xref: /kernel/linux/linux-6.6/rust/alloc/vec/mod.rs (revision 62306a36)
1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! A contiguous growable array type with heap-allocated contents, written
4//! `Vec<T>`.
5//!
6//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7//! *O*(1) pop (from the end).
8//!
9//! Vectors ensure they never allocate more than `isize::MAX` bytes.
10//!
11//! # Examples
12//!
13//! You can explicitly create a [`Vec`] with [`Vec::new`]:
14//!
15//! ```
16//! let v: Vec<i32> = Vec::new();
17//! ```
18//!
19//! ...or by using the [`vec!`] macro:
20//!
21//! ```
22//! let v: Vec<i32> = vec![];
23//!
24//! let v = vec![1, 2, 3, 4, 5];
25//!
26//! let v = vec![0; 10]; // ten zeroes
27//! ```
28//!
29//! You can [`push`] values onto the end of a vector (which will grow the vector
30//! as needed):
31//!
32//! ```
33//! let mut v = vec![1, 2];
34//!
35//! v.push(3);
36//! ```
37//!
38//! Popping values works in much the same way:
39//!
40//! ```
41//! let mut v = vec![1, 2];
42//!
43//! let two = v.pop();
44//! ```
45//!
46//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47//!
48//! ```
49//! let mut v = vec![1, 2, 3];
50//! let three = v[2];
51//! v[1] = v[1] + 5;
52//! ```
53//!
54//! [`push`]: Vec::push
55
56#![stable(feature = "rust1", since = "1.0.0")]
57
58#[cfg(not(no_global_oom_handling))]
59use core::cmp;
60use core::cmp::Ordering;
61use core::fmt;
62use core::hash::{Hash, Hasher};
63use core::iter;
64use core::marker::PhantomData;
65use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
66use core::ops::{self, Index, IndexMut, Range, RangeBounds};
67use core::ptr::{self, NonNull};
68use core::slice::{self, SliceIndex};
69
70use crate::alloc::{Allocator, Global};
71#[cfg(not(no_borrow))]
72use crate::borrow::{Cow, ToOwned};
73use crate::boxed::Box;
74use crate::collections::{TryReserveError, TryReserveErrorKind};
75use crate::raw_vec::RawVec;
76
77#[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
78pub use self::extract_if::ExtractIf;
79
80mod extract_if;
81
82#[cfg(not(no_global_oom_handling))]
83#[stable(feature = "vec_splice", since = "1.21.0")]
84pub use self::splice::Splice;
85
86#[cfg(not(no_global_oom_handling))]
87mod splice;
88
89#[stable(feature = "drain", since = "1.6.0")]
90pub use self::drain::Drain;
91
92mod drain;
93
94#[cfg(not(no_borrow))]
95#[cfg(not(no_global_oom_handling))]
96mod cow;
97
98#[cfg(not(no_global_oom_handling))]
99pub(crate) use self::in_place_collect::AsVecIntoIter;
100#[stable(feature = "rust1", since = "1.0.0")]
101pub use self::into_iter::IntoIter;
102
103mod into_iter;
104
105#[cfg(not(no_global_oom_handling))]
106use self::is_zero::IsZero;
107
108mod is_zero;
109
110#[cfg(not(no_global_oom_handling))]
111mod in_place_collect;
112
113mod partial_eq;
114
115#[cfg(not(no_global_oom_handling))]
116use self::spec_from_elem::SpecFromElem;
117
118#[cfg(not(no_global_oom_handling))]
119mod spec_from_elem;
120
121use self::set_len_on_drop::SetLenOnDrop;
122
123mod set_len_on_drop;
124
125#[cfg(not(no_global_oom_handling))]
126use self::in_place_drop::{InPlaceDrop, InPlaceDstBufDrop};
127
128#[cfg(not(no_global_oom_handling))]
129mod in_place_drop;
130
131#[cfg(not(no_global_oom_handling))]
132use self::spec_from_iter_nested::SpecFromIterNested;
133
134#[cfg(not(no_global_oom_handling))]
135mod spec_from_iter_nested;
136
137#[cfg(not(no_global_oom_handling))]
138use self::spec_from_iter::SpecFromIter;
139
140#[cfg(not(no_global_oom_handling))]
141mod spec_from_iter;
142
143#[cfg(not(no_global_oom_handling))]
144use self::spec_extend::SpecExtend;
145
146use self::spec_extend::TrySpecExtend;
147
148mod spec_extend;
149
150/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
151///
152/// # Examples
153///
154/// ```
155/// let mut vec = Vec::new();
156/// vec.push(1);
157/// vec.push(2);
158///
159/// assert_eq!(vec.len(), 2);
160/// assert_eq!(vec[0], 1);
161///
162/// assert_eq!(vec.pop(), Some(2));
163/// assert_eq!(vec.len(), 1);
164///
165/// vec[0] = 7;
166/// assert_eq!(vec[0], 7);
167///
168/// vec.extend([1, 2, 3]);
169///
170/// for x in &vec {
171///     println!("{x}");
172/// }
173/// assert_eq!(vec, [7, 1, 2, 3]);
174/// ```
175///
176/// The [`vec!`] macro is provided for convenient initialization:
177///
178/// ```
179/// let mut vec1 = vec![1, 2, 3];
180/// vec1.push(4);
181/// let vec2 = Vec::from([1, 2, 3, 4]);
182/// assert_eq!(vec1, vec2);
183/// ```
184///
185/// It can also initialize each element of a `Vec<T>` with a given value.
186/// This may be more efficient than performing allocation and initialization
187/// in separate steps, especially when initializing a vector of zeros:
188///
189/// ```
190/// let vec = vec![0; 5];
191/// assert_eq!(vec, [0, 0, 0, 0, 0]);
192///
193/// // The following is equivalent, but potentially slower:
194/// let mut vec = Vec::with_capacity(5);
195/// vec.resize(5, 0);
196/// assert_eq!(vec, [0, 0, 0, 0, 0]);
197/// ```
198///
199/// For more information, see
200/// [Capacity and Reallocation](#capacity-and-reallocation).
201///
202/// Use a `Vec<T>` as an efficient stack:
203///
204/// ```
205/// let mut stack = Vec::new();
206///
207/// stack.push(1);
208/// stack.push(2);
209/// stack.push(3);
210///
211/// while let Some(top) = stack.pop() {
212///     // Prints 3, 2, 1
213///     println!("{top}");
214/// }
215/// ```
216///
217/// # Indexing
218///
219/// The `Vec` type allows access to values by index, because it implements the
220/// [`Index`] trait. An example will be more explicit:
221///
222/// ```
223/// let v = vec![0, 2, 4, 6];
224/// println!("{}", v[1]); // it will display '2'
225/// ```
226///
227/// However be careful: if you try to access an index which isn't in the `Vec`,
228/// your software will panic! You cannot do this:
229///
230/// ```should_panic
231/// let v = vec![0, 2, 4, 6];
232/// println!("{}", v[6]); // it will panic!
233/// ```
234///
235/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
236/// the `Vec`.
237///
238/// # Slicing
239///
240/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
241/// To get a [slice][prim@slice], use [`&`]. Example:
242///
243/// ```
244/// fn read_slice(slice: &[usize]) {
245///     // ...
246/// }
247///
248/// let v = vec![0, 1];
249/// read_slice(&v);
250///
251/// // ... and that's all!
252/// // you can also do it like this:
253/// let u: &[usize] = &v;
254/// // or like this:
255/// let u: &[_] = &v;
256/// ```
257///
258/// In Rust, it's more common to pass slices as arguments rather than vectors
259/// when you just want to provide read access. The same goes for [`String`] and
260/// [`&str`].
261///
262/// # Capacity and reallocation
263///
264/// The capacity of a vector is the amount of space allocated for any future
265/// elements that will be added onto the vector. This is not to be confused with
266/// the *length* of a vector, which specifies the number of actual elements
267/// within the vector. If a vector's length exceeds its capacity, its capacity
268/// will automatically be increased, but its elements will have to be
269/// reallocated.
270///
271/// For example, a vector with capacity 10 and length 0 would be an empty vector
272/// with space for 10 more elements. Pushing 10 or fewer elements onto the
273/// vector will not change its capacity or cause reallocation to occur. However,
274/// if the vector's length is increased to 11, it will have to reallocate, which
275/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
276/// whenever possible to specify how big the vector is expected to get.
277///
278/// # Guarantees
279///
280/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
281/// about its design. This ensures that it's as low-overhead as possible in
282/// the general case, and can be correctly manipulated in primitive ways
283/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
284/// If additional type parameters are added (e.g., to support custom allocators),
285/// overriding their defaults may change the behavior.
286///
287/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
288/// triplet. No more, no less. The order of these fields is completely
289/// unspecified, and you should use the appropriate methods to modify these.
290/// The pointer will never be null, so this type is null-pointer-optimized.
291///
292/// However, the pointer might not actually point to allocated memory. In particular,
293/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
294/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
295/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
296/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
297/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
298/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
299/// details are very subtle --- if you intend to allocate memory using a `Vec`
300/// and use it for something else (either to pass to unsafe code, or to build your
301/// own memory-backed collection), be sure to deallocate this memory by using
302/// `from_raw_parts` to recover the `Vec` and then dropping it.
303///
304/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
305/// (as defined by the allocator Rust is configured to use by default), and its
306/// pointer points to [`len`] initialized, contiguous elements in order (what
307/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
308/// logically uninitialized, contiguous elements.
309///
310/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
311/// visualized as below. The top part is the `Vec` struct, it contains a
312/// pointer to the head of the allocation in the heap, length and capacity.
313/// The bottom part is the allocation on the heap, a contiguous memory block.
314///
315/// ```text
316///             ptr      len  capacity
317///        +--------+--------+--------+
318///        | 0x0123 |      2 |      4 |
319///        +--------+--------+--------+
320///             |
321///             v
322/// Heap   +--------+--------+--------+--------+
323///        |    'a' |    'b' | uninit | uninit |
324///        +--------+--------+--------+--------+
325/// ```
326///
327/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
328/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
329///   layout (including the order of fields).
330///
331/// `Vec` will never perform a "small optimization" where elements are actually
332/// stored on the stack for two reasons:
333///
334/// * It would make it more difficult for unsafe code to correctly manipulate
335///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
336///   only moved, and it would be more difficult to determine if a `Vec` had
337///   actually allocated memory.
338///
339/// * It would penalize the general case, incurring an additional branch
340///   on every access.
341///
342/// `Vec` will never automatically shrink itself, even if completely empty. This
343/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
344/// and then filling it back up to the same [`len`] should incur no calls to
345/// the allocator. If you wish to free up unused memory, use
346/// [`shrink_to_fit`] or [`shrink_to`].
347///
348/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
349/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
350/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
351/// accurate, and can be relied on. It can even be used to manually free the memory
352/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
353/// when not necessary.
354///
355/// `Vec` does not guarantee any particular growth strategy when reallocating
356/// when full, nor when [`reserve`] is called. The current strategy is basic
357/// and it may prove desirable to use a non-constant growth factor. Whatever
358/// strategy is used will of course guarantee *O*(1) amortized [`push`].
359///
360/// `vec![x; n]`, `vec![a, b, c, d]`, and
361/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
362/// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
363/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
364/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
365///
366/// `Vec` will not specifically overwrite any data that is removed from it,
367/// but also won't specifically preserve it. Its uninitialized memory is
368/// scratch space that it may use however it wants. It will generally just do
369/// whatever is most efficient or otherwise easy to implement. Do not rely on
370/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
371/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
372/// first, that might not actually happen because the optimizer does not consider
373/// this a side-effect that must be preserved. There is one case which we will
374/// not break, however: using `unsafe` code to write to the excess capacity,
375/// and then increasing the length to match, is always valid.
376///
377/// Currently, `Vec` does not guarantee the order in which elements are dropped.
378/// The order has changed in the past and may change again.
379///
380/// [`get`]: slice::get
381/// [`get_mut`]: slice::get_mut
382/// [`String`]: crate::string::String
383/// [`&str`]: type@str
384/// [`shrink_to_fit`]: Vec::shrink_to_fit
385/// [`shrink_to`]: Vec::shrink_to
386/// [capacity]: Vec::capacity
387/// [`capacity`]: Vec::capacity
388/// [mem::size_of::\<T>]: core::mem::size_of
389/// [len]: Vec::len
390/// [`len`]: Vec::len
391/// [`push`]: Vec::push
392/// [`insert`]: Vec::insert
393/// [`reserve`]: Vec::reserve
394/// [`MaybeUninit`]: core::mem::MaybeUninit
395/// [owned slice]: Box
396#[stable(feature = "rust1", since = "1.0.0")]
397#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
398#[rustc_insignificant_dtor]
399pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
400    buf: RawVec<T, A>,
401    len: usize,
402}
403
404////////////////////////////////////////////////////////////////////////////////
405// Inherent methods
406////////////////////////////////////////////////////////////////////////////////
407
408impl<T> Vec<T> {
409    /// Constructs a new, empty `Vec<T>`.
410    ///
411    /// The vector will not allocate until elements are pushed onto it.
412    ///
413    /// # Examples
414    ///
415    /// ```
416    /// # #![allow(unused_mut)]
417    /// let mut vec: Vec<i32> = Vec::new();
418    /// ```
419    #[inline]
420    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
421    #[stable(feature = "rust1", since = "1.0.0")]
422    #[must_use]
423    pub const fn new() -> Self {
424        Vec { buf: RawVec::NEW, len: 0 }
425    }
426
427    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
428    ///
429    /// The vector will be able to hold at least `capacity` elements without
430    /// reallocating. This method is allowed to allocate for more elements than
431    /// `capacity`. If `capacity` is 0, the vector will not allocate.
432    ///
433    /// It is important to note that although the returned vector has the
434    /// minimum *capacity* specified, the vector will have a zero *length*. For
435    /// an explanation of the difference between length and capacity, see
436    /// *[Capacity and reallocation]*.
437    ///
438    /// If it is important to know the exact allocated capacity of a `Vec`,
439    /// always use the [`capacity`] method after construction.
440    ///
441    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
442    /// and the capacity will always be `usize::MAX`.
443    ///
444    /// [Capacity and reallocation]: #capacity-and-reallocation
445    /// [`capacity`]: Vec::capacity
446    ///
447    /// # Panics
448    ///
449    /// Panics if the new capacity exceeds `isize::MAX` bytes.
450    ///
451    /// # Examples
452    ///
453    /// ```
454    /// let mut vec = Vec::with_capacity(10);
455    ///
456    /// // The vector contains no items, even though it has capacity for more
457    /// assert_eq!(vec.len(), 0);
458    /// assert!(vec.capacity() >= 10);
459    ///
460    /// // These are all done without reallocating...
461    /// for i in 0..10 {
462    ///     vec.push(i);
463    /// }
464    /// assert_eq!(vec.len(), 10);
465    /// assert!(vec.capacity() >= 10);
466    ///
467    /// // ...but this may make the vector reallocate
468    /// vec.push(11);
469    /// assert_eq!(vec.len(), 11);
470    /// assert!(vec.capacity() >= 11);
471    ///
472    /// // A vector of a zero-sized type will always over-allocate, since no
473    /// // allocation is necessary
474    /// let vec_units = Vec::<()>::with_capacity(10);
475    /// assert_eq!(vec_units.capacity(), usize::MAX);
476    /// ```
477    #[cfg(not(no_global_oom_handling))]
478    #[inline]
479    #[stable(feature = "rust1", since = "1.0.0")]
480    #[must_use]
481    pub fn with_capacity(capacity: usize) -> Self {
482        Self::with_capacity_in(capacity, Global)
483    }
484
485    /// Tries to construct a new, empty `Vec<T>` with at least the specified capacity.
486    ///
487    /// The vector will be able to hold at least `capacity` elements without
488    /// reallocating. This method is allowed to allocate for more elements than
489    /// `capacity`. If `capacity` is 0, the vector will not allocate.
490    ///
491    /// It is important to note that although the returned vector has the
492    /// minimum *capacity* specified, the vector will have a zero *length*. For
493    /// an explanation of the difference between length and capacity, see
494    /// *[Capacity and reallocation]*.
495    ///
496    /// If it is important to know the exact allocated capacity of a `Vec`,
497    /// always use the [`capacity`] method after construction.
498    ///
499    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
500    /// and the capacity will always be `usize::MAX`.
501    ///
502    /// [Capacity and reallocation]: #capacity-and-reallocation
503    /// [`capacity`]: Vec::capacity
504    ///
505    /// # Examples
506    ///
507    /// ```
508    /// let mut vec = Vec::try_with_capacity(10).unwrap();
509    ///
510    /// // The vector contains no items, even though it has capacity for more
511    /// assert_eq!(vec.len(), 0);
512    /// assert!(vec.capacity() >= 10);
513    ///
514    /// // These are all done without reallocating...
515    /// for i in 0..10 {
516    ///     vec.push(i);
517    /// }
518    /// assert_eq!(vec.len(), 10);
519    /// assert!(vec.capacity() >= 10);
520    ///
521    /// // ...but this may make the vector reallocate
522    /// vec.push(11);
523    /// assert_eq!(vec.len(), 11);
524    /// assert!(vec.capacity() >= 11);
525    ///
526    /// let mut result = Vec::try_with_capacity(usize::MAX);
527    /// assert!(result.is_err());
528    ///
529    /// // A vector of a zero-sized type will always over-allocate, since no
530    /// // allocation is necessary
531    /// let vec_units = Vec::<()>::try_with_capacity(10).unwrap();
532    /// assert_eq!(vec_units.capacity(), usize::MAX);
533    /// ```
534    #[inline]
535    #[stable(feature = "kernel", since = "1.0.0")]
536    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
537        Self::try_with_capacity_in(capacity, Global)
538    }
539
540    /// Creates a `Vec<T>` directly from a pointer, a capacity, and a length.
541    ///
542    /// # Safety
543    ///
544    /// This is highly unsafe, due to the number of invariants that aren't
545    /// checked:
546    ///
547    /// * `ptr` must have been allocated using the global allocator, such as via
548    ///   the [`alloc::alloc`] function.
549    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
550    ///   (`T` having a less strict alignment is not sufficient, the alignment really
551    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
552    ///   allocated and deallocated with the same layout.)
553    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
554    ///   to be the same size as the pointer was allocated with. (Because similar to
555    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
556    /// * `length` needs to be less than or equal to `capacity`.
557    /// * The first `length` values must be properly initialized values of type `T`.
558    /// * `capacity` needs to be the capacity that the pointer was allocated with.
559    /// * The allocated size in bytes must be no larger than `isize::MAX`.
560    ///   See the safety documentation of [`pointer::offset`].
561    ///
562    /// These requirements are always upheld by any `ptr` that has been allocated
563    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
564    /// upheld.
565    ///
566    /// Violating these may cause problems like corrupting the allocator's
567    /// internal data structures. For example it is normally **not** safe
568    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
569    /// `size_t`, doing so is only safe if the array was initially allocated by
570    /// a `Vec` or `String`.
571    /// It's also not safe to build one from a `Vec<u16>` and its length, because
572    /// the allocator cares about the alignment, and these two types have different
573    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
574    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
575    /// these issues, it is often preferable to do casting/transmuting using
576    /// [`slice::from_raw_parts`] instead.
577    ///
578    /// The ownership of `ptr` is effectively transferred to the
579    /// `Vec<T>` which may then deallocate, reallocate or change the
580    /// contents of memory pointed to by the pointer at will. Ensure
581    /// that nothing else uses the pointer after calling this
582    /// function.
583    ///
584    /// [`String`]: crate::string::String
585    /// [`alloc::alloc`]: crate::alloc::alloc
586    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
587    ///
588    /// # Examples
589    ///
590    /// ```
591    /// use std::ptr;
592    /// use std::mem;
593    ///
594    /// let v = vec![1, 2, 3];
595    ///
596    // FIXME Update this when vec_into_raw_parts is stabilized
597    /// // Prevent running `v`'s destructor so we are in complete control
598    /// // of the allocation.
599    /// let mut v = mem::ManuallyDrop::new(v);
600    ///
601    /// // Pull out the various important pieces of information about `v`
602    /// let p = v.as_mut_ptr();
603    /// let len = v.len();
604    /// let cap = v.capacity();
605    ///
606    /// unsafe {
607    ///     // Overwrite memory with 4, 5, 6
608    ///     for i in 0..len {
609    ///         ptr::write(p.add(i), 4 + i);
610    ///     }
611    ///
612    ///     // Put everything back together into a Vec
613    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
614    ///     assert_eq!(rebuilt, [4, 5, 6]);
615    /// }
616    /// ```
617    ///
618    /// Using memory that was allocated elsewhere:
619    ///
620    /// ```rust
621    /// use std::alloc::{alloc, Layout};
622    ///
623    /// fn main() {
624    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
625    ///
626    ///     let vec = unsafe {
627    ///         let mem = alloc(layout).cast::<u32>();
628    ///         if mem.is_null() {
629    ///             return;
630    ///         }
631    ///
632    ///         mem.write(1_000_000);
633    ///
634    ///         Vec::from_raw_parts(mem, 1, 16)
635    ///     };
636    ///
637    ///     assert_eq!(vec, &[1_000_000]);
638    ///     assert_eq!(vec.capacity(), 16);
639    /// }
640    /// ```
641    #[inline]
642    #[stable(feature = "rust1", since = "1.0.0")]
643    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
644        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
645    }
646}
647
648impl<T, A: Allocator> Vec<T, A> {
649    /// Constructs a new, empty `Vec<T, A>`.
650    ///
651    /// The vector will not allocate until elements are pushed onto it.
652    ///
653    /// # Examples
654    ///
655    /// ```
656    /// #![feature(allocator_api)]
657    ///
658    /// use std::alloc::System;
659    ///
660    /// # #[allow(unused_mut)]
661    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
662    /// ```
663    #[inline]
664    #[unstable(feature = "allocator_api", issue = "32838")]
665    pub const fn new_in(alloc: A) -> Self {
666        Vec { buf: RawVec::new_in(alloc), len: 0 }
667    }
668
669    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
670    /// with the provided allocator.
671    ///
672    /// The vector will be able to hold at least `capacity` elements without
673    /// reallocating. This method is allowed to allocate for more elements than
674    /// `capacity`. If `capacity` is 0, the vector will not allocate.
675    ///
676    /// It is important to note that although the returned vector has the
677    /// minimum *capacity* specified, the vector will have a zero *length*. For
678    /// an explanation of the difference between length and capacity, see
679    /// *[Capacity and reallocation]*.
680    ///
681    /// If it is important to know the exact allocated capacity of a `Vec`,
682    /// always use the [`capacity`] method after construction.
683    ///
684    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
685    /// and the capacity will always be `usize::MAX`.
686    ///
687    /// [Capacity and reallocation]: #capacity-and-reallocation
688    /// [`capacity`]: Vec::capacity
689    ///
690    /// # Panics
691    ///
692    /// Panics if the new capacity exceeds `isize::MAX` bytes.
693    ///
694    /// # Examples
695    ///
696    /// ```
697    /// #![feature(allocator_api)]
698    ///
699    /// use std::alloc::System;
700    ///
701    /// let mut vec = Vec::with_capacity_in(10, System);
702    ///
703    /// // The vector contains no items, even though it has capacity for more
704    /// assert_eq!(vec.len(), 0);
705    /// assert!(vec.capacity() >= 10);
706    ///
707    /// // These are all done without reallocating...
708    /// for i in 0..10 {
709    ///     vec.push(i);
710    /// }
711    /// assert_eq!(vec.len(), 10);
712    /// assert!(vec.capacity() >= 10);
713    ///
714    /// // ...but this may make the vector reallocate
715    /// vec.push(11);
716    /// assert_eq!(vec.len(), 11);
717    /// assert!(vec.capacity() >= 11);
718    ///
719    /// // A vector of a zero-sized type will always over-allocate, since no
720    /// // allocation is necessary
721    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
722    /// assert_eq!(vec_units.capacity(), usize::MAX);
723    /// ```
724    #[cfg(not(no_global_oom_handling))]
725    #[inline]
726    #[unstable(feature = "allocator_api", issue = "32838")]
727    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
728        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
729    }
730
731    /// Tries to construct a new, empty `Vec<T, A>` with at least the specified capacity
732    /// with the provided allocator.
733    ///
734    /// The vector will be able to hold at least `capacity` elements without
735    /// reallocating. This method is allowed to allocate for more elements than
736    /// `capacity`. If `capacity` is 0, the vector will not allocate.
737    ///
738    /// It is important to note that although the returned vector has the
739    /// minimum *capacity* specified, the vector will have a zero *length*. For
740    /// an explanation of the difference between length and capacity, see
741    /// *[Capacity and reallocation]*.
742    ///
743    /// If it is important to know the exact allocated capacity of a `Vec`,
744    /// always use the [`capacity`] method after construction.
745    ///
746    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
747    /// and the capacity will always be `usize::MAX`.
748    ///
749    /// [Capacity and reallocation]: #capacity-and-reallocation
750    /// [`capacity`]: Vec::capacity
751    ///
752    /// # Examples
753    ///
754    /// ```
755    /// #![feature(allocator_api)]
756    ///
757    /// use std::alloc::System;
758    ///
759    /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
760    ///
761    /// // The vector contains no items, even though it has capacity for more
762    /// assert_eq!(vec.len(), 0);
763    /// assert!(vec.capacity() >= 10);
764    ///
765    /// // These are all done without reallocating...
766    /// for i in 0..10 {
767    ///     vec.push(i);
768    /// }
769    /// assert_eq!(vec.len(), 10);
770    /// assert!(vec.capacity() >= 10);
771    ///
772    /// // ...but this may make the vector reallocate
773    /// vec.push(11);
774    /// assert_eq!(vec.len(), 11);
775    /// assert!(vec.capacity() >= 11);
776    ///
777    /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
778    /// assert!(result.is_err());
779    ///
780    /// // A vector of a zero-sized type will always over-allocate, since no
781    /// // allocation is necessary
782    /// let vec_units = Vec::<(), System>::try_with_capacity_in(10, System).unwrap();
783    /// assert_eq!(vec_units.capacity(), usize::MAX);
784    /// ```
785    #[inline]
786    #[stable(feature = "kernel", since = "1.0.0")]
787    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
788        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
789    }
790
791    /// Creates a `Vec<T, A>` directly from a pointer, a capacity, a length,
792    /// and an allocator.
793    ///
794    /// # Safety
795    ///
796    /// This is highly unsafe, due to the number of invariants that aren't
797    /// checked:
798    ///
799    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
800    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
801    ///   (`T` having a less strict alignment is not sufficient, the alignment really
802    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
803    ///   allocated and deallocated with the same layout.)
804    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
805    ///   to be the same size as the pointer was allocated with. (Because similar to
806    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
807    /// * `length` needs to be less than or equal to `capacity`.
808    /// * The first `length` values must be properly initialized values of type `T`.
809    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
810    /// * The allocated size in bytes must be no larger than `isize::MAX`.
811    ///   See the safety documentation of [`pointer::offset`].
812    ///
813    /// These requirements are always upheld by any `ptr` that has been allocated
814    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
815    /// upheld.
816    ///
817    /// Violating these may cause problems like corrupting the allocator's
818    /// internal data structures. For example it is **not** safe
819    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
820    /// It's also not safe to build one from a `Vec<u16>` and its length, because
821    /// the allocator cares about the alignment, and these two types have different
822    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
823    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
824    ///
825    /// The ownership of `ptr` is effectively transferred to the
826    /// `Vec<T>` which may then deallocate, reallocate or change the
827    /// contents of memory pointed to by the pointer at will. Ensure
828    /// that nothing else uses the pointer after calling this
829    /// function.
830    ///
831    /// [`String`]: crate::string::String
832    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
833    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
834    /// [*fit*]: crate::alloc::Allocator#memory-fitting
835    ///
836    /// # Examples
837    ///
838    /// ```
839    /// #![feature(allocator_api)]
840    ///
841    /// use std::alloc::System;
842    ///
843    /// use std::ptr;
844    /// use std::mem;
845    ///
846    /// let mut v = Vec::with_capacity_in(3, System);
847    /// v.push(1);
848    /// v.push(2);
849    /// v.push(3);
850    ///
851    // FIXME Update this when vec_into_raw_parts is stabilized
852    /// // Prevent running `v`'s destructor so we are in complete control
853    /// // of the allocation.
854    /// let mut v = mem::ManuallyDrop::new(v);
855    ///
856    /// // Pull out the various important pieces of information about `v`
857    /// let p = v.as_mut_ptr();
858    /// let len = v.len();
859    /// let cap = v.capacity();
860    /// let alloc = v.allocator();
861    ///
862    /// unsafe {
863    ///     // Overwrite memory with 4, 5, 6
864    ///     for i in 0..len {
865    ///         ptr::write(p.add(i), 4 + i);
866    ///     }
867    ///
868    ///     // Put everything back together into a Vec
869    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
870    ///     assert_eq!(rebuilt, [4, 5, 6]);
871    /// }
872    /// ```
873    ///
874    /// Using memory that was allocated elsewhere:
875    ///
876    /// ```rust
877    /// #![feature(allocator_api)]
878    ///
879    /// use std::alloc::{AllocError, Allocator, Global, Layout};
880    ///
881    /// fn main() {
882    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
883    ///
884    ///     let vec = unsafe {
885    ///         let mem = match Global.allocate(layout) {
886    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
887    ///             Err(AllocError) => return,
888    ///         };
889    ///
890    ///         mem.write(1_000_000);
891    ///
892    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
893    ///     };
894    ///
895    ///     assert_eq!(vec, &[1_000_000]);
896    ///     assert_eq!(vec.capacity(), 16);
897    /// }
898    /// ```
899    #[inline]
900    #[unstable(feature = "allocator_api", issue = "32838")]
901    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
902        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
903    }
904
905    /// Decomposes a `Vec<T>` into its raw components.
906    ///
907    /// Returns the raw pointer to the underlying data, the length of
908    /// the vector (in elements), and the allocated capacity of the
909    /// data (in elements). These are the same arguments in the same
910    /// order as the arguments to [`from_raw_parts`].
911    ///
912    /// After calling this function, the caller is responsible for the
913    /// memory previously managed by the `Vec`. The only way to do
914    /// this is to convert the raw pointer, length, and capacity back
915    /// into a `Vec` with the [`from_raw_parts`] function, allowing
916    /// the destructor to perform the cleanup.
917    ///
918    /// [`from_raw_parts`]: Vec::from_raw_parts
919    ///
920    /// # Examples
921    ///
922    /// ```
923    /// #![feature(vec_into_raw_parts)]
924    /// let v: Vec<i32> = vec![-1, 0, 1];
925    ///
926    /// let (ptr, len, cap) = v.into_raw_parts();
927    ///
928    /// let rebuilt = unsafe {
929    ///     // We can now make changes to the components, such as
930    ///     // transmuting the raw pointer to a compatible type.
931    ///     let ptr = ptr as *mut u32;
932    ///
933    ///     Vec::from_raw_parts(ptr, len, cap)
934    /// };
935    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
936    /// ```
937    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
938    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
939        let mut me = ManuallyDrop::new(self);
940        (me.as_mut_ptr(), me.len(), me.capacity())
941    }
942
943    /// Decomposes a `Vec<T>` into its raw components.
944    ///
945    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
946    /// the allocated capacity of the data (in elements), and the allocator. These are the same
947    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
948    ///
949    /// After calling this function, the caller is responsible for the
950    /// memory previously managed by the `Vec`. The only way to do
951    /// this is to convert the raw pointer, length, and capacity back
952    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
953    /// the destructor to perform the cleanup.
954    ///
955    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
956    ///
957    /// # Examples
958    ///
959    /// ```
960    /// #![feature(allocator_api, vec_into_raw_parts)]
961    ///
962    /// use std::alloc::System;
963    ///
964    /// let mut v: Vec<i32, System> = Vec::new_in(System);
965    /// v.push(-1);
966    /// v.push(0);
967    /// v.push(1);
968    ///
969    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
970    ///
971    /// let rebuilt = unsafe {
972    ///     // We can now make changes to the components, such as
973    ///     // transmuting the raw pointer to a compatible type.
974    ///     let ptr = ptr as *mut u32;
975    ///
976    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
977    /// };
978    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
979    /// ```
980    #[unstable(feature = "allocator_api", issue = "32838")]
981    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
982    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
983        let mut me = ManuallyDrop::new(self);
984        let len = me.len();
985        let capacity = me.capacity();
986        let ptr = me.as_mut_ptr();
987        let alloc = unsafe { ptr::read(me.allocator()) };
988        (ptr, len, capacity, alloc)
989    }
990
991    /// Returns the total number of elements the vector can hold without
992    /// reallocating.
993    ///
994    /// # Examples
995    ///
996    /// ```
997    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
998    /// vec.push(42);
999    /// assert!(vec.capacity() >= 10);
1000    /// ```
1001    #[inline]
1002    #[stable(feature = "rust1", since = "1.0.0")]
1003    pub fn capacity(&self) -> usize {
1004        self.buf.capacity()
1005    }
1006
1007    /// Reserves capacity for at least `additional` more elements to be inserted
1008    /// in the given `Vec<T>`. The collection may reserve more space to
1009    /// speculatively avoid frequent reallocations. After calling `reserve`,
1010    /// capacity will be greater than or equal to `self.len() + additional`.
1011    /// Does nothing if capacity is already sufficient.
1012    ///
1013    /// # Panics
1014    ///
1015    /// Panics if the new capacity exceeds `isize::MAX` bytes.
1016    ///
1017    /// # Examples
1018    ///
1019    /// ```
1020    /// let mut vec = vec![1];
1021    /// vec.reserve(10);
1022    /// assert!(vec.capacity() >= 11);
1023    /// ```
1024    #[cfg(not(no_global_oom_handling))]
1025    #[stable(feature = "rust1", since = "1.0.0")]
1026    pub fn reserve(&mut self, additional: usize) {
1027        self.buf.reserve(self.len, additional);
1028    }
1029
1030    /// Reserves the minimum capacity for at least `additional` more elements to
1031    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1032    /// deliberately over-allocate to speculatively avoid frequent allocations.
1033    /// After calling `reserve_exact`, capacity will be greater than or equal to
1034    /// `self.len() + additional`. Does nothing if the capacity is already
1035    /// sufficient.
1036    ///
1037    /// Note that the allocator may give the collection more space than it
1038    /// requests. Therefore, capacity can not be relied upon to be precisely
1039    /// minimal. Prefer [`reserve`] if future insertions are expected.
1040    ///
1041    /// [`reserve`]: Vec::reserve
1042    ///
1043    /// # Panics
1044    ///
1045    /// Panics if the new capacity exceeds `isize::MAX` bytes.
1046    ///
1047    /// # Examples
1048    ///
1049    /// ```
1050    /// let mut vec = vec![1];
1051    /// vec.reserve_exact(10);
1052    /// assert!(vec.capacity() >= 11);
1053    /// ```
1054    #[cfg(not(no_global_oom_handling))]
1055    #[stable(feature = "rust1", since = "1.0.0")]
1056    pub fn reserve_exact(&mut self, additional: usize) {
1057        self.buf.reserve_exact(self.len, additional);
1058    }
1059
1060    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1061    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1062    /// frequent reallocations. After calling `try_reserve`, capacity will be
1063    /// greater than or equal to `self.len() + additional` if it returns
1064    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1065    /// preserves the contents even if an error occurs.
1066    ///
1067    /// # Errors
1068    ///
1069    /// If the capacity overflows, or the allocator reports a failure, then an error
1070    /// is returned.
1071    ///
1072    /// # Examples
1073    ///
1074    /// ```
1075    /// use std::collections::TryReserveError;
1076    ///
1077    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1078    ///     let mut output = Vec::new();
1079    ///
1080    ///     // Pre-reserve the memory, exiting if we can't
1081    ///     output.try_reserve(data.len())?;
1082    ///
1083    ///     // Now we know this can't OOM in the middle of our complex work
1084    ///     output.extend(data.iter().map(|&val| {
1085    ///         val * 2 + 5 // very complicated
1086    ///     }));
1087    ///
1088    ///     Ok(output)
1089    /// }
1090    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1091    /// ```
1092    #[stable(feature = "try_reserve", since = "1.57.0")]
1093    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1094        self.buf.try_reserve(self.len, additional)
1095    }
1096
1097    /// Tries to reserve the minimum capacity for at least `additional`
1098    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1099    /// this will not deliberately over-allocate to speculatively avoid frequent
1100    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1101    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1102    /// Does nothing if the capacity is already sufficient.
1103    ///
1104    /// Note that the allocator may give the collection more space than it
1105    /// requests. Therefore, capacity can not be relied upon to be precisely
1106    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1107    ///
1108    /// [`try_reserve`]: Vec::try_reserve
1109    ///
1110    /// # Errors
1111    ///
1112    /// If the capacity overflows, or the allocator reports a failure, then an error
1113    /// is returned.
1114    ///
1115    /// # Examples
1116    ///
1117    /// ```
1118    /// use std::collections::TryReserveError;
1119    ///
1120    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1121    ///     let mut output = Vec::new();
1122    ///
1123    ///     // Pre-reserve the memory, exiting if we can't
1124    ///     output.try_reserve_exact(data.len())?;
1125    ///
1126    ///     // Now we know this can't OOM in the middle of our complex work
1127    ///     output.extend(data.iter().map(|&val| {
1128    ///         val * 2 + 5 // very complicated
1129    ///     }));
1130    ///
1131    ///     Ok(output)
1132    /// }
1133    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1134    /// ```
1135    #[stable(feature = "try_reserve", since = "1.57.0")]
1136    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1137        self.buf.try_reserve_exact(self.len, additional)
1138    }
1139
1140    /// Shrinks the capacity of the vector as much as possible.
1141    ///
1142    /// It will drop down as close as possible to the length but the allocator
1143    /// may still inform the vector that there is space for a few more elements.
1144    ///
1145    /// # Examples
1146    ///
1147    /// ```
1148    /// let mut vec = Vec::with_capacity(10);
1149    /// vec.extend([1, 2, 3]);
1150    /// assert!(vec.capacity() >= 10);
1151    /// vec.shrink_to_fit();
1152    /// assert!(vec.capacity() >= 3);
1153    /// ```
1154    #[cfg(not(no_global_oom_handling))]
1155    #[stable(feature = "rust1", since = "1.0.0")]
1156    pub fn shrink_to_fit(&mut self) {
1157        // The capacity is never less than the length, and there's nothing to do when
1158        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1159        // by only calling it with a greater capacity.
1160        if self.capacity() > self.len {
1161            self.buf.shrink_to_fit(self.len);
1162        }
1163    }
1164
1165    /// Shrinks the capacity of the vector with a lower bound.
1166    ///
1167    /// The capacity will remain at least as large as both the length
1168    /// and the supplied value.
1169    ///
1170    /// If the current capacity is less than the lower limit, this is a no-op.
1171    ///
1172    /// # Examples
1173    ///
1174    /// ```
1175    /// let mut vec = Vec::with_capacity(10);
1176    /// vec.extend([1, 2, 3]);
1177    /// assert!(vec.capacity() >= 10);
1178    /// vec.shrink_to(4);
1179    /// assert!(vec.capacity() >= 4);
1180    /// vec.shrink_to(0);
1181    /// assert!(vec.capacity() >= 3);
1182    /// ```
1183    #[cfg(not(no_global_oom_handling))]
1184    #[stable(feature = "shrink_to", since = "1.56.0")]
1185    pub fn shrink_to(&mut self, min_capacity: usize) {
1186        if self.capacity() > min_capacity {
1187            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1188        }
1189    }
1190
1191    /// Converts the vector into [`Box<[T]>`][owned slice].
1192    ///
1193    /// If the vector has excess capacity, its items will be moved into a
1194    /// newly-allocated buffer with exactly the right capacity.
1195    ///
1196    /// [owned slice]: Box
1197    ///
1198    /// # Examples
1199    ///
1200    /// ```
1201    /// let v = vec![1, 2, 3];
1202    ///
1203    /// let slice = v.into_boxed_slice();
1204    /// ```
1205    ///
1206    /// Any excess capacity is removed:
1207    ///
1208    /// ```
1209    /// let mut vec = Vec::with_capacity(10);
1210    /// vec.extend([1, 2, 3]);
1211    ///
1212    /// assert!(vec.capacity() >= 10);
1213    /// let slice = vec.into_boxed_slice();
1214    /// assert_eq!(slice.into_vec().capacity(), 3);
1215    /// ```
1216    #[cfg(not(no_global_oom_handling))]
1217    #[stable(feature = "rust1", since = "1.0.0")]
1218    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1219        unsafe {
1220            self.shrink_to_fit();
1221            let me = ManuallyDrop::new(self);
1222            let buf = ptr::read(&me.buf);
1223            let len = me.len();
1224            buf.into_box(len).assume_init()
1225        }
1226    }
1227
1228    /// Shortens the vector, keeping the first `len` elements and dropping
1229    /// the rest.
1230    ///
1231    /// If `len` is greater than the vector's current length, this has no
1232    /// effect.
1233    ///
1234    /// The [`drain`] method can emulate `truncate`, but causes the excess
1235    /// elements to be returned instead of dropped.
1236    ///
1237    /// Note that this method has no effect on the allocated capacity
1238    /// of the vector.
1239    ///
1240    /// # Examples
1241    ///
1242    /// Truncating a five element vector to two elements:
1243    ///
1244    /// ```
1245    /// let mut vec = vec![1, 2, 3, 4, 5];
1246    /// vec.truncate(2);
1247    /// assert_eq!(vec, [1, 2]);
1248    /// ```
1249    ///
1250    /// No truncation occurs when `len` is greater than the vector's current
1251    /// length:
1252    ///
1253    /// ```
1254    /// let mut vec = vec![1, 2, 3];
1255    /// vec.truncate(8);
1256    /// assert_eq!(vec, [1, 2, 3]);
1257    /// ```
1258    ///
1259    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1260    /// method.
1261    ///
1262    /// ```
1263    /// let mut vec = vec![1, 2, 3];
1264    /// vec.truncate(0);
1265    /// assert_eq!(vec, []);
1266    /// ```
1267    ///
1268    /// [`clear`]: Vec::clear
1269    /// [`drain`]: Vec::drain
1270    #[stable(feature = "rust1", since = "1.0.0")]
1271    pub fn truncate(&mut self, len: usize) {
1272        // This is safe because:
1273        //
1274        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1275        //   case avoids creating an invalid slice, and
1276        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1277        //   such that no value will be dropped twice in case `drop_in_place`
1278        //   were to panic once (if it panics twice, the program aborts).
1279        unsafe {
1280            // Note: It's intentional that this is `>` and not `>=`.
1281            //       Changing it to `>=` has negative performance
1282            //       implications in some cases. See #78884 for more.
1283            if len > self.len {
1284                return;
1285            }
1286            let remaining_len = self.len - len;
1287            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1288            self.len = len;
1289            ptr::drop_in_place(s);
1290        }
1291    }
1292
1293    /// Extracts a slice containing the entire vector.
1294    ///
1295    /// Equivalent to `&s[..]`.
1296    ///
1297    /// # Examples
1298    ///
1299    /// ```
1300    /// use std::io::{self, Write};
1301    /// let buffer = vec![1, 2, 3, 5, 8];
1302    /// io::sink().write(buffer.as_slice()).unwrap();
1303    /// ```
1304    #[inline]
1305    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1306    pub fn as_slice(&self) -> &[T] {
1307        self
1308    }
1309
1310    /// Extracts a mutable slice of the entire vector.
1311    ///
1312    /// Equivalent to `&mut s[..]`.
1313    ///
1314    /// # Examples
1315    ///
1316    /// ```
1317    /// use std::io::{self, Read};
1318    /// let mut buffer = vec![0; 3];
1319    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1320    /// ```
1321    #[inline]
1322    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1323    pub fn as_mut_slice(&mut self) -> &mut [T] {
1324        self
1325    }
1326
1327    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1328    /// valid for zero sized reads if the vector didn't allocate.
1329    ///
1330    /// The caller must ensure that the vector outlives the pointer this
1331    /// function returns, or else it will end up pointing to garbage.
1332    /// Modifying the vector may cause its buffer to be reallocated,
1333    /// which would also make any pointers to it invalid.
1334    ///
1335    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1336    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1337    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1338    ///
1339    /// # Examples
1340    ///
1341    /// ```
1342    /// let x = vec![1, 2, 4];
1343    /// let x_ptr = x.as_ptr();
1344    ///
1345    /// unsafe {
1346    ///     for i in 0..x.len() {
1347    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1348    ///     }
1349    /// }
1350    /// ```
1351    ///
1352    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1353    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1354    #[inline]
1355    pub fn as_ptr(&self) -> *const T {
1356        // We shadow the slice method of the same name to avoid going through
1357        // `deref`, which creates an intermediate reference.
1358        self.buf.ptr()
1359    }
1360
1361    /// Returns an unsafe mutable pointer to the vector's buffer, or a dangling
1362    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1363    ///
1364    /// The caller must ensure that the vector outlives the pointer this
1365    /// function returns, or else it will end up pointing to garbage.
1366    /// Modifying the vector may cause its buffer to be reallocated,
1367    /// which would also make any pointers to it invalid.
1368    ///
1369    /// # Examples
1370    ///
1371    /// ```
1372    /// // Allocate vector big enough for 4 elements.
1373    /// let size = 4;
1374    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1375    /// let x_ptr = x.as_mut_ptr();
1376    ///
1377    /// // Initialize elements via raw pointer writes, then set length.
1378    /// unsafe {
1379    ///     for i in 0..size {
1380    ///         *x_ptr.add(i) = i as i32;
1381    ///     }
1382    ///     x.set_len(size);
1383    /// }
1384    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1385    /// ```
1386    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1387    #[inline]
1388    pub fn as_mut_ptr(&mut self) -> *mut T {
1389        // We shadow the slice method of the same name to avoid going through
1390        // `deref_mut`, which creates an intermediate reference.
1391        self.buf.ptr()
1392    }
1393
1394    /// Returns a reference to the underlying allocator.
1395    #[unstable(feature = "allocator_api", issue = "32838")]
1396    #[inline]
1397    pub fn allocator(&self) -> &A {
1398        self.buf.allocator()
1399    }
1400
1401    /// Forces the length of the vector to `new_len`.
1402    ///
1403    /// This is a low-level operation that maintains none of the normal
1404    /// invariants of the type. Normally changing the length of a vector
1405    /// is done using one of the safe operations instead, such as
1406    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1407    ///
1408    /// [`truncate`]: Vec::truncate
1409    /// [`resize`]: Vec::resize
1410    /// [`extend`]: Extend::extend
1411    /// [`clear`]: Vec::clear
1412    ///
1413    /// # Safety
1414    ///
1415    /// - `new_len` must be less than or equal to [`capacity()`].
1416    /// - The elements at `old_len..new_len` must be initialized.
1417    ///
1418    /// [`capacity()`]: Vec::capacity
1419    ///
1420    /// # Examples
1421    ///
1422    /// This method can be useful for situations in which the vector
1423    /// is serving as a buffer for other code, particularly over FFI:
1424    ///
1425    /// ```no_run
1426    /// # #![allow(dead_code)]
1427    /// # // This is just a minimal skeleton for the doc example;
1428    /// # // don't use this as a starting point for a real library.
1429    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1430    /// # const Z_OK: i32 = 0;
1431    /// # extern "C" {
1432    /// #     fn deflateGetDictionary(
1433    /// #         strm: *mut std::ffi::c_void,
1434    /// #         dictionary: *mut u8,
1435    /// #         dictLength: *mut usize,
1436    /// #     ) -> i32;
1437    /// # }
1438    /// # impl StreamWrapper {
1439    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1440    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1441    ///     let mut dict = Vec::with_capacity(32_768);
1442    ///     let mut dict_length = 0;
1443    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1444    ///     // 1. `dict_length` elements were initialized.
1445    ///     // 2. `dict_length` <= the capacity (32_768)
1446    ///     // which makes `set_len` safe to call.
1447    ///     unsafe {
1448    ///         // Make the FFI call...
1449    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1450    ///         if r == Z_OK {
1451    ///             // ...and update the length to what was initialized.
1452    ///             dict.set_len(dict_length);
1453    ///             Some(dict)
1454    ///         } else {
1455    ///             None
1456    ///         }
1457    ///     }
1458    /// }
1459    /// # }
1460    /// ```
1461    ///
1462    /// While the following example is sound, there is a memory leak since
1463    /// the inner vectors were not freed prior to the `set_len` call:
1464    ///
1465    /// ```
1466    /// let mut vec = vec![vec![1, 0, 0],
1467    ///                    vec![0, 1, 0],
1468    ///                    vec![0, 0, 1]];
1469    /// // SAFETY:
1470    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1471    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1472    /// unsafe {
1473    ///     vec.set_len(0);
1474    /// }
1475    /// ```
1476    ///
1477    /// Normally, here, one would use [`clear`] instead to correctly drop
1478    /// the contents and thus not leak memory.
1479    #[inline]
1480    #[stable(feature = "rust1", since = "1.0.0")]
1481    pub unsafe fn set_len(&mut self, new_len: usize) {
1482        debug_assert!(new_len <= self.capacity());
1483
1484        self.len = new_len;
1485    }
1486
1487    /// Removes an element from the vector and returns it.
1488    ///
1489    /// The removed element is replaced by the last element of the vector.
1490    ///
1491    /// This does not preserve ordering, but is *O*(1).
1492    /// If you need to preserve the element order, use [`remove`] instead.
1493    ///
1494    /// [`remove`]: Vec::remove
1495    ///
1496    /// # Panics
1497    ///
1498    /// Panics if `index` is out of bounds.
1499    ///
1500    /// # Examples
1501    ///
1502    /// ```
1503    /// let mut v = vec!["foo", "bar", "baz", "qux"];
1504    ///
1505    /// assert_eq!(v.swap_remove(1), "bar");
1506    /// assert_eq!(v, ["foo", "qux", "baz"]);
1507    ///
1508    /// assert_eq!(v.swap_remove(0), "foo");
1509    /// assert_eq!(v, ["baz", "qux"]);
1510    /// ```
1511    #[inline]
1512    #[stable(feature = "rust1", since = "1.0.0")]
1513    pub fn swap_remove(&mut self, index: usize) -> T {
1514        #[cold]
1515        #[inline(never)]
1516        fn assert_failed(index: usize, len: usize) -> ! {
1517            panic!("swap_remove index (is {index}) should be < len (is {len})");
1518        }
1519
1520        let len = self.len();
1521        if index >= len {
1522            assert_failed(index, len);
1523        }
1524        unsafe {
1525            // We replace self[index] with the last element. Note that if the
1526            // bounds check above succeeds there must be a last element (which
1527            // can be self[index] itself).
1528            let value = ptr::read(self.as_ptr().add(index));
1529            let base_ptr = self.as_mut_ptr();
1530            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1531            self.set_len(len - 1);
1532            value
1533        }
1534    }
1535
1536    /// Inserts an element at position `index` within the vector, shifting all
1537    /// elements after it to the right.
1538    ///
1539    /// # Panics
1540    ///
1541    /// Panics if `index > len`.
1542    ///
1543    /// # Examples
1544    ///
1545    /// ```
1546    /// let mut vec = vec![1, 2, 3];
1547    /// vec.insert(1, 4);
1548    /// assert_eq!(vec, [1, 4, 2, 3]);
1549    /// vec.insert(4, 5);
1550    /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1551    /// ```
1552    #[cfg(not(no_global_oom_handling))]
1553    #[stable(feature = "rust1", since = "1.0.0")]
1554    pub fn insert(&mut self, index: usize, element: T) {
1555        #[cold]
1556        #[inline(never)]
1557        fn assert_failed(index: usize, len: usize) -> ! {
1558            panic!("insertion index (is {index}) should be <= len (is {len})");
1559        }
1560
1561        let len = self.len();
1562
1563        // space for the new element
1564        if len == self.buf.capacity() {
1565            self.reserve(1);
1566        }
1567
1568        unsafe {
1569            // infallible
1570            // The spot to put the new value
1571            {
1572                let p = self.as_mut_ptr().add(index);
1573                if index < len {
1574                    // Shift everything over to make space. (Duplicating the
1575                    // `index`th element into two consecutive places.)
1576                    ptr::copy(p, p.add(1), len - index);
1577                } else if index == len {
1578                    // No elements need shifting.
1579                } else {
1580                    assert_failed(index, len);
1581                }
1582                // Write it in, overwriting the first copy of the `index`th
1583                // element.
1584                ptr::write(p, element);
1585            }
1586            self.set_len(len + 1);
1587        }
1588    }
1589
1590    /// Removes and returns the element at position `index` within the vector,
1591    /// shifting all elements after it to the left.
1592    ///
1593    /// Note: Because this shifts over the remaining elements, it has a
1594    /// worst-case performance of *O*(*n*). If you don't need the order of elements
1595    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1596    /// elements from the beginning of the `Vec`, consider using
1597    /// [`VecDeque::pop_front`] instead.
1598    ///
1599    /// [`swap_remove`]: Vec::swap_remove
1600    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1601    ///
1602    /// # Panics
1603    ///
1604    /// Panics if `index` is out of bounds.
1605    ///
1606    /// # Examples
1607    ///
1608    /// ```
1609    /// let mut v = vec![1, 2, 3];
1610    /// assert_eq!(v.remove(1), 2);
1611    /// assert_eq!(v, [1, 3]);
1612    /// ```
1613    #[stable(feature = "rust1", since = "1.0.0")]
1614    #[track_caller]
1615    pub fn remove(&mut self, index: usize) -> T {
1616        #[cold]
1617        #[inline(never)]
1618        #[track_caller]
1619        fn assert_failed(index: usize, len: usize) -> ! {
1620            panic!("removal index (is {index}) should be < len (is {len})");
1621        }
1622
1623        let len = self.len();
1624        if index >= len {
1625            assert_failed(index, len);
1626        }
1627        unsafe {
1628            // infallible
1629            let ret;
1630            {
1631                // the place we are taking from.
1632                let ptr = self.as_mut_ptr().add(index);
1633                // copy it out, unsafely having a copy of the value on
1634                // the stack and in the vector at the same time.
1635                ret = ptr::read(ptr);
1636
1637                // Shift everything down to fill in that spot.
1638                ptr::copy(ptr.add(1), ptr, len - index - 1);
1639            }
1640            self.set_len(len - 1);
1641            ret
1642        }
1643    }
1644
1645    /// Retains only the elements specified by the predicate.
1646    ///
1647    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1648    /// This method operates in place, visiting each element exactly once in the
1649    /// original order, and preserves the order of the retained elements.
1650    ///
1651    /// # Examples
1652    ///
1653    /// ```
1654    /// let mut vec = vec![1, 2, 3, 4];
1655    /// vec.retain(|&x| x % 2 == 0);
1656    /// assert_eq!(vec, [2, 4]);
1657    /// ```
1658    ///
1659    /// Because the elements are visited exactly once in the original order,
1660    /// external state may be used to decide which elements to keep.
1661    ///
1662    /// ```
1663    /// let mut vec = vec![1, 2, 3, 4, 5];
1664    /// let keep = [false, true, true, false, true];
1665    /// let mut iter = keep.iter();
1666    /// vec.retain(|_| *iter.next().unwrap());
1667    /// assert_eq!(vec, [2, 3, 5]);
1668    /// ```
1669    #[stable(feature = "rust1", since = "1.0.0")]
1670    pub fn retain<F>(&mut self, mut f: F)
1671    where
1672        F: FnMut(&T) -> bool,
1673    {
1674        self.retain_mut(|elem| f(elem));
1675    }
1676
1677    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1678    ///
1679    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1680    /// This method operates in place, visiting each element exactly once in the
1681    /// original order, and preserves the order of the retained elements.
1682    ///
1683    /// # Examples
1684    ///
1685    /// ```
1686    /// let mut vec = vec![1, 2, 3, 4];
1687    /// vec.retain_mut(|x| if *x <= 3 {
1688    ///     *x += 1;
1689    ///     true
1690    /// } else {
1691    ///     false
1692    /// });
1693    /// assert_eq!(vec, [2, 3, 4]);
1694    /// ```
1695    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
1696    pub fn retain_mut<F>(&mut self, mut f: F)
1697    where
1698        F: FnMut(&mut T) -> bool,
1699    {
1700        let original_len = self.len();
1701        // Avoid double drop if the drop guard is not executed,
1702        // since we may make some holes during the process.
1703        unsafe { self.set_len(0) };
1704
1705        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1706        //      |<-              processed len   ->| ^- next to check
1707        //                  |<-  deleted cnt     ->|
1708        //      |<-              original_len                          ->|
1709        // Kept: Elements which predicate returns true on.
1710        // Hole: Moved or dropped element slot.
1711        // Unchecked: Unchecked valid elements.
1712        //
1713        // This drop guard will be invoked when predicate or `drop` of element panicked.
1714        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1715        // In cases when predicate and `drop` never panick, it will be optimized out.
1716        struct BackshiftOnDrop<'a, T, A: Allocator> {
1717            v: &'a mut Vec<T, A>,
1718            processed_len: usize,
1719            deleted_cnt: usize,
1720            original_len: usize,
1721        }
1722
1723        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1724            fn drop(&mut self) {
1725                if self.deleted_cnt > 0 {
1726                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
1727                    unsafe {
1728                        ptr::copy(
1729                            self.v.as_ptr().add(self.processed_len),
1730                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1731                            self.original_len - self.processed_len,
1732                        );
1733                    }
1734                }
1735                // SAFETY: After filling holes, all items are in contiguous memory.
1736                unsafe {
1737                    self.v.set_len(self.original_len - self.deleted_cnt);
1738                }
1739            }
1740        }
1741
1742        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1743
1744        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1745            original_len: usize,
1746            f: &mut F,
1747            g: &mut BackshiftOnDrop<'_, T, A>,
1748        ) where
1749            F: FnMut(&mut T) -> bool,
1750        {
1751            while g.processed_len != original_len {
1752                // SAFETY: Unchecked element must be valid.
1753                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1754                if !f(cur) {
1755                    // Advance early to avoid double drop if `drop_in_place` panicked.
1756                    g.processed_len += 1;
1757                    g.deleted_cnt += 1;
1758                    // SAFETY: We never touch this element again after dropped.
1759                    unsafe { ptr::drop_in_place(cur) };
1760                    // We already advanced the counter.
1761                    if DELETED {
1762                        continue;
1763                    } else {
1764                        break;
1765                    }
1766                }
1767                if DELETED {
1768                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1769                    // We use copy for move, and never touch this element again.
1770                    unsafe {
1771                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1772                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
1773                    }
1774                }
1775                g.processed_len += 1;
1776            }
1777        }
1778
1779        // Stage 1: Nothing was deleted.
1780        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1781
1782        // Stage 2: Some elements were deleted.
1783        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1784
1785        // All item are processed. This can be optimized to `set_len` by LLVM.
1786        drop(g);
1787    }
1788
1789    /// Removes all but the first of consecutive elements in the vector that resolve to the same
1790    /// key.
1791    ///
1792    /// If the vector is sorted, this removes all duplicates.
1793    ///
1794    /// # Examples
1795    ///
1796    /// ```
1797    /// let mut vec = vec![10, 20, 21, 30, 20];
1798    ///
1799    /// vec.dedup_by_key(|i| *i / 10);
1800    ///
1801    /// assert_eq!(vec, [10, 20, 30, 20]);
1802    /// ```
1803    #[stable(feature = "dedup_by", since = "1.16.0")]
1804    #[inline]
1805    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1806    where
1807        F: FnMut(&mut T) -> K,
1808        K: PartialEq,
1809    {
1810        self.dedup_by(|a, b| key(a) == key(b))
1811    }
1812
1813    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1814    /// relation.
1815    ///
1816    /// The `same_bucket` function is passed references to two elements from the vector and
1817    /// must determine if the elements compare equal. The elements are passed in opposite order
1818    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1819    ///
1820    /// If the vector is sorted, this removes all duplicates.
1821    ///
1822    /// # Examples
1823    ///
1824    /// ```
1825    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1826    ///
1827    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1828    ///
1829    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1830    /// ```
1831    #[stable(feature = "dedup_by", since = "1.16.0")]
1832    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1833    where
1834        F: FnMut(&mut T, &mut T) -> bool,
1835    {
1836        let len = self.len();
1837        if len <= 1 {
1838            return;
1839        }
1840
1841        /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1842        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1843            /* Offset of the element we want to check if it is duplicate */
1844            read: usize,
1845
1846            /* Offset of the place where we want to place the non-duplicate
1847             * when we find it. */
1848            write: usize,
1849
1850            /* The Vec that would need correction if `same_bucket` panicked */
1851            vec: &'a mut Vec<T, A>,
1852        }
1853
1854        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1855            fn drop(&mut self) {
1856                /* This code gets executed when `same_bucket` panics */
1857
1858                /* SAFETY: invariant guarantees that `read - write`
1859                 * and `len - read` never overflow and that the copy is always
1860                 * in-bounds. */
1861                unsafe {
1862                    let ptr = self.vec.as_mut_ptr();
1863                    let len = self.vec.len();
1864
1865                    /* How many items were left when `same_bucket` panicked.
1866                     * Basically vec[read..].len() */
1867                    let items_left = len.wrapping_sub(self.read);
1868
1869                    /* Pointer to first item in vec[write..write+items_left] slice */
1870                    let dropped_ptr = ptr.add(self.write);
1871                    /* Pointer to first item in vec[read..] slice */
1872                    let valid_ptr = ptr.add(self.read);
1873
1874                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1875                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1876                    ptr::copy(valid_ptr, dropped_ptr, items_left);
1877
1878                    /* How many items have been already dropped
1879                     * Basically vec[read..write].len() */
1880                    let dropped = self.read.wrapping_sub(self.write);
1881
1882                    self.vec.set_len(len - dropped);
1883                }
1884            }
1885        }
1886
1887        let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1888        let ptr = gap.vec.as_mut_ptr();
1889
1890        /* Drop items while going through Vec, it should be more efficient than
1891         * doing slice partition_dedup + truncate */
1892
1893        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1894         * are always in-bounds and read_ptr never aliases prev_ptr */
1895        unsafe {
1896            while gap.read < len {
1897                let read_ptr = ptr.add(gap.read);
1898                let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1899
1900                if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1901                    // Increase `gap.read` now since the drop may panic.
1902                    gap.read += 1;
1903                    /* We have found duplicate, drop it in-place */
1904                    ptr::drop_in_place(read_ptr);
1905                } else {
1906                    let write_ptr = ptr.add(gap.write);
1907
1908                    /* Because `read_ptr` can be equal to `write_ptr`, we either
1909                     * have to use `copy` or conditional `copy_nonoverlapping`.
1910                     * Looks like the first option is faster. */
1911                    ptr::copy(read_ptr, write_ptr, 1);
1912
1913                    /* We have filled that place, so go further */
1914                    gap.write += 1;
1915                    gap.read += 1;
1916                }
1917            }
1918
1919            /* Technically we could let `gap` clean up with its Drop, but
1920             * when `same_bucket` is guaranteed to not panic, this bloats a little
1921             * the codegen, so we just do it manually */
1922            gap.vec.set_len(gap.write);
1923            mem::forget(gap);
1924        }
1925    }
1926
1927    /// Appends an element to the back of a collection.
1928    ///
1929    /// # Panics
1930    ///
1931    /// Panics if the new capacity exceeds `isize::MAX` bytes.
1932    ///
1933    /// # Examples
1934    ///
1935    /// ```
1936    /// let mut vec = vec![1, 2];
1937    /// vec.push(3);
1938    /// assert_eq!(vec, [1, 2, 3]);
1939    /// ```
1940    #[cfg(not(no_global_oom_handling))]
1941    #[inline]
1942    #[stable(feature = "rust1", since = "1.0.0")]
1943    pub fn push(&mut self, value: T) {
1944        // This will panic or abort if we would allocate > isize::MAX bytes
1945        // or if the length increment would overflow for zero-sized types.
1946        if self.len == self.buf.capacity() {
1947            self.buf.reserve_for_push(self.len);
1948        }
1949        unsafe {
1950            let end = self.as_mut_ptr().add(self.len);
1951            ptr::write(end, value);
1952            self.len += 1;
1953        }
1954    }
1955
1956    /// Tries to append an element to the back of a collection.
1957    ///
1958    /// # Examples
1959    ///
1960    /// ```
1961    /// let mut vec = vec![1, 2];
1962    /// vec.try_push(3).unwrap();
1963    /// assert_eq!(vec, [1, 2, 3]);
1964    /// ```
1965    #[inline]
1966    #[stable(feature = "kernel", since = "1.0.0")]
1967    pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1968        if self.len == self.buf.capacity() {
1969            self.buf.try_reserve_for_push(self.len)?;
1970        }
1971        unsafe {
1972            let end = self.as_mut_ptr().add(self.len);
1973            ptr::write(end, value);
1974            self.len += 1;
1975        }
1976        Ok(())
1977    }
1978
1979    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
1980    /// with the element.
1981    ///
1982    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
1983    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
1984    ///
1985    /// [`push`]: Vec::push
1986    /// [`reserve`]: Vec::reserve
1987    /// [`try_reserve`]: Vec::try_reserve
1988    ///
1989    /// # Examples
1990    ///
1991    /// A manual, panic-free alternative to [`FromIterator`]:
1992    ///
1993    /// ```
1994    /// #![feature(vec_push_within_capacity)]
1995    ///
1996    /// use std::collections::TryReserveError;
1997    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
1998    ///     let mut vec = Vec::new();
1999    ///     for value in iter {
2000    ///         if let Err(value) = vec.push_within_capacity(value) {
2001    ///             vec.try_reserve(1)?;
2002    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2003    ///             let _ = vec.push_within_capacity(value);
2004    ///         }
2005    ///     }
2006    ///     Ok(vec)
2007    /// }
2008    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2009    /// ```
2010    #[inline]
2011    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2012    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2013        if self.len == self.buf.capacity() {
2014            return Err(value);
2015        }
2016        unsafe {
2017            let end = self.as_mut_ptr().add(self.len);
2018            ptr::write(end, value);
2019            self.len += 1;
2020        }
2021        Ok(())
2022    }
2023
2024    /// Removes the last element from a vector and returns it, or [`None`] if it
2025    /// is empty.
2026    ///
2027    /// If you'd like to pop the first element, consider using
2028    /// [`VecDeque::pop_front`] instead.
2029    ///
2030    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2031    ///
2032    /// # Examples
2033    ///
2034    /// ```
2035    /// let mut vec = vec![1, 2, 3];
2036    /// assert_eq!(vec.pop(), Some(3));
2037    /// assert_eq!(vec, [1, 2]);
2038    /// ```
2039    #[inline]
2040    #[stable(feature = "rust1", since = "1.0.0")]
2041    pub fn pop(&mut self) -> Option<T> {
2042        if self.len == 0 {
2043            None
2044        } else {
2045            unsafe {
2046                self.len -= 1;
2047                Some(ptr::read(self.as_ptr().add(self.len())))
2048            }
2049        }
2050    }
2051
2052    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2053    ///
2054    /// # Panics
2055    ///
2056    /// Panics if the new capacity exceeds `isize::MAX` bytes.
2057    ///
2058    /// # Examples
2059    ///
2060    /// ```
2061    /// let mut vec = vec![1, 2, 3];
2062    /// let mut vec2 = vec![4, 5, 6];
2063    /// vec.append(&mut vec2);
2064    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2065    /// assert_eq!(vec2, []);
2066    /// ```
2067    #[cfg(not(no_global_oom_handling))]
2068    #[inline]
2069    #[stable(feature = "append", since = "1.4.0")]
2070    pub fn append(&mut self, other: &mut Self) {
2071        unsafe {
2072            self.append_elements(other.as_slice() as _);
2073            other.set_len(0);
2074        }
2075    }
2076
2077    /// Appends elements to `self` from other buffer.
2078    #[cfg(not(no_global_oom_handling))]
2079    #[inline]
2080    unsafe fn append_elements(&mut self, other: *const [T]) {
2081        let count = unsafe { (*other).len() };
2082        self.reserve(count);
2083        let len = self.len();
2084        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2085        self.len += count;
2086    }
2087
2088    /// Tries to append elements to `self` from other buffer.
2089    #[inline]
2090    unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
2091        let count = unsafe { (*other).len() };
2092        self.try_reserve(count)?;
2093        let len = self.len();
2094        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2095        self.len += count;
2096        Ok(())
2097    }
2098
2099    /// Removes the specified range from the vector in bulk, returning all
2100    /// removed elements as an iterator. If the iterator is dropped before
2101    /// being fully consumed, it drops the remaining removed elements.
2102    ///
2103    /// The returned iterator keeps a mutable borrow on the vector to optimize
2104    /// its implementation.
2105    ///
2106    /// # Panics
2107    ///
2108    /// Panics if the starting point is greater than the end point or if
2109    /// the end point is greater than the length of the vector.
2110    ///
2111    /// # Leaking
2112    ///
2113    /// If the returned iterator goes out of scope without being dropped (due to
2114    /// [`mem::forget`], for example), the vector may have lost and leaked
2115    /// elements arbitrarily, including elements outside the range.
2116    ///
2117    /// # Examples
2118    ///
2119    /// ```
2120    /// let mut v = vec![1, 2, 3];
2121    /// let u: Vec<_> = v.drain(1..).collect();
2122    /// assert_eq!(v, &[1]);
2123    /// assert_eq!(u, &[2, 3]);
2124    ///
2125    /// // A full range clears the vector, like `clear()` does
2126    /// v.drain(..);
2127    /// assert_eq!(v, &[]);
2128    /// ```
2129    #[stable(feature = "drain", since = "1.6.0")]
2130    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2131    where
2132        R: RangeBounds<usize>,
2133    {
2134        // Memory safety
2135        //
2136        // When the Drain is first created, it shortens the length of
2137        // the source vector to make sure no uninitialized or moved-from elements
2138        // are accessible at all if the Drain's destructor never gets to run.
2139        //
2140        // Drain will ptr::read out the values to remove.
2141        // When finished, remaining tail of the vec is copied back to cover
2142        // the hole, and the vector length is restored to the new length.
2143        //
2144        let len = self.len();
2145        let Range { start, end } = slice::range(range, ..len);
2146
2147        unsafe {
2148            // set self.vec length's to start, to be safe in case Drain is leaked
2149            self.set_len(start);
2150            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2151            Drain {
2152                tail_start: end,
2153                tail_len: len - end,
2154                iter: range_slice.iter(),
2155                vec: NonNull::from(self),
2156            }
2157        }
2158    }
2159
2160    /// Clears the vector, removing all values.
2161    ///
2162    /// Note that this method has no effect on the allocated capacity
2163    /// of the vector.
2164    ///
2165    /// # Examples
2166    ///
2167    /// ```
2168    /// let mut v = vec![1, 2, 3];
2169    ///
2170    /// v.clear();
2171    ///
2172    /// assert!(v.is_empty());
2173    /// ```
2174    #[inline]
2175    #[stable(feature = "rust1", since = "1.0.0")]
2176    pub fn clear(&mut self) {
2177        let elems: *mut [T] = self.as_mut_slice();
2178
2179        // SAFETY:
2180        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2181        // - Setting `self.len` before calling `drop_in_place` means that,
2182        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2183        //   do nothing (leaking the rest of the elements) instead of dropping
2184        //   some twice.
2185        unsafe {
2186            self.len = 0;
2187            ptr::drop_in_place(elems);
2188        }
2189    }
2190
2191    /// Returns the number of elements in the vector, also referred to
2192    /// as its 'length'.
2193    ///
2194    /// # Examples
2195    ///
2196    /// ```
2197    /// let a = vec![1, 2, 3];
2198    /// assert_eq!(a.len(), 3);
2199    /// ```
2200    #[inline]
2201    #[stable(feature = "rust1", since = "1.0.0")]
2202    pub fn len(&self) -> usize {
2203        self.len
2204    }
2205
2206    /// Returns `true` if the vector contains no elements.
2207    ///
2208    /// # Examples
2209    ///
2210    /// ```
2211    /// let mut v = Vec::new();
2212    /// assert!(v.is_empty());
2213    ///
2214    /// v.push(1);
2215    /// assert!(!v.is_empty());
2216    /// ```
2217    #[stable(feature = "rust1", since = "1.0.0")]
2218    pub fn is_empty(&self) -> bool {
2219        self.len() == 0
2220    }
2221
2222    /// Splits the collection into two at the given index.
2223    ///
2224    /// Returns a newly allocated vector containing the elements in the range
2225    /// `[at, len)`. After the call, the original vector will be left containing
2226    /// the elements `[0, at)` with its previous capacity unchanged.
2227    ///
2228    /// # Panics
2229    ///
2230    /// Panics if `at > len`.
2231    ///
2232    /// # Examples
2233    ///
2234    /// ```
2235    /// let mut vec = vec![1, 2, 3];
2236    /// let vec2 = vec.split_off(1);
2237    /// assert_eq!(vec, [1]);
2238    /// assert_eq!(vec2, [2, 3]);
2239    /// ```
2240    #[cfg(not(no_global_oom_handling))]
2241    #[inline]
2242    #[must_use = "use `.truncate()` if you don't need the other half"]
2243    #[stable(feature = "split_off", since = "1.4.0")]
2244    pub fn split_off(&mut self, at: usize) -> Self
2245    where
2246        A: Clone,
2247    {
2248        #[cold]
2249        #[inline(never)]
2250        fn assert_failed(at: usize, len: usize) -> ! {
2251            panic!("`at` split index (is {at}) should be <= len (is {len})");
2252        }
2253
2254        if at > self.len() {
2255            assert_failed(at, self.len());
2256        }
2257
2258        if at == 0 {
2259            // the new vector can take over the original buffer and avoid the copy
2260            return mem::replace(
2261                self,
2262                Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2263            );
2264        }
2265
2266        let other_len = self.len - at;
2267        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2268
2269        // Unsafely `set_len` and copy items to `other`.
2270        unsafe {
2271            self.set_len(at);
2272            other.set_len(other_len);
2273
2274            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2275        }
2276        other
2277    }
2278
2279    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2280    ///
2281    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2282    /// difference, with each additional slot filled with the result of
2283    /// calling the closure `f`. The return values from `f` will end up
2284    /// in the `Vec` in the order they have been generated.
2285    ///
2286    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2287    ///
2288    /// This method uses a closure to create new values on every push. If
2289    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2290    /// want to use the [`Default`] trait to generate values, you can
2291    /// pass [`Default::default`] as the second argument.
2292    ///
2293    /// # Examples
2294    ///
2295    /// ```
2296    /// let mut vec = vec![1, 2, 3];
2297    /// vec.resize_with(5, Default::default);
2298    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2299    ///
2300    /// let mut vec = vec![];
2301    /// let mut p = 1;
2302    /// vec.resize_with(4, || { p *= 2; p });
2303    /// assert_eq!(vec, [2, 4, 8, 16]);
2304    /// ```
2305    #[cfg(not(no_global_oom_handling))]
2306    #[stable(feature = "vec_resize_with", since = "1.33.0")]
2307    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2308    where
2309        F: FnMut() -> T,
2310    {
2311        let len = self.len();
2312        if new_len > len {
2313            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
2314        } else {
2315            self.truncate(new_len);
2316        }
2317    }
2318
2319    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2320    /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2321    /// `'a`. If the type has only static references, or none at all, then this
2322    /// may be chosen to be `'static`.
2323    ///
2324    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2325    /// so the leaked allocation may include unused capacity that is not part
2326    /// of the returned slice.
2327    ///
2328    /// This function is mainly useful for data that lives for the remainder of
2329    /// the program's life. Dropping the returned reference will cause a memory
2330    /// leak.
2331    ///
2332    /// # Examples
2333    ///
2334    /// Simple usage:
2335    ///
2336    /// ```
2337    /// let x = vec![1, 2, 3];
2338    /// let static_ref: &'static mut [usize] = x.leak();
2339    /// static_ref[0] += 1;
2340    /// assert_eq!(static_ref, &[2, 2, 3]);
2341    /// ```
2342    #[stable(feature = "vec_leak", since = "1.47.0")]
2343    #[inline]
2344    pub fn leak<'a>(self) -> &'a mut [T]
2345    where
2346        A: 'a,
2347    {
2348        let mut me = ManuallyDrop::new(self);
2349        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2350    }
2351
2352    /// Returns the remaining spare capacity of the vector as a slice of
2353    /// `MaybeUninit<T>`.
2354    ///
2355    /// The returned slice can be used to fill the vector with data (e.g. by
2356    /// reading from a file) before marking the data as initialized using the
2357    /// [`set_len`] method.
2358    ///
2359    /// [`set_len`]: Vec::set_len
2360    ///
2361    /// # Examples
2362    ///
2363    /// ```
2364    /// // Allocate vector big enough for 10 elements.
2365    /// let mut v = Vec::with_capacity(10);
2366    ///
2367    /// // Fill in the first 3 elements.
2368    /// let uninit = v.spare_capacity_mut();
2369    /// uninit[0].write(0);
2370    /// uninit[1].write(1);
2371    /// uninit[2].write(2);
2372    ///
2373    /// // Mark the first 3 elements of the vector as being initialized.
2374    /// unsafe {
2375    ///     v.set_len(3);
2376    /// }
2377    ///
2378    /// assert_eq!(&v, &[0, 1, 2]);
2379    /// ```
2380    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2381    #[inline]
2382    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2383        // Note:
2384        // This method is not implemented in terms of `split_at_spare_mut`,
2385        // to prevent invalidation of pointers to the buffer.
2386        unsafe {
2387            slice::from_raw_parts_mut(
2388                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2389                self.buf.capacity() - self.len,
2390            )
2391        }
2392    }
2393
2394    /// Returns vector content as a slice of `T`, along with the remaining spare
2395    /// capacity of the vector as a slice of `MaybeUninit<T>`.
2396    ///
2397    /// The returned spare capacity slice can be used to fill the vector with data
2398    /// (e.g. by reading from a file) before marking the data as initialized using
2399    /// the [`set_len`] method.
2400    ///
2401    /// [`set_len`]: Vec::set_len
2402    ///
2403    /// Note that this is a low-level API, which should be used with care for
2404    /// optimization purposes. If you need to append data to a `Vec`
2405    /// you can use [`push`], [`extend`], [`extend_from_slice`],
2406    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2407    /// [`resize_with`], depending on your exact needs.
2408    ///
2409    /// [`push`]: Vec::push
2410    /// [`extend`]: Vec::extend
2411    /// [`extend_from_slice`]: Vec::extend_from_slice
2412    /// [`extend_from_within`]: Vec::extend_from_within
2413    /// [`insert`]: Vec::insert
2414    /// [`append`]: Vec::append
2415    /// [`resize`]: Vec::resize
2416    /// [`resize_with`]: Vec::resize_with
2417    ///
2418    /// # Examples
2419    ///
2420    /// ```
2421    /// #![feature(vec_split_at_spare)]
2422    ///
2423    /// let mut v = vec![1, 1, 2];
2424    ///
2425    /// // Reserve additional space big enough for 10 elements.
2426    /// v.reserve(10);
2427    ///
2428    /// let (init, uninit) = v.split_at_spare_mut();
2429    /// let sum = init.iter().copied().sum::<u32>();
2430    ///
2431    /// // Fill in the next 4 elements.
2432    /// uninit[0].write(sum);
2433    /// uninit[1].write(sum * 2);
2434    /// uninit[2].write(sum * 3);
2435    /// uninit[3].write(sum * 4);
2436    ///
2437    /// // Mark the 4 elements of the vector as being initialized.
2438    /// unsafe {
2439    ///     let len = v.len();
2440    ///     v.set_len(len + 4);
2441    /// }
2442    ///
2443    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2444    /// ```
2445    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2446    #[inline]
2447    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2448        // SAFETY:
2449        // - len is ignored and so never changed
2450        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2451        (init, spare)
2452    }
2453
2454    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2455    ///
2456    /// This method provides unique access to all vec parts at once in `extend_from_within`.
2457    unsafe fn split_at_spare_mut_with_len(
2458        &mut self,
2459    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2460        let ptr = self.as_mut_ptr();
2461        // SAFETY:
2462        // - `ptr` is guaranteed to be valid for `self.len` elements
2463        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2464        // uninitialized
2465        let spare_ptr = unsafe { ptr.add(self.len) };
2466        let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2467        let spare_len = self.buf.capacity() - self.len;
2468
2469        // SAFETY:
2470        // - `ptr` is guaranteed to be valid for `self.len` elements
2471        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2472        unsafe {
2473            let initialized = slice::from_raw_parts_mut(ptr, self.len);
2474            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2475
2476            (initialized, spare, &mut self.len)
2477        }
2478    }
2479}
2480
2481impl<T: Clone, A: Allocator> Vec<T, A> {
2482    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2483    ///
2484    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2485    /// difference, with each additional slot filled with `value`.
2486    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2487    ///
2488    /// This method requires `T` to implement [`Clone`],
2489    /// in order to be able to clone the passed value.
2490    /// If you need more flexibility (or want to rely on [`Default`] instead of
2491    /// [`Clone`]), use [`Vec::resize_with`].
2492    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2493    ///
2494    /// # Examples
2495    ///
2496    /// ```
2497    /// let mut vec = vec!["hello"];
2498    /// vec.resize(3, "world");
2499    /// assert_eq!(vec, ["hello", "world", "world"]);
2500    ///
2501    /// let mut vec = vec![1, 2, 3, 4];
2502    /// vec.resize(2, 0);
2503    /// assert_eq!(vec, [1, 2]);
2504    /// ```
2505    #[cfg(not(no_global_oom_handling))]
2506    #[stable(feature = "vec_resize", since = "1.5.0")]
2507    pub fn resize(&mut self, new_len: usize, value: T) {
2508        let len = self.len();
2509
2510        if new_len > len {
2511            self.extend_with(new_len - len, value)
2512        } else {
2513            self.truncate(new_len);
2514        }
2515    }
2516
2517    /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2518    ///
2519    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2520    /// difference, with each additional slot filled with `value`.
2521    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2522    ///
2523    /// This method requires `T` to implement [`Clone`],
2524    /// in order to be able to clone the passed value.
2525    /// If you need more flexibility (or want to rely on [`Default`] instead of
2526    /// [`Clone`]), use [`Vec::resize_with`].
2527    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2528    ///
2529    /// # Examples
2530    ///
2531    /// ```
2532    /// let mut vec = vec!["hello"];
2533    /// vec.try_resize(3, "world").unwrap();
2534    /// assert_eq!(vec, ["hello", "world", "world"]);
2535    ///
2536    /// let mut vec = vec![1, 2, 3, 4];
2537    /// vec.try_resize(2, 0).unwrap();
2538    /// assert_eq!(vec, [1, 2]);
2539    ///
2540    /// let mut vec = vec![42];
2541    /// let result = vec.try_resize(usize::MAX, 0);
2542    /// assert!(result.is_err());
2543    /// ```
2544    #[stable(feature = "kernel", since = "1.0.0")]
2545    pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2546        let len = self.len();
2547
2548        if new_len > len {
2549            self.try_extend_with(new_len - len, value)
2550        } else {
2551            self.truncate(new_len);
2552            Ok(())
2553        }
2554    }
2555
2556    /// Clones and appends all elements in a slice to the `Vec`.
2557    ///
2558    /// Iterates over the slice `other`, clones each element, and then appends
2559    /// it to this `Vec`. The `other` slice is traversed in-order.
2560    ///
2561    /// Note that this function is same as [`extend`] except that it is
2562    /// specialized to work with slices instead. If and when Rust gets
2563    /// specialization this function will likely be deprecated (but still
2564    /// available).
2565    ///
2566    /// # Examples
2567    ///
2568    /// ```
2569    /// let mut vec = vec![1];
2570    /// vec.extend_from_slice(&[2, 3, 4]);
2571    /// assert_eq!(vec, [1, 2, 3, 4]);
2572    /// ```
2573    ///
2574    /// [`extend`]: Vec::extend
2575    #[cfg(not(no_global_oom_handling))]
2576    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2577    pub fn extend_from_slice(&mut self, other: &[T]) {
2578        self.spec_extend(other.iter())
2579    }
2580
2581    /// Tries to clone and append all elements in a slice to the `Vec`.
2582    ///
2583    /// Iterates over the slice `other`, clones each element, and then appends
2584    /// it to this `Vec`. The `other` slice is traversed in-order.
2585    ///
2586    /// Note that this function is same as [`extend`] except that it is
2587    /// specialized to work with slices instead. If and when Rust gets
2588    /// specialization this function will likely be deprecated (but still
2589    /// available).
2590    ///
2591    /// # Examples
2592    ///
2593    /// ```
2594    /// let mut vec = vec![1];
2595    /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2596    /// assert_eq!(vec, [1, 2, 3, 4]);
2597    /// ```
2598    ///
2599    /// [`extend`]: Vec::extend
2600    #[stable(feature = "kernel", since = "1.0.0")]
2601    pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2602        self.try_spec_extend(other.iter())
2603    }
2604
2605    /// Copies elements from `src` range to the end of the vector.
2606    ///
2607    /// # Panics
2608    ///
2609    /// Panics if the starting point is greater than the end point or if
2610    /// the end point is greater than the length of the vector.
2611    ///
2612    /// # Examples
2613    ///
2614    /// ```
2615    /// let mut vec = vec![0, 1, 2, 3, 4];
2616    ///
2617    /// vec.extend_from_within(2..);
2618    /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2619    ///
2620    /// vec.extend_from_within(..2);
2621    /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2622    ///
2623    /// vec.extend_from_within(4..8);
2624    /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2625    /// ```
2626    #[cfg(not(no_global_oom_handling))]
2627    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
2628    pub fn extend_from_within<R>(&mut self, src: R)
2629    where
2630        R: RangeBounds<usize>,
2631    {
2632        let range = slice::range(src, ..self.len());
2633        self.reserve(range.len());
2634
2635        // SAFETY:
2636        // - `slice::range` guarantees that the given range is valid for indexing self
2637        unsafe {
2638            self.spec_extend_from_within(range);
2639        }
2640    }
2641}
2642
2643impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2644    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2645    ///
2646    /// # Panics
2647    ///
2648    /// Panics if the length of the resulting vector would overflow a `usize`.
2649    ///
2650    /// This is only possible when flattening a vector of arrays of zero-sized
2651    /// types, and thus tends to be irrelevant in practice. If
2652    /// `size_of::<T>() > 0`, this will never panic.
2653    ///
2654    /// # Examples
2655    ///
2656    /// ```
2657    /// #![feature(slice_flatten)]
2658    ///
2659    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2660    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2661    ///
2662    /// let mut flattened = vec.into_flattened();
2663    /// assert_eq!(flattened.pop(), Some(6));
2664    /// ```
2665    #[unstable(feature = "slice_flatten", issue = "95629")]
2666    pub fn into_flattened(self) -> Vec<T, A> {
2667        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2668        let (new_len, new_cap) = if T::IS_ZST {
2669            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2670        } else {
2671            // SAFETY:
2672            // - `cap * N` cannot overflow because the allocation is already in
2673            // the address space.
2674            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2675            // valid elements in the allocation.
2676            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2677        };
2678        // SAFETY:
2679        // - `ptr` was allocated by `self`
2680        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2681        // - `new_cap` refers to the same sized allocation as `cap` because
2682        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2683        // - `len` <= `cap`, so `len * N` <= `cap * N`.
2684        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2685    }
2686}
2687
2688impl<T: Clone, A: Allocator> Vec<T, A> {
2689    #[cfg(not(no_global_oom_handling))]
2690    /// Extend the vector by `n` clones of value.
2691    fn extend_with(&mut self, n: usize, value: T) {
2692        self.reserve(n);
2693
2694        unsafe {
2695            let mut ptr = self.as_mut_ptr().add(self.len());
2696            // Use SetLenOnDrop to work around bug where compiler
2697            // might not realize the store through `ptr` through self.set_len()
2698            // don't alias.
2699            let mut local_len = SetLenOnDrop::new(&mut self.len);
2700
2701            // Write all elements except the last one
2702            for _ in 1..n {
2703                ptr::write(ptr, value.clone());
2704                ptr = ptr.add(1);
2705                // Increment the length in every step in case clone() panics
2706                local_len.increment_len(1);
2707            }
2708
2709            if n > 0 {
2710                // We can write the last element directly without cloning needlessly
2711                ptr::write(ptr, value);
2712                local_len.increment_len(1);
2713            }
2714
2715            // len set by scope guard
2716        }
2717    }
2718
2719    /// Try to extend the vector by `n` clones of value.
2720    fn try_extend_with(&mut self, n: usize, value: T) -> Result<(), TryReserveError> {
2721        self.try_reserve(n)?;
2722
2723        unsafe {
2724            let mut ptr = self.as_mut_ptr().add(self.len());
2725            // Use SetLenOnDrop to work around bug where compiler
2726            // might not realize the store through `ptr` through self.set_len()
2727            // don't alias.
2728            let mut local_len = SetLenOnDrop::new(&mut self.len);
2729
2730            // Write all elements except the last one
2731            for _ in 1..n {
2732                ptr::write(ptr, value.clone());
2733                ptr = ptr.add(1);
2734                // Increment the length in every step in case clone() panics
2735                local_len.increment_len(1);
2736            }
2737
2738            if n > 0 {
2739                // We can write the last element directly without cloning needlessly
2740                ptr::write(ptr, value);
2741                local_len.increment_len(1);
2742            }
2743
2744            // len set by scope guard
2745            Ok(())
2746        }
2747    }
2748}
2749
2750impl<T: PartialEq, A: Allocator> Vec<T, A> {
2751    /// Removes consecutive repeated elements in the vector according to the
2752    /// [`PartialEq`] trait implementation.
2753    ///
2754    /// If the vector is sorted, this removes all duplicates.
2755    ///
2756    /// # Examples
2757    ///
2758    /// ```
2759    /// let mut vec = vec![1, 2, 2, 3, 2];
2760    ///
2761    /// vec.dedup();
2762    ///
2763    /// assert_eq!(vec, [1, 2, 3, 2]);
2764    /// ```
2765    #[stable(feature = "rust1", since = "1.0.0")]
2766    #[inline]
2767    pub fn dedup(&mut self) {
2768        self.dedup_by(|a, b| a == b)
2769    }
2770}
2771
2772////////////////////////////////////////////////////////////////////////////////
2773// Internal methods and functions
2774////////////////////////////////////////////////////////////////////////////////
2775
2776#[doc(hidden)]
2777#[cfg(not(no_global_oom_handling))]
2778#[stable(feature = "rust1", since = "1.0.0")]
2779pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2780    <T as SpecFromElem>::from_elem(elem, n, Global)
2781}
2782
2783#[doc(hidden)]
2784#[cfg(not(no_global_oom_handling))]
2785#[unstable(feature = "allocator_api", issue = "32838")]
2786pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2787    <T as SpecFromElem>::from_elem(elem, n, alloc)
2788}
2789
2790trait ExtendFromWithinSpec {
2791    /// # Safety
2792    ///
2793    /// - `src` needs to be valid index
2794    /// - `self.capacity() - self.len()` must be `>= src.len()`
2795    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2796}
2797
2798impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2799    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2800        // SAFETY:
2801        // - len is increased only after initializing elements
2802        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2803
2804        // SAFETY:
2805        // - caller guarantees that src is a valid index
2806        let to_clone = unsafe { this.get_unchecked(src) };
2807
2808        iter::zip(to_clone, spare)
2809            .map(|(src, dst)| dst.write(src.clone()))
2810            // Note:
2811            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2812            // - len is increased after each element to prevent leaks (see issue #82533)
2813            .for_each(|_| *len += 1);
2814    }
2815}
2816
2817impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2818    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2819        let count = src.len();
2820        {
2821            let (init, spare) = self.split_at_spare_mut();
2822
2823            // SAFETY:
2824            // - caller guarantees that `src` is a valid index
2825            let source = unsafe { init.get_unchecked(src) };
2826
2827            // SAFETY:
2828            // - Both pointers are created from unique slice references (`&mut [_]`)
2829            //   so they are valid and do not overlap.
2830            // - Elements are :Copy so it's OK to copy them, without doing
2831            //   anything with the original values
2832            // - `count` is equal to the len of `source`, so source is valid for
2833            //   `count` reads
2834            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2835            //   is valid for `count` writes
2836            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2837        }
2838
2839        // SAFETY:
2840        // - The elements were just initialized by `copy_nonoverlapping`
2841        self.len += count;
2842    }
2843}
2844
2845////////////////////////////////////////////////////////////////////////////////
2846// Common trait implementations for Vec
2847////////////////////////////////////////////////////////////////////////////////
2848
2849#[stable(feature = "rust1", since = "1.0.0")]
2850impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2851    type Target = [T];
2852
2853    #[inline]
2854    fn deref(&self) -> &[T] {
2855        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2856    }
2857}
2858
2859#[stable(feature = "rust1", since = "1.0.0")]
2860impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2861    #[inline]
2862    fn deref_mut(&mut self) -> &mut [T] {
2863        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2864    }
2865}
2866
2867#[cfg(not(no_global_oom_handling))]
2868#[stable(feature = "rust1", since = "1.0.0")]
2869impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2870    #[cfg(not(test))]
2871    fn clone(&self) -> Self {
2872        let alloc = self.allocator().clone();
2873        <[T]>::to_vec_in(&**self, alloc)
2874    }
2875
2876    // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2877    // required for this method definition, is not available. Instead use the
2878    // `slice::to_vec` function which is only available with cfg(test)
2879    // NB see the slice::hack module in slice.rs for more information
2880    #[cfg(test)]
2881    fn clone(&self) -> Self {
2882        let alloc = self.allocator().clone();
2883        crate::slice::to_vec(&**self, alloc)
2884    }
2885
2886    fn clone_from(&mut self, other: &Self) {
2887        crate::slice::SpecCloneIntoVec::clone_into(other.as_slice(), self);
2888    }
2889}
2890
2891/// The hash of a vector is the same as that of the corresponding slice,
2892/// as required by the `core::borrow::Borrow` implementation.
2893///
2894/// ```
2895/// use std::hash::BuildHasher;
2896///
2897/// let b = std::collections::hash_map::RandomState::new();
2898/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2899/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2900/// assert_eq!(b.hash_one(v), b.hash_one(s));
2901/// ```
2902#[stable(feature = "rust1", since = "1.0.0")]
2903impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2904    #[inline]
2905    fn hash<H: Hasher>(&self, state: &mut H) {
2906        Hash::hash(&**self, state)
2907    }
2908}
2909
2910#[stable(feature = "rust1", since = "1.0.0")]
2911#[rustc_on_unimplemented(
2912    message = "vector indices are of type `usize` or ranges of `usize`",
2913    label = "vector indices are of type `usize` or ranges of `usize`"
2914)]
2915impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2916    type Output = I::Output;
2917
2918    #[inline]
2919    fn index(&self, index: I) -> &Self::Output {
2920        Index::index(&**self, index)
2921    }
2922}
2923
2924#[stable(feature = "rust1", since = "1.0.0")]
2925#[rustc_on_unimplemented(
2926    message = "vector indices are of type `usize` or ranges of `usize`",
2927    label = "vector indices are of type `usize` or ranges of `usize`"
2928)]
2929impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2930    #[inline]
2931    fn index_mut(&mut self, index: I) -> &mut Self::Output {
2932        IndexMut::index_mut(&mut **self, index)
2933    }
2934}
2935
2936#[cfg(not(no_global_oom_handling))]
2937#[stable(feature = "rust1", since = "1.0.0")]
2938impl<T> FromIterator<T> for Vec<T> {
2939    #[inline]
2940    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2941        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2942    }
2943}
2944
2945#[stable(feature = "rust1", since = "1.0.0")]
2946impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2947    type Item = T;
2948    type IntoIter = IntoIter<T, A>;
2949
2950    /// Creates a consuming iterator, that is, one that moves each value out of
2951    /// the vector (from start to end). The vector cannot be used after calling
2952    /// this.
2953    ///
2954    /// # Examples
2955    ///
2956    /// ```
2957    /// let v = vec!["a".to_string(), "b".to_string()];
2958    /// let mut v_iter = v.into_iter();
2959    ///
2960    /// let first_element: Option<String> = v_iter.next();
2961    ///
2962    /// assert_eq!(first_element, Some("a".to_string()));
2963    /// assert_eq!(v_iter.next(), Some("b".to_string()));
2964    /// assert_eq!(v_iter.next(), None);
2965    /// ```
2966    #[inline]
2967    fn into_iter(self) -> Self::IntoIter {
2968        unsafe {
2969            let mut me = ManuallyDrop::new(self);
2970            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2971            let begin = me.as_mut_ptr();
2972            let end = if T::IS_ZST {
2973                begin.wrapping_byte_add(me.len())
2974            } else {
2975                begin.add(me.len()) as *const T
2976            };
2977            let cap = me.buf.capacity();
2978            IntoIter {
2979                buf: NonNull::new_unchecked(begin),
2980                phantom: PhantomData,
2981                cap,
2982                alloc,
2983                ptr: begin,
2984                end,
2985            }
2986        }
2987    }
2988}
2989
2990#[stable(feature = "rust1", since = "1.0.0")]
2991impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2992    type Item = &'a T;
2993    type IntoIter = slice::Iter<'a, T>;
2994
2995    fn into_iter(self) -> Self::IntoIter {
2996        self.iter()
2997    }
2998}
2999
3000#[stable(feature = "rust1", since = "1.0.0")]
3001impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3002    type Item = &'a mut T;
3003    type IntoIter = slice::IterMut<'a, T>;
3004
3005    fn into_iter(self) -> Self::IntoIter {
3006        self.iter_mut()
3007    }
3008}
3009
3010#[cfg(not(no_global_oom_handling))]
3011#[stable(feature = "rust1", since = "1.0.0")]
3012impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3013    #[inline]
3014    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3015        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3016    }
3017
3018    #[inline]
3019    fn extend_one(&mut self, item: T) {
3020        self.push(item);
3021    }
3022
3023    #[inline]
3024    fn extend_reserve(&mut self, additional: usize) {
3025        self.reserve(additional);
3026    }
3027}
3028
3029impl<T, A: Allocator> Vec<T, A> {
3030    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3031    // they have no further optimizations to apply
3032    #[cfg(not(no_global_oom_handling))]
3033    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3034        // This is the case for a general iterator.
3035        //
3036        // This function should be the moral equivalent of:
3037        //
3038        //      for item in iterator {
3039        //          self.push(item);
3040        //      }
3041        while let Some(element) = iterator.next() {
3042            let len = self.len();
3043            if len == self.capacity() {
3044                let (lower, _) = iterator.size_hint();
3045                self.reserve(lower.saturating_add(1));
3046            }
3047            unsafe {
3048                ptr::write(self.as_mut_ptr().add(len), element);
3049                // Since next() executes user code which can panic we have to bump the length
3050                // after each step.
3051                // NB can't overflow since we would have had to alloc the address space
3052                self.set_len(len + 1);
3053            }
3054        }
3055    }
3056
3057    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3058    // they have no further optimizations to apply
3059    fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
3060        // This is the case for a general iterator.
3061        //
3062        // This function should be the moral equivalent of:
3063        //
3064        //      for item in iterator {
3065        //          self.push(item);
3066        //      }
3067        while let Some(element) = iterator.next() {
3068            let len = self.len();
3069            if len == self.capacity() {
3070                let (lower, _) = iterator.size_hint();
3071                self.try_reserve(lower.saturating_add(1))?;
3072            }
3073            unsafe {
3074                ptr::write(self.as_mut_ptr().add(len), element);
3075                // Since next() executes user code which can panic we have to bump the length
3076                // after each step.
3077                // NB can't overflow since we would have had to alloc the address space
3078                self.set_len(len + 1);
3079            }
3080        }
3081
3082        Ok(())
3083    }
3084
3085    // specific extend for `TrustedLen` iterators, called both by the specializations
3086    // and internal places where resolving specialization makes compilation slower
3087    #[cfg(not(no_global_oom_handling))]
3088    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3089        let (low, high) = iterator.size_hint();
3090        if let Some(additional) = high {
3091            debug_assert_eq!(
3092                low,
3093                additional,
3094                "TrustedLen iterator's size hint is not exact: {:?}",
3095                (low, high)
3096            );
3097            self.reserve(additional);
3098            unsafe {
3099                let ptr = self.as_mut_ptr();
3100                let mut local_len = SetLenOnDrop::new(&mut self.len);
3101                iterator.for_each(move |element| {
3102                    ptr::write(ptr.add(local_len.current_len()), element);
3103                    // Since the loop executes user code which can panic we have to update
3104                    // the length every step to correctly drop what we've written.
3105                    // NB can't overflow since we would have had to alloc the address space
3106                    local_len.increment_len(1);
3107                });
3108            }
3109        } else {
3110            // Per TrustedLen contract a `None` upper bound means that the iterator length
3111            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3112            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3113            // This avoids additional codegen for a fallback code path which would eventually
3114            // panic anyway.
3115            panic!("capacity overflow");
3116        }
3117    }
3118
3119    // specific extend for `TrustedLen` iterators, called both by the specializations
3120    // and internal places where resolving specialization makes compilation slower
3121    fn try_extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) -> Result<(), TryReserveError> {
3122        let (low, high) = iterator.size_hint();
3123        if let Some(additional) = high {
3124            debug_assert_eq!(
3125                low,
3126                additional,
3127                "TrustedLen iterator's size hint is not exact: {:?}",
3128                (low, high)
3129            );
3130            self.try_reserve(additional)?;
3131            unsafe {
3132                let ptr = self.as_mut_ptr();
3133                let mut local_len = SetLenOnDrop::new(&mut self.len);
3134                iterator.for_each(move |element| {
3135                    ptr::write(ptr.add(local_len.current_len()), element);
3136                    // Since the loop executes user code which can panic we have to update
3137                    // the length every step to correctly drop what we've written.
3138                    // NB can't overflow since we would have had to alloc the address space
3139                    local_len.increment_len(1);
3140                });
3141            }
3142            Ok(())
3143        } else {
3144            Err(TryReserveErrorKind::CapacityOverflow.into())
3145        }
3146    }
3147
3148    /// Creates a splicing iterator that replaces the specified range in the vector
3149    /// with the given `replace_with` iterator and yields the removed items.
3150    /// `replace_with` does not need to be the same length as `range`.
3151    ///
3152    /// `range` is removed even if the iterator is not consumed until the end.
3153    ///
3154    /// It is unspecified how many elements are removed from the vector
3155    /// if the `Splice` value is leaked.
3156    ///
3157    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3158    ///
3159    /// This is optimal if:
3160    ///
3161    /// * The tail (elements in the vector after `range`) is empty,
3162    /// * or `replace_with` yields fewer or equal elements than `range`’s length
3163    /// * or the lower bound of its `size_hint()` is exact.
3164    ///
3165    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3166    ///
3167    /// # Panics
3168    ///
3169    /// Panics if the starting point is greater than the end point or if
3170    /// the end point is greater than the length of the vector.
3171    ///
3172    /// # Examples
3173    ///
3174    /// ```
3175    /// let mut v = vec![1, 2, 3, 4];
3176    /// let new = [7, 8, 9];
3177    /// let u: Vec<_> = v.splice(1..3, new).collect();
3178    /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3179    /// assert_eq!(u, &[2, 3]);
3180    /// ```
3181    #[cfg(not(no_global_oom_handling))]
3182    #[inline]
3183    #[stable(feature = "vec_splice", since = "1.21.0")]
3184    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3185    where
3186        R: RangeBounds<usize>,
3187        I: IntoIterator<Item = T>,
3188    {
3189        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3190    }
3191
3192    /// Creates an iterator which uses a closure to determine if an element should be removed.
3193    ///
3194    /// If the closure returns true, then the element is removed and yielded.
3195    /// If the closure returns false, the element will remain in the vector and will not be yielded
3196    /// by the iterator.
3197    ///
3198    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3199    /// or the iteration short-circuits, then the remaining elements will be retained.
3200    /// Use [`retain`] with a negated predicate if you do not need the returned iterator.
3201    ///
3202    /// [`retain`]: Vec::retain
3203    ///
3204    /// Using this method is equivalent to the following code:
3205    ///
3206    /// ```
3207    /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3208    /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3209    /// let mut i = 0;
3210    /// while i < vec.len() {
3211    ///     if some_predicate(&mut vec[i]) {
3212    ///         let val = vec.remove(i);
3213    ///         // your code here
3214    ///     } else {
3215    ///         i += 1;
3216    ///     }
3217    /// }
3218    ///
3219    /// # assert_eq!(vec, vec![1, 4, 5]);
3220    /// ```
3221    ///
3222    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3223    /// because it can backshift the elements of the array in bulk.
3224    ///
3225    /// Note that `extract_if` also lets you mutate every element in the filter closure,
3226    /// regardless of whether you choose to keep or remove it.
3227    ///
3228    /// # Examples
3229    ///
3230    /// Splitting an array into evens and odds, reusing the original allocation:
3231    ///
3232    /// ```
3233    /// #![feature(extract_if)]
3234    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3235    ///
3236    /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<Vec<_>>();
3237    /// let odds = numbers;
3238    ///
3239    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3240    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3241    /// ```
3242    #[unstable(feature = "extract_if", reason = "recently added", issue = "43244")]
3243    pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
3244    where
3245        F: FnMut(&mut T) -> bool,
3246    {
3247        let old_len = self.len();
3248
3249        // Guard against us getting leaked (leak amplification)
3250        unsafe {
3251            self.set_len(0);
3252        }
3253
3254        ExtractIf { vec: self, idx: 0, del: 0, old_len, pred: filter }
3255    }
3256}
3257
3258/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3259///
3260/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3261/// append the entire slice at once.
3262///
3263/// [`copy_from_slice`]: slice::copy_from_slice
3264#[cfg(not(no_global_oom_handling))]
3265#[stable(feature = "extend_ref", since = "1.2.0")]
3266impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3267    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3268        self.spec_extend(iter.into_iter())
3269    }
3270
3271    #[inline]
3272    fn extend_one(&mut self, &item: &'a T) {
3273        self.push(item);
3274    }
3275
3276    #[inline]
3277    fn extend_reserve(&mut self, additional: usize) {
3278        self.reserve(additional);
3279    }
3280}
3281
3282/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
3283#[stable(feature = "rust1", since = "1.0.0")]
3284impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
3285where
3286    T: PartialOrd,
3287    A1: Allocator,
3288    A2: Allocator,
3289{
3290    #[inline]
3291    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
3292        PartialOrd::partial_cmp(&**self, &**other)
3293    }
3294}
3295
3296#[stable(feature = "rust1", since = "1.0.0")]
3297impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3298
3299/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
3300#[stable(feature = "rust1", since = "1.0.0")]
3301impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3302    #[inline]
3303    fn cmp(&self, other: &Self) -> Ordering {
3304        Ord::cmp(&**self, &**other)
3305    }
3306}
3307
3308#[stable(feature = "rust1", since = "1.0.0")]
3309unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3310    fn drop(&mut self) {
3311        unsafe {
3312            // use drop for [T]
3313            // use a raw slice to refer to the elements of the vector as weakest necessary type;
3314            // could avoid questions of validity in certain cases
3315            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3316        }
3317        // RawVec handles deallocation
3318    }
3319}
3320
3321#[stable(feature = "rust1", since = "1.0.0")]
3322impl<T> Default for Vec<T> {
3323    /// Creates an empty `Vec<T>`.
3324    ///
3325    /// The vector will not allocate until elements are pushed onto it.
3326    fn default() -> Vec<T> {
3327        Vec::new()
3328    }
3329}
3330
3331#[stable(feature = "rust1", since = "1.0.0")]
3332impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3333    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3334        fmt::Debug::fmt(&**self, f)
3335    }
3336}
3337
3338#[stable(feature = "rust1", since = "1.0.0")]
3339impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3340    fn as_ref(&self) -> &Vec<T, A> {
3341        self
3342    }
3343}
3344
3345#[stable(feature = "vec_as_mut", since = "1.5.0")]
3346impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3347    fn as_mut(&mut self) -> &mut Vec<T, A> {
3348        self
3349    }
3350}
3351
3352#[stable(feature = "rust1", since = "1.0.0")]
3353impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3354    fn as_ref(&self) -> &[T] {
3355        self
3356    }
3357}
3358
3359#[stable(feature = "vec_as_mut", since = "1.5.0")]
3360impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3361    fn as_mut(&mut self) -> &mut [T] {
3362        self
3363    }
3364}
3365
3366#[cfg(not(no_global_oom_handling))]
3367#[stable(feature = "rust1", since = "1.0.0")]
3368impl<T: Clone> From<&[T]> for Vec<T> {
3369    /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3370    ///
3371    /// # Examples
3372    ///
3373    /// ```
3374    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3375    /// ```
3376    #[cfg(not(test))]
3377    fn from(s: &[T]) -> Vec<T> {
3378        s.to_vec()
3379    }
3380    #[cfg(test)]
3381    fn from(s: &[T]) -> Vec<T> {
3382        crate::slice::to_vec(s, Global)
3383    }
3384}
3385
3386#[cfg(not(no_global_oom_handling))]
3387#[stable(feature = "vec_from_mut", since = "1.19.0")]
3388impl<T: Clone> From<&mut [T]> for Vec<T> {
3389    /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3390    ///
3391    /// # Examples
3392    ///
3393    /// ```
3394    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3395    /// ```
3396    #[cfg(not(test))]
3397    fn from(s: &mut [T]) -> Vec<T> {
3398        s.to_vec()
3399    }
3400    #[cfg(test)]
3401    fn from(s: &mut [T]) -> Vec<T> {
3402        crate::slice::to_vec(s, Global)
3403    }
3404}
3405
3406#[cfg(not(no_global_oom_handling))]
3407#[stable(feature = "vec_from_array", since = "1.44.0")]
3408impl<T, const N: usize> From<[T; N]> for Vec<T> {
3409    /// Allocate a `Vec<T>` and move `s`'s items into it.
3410    ///
3411    /// # Examples
3412    ///
3413    /// ```
3414    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3415    /// ```
3416    #[cfg(not(test))]
3417    fn from(s: [T; N]) -> Vec<T> {
3418        <[T]>::into_vec(Box::new(s))
3419    }
3420
3421    #[cfg(test)]
3422    fn from(s: [T; N]) -> Vec<T> {
3423        crate::slice::into_vec(Box::new(s))
3424    }
3425}
3426
3427#[cfg(not(no_borrow))]
3428#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3429impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3430where
3431    [T]: ToOwned<Owned = Vec<T>>,
3432{
3433    /// Convert a clone-on-write slice into a vector.
3434    ///
3435    /// If `s` already owns a `Vec<T>`, it will be returned directly.
3436    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3437    /// filled by cloning `s`'s items into it.
3438    ///
3439    /// # Examples
3440    ///
3441    /// ```
3442    /// # use std::borrow::Cow;
3443    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
3444    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
3445    /// assert_eq!(Vec::from(o), Vec::from(b));
3446    /// ```
3447    fn from(s: Cow<'a, [T]>) -> Vec<T> {
3448        s.into_owned()
3449    }
3450}
3451
3452// note: test pulls in std, which causes errors here
3453#[cfg(not(test))]
3454#[stable(feature = "vec_from_box", since = "1.18.0")]
3455impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3456    /// Convert a boxed slice into a vector by transferring ownership of
3457    /// the existing heap allocation.
3458    ///
3459    /// # Examples
3460    ///
3461    /// ```
3462    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3463    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3464    /// ```
3465    fn from(s: Box<[T], A>) -> Self {
3466        s.into_vec()
3467    }
3468}
3469
3470// note: test pulls in std, which causes errors here
3471#[cfg(not(no_global_oom_handling))]
3472#[cfg(not(test))]
3473#[stable(feature = "box_from_vec", since = "1.20.0")]
3474impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3475    /// Convert a vector into a boxed slice.
3476    ///
3477    /// If `v` has excess capacity, its items will be moved into a
3478    /// newly-allocated buffer with exactly the right capacity.
3479    ///
3480    /// # Examples
3481    ///
3482    /// ```
3483    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3484    /// ```
3485    ///
3486    /// Any excess capacity is removed:
3487    /// ```
3488    /// let mut vec = Vec::with_capacity(10);
3489    /// vec.extend([1, 2, 3]);
3490    ///
3491    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
3492    /// ```
3493    fn from(v: Vec<T, A>) -> Self {
3494        v.into_boxed_slice()
3495    }
3496}
3497
3498#[cfg(not(no_global_oom_handling))]
3499#[stable(feature = "rust1", since = "1.0.0")]
3500impl From<&str> for Vec<u8> {
3501    /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3502    ///
3503    /// # Examples
3504    ///
3505    /// ```
3506    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3507    /// ```
3508    fn from(s: &str) -> Vec<u8> {
3509        From::from(s.as_bytes())
3510    }
3511}
3512
3513#[stable(feature = "array_try_from_vec", since = "1.48.0")]
3514impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3515    type Error = Vec<T, A>;
3516
3517    /// Gets the entire contents of the `Vec<T>` as an array,
3518    /// if its size exactly matches that of the requested array.
3519    ///
3520    /// # Examples
3521    ///
3522    /// ```
3523    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3524    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3525    /// ```
3526    ///
3527    /// If the length doesn't match, the input comes back in `Err`:
3528    /// ```
3529    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3530    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3531    /// ```
3532    ///
3533    /// If you're fine with just getting a prefix of the `Vec<T>`,
3534    /// you can call [`.truncate(N)`](Vec::truncate) first.
3535    /// ```
3536    /// let mut v = String::from("hello world").into_bytes();
3537    /// v.sort();
3538    /// v.truncate(2);
3539    /// let [a, b]: [_; 2] = v.try_into().unwrap();
3540    /// assert_eq!(a, b' ');
3541    /// assert_eq!(b, b'd');
3542    /// ```
3543    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3544        if vec.len() != N {
3545            return Err(vec);
3546        }
3547
3548        // SAFETY: `.set_len(0)` is always sound.
3549        unsafe { vec.set_len(0) };
3550
3551        // SAFETY: A `Vec`'s pointer is always aligned properly, and
3552        // the alignment the array needs is the same as the items.
3553        // We checked earlier that we have sufficient items.
3554        // The items will not double-drop as the `set_len`
3555        // tells the `Vec` not to also drop them.
3556        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3557        Ok(array)
3558    }
3559}
3560