xref: /kernel/linux/linux-6.6/net/xdp/xsk_queue.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 */
2/* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
4 */
5
6#ifndef _LINUX_XSK_QUEUE_H
7#define _LINUX_XSK_QUEUE_H
8
9#include <linux/types.h>
10#include <linux/if_xdp.h>
11#include <net/xdp_sock.h>
12#include <net/xsk_buff_pool.h>
13
14#include "xsk.h"
15
16struct xdp_ring {
17	u32 producer ____cacheline_aligned_in_smp;
18	/* Hinder the adjacent cache prefetcher to prefetch the consumer
19	 * pointer if the producer pointer is touched and vice versa.
20	 */
21	u32 pad1 ____cacheline_aligned_in_smp;
22	u32 consumer ____cacheline_aligned_in_smp;
23	u32 pad2 ____cacheline_aligned_in_smp;
24	u32 flags;
25	u32 pad3 ____cacheline_aligned_in_smp;
26};
27
28/* Used for the RX and TX queues for packets */
29struct xdp_rxtx_ring {
30	struct xdp_ring ptrs;
31	struct xdp_desc desc[] ____cacheline_aligned_in_smp;
32};
33
34/* Used for the fill and completion queues for buffers */
35struct xdp_umem_ring {
36	struct xdp_ring ptrs;
37	u64 desc[] ____cacheline_aligned_in_smp;
38};
39
40struct xsk_queue {
41	u32 ring_mask;
42	u32 nentries;
43	u32 cached_prod;
44	u32 cached_cons;
45	struct xdp_ring *ring;
46	u64 invalid_descs;
47	u64 queue_empty_descs;
48	size_t ring_vmalloc_size;
49};
50
51struct parsed_desc {
52	u32 mb;
53	u32 valid;
54};
55
56/* The structure of the shared state of the rings are a simple
57 * circular buffer, as outlined in
58 * Documentation/core-api/circular-buffers.rst. For the Rx and
59 * completion ring, the kernel is the producer and user space is the
60 * consumer. For the Tx and fill rings, the kernel is the consumer and
61 * user space is the producer.
62 *
63 * producer                         consumer
64 *
65 * if (LOAD ->consumer) {  (A)      LOAD.acq ->producer  (C)
66 *    STORE $data                   LOAD $data
67 *    STORE.rel ->producer (B)      STORE.rel ->consumer (D)
68 * }
69 *
70 * (A) pairs with (D), and (B) pairs with (C).
71 *
72 * Starting with (B), it protects the data from being written after
73 * the producer pointer. If this barrier was missing, the consumer
74 * could observe the producer pointer being set and thus load the data
75 * before the producer has written the new data. The consumer would in
76 * this case load the old data.
77 *
78 * (C) protects the consumer from speculatively loading the data before
79 * the producer pointer actually has been read. If we do not have this
80 * barrier, some architectures could load old data as speculative loads
81 * are not discarded as the CPU does not know there is a dependency
82 * between ->producer and data.
83 *
84 * (A) is a control dependency that separates the load of ->consumer
85 * from the stores of $data. In case ->consumer indicates there is no
86 * room in the buffer to store $data we do not. The dependency will
87 * order both of the stores after the loads. So no barrier is needed.
88 *
89 * (D) protects the load of the data to be observed to happen after the
90 * store of the consumer pointer. If we did not have this memory
91 * barrier, the producer could observe the consumer pointer being set
92 * and overwrite the data with a new value before the consumer got the
93 * chance to read the old value. The consumer would thus miss reading
94 * the old entry and very likely read the new entry twice, once right
95 * now and again after circling through the ring.
96 */
97
98/* The operations on the rings are the following:
99 *
100 * producer                           consumer
101 *
102 * RESERVE entries                    PEEK in the ring for entries
103 * WRITE data into the ring           READ data from the ring
104 * SUBMIT entries                     RELEASE entries
105 *
106 * The producer reserves one or more entries in the ring. It can then
107 * fill in these entries and finally submit them so that they can be
108 * seen and read by the consumer.
109 *
110 * The consumer peeks into the ring to see if the producer has written
111 * any new entries. If so, the consumer can then read these entries
112 * and when it is done reading them release them back to the producer
113 * so that the producer can use these slots to fill in new entries.
114 *
115 * The function names below reflect these operations.
116 */
117
118/* Functions that read and validate content from consumer rings. */
119
120static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue *q, u32 cached_cons, u64 *addr)
121{
122	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
123	u32 idx = cached_cons & q->ring_mask;
124
125	*addr = ring->desc[idx];
126}
127
128static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue *q, u64 *addr)
129{
130	if (q->cached_cons != q->cached_prod) {
131		__xskq_cons_read_addr_unchecked(q, q->cached_cons, addr);
132		return true;
133	}
134
135	return false;
136}
137
138static inline bool xp_unused_options_set(u32 options)
139{
140	return options & ~XDP_PKT_CONTD;
141}
142
143static inline bool xp_aligned_validate_desc(struct xsk_buff_pool *pool,
144					    struct xdp_desc *desc)
145{
146	u64 offset = desc->addr & (pool->chunk_size - 1);
147
148	if (!desc->len)
149		return false;
150
151	if (offset + desc->len > pool->chunk_size)
152		return false;
153
154	if (desc->addr >= pool->addrs_cnt)
155		return false;
156
157	if (xp_unused_options_set(desc->options))
158		return false;
159	return true;
160}
161
162static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool *pool,
163					      struct xdp_desc *desc)
164{
165	u64 addr = xp_unaligned_add_offset_to_addr(desc->addr);
166
167	if (!desc->len)
168		return false;
169
170	if (desc->len > pool->chunk_size)
171		return false;
172
173	if (addr >= pool->addrs_cnt || addr + desc->len > pool->addrs_cnt ||
174	    xp_desc_crosses_non_contig_pg(pool, addr, desc->len))
175		return false;
176
177	if (xp_unused_options_set(desc->options))
178		return false;
179	return true;
180}
181
182static inline bool xp_validate_desc(struct xsk_buff_pool *pool,
183				    struct xdp_desc *desc)
184{
185	return pool->unaligned ? xp_unaligned_validate_desc(pool, desc) :
186		xp_aligned_validate_desc(pool, desc);
187}
188
189static inline bool xskq_has_descs(struct xsk_queue *q)
190{
191	return q->cached_cons != q->cached_prod;
192}
193
194static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
195					   struct xdp_desc *d,
196					   struct xsk_buff_pool *pool)
197{
198	if (!xp_validate_desc(pool, d)) {
199		q->invalid_descs++;
200		return false;
201	}
202	return true;
203}
204
205static inline bool xskq_cons_read_desc(struct xsk_queue *q,
206				       struct xdp_desc *desc,
207				       struct xsk_buff_pool *pool)
208{
209	if (q->cached_cons != q->cached_prod) {
210		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
211		u32 idx = q->cached_cons & q->ring_mask;
212
213		*desc = ring->desc[idx];
214		return xskq_cons_is_valid_desc(q, desc, pool);
215	}
216
217	q->queue_empty_descs++;
218	return false;
219}
220
221static inline void xskq_cons_release_n(struct xsk_queue *q, u32 cnt)
222{
223	q->cached_cons += cnt;
224}
225
226static inline void parse_desc(struct xsk_queue *q, struct xsk_buff_pool *pool,
227			      struct xdp_desc *desc, struct parsed_desc *parsed)
228{
229	parsed->valid = xskq_cons_is_valid_desc(q, desc, pool);
230	parsed->mb = xp_mb_desc(desc);
231}
232
233static inline
234u32 xskq_cons_read_desc_batch(struct xsk_queue *q, struct xsk_buff_pool *pool,
235			      u32 max)
236{
237	u32 cached_cons = q->cached_cons, nb_entries = 0;
238	struct xdp_desc *descs = pool->tx_descs;
239	u32 total_descs = 0, nr_frags = 0;
240
241	/* track first entry, if stumble upon *any* invalid descriptor, rewind
242	 * current packet that consists of frags and stop the processing
243	 */
244	while (cached_cons != q->cached_prod && nb_entries < max) {
245		struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
246		u32 idx = cached_cons & q->ring_mask;
247		struct parsed_desc parsed;
248
249		descs[nb_entries] = ring->desc[idx];
250		cached_cons++;
251		parse_desc(q, pool, &descs[nb_entries], &parsed);
252		if (unlikely(!parsed.valid))
253			break;
254
255		if (likely(!parsed.mb)) {
256			total_descs += (nr_frags + 1);
257			nr_frags = 0;
258		} else {
259			nr_frags++;
260			if (nr_frags == pool->netdev->xdp_zc_max_segs) {
261				nr_frags = 0;
262				break;
263			}
264		}
265		nb_entries++;
266	}
267
268	cached_cons -= nr_frags;
269	/* Release valid plus any invalid entries */
270	xskq_cons_release_n(q, cached_cons - q->cached_cons);
271	return total_descs;
272}
273
274/* Functions for consumers */
275
276static inline void __xskq_cons_release(struct xsk_queue *q)
277{
278	smp_store_release(&q->ring->consumer, q->cached_cons); /* D, matchees A */
279}
280
281static inline void __xskq_cons_peek(struct xsk_queue *q)
282{
283	/* Refresh the local pointer */
284	q->cached_prod = smp_load_acquire(&q->ring->producer);  /* C, matches B */
285}
286
287static inline void xskq_cons_get_entries(struct xsk_queue *q)
288{
289	__xskq_cons_release(q);
290	__xskq_cons_peek(q);
291}
292
293static inline u32 xskq_cons_nb_entries(struct xsk_queue *q, u32 max)
294{
295	u32 entries = q->cached_prod - q->cached_cons;
296
297	if (entries >= max)
298		return max;
299
300	__xskq_cons_peek(q);
301	entries = q->cached_prod - q->cached_cons;
302
303	return entries >= max ? max : entries;
304}
305
306static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
307{
308	return xskq_cons_nb_entries(q, cnt) >= cnt;
309}
310
311static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue *q, u64 *addr)
312{
313	if (q->cached_prod == q->cached_cons)
314		xskq_cons_get_entries(q);
315	return xskq_cons_read_addr_unchecked(q, addr);
316}
317
318static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
319				       struct xdp_desc *desc,
320				       struct xsk_buff_pool *pool)
321{
322	if (q->cached_prod == q->cached_cons)
323		xskq_cons_get_entries(q);
324	return xskq_cons_read_desc(q, desc, pool);
325}
326
327/* To improve performance in the xskq_cons_release functions, only update local state here.
328 * Reflect this to global state when we get new entries from the ring in
329 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
330 */
331static inline void xskq_cons_release(struct xsk_queue *q)
332{
333	q->cached_cons++;
334}
335
336static inline void xskq_cons_cancel_n(struct xsk_queue *q, u32 cnt)
337{
338	q->cached_cons -= cnt;
339}
340
341static inline u32 xskq_cons_present_entries(struct xsk_queue *q)
342{
343	/* No barriers needed since data is not accessed */
344	return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer);
345}
346
347/* Functions for producers */
348
349static inline u32 xskq_prod_nb_free(struct xsk_queue *q, u32 max)
350{
351	u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
352
353	if (free_entries >= max)
354		return max;
355
356	/* Refresh the local tail pointer */
357	q->cached_cons = READ_ONCE(q->ring->consumer);
358	free_entries = q->nentries - (q->cached_prod - q->cached_cons);
359
360	return free_entries >= max ? max : free_entries;
361}
362
363static inline bool xskq_prod_is_full(struct xsk_queue *q)
364{
365	return xskq_prod_nb_free(q, 1) ? false : true;
366}
367
368static inline void xskq_prod_cancel_n(struct xsk_queue *q, u32 cnt)
369{
370	q->cached_prod -= cnt;
371}
372
373static inline int xskq_prod_reserve(struct xsk_queue *q)
374{
375	if (xskq_prod_is_full(q))
376		return -ENOSPC;
377
378	/* A, matches D */
379	q->cached_prod++;
380	return 0;
381}
382
383static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
384{
385	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
386
387	if (xskq_prod_is_full(q))
388		return -ENOSPC;
389
390	/* A, matches D */
391	ring->desc[q->cached_prod++ & q->ring_mask] = addr;
392	return 0;
393}
394
395static inline void xskq_prod_write_addr_batch(struct xsk_queue *q, struct xdp_desc *descs,
396					      u32 nb_entries)
397{
398	struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
399	u32 i, cached_prod;
400
401	/* A, matches D */
402	cached_prod = q->cached_prod;
403	for (i = 0; i < nb_entries; i++)
404		ring->desc[cached_prod++ & q->ring_mask] = descs[i].addr;
405	q->cached_prod = cached_prod;
406}
407
408static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
409					 u64 addr, u32 len, u32 flags)
410{
411	struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
412	u32 idx;
413
414	if (xskq_prod_is_full(q))
415		return -ENOBUFS;
416
417	/* A, matches D */
418	idx = q->cached_prod++ & q->ring_mask;
419	ring->desc[idx].addr = addr;
420	ring->desc[idx].len = len;
421	ring->desc[idx].options = flags;
422
423	return 0;
424}
425
426static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
427{
428	smp_store_release(&q->ring->producer, idx); /* B, matches C */
429}
430
431static inline void xskq_prod_submit(struct xsk_queue *q)
432{
433	__xskq_prod_submit(q, q->cached_prod);
434}
435
436static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
437{
438	__xskq_prod_submit(q, q->ring->producer + nb_entries);
439}
440
441static inline bool xskq_prod_is_empty(struct xsk_queue *q)
442{
443	/* No barriers needed since data is not accessed */
444	return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
445}
446
447/* For both producers and consumers */
448
449static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
450{
451	return q ? q->invalid_descs : 0;
452}
453
454static inline u64 xskq_nb_queue_empty_descs(struct xsk_queue *q)
455{
456	return q ? q->queue_empty_descs : 0;
457}
458
459struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
460void xskq_destroy(struct xsk_queue *q_ops);
461
462#endif /* _LINUX_XSK_QUEUE_H */
463