm_enabled_false;
127	} else if (lsm->enabled == &lsm_enabled_false) {
128		if (enabled)
129			lsm->enabled = &lsm_enabled_true;
130	} else {
131		*lsm->enabled = enabled;
132	}
133}
134
135/* Is an LSM already listed in the ordered LSMs list? */
136static bool __init exists_ordered_lsm(struct lsm_info *lsm)
137{
138	struct lsm_info **check;
139
140	for (check = ordered_lsms; *check; check++)
141		if (*check == lsm)
142			return true;
143
144	return false;
145}
146
147/* Append an LSM to the list of ordered LSMs to initialize. */
148static int last_lsm __initdata;
149static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
150{
151	/* Ignore duplicate selections. */
152	if (exists_ordered_lsm(lsm))
153		return;
154
155	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
156		return;
157
158	/* Enable this LSM, if it is not already set. */
159	if (!lsm->enabled)
160		lsm->enabled = &lsm_enabled_true;
161	ordered_lsms[last_lsm++] = lsm;
162
163	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
164		   is_enabled(lsm) ? "enabled" : "disabled");
165}
166
167/* Is an LSM allowed to be initialized? */
168static bool __init lsm_allowed(struct lsm_info *lsm)
169{
170	/* Skip if the LSM is disabled. */
171	if (!is_enabled(lsm))
172		return false;
173
174	/* Not allowed if another exclusive LSM already initialized. */
175	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
176		init_debug("exclusive disabled: %s\n", lsm->name);
177		return false;
178	}
179
180	return true;
181}
182
183static void __init lsm_set_blob_size(int *need, int *lbs)
184{
185	int offset;
186
187	if (*need <= 0)
188		return;
189
190	offset = ALIGN(*lbs, sizeof(void *));
191	*lbs = offset + *need;
192	*need = offset;
193}
194
195static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
196{
197	if (!needed)
198		return;
199
200	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
201	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
202	/*
203	 * The inode blob gets an rcu_head in addition to
204	 * what the modules might need.
205	 */
206	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
207		blob_sizes.lbs_inode = sizeof(struct rcu_head);
208	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
209	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
210	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
211	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
212	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
213	lsm_set_blob_size(&needed->lbs_xattr_count,
214			  &blob_sizes.lbs_xattr_count);
215}
216
217/* Prepare LSM for initialization. */
218static void __init prepare_lsm(struct lsm_info *lsm)
219{
220	int enabled = lsm_allowed(lsm);
221
222	/* Record enablement (to handle any following exclusive LSMs). */
223	set_enabled(lsm, enabled);
224
225	/* If enabled, do pre-initialization work. */
226	if (enabled) {
227		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
228			exclusive = lsm;
229			init_debug("exclusive chosen:   %s\n", lsm->name);
230		}
231
232		lsm_set_blob_sizes(lsm->blobs);
233	}
234}
235
236/* Initialize a given LSM, if it is enabled. */
237static void __init initialize_lsm(struct lsm_info *lsm)
238{
239	if (is_enabled(lsm)) {
240		int ret;
241
242		init_debug("initializing %s\n", lsm->name);
243		ret = lsm->init();
244		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
245	}
246}
247
248/* Populate ordered LSMs list from comma-separated LSM name list. */
249static void __init ordered_lsm_parse(const char *order, const char *origin)
250{
251	struct lsm_info *lsm;
252	char *sep, *name, *next;
253
254	/* LSM_ORDER_FIRST is always first. */
255	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
256		if (lsm->order == LSM_ORDER_FIRST)
257			append_ordered_lsm(lsm, "  first");
258	}
259
260	/* Process "security=", if given. */
261	if (chosen_major_lsm) {
262		struct lsm_info *major;
263
264		/*
265		 * To match the original "security=" behavior, this
266		 * explicitly does NOT fallback to another Legacy Major
267		 * if the selected one was separately disabled: disable
268		 * all non-matching Legacy Major LSMs.
269		 */
270		for (major = __start_lsm_info; major < __end_lsm_info;
271		     major++) {
272			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
273			    strcmp(major->name, chosen_major_lsm) != 0) {
274				set_enabled(major, false);
275				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
276					   chosen_major_lsm, major->name);
277			}
278		}
279	}
280
281	sep = kstrdup(order, GFP_KERNEL);
282	next = sep;
283	/* Walk the list, looking for matching LSMs. */
284	while ((name = strsep(&next, ",")) != NULL) {
285		bool found = false;
286
287		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
288			if (strcmp(lsm->name, name) == 0) {
289				if (lsm->order == LSM_ORDER_MUTABLE)
290					append_ordered_lsm(lsm, origin);
291				found = true;
292			}
293		}
294
295		if (!found)
296			init_debug("%s ignored: %s (not built into kernel)\n",
297				   origin, name);
298	}
299
300	/* Process "security=", if given. */
301	if (chosen_major_lsm) {
302		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
303			if (exists_ordered_lsm(lsm))
304				continue;
305			if (strcmp(lsm->name, chosen_major_lsm) == 0)
306				append_ordered_lsm(lsm, "security=");
307		}
308	}
309
310	/* LSM_ORDER_LAST is always last. */
311	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
312		if (lsm->order == LSM_ORDER_LAST)
313			append_ordered_lsm(lsm, "   last");
314	}
315
316	/* Disable all LSMs not in the ordered list. */
317	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
318		if (exists_ordered_lsm(lsm))
319			continue;
320		set_enabled(lsm, false);
321		init_debug("%s skipped: %s (not in requested order)\n",
322			   origin, lsm->name);
323	}
324
325	kfree(sep);
326}
327
328static void __init lsm_early_cred(struct cred *cred);
329static void __init lsm_early_task(struct task_struct *task);
330
331static int lsm_append(const char *new, char **result);
332
333static void __init report_lsm_order(void)
334{
335	struct lsm_info **lsm, *early;
336	int first = 0;
337
338	pr_info("initializing lsm=");
339
340	/* Report each enabled LSM name, comma separated. */
341	for (early = __start_early_lsm_info;
342	     early < __end_early_lsm_info; early++)
343		if (is_enabled(early))
344			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
345	for (lsm = ordered_lsms; *lsm; lsm++)
346		if (is_enabled(*lsm))
347			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
348
349	pr_cont("\n");
350}
351
352static void __init ordered_lsm_init(void)
353{
354	struct lsm_info **lsm;
355
356	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
357			       GFP_KERNEL);
358
359	if (chosen_lsm_order) {
360		if (chosen_major_lsm) {
361			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
362				chosen_major_lsm, chosen_lsm_order);
363			chosen_major_lsm = NULL;
364		}
365		ordered_lsm_parse(chosen_lsm_order, "cmdline");
366	} else
367		ordered_lsm_parse(builtin_lsm_order, "builtin");
368
369	for (lsm = ordered_lsms; *lsm; lsm++)
370		prepare_lsm(*lsm);
371
372	report_lsm_order();
373
374	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
375	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
376	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
377	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
378	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
379	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
380	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
381	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
382
383	/*
384	 * Create any kmem_caches needed for blobs
385	 */
386	if (blob_sizes.lbs_file)
387		lsm_file_cache = kmem_cache_create("lsm_file_cache",
388						   blob_sizes.lbs_file, 0,
389						   SLAB_PANIC, NULL);
390	if (blob_sizes.lbs_inode)
391		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
392						    blob_sizes.lbs_inode, 0,
393						    SLAB_PANIC, NULL);
394
395	lsm_early_cred((struct cred *) current->cred);
396	lsm_early_task(current);
397	for (lsm = ordered_lsms; *lsm; lsm++)
398		initialize_lsm(*lsm);
399
400	kfree(ordered_lsms);
401}
402
403int __init early_security_init(void)
404{
405	struct lsm_info *lsm;
406
407#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
408	INIT_HLIST_HEAD(&security_hook_heads.NAME);
409#include "linux/lsm_hook_defs.h"
410#undef LSM_HOOK
411
412	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
413		if (!lsm->enabled)
414			lsm->enabled = &lsm_enabled_true;
415		prepare_lsm(lsm);
416		initialize_lsm(lsm);
417	}
418
419	return 0;
420}
421
422/**
423 * security_init - initializes the security framework
424 *
425 * This should be called early in the kernel initialization sequence.
426 */
427int __init security_init(void)
428{
429	struct lsm_info *lsm;
430
431	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
432	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
433	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
434
435	/*
436	 * Append the names of the early LSM modules now that kmalloc() is
437	 * available
438	 */
439	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
440		init_debug("  early started: %s (%s)\n", lsm->name,
441			   is_enabled(lsm) ? "enabled" : "disabled");
442		if (lsm->enabled)
443			lsm_append(lsm->name, &lsm_names);
444	}
445
446	/* Load LSMs in specified order. */
447	ordered_lsm_init();
448
449	return 0;
450}
451
452/* Save user chosen LSM */
453static int __init choose_major_lsm(char *str)
454{
455	chosen_major_lsm = str;
456	return 1;
457}
458__setup("security=", choose_major_lsm);
459
460/* Explicitly choose LSM initialization order. */
461static int __init choose_lsm_order(char *str)
462{
463	chosen_lsm_order = str;
464	return 1;
465}
466__setup("lsm=", choose_lsm_order);
467
468/* Enable LSM order debugging. */
469static int __init enable_debug(char *str)
470{
471	debug = true;
472	return 1;
473}
474__setup("lsm.debug", enable_debug);
475
476static bool match_last_lsm(const char *list, const char *lsm)
477{
478	const char *last;
479
480	if (WARN_ON(!list || !lsm))
481		return false;
482	last = strrchr(list, ',');
483	if (last)
484		/* Pass the comma, strcmp() will check for '\0' */
485		last++;
486	else
487		last = list;
488	return !strcmp(last, lsm);
489}
490
491static int lsm_append(const char *new, char **result)
492{
493	char *cp;
494
495	if (*result == NULL) {
496		*result = kstrdup(new, GFP_KERNEL);
497		if (*result == NULL)
498			return -ENOMEM;
499	} else {
500		/* Check if it is the last registered name */
501		if (match_last_lsm(*result, new))
502			return 0;
503		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
504		if (cp == NULL)
505			return -ENOMEM;
506		kfree(*result);
507		*result = cp;
508	}
509	return 0;
510}
511
512/**
513 * security_add_hooks - Add a modules hooks to the hook lists.
514 * @hooks: the hooks to add
515 * @count: the number of hooks to add
516 * @lsm: the name of the security module
517 *
518 * Each LSM has to register its hooks with the infrastructure.
519 */
520void __init security_add_hooks(struct security_hook_list *hooks, int count,
521			       const char *lsm)
522{
523	int i;
524
525	for (i = 0; i < count; i++) {
526		hooks[i].lsm = lsm;
527		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
528	}
529
530	/*
531	 * Don't try to append during early_security_init(), we'll come back
532	 * and fix this up afterwards.
533	 */
534	if (slab_is_available()) {
535		if (lsm_append(lsm, &lsm_names) < 0)
536			panic("%s - Cannot get early memory.\n", __func__);
537	}
538}
539
540int call_blocking_lsm_notifier(enum lsm_event event, void *data)
541{
542	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
543					    event, data);
544}
545EXPORT_SYMBOL(call_blocking_lsm_notifier);
546
547int register_blocking_lsm_notifier(struct notifier_block *nb)
548{
549	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
550						nb);
551}
552EXPORT_SYMBOL(register_blocking_lsm_notifier);
553
554int unregister_blocking_lsm_notifier(struct notifier_block *nb)
555{
556	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
557						  nb);
558}
559EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
560
561/**
562 * lsm_cred_alloc - allocate a composite cred blob
563 * @cred: the cred that needs a blob
564 * @gfp: allocation type
565 *
566 * Allocate the cred blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
570static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
571{
572	if (blob_sizes.lbs_cred == 0) {
573		cred->security = NULL;
574		return 0;
575	}
576
577	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
578	if (cred->security == NULL)
579		return -ENOMEM;
580	return 0;
581}
582
583/**
584 * lsm_early_cred - during initialization allocate a composite cred blob
585 * @cred: the cred that needs a blob
586 *
587 * Allocate the cred blob for all the modules
588 */
589static void __init lsm_early_cred(struct cred *cred)
590{
591	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
592
593	if (rc)
594		panic("%s: Early cred alloc failed.\n", __func__);
595}
596
597/**
598 * lsm_file_alloc - allocate a composite file blob
599 * @file: the file that needs a blob
600 *
601 * Allocate the file blob for all the modules
602 *
603 * Returns 0, or -ENOMEM if memory can't be allocated.
604 */
605static int lsm_file_alloc(struct file *file)
606{
607	if (!lsm_file_cache) {
608		file->f_security = NULL;
609		return 0;
610	}
611
612	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
613	if (file->f_security == NULL)
614		return -ENOMEM;
615	return 0;
616}
617
618/**
619 * lsm_inode_alloc - allocate a composite inode blob
620 * @inode: the inode that needs a blob
621 *
622 * Allocate the inode blob for all the modules
623 *
624 * Returns 0, or -ENOMEM if memory can't be allocated.
625 */
626int lsm_inode_alloc(struct inode *inode)
627{
628	if (!lsm_inode_cache) {
629		inode->i_security = NULL;
630		return 0;
631	}
632
633	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
634	if (inode->i_security == NULL)
635		return -ENOMEM;
636	return 0;
637}
638
639/**
640 * lsm_task_alloc - allocate a composite task blob
641 * @task: the task that needs a blob
642 *
643 * Allocate the task blob for all the modules
644 *
645 * Returns 0, or -ENOMEM if memory can't be allocated.
646 */
647static int lsm_task_alloc(struct task_struct *task)
648{
649	if (blob_sizes.lbs_task == 0) {
650		task->security = NULL;
651		return 0;
652	}
653
654	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
655	if (task->security == NULL)
656		return -ENOMEM;
657	return 0;
658}
659
660/**
661 * lsm_ipc_alloc - allocate a composite ipc blob
662 * @kip: the ipc that needs a blob
663 *
664 * Allocate the ipc blob for all the modules
665 *
666 * Returns 0, or -ENOMEM if memory can't be allocated.
667 */
668static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
669{
670	if (blob_sizes.lbs_ipc == 0) {
671		kip->security = NULL;
672		return 0;
673	}
674
675	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
676	if (kip->security == NULL)
677		return -ENOMEM;
678	return 0;
679}
680
681/**
682 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
683 * @mp: the msg_msg that needs a blob
684 *
685 * Allocate the ipc blob for all the modules
686 *
687 * Returns 0, or -ENOMEM if memory can't be allocated.
688 */
689static int lsm_msg_msg_alloc(struct msg_msg *mp)
690{
691	if (blob_sizes.lbs_msg_msg == 0) {
692		mp->security = NULL;
693		return 0;
694	}
695
696	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
697	if (mp->security == NULL)
698		return -ENOMEM;
699	return 0;
700}
701
702/**
703 * lsm_early_task - during initialization allocate a composite task blob
704 * @task: the task that needs a blob
705 *
706 * Allocate the task blob for all the modules
707 */
708static void __init lsm_early_task(struct task_struct *task)
709{
710	int rc = lsm_task_alloc(task);
711
712	if (rc)
713		panic("%s: Early task alloc failed.\n", __func__);
714}
715
716/**
717 * lsm_superblock_alloc - allocate a composite superblock blob
718 * @sb: the superblock that needs a blob
719 *
720 * Allocate the superblock blob for all the modules
721 *
722 * Returns 0, or -ENOMEM if memory can't be allocated.
723 */
724static int lsm_superblock_alloc(struct super_block *sb)
725{
726	if (blob_sizes.lbs_superblock == 0) {
727		sb->s_security = NULL;
728		return 0;
729	}
730
731	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
732	if (sb->s_security == NULL)
733		return -ENOMEM;
734	return 0;
735}
736
737/*
738 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
739 * can be accessed with:
740 *
741 *	LSM_RET_DEFAULT(<hook_name>)
742 *
743 * The macros below define static constants for the default value of each
744 * LSM hook.
745 */
746#define LSM_RET_DEFAULT(NAME) (NAME##_default)
747#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
748#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
749	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
750#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
751	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
752
753#include <linux/lsm_hook_defs.h>
754#undef LSM_HOOK
755
756/*
757 * Hook list operation macros.
758 *
759 * call_void_hook:
760 *	This is a hook that does not return a value.
761 *
762 * call_int_hook:
763 *	This is a hook that returns a value.
764 */
765
766#define call_void_hook(FUNC, ...)				\
767	do {							\
768		struct security_hook_list *P;			\
769								\
770		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
771			P->hook.FUNC(__VA_ARGS__);		\
772	} while (0)
773
774#define call_int_hook(FUNC, IRC, ...) ({			\
775	int RC = IRC;						\
776	do {							\
777		struct security_hook_list *P;			\
778								\
779		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
780			RC = P->hook.FUNC(__VA_ARGS__);		\
781			if (RC != 0)				\
782				break;				\
783		}						\
784	} while (0);						\
785	RC;							\
786})
787
788/* Security operations */
789
790/**
791 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
792 * @mgr: task credentials of current binder process
793 *
794 * Check whether @mgr is allowed to be the binder context manager.
795 *
796 * Return: Return 0 if permission is granted.
797 */
798int security_binder_set_context_mgr(const struct cred *mgr)
799{
800	return call_int_hook(binder_set_context_mgr, 0, mgr);
801}
802
803/**
804 * security_binder_transaction() - Check if a binder transaction is allowed
805 * @from: sending process
806 * @to: receiving process
807 *
808 * Check whether @from is allowed to invoke a binder transaction call to @to.
809 *
810 * Return: Returns 0 if permission is granted.
811 */
812int security_binder_transaction(const struct cred *from,
813				const struct cred *to)
814{
815	return call_int_hook(binder_transaction, 0, from, to);
816}
817
818/**
819 * security_binder_transfer_binder() - Check if a binder transfer is allowed
820 * @from: sending process
821 * @to: receiving process
822 *
823 * Check whether @from is allowed to transfer a binder reference to @to.
824 *
825 * Return: Returns 0 if permission is granted.
826 */
827int security_binder_transfer_binder(const struct cred *from,
828				    const struct cred *to)
829{
830	return call_int_hook(binder_transfer_binder, 0, from, to);
831}
832
833/**
834 * security_binder_transfer_file() - Check if a binder file xfer is allowed
835 * @from: sending process
836 * @to: receiving process
837 * @file: file being transferred
838 *
839 * Check whether @from is allowed to transfer @file to @to.
840 *
841 * Return: Returns 0 if permission is granted.
842 */
843int security_binder_transfer_file(const struct cred *from,
844				  const struct cred *to, const struct file *file)
845{
846	return call_int_hook(binder_transfer_file, 0, from, to, file);
847}
848
849/**
850 * security_ptrace_access_check() - Check if tracing is allowed
851 * @child: target process
852 * @mode: PTRACE_MODE flags
853 *
854 * Check permission before allowing the current process to trace the @child
855 * process.  Security modules may also want to perform a process tracing check
856 * during an execve in the set_security or apply_creds hooks of tracing check
857 * during an execve in the bprm_set_creds hook of binprm_security_ops if the
858 * process is being traced and its security attributes would be changed by the
859 * execve.
860 *
861 * Return: Returns 0 if permission is granted.
862 */
863int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
864{
865	return call_int_hook(ptrace_access_check, 0, child, mode);
866}
867
868/**
869 * security_ptrace_traceme() - Check if tracing is allowed
870 * @parent: tracing process
871 *
872 * Check that the @parent process has sufficient permission to trace the
873 * current process before allowing the current process to present itself to the
874 * @parent process for tracing.
875 *
876 * Return: Returns 0 if permission is granted.
877 */
878int security_ptrace_traceme(struct task_struct *parent)
879{
880	return call_int_hook(ptrace_traceme, 0, parent);
881}
882
883/**
884 * security_capget() - Get the capability sets for a process
885 * @target: target process
886 * @effective: effective capability set
887 * @inheritable: inheritable capability set
888 * @permitted: permitted capability set
889 *
890 * Get the @effective, @inheritable, and @permitted capability sets for the
891 * @target process.  The hook may also perform permission checking to determine
892 * if the current process is allowed to see the capability sets of the @target
893 * process.
894 *
895 * Return: Returns 0 if the capability sets were successfully obtained.
896 */
897int security_capget(const struct task_struct *target,
898		    kernel_cap_t *effective,
899		    kernel_cap_t *inheritable,
900		    kernel_cap_t *permitted)
901{
902	return call_int_hook(capget, 0, target,
903			     effective, inheritable, permitted);
904}
905
906/**
907 * security_capset() - Set the capability sets for a process
908 * @new: new credentials for the target process
909 * @old: current credentials of the target process
910 * @effective: effective capability set
911 * @inheritable: inheritable capability set
912 * @permitted: permitted capability set
913 *
914 * Set the @effective, @inheritable, and @permitted capability sets for the
915 * current process.
916 *
917 * Return: Returns 0 and update @new if permission is granted.
918 */
919int security_capset(struct cred *new, const struct cred *old,
920		    const kernel_cap_t *effective,
921		    const kernel_cap_t *inheritable,
922		    const kernel_cap_t *permitted)
923{
924	return call_int_hook(capset, 0, new, old,
925			     effective, inheritable, permitted);
926}
927
928/**
929 * security_capable() - Check if a process has the necessary capability
930 * @cred: credentials to examine
931 * @ns: user namespace
932 * @cap: capability requested
933 * @opts: capability check options
934 *
935 * Check whether the @tsk process has the @cap capability in the indicated
936 * credentials.  @cap contains the capability <include/linux/capability.h>.
937 * @opts contains options for the capable check <include/linux/security.h>.
938 *
939 * Return: Returns 0 if the capability is granted.
940 */
941int security_capable(const struct cred *cred,
942		     struct user_namespace *ns,
943		     int cap,
944		     unsigned int opts)
945{
946	return call_int_hook(capable, 0, cred, ns, cap, opts);
947}
948
949/**
950 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
951 * @cmds: commands
952 * @type: type
953 * @id: id
954 * @sb: filesystem
955 *
956 * Check whether the quotactl syscall is allowed for this @sb.
957 *
958 * Return: Returns 0 if permission is granted.
959 */
960int security_quotactl(int cmds, int type, int id, struct super_block *sb)
961{
962	return call_int_hook(quotactl, 0, cmds, type, id, sb);
963}
964
965/**
966 * security_quota_on() - Check if QUOTAON is allowed for a dentry
967 * @dentry: dentry
968 *
969 * Check whether QUOTAON is allowed for @dentry.
970 *
971 * Return: Returns 0 if permission is granted.
972 */
973int security_quota_on(struct dentry *dentry)
974{
975	return call_int_hook(quota_on, 0, dentry);
976}
977
978/**
979 * security_syslog() - Check if accessing the kernel message ring is allowed
980 * @type: SYSLOG_ACTION_* type
981 *
982 * Check permission before accessing the kernel message ring or changing
983 * logging to the console.  See the syslog(2) manual page for an explanation of
984 * the @type values.
985 *
986 * Return: Return 0 if permission is granted.
987 */
988int security_syslog(int type)
989{
990	return call_int_hook(syslog, 0, type);
991}
992
993/**
994 * security_settime64() - Check if changing the system time is allowed
995 * @ts: new time
996 * @tz: timezone
997 *
998 * Check permission to change the system time, struct timespec64 is defined in
999 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1000 *
1001 * Return: Returns 0 if permission is granted.
1002 */
1003int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1004{
1005	return call_int_hook(settime, 0, ts, tz);
1006}
1007
1008/**
1009 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1010 * @mm: mm struct
1011 * @pages: number of pages
1012 *
1013 * Check permissions for allocating a new virtual mapping.  If all LSMs return
1014 * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1015 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1016 * called with cap_sys_admin cleared.
1017 *
1018 * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1019 *         caller.
1020 */
1021int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1022{
1023	struct security_hook_list *hp;
1024	int cap_sys_admin = 1;
1025	int rc;
1026
1027	/*
1028	 * The module will respond with a positive value if
1029	 * it thinks the __vm_enough_memory() call should be
1030	 * made with the cap_sys_admin set. If all of the modules
1031	 * agree that it should be set it will. If any module
1032	 * thinks it should not be set it won't.
1033	 */
1034	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1035		rc = hp->hook.vm_enough_memory(mm, pages);
1036		if (rc <= 0) {
1037			cap_sys_admin = 0;
1038			break;
1039		}
1040	}
1041	return __vm_enough_memory(mm, pages, cap_sys_admin);
1042}
1043
1044/**
1045 * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1046 * @bprm: binary program information
1047 *
1048 * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1049 * properly for executing @bprm->file, update the LSM's portion of
1050 * @bprm->cred->security to be what commit_creds needs to install for the new
1051 * program.  This hook may also optionally check permissions (e.g. for
1052 * transitions between security domains).  The hook must set @bprm->secureexec
1053 * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1054 * contains the linux_binprm structure.
1055 *
1056 * Return: Returns 0 if the hook is successful and permission is granted.
1057 */
1058int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1059{
1060	return call_int_hook(bprm_creds_for_exec, 0, bprm);
1061}
1062
1063/**
1064 * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1065 * @bprm: binary program information
1066 * @file: associated file
1067 *
1068 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1069 * exec, update @bprm->cred to reflect that change. This is called after
1070 * finding the binary that will be executed without an interpreter.  This
1071 * ensures that the credentials will not be derived from a script that the
1072 * binary will need to reopen, which when reopend may end up being a completely
1073 * different file.  This hook may also optionally check permissions (e.g. for
1074 * transitions between security domains).  The hook must set @bprm->secureexec
1075 * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1076 * hook must add to @bprm->per_clear any personality flags that should be
1077 * cleared from current->personality.  @bprm contains the linux_binprm
1078 * structure.
1079 *
1080 * Return: Returns 0 if the hook is successful and permission is granted.
1081 */
1082int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
1083{
1084	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
1085}
1086
1087/**
1088 * security_bprm_check() - Mediate binary handler search
1089 * @bprm: binary program information
1090 *
1091 * This hook mediates the point when a search for a binary handler will begin.
1092 * It allows a check against the @bprm->cred->security value which was set in
1093 * the preceding creds_for_exec call.  The argv list and envp list are reliably
1094 * available in @bprm.  This hook may be called multiple times during a single
1095 * execve.  @bprm contains the linux_binprm structure.
1096 *
1097 * Return: Returns 0 if the hook is successful and permission is granted.
1098 */
1099int security_bprm_check(struct linux_binprm *bprm)
1100{
1101	int ret;
1102
1103	ret = call_int_hook(bprm_check_security, 0, bprm);
1104	if (ret)
1105		return ret;
1106	return ima_bprm_check(bprm);
1107}
1108
1109/**
1110 * security_bprm_committing_creds() - Install creds for a process during exec()
1111 * @bprm: binary program information
1112 *
1113 * Prepare to install the new security attributes of a process being
1114 * transformed by an execve operation, based on the old credentials pointed to
1115 * by @current->cred and the information set in @bprm->cred by the
1116 * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1117 * hook is a good place to perform state changes on the process such as closing
1118 * open file descriptors to which access will no longer be granted when the
1119 * attributes are changed.  This is called immediately before commit_creds().
1120 */
1121void security_bprm_committing_creds(struct linux_binprm *bprm)
1122{
1123	call_void_hook(bprm_committing_creds, bprm);
1124}
1125
1126/**
1127 * security_bprm_committed_creds() - Tidy up after cred install during exec()
1128 * @bprm: binary program information
1129 *
1130 * Tidy up after the installation of the new security attributes of a process
1131 * being transformed by an execve operation.  The new credentials have, by this
1132 * point, been set to @current->cred.  @bprm points to the linux_binprm
1133 * structure.  This hook is a good place to perform state changes on the
1134 * process such as clearing out non-inheritable signal state.  This is called
1135 * immediately after commit_creds().
1136 */
1137void security_bprm_committed_creds(struct linux_binprm *bprm)
1138{
1139	call_void_hook(bprm_committed_creds, bprm);
1140}
1141
1142/**
1143 * security_fs_context_submount() - Initialise fc->security
1144 * @fc: new filesystem context
1145 * @reference: dentry reference for submount/remount
1146 *
1147 * Fill out the ->security field for a new fs_context.
1148 *
1149 * Return: Returns 0 on success or negative error code on failure.
1150 */
1151int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1152{
1153	return call_int_hook(fs_context_submount, 0, fc, reference);
1154}
1155
1156/**
1157 * security_fs_context_dup() - Duplicate a fs_context LSM blob
1158 * @fc: destination filesystem context
1159 * @src_fc: source filesystem context
1160 *
1161 * Allocate and attach a security structure to sc->security.  This pointer is
1162 * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1163 * @src_fc indicates the original filesystem context.
1164 *
1165 * Return: Returns 0 on success or a negative error code on failure.
1166 */
1167int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1168{
1169	return call_int_hook(fs_context_dup, 0, fc, src_fc);
1170}
1171
1172/**
1173 * security_fs_context_parse_param() - Configure a filesystem context
1174 * @fc: filesystem context
1175 * @param: filesystem parameter
1176 *
1177 * Userspace provided a parameter to configure a superblock.  The LSM can
1178 * consume the parameter or return it to the caller for use elsewhere.
1179 *
1180 * Return: If the parameter is used by the LSM it should return 0, if it is
1181 *         returned to the caller -ENOPARAM is returned, otherwise a negative
1182 *         error code is returned.
1183 */
1184int security_fs_context_parse_param(struct fs_context *fc,
1185				    struct fs_parameter *param)
1186{
1187	struct security_hook_list *hp;
1188	int trc;
1189	int rc = -ENOPARAM;
1190
1191	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1192			     list) {
1193		trc = hp->hook.fs_context_parse_param(fc, param);
1194		if (trc == 0)
1195			rc = 0;
1196		else if (trc != -ENOPARAM)
1197			return trc;
1198	}
1199	return rc;
1200}
1201
1202/**
1203 * security_sb_alloc() - Allocate a super_block LSM blob
1204 * @sb: filesystem superblock
1205 *
1206 * Allocate and attach a security structure to the sb->s_security field.  The
1207 * s_security field is initialized to NULL when the structure is allocated.
1208 * @sb contains the super_block structure to be modified.
1209 *
1210 * Return: Returns 0 if operation was successful.
1211 */
1212int security_sb_alloc(struct super_block *sb)
1213{
1214	int rc = lsm_superblock_alloc(sb);
1215
1216	if (unlikely(rc))
1217		return rc;
1218	rc = call_int_hook(sb_alloc_security, 0, sb);
1219	if (unlikely(rc))
1220		security_sb_free(sb);
1221	return rc;
1222}
1223
1224/**
1225 * security_sb_delete() - Release super_block LSM associated objects
1226 * @sb: filesystem superblock
1227 *
1228 * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1229 * super_block structure being released.
1230 */
1231void security_sb_delete(struct super_block *sb)
1232{
1233	call_void_hook(sb_delete, sb);
1234}
1235
1236/**
1237 * security_sb_free() - Free a super_block LSM blob
1238 * @sb: filesystem superblock
1239 *
1240 * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1241 * structure to be modified.
1242 */
1243void security_sb_free(struct super_block *sb)
1244{
1245	call_void_hook(sb_free_security, sb);
1246	kfree(sb->s_security);
1247	sb->s_security = NULL;
1248}
1249
1250/**
1251 * security_free_mnt_opts() - Free memory associated with mount options
1252 * @mnt_opts: LSM processed mount options
1253 *
1254 * Free memory associated with @mnt_ops.
1255 */
1256void security_free_mnt_opts(void **mnt_opts)
1257{
1258	if (!*mnt_opts)
1259		return;
1260	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1261	*mnt_opts = NULL;
1262}
1263EXPORT_SYMBOL(security_free_mnt_opts);
1264
1265/**
1266 * security_sb_eat_lsm_opts() - Consume LSM mount options
1267 * @options: mount options
1268 * @mnt_opts: LSM processed mount options
1269 *
1270 * Eat (scan @options) and save them in @mnt_opts.
1271 *
1272 * Return: Returns 0 on success, negative values on failure.
1273 */
1274int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1275{
1276	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
1277}
1278EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1279
1280/**
1281 * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1282 * @sb: filesystem superblock
1283 * @mnt_opts: new mount options
1284 *
1285 * Determine if the new mount options in @mnt_opts are allowed given the
1286 * existing mounted filesystem at @sb.  @sb superblock being compared.
1287 *
1288 * Return: Returns 0 if options are compatible.
1289 */
1290int security_sb_mnt_opts_compat(struct super_block *sb,
1291				void *mnt_opts)
1292{
1293	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
1294}
1295EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1296
1297/**
1298 * security_sb_remount() - Verify no incompatible mount changes during remount
1299 * @sb: filesystem superblock
1300 * @mnt_opts: (re)mount options
1301 *
1302 * Extracts security system specific mount options and verifies no changes are
1303 * being made to those options.
1304 *
1305 * Return: Returns 0 if permission is granted.
1306 */
1307int security_sb_remount(struct super_block *sb,
1308			void *mnt_opts)
1309{
1310	return call_int_hook(sb_remount, 0, sb, mnt_opts);
1311}
1312EXPORT_SYMBOL(security_sb_remount);
1313
1314/**
1315 * security_sb_kern_mount() - Check if a kernel mount is allowed
1316 * @sb: filesystem superblock
1317 *
1318 * Mount this @sb if allowed by permissions.
1319 *
1320 * Return: Returns 0 if permission is granted.
1321 */
1322int security_sb_kern_mount(struct super_block *sb)
1323{
1324	return call_int_hook(sb_kern_mount, 0, sb);
1325}
1326
1327/**
1328 * security_sb_show_options() - Output the mount options for a superblock
1329 * @m: output file
1330 * @sb: filesystem superblock
1331 *
1332 * Show (print on @m) mount options for this @sb.
1333 *
1334 * Return: Returns 0 on success, negative values on failure.
1335 */
1336int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1337{
1338	return call_int_hook(sb_show_options, 0, m, sb);
1339}
1340
1341/**
1342 * security_sb_statfs() - Check if accessing fs stats is allowed
1343 * @dentry: superblock handle
1344 *
1345 * Check permission before obtaining filesystem statistics for the @mnt
1346 * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1347 *
1348 * Return: Returns 0 if permission is granted.
1349 */
1350int security_sb_statfs(struct dentry *dentry)
1351{
1352	return call_int_hook(sb_statfs, 0, dentry);
1353}
1354
1355/**
1356 * security_sb_mount() - Check permission for mounting a filesystem
1357 * @dev_name: filesystem backing device
1358 * @path: mount point
1359 * @type: filesystem type
1360 * @flags: mount flags
1361 * @data: filesystem specific data
1362 *
1363 * Check permission before an object specified by @dev_name is mounted on the
1364 * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1365 * device if the file system type requires a device.  For a remount
1366 * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1367 * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1368 * mounted.
1369 *
1370 * Return: Returns 0 if permission is granted.
1371 */
1372int security_sb_mount(const char *dev_name, const struct path *path,
1373		      const char *type, unsigned long flags, void *data)
1374{
1375	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
1376}
1377
1378/**
1379 * security_sb_umount() - Check permission for unmounting a filesystem
1380 * @mnt: mounted filesystem
1381 * @flags: unmount flags
1382 *
1383 * Check permission before the @mnt file system is unmounted.
1384 *
1385 * Return: Returns 0 if permission is granted.
1386 */
1387int security_sb_umount(struct vfsmount *mnt, int flags)
1388{
1389	return call_int_hook(sb_umount, 0, mnt, flags);
1390}
1391
1392/**
1393 * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1394 * @old_path: new location for current rootfs
1395 * @new_path: location of the new rootfs
1396 *
1397 * Check permission before pivoting the root filesystem.
1398 *
1399 * Return: Returns 0 if permission is granted.
1400 */
1401int security_sb_pivotroot(const struct path *old_path,
1402			  const struct path *new_path)
1403{
1404	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
1405}
1406
1407/**
1408 * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1409 * @sb: filesystem superblock
1410 * @mnt_opts: binary mount options
1411 * @kern_flags: kernel flags (in)
1412 * @set_kern_flags: kernel flags (out)
1413 *
1414 * Set the security relevant mount options used for a superblock.
1415 *
1416 * Return: Returns 0 on success, error on failure.
1417 */
1418int security_sb_set_mnt_opts(struct super_block *sb,
1419			     void *mnt_opts,
1420			     unsigned long kern_flags,
1421			     unsigned long *set_kern_flags)
1422{
1423	return call_int_hook(sb_set_mnt_opts,
1424			     mnt_opts ? -EOPNOTSUPP : 0, sb,
1425			     mnt_opts, kern_flags, set_kern_flags);
1426}
1427EXPORT_SYMBOL(security_sb_set_mnt_opts);
1428
1429/**
1430 * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1431 * @oldsb: source superblock
1432 * @newsb: destination superblock
1433 * @kern_flags: kernel flags (in)
1434 * @set_kern_flags: kernel flags (out)
1435 *
1436 * Copy all security options from a given superblock to another.
1437 *
1438 * Return: Returns 0 on success, error on failure.
1439 */
1440int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1441			       struct super_block *newsb,
1442			       unsigned long kern_flags,
1443			       unsigned long *set_kern_flags)
1444{
1445	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
1446			     kern_flags, set_kern_flags);
1447}
1448EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1449
1450/**
1451 * security_move_mount() - Check permissions for moving a mount
1452 * @from_path: source mount point
1453 * @to_path: destination mount point
1454 *
1455 * Check permission before a mount is moved.
1456 *
1457 * Return: Returns 0 if permission is granted.
1458 */
1459int security_move_mount(const struct path *from_path,
1460			const struct path *to_path)
1461{
1462	return call_int_hook(move_mount, 0, from_path, to_path);
1463}
1464
1465/**
1466 * security_path_notify() - Check if setting a watch is allowed
1467 * @path: file path
1468 * @mask: event mask
1469 * @obj_type: file path type
1470 *
1471 * Check permissions before setting a watch on events as defined by @mask, on
1472 * an object at @path, whose type is defined by @obj_type.
1473 *
1474 * Return: Returns 0 if permission is granted.
1475 */
1476int security_path_notify(const struct path *path, u64 mask,
1477			 unsigned int obj_type)
1478{
1479	return call_int_hook(path_notify, 0, path, mask, obj_type);
1480}
1481
1482/**
1483 * security_inode_alloc() - Allocate an inode LSM blob
1484 * @inode: the inode
1485 *
1486 * Allocate and attach a security structure to @inode->i_security.  The
1487 * i_security field is initialized to NULL when the inode structure is
1488 * allocated.
1489 *
1490 * Return: Return 0 if operation was successful.
1491 */
1492int security_inode_alloc(struct inode *inode)
1493{
1494	int rc = lsm_inode_alloc(inode);
1495
1496	if (unlikely(rc))
1497		return rc;
1498	rc = call_int_hook(inode_alloc_security, 0, inode);
1499	if (unlikely(rc))
1500		security_inode_free(inode);
1501	return rc;
1502}
1503
1504static void inode_free_by_rcu(struct rcu_head *head)
1505{
1506	/*
1507	 * The rcu head is at the start of the inode blob
1508	 */
1509	kmem_cache_free(lsm_inode_cache, head);
1510}
1511
1512/**
1513 * security_inode_free() - Free an inode's LSM blob
1514 * @inode: the inode
1515 *
1516 * Deallocate the inode security structure and set @inode->i_security to NULL.
1517 */
1518void security_inode_free(struct inode *inode)
1519{
1520	integrity_inode_free(inode);
1521	call_void_hook(inode_free_security, inode);
1522	/*
1523	 * The inode may still be referenced in a path walk and
1524	 * a call to security_inode_permission() can be made
1525	 * after inode_free_security() is called. Ideally, the VFS
1526	 * wouldn't do this, but fixing that is a much harder
1527	 * job. For now, simply free the i_security via RCU, and
1528	 * leave the current inode->i_security pointer intact.
1529	 * The inode will be freed after the RCU grace period too.
1530	 */
1531	if (inode->i_security)
1532		call_rcu((struct rcu_head *)inode->i_security,
1533			 inode_free_by_rcu);
1534}
1535
1536/**
1537 * security_dentry_init_security() - Perform dentry initialization
1538 * @dentry: the dentry to initialize
1539 * @mode: mode used to determine resource type
1540 * @name: name of the last path component
1541 * @xattr_name: name of the security/LSM xattr
1542 * @ctx: pointer to the resulting LSM context
1543 * @ctxlen: length of @ctx
1544 *
1545 * Compute a context for a dentry as the inode is not yet available since NFSv4
1546 * has no label backed by an EA anyway.  It is important to note that
1547 * @xattr_name does not need to be free'd by the caller, it is a static string.
1548 *
1549 * Return: Returns 0 on success, negative values on failure.
1550 */
1551int security_dentry_init_security(struct dentry *dentry, int mode,
1552				  const struct qstr *name,
1553				  const char **xattr_name, void **ctx,
1554				  u32 *ctxlen)
1555{
1556	struct security_hook_list *hp;
1557	int rc;
1558
1559	/*
1560	 * Only one module will provide a security context.
1561	 */
1562	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security,
1563			     list) {
1564		rc = hp->hook.dentry_init_security(dentry, mode, name,
1565						   xattr_name, ctx, ctxlen);
1566		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1567			return rc;
1568	}
1569	return LSM_RET_DEFAULT(dentry_init_security);
1570}
1571EXPORT_SYMBOL(security_dentry_init_security);
1572
1573/**
1574 * security_dentry_create_files_as() - Perform dentry initialization
1575 * @dentry: the dentry to initialize
1576 * @mode: mode used to determine resource type
1577 * @name: name of the last path component
1578 * @old: creds to use for LSM context calculations
1579 * @new: creds to modify
1580 *
1581 * Compute a context for a dentry as the inode is not yet available and set
1582 * that context in passed in creds so that new files are created using that
1583 * context. Context is calculated using the passed in creds and not the creds
1584 * of the caller.
1585 *
1586 * Return: Returns 0 on success, error on failure.
1587 */
1588int security_dentry_create_files_as(struct dentry *dentry, int mode,
1589				    struct qstr *name,
1590				    const struct cred *old, struct cred *new)
1591{
1592	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1593			     name, old, new);
1594}
1595EXPORT_SYMBOL(security_dentry_create_files_as);
1596
1597/**
1598 * security_inode_init_security() - Initialize an inode's LSM context
1599 * @inode: the inode
1600 * @dir: parent directory
1601 * @qstr: last component of the pathname
1602 * @initxattrs: callback function to write xattrs
1603 * @fs_data: filesystem specific data
1604 *
1605 * Obtain the security attribute name suffix and value to set on a newly
1606 * created inode and set up the incore security field for the new inode.  This
1607 * hook is called by the fs code as part of the inode creation transaction and
1608 * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1609 * hooks called by the VFS.
1610 *
1611 * The hook function is expected to populate the xattrs array, by calling
1612 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1613 * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1614 * slot, the hook function should set ->name to the attribute name suffix
1615 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1616 * to the attribute value, to set ->value_len to the length of the value.  If
1617 * the security module does not use security attributes or does not wish to put
1618 * a security attribute on this particular inode, then it should return
1619 * -EOPNOTSUPP to skip this processing.
1620 *
1621 * Return: Returns 0 if the LSM successfully initialized all of the inode
1622 *         security attributes that are required, negative values otherwise.
1623 */
1624int security_inode_init_security(struct inode *inode, struct inode *dir,
1625				 const struct qstr *qstr,
1626				 const initxattrs initxattrs, void *fs_data)
1627{
1628	struct security_hook_list *hp;
1629	struct xattr *new_xattrs = NULL;
1630	int ret = -EOPNOTSUPP, xattr_count = 0;
1631
1632	if (unlikely(IS_PRIVATE(inode)))
1633		return 0;
1634
1635	if (!blob_sizes.lbs_xattr_count)
1636		return 0;
1637
1638	if (initxattrs) {
1639		/* Allocate +1 for EVM and +1 as terminator. */
1640		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2,
1641				     sizeof(*new_xattrs), GFP_NOFS);
1642		if (!new_xattrs)
1643			return -ENOMEM;
1644	}
1645
1646	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1647			     list) {
1648		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1649						  &xattr_count);
1650		if (ret && ret != -EOPNOTSUPP)
1651			goto out;
1652		/*
1653		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1654		 * means that the LSM is not willing to provide an xattr, not
1655		 * that it wants to signal an error. Thus, continue to invoke
1656		 * the remaining LSMs.
1657		 */
1658	}
1659
1660	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1661	if (!xattr_count)
1662		goto out;
1663
1664	ret = evm_inode_init_security(inode, dir, qstr, new_xattrs,
1665				      &xattr_count);
1666	if (ret)
1667		goto out;
1668	ret = initxattrs(inode, new_xattrs, fs_data);
1669out:
1670	for (; xattr_count > 0; xattr_count--)
1671		kfree(new_xattrs[xattr_count - 1].value);
1672	kfree(new_xattrs);
1673	return (ret == -EOPNOTSUPP) ? 0 : ret;
1674}
1675EXPORT_SYMBOL(security_inode_init_security);
1676
1677/**
1678 * security_inode_init_security_anon() - Initialize an anonymous inode
1679 * @inode: the inode
1680 * @name: the anonymous inode class
1681 * @context_inode: an optional related inode
1682 *
1683 * Set up the incore security field for the new anonymous inode and return
1684 * whether the inode creation is permitted by the security module or not.
1685 *
1686 * Return: Returns 0 on success, -EACCES if the security module denies the
1687 * creation of this inode, or another -errno upon other errors.
1688 */
1689int security_inode_init_security_anon(struct inode *inode,
1690				      const struct qstr *name,
1691				      const struct inode *context_inode)
1692{
1693	return call_int_hook(inode_init_security_anon, 0, inode, name,
1694			     context_inode);
1695}
1696
1697#ifdef CONFIG_SECURITY_PATH
1698/**
1699 * security_path_mknod() - Check if creating a special file is allowed
1700 * @dir: parent directory
1701 * @dentry: new file
1702 * @mode: new file mode
1703 * @dev: device number
1704 *
1705 * Check permissions when creating a file. Note that this hook is called even
1706 * if mknod operation is being done for a regular file.
1707 *
1708 * Return: Returns 0 if permission is granted.
1709 */
1710int security_path_mknod(const struct path *dir, struct dentry *dentry,
1711			umode_t mode, unsigned int dev)
1712{
1713	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1714		return 0;
1715	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1716}
1717EXPORT_SYMBOL(security_path_mknod);
1718
1719/**
1720 * security_path_mkdir() - Check if creating a new directory is allowed
1721 * @dir: parent directory
1722 * @dentry: new directory
1723 * @mode: new directory mode
1724 *
1725 * Check permissions to create a new directory in the existing directory.
1726 *
1727 * Return: Returns 0 if permission is granted.
1728 */
1729int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1730			umode_t mode)
1731{
1732	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1733		return 0;
1734	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1735}
1736EXPORT_SYMBOL(security_path_mkdir);
1737
1738/**
1739 * security_path_rmdir() - Check if removing a directory is allowed
1740 * @dir: parent directory
1741 * @dentry: directory to remove
1742 *
1743 * Check the permission to remove a directory.
1744 *
1745 * Return: Returns 0 if permission is granted.
1746 */
1747int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1748{
1749	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1750		return 0;
1751	return call_int_hook(path_rmdir, 0, dir, dentry);
1752}
1753
1754/**
1755 * security_path_unlink() - Check if removing a hard link is allowed
1756 * @dir: parent directory
1757 * @dentry: file
1758 *
1759 * Check the permission to remove a hard link to a file.
1760 *
1761 * Return: Returns 0 if permission is granted.
1762 */
1763int security_path_unlink(const struct path *dir, struct dentry *dentry)
1764{
1765	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1766		return 0;
1767	return call_int_hook(path_unlink, 0, dir, dentry);
1768}
1769EXPORT_SYMBOL(security_path_unlink);
1770
1771/**
1772 * security_path_symlink() - Check if creating a symbolic link is allowed
1773 * @dir: parent directory
1774 * @dentry: symbolic link
1775 * @old_name: file pathname
1776 *
1777 * Check the permission to create a symbolic link to a file.
1778 *
1779 * Return: Returns 0 if permission is granted.
1780 */
1781int security_path_symlink(const struct path *dir, struct dentry *dentry,
1782			  const char *old_name)
1783{
1784	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1785		return 0;
1786	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1787}
1788
1789/**
1790 * security_path_link - Check if creating a hard link is allowed
1791 * @old_dentry: existing file
1792 * @new_dir: new parent directory
1793 * @new_dentry: new link
1794 *
1795 * Check permission before creating a new hard link to a file.
1796 *
1797 * Return: Returns 0 if permission is granted.
1798 */
1799int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1800		       struct dentry *new_dentry)
1801{
1802	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1803		return 0;
1804	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1805}
1806
1807/**
1808 * security_path_rename() - Check if renaming a file is allowed
1809 * @old_dir: parent directory of the old file
1810 * @old_dentry: the old file
1811 * @new_dir: parent directory of the new file
1812 * @new_dentry: the new file
1813 * @flags: flags
1814 *
1815 * Check for permission to rename a file or directory.
1816 *
1817 * Return: Returns 0 if permission is granted.
1818 */
1819int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1820			 const struct path *new_dir, struct dentry *new_dentry,
1821			 unsigned int flags)
1822{
1823	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1824		     (d_is_positive(new_dentry) &&
1825		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1826		return 0;
1827
1828	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1829			     new_dentry, flags);
1830}
1831EXPORT_SYMBOL(security_path_rename);
1832
1833/**
1834 * security_path_truncate() - Check if truncating a file is allowed
1835 * @path: file
1836 *
1837 * Check permission before truncating the file indicated by path.  Note that
1838 * truncation permissions may also be checked based on already opened files,
1839 * using the security_file_truncate() hook.
1840 *
1841 * Return: Returns 0 if permission is granted.
1842 */
1843int security_path_truncate(const struct path *path)
1844{
1845	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1846		return 0;
1847	return call_int_hook(path_truncate, 0, path);
1848}
1849
1850/**
1851 * security_path_chmod() - Check if changing the file's mode is allowed
1852 * @path: file
1853 * @mode: new mode
1854 *
1855 * Check for permission to change a mode of the file @path. The new mode is
1856 * specified in @mode which is a bitmask of constants from
1857 * <include/uapi/linux/stat.h>.
1858 *
1859 * Return: Returns 0 if permission is granted.
1860 */
1861int security_path_chmod(const struct path *path, umode_t mode)
1862{
1863	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1864		return 0;
1865	return call_int_hook(path_chmod, 0, path, mode);
1866}
1867
1868/**
1869 * security_path_chown() - Check if changing the file's owner/group is allowed
1870 * @path: file
1871 * @uid: file owner
1872 * @gid: file group
1873 *
1874 * Check for permission to change owner/group of a file or directory.
1875 *
1876 * Return: Returns 0 if permission is granted.
1877 */
1878int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1879{
1880	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1881		return 0;
1882	return call_int_hook(path_chown, 0, path, uid, gid);
1883}
1884
1885/**
1886 * security_path_chroot() - Check if changing the root directory is allowed
1887 * @path: directory
1888 *
1889 * Check for permission to change root directory.
1890 *
1891 * Return: Returns 0 if permission is granted.
1892 */
1893int security_path_chroot(const struct path *path)
1894{
1895	return call_int_hook(path_chroot, 0, path);
1896}
1897#endif /* CONFIG_SECURITY_PATH */
1898
1899/**
1900 * security_inode_create() - Check if creating a file is allowed
1901 * @dir: the parent directory
1902 * @dentry: the file being created
1903 * @mode: requested file mode
1904 *
1905 * Check permission to create a regular file.
1906 *
1907 * Return: Returns 0 if permission is granted.
1908 */
1909int security_inode_create(struct inode *dir, struct dentry *dentry,
1910			  umode_t mode)
1911{
1912	if (unlikely(IS_PRIVATE(dir)))
1913		return 0;
1914	return call_int_hook(inode_create, 0, dir, dentry, mode);
1915}
1916EXPORT_SYMBOL_GPL(security_inode_create);
1917
1918/**
1919 * security_inode_link() - Check if creating a hard link is allowed
1920 * @old_dentry: existing file
1921 * @dir: new parent directory
1922 * @new_dentry: new link
1923 *
1924 * Check permission before creating a new hard link to a file.
1925 *
1926 * Return: Returns 0 if permission is granted.
1927 */
1928int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1929			struct dentry *new_dentry)
1930{
1931	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1932		return 0;
1933	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1934}
1935
1936/**
1937 * security_inode_unlink() - Check if removing a hard link is allowed
1938 * @dir: parent directory
1939 * @dentry: file
1940 *
1941 * Check the permission to remove a hard link to a file.
1942 *
1943 * Return: Returns 0 if permission is granted.
1944 */
1945int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1946{
1947	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1948		return 0;
1949	return call_int_hook(inode_unlink, 0, dir, dentry);
1950}
1951
1952/**
1953 * security_inode_symlink() - Check if creating a symbolic link is allowed
1954 * @dir: parent directory
1955 * @dentry: symbolic link
1956 * @old_name: existing filename
1957 *
1958 * Check the permission to create a symbolic link to a file.
1959 *
1960 * Return: Returns 0 if permission is granted.
1961 */
1962int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1963			   const char *old_name)
1964{
1965	if (unlikely(IS_PRIVATE(dir)))
1966		return 0;
1967	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1968}
1969
1970/**
1971 * security_inode_mkdir() - Check if creation a new director is allowed
1972 * @dir: parent directory
1973 * @dentry: new directory
1974 * @mode: new directory mode
1975 *
1976 * Check permissions to create a new directory in the existing directory
1977 * associated with inode structure @dir.
1978 *
1979 * Return: Returns 0 if permission is granted.
1980 */
1981int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1982{
1983	if (unlikely(IS_PRIVATE(dir)))
1984		return 0;
1985	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1986}
1987EXPORT_SYMBOL_GPL(security_inode_mkdir);
1988
1989/**
1990 * security_inode_rmdir() - Check if removing a directory is allowed
1991 * @dir: parent directory
1992 * @dentry: directory to be removed
1993 *
1994 * Check the permission to remove a directory.
1995 *
1996 * Return: Returns 0 if permission is granted.
1997 */
1998int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1999{
2000	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2001		return 0;
2002	return call_int_hook(inode_rmdir, 0, dir, dentry);
2003}
2004
2005/**
2006 * security_inode_mknod() - Check if creating a special file is allowed
2007 * @dir: parent directory
2008 * @dentry: new file
2009 * @mode: new file mode
2010 * @dev: device number
2011 *
2012 * Check permissions when creating a special file (or a socket or a fifo file
2013 * created via the mknod system call).  Note that if mknod operation is being
2014 * done for a regular file, then the create hook will be called and not this
2015 * hook.
2016 *
2017 * Return: Returns 0 if permission is granted.
2018 */
2019int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2020			 umode_t mode, dev_t dev)
2021{
2022	if (unlikely(IS_PRIVATE(dir)))
2023		return 0;
2024	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
2025}
2026
2027/**
2028 * security_inode_rename() - Check if renaming a file is allowed
2029 * @old_dir: parent directory of the old file
2030 * @old_dentry: the old file
2031 * @new_dir: parent directory of the new file
2032 * @new_dentry: the new file
2033 * @flags: flags
2034 *
2035 * Check for permission to rename a file or directory.
2036 *
2037 * Return: Returns 0 if permission is granted.
2038 */
2039int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2040			  struct inode *new_dir, struct dentry *new_dentry,
2041			  unsigned int flags)
2042{
2043	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2044		     (d_is_positive(new_dentry) &&
2045		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2046		return 0;
2047
2048	if (flags & RENAME_EXCHANGE) {
2049		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
2050					old_dir, old_dentry);
2051		if (err)
2052			return err;
2053	}
2054
2055	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
2056			     new_dir, new_dentry);
2057}
2058
2059/**
2060 * security_inode_readlink() - Check if reading a symbolic link is allowed
2061 * @dentry: link
2062 *
2063 * Check the permission to read the symbolic link.
2064 *
2065 * Return: Returns 0 if permission is granted.
2066 */
2067int security_inode_readlink(struct dentry *dentry)
2068{
2069	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2070		return 0;
2071	return call_int_hook(inode_readlink, 0, dentry);
2072}
2073
2074/**
2075 * security_inode_follow_link() - Check if following a symbolic link is allowed
2076 * @dentry: link dentry
2077 * @inode: link inode
2078 * @rcu: true if in RCU-walk mode
2079 *
2080 * Check permission to follow a symbolic link when looking up a pathname.  If
2081 * @rcu is true, @inode is not stable.
2082 *
2083 * Return: Returns 0 if permission is granted.
2084 */
2085int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2086			       bool rcu)
2087{
2088	if (unlikely(IS_PRIVATE(inode)))
2089		return 0;
2090	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
2091}
2092
2093/**
2094 * security_inode_permission() - Check if accessing an inode is allowed
2095 * @inode: inode
2096 * @mask: access mask
2097 *
2098 * Check permission before accessing an inode.  This hook is called by the
2099 * existing Linux permission function, so a security module can use it to
2100 * provide additional checking for existing Linux permission checks.  Notice
2101 * that this hook is called when a file is opened (as well as many other
2102 * operations), whereas the file_security_ops permission hook is called when
2103 * the actual read/write operations are performed.
2104 *
2105 * Return: Returns 0 if permission is granted.
2106 */
2107int security_inode_permission(struct inode *inode, int mask)
2108{
2109	if (unlikely(IS_PRIVATE(inode)))
2110		return 0;
2111	return call_int_hook(inode_permission, 0, inode, mask);
2112}
2113
2114/**
2115 * security_inode_setattr() - Check if setting file attributes is allowed
2116 * @idmap: idmap of the mount
2117 * @dentry: file
2118 * @attr: new attributes
2119 *
2120 * Check permission before setting file attributes.  Note that the kernel call
2121 * to notify_change is performed from several locations, whenever file
2122 * attributes change (such as when a file is truncated, chown/chmod operations,
2123 * transferring disk quotas, etc).
2124 *
2125 * Return: Returns 0 if permission is granted.
2126 */
2127int security_inode_setattr(struct mnt_idmap *idmap,
2128			   struct dentry *dentry, struct iattr *attr)
2129{
2130	int ret;
2131
2132	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133		return 0;
2134	ret = call_int_hook(inode_setattr, 0, dentry, attr);
2135	if (ret)
2136		return ret;
2137	return evm_inode_setattr(idmap, dentry, attr);
2138}
2139EXPORT_SYMBOL_GPL(security_inode_setattr);
2140
2141/**
2142 * security_inode_getattr() - Check if getting file attributes is allowed
2143 * @path: file
2144 *
2145 * Check permission before obtaining file attributes.
2146 *
2147 * Return: Returns 0 if permission is granted.
2148 */
2149int security_inode_getattr(const struct path *path)
2150{
2151	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2152		return 0;
2153	return call_int_hook(inode_getattr, 0, path);
2154}
2155
2156/**
2157 * security_inode_setxattr() - Check if setting file xattrs is allowed
2158 * @idmap: idmap of the mount
2159 * @dentry: file
2160 * @name: xattr name
2161 * @value: xattr value
2162 * @size: size of xattr value
2163 * @flags: flags
2164 *
2165 * Check permission before setting the extended attributes.
2166 *
2167 * Return: Returns 0 if permission is granted.
2168 */
2169int security_inode_setxattr(struct mnt_idmap *idmap,
2170			    struct dentry *dentry, const char *name,
2171			    const void *value, size_t size, int flags)
2172{
2173	int ret;
2174
2175	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2176		return 0;
2177	/*
2178	 * SELinux and Smack integrate the cap call,
2179	 * so assume that all LSMs supplying this call do so.
2180	 */
2181	ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value,
2182			    size, flags);
2183
2184	if (ret == 1)
2185		ret = cap_inode_setxattr(dentry, name, value, size, flags);
2186	if (ret)
2187		return ret;
2188	ret = ima_inode_setxattr(dentry, name, value, size);
2189	if (ret)
2190		return ret;
2191	return evm_inode_setxattr(idmap, dentry, name, value, size);
2192}
2193
2194/**
2195 * security_inode_set_acl() - Check if setting posix acls is allowed
2196 * @idmap: idmap of the mount
2197 * @dentry: file
2198 * @acl_name: acl name
2199 * @kacl: acl struct
2200 *
2201 * Check permission before setting posix acls, the posix acls in @kacl are
2202 * identified by @acl_name.
2203 *
2204 * Return: Returns 0 if permission is granted.
2205 */
2206int security_inode_set_acl(struct mnt_idmap *idmap,
2207			   struct dentry *dentry, const char *acl_name,
2208			   struct posix_acl *kacl)
2209{
2210	int ret;
2211
2212	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2213		return 0;
2214	ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name,
2215			    kacl);
2216	if (ret)
2217		return ret;
2218	ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl);
2219	if (ret)
2220		return ret;
2221	return evm_inode_set_acl(idmap, dentry, acl_name, kacl);
2222}
2223
2224/**
2225 * security_inode_get_acl() - Check if reading posix acls is allowed
2226 * @idmap: idmap of the mount
2227 * @dentry: file
2228 * @acl_name: acl name
2229 *
2230 * Check permission before getting osix acls, the posix acls are identified by
2231 * @acl_name.
2232 *
2233 * Return: Returns 0 if permission is granted.
2234 */
2235int security_inode_get_acl(struct mnt_idmap *idmap,
2236			   struct dentry *dentry, const char *acl_name)
2237{
2238	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2239		return 0;
2240	return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name);
2241}
2242
2243/**
2244 * security_inode_remove_acl() - Check if removing a posix acl is allowed
2245 * @idmap: idmap of the mount
2246 * @dentry: file
2247 * @acl_name: acl name
2248 *
2249 * Check permission before removing posix acls, the posix acls are identified
2250 * by @acl_name.
2251 *
2252 * Return: Returns 0 if permission is granted.
2253 */
2254int security_inode_remove_acl(struct mnt_idmap *idmap,
2255			      struct dentry *dentry, const char *acl_name)
2256{
2257	int ret;
2258
2259	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2260		return 0;
2261	ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name);
2262	if (ret)
2263		return ret;
2264	ret = ima_inode_remove_acl(idmap, dentry, acl_name);
2265	if (ret)
2266		return ret;
2267	return evm_inode_remove_acl(idmap, dentry, acl_name);
2268}
2269
2270/**
2271 * security_inode_post_setxattr() - Update the inode after a setxattr operation
2272 * @dentry: file
2273 * @name: xattr name
2274 * @value: xattr value
2275 * @size: xattr value size
2276 * @flags: flags
2277 *
2278 * Update inode security field after successful setxattr operation.
2279 */
2280void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2281				  const void *value, size_t size, int flags)
2282{
2283	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2284		return;
2285	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2286	evm_inode_post_setxattr(dentry, name, value, size);
2287}
2288
2289/**
2290 * security_inode_getxattr() - Check if xattr access is allowed
2291 * @dentry: file
2292 * @name: xattr name
2293 *
2294 * Check permission before obtaining the extended attributes identified by
2295 * @name for @dentry.
2296 *
2297 * Return: Returns 0 if permission is granted.
2298 */
2299int security_inode_getxattr(struct dentry *dentry, const char *name)
2300{
2301	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2302		return 0;
2303	return call_int_hook(inode_getxattr, 0, dentry, name);
2304}
2305
2306/**
2307 * security_inode_listxattr() - Check if listing xattrs is allowed
2308 * @dentry: file
2309 *
2310 * Check permission before obtaining the list of extended attribute names for
2311 * @dentry.
2312 *
2313 * Return: Returns 0 if permission is granted.
2314 */
2315int security_inode_listxattr(struct dentry *dentry)
2316{
2317	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2318		return 0;
2319	return call_int_hook(inode_listxattr, 0, dentry);
2320}
2321
2322/**
2323 * security_inode_removexattr() - Check if removing an xattr is allowed
2324 * @idmap: idmap of the mount
2325 * @dentry: file
2326 * @name: xattr name
2327 *
2328 * Check permission before removing the extended attribute identified by @name
2329 * for @dentry.
2330 *
2331 * Return: Returns 0 if permission is granted.
2332 */
2333int security_inode_removexattr(struct mnt_idmap *idmap,
2334			       struct dentry *dentry, const char *name)
2335{
2336	int ret;
2337
2338	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339		return 0;
2340	/*
2341	 * SELinux and Smack integrate the cap call,
2342	 * so assume that all LSMs supplying this call do so.
2343	 */
2344	ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name);
2345	if (ret == 1)
2346		ret = cap_inode_removexattr(idmap, dentry, name);
2347	if (ret)
2348		return ret;
2349	ret = ima_inode_removexattr(dentry, name);
2350	if (ret)
2351		return ret;
2352	return evm_inode_removexattr(idmap, dentry, name);
2353}
2354
2355/**
2356 * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2357 * @dentry: associated dentry
2358 *
2359 * Called when an inode has been changed to determine if
2360 * security_inode_killpriv() should be called.
2361 *
2362 * Return: Return <0 on error to abort the inode change operation, return 0 if
2363 *         security_inode_killpriv() does not need to be called, return >0 if
2364 *         security_inode_killpriv() does need to be called.
2365 */
2366int security_inode_need_killpriv(struct dentry *dentry)
2367{
2368	return call_int_hook(inode_need_killpriv, 0, dentry);
2369}
2370
2371/**
2372 * security_inode_killpriv() - The setuid bit is removed, update LSM state
2373 * @idmap: idmap of the mount
2374 * @dentry: associated dentry
2375 *
2376 * The @dentry's setuid bit is being removed.  Remove similar security labels.
2377 * Called with the dentry->d_inode->i_mutex held.
2378 *
2379 * Return: Return 0 on success.  If error is returned, then the operation
2380 *         causing setuid bit removal is failed.
2381 */
2382int security_inode_killpriv(struct mnt_idmap *idmap,
2383			    struct dentry *dentry)
2384{
2385	return call_int_hook(inode_killpriv, 0, idmap, dentry);
2386}
2387
2388/**
2389 * security_inode_getsecurity() - Get the xattr security label of an inode
2390 * @idmap: idmap of the mount
2391 * @inode: inode
2392 * @name: xattr name
2393 * @buffer: security label buffer
2394 * @alloc: allocation flag
2395 *
2396 * Retrieve a copy of the extended attribute representation of the security
2397 * label associated with @name for @inode via @buffer.  Note that @name is the
2398 * remainder of the attribute name after the security prefix has been removed.
2399 * @alloc is used to specify if the call should return a value via the buffer
2400 * or just the value length.
2401 *
2402 * Return: Returns size of buffer on success.
2403 */
2404int security_inode_getsecurity(struct mnt_idmap *idmap,
2405			       struct inode *inode, const char *name,
2406			       void **buffer, bool alloc)
2407{
2408	struct security_hook_list *hp;
2409	int rc;
2410
2411	if (unlikely(IS_PRIVATE(inode)))
2412		return LSM_RET_DEFAULT(inode_getsecurity);
2413	/*
2414	 * Only one module will provide an attribute with a given name.
2415	 */
2416	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
2417		rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer,
2418						alloc);
2419		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
2420			return rc;
2421	}
2422	return LSM_RET_DEFAULT(inode_getsecurity);
2423}
2424
2425/**
2426 * security_inode_setsecurity() - Set the xattr security label of an inode
2427 * @inode: inode
2428 * @name: xattr name
2429 * @value: security label
2430 * @size: length of security label
2431 * @flags: flags
2432 *
2433 * Set the security label associated with @name for @inode from the extended
2434 * attribute value @value.  @size indicates the size of the @value in bytes.
2435 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2436 * remainder of the attribute name after the security. prefix has been removed.
2437 *
2438 * Return: Returns 0 on success.
2439 */
2440int security_inode_setsecurity(struct inode *inode, const char *name,
2441			       const void *value, size_t size, int flags)
2442{
2443	struct security_hook_list *hp;
2444	int rc;
2445
2446	if (unlikely(IS_PRIVATE(inode)))
2447		return LSM_RET_DEFAULT(inode_setsecurity);
2448	/*
2449	 * Only one module will provide an attribute with a given name.
2450	 */
2451	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
2452		rc = hp->hook.inode_setsecurity(inode, name, value, size,
2453						flags);
2454		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
2455			return rc;
2456	}
2457	return LSM_RET_DEFAULT(inode_setsecurity);
2458}
2459
2460/**
2461 * security_inode_listsecurity() - List the xattr security label names
2462 * @inode: inode
2463 * @buffer: buffer
2464 * @buffer_size: size of buffer
2465 *
2466 * Copy the extended attribute names for the security labels associated with
2467 * @inode into @buffer.  The maximum size of @buffer is specified by
2468 * @buffer_size.  @buffer may be NULL to request the size of the buffer
2469 * required.
2470 *
2471 * Return: Returns number of bytes used/required on success.
2472 */
2473int security_inode_listsecurity(struct inode *inode,
2474				char *buffer, size_t buffer_size)
2475{
2476	if (unlikely(IS_PRIVATE(inode)))
2477		return 0;
2478	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
2479}
2480EXPORT_SYMBOL(security_inode_listsecurity);
2481
2482/**
2483 * security_inode_getsecid() - Get an inode's secid
2484 * @inode: inode
2485 * @secid: secid to return
2486 *
2487 * Get the secid associated with the node.  In case of failure, @secid will be
2488 * set to zero.
2489 */
2490void security_inode_getsecid(struct inode *inode, u32 *secid)
2491{
2492	call_void_hook(inode_getsecid, inode, secid);
2493}
2494
2495/**
2496 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2497 * @src: union dentry of copy-up file
2498 * @new: newly created creds
2499 *
2500 * A file is about to be copied up from lower layer to upper layer of overlay
2501 * filesystem. Security module can prepare a set of new creds and modify as
2502 * need be and return new creds. Caller will switch to new creds temporarily to
2503 * create new file and release newly allocated creds.
2504 *
2505 * Return: Returns 0 on success or a negative error code on error.
2506 */
2507int security_inode_copy_up(struct dentry *src, struct cred **new)
2508{
2509	return call_int_hook(inode_copy_up, 0, src, new);
2510}
2511EXPORT_SYMBOL(security_inode_copy_up);
2512
2513/**
2514 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2515 * @name: xattr name
2516 *
2517 * Filter the xattrs being copied up when a unioned file is copied up from a
2518 * lower layer to the union/overlay layer.   The caller is responsible for
2519 * reading and writing the xattrs, this hook is merely a filter.
2520 *
2521 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP
2522 *         if the security module does not know about attribute, or a negative
2523 *         error code to abort the copy up.
2524 */
2525int security_inode_copy_up_xattr(const char *name)
2526{
2527	struct security_hook_list *hp;
2528	int rc;
2529
2530	/*
2531	 * The implementation can return 0 (accept the xattr), 1 (discard the
2532	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
2533	 * any other error code in case of an error.
2534	 */
2535	hlist_for_each_entry(hp,
2536			     &security_hook_heads.inode_copy_up_xattr, list) {
2537		rc = hp->hook.inode_copy_up_xattr(name);
2538		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2539			return rc;
2540	}
2541
2542	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2543}
2544EXPORT_SYMBOL(security_inode_copy_up_xattr);
2545
2546/**
2547 * security_kernfs_init_security() - Init LSM context for a kernfs node
2548 * @kn_dir: parent kernfs node
2549 * @kn: the kernfs node to initialize
2550 *
2551 * Initialize the security context of a newly created kernfs node based on its
2552 * own and its parent's attributes.
2553 *
2554 * Return: Returns 0 if permission is granted.
2555 */
2556int security_kernfs_init_security(struct kernfs_node *kn_dir,
2557				  struct kernfs_node *kn)
2558{
2559	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
2560}
2561
2562/**
2563 * security_file_permission() - Check file permissions
2564 * @file: file
2565 * @mask: requested permissions
2566 *
2567 * Check file permissions before accessing an open file.  This hook is called
2568 * by various operations that read or write files.  A security module can use
2569 * this hook to perform additional checking on these operations, e.g. to
2570 * revalidate permissions on use to support privilege bracketing or policy
2571 * changes.  Notice that this hook is used when the actual read/write
2572 * operations are performed, whereas the inode_security_ops hook is called when
2573 * a file is opened (as well as many other operations).  Although this hook can
2574 * be used to revalidate permissions for various system call operations that
2575 * read or write files, it does not address the revalidation of permissions for
2576 * memory-mapped files.  Security modules must handle this separately if they
2577 * need such revalidation.
2578 *
2579 * Return: Returns 0 if permission is granted.
2580 */
2581int security_file_permission(struct file *file, int mask)
2582{
2583	int ret;
2584
2585	ret = call_int_hook(file_permission, 0, file, mask);
2586	if (ret)
2587		return ret;
2588
2589	return fsnotify_perm(file, mask);
2590}
2591
2592/**
2593 * security_file_alloc() - Allocate and init a file's LSM blob
2594 * @file: the file
2595 *
2596 * Allocate and attach a security structure to the file->f_security field.  The
2597 * security field is initialized to NULL when the structure is first created.
2598 *
2599 * Return: Return 0 if the hook is successful and permission is granted.
2600 */
2601int security_file_alloc(struct file *file)
2602{
2603	int rc = lsm_file_alloc(file);
2604
2605	if (rc)
2606		return rc;
2607	rc = call_int_hook(file_alloc_security, 0, file);
2608	if (unlikely(rc))
2609		security_file_free(file);
2610	return rc;
2611}
2612
2613/**
2614 * security_file_free() - Free a file's LSM blob
2615 * @file: the file
2616 *
2617 * Deallocate and free any security structures stored in file->f_security.
2618 */
2619void security_file_free(struct file *file)
2620{
2621	void *blob;
2622
2623	call_void_hook(file_free_security, file);
2624
2625	blob = file->f_security;
2626	if (blob) {
2627		file->f_security = NULL;
2628		kmem_cache_free(lsm_file_cache, blob);
2629	}
2630}
2631
2632/**
2633 * security_file_ioctl() - Check if an ioctl is allowed
2634 * @file: associated file
2635 * @cmd: ioctl cmd
2636 * @arg: ioctl arguments
2637 *
2638 * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2639 * represents a user space pointer; in other cases, it may be a simple integer
2640 * value.  When @arg represents a user space pointer, it should never be used
2641 * by the security module.
2642 *
2643 * Return: Returns 0 if permission is granted.
2644 */
2645int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2646{
2647	return call_int_hook(file_ioctl, 0, file, cmd, arg);
2648}
2649EXPORT_SYMBOL_GPL(security_file_ioctl);
2650
2651/**
2652 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2653 * @file: associated file
2654 * @cmd: ioctl cmd
2655 * @arg: ioctl arguments
2656 *
2657 * Compat version of security_file_ioctl() that correctly handles 32-bit
2658 * processes running on 64-bit kernels.
2659 *
2660 * Return: Returns 0 if permission is granted.
2661 */
2662int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2663			       unsigned long arg)
2664{
2665	return call_int_hook(file_ioctl_compat, 0, file, cmd, arg);
2666}
2667EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2668
2669static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2670{
2671	/*
2672	 * Does we have PROT_READ and does the application expect
2673	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2674	 */
2675	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2676		return prot;
2677	if (!(current->personality & READ_IMPLIES_EXEC))
2678		return prot;
2679	/*
2680	 * if that's an anonymous mapping, let it.
2681	 */
2682	if (!file)
2683		return prot | PROT_EXEC;
2684	/*
2685	 * ditto if it's not on noexec mount, except that on !MMU we need
2686	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2687	 */
2688	if (!path_noexec(&file->f_path)) {
2689#ifndef CONFIG_MMU
2690		if (file->f_op->mmap_capabilities) {
2691			unsigned caps = file->f_op->mmap_capabilities(file);
2692			if (!(caps & NOMMU_MAP_EXEC))
2693				return prot;
2694		}
2695#endif
2696		return prot | PROT_EXEC;
2697	}
2698	/* anything on noexec mount won't get PROT_EXEC */
2699	return prot;
2700}
2701
2702/**
2703 * security_mmap_file() - Check if mmap'ing a file is allowed
2704 * @file: file
2705 * @prot: protection applied by the kernel
2706 * @flags: flags
2707 *
2708 * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2709 * mapping anonymous memory.
2710 *
2711 * Return: Returns 0 if permission is granted.
2712 */
2713int security_mmap_file(struct file *file, unsigned long prot,
2714		       unsigned long flags)
2715{
2716	unsigned long prot_adj = mmap_prot(file, prot);
2717	int ret;
2718
2719	ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
2720	if (ret)
2721		return ret;
2722	return ima_file_mmap(file, prot, prot_adj, flags);
2723}
2724
2725/**
2726 * security_mmap_addr() - Check if mmap'ing an address is allowed
2727 * @addr: address
2728 *
2729 * Check permissions for a mmap operation at @addr.
2730 *
2731 * Return: Returns 0 if permission is granted.
2732 */
2733int security_mmap_addr(unsigned long addr)
2734{
2735	return call_int_hook(mmap_addr, 0, addr);
2736}
2737
2738/**
2739 * security_file_mprotect() - Check if changing memory protections is allowed
2740 * @vma: memory region
2741 * @reqprot: application requested protection
2742 * @prot: protection applied by the kernel
2743 *
2744 * Check permissions before changing memory access permissions.
2745 *
2746 * Return: Returns 0 if permission is granted.
2747 */
2748int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2749			   unsigned long prot)
2750{
2751	int ret;
2752
2753	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
2754	if (ret)
2755		return ret;
2756	return ima_file_mprotect(vma, prot);
2757}
2758
2759/**
2760 * security_file_lock() - Check if a file lock is allowed
2761 * @file: file
2762 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2763 *
2764 * Check permission before performing file locking operations.  Note the hook
2765 * mediates both flock and fcntl style locks.
2766 *
2767 * Return: Returns 0 if permission is granted.
2768 */
2769int security_file_lock(struct file *file, unsigned int cmd)
2770{
2771	return call_int_hook(file_lock, 0, file, cmd);
2772}
2773
2774/**
2775 * security_file_fcntl() - Check if fcntl() op is allowed
2776 * @file: file
2777 * @cmd: fcntl command
2778 * @arg: command argument
2779 *
2780 * Check permission before allowing the file operation specified by @cmd from
2781 * being performed on the file @file.  Note that @arg sometimes represents a
2782 * user space pointer; in other cases, it may be a simple integer value.  When
2783 * @arg represents a user space pointer, it should never be used by the
2784 * security module.
2785 *
2786 * Return: Returns 0 if permission is granted.
2787 */
2788int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2789{
2790	return call_int_hook(file_fcntl, 0, file, cmd, arg);
2791}
2792
2793/**
2794 * security_file_set_fowner() - Set the file owner info in the LSM blob
2795 * @file: the file
2796 *
2797 * Save owner security information (typically from current->security) in
2798 * file->f_security for later use by the send_sigiotask hook.
2799 *
2800 * Return: Returns 0 on success.
2801 */
2802void security_file_set_fowner(struct file *file)
2803{
2804	call_void_hook(file_set_fowner, file);
2805}
2806
2807/**
2808 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2809 * @tsk: target task
2810 * @fown: signal sender
2811 * @sig: signal to be sent, SIGIO is sent if 0
2812 *
2813 * Check permission for the file owner @fown to send SIGIO or SIGURG to the
2814 * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
2815 * that the fown_struct, @fown, is never outside the context of a struct file,
2816 * so the file structure (and associated security information) can always be
2817 * obtained: container_of(fown, struct file, f_owner).
2818 *
2819 * Return: Returns 0 if permission is granted.
2820 */
2821int security_file_send_sigiotask(struct task_struct *tsk,
2822				 struct fown_struct *fown, int sig)
2823{
2824	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
2825}
2826
2827/**
2828 * security_file_receive() - Check is receiving a file via IPC is allowed
2829 * @file: file being received
2830 *
2831 * This hook allows security modules to control the ability of a process to
2832 * receive an open file descriptor via socket IPC.
2833 *
2834 * Return: Returns 0 if permission is granted.
2835 */
2836int security_file_receive(struct file *file)
2837{
2838	return call_int_hook(file_receive, 0, file);
2839}
2840
2841/**
2842 * security_file_open() - Save open() time state for late use by the LSM
2843 * @file:
2844 *
2845 * Save open-time permission checking state for later use upon file_permission,
2846 * and recheck access if anything has changed since inode_permission.
2847 *
2848 * Return: Returns 0 if permission is granted.
2849 */
2850int security_file_open(struct file *file)
2851{
2852	int ret;
2853
2854	ret = call_int_hook(file_open, 0, file);
2855	if (ret)
2856		return ret;
2857
2858	return fsnotify_perm(file, MAY_OPEN);
2859}
2860
2861/**
2862 * security_file_truncate() - Check if truncating a file is allowed
2863 * @file: file
2864 *
2865 * Check permission before truncating a file, i.e. using ftruncate.  Note that
2866 * truncation permission may also be checked based on the path, using the
2867 * @path_truncate hook.
2868 *
2869 * Return: Returns 0 if permission is granted.
2870 */
2871int security_file_truncate(struct file *file)
2872{
2873	return call_int_hook(file_truncate, 0, file);
2874}
2875
2876/**
2877 * security_task_alloc() - Allocate a task's LSM blob
2878 * @task: the task
2879 * @clone_flags: flags indicating what is being shared
2880 *
2881 * Handle allocation of task-related resources.
2882 *
2883 * Return: Returns a zero on success, negative values on failure.
2884 */
2885int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
2886{
2887	int rc = lsm_task_alloc(task);
2888
2889	if (rc)
2890		return rc;
2891	rc = call_int_hook(task_alloc, 0, task, clone_flags);
2892	if (unlikely(rc))
2893		security_task_free(task);
2894	return rc;
2895}
2896
2897/**
2898 * security_task_free() - Free a task's LSM blob and related resources
2899 * @task: task
2900 *
2901 * Handle release of task-related resources.  Note that this can be called from
2902 * interrupt context.
2903 */
2904void security_task_free(struct task_struct *task)
2905{
2906	call_void_hook(task_free, task);
2907
2908	kfree(task->security);
2909	task->security = NULL;
2910}
2911
2912/**
2913 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
2914 * @cred: credentials
2915 * @gfp: gfp flags
2916 *
2917 * Only allocate sufficient memory and attach to @cred such that
2918 * cred_transfer() will not get ENOMEM.
2919 *
2920 * Return: Returns 0 on success, negative values on failure.
2921 */
2922int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
2923{
2924	int rc = lsm_cred_alloc(cred, gfp);
2925
2926	if (rc)
2927		return rc;
2928
2929	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
2930	if (unlikely(rc))
2931		security_cred_free(cred);
2932	return rc;
2933}
2934
2935/**
2936 * security_cred_free() - Free the cred's LSM blob and associated resources
2937 * @cred: credentials
2938 *
2939 * Deallocate and clear the cred->security field in a set of credentials.
2940 */
2941void security_cred_free(struct cred *cred)
2942{
2943	/*
2944	 * There is a failure case in prepare_creds() that
2945	 * may result in a call here with ->security being NULL.
2946	 */
2947	if (unlikely(cred->security == NULL))
2948		return;
2949
2950	call_void_hook(cred_free, cred);
2951
2952	kfree(cred->security);
2953	cred->security = NULL;
2954}
2955
2956/**
2957 * security_prepare_creds() - Prepare a new set of credentials
2958 * @new: new credentials
2959 * @old: original credentials
2960 * @gfp: gfp flags
2961 *
2962 * Prepare a new set of credentials by copying the data from the old set.
2963 *
2964 * Return: Returns 0 on success, negative values on failure.
2965 */
2966int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
2967{
2968	int rc = lsm_cred_alloc(new, gfp);
2969
2970	if (rc)
2971		return rc;
2972
2973	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
2974	if (unlikely(rc))
2975		security_cred_free(new);
2976	return rc;
2977}
2978
2979/**
2980 * security_transfer_creds() - Transfer creds
2981 * @new: target credentials
2982 * @old: original credentials
2983 *
2984 * Transfer data from original creds to new creds.
2985 */
2986void security_transfer_creds(struct cred *new, const struct cred *old)
2987{
2988	call_void_hook(cred_transfer, new, old);
2989}
2990
2991/**
2992 * security_cred_getsecid() - Get the secid from a set of credentials
2993 * @c: credentials
2994 * @secid: secid value
2995 *
2996 * Retrieve the security identifier of the cred structure @c.  In case of
2997 * failure, @secid will be set to zero.
2998 */
2999void security_cred_getsecid(const struct cred *c, u32 *secid)
3000{
3001	*secid = 0;
3002	call_void_hook(cred_getsecid, c, secid);
3003}
3004EXPORT_SYMBOL(security_cred_getsecid);
3005
3006/**
3007 * security_kernel_act_as() - Set the kernel credentials to act as secid
3008 * @new: credentials
3009 * @secid: secid
3010 *
3011 * Set the credentials for a kernel service to act as (subjective context).
3012 * The current task must be the one that nominated @secid.
3013 *
3014 * Return: Returns 0 if successful.
3015 */
3016int security_kernel_act_as(struct cred *new, u32 secid)
3017{
3018	return call_int_hook(kernel_act_as, 0, new, secid);
3019}
3020
3021/**
3022 * security_kernel_create_files_as() - Set file creation context using an inode
3023 * @new: target credentials
3024 * @inode: reference inode
3025 *
3026 * Set the file creation context in a set of credentials to be the same as the
3027 * objective context of the specified inode.  The current task must be the one
3028 * that nominated @inode.
3029 *
3030 * Return: Returns 0 if successful.
3031 */
3032int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3033{
3034	return call_int_hook(kernel_create_files_as, 0, new, inode);
3035}
3036
3037/**
3038 * security_kernel_module_request() - Check is loading a module is allowed
3039 * @kmod_name: module name
3040 *
3041 * Ability to trigger the kernel to automatically upcall to userspace for
3042 * userspace to load a kernel module with the given name.
3043 *
3044 * Return: Returns 0 if successful.
3045 */
3046int security_kernel_module_request(char *kmod_name)
3047{
3048	int ret;
3049
3050	ret = call_int_hook(kernel_module_request, 0, kmod_name);
3051	if (ret)
3052		return ret;
3053	return integrity_kernel_module_request(kmod_name);
3054}
3055
3056/**
3057 * security_kernel_read_file() - Read a file specified by userspace
3058 * @file: file
3059 * @id: file identifier
3060 * @contents: trust if security_kernel_post_read_file() will be called
3061 *
3062 * Read a file specified by userspace.
3063 *
3064 * Return: Returns 0 if permission is granted.
3065 */
3066int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3067			      bool contents)
3068{
3069	int ret;
3070
3071	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
3072	if (ret)
3073		return ret;
3074	return ima_read_file(file, id, contents);
3075}
3076EXPORT_SYMBOL_GPL(security_kernel_read_file);
3077
3078/**
3079 * security_kernel_post_read_file() - Read a file specified by userspace
3080 * @file: file
3081 * @buf: file contents
3082 * @size: size of file contents
3083 * @id: file identifier
3084 *
3085 * Read a file specified by userspace.  This must be paired with a prior call
3086 * to security_kernel_read_file() call that indicated this hook would also be
3087 * called, see security_kernel_read_file() for more information.
3088 *
3089 * Return: Returns 0 if permission is granted.
3090 */
3091int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3092				   enum kernel_read_file_id id)
3093{
3094	int ret;
3095
3096	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
3097	if (ret)
3098		return ret;
3099	return ima_post_read_file(file, buf, size, id);
3100}
3101EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3102
3103/**
3104 * security_kernel_load_data() - Load data provided by userspace
3105 * @id: data identifier
3106 * @contents: true if security_kernel_post_load_data() will be called
3107 *
3108 * Load data provided by userspace.
3109 *
3110 * Return: Returns 0 if permission is granted.
3111 */
3112int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3113{
3114	int ret;
3115
3116	ret = call_int_hook(kernel_load_data, 0, id, contents);
3117	if (ret)
3118		return ret;
3119	return ima_load_data(id, contents);
3120}
3121EXPORT_SYMBOL_GPL(security_kernel_load_data);
3122
3123/**
3124 * security_kernel_post_load_data() - Load userspace data from a non-file source
3125 * @buf: data
3126 * @size: size of data
3127 * @id: data identifier
3128 * @description: text description of data, specific to the id value
3129 *
3130 * Load data provided by a non-file source (usually userspace buffer).  This
3131 * must be paired with a prior security_kernel_load_data() call that indicated
3132 * this hook would also be called, see security_kernel_load_data() for more
3133 * information.
3134 *
3135 * Return: Returns 0 if permission is granted.
3136 */
3137int security_kernel_post_load_data(char *buf, loff_t size,
3138				   enum kernel_load_data_id id,
3139				   char *description)
3140{
3141	int ret;
3142
3143	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
3144			    description);
3145	if (ret)
3146		return ret;
3147	return ima_post_load_data(buf, size, id, description);
3148}
3149EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3150
3151/**
3152 * security_task_fix_setuid() - Update LSM with new user id attributes
3153 * @new: updated credentials
3154 * @old: credentials being replaced
3155 * @flags: LSM_SETID_* flag values
3156 *
3157 * Update the module's state after setting one or more of the user identity
3158 * attributes of the current process.  The @flags parameter indicates which of
3159 * the set*uid system calls invoked this hook.  If @new is the set of
3160 * credentials that will be installed.  Modifications should be made to this
3161 * rather than to @current->cred.
3162 *
3163 * Return: Returns 0 on success.
3164 */
3165int security_task_fix_setuid(struct cred *new, const struct cred *old,
3166			     int flags)
3167{
3168	return call_int_hook(task_fix_setuid, 0, new, old, flags);
3169}
3170
3171/**
3172 * security_task_fix_setgid() - Update LSM with new group id attributes
3173 * @new: updated credentials
3174 * @old: credentials being replaced
3175 * @flags: LSM_SETID_* flag value
3176 *
3177 * Update the module's state after setting one or more of the group identity
3178 * attributes of the current process.  The @flags parameter indicates which of
3179 * the set*gid system calls invoked this hook.  @new is the set of credentials
3180 * that will be installed.  Modifications should be made to this rather than to
3181 * @current->cred.
3182 *
3183 * Return: Returns 0 on success.
3184 */
3185int security_task_fix_setgid(struct cred *new, const struct cred *old,
3186			     int flags)
3187{
3188	return call_int_hook(task_fix_setgid, 0, new, old, flags);
3189}
3190
3191/**
3192 * security_task_fix_setgroups() - Update LSM with new supplementary groups
3193 * @new: updated credentials
3194 * @old: credentials being replaced
3195 *
3196 * Update the module's state after setting the supplementary group identity
3197 * attributes of the current process.  @new is the set of credentials that will
3198 * be installed.  Modifications should be made to this rather than to
3199 * @current->cred.
3200 *
3201 * Return: Returns 0 on success.
3202 */
3203int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3204{
3205	return call_int_hook(task_fix_setgroups, 0, new, old);
3206}
3207
3208/**
3209 * security_task_setpgid() - Check if setting the pgid is allowed
3210 * @p: task being modified
3211 * @pgid: new pgid
3212 *
3213 * Check permission before setting the process group identifier of the process
3214 * @p to @pgid.
3215 *
3216 * Return: Returns 0 if permission is granted.
3217 */
3218int security_task_setpgid(struct task_struct *p, pid_t pgid)
3219{
3220	return call_int_hook(task_setpgid, 0, p, pgid);
3221}
3222
3223/**
3224 * security_task_getpgid() - Check if getting the pgid is allowed
3225 * @p: task
3226 *
3227 * Check permission before getting the process group identifier of the process
3228 * @p.
3229 *
3230 * Return: Returns 0 if permission is granted.
3231 */
3232int security_task_getpgid(struct task_struct *p)
3233{
3234	return call_int_hook(task_getpgid, 0, p);
3235}
3236
3237/**
3238 * security_task_getsid() - Check if getting the session id is allowed
3239 * @p: task
3240 *
3241 * Check permission before getting the session identifier of the process @p.
3242 *
3243 * Return: Returns 0 if permission is granted.
3244 */
3245int security_task_getsid(struct task_struct *p)
3246{
3247	return call_int_hook(task_getsid, 0, p);
3248}
3249
3250/**
3251 * security_current_getsecid_subj() - Get the current task's subjective secid
3252 * @secid: secid value
3253 *
3254 * Retrieve the subjective security identifier of the current task and return
3255 * it in @secid.  In case of failure, @secid will be set to zero.
3256 */
3257void security_current_getsecid_subj(u32 *secid)
3258{
3259	*secid = 0;
3260	call_void_hook(current_getsecid_subj, secid);
3261}
3262EXPORT_SYMBOL(security_current_getsecid_subj);
3263
3264/**
3265 * security_task_getsecid_obj() - Get a task's objective secid
3266 * @p: target task
3267 * @secid: secid value
3268 *
3269 * Retrieve the objective security identifier of the task_struct in @p and
3270 * return it in @secid. In case of failure, @secid will be set to zero.
3271 */
3272void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3273{
3274	*secid = 0;
3275	call_void_hook(task_getsecid_obj, p, secid);
3276}
3277EXPORT_SYMBOL(security_task_getsecid_obj);
3278
3279/**
3280 * security_task_setnice() - Check if setting a task's nice value is allowed
3281 * @p: target task
3282 * @nice: nice value
3283 *
3284 * Check permission before setting the nice value of @p to @nice.
3285 *
3286 * Return: Returns 0 if permission is granted.
3287 */
3288int security_task_setnice(struct task_struct *p, int nice)
3289{
3290	return call_int_hook(task_setnice, 0, p, nice);
3291}
3292
3293/**
3294 * security_task_setioprio() - Check if setting a task's ioprio is allowed
3295 * @p: target task
3296 * @ioprio: ioprio value
3297 *
3298 * Check permission before setting the ioprio value of @p to @ioprio.
3299 *
3300 * Return: Returns 0 if permission is granted.
3301 */
3302int security_task_setioprio(struct task_struct *p, int ioprio)
3303{
3304	return call_int_hook(task_setioprio, 0, p, ioprio);
3305}
3306
3307/**
3308 * security_task_getioprio() - Check if getting a task's ioprio is allowed
3309 * @p: task
3310 *
3311 * Check permission before getting the ioprio value of @p.
3312 *
3313 * Return: Returns 0 if permission is granted.
3314 */
3315int security_task_getioprio(struct task_struct *p)
3316{
3317	return call_int_hook(task_getioprio, 0, p);
3318}
3319
3320/**
3321 * security_task_prlimit() - Check if get/setting resources limits is allowed
3322 * @cred: current task credentials
3323 * @tcred: target task credentials
3324 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3325 *
3326 * Check permission before getting and/or setting the resource limits of
3327 * another task.
3328 *
3329 * Return: Returns 0 if permission is granted.
3330 */
3331int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3332			  unsigned int flags)
3333{
3334	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
3335}
3336
3337/**
3338 * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3339 * @p: target task's group leader
3340 * @resource: resource whose limit is being set
3341 * @new_rlim: new resource limit
3342 *
3343 * Check permission before setting the resource limits of process @p for
3344 * @resource to @new_rlim.  The old resource limit values can be examined by
3345 * dereferencing (p->signal->rlim + resource).
3346 *
3347 * Return: Returns 0 if permission is granted.
3348 */
3349int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3350			    struct rlimit *new_rlim)
3351{
3352	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
3353}
3354
3355/**
3356 * security_task_setscheduler() - Check if setting sched policy/param is allowed
3357 * @p: target task
3358 *
3359 * Check permission before setting scheduling policy and/or parameters of
3360 * process @p.
3361 *
3362 * Return: Returns 0 if permission is granted.
3363 */
3364int security_task_setscheduler(struct task_struct *p)
3365{
3366	return call_int_hook(task_setscheduler, 0, p);
3367}
3368
3369/**
3370 * security_task_getscheduler() - Check if getting scheduling info is allowed
3371 * @p: target task
3372 *
3373 * Check permission before obtaining scheduling information for process @p.
3374 *
3375 * Return: Returns 0 if permission is granted.
3376 */
3377int security_task_getscheduler(struct task_struct *p)
3378{
3379	return call_int_hook(task_getscheduler, 0, p);
3380}
3381
3382/**
3383 * security_task_movememory() - Check if moving memory is allowed
3384 * @p: task
3385 *
3386 * Check permission before moving memory owned by process @p.
3387 *
3388 * Return: Returns 0 if permission is granted.
3389 */
3390int security_task_movememory(struct task_struct *p)
3391{
3392	return call_int_hook(task_movememory, 0, p);
3393}
3394
3395/**
3396 * security_task_kill() - Check if sending a signal is allowed
3397 * @p: target process
3398 * @info: signal information
3399 * @sig: signal value
3400 * @cred: credentials of the signal sender, NULL if @current
3401 *
3402 * Check permission before sending signal @sig to @p.  @info can be NULL, the
3403 * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3404 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3405 * the kernel and should typically be permitted.  SIGIO signals are handled
3406 * separately by the send_sigiotask hook in file_security_ops.
3407 *
3408 * Return: Returns 0 if permission is granted.
3409 */
3410int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3411		       int sig, const struct cred *cred)
3412{
3413	return call_int_hook(task_kill, 0, p, info, sig, cred);
3414}
3415
3416/**
3417 * security_task_prctl() - Check if a prctl op is allowed
3418 * @option: operation
3419 * @arg2: argument
3420 * @arg3: argument
3421 * @arg4: argument
3422 * @arg5: argument
3423 *
3424 * Check permission before performing a process control operation on the
3425 * current process.
3426 *
3427 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3428 *         to cause prctl() to return immediately with that value.
3429 */
3430int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3431			unsigned long arg4, unsigned long arg5)
3432{
3433	int thisrc;
3434	int rc = LSM_RET_DEFAULT(task_prctl);
3435	struct security_hook_list *hp;
3436
3437	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3438		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3439		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3440			rc = thisrc;
3441			if (thisrc != 0)
3442				break;
3443		}
3444	}
3445	return rc;
3446}
3447
3448/**
3449 * security_task_to_inode() - Set the security attributes of a task's inode
3450 * @p: task
3451 * @inode: inode
3452 *
3453 * Set the security attributes for an inode based on an associated task's
3454 * security attributes, e.g. for /proc/pid inodes.
3455 */
3456void security_task_to_inode(struct task_struct *p, struct inode *inode)
3457{
3458	call_void_hook(task_to_inode, p, inode);
3459}
3460
3461/**
3462 * security_create_user_ns() - Check if creating a new userns is allowed
3463 * @cred: prepared creds
3464 *
3465 * Check permission prior to creating a new user namespace.
3466 *
3467 * Return: Returns 0 if successful, otherwise < 0 error code.
3468 */
3469int security_create_user_ns(const struct cred *cred)
3470{
3471	return call_int_hook(userns_create, 0, cred);
3472}
3473
3474/**
3475 * security_ipc_permission() - Check if sysv ipc access is allowed
3476 * @ipcp: ipc permission structure
3477 * @flag: requested permissions
3478 *
3479 * Check permissions for access to IPC.
3480 *
3481 * Return: Returns 0 if permission is granted.
3482 */
3483int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3484{
3485	return call_int_hook(ipc_permission, 0, ipcp, flag);
3486}
3487
3488/**
3489 * security_ipc_getsecid() - Get the sysv ipc object's secid
3490 * @ipcp: ipc permission structure
3491 * @secid: secid pointer
3492 *
3493 * Get the secid associated with the ipc object.  In case of failure, @secid
3494 * will be set to zero.
3495 */
3496void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3497{
3498	*secid = 0;
3499	call_void_hook(ipc_getsecid, ipcp, secid);
3500}
3501
3502/**
3503 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3504 * @msg: message structure
3505 *
3506 * Allocate and attach a security structure to the msg->security field.  The
3507 * security field is initialized to NULL when the structure is first created.
3508 *
3509 * Return: Return 0 if operation was successful and permission is granted.
3510 */
3511int security_msg_msg_alloc(struct msg_msg *msg)
3512{
3513	int rc = lsm_msg_msg_alloc(msg);
3514
3515	if (unlikely(rc))
3516		return rc;
3517	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
3518	if (unlikely(rc))
3519		security_msg_msg_free(msg);
3520	return rc;
3521}
3522
3523/**
3524 * security_msg_msg_free() - Free a sysv ipc message LSM blob
3525 * @msg: message structure
3526 *
3527 * Deallocate the security structure for this message.
3528 */
3529void security_msg_msg_free(struct msg_msg *msg)
3530{
3531	call_void_hook(msg_msg_free_security, msg);
3532	kfree(msg->security);
3533	msg->security = NULL;
3534}
3535
3536/**
3537 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3538 * @msq: sysv ipc permission structure
3539 *
3540 * Allocate and attach a security structure to @msg. The security field is
3541 * initialized to NULL when the structure is first created.
3542 *
3543 * Return: Returns 0 if operation was successful and permission is granted.
3544 */
3545int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3546{
3547	int rc = lsm_ipc_alloc(msq);
3548
3549	if (unlikely(rc))
3550		return rc;
3551	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
3552	if (unlikely(rc))
3553		security_msg_queue_free(msq);
3554	return rc;
3555}
3556
3557/**
3558 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3559 * @msq: sysv ipc permission structure
3560 *
3561 * Deallocate security field @perm->security for the message queue.
3562 */
3563void security_msg_queue_free(struct kern_ipc_perm *msq)
3564{
3565	call_void_hook(msg_queue_free_security, msq);
3566	kfree(msq->security);
3567	msq->security = NULL;
3568}
3569
3570/**
3571 * security_msg_queue_associate() - Check if a msg queue operation is allowed
3572 * @msq: sysv ipc permission structure
3573 * @msqflg: operation flags
3574 *
3575 * Check permission when a message queue is requested through the msgget system
3576 * call. This hook is only called when returning the message queue identifier
3577 * for an existing message queue, not when a new message queue is created.
3578 *
3579 * Return: Return 0 if permission is granted.
3580 */
3581int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3582{
3583	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
3584}
3585
3586/**
3587 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3588 * @msq: sysv ipc permission structure
3589 * @cmd: operation
3590 *
3591 * Check permission when a message control operation specified by @cmd is to be
3592 * performed on the message queue with permissions.
3593 *
3594 * Return: Returns 0 if permission is granted.
3595 */
3596int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3597{
3598	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
3599}
3600
3601/**
3602 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3603 * @msq: sysv ipc permission structure
3604 * @msg: message
3605 * @msqflg: operation flags
3606 *
3607 * Check permission before a message, @msg, is enqueued on the message queue
3608 * with permissions specified in @msq.
3609 *
3610 * Return: Returns 0 if permission is granted.
3611 */
3612int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3613			      struct msg_msg *msg, int msqflg)
3614{
3615	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
3616}
3617
3618/**
3619 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3620 * @msq: sysv ipc permission structure
3621 * @msg: message
3622 * @target: target task
3623 * @type: type of message requested
3624 * @mode: operation flags
3625 *
3626 * Check permission before a message, @msg, is removed from the message	queue.
3627 * The @target task structure contains a pointer to the process that will be
3628 * receiving the message (not equal to the current process when inline receives
3629 * are being performed).
3630 *
3631 * Return: Returns 0 if permission is granted.
3632 */
3633int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3634			      struct task_struct *target, long type, int mode)
3635{
3636	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
3637}
3638
3639/**
3640 * security_shm_alloc() - Allocate a sysv shm LSM blob
3641 * @shp: sysv ipc permission structure
3642 *
3643 * Allocate and attach a security structure to the @shp security field.  The
3644 * security field is initialized to NULL when the structure is first created.
3645 *
3646 * Return: Returns 0 if operation was successful and permission is granted.
3647 */
3648int security_shm_alloc(struct kern_ipc_perm *shp)
3649{
3650	int rc = lsm_ipc_alloc(shp);
3651
3652	if (unlikely(rc))
3653		return rc;
3654	rc = call_int_hook(shm_alloc_security, 0, shp);
3655	if (unlikely(rc))
3656		security_shm_free(shp);
3657	return rc;
3658}
3659
3660/**
3661 * security_shm_free() - Free a sysv shm LSM blob
3662 * @shp: sysv ipc permission structure
3663 *
3664 * Deallocate the security structure @perm->security for the memory segment.
3665 */
3666void security_shm_free(struct kern_ipc_perm *shp)
3667{
3668	call_void_hook(shm_free_security, shp);
3669	kfree(shp->security);
3670	shp->security = NULL;
3671}
3672
3673/**
3674 * security_shm_associate() - Check if a sysv shm operation is allowed
3675 * @shp: sysv ipc permission structure
3676 * @shmflg: operation flags
3677 *
3678 * Check permission when a shared memory region is requested through the shmget
3679 * system call. This hook is only called when returning the shared memory
3680 * region identifier for an existing region, not when a new shared memory
3681 * region is created.
3682 *
3683 * Return: Returns 0 if permission is granted.
3684 */
3685int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3686{
3687	return call_int_hook(shm_associate, 0, shp, shmflg);
3688}
3689
3690/**
3691 * security_shm_shmctl() - Check if a sysv shm operation is allowed
3692 * @shp: sysv ipc permission structure
3693 * @cmd: operation
3694 *
3695 * Check permission when a shared memory control operation specified by @cmd is
3696 * to be performed on the shared memory region with permissions in @shp.
3697 *
3698 * Return: Return 0 if permission is granted.
3699 */
3700int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3701{
3702	return call_int_hook(shm_shmctl, 0, shp, cmd);
3703}
3704
3705/**
3706 * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3707 * @shp: sysv ipc permission structure
3708 * @shmaddr: address of memory region to attach
3709 * @shmflg: operation flags
3710 *
3711 * Check permissions prior to allowing the shmat system call to attach the
3712 * shared memory segment with permissions @shp to the data segment of the
3713 * calling process. The attaching address is specified by @shmaddr.
3714 *
3715 * Return: Returns 0 if permission is granted.
3716 */
3717int security_shm_shmat(struct kern_ipc_perm *shp,
3718		       char __user *shmaddr, int shmflg)
3719{
3720	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
3721}
3722
3723/**
3724 * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3725 * @sma: sysv ipc permission structure
3726 *
3727 * Allocate and attach a security structure to the @sma security field. The
3728 * security field is initialized to NULL when the structure is first created.
3729 *
3730 * Return: Returns 0 if operation was successful and permission is granted.
3731 */
3732int security_sem_alloc(struct kern_ipc_perm *sma)
3733{
3734	int rc = lsm_ipc_alloc(sma);
3735
3736	if (unlikely(rc))
3737		return rc;
3738	rc = call_int_hook(sem_alloc_security, 0, sma);
3739	if (unlikely(rc))
3740		security_sem_free(sma);
3741	return rc;
3742}
3743
3744/**
3745 * security_sem_free() - Free a sysv semaphore LSM blob
3746 * @sma: sysv ipc permission structure
3747 *
3748 * Deallocate security structure @sma->security for the semaphore.
3749 */
3750void security_sem_free(struct kern_ipc_perm *sma)
3751{
3752	call_void_hook(sem_free_security, sma);
3753	kfree(sma->security);
3754	sma->security = NULL;
3755}
3756
3757/**
3758 * security_sem_associate() - Check if a sysv semaphore operation is allowed
3759 * @sma: sysv ipc permission structure
3760 * @semflg: operation flags
3761 *
3762 * Check permission when a semaphore is requested through the semget system
3763 * call. This hook is only called when returning the semaphore identifier for
3764 * an existing semaphore, not when a new one must be created.
3765 *
3766 * Return: Returns 0 if permission is granted.
3767 */
3768int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3769{
3770	return call_int_hook(sem_associate, 0, sma, semflg);
3771}
3772
3773/**
3774 * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3775 * @sma: sysv ipc permission structure
3776 * @cmd: operation
3777 *
3778 * Check permission when a semaphore operation specified by @cmd is to be
3779 * performed on the semaphore.
3780 *
3781 * Return: Returns 0 if permission is granted.
3782 */
3783int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3784{
3785	return call_int_hook(sem_semctl, 0, sma, cmd);
3786}
3787
3788/**
3789 * security_sem_semop() - Check if a sysv semaphore operation is allowed
3790 * @sma: sysv ipc permission structure
3791 * @sops: operations to perform
3792 * @nsops: number of operations
3793 * @alter: flag indicating changes will be made
3794 *
3795 * Check permissions before performing operations on members of the semaphore
3796 * set. If the @alter flag is nonzero, the semaphore set may be modified.
3797 *
3798 * Return: Returns 0 if permission is granted.
3799 */
3800int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3801		       unsigned nsops, int alter)
3802{
3803	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
3804}
3805
3806/**
3807 * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3808 * @dentry: dentry
3809 * @inode: inode
3810 *
3811 * Fill in @inode security information for a @dentry if allowed.
3812 */
3813void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3814{
3815	if (unlikely(inode && IS_PRIVATE(inode)))
3816		return;
3817	call_void_hook(d_instantiate, dentry, inode);
3818}
3819EXPORT_SYMBOL(security_d_instantiate);
3820
3821/**
3822 * security_getprocattr() - Read an attribute for a task
3823 * @p: the task
3824 * @lsm: LSM name
3825 * @name: attribute name
3826 * @value: attribute value
3827 *
3828 * Read attribute @name for task @p and store it into @value if allowed.
3829 *
3830 * Return: Returns the length of @value on success, a negative value otherwise.
3831 */
3832int security_getprocattr(struct task_struct *p, const char *lsm,
3833			 const char *name, char **value)
3834{
3835	struct security_hook_list *hp;
3836
3837	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
3838		if (lsm != NULL && strcmp(lsm, hp->lsm))
3839			continue;
3840		return hp->hook.getprocattr(p, name, value);
3841	}
3842	return LSM_RET_DEFAULT(getprocattr);
3843}
3844
3845/**
3846 * security_setprocattr() - Set an attribute for a task
3847 * @lsm: LSM name
3848 * @name: attribute name
3849 * @value: attribute value
3850 * @size: attribute value size
3851 *
3852 * Write (set) the current task's attribute @name to @value, size @size if
3853 * allowed.
3854 *
3855 * Return: Returns bytes written on success, a negative value otherwise.
3856 */
3857int security_setprocattr(const char *lsm, const char *name, void *value,
3858			 size_t size)
3859{
3860	struct security_hook_list *hp;
3861
3862	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
3863		if (lsm != NULL && strcmp(lsm, hp->lsm))
3864			continue;
3865		return hp->hook.setprocattr(name, value, size);
3866	}
3867	return LSM_RET_DEFAULT(setprocattr);
3868}
3869
3870/**
3871 * security_netlink_send() - Save info and check if netlink sending is allowed
3872 * @sk: sending socket
3873 * @skb: netlink message
3874 *
3875 * Save security information for a netlink message so that permission checking
3876 * can be performed when the message is processed.  The security information
3877 * can be saved using the eff_cap field of the netlink_skb_parms structure.
3878 * Also may be used to provide fine grained control over message transmission.
3879 *
3880 * Return: Returns 0 if the information was successfully saved and message is
3881 *         allowed to be transmitted.
3882 */
3883int security_netlink_send(struct sock *sk, struct sk_buff *skb)
3884{
3885	return call_int_hook(netlink_send, 0, sk, skb);
3886}
3887
3888/**
3889 * security_ismaclabel() - Check is the named attribute is a MAC label
3890 * @name: full extended attribute name
3891 *
3892 * Check if the extended attribute specified by @name represents a MAC label.
3893 *
3894 * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
3895 */
3896int security_ismaclabel(const char *name)
3897{
3898	return call_int_hook(ismaclabel, 0, name);
3899}
3900EXPORT_SYMBOL(security_ismaclabel);
3901
3902/**
3903 * security_secid_to_secctx() - Convert a secid to a secctx
3904 * @secid: secid
3905 * @secdata: secctx
3906 * @seclen: secctx length
3907 *
3908 * Convert secid to security context.  If @secdata is NULL the length of the
3909 * result will be returned in @seclen, but no @secdata will be returned.  This
3910 * does mean that the length could change between calls to check the length and
3911 * the next call which actually allocates and returns the @secdata.
3912 *
3913 * Return: Return 0 on success, error on failure.
3914 */
3915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
3916{
3917	struct security_hook_list *hp;
3918	int rc;
3919
3920	/*
3921	 * Currently, only one LSM can implement secid_to_secctx (i.e this
3922	 * LSM hook is not "stackable").
3923	 */
3924	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
3925		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
3926		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
3927			return rc;
3928	}
3929
3930	return LSM_RET_DEFAULT(secid_to_secctx);
3931}
3932EXPORT_SYMBOL(security_secid_to_secctx);
3933
3934/**
3935 * security_secctx_to_secid() - Convert a secctx to a secid
3936 * @secdata: secctx
3937 * @seclen: length of secctx
3938 * @secid: secid
3939 *
3940 * Convert security context to secid.
3941 *
3942 * Return: Returns 0 on success, error on failure.
3943 */
3944int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
3945{
3946	*secid = 0;
3947	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
3948}
3949EXPORT_SYMBOL(security_secctx_to_secid);
3950
3951/**
3952 * security_release_secctx() - Free a secctx buffer
3953 * @secdata: secctx
3954 * @seclen: length of secctx
3955 *
3956 * Release the security context.
3957 */
3958void security_release_secctx(char *secdata, u32 seclen)
3959{
3960	call_void_hook(release_secctx, secdata, seclen);
3961}
3962EXPORT_SYMBOL(security_release_secctx);
3963
3964/**
3965 * security_inode_invalidate_secctx() - Invalidate an inode's security label
3966 * @inode: inode
3967 *
3968 * Notify the security module that it must revalidate the security context of
3969 * an inode.
3970 */
3971void security_inode_invalidate_secctx(struct inode *inode)
3972{
3973	call_void_hook(inode_invalidate_secctx, inode);
3974}
3975EXPORT_SYMBOL(security_inode_invalidate_secctx);
3976
3977/**
3978 * security_inode_notifysecctx() - Nofify the LSM of an inode's security label
3979 * @inode: inode
3980 * @ctx: secctx
3981 * @ctxlen: length of secctx
3982 *
3983 * Notify the security module of what the security context of an inode should
3984 * be.  Initializes the incore security context managed by the security module
3985 * for this inode.  Example usage: NFS client invokes this hook to initialize
3986 * the security context in its incore inode to the value provided by the server
3987 * for the file when the server returned the file's attributes to the client.
3988 * Must be called with inode->i_mutex locked.
3989 *
3990 * Return: Returns 0 on success, error on failure.
3991 */
3992int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
3993{
3994	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
3995}
3996EXPORT_SYMBOL(security_inode_notifysecctx);
3997
3998/**
3999 * security_inode_setsecctx() - Change the security label of an inode
4000 * @dentry: inode
4001 * @ctx: secctx
4002 * @ctxlen: length of secctx
4003 *
4004 * Change the security context of an inode.  Updates the incore security
4005 * context managed by the security module and invokes the fs code as needed
4006 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4007 * context.  Example usage: NFS server invokes this hook to change the security
4008 * context in its incore inode and on the backing filesystem to a value
4009 * provided by the client on a SETATTR operation.  Must be called with
4010 * inode->i_mutex locked.
4011 *
4012 * Return: Returns 0 on success, error on failure.
4013 */
4014int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4015{
4016	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
4017}
4018EXPORT_SYMBOL(security_inode_setsecctx);
4019
4020/**
4021 * security_inode_getsecctx() - Get the security label of an inode
4022 * @inode: inode
4023 * @ctx: secctx
4024 * @ctxlen: length of secctx
4025 *
4026 * On success, returns 0 and fills out @ctx and @ctxlen with the security
4027 * context for the given @inode.
4028 *
4029 * Return: Returns 0 on success, error on failure.
4030 */
4031int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4032{
4033	struct security_hook_list *hp;
4034	int rc;
4035
4036	/*
4037	 * Only one module will provide a security context.
4038	 */
4039	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) {
4040		rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen);
4041		if (rc != LSM_RET_DEFAULT(inode_getsecctx))
4042			return rc;
4043	}
4044
4045	return LSM_RET_DEFAULT(inode_getsecctx);
4046}
4047EXPORT_SYMBOL(security_inode_getsecctx);
4048
4049#ifdef CONFIG_WATCH_QUEUE
4050/**
4051 * security_post_notification() - Check if a watch notification can be posted
4052 * @w_cred: credentials of the task that set the watch
4053 * @cred: credentials of the task which triggered the watch
4054 * @n: the notification
4055 *
4056 * Check to see if a watch notification can be posted to a particular queue.
4057 *
4058 * Return: Returns 0 if permission is granted.
4059 */
4060int security_post_notification(const struct cred *w_cred,
4061			       const struct cred *cred,
4062			       struct watch_notification *n)
4063{
4064	return call_int_hook(post_notification, 0, w_cred, cred, n);
4065}
4066#endif /* CONFIG_WATCH_QUEUE */
4067
4068#ifdef CONFIG_KEY_NOTIFICATIONS
4069/**
4070 * security_watch_key() - Check if a task is allowed to watch for key events
4071 * @key: the key to watch
4072 *
4073 * Check to see if a process is allowed to watch for event notifications from
4074 * a key or keyring.
4075 *
4076 * Return: Returns 0 if permission is granted.
4077 */
4078int security_watch_key(struct key *key)
4079{
4080	return call_int_hook(watch_key, 0, key);
4081}
4082#endif /* CONFIG_KEY_NOTIFICATIONS */
4083
4084#ifdef CONFIG_SECURITY_NETWORK
4085/**
4086 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4087 * @sock: originating sock
4088 * @other: peer sock
4089 * @newsk: new sock
4090 *
4091 * Check permissions before establishing a Unix domain stream connection
4092 * between @sock and @other.
4093 *
4094 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4095 * Linux provides an alternative to the conventional file name space for Unix
4096 * domain sockets.  Whereas binding and connecting to sockets in the file name
4097 * space is mediated by the typical file permissions (and caught by the mknod
4098 * and permission hooks in inode_security_ops), binding and connecting to
4099 * sockets in the abstract name space is completely unmediated.  Sufficient
4100 * control of Unix domain sockets in the abstract name space isn't possible
4101 * using only the socket layer hooks, since we need to know the actual target
4102 * socket, which is not looked up until we are inside the af_unix code.
4103 *
4104 * Return: Returns 0 if permission is granted.
4105 */
4106int security_unix_stream_connect(struct sock *sock, struct sock *other,
4107				 struct sock *newsk)
4108{
4109	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
4110}
4111EXPORT_SYMBOL(security_unix_stream_connect);
4112
4113/**
4114 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4115 * @sock: originating sock
4116 * @other: peer sock
4117 *
4118 * Check permissions before connecting or sending datagrams from @sock to
4119 * @other.
4120 *
4121 * The @unix_stream_connect and @unix_may_send hooks were necessary because
4122 * Linux provides an alternative to the conventional file name space for Unix
4123 * domain sockets.  Whereas binding and connecting to sockets in the file name
4124 * space is mediated by the typical file permissions (and caught by the mknod
4125 * and permission hooks in inode_security_ops), binding and connecting to
4126 * sockets in the abstract name space is completely unmediated.  Sufficient
4127 * control of Unix domain sockets in the abstract name space isn't possible
4128 * using only the socket layer hooks, since we need to know the actual target
4129 * socket, which is not looked up until we are inside the af_unix code.
4130 *
4131 * Return: Returns 0 if permission is granted.
4132 */
4133int security_unix_may_send(struct socket *sock,  struct socket *other)
4134{
4135	return call_int_hook(unix_may_send, 0, sock, other);
4136}
4137EXPORT_SYMBOL(security_unix_may_send);
4138
4139/**
4140 * security_socket_create() - Check if creating a new socket is allowed
4141 * @family: protocol family
4142 * @type: communications type
4143 * @protocol: requested protocol
4144 * @kern: set to 1 if a kernel socket is requested
4145 *
4146 * Check permissions prior to creating a new socket.
4147 *
4148 * Return: Returns 0 if permission is granted.
4149 */
4150int security_socket_create(int family, int type, int protocol, int kern)
4151{
4152	return call_int_hook(socket_create, 0, family, type, protocol, kern);
4153}
4154
4155/**
4156 * security_socket_post_create() - Initialize a newly created socket
4157 * @sock: socket
4158 * @family: protocol family
4159 * @type: communications type
4160 * @protocol: requested protocol
4161 * @kern: set to 1 if a kernel socket is requested
4162 *
4163 * This hook allows a module to update or allocate a per-socket security
4164 * structure. Note that the security field was not added directly to the socket
4165 * structure, but rather, the socket security information is stored in the
4166 * associated inode.  Typically, the inode alloc_security hook will allocate
4167 * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4168 * may be used to update the SOCK_INODE(sock)->i_security field with additional
4169 * information that wasn't available when the inode was allocated.
4170 *
4171 * Return: Returns 0 if permission is granted.
4172 */
4173int security_socket_post_create(struct socket *sock, int family,
4174				int type, int protocol, int kern)
4175{
4176	return call_int_hook(socket_post_create, 0, sock, family, type,
4177			     protocol, kern);
4178}
4179
4180/**
4181 * security_socket_socketpair() - Check if creating a socketpair is allowed
4182 * @socka: first socket
4183 * @sockb: second socket
4184 *
4185 * Check permissions before creating a fresh pair of sockets.
4186 *
4187 * Return: Returns 0 if permission is granted and the connection was
4188 *         established.
4189 */
4190int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4191{
4192	return call_int_hook(socket_socketpair, 0, socka, sockb);
4193}
4194EXPORT_SYMBOL(security_socket_socketpair);
4195
4196/**
4197 * security_socket_bind() - Check if a socket bind operation is allowed
4198 * @sock: socket
4199 * @address: requested bind address
4200 * @addrlen: length of address
4201 *
4202 * Check permission before socket protocol layer bind operation is performed
4203 * and the socket @sock is bound to the address specified in the @address
4204 * parameter.
4205 *
4206 * Return: Returns 0 if permission is granted.
4207 */
4208int security_socket_bind(struct socket *sock,
4209			 struct sockaddr *address, int addrlen)
4210{
4211	return call_int_hook(socket_bind, 0, sock, address, addrlen);
4212}
4213
4214/**
4215 * security_socket_connect() - Check if a socket connect operation is allowed
4216 * @sock: socket
4217 * @address: address of remote connection point
4218 * @addrlen: length of address
4219 *
4220 * Check permission before socket protocol layer connect operation attempts to
4221 * connect socket @sock to a remote address, @address.
4222 *
4223 * Return: Returns 0 if permission is granted.
4224 */
4225int security_socket_connect(struct socket *sock,
4226			    struct sockaddr *address, int addrlen)
4227{
4228	return call_int_hook(socket_connect, 0, sock, address, addrlen);
4229}
4230
4231/**
4232 * security_socket_listen() - Check if a socket is allowed to listen
4233 * @sock: socket
4234 * @backlog: connection queue size
4235 *
4236 * Check permission before socket protocol layer listen operation.
4237 *
4238 * Return: Returns 0 if permission is granted.
4239 */
4240int security_socket_listen(struct socket *sock, int backlog)
4241{
4242	return call_int_hook(socket_listen, 0, sock, backlog);
4243}
4244
4245/**
4246 * security_socket_accept() - Check if a socket is allowed to accept connections
4247 * @sock: listening socket
4248 * @newsock: newly creation connection socket
4249 *
4250 * Check permission before accepting a new connection.  Note that the new
4251 * socket, @newsock, has been created and some information copied to it, but
4252 * the accept operation has not actually been performed.
4253 *
4254 * Return: Returns 0 if permission is granted.
4255 */
4256int security_socket_accept(struct socket *sock, struct socket *newsock)
4257{
4258	return call_int_hook(socket_accept, 0, sock, newsock);
4259}
4260
4261/**
4262 * security_socket_sendmsg() - Check is sending a message is allowed
4263 * @sock: sending socket
4264 * @msg: message to send
4265 * @size: size of message
4266 *
4267 * Check permission before transmitting a message to another socket.
4268 *
4269 * Return: Returns 0 if permission is granted.
4270 */
4271int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4272{
4273	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
4274}
4275
4276/**
4277 * security_socket_recvmsg() - Check if receiving a message is allowed
4278 * @sock: receiving socket
4279 * @msg: message to receive
4280 * @size: size of message
4281 * @flags: operational flags
4282 *
4283 * Check permission before receiving a message from a socket.
4284 *
4285 * Return: Returns 0 if permission is granted.
4286 */
4287int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4288			    int size, int flags)
4289{
4290	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
4291}
4292
4293/**
4294 * security_socket_getsockname() - Check if reading the socket addr is allowed
4295 * @sock: socket
4296 *
4297 * Check permission before reading the local address (name) of the socket
4298 * object.
4299 *
4300 * Return: Returns 0 if permission is granted.
4301 */
4302int security_socket_getsockname(struct socket *sock)
4303{
4304	return call_int_hook(socket_getsockname, 0, sock);
4305}
4306
4307/**
4308 * security_socket_getpeername() - Check if reading the peer's addr is allowed
4309 * @sock: socket
4310 *
4311 * Check permission before the remote address (name) of a socket object.
4312 *
4313 * Return: Returns 0 if permission is granted.
4314 */
4315int security_socket_getpeername(struct socket *sock)
4316{
4317	return call_int_hook(socket_getpeername, 0, sock);
4318}
4319
4320/**
4321 * security_socket_getsockopt() - Check if reading a socket option is allowed
4322 * @sock: socket
4323 * @level: option's protocol level
4324 * @optname: option name
4325 *
4326 * Check permissions before retrieving the options associated with socket
4327 * @sock.
4328 *
4329 * Return: Returns 0 if permission is granted.
4330 */
4331int security_socket_getsockopt(struct socket *sock, int level, int optname)
4332{
4333	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
4334}
4335
4336/**
4337 * security_socket_setsockopt() - Check if setting a socket option is allowed
4338 * @sock: socket
4339 * @level: option's protocol level
4340 * @optname: option name
4341 *
4342 * Check permissions before setting the options associated with socket @sock.
4343 *
4344 * Return: Returns 0 if permission is granted.
4345 */
4346int security_socket_setsockopt(struct socket *sock, int level, int optname)
4347{
4348	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
4349}
4350
4351/**
4352 * security_socket_shutdown() - Checks if shutting down the socket is allowed
4353 * @sock: socket
4354 * @how: flag indicating how sends and receives are handled
4355 *
4356 * Checks permission before all or part of a connection on the socket @sock is
4357 * shut down.
4358 *
4359 * Return: Returns 0 if permission is granted.
4360 */
4361int security_socket_shutdown(struct socket *sock, int how)
4362{
4363	return call_int_hook(socket_shutdown, 0, sock, how);
4364}
4365
4366/**
4367 * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4368 * @sk: destination sock
4369 * @skb: incoming packet
4370 *
4371 * Check permissions on incoming network packets.  This hook is distinct from
4372 * Netfilter's IP input hooks since it is the first time that the incoming
4373 * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4374 * sleep inside this hook because some callers hold spinlocks.
4375 *
4376 * Return: Returns 0 if permission is granted.
4377 */
4378int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4379{
4380	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
4381}
4382EXPORT_SYMBOL(security_sock_rcv_skb);
4383
4384/**
4385 * security_socket_getpeersec_stream() - Get the remote peer label
4386 * @sock: socket
4387 * @optval: destination buffer
4388 * @optlen: size of peer label copied into the buffer
4389 * @len: maximum size of the destination buffer
4390 *
4391 * This hook allows the security module to provide peer socket security state
4392 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4393 * For tcp sockets this can be meaningful if the socket is associated with an
4394 * ipsec SA.
4395 *
4396 * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4397 *         values.
4398 */
4399int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4400				      sockptr_t optlen, unsigned int len)
4401{
4402	struct security_hook_list *hp;
4403	int rc;
4404
4405	/*
4406	 * Only one module will provide a security context.
4407	 */
4408	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream,
4409			     list) {
4410		rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen,
4411						       len);
4412		if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream))
4413			return rc;
4414	}
4415	return LSM_RET_DEFAULT(socket_getpeersec_stream);
4416}
4417
4418/**
4419 * security_socket_getpeersec_dgram() - Get the remote peer label
4420 * @sock: socket
4421 * @skb: datagram packet
4422 * @secid: remote peer label secid
4423 *
4424 * This hook allows the security module to provide peer socket security state
4425 * for udp sockets on a per-packet basis to userspace via getsockopt
4426 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4427 * option via getsockopt. It can then retrieve the security state returned by
4428 * this hook for a packet via the SCM_SECURITY ancillary message type.
4429 *
4430 * Return: Returns 0 on success, error on failure.
4431 */
4432int security_socket_getpeersec_dgram(struct socket *sock,
4433				     struct sk_buff *skb, u32 *secid)
4434{
4435	struct security_hook_list *hp;
4436	int rc;
4437
4438	/*
4439	 * Only one module will provide a security context.
4440	 */
4441	hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram,
4442			     list) {
4443		rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid);
4444		if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram))
4445			return rc;
4446	}
4447	return LSM_RET_DEFAULT(socket_getpeersec_dgram);
4448}
4449EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4450
4451/**
4452 * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4453 * @sk: sock
4454 * @family: protocol family
4455 * @priority: gfp flags
4456 *
4457 * Allocate and attach a security structure to the sk->sk_security field, which
4458 * is used to copy security attributes between local stream sockets.
4459 *
4460 * Return: Returns 0 on success, error on failure.
4461 */
4462int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4463{
4464	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
4465}
4466
4467/**
4468 * security_sk_free() - Free the sock's LSM blob
4469 * @sk: sock
4470 *
4471 * Deallocate security structure.
4472 */
4473void security_sk_free(struct sock *sk)
4474{
4475	call_void_hook(sk_free_security, sk);
4476}
4477
4478/**
4479 * security_sk_clone() - Clone a sock's LSM state
4480 * @sk: original sock
4481 * @newsk: target sock
4482 *
4483 * Clone/copy security structure.
4484 */
4485void security_sk_clone(const struct sock *sk, struct sock *newsk)
4486{
4487	call_void_hook(sk_clone_security, sk, newsk);
4488}
4489EXPORT_SYMBOL(security_sk_clone);
4490
4491/**
4492 * security_sk_classify_flow() - Set a flow's secid based on socket
4493 * @sk: original socket
4494 * @flic: target flow
4495 *
4496 * Set the target flow's secid to socket's secid.
4497 */
4498void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4499{
4500	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4501}
4502EXPORT_SYMBOL(security_sk_classify_flow);
4503
4504/**
4505 * security_req_classify_flow() - Set a flow's secid based on request_sock
4506 * @req: request_sock
4507 * @flic: target flow
4508 *
4509 * Sets @flic's secid to @req's secid.
4510 */
4511void security_req_classify_flow(const struct request_sock *req,
4512				struct flowi_common *flic)
4513{
4514	call_void_hook(req_classify_flow, req, flic);
4515}
4516EXPORT_SYMBOL(security_req_classify_flow);
4517
4518/**
4519 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4520 * @sk: sock being grafted
4521 * @parent: target parent socket
4522 *
4523 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4524 * LSM state from @parent.
4525 */
4526void security_sock_graft(struct sock *sk, struct socket *parent)
4527{
4528	call_void_hook(sock_graft, sk, parent);
4529}
4530EXPORT_SYMBOL(security_sock_graft);
4531
4532/**
4533 * security_inet_conn_request() - Set request_sock state using incoming connect
4534 * @sk: parent listening sock
4535 * @skb: incoming connection
4536 * @req: new request_sock
4537 *
4538 * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4539 *
4540 * Return: Returns 0 if permission is granted.
4541 */
4542int security_inet_conn_request(const struct sock *sk,
4543			       struct sk_buff *skb, struct request_sock *req)
4544{
4545	return call_int_hook(inet_conn_request, 0, sk, skb, req);
4546}
4547EXPORT_SYMBOL(security_inet_conn_request);
4548
4549/**
4550 * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4551 * @newsk: new sock
4552 * @req: connection request_sock
4553 *
4554 * Set that LSM state of @sock using the LSM state from @req.
4555 */
4556void security_inet_csk_clone(struct sock *newsk,
4557			     const struct request_sock *req)
4558{
4559	call_void_hook(inet_csk_clone, newsk, req);
4560}
4561
4562/**
4563 * security_inet_conn_established() - Update sock's LSM state with connection
4564 * @sk: sock
4565 * @skb: connection packet
4566 *
4567 * Update @sock's LSM state to represent a new connection from @skb.
4568 */
4569void security_inet_conn_established(struct sock *sk,
4570				    struct sk_buff *skb)
4571{
4572	call_void_hook(inet_conn_established, sk, skb);
4573}
4574EXPORT_SYMBOL(security_inet_conn_established);
4575
4576/**
4577 * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4578 * @secid: new secmark value
4579 *
4580 * Check if the process should be allowed to relabel packets to @secid.
4581 *
4582 * Return: Returns 0 if permission is granted.
4583 */
4584int security_secmark_relabel_packet(u32 secid)
4585{
4586	return call_int_hook(secmark_relabel_packet, 0, secid);
4587}
4588EXPORT_SYMBOL(security_secmark_relabel_packet);
4589
4590/**
4591 * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4592 *
4593 * Tells the LSM to increment the number of secmark labeling rules loaded.
4594 */
4595void security_secmark_refcount_inc(void)
4596{
4597	call_void_hook(secmark_refcount_inc);
4598}
4599EXPORT_SYMBOL(security_secmark_refcount_inc);
4600
4601/**
4602 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4603 *
4604 * Tells the LSM to decrement the number of secmark labeling rules loaded.
4605 */
4606void security_secmark_refcount_dec(void)
4607{
4608	call_void_hook(secmark_refcount_dec);
4609}
4610EXPORT_SYMBOL(security_secmark_refcount_dec);
4611
4612/**
4613 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4614 * @security: pointer to the LSM blob
4615 *
4616 * This hook allows a module to allocate a security structure for a TUN	device,
4617 * returning the pointer in @security.
4618 *
4619 * Return: Returns a zero on success, negative values on failure.
4620 */
4621int security_tun_dev_alloc_security(void **security)
4622{
4623	return call_int_hook(tun_dev_alloc_security, 0, security);
4624}
4625EXPORT_SYMBOL(security_tun_dev_alloc_security);
4626
4627/**
4628 * security_tun_dev_free_security() - Free a TUN device LSM blob
4629 * @security: LSM blob
4630 *
4631 * This hook allows a module to free the security structure for a TUN device.
4632 */
4633void security_tun_dev_free_security(void *security)
4634{
4635	call_void_hook(tun_dev_free_security, security);
4636}
4637EXPORT_SYMBOL(security_tun_dev_free_security);
4638
4639/**
4640 * security_tun_dev_create() - Check if creating a TUN device is allowed
4641 *
4642 * Check permissions prior to creating a new TUN device.
4643 *
4644 * Return: Returns 0 if permission is granted.
4645 */
4646int security_tun_dev_create(void)
4647{
4648	return call_int_hook(tun_dev_create, 0);
4649}
4650EXPORT_SYMBOL(security_tun_dev_create);
4651
4652/**
4653 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4654 * @security: TUN device LSM blob
4655 *
4656 * Check permissions prior to attaching to a TUN device queue.
4657 *
4658 * Return: Returns 0 if permission is granted.
4659 */
4660int security_tun_dev_attach_queue(void *security)
4661{
4662	return call_int_hook(tun_dev_attach_queue, 0, security);
4663}
4664EXPORT_SYMBOL(security_tun_dev_attach_queue);
4665
4666/**
4667 * security_tun_dev_attach() - Update TUN device LSM state on attach
4668 * @sk: associated sock
4669 * @security: TUN device LSM blob
4670 *
4671 * This hook can be used by the module to update any security state associated
4672 * with the TUN device's sock structure.
4673 *
4674 * Return: Returns 0 if permission is granted.
4675 */
4676int security_tun_dev_attach(struct sock *sk, void *security)
4677{
4678	return call_int_hook(tun_dev_attach, 0, sk, security);
4679}
4680EXPORT_SYMBOL(security_tun_dev_attach);
4681
4682/**
4683 * security_tun_dev_open() - Update TUN device LSM state on open
4684 * @security: TUN device LSM blob
4685 *
4686 * This hook can be used by the module to update any security state associated
4687 * with the TUN device's security structure.
4688 *
4689 * Return: Returns 0 if permission is granted.
4690 */
4691int security_tun_dev_open(void *security)
4692{
4693	return call_int_hook(tun_dev_open, 0, security);
4694}
4695EXPORT_SYMBOL(security_tun_dev_open);
4696
4697/**
4698 * security_sctp_assoc_request() - Update the LSM on a SCTP association req
4699 * @asoc: SCTP association
4700 * @skb: packet requesting the association
4701 *
4702 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
4703 *
4704 * Return: Returns 0 on success, error on failure.
4705 */
4706int security_sctp_assoc_request(struct sctp_association *asoc,
4707				struct sk_buff *skb)
4708{
4709	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
4710}
4711EXPORT_SYMBOL(security_sctp_assoc_request);
4712
4713/**
4714 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
4715 * @sk: socket
4716 * @optname: SCTP option to validate
4717 * @address: list of IP addresses to validate
4718 * @addrlen: length of the address list
4719 *
4720 * Validiate permissions required for each address associated with sock	@sk.
4721 * Depending on @optname, the addresses will be treated as either a connect or
4722 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
4723 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
4724 *
4725 * Return: Returns 0 on success, error on failure.
4726 */
4727int security_sctp_bind_connect(struct sock *sk, int optname,
4728			       struct sockaddr *address, int addrlen)
4729{
4730	return call_int_hook(sctp_bind_connect, 0, sk, optname,
4731			     address, addrlen);
4732}
4733EXPORT_SYMBOL(security_sctp_bind_connect);
4734
4735/**
4736 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
4737 * @asoc: SCTP association
4738 * @sk: original sock
4739 * @newsk: target sock
4740 *
4741 * Called whenever a new socket is created by accept(2) (i.e. a TCP style
4742 * socket) or when a socket is 'peeled off' e.g userspace calls
4743 * sctp_peeloff(3).
4744 */
4745void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
4746			    struct sock *newsk)
4747{
4748	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
4749}
4750EXPORT_SYMBOL(security_sctp_sk_clone);
4751
4752/**
4753 * security_sctp_assoc_established() - Update LSM state when assoc established
4754 * @asoc: SCTP association
4755 * @skb: packet establishing the association
4756 *
4757 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
4758 * security module.
4759 *
4760 * Return: Returns 0 if permission is granted.
4761 */
4762int security_sctp_assoc_established(struct sctp_association *asoc,
4763				    struct sk_buff *skb)
4764{
4765	return call_int_hook(sctp_assoc_established, 0, asoc, skb);
4766}
4767EXPORT_SYMBOL(security_sctp_assoc_established);
4768
4769/**
4770 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
4771 * @sk: the owning MPTCP socket
4772 * @ssk: the new subflow
4773 *
4774 * Update the labeling for the given MPTCP subflow, to match the one of the
4775 * owning MPTCP socket. This hook has to be called after the socket creation and
4776 * initialization via the security_socket_create() and
4777 * security_socket_post_create() LSM hooks.
4778 *
4779 * Return: Returns 0 on success or a negative error code on failure.
4780 */
4781int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
4782{
4783	return call_int_hook(mptcp_add_subflow, 0, sk, ssk);
4784}
4785
4786#endif	/* CONFIG_SECURITY_NETWORK */
4787
4788#ifdef CONFIG_SECURITY_INFINIBAND
4789/**
4790 * security_ib_pkey_access() - Check if access to an IB pkey is allowed
4791 * @sec: LSM blob
4792 * @subnet_prefix: subnet prefix of the port
4793 * @pkey: IB pkey
4794 *
4795 * Check permission to access a pkey when modifying a QP.
4796 *
4797 * Return: Returns 0 if permission is granted.
4798 */
4799int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
4800{
4801	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
4802}
4803EXPORT_SYMBOL(security_ib_pkey_access);
4804
4805/**
4806 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
4807 * @sec: LSM blob
4808 * @dev_name: IB device name
4809 * @port_num: port number
4810 *
4811 * Check permissions to send and receive SMPs on a end port.
4812 *
4813 * Return: Returns 0 if permission is granted.
4814 */
4815int security_ib_endport_manage_subnet(void *sec,
4816				      const char *dev_name, u8 port_num)
4817{
4818	return call_int_hook(ib_endport_manage_subnet, 0, sec,
4819			     dev_name, port_num);
4820}
4821EXPORT_SYMBOL(security_ib_endport_manage_subnet);
4822
4823/**
4824 * security_ib_alloc_security() - Allocate an Infiniband LSM blob
4825 * @sec: LSM blob
4826 *
4827 * Allocate a security structure for Infiniband objects.
4828 *
4829 * Return: Returns 0 on success, non-zero on failure.
4830 */
4831int security_ib_alloc_security(void **sec)
4832{
4833	return call_int_hook(ib_alloc_security, 0, sec);
4834}
4835EXPORT_SYMBOL(security_ib_alloc_security);
4836
4837/**
4838 * security_ib_free_security() - Free an Infiniband LSM blob
4839 * @sec: LSM blob
4840 *
4841 * Deallocate an Infiniband security structure.
4842 */
4843void security_ib_free_security(void *sec)
4844{
4845	call_void_hook(ib_free_security, sec);
4846}
4847EXPORT_SYMBOL(security_ib_free_security);
4848#endif	/* CONFIG_SECURITY_INFINIBAND */
4849
4850#ifdef CONFIG_SECURITY_NETWORK_XFRM
4851/**
4852 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
4853 * @ctxp: xfrm security context being added to the SPD
4854 * @sec_ctx: security label provided by userspace
4855 * @gfp: gfp flags
4856 *
4857 * Allocate a security structure to the xp->security field; the security field
4858 * is initialized to NULL when the xfrm_policy is allocated.
4859 *
4860 * Return:  Return 0 if operation was successful.
4861 */
4862int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
4863			       struct xfrm_user_sec_ctx *sec_ctx,
4864			       gfp_t gfp)
4865{
4866	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
4867}
4868EXPORT_SYMBOL(security_xfrm_policy_alloc);
4869
4870/**
4871 * security_xfrm_policy_clone() - Clone xfrm policy LSM state
4872 * @old_ctx: xfrm security context
4873 * @new_ctxp: target xfrm security context
4874 *
4875 * Allocate a security structure in new_ctxp that contains the information from
4876 * the old_ctx structure.
4877 *
4878 * Return: Return 0 if operation was successful.
4879 */
4880int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
4881			       struct xfrm_sec_ctx **new_ctxp)
4882{
4883	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
4884}
4885
4886/**
4887 * security_xfrm_policy_free() - Free a xfrm security context
4888 * @ctx: xfrm security context
4889 *
4890 * Free LSM resources associated with @ctx.
4891 */
4892void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
4893{
4894	call_void_hook(xfrm_policy_free_security, ctx);
4895}
4896EXPORT_SYMBOL(security_xfrm_policy_free);
4897
4898/**
4899 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
4900 * @ctx: xfrm security context
4901 *
4902 * Authorize deletion of a SPD entry.
4903 *
4904 * Return: Returns 0 if permission is granted.
4905 */
4906int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
4907{
4908	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
4909}
4910
4911/**
4912 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
4913 * @x: xfrm state being added to the SAD
4914 * @sec_ctx: security label provided by userspace
4915 *
4916 * Allocate a security structure to the @x->security field; the security field
4917 * is initialized to NULL when the xfrm_state is allocated. Set the context to
4918 * correspond to @sec_ctx.
4919 *
4920 * Return: Return 0 if operation was successful.
4921 */
4922int security_xfrm_state_alloc(struct xfrm_state *x,
4923			      struct xfrm_user_sec_ctx *sec_ctx)
4924{
4925	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
4926}
4927EXPORT_SYMBOL(security_xfrm_state_alloc);
4928
4929/**
4930 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
4931 * @x: xfrm state being added to the SAD
4932 * @polsec: associated policy's security context
4933 * @secid: secid from the flow
4934 *
4935 * Allocate a security structure to the x->security field; the security field
4936 * is initialized to NULL when the xfrm_state is allocated.  Set the context to
4937 * correspond to secid.
4938 *
4939 * Return: Returns 0 if operation was successful.
4940 */
4941int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
4942				      struct xfrm_sec_ctx *polsec, u32 secid)
4943{
4944	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
4945}
4946
4947/**
4948 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
4949 * @x: xfrm state
4950 *
4951 * Authorize deletion of x->security.
4952 *
4953 * Return: Returns 0 if permission is granted.
4954 */
4955int security_xfrm_state_delete(struct xfrm_state *x)
4956{
4957	return call_int_hook(xfrm_state_delete_security, 0, x);
4958}
4959EXPORT_SYMBOL(security_xfrm_state_delete);
4960
4961/**
4962 * security_xfrm_state_free() - Free a xfrm state
4963 * @x: xfrm state
4964 *
4965 * Deallocate x->security.
4966 */
4967void security_xfrm_state_free(struct xfrm_state *x)
4968{
4969	call_void_hook(xfrm_state_free_security, x);
4970}
4971
4972/**
4973 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
4974 * @ctx: target xfrm security context
4975 * @fl_secid: flow secid used to authorize access
4976 *
4977 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
4978 * packet.  The hook is called when selecting either a per-socket policy or a
4979 * generic xfrm policy.
4980 *
4981 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
4982 *         other errors.
4983 */
4984int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
4985{
4986	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
4987}
4988
4989/**
4990 * security_xfrm_state_pol_flow_match() - Check for a xfrm match
4991 * @x: xfrm state to match
4992 * @xp: xfrm policy to check for a match
4993 * @flic: flow to check for a match.
4994 *
4995 * Check @xp and @flic for a match with @x.
4996 *
4997 * Return: Returns 1 if there is a match.
4998 */
4999int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5000				       struct xfrm_policy *xp,
5001				       const struct flowi_common *flic)
5002{
5003	struct security_hook_list *hp;
5004	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5005
5006	/*
5007	 * Since this function is expected to return 0 or 1, the judgment
5008	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5009	 * we can use the first LSM's judgment because currently only SELinux
5010	 * supplies this call.
5011	 *
5012	 * For speed optimization, we explicitly break the loop rather than
5013	 * using the macro
5014	 */
5015	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5016			     list) {
5017		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5018		break;
5019	}
5020	return rc;
5021}
5022
5023/**
5024 * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5025 * @skb: xfrm packet
5026 * @secid: secid
5027 *
5028 * Decode the packet in @skb and return the security label in @secid.
5029 *
5030 * Return: Return 0 if all xfrms used have the same secid.
5031 */
5032int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5033{
5034	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
5035}
5036
5037void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5038{
5039	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
5040			       0);
5041
5042	BUG_ON(rc);
5043}
5044EXPORT_SYMBOL(security_skb_classify_flow);
5045#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5046
5047#ifdef CONFIG_KEYS
5048/**
5049 * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5050 * @key: key
5051 * @cred: credentials
5052 * @flags: allocation flags
5053 *
5054 * Permit allocation of a key and assign security data. Note that key does not
5055 * have a serial number assigned at this point.
5056 *
5057 * Return: Return 0 if permission is granted, -ve error otherwise.
5058 */
5059int security_key_alloc(struct key *key, const struct cred *cred,
5060		       unsigned long flags)
5061{
5062	return call_int_hook(key_alloc, 0, key, cred, flags);
5063}
5064
5065/**
5066 * security_key_free() - Free a kernel key LSM blob
5067 * @key: key
5068 *
5069 * Notification of destruction; free security data.
5070 */
5071void security_key_free(struct key *key)
5072{
5073	call_void_hook(key_free, key);
5074}
5075
5076/**
5077 * security_key_permission() - Check if a kernel key operation is allowed
5078 * @key_ref: key reference
5079 * @cred: credentials of actor requesting access
5080 * @need_perm: requested permissions
5081 *
5082 * See whether a specific operational right is granted to a process on a key.
5083 *
5084 * Return: Return 0 if permission is granted, -ve error otherwise.
5085 */
5086int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5087			    enum key_need_perm need_perm)
5088{
5089	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
5090}
5091
5092/**
5093 * security_key_getsecurity() - Get the key's security label
5094 * @key: key
5095 * @buffer: security label buffer
5096 *
5097 * Get a textual representation of the security context attached to a key for
5098 * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5099 * storage for the NUL-terminated string and the caller should free it.
5100 *
5101 * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5102 *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5103 *         there is no security label assigned to the key.
5104 */
5105int security_key_getsecurity(struct key *key, char **buffer)
5106{
5107	*buffer = NULL;
5108	return call_int_hook(key_getsecurity, 0, key, buffer);
5109}
5110#endif	/* CONFIG_KEYS */
5111
5112#ifdef CONFIG_AUDIT
5113/**
5114 * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5115 * @field: audit action
5116 * @op: rule operator
5117 * @rulestr: rule context
5118 * @lsmrule: receive buffer for audit rule struct
5119 *
5120 * Allocate and initialize an LSM audit rule structure.
5121 *
5122 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5123 *         an invalid rule.
5124 */
5125int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
5126{
5127	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
5128}
5129
5130/**
5131 * security_audit_rule_known() - Check if an audit rule contains LSM fields
5132 * @krule: audit rule
5133 *
5134 * Specifies whether given @krule contains any fields related to the current
5135 * LSM.
5136 *
5137 * Return: Returns 1 in case of relation found, 0 otherwise.
5138 */
5139int security_audit_rule_known(struct audit_krule *krule)
5140{
5141	return call_int_hook(audit_rule_known, 0, krule);
5142}
5143
5144/**
5145 * security_audit_rule_free() - Free an LSM audit rule struct
5146 * @lsmrule: audit rule struct
5147 *
5148 * Deallocate the LSM audit rule structure previously allocated by
5149 * audit_rule_init().
5150 */
5151void security_audit_rule_free(void *lsmrule)
5152{
5153	call_void_hook(audit_rule_free, lsmrule);
5154}
5155
5156/**
5157 * security_audit_rule_match() - Check if a label matches an audit rule
5158 * @secid: security label
5159 * @field: LSM audit field
5160 * @op: matching operator
5161 * @lsmrule: audit rule
5162 *
5163 * Determine if given @secid matches a rule previously approved by
5164 * security_audit_rule_known().
5165 *
5166 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5167 *         failure.
5168 */
5169int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5170{
5171	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
5172}
5173#endif /* CONFIG_AUDIT */
5174
5175#ifdef CONFIG_BPF_SYSCALL
5176/**
5177 * security_bpf() - Check if the bpf syscall operation is allowed
5178 * @cmd: command
5179 * @attr: bpf attribute
5180 * @size: size
5181 *
5182 * Do a initial check for all bpf syscalls after the attribute is copied into
5183 * the kernel. The actual security module can implement their own rules to
5184 * check the specific cmd they need.
5185 *
5186 * Return: Returns 0 if permission is granted.
5187 */
5188int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5189{
5190	return call_int_hook(bpf, 0, cmd, attr, size);
5191}
5192
5193/**
5194 * security_bpf_map() - Check if access to a bpf map is allowed
5195 * @map: bpf map
5196 * @fmode: mode
5197 *
5198 * Do a check when the kernel generates and returns a file descriptor for eBPF
5199 * maps.
5200 *
5201 * Return: Returns 0 if permission is granted.
5202 */
5203int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5204{
5205	return call_int_hook(bpf_map, 0, map, fmode);
5206}
5207
5208/**
5209 * security_bpf_prog() - Check if access to a bpf program is allowed
5210 * @prog: bpf program
5211 *
5212 * Do a check when the kernel generates and returns a file descriptor for eBPF
5213 * programs.
5214 *
5215 * Return: Returns 0 if permission is granted.
5216 */
5217int security_bpf_prog(struct bpf_prog *prog)
5218{
5219	return call_int_hook(bpf_prog, 0, prog);
5220}
5221
5222/**
5223 * security_bpf_map_alloc() - Allocate a bpf map LSM blob
5224 * @map: bpf map
5225 *
5226 * Initialize the security field inside bpf map.
5227 *
5228 * Return: Returns 0 on success, error on failure.
5229 */
5230int security_bpf_map_alloc(struct bpf_map *map)
5231{
5232	return call_int_hook(bpf_map_alloc_security, 0, map);
5233}
5234
5235/**
5236 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob
5237 * @aux: bpf program aux info struct
5238 *
5239 * Initialize the security field inside bpf program.
5240 *
5241 * Return: Returns 0 on success, error on failure.
5242 */
5243int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
5244{
5245	return call_int_hook(bpf_prog_alloc_security, 0, aux);
5246}
5247
5248/**
5249 * security_bpf_map_free() - Free a bpf map's LSM blob
5250 * @map: bpf map
5251 *
5252 * Clean up the security information stored inside bpf map.
5253 */
5254void security_bpf_map_free(struct bpf_map *map)
5255{
5256	call_void_hook(bpf_map_free_security, map);
5257}
5258
5259/**
5260 * security_bpf_prog_free() - Free a bpf program's LSM blob
5261 * @aux: bpf program aux info struct
5262 *
5263 * Clean up the security information stored inside bpf prog.
5264 */
5265void security_bpf_prog_free(struct bpf_prog_aux *aux)
5266{
5267	call_void_hook(bpf_prog_free_security, aux);
5268}
5269#endif /* CONFIG_BPF_SYSCALL */
5270
5271/**
5272 * security_locked_down() - Check if a kernel feature is allowed
5273 * @what: requested kernel feature
5274 *
5275 * Determine whether a kernel feature that potentially enables arbitrary code
5276 * execution in kernel space should be permitted.
5277 *
5278 * Return: Returns 0 if permission is granted.
5279 */
5280int security_locked_down(enum lockdown_reason what)
5281{
5282	return call_int_hook(locked_down, 0, what);
5283}
5284EXPORT_SYMBOL(security_locked_down);
5285
5286#ifdef CONFIG_PERF_EVENTS
5287/**
5288 * security_perf_event_open() - Check if a perf event open is allowed
5289 * @attr: perf event attribute
5290 * @type: type of event
5291 *
5292 * Check whether the @type of perf_event_open syscall is allowed.
5293 *
5294 * Return: Returns 0 if permission is granted.
5295 */
5296int security_perf_event_open(struct perf_event_attr *attr, int type)
5297{
5298	return call_int_hook(perf_event_open, 0, attr, type);
5299}
5300
5301/**
5302 * security_perf_event_alloc() - Allocate a perf event LSM blob
5303 * @event: perf event
5304 *
5305 * Allocate and save perf_event security info.
5306 *
5307 * Return: Returns 0 on success, error on failure.
5308 */
5309int security_perf_event_alloc(struct perf_event *event)
5310{
5311	return call_int_hook(perf_event_alloc, 0, event);
5312}
5313
5314/**
5315 * security_perf_event_free() - Free a perf event LSM blob
5316 * @event: perf event
5317 *
5318 * Release (free) perf_event security info.
5319 */
5320void security_perf_event_free(struct perf_event *event)
5321{
5322	call_void_hook(perf_event_free, event);
5323}
5324
5325/**
5326 * security_perf_event_read() - Check if reading a perf event label is allowed
5327 * @event: perf event
5328 *
5329 * Read perf_event security info if allowed.
5330 *
5331 * Return: Returns 0 if permission is granted.
5332 */
5333int security_perf_event_read(struct perf_event *event)
5334{
5335	return call_int_hook(perf_event_read, 0, event);
5336}
5337
5338/**
5339 * security_perf_event_write() - Check if writing a perf event label is allowed
5340 * @event: perf event
5341 *
5342 * Write perf_event security info if allowed.
5343 *
5344 * Return: Returns 0 if permission is granted.
5345 */
5346int security_perf_event_write(struct perf_event *event)
5347{
5348	return call_int_hook(perf_event_write, 0, event);
5349}
5350#endif /* CONFIG_PERF_EVENTS */
5351
5352/**
5353 * security_mmap_region() - Check if mmap region is allowed
5354 * @vma: vm area
5355 *
5356 * Mmap region if allowed.
5357 *
5358 * Return: Returns 0 if permission is granted.
5359 */
5360#ifdef CONFIG_SECURITY_XPM
5361int security_mmap_region(struct vm_area_struct *vma)
5362{
5363	return call_int_hook(mmap_region, 0, vma);
5364}
5365#endif
5366
5367#ifdef CONFIG_IO_URING
5368/**
5369 * security_uring_override_creds() - Check if overriding creds is allowed
5370 * @new: new credentials
5371 *
5372 * Check if the current task, executing an io_uring operation, is allowed to
5373 * override it's credentials with @new.
5374 *
5375 * Return: Returns 0 if permission is granted.
5376 */
5377int security_uring_override_creds(const struct cred *new)
5378{
5379	return call_int_hook(uring_override_creds, 0, new);
5380}
5381
5382/**
5383 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5384 *
5385 * Check whether the current task is allowed to spawn a io_uring polling thread
5386 * (IORING_SETUP_SQPOLL).
5387 *
5388 * Return: Returns 0 if permission is granted.
5389 */
5390int security_uring_sqpoll(void)
5391{
5392	return call_int_hook(uring_sqpoll, 0);
5393}
5394
5395/**
5396 * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5397 * @ioucmd: command
5398 *
5399 * Check whether the file_operations uring_cmd is allowed to run.
5400 *
5401 * Return: Returns 0 if permission is granted.
5402 */
5403int security_uring_cmd(struct io_uring_cmd *ioucmd)
5404{
5405	return call_int_hook(uring_cmd, 0, ioucmd);
5406}
5407#endif /* CONFIG_IO_URING */
5408