xref: /kernel/linux/linux-6.6/net/wireless/util.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009	Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 * Copyright 2017	Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29			    u32 basic_rates, int bitrate)
30{
31	struct ieee80211_rate *result = &sband->bitrates[0];
32	int i;
33
34	for (i = 0; i < sband->n_bitrates; i++) {
35		if (!(basic_rates & BIT(i)))
36			continue;
37		if (sband->bitrates[i].bitrate > bitrate)
38			continue;
39		result = &sband->bitrates[i];
40	}
41
42	return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47			      enum nl80211_bss_scan_width scan_width)
48{
49	struct ieee80211_rate *bitrates;
50	u32 mandatory_rates = 0;
51	enum ieee80211_rate_flags mandatory_flag;
52	int i;
53
54	if (WARN_ON(!sband))
55		return 1;
56
57	if (sband->band == NL80211_BAND_2GHZ) {
58		if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59		    scan_width == NL80211_BSS_CHAN_WIDTH_10)
60			mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61		else
62			mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63	} else {
64		mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65	}
66
67	bitrates = sband->bitrates;
68	for (i = 0; i < sband->n_bitrates; i++)
69		if (bitrates[i].flags & mandatory_flag)
70			mandatory_rates |= BIT(i);
71	return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76{
77	/* see 802.11 17.3.8.3.2 and Annex J
78	 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79	if (chan <= 0)
80		return 0; /* not supported */
81	switch (band) {
82	case NL80211_BAND_2GHZ:
83	case NL80211_BAND_LC:
84		if (chan == 14)
85			return MHZ_TO_KHZ(2484);
86		else if (chan < 14)
87			return MHZ_TO_KHZ(2407 + chan * 5);
88		break;
89	case NL80211_BAND_5GHZ:
90		if (chan >= 182 && chan <= 196)
91			return MHZ_TO_KHZ(4000 + chan * 5);
92		else
93			return MHZ_TO_KHZ(5000 + chan * 5);
94		break;
95	case NL80211_BAND_6GHZ:
96		/* see 802.11ax D6.1 27.3.23.2 */
97		if (chan == 2)
98			return MHZ_TO_KHZ(5935);
99		if (chan <= 233)
100			return MHZ_TO_KHZ(5950 + chan * 5);
101		break;
102	case NL80211_BAND_60GHZ:
103		if (chan < 7)
104			return MHZ_TO_KHZ(56160 + chan * 2160);
105		break;
106	case NL80211_BAND_S1GHZ:
107		return 902000 + chan * 500;
108	default:
109		;
110	}
111	return 0; /* not supported */
112}
113EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115enum nl80211_chan_width
116ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117{
118	if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119		return NL80211_CHAN_WIDTH_20_NOHT;
120
121	/*S1G defines a single allowed channel width per channel.
122	 * Extract that width here.
123	 */
124	if (chan->flags & IEEE80211_CHAN_1MHZ)
125		return NL80211_CHAN_WIDTH_1;
126	else if (chan->flags & IEEE80211_CHAN_2MHZ)
127		return NL80211_CHAN_WIDTH_2;
128	else if (chan->flags & IEEE80211_CHAN_4MHZ)
129		return NL80211_CHAN_WIDTH_4;
130	else if (chan->flags & IEEE80211_CHAN_8MHZ)
131		return NL80211_CHAN_WIDTH_8;
132	else if (chan->flags & IEEE80211_CHAN_16MHZ)
133		return NL80211_CHAN_WIDTH_16;
134
135	pr_err("unknown channel width for channel at %dKHz?\n",
136	       ieee80211_channel_to_khz(chan));
137
138	return NL80211_CHAN_WIDTH_1;
139}
140EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142int ieee80211_freq_khz_to_channel(u32 freq)
143{
144	/* TODO: just handle MHz for now */
145	freq = KHZ_TO_MHZ(freq);
146
147	/* see 802.11 17.3.8.3.2 and Annex J */
148	if (freq == 2484)
149		return 14;
150	else if (freq < 2484)
151		return (freq - 2407) / 5;
152	else if (freq >= 4910 && freq <= 4980)
153		return (freq - 4000) / 5;
154	else if (freq < 5925)
155		return (freq - 5000) / 5;
156	else if (freq == 5935)
157		return 2;
158	else if (freq <= 45000) /* DMG band lower limit */
159		/* see 802.11ax D6.1 27.3.22.2 */
160		return (freq - 5950) / 5;
161	else if (freq >= 58320 && freq <= 70200)
162		return (freq - 56160) / 2160;
163	else
164		return 0;
165}
166EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169						    u32 freq)
170{
171	enum nl80211_band band;
172	struct ieee80211_supported_band *sband;
173	int i;
174
175	for (band = 0; band < NUM_NL80211_BANDS; band++) {
176		sband = wiphy->bands[band];
177
178		if (!sband)
179			continue;
180
181		for (i = 0; i < sband->n_channels; i++) {
182			struct ieee80211_channel *chan = &sband->channels[i];
183
184			if (ieee80211_channel_to_khz(chan) == freq)
185				return chan;
186		}
187	}
188
189	return NULL;
190}
191EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194{
195	int i, want;
196
197	switch (sband->band) {
198	case NL80211_BAND_5GHZ:
199	case NL80211_BAND_6GHZ:
200		want = 3;
201		for (i = 0; i < sband->n_bitrates; i++) {
202			if (sband->bitrates[i].bitrate == 60 ||
203			    sband->bitrates[i].bitrate == 120 ||
204			    sband->bitrates[i].bitrate == 240) {
205				sband->bitrates[i].flags |=
206					IEEE80211_RATE_MANDATORY_A;
207				want--;
208			}
209		}
210		WARN_ON(want);
211		break;
212	case NL80211_BAND_2GHZ:
213	case NL80211_BAND_LC:
214		want = 7;
215		for (i = 0; i < sband->n_bitrates; i++) {
216			switch (sband->bitrates[i].bitrate) {
217			case 10:
218			case 20:
219			case 55:
220			case 110:
221				sband->bitrates[i].flags |=
222					IEEE80211_RATE_MANDATORY_B |
223					IEEE80211_RATE_MANDATORY_G;
224				want--;
225				break;
226			case 60:
227			case 120:
228			case 240:
229				sband->bitrates[i].flags |=
230					IEEE80211_RATE_MANDATORY_G;
231				want--;
232				fallthrough;
233			default:
234				sband->bitrates[i].flags |=
235					IEEE80211_RATE_ERP_G;
236				break;
237			}
238		}
239		WARN_ON(want != 0 && want != 3);
240		break;
241	case NL80211_BAND_60GHZ:
242		/* check for mandatory HT MCS 1..4 */
243		WARN_ON(!sband->ht_cap.ht_supported);
244		WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245		break;
246	case NL80211_BAND_S1GHZ:
247		/* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248		 * mandatory is ok.
249		 */
250		WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251		break;
252	case NUM_NL80211_BANDS:
253	default:
254		WARN_ON(1);
255		break;
256	}
257}
258
259void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260{
261	enum nl80211_band band;
262
263	for (band = 0; band < NUM_NL80211_BANDS; band++)
264		if (wiphy->bands[band])
265			set_mandatory_flags_band(wiphy->bands[band]);
266}
267
268bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269{
270	int i;
271	for (i = 0; i < wiphy->n_cipher_suites; i++)
272		if (cipher == wiphy->cipher_suites[i])
273			return true;
274	return false;
275}
276
277static bool
278cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279{
280	struct wiphy *wiphy = &rdev->wiphy;
281	int i;
282
283	for (i = 0; i < wiphy->n_cipher_suites; i++) {
284		switch (wiphy->cipher_suites[i]) {
285		case WLAN_CIPHER_SUITE_AES_CMAC:
286		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289			return true;
290		}
291	}
292
293	return false;
294}
295
296bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297			    int key_idx, bool pairwise)
298{
299	int max_key_idx;
300
301	if (pairwise)
302		max_key_idx = 3;
303	else if (wiphy_ext_feature_isset(&rdev->wiphy,
304					 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305		 wiphy_ext_feature_isset(&rdev->wiphy,
306					 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307		max_key_idx = 7;
308	else if (cfg80211_igtk_cipher_supported(rdev))
309		max_key_idx = 5;
310	else
311		max_key_idx = 3;
312
313	if (key_idx < 0 || key_idx > max_key_idx)
314		return false;
315
316	return true;
317}
318
319int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320				   struct key_params *params, int key_idx,
321				   bool pairwise, const u8 *mac_addr)
322{
323	if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324		return -EINVAL;
325
326	if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327		return -EINVAL;
328
329	if (pairwise && !mac_addr)
330		return -EINVAL;
331
332	switch (params->cipher) {
333	case WLAN_CIPHER_SUITE_TKIP:
334		/* Extended Key ID can only be used with CCMP/GCMP ciphers */
335		if ((pairwise && key_idx) ||
336		    params->mode != NL80211_KEY_RX_TX)
337			return -EINVAL;
338		break;
339	case WLAN_CIPHER_SUITE_CCMP:
340	case WLAN_CIPHER_SUITE_CCMP_256:
341	case WLAN_CIPHER_SUITE_GCMP:
342	case WLAN_CIPHER_SUITE_GCMP_256:
343		/* IEEE802.11-2016 allows only 0 and - when supporting
344		 * Extended Key ID - 1 as index for pairwise keys.
345		 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346		 * the driver supports Extended Key ID.
347		 * @NL80211_KEY_SET_TX can't be set when installing and
348		 * validating a key.
349		 */
350		if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351		    params->mode == NL80211_KEY_SET_TX)
352			return -EINVAL;
353		if (wiphy_ext_feature_isset(&rdev->wiphy,
354					    NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355			if (pairwise && (key_idx < 0 || key_idx > 1))
356				return -EINVAL;
357		} else if (pairwise && key_idx) {
358			return -EINVAL;
359		}
360		break;
361	case WLAN_CIPHER_SUITE_AES_CMAC:
362	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365		/* Disallow BIP (group-only) cipher as pairwise cipher */
366		if (pairwise)
367			return -EINVAL;
368		if (key_idx < 4)
369			return -EINVAL;
370		break;
371	case WLAN_CIPHER_SUITE_WEP40:
372	case WLAN_CIPHER_SUITE_WEP104:
373		if (key_idx > 3)
374			return -EINVAL;
375		break;
376	default:
377		break;
378	}
379
380	switch (params->cipher) {
381	case WLAN_CIPHER_SUITE_WEP40:
382		if (params->key_len != WLAN_KEY_LEN_WEP40)
383			return -EINVAL;
384		break;
385	case WLAN_CIPHER_SUITE_TKIP:
386		if (params->key_len != WLAN_KEY_LEN_TKIP)
387			return -EINVAL;
388		break;
389	case WLAN_CIPHER_SUITE_CCMP:
390		if (params->key_len != WLAN_KEY_LEN_CCMP)
391			return -EINVAL;
392		break;
393	case WLAN_CIPHER_SUITE_CCMP_256:
394		if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395			return -EINVAL;
396		break;
397	case WLAN_CIPHER_SUITE_GCMP:
398		if (params->key_len != WLAN_KEY_LEN_GCMP)
399			return -EINVAL;
400		break;
401	case WLAN_CIPHER_SUITE_GCMP_256:
402		if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403			return -EINVAL;
404		break;
405	case WLAN_CIPHER_SUITE_WEP104:
406		if (params->key_len != WLAN_KEY_LEN_WEP104)
407			return -EINVAL;
408		break;
409	case WLAN_CIPHER_SUITE_AES_CMAC:
410		if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411			return -EINVAL;
412		break;
413	case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414		if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415			return -EINVAL;
416		break;
417	case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419			return -EINVAL;
420		break;
421	case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422		if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423			return -EINVAL;
424		break;
425	default:
426		/*
427		 * We don't know anything about this algorithm,
428		 * allow using it -- but the driver must check
429		 * all parameters! We still check below whether
430		 * or not the driver supports this algorithm,
431		 * of course.
432		 */
433		break;
434	}
435
436	if (params->seq) {
437		switch (params->cipher) {
438		case WLAN_CIPHER_SUITE_WEP40:
439		case WLAN_CIPHER_SUITE_WEP104:
440			/* These ciphers do not use key sequence */
441			return -EINVAL;
442		case WLAN_CIPHER_SUITE_TKIP:
443		case WLAN_CIPHER_SUITE_CCMP:
444		case WLAN_CIPHER_SUITE_CCMP_256:
445		case WLAN_CIPHER_SUITE_GCMP:
446		case WLAN_CIPHER_SUITE_GCMP_256:
447		case WLAN_CIPHER_SUITE_AES_CMAC:
448		case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449		case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450		case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451			if (params->seq_len != 6)
452				return -EINVAL;
453			break;
454		}
455	}
456
457	if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458		return -EINVAL;
459
460	return 0;
461}
462
463unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464{
465	unsigned int hdrlen = 24;
466
467	if (ieee80211_is_ext(fc)) {
468		hdrlen = 4;
469		goto out;
470	}
471
472	if (ieee80211_is_data(fc)) {
473		if (ieee80211_has_a4(fc))
474			hdrlen = 30;
475		if (ieee80211_is_data_qos(fc)) {
476			hdrlen += IEEE80211_QOS_CTL_LEN;
477			if (ieee80211_has_order(fc))
478				hdrlen += IEEE80211_HT_CTL_LEN;
479		}
480		goto out;
481	}
482
483	if (ieee80211_is_mgmt(fc)) {
484		if (ieee80211_has_order(fc))
485			hdrlen += IEEE80211_HT_CTL_LEN;
486		goto out;
487	}
488
489	if (ieee80211_is_ctl(fc)) {
490		/*
491		 * ACK and CTS are 10 bytes, all others 16. To see how
492		 * to get this condition consider
493		 *   subtype mask:   0b0000000011110000 (0x00F0)
494		 *   ACK subtype:    0b0000000011010000 (0x00D0)
495		 *   CTS subtype:    0b0000000011000000 (0x00C0)
496		 *   bits that matter:         ^^^      (0x00E0)
497		 *   value of those: 0b0000000011000000 (0x00C0)
498		 */
499		if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500			hdrlen = 10;
501		else
502			hdrlen = 16;
503	}
504out:
505	return hdrlen;
506}
507EXPORT_SYMBOL(ieee80211_hdrlen);
508
509unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510{
511	const struct ieee80211_hdr *hdr =
512			(const struct ieee80211_hdr *)skb->data;
513	unsigned int hdrlen;
514
515	if (unlikely(skb->len < 10))
516		return 0;
517	hdrlen = ieee80211_hdrlen(hdr->frame_control);
518	if (unlikely(hdrlen > skb->len))
519		return 0;
520	return hdrlen;
521}
522EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525{
526	int ae = flags & MESH_FLAGS_AE;
527	/* 802.11-2012, 8.2.4.7.3 */
528	switch (ae) {
529	default:
530	case 0:
531		return 6;
532	case MESH_FLAGS_AE_A4:
533		return 12;
534	case MESH_FLAGS_AE_A5_A6:
535		return 18;
536	}
537}
538
539unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540{
541	return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542}
543EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546{
547	const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549	if (!(ether_addr_equal(hdr, rfc1042_header) &&
550	      *hdr_proto != htons(ETH_P_AARP) &&
551	      *hdr_proto != htons(ETH_P_IPX)) &&
552	    !ether_addr_equal(hdr, bridge_tunnel_header))
553		return false;
554
555	*proto = *hdr_proto;
556
557	return true;
558}
559EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
561int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562{
563	const void *mesh_addr;
564	struct {
565		struct ethhdr eth;
566		u8 flags;
567	} payload;
568	int hdrlen;
569	int ret;
570
571	ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572	if (ret)
573		return ret;
574
575	hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577	if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578		   ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579						   &payload.eth.h_proto)))
580		hdrlen += ETH_ALEN + 2;
581	else if (!pskb_may_pull(skb, hdrlen))
582		return -EINVAL;
583	else
584		payload.eth.h_proto = htons(skb->len - hdrlen);
585
586	mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
587	switch (payload.flags & MESH_FLAGS_AE) {
588	case MESH_FLAGS_AE_A4:
589		memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
590		break;
591	case MESH_FLAGS_AE_A5_A6:
592		memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
593		break;
594	default:
595		break;
596	}
597
598	pskb_pull(skb, hdrlen - sizeof(payload.eth));
599	memcpy(skb->data, &payload.eth, sizeof(payload.eth));
600
601	return 0;
602}
603EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
604
605int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
606				  const u8 *addr, enum nl80211_iftype iftype,
607				  u8 data_offset, bool is_amsdu)
608{
609	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
610	struct {
611		u8 hdr[ETH_ALEN] __aligned(2);
612		__be16 proto;
613	} payload;
614	struct ethhdr tmp;
615	u16 hdrlen;
616
617	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
618		return -1;
619
620	hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
621	if (skb->len < hdrlen)
622		return -1;
623
624	/* convert IEEE 802.11 header + possible LLC headers into Ethernet
625	 * header
626	 * IEEE 802.11 address fields:
627	 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
628	 *   0     0   DA    SA    BSSID n/a
629	 *   0     1   DA    BSSID SA    n/a
630	 *   1     0   BSSID SA    DA    n/a
631	 *   1     1   RA    TA    DA    SA
632	 */
633	memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
634	memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
635
636	switch (hdr->frame_control &
637		cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
638	case cpu_to_le16(IEEE80211_FCTL_TODS):
639		if (unlikely(iftype != NL80211_IFTYPE_AP &&
640			     iftype != NL80211_IFTYPE_AP_VLAN &&
641			     iftype != NL80211_IFTYPE_P2P_GO))
642			return -1;
643		break;
644	case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
645		if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
646			     iftype != NL80211_IFTYPE_AP_VLAN &&
647			     iftype != NL80211_IFTYPE_STATION))
648			return -1;
649		break;
650	case cpu_to_le16(IEEE80211_FCTL_FROMDS):
651		if ((iftype != NL80211_IFTYPE_STATION &&
652		     iftype != NL80211_IFTYPE_P2P_CLIENT &&
653		     iftype != NL80211_IFTYPE_MESH_POINT) ||
654		    (is_multicast_ether_addr(tmp.h_dest) &&
655		     ether_addr_equal(tmp.h_source, addr)))
656			return -1;
657		break;
658	case cpu_to_le16(0):
659		if (iftype != NL80211_IFTYPE_ADHOC &&
660		    iftype != NL80211_IFTYPE_STATION &&
661		    iftype != NL80211_IFTYPE_OCB)
662				return -1;
663		break;
664	}
665
666	if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
667		   skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
668		   ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
669		/* remove RFC1042 or Bridge-Tunnel encapsulation */
670		hdrlen += ETH_ALEN + 2;
671		skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
672	} else {
673		tmp.h_proto = htons(skb->len - hdrlen);
674	}
675
676	pskb_pull(skb, hdrlen);
677
678	if (!ehdr)
679		ehdr = skb_push(skb, sizeof(struct ethhdr));
680	memcpy(ehdr, &tmp, sizeof(tmp));
681
682	return 0;
683}
684EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
685
686static void
687__frame_add_frag(struct sk_buff *skb, struct page *page,
688		 void *ptr, int len, int size)
689{
690	struct skb_shared_info *sh = skb_shinfo(skb);
691	int page_offset;
692
693	get_page(page);
694	page_offset = ptr - page_address(page);
695	skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
696}
697
698static void
699__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
700			    int offset, int len)
701{
702	struct skb_shared_info *sh = skb_shinfo(skb);
703	const skb_frag_t *frag = &sh->frags[0];
704	struct page *frag_page;
705	void *frag_ptr;
706	int frag_len, frag_size;
707	int head_size = skb->len - skb->data_len;
708	int cur_len;
709
710	frag_page = virt_to_head_page(skb->head);
711	frag_ptr = skb->data;
712	frag_size = head_size;
713
714	while (offset >= frag_size) {
715		offset -= frag_size;
716		frag_page = skb_frag_page(frag);
717		frag_ptr = skb_frag_address(frag);
718		frag_size = skb_frag_size(frag);
719		frag++;
720	}
721
722	frag_ptr += offset;
723	frag_len = frag_size - offset;
724
725	cur_len = min(len, frag_len);
726
727	__frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
728	len -= cur_len;
729
730	while (len > 0) {
731		frag_len = skb_frag_size(frag);
732		cur_len = min(len, frag_len);
733		__frame_add_frag(frame, skb_frag_page(frag),
734				 skb_frag_address(frag), cur_len, frag_len);
735		len -= cur_len;
736		frag++;
737	}
738}
739
740static struct sk_buff *
741__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
742		       int offset, int len, bool reuse_frag,
743		       int min_len)
744{
745	struct sk_buff *frame;
746	int cur_len = len;
747
748	if (skb->len - offset < len)
749		return NULL;
750
751	/*
752	 * When reusing framents, copy some data to the head to simplify
753	 * ethernet header handling and speed up protocol header processing
754	 * in the stack later.
755	 */
756	if (reuse_frag)
757		cur_len = min_t(int, len, min_len);
758
759	/*
760	 * Allocate and reserve two bytes more for payload
761	 * alignment since sizeof(struct ethhdr) is 14.
762	 */
763	frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
764	if (!frame)
765		return NULL;
766
767	frame->priority = skb->priority;
768	skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
769	skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
770
771	len -= cur_len;
772	if (!len)
773		return frame;
774
775	offset += cur_len;
776	__ieee80211_amsdu_copy_frag(skb, frame, offset, len);
777
778	return frame;
779}
780
781static u16
782ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
783{
784	__le16 *field_le = field;
785	__be16 *field_be = field;
786	u16 len;
787
788	if (hdr_type >= 2)
789		len = le16_to_cpu(*field_le);
790	else
791		len = be16_to_cpu(*field_be);
792	if (hdr_type)
793		len += __ieee80211_get_mesh_hdrlen(mesh_flags);
794
795	return len;
796}
797
798bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
799{
800	int offset = 0, remaining, subframe_len, padding;
801
802	for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
803		struct {
804		    __be16 len;
805		    u8 mesh_flags;
806		} hdr;
807		u16 len;
808
809		if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
810			return false;
811
812		len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
813						      mesh_hdr);
814		subframe_len = sizeof(struct ethhdr) + len;
815		padding = (4 - subframe_len) & 0x3;
816		remaining = skb->len - offset;
817
818		if (subframe_len > remaining)
819			return false;
820	}
821
822	return true;
823}
824EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
825
826void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
827			      const u8 *addr, enum nl80211_iftype iftype,
828			      const unsigned int extra_headroom,
829			      const u8 *check_da, const u8 *check_sa,
830			      u8 mesh_control)
831{
832	unsigned int hlen = ALIGN(extra_headroom, 4);
833	struct sk_buff *frame = NULL;
834	int offset = 0, remaining;
835	struct {
836		struct ethhdr eth;
837		uint8_t flags;
838	} hdr;
839	bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
840	bool reuse_skb = false;
841	bool last = false;
842	int copy_len = sizeof(hdr.eth);
843
844	if (iftype == NL80211_IFTYPE_MESH_POINT)
845		copy_len = sizeof(hdr);
846
847	while (!last) {
848		unsigned int subframe_len;
849		int len, mesh_len = 0;
850		u8 padding;
851
852		skb_copy_bits(skb, offset, &hdr, copy_len);
853		if (iftype == NL80211_IFTYPE_MESH_POINT)
854			mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
855		len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
856						      mesh_control);
857		subframe_len = sizeof(struct ethhdr) + len;
858		padding = (4 - subframe_len) & 0x3;
859
860		/* the last MSDU has no padding */
861		remaining = skb->len - offset;
862		if (subframe_len > remaining)
863			goto purge;
864		/* mitigate A-MSDU aggregation injection attacks */
865		if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
866			goto purge;
867
868		offset += sizeof(struct ethhdr);
869		last = remaining <= subframe_len + padding;
870
871		/* FIXME: should we really accept multicast DA? */
872		if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
873		     !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
874		    (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
875			offset += len + padding;
876			continue;
877		}
878
879		/* reuse skb for the last subframe */
880		if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
881			skb_pull(skb, offset);
882			frame = skb;
883			reuse_skb = true;
884		} else {
885			frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
886						       reuse_frag, 32 + mesh_len);
887			if (!frame)
888				goto purge;
889
890			offset += len + padding;
891		}
892
893		skb_reset_network_header(frame);
894		frame->dev = skb->dev;
895		frame->priority = skb->priority;
896
897		if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
898			   ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
899			skb_pull(frame, ETH_ALEN + 2);
900
901		memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
902		__skb_queue_tail(list, frame);
903	}
904
905	if (!reuse_skb)
906		dev_kfree_skb(skb);
907
908	return;
909
910 purge:
911	__skb_queue_purge(list);
912	dev_kfree_skb(skb);
913}
914EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
915
916/* Given a data frame determine the 802.1p/1d tag to use. */
917unsigned int cfg80211_classify8021d(struct sk_buff *skb,
918				    struct cfg80211_qos_map *qos_map)
919{
920	unsigned int dscp;
921	unsigned char vlan_priority;
922	unsigned int ret;
923
924	/* skb->priority values from 256->263 are magic values to
925	 * directly indicate a specific 802.1d priority.  This is used
926	 * to allow 802.1d priority to be passed directly in from VLAN
927	 * tags, etc.
928	 */
929	if (skb->priority >= 256 && skb->priority <= 263) {
930		ret = skb->priority - 256;
931		goto out;
932	}
933
934	if (skb_vlan_tag_present(skb)) {
935		vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
936			>> VLAN_PRIO_SHIFT;
937		if (vlan_priority > 0) {
938			ret = vlan_priority;
939			goto out;
940		}
941	}
942
943	switch (skb->protocol) {
944	case htons(ETH_P_IP):
945		dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
946		break;
947	case htons(ETH_P_IPV6):
948		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
949		break;
950	case htons(ETH_P_MPLS_UC):
951	case htons(ETH_P_MPLS_MC): {
952		struct mpls_label mpls_tmp, *mpls;
953
954		mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
955					  sizeof(*mpls), &mpls_tmp);
956		if (!mpls)
957			return 0;
958
959		ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
960			>> MPLS_LS_TC_SHIFT;
961		goto out;
962	}
963	case htons(ETH_P_80221):
964		/* 802.21 is always network control traffic */
965		return 7;
966	default:
967		return 0;
968	}
969
970	if (qos_map) {
971		unsigned int i, tmp_dscp = dscp >> 2;
972
973		for (i = 0; i < qos_map->num_des; i++) {
974			if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
975				ret = qos_map->dscp_exception[i].up;
976				goto out;
977			}
978		}
979
980		for (i = 0; i < 8; i++) {
981			if (tmp_dscp >= qos_map->up[i].low &&
982			    tmp_dscp <= qos_map->up[i].high) {
983				ret = i;
984				goto out;
985			}
986		}
987	}
988
989	ret = dscp >> 5;
990out:
991	return array_index_nospec(ret, IEEE80211_NUM_TIDS);
992}
993EXPORT_SYMBOL(cfg80211_classify8021d);
994
995const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
996{
997	const struct cfg80211_bss_ies *ies;
998
999	ies = rcu_dereference(bss->ies);
1000	if (!ies)
1001		return NULL;
1002
1003	return cfg80211_find_elem(id, ies->data, ies->len);
1004}
1005EXPORT_SYMBOL(ieee80211_bss_get_elem);
1006
1007void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1008{
1009	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1010	struct net_device *dev = wdev->netdev;
1011	int i;
1012
1013	if (!wdev->connect_keys)
1014		return;
1015
1016	for (i = 0; i < 4; i++) {
1017		if (!wdev->connect_keys->params[i].cipher)
1018			continue;
1019		if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1020				 &wdev->connect_keys->params[i])) {
1021			netdev_err(dev, "failed to set key %d\n", i);
1022			continue;
1023		}
1024		if (wdev->connect_keys->def == i &&
1025		    rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1026			netdev_err(dev, "failed to set defkey %d\n", i);
1027			continue;
1028		}
1029	}
1030
1031	kfree_sensitive(wdev->connect_keys);
1032	wdev->connect_keys = NULL;
1033}
1034
1035void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1036{
1037	struct cfg80211_event *ev;
1038	unsigned long flags;
1039
1040	spin_lock_irqsave(&wdev->event_lock, flags);
1041	while (!list_empty(&wdev->event_list)) {
1042		ev = list_first_entry(&wdev->event_list,
1043				      struct cfg80211_event, list);
1044		list_del(&ev->list);
1045		spin_unlock_irqrestore(&wdev->event_lock, flags);
1046
1047		wdev_lock(wdev);
1048		switch (ev->type) {
1049		case EVENT_CONNECT_RESULT:
1050			__cfg80211_connect_result(
1051				wdev->netdev,
1052				&ev->cr,
1053				ev->cr.status == WLAN_STATUS_SUCCESS);
1054			break;
1055		case EVENT_ROAMED:
1056			__cfg80211_roamed(wdev, &ev->rm);
1057			break;
1058		case EVENT_DISCONNECTED:
1059			__cfg80211_disconnected(wdev->netdev,
1060						ev->dc.ie, ev->dc.ie_len,
1061						ev->dc.reason,
1062						!ev->dc.locally_generated);
1063			break;
1064		case EVENT_IBSS_JOINED:
1065			__cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1066					       ev->ij.channel);
1067			break;
1068		case EVENT_STOPPED:
1069			__cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1070			break;
1071		case EVENT_PORT_AUTHORIZED:
1072			__cfg80211_port_authorized(wdev, ev->pa.bssid,
1073						   ev->pa.td_bitmap,
1074						   ev->pa.td_bitmap_len);
1075			break;
1076		}
1077		wdev_unlock(wdev);
1078
1079		kfree(ev);
1080
1081		spin_lock_irqsave(&wdev->event_lock, flags);
1082	}
1083	spin_unlock_irqrestore(&wdev->event_lock, flags);
1084}
1085
1086void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1087{
1088	struct wireless_dev *wdev;
1089
1090	lockdep_assert_held(&rdev->wiphy.mtx);
1091
1092	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1093		cfg80211_process_wdev_events(wdev);
1094}
1095
1096int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1097			  struct net_device *dev, enum nl80211_iftype ntype,
1098			  struct vif_params *params)
1099{
1100	int err;
1101	enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1102
1103	lockdep_assert_held(&rdev->wiphy.mtx);
1104
1105	/* don't support changing VLANs, you just re-create them */
1106	if (otype == NL80211_IFTYPE_AP_VLAN)
1107		return -EOPNOTSUPP;
1108
1109	/* cannot change into P2P device or NAN */
1110	if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1111	    ntype == NL80211_IFTYPE_NAN)
1112		return -EOPNOTSUPP;
1113
1114	if (!rdev->ops->change_virtual_intf ||
1115	    !(rdev->wiphy.interface_modes & (1 << ntype)))
1116		return -EOPNOTSUPP;
1117
1118	if (ntype != otype) {
1119		/* if it's part of a bridge, reject changing type to station/ibss */
1120		if (netif_is_bridge_port(dev) &&
1121		    (ntype == NL80211_IFTYPE_ADHOC ||
1122		     ntype == NL80211_IFTYPE_STATION ||
1123		     ntype == NL80211_IFTYPE_P2P_CLIENT))
1124			return -EBUSY;
1125
1126		dev->ieee80211_ptr->use_4addr = false;
1127		wdev_lock(dev->ieee80211_ptr);
1128		rdev_set_qos_map(rdev, dev, NULL);
1129		wdev_unlock(dev->ieee80211_ptr);
1130
1131		switch (otype) {
1132		case NL80211_IFTYPE_AP:
1133		case NL80211_IFTYPE_P2P_GO:
1134			cfg80211_stop_ap(rdev, dev, -1, true);
1135			break;
1136		case NL80211_IFTYPE_ADHOC:
1137			cfg80211_leave_ibss(rdev, dev, false);
1138			break;
1139		case NL80211_IFTYPE_STATION:
1140		case NL80211_IFTYPE_P2P_CLIENT:
1141			wdev_lock(dev->ieee80211_ptr);
1142			cfg80211_disconnect(rdev, dev,
1143					    WLAN_REASON_DEAUTH_LEAVING, true);
1144			wdev_unlock(dev->ieee80211_ptr);
1145			break;
1146		case NL80211_IFTYPE_MESH_POINT:
1147			/* mesh should be handled? */
1148			break;
1149		case NL80211_IFTYPE_OCB:
1150			cfg80211_leave_ocb(rdev, dev);
1151			break;
1152		default:
1153			break;
1154		}
1155
1156		cfg80211_process_rdev_events(rdev);
1157		cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1158
1159		memset(&dev->ieee80211_ptr->u, 0,
1160		       sizeof(dev->ieee80211_ptr->u));
1161		memset(&dev->ieee80211_ptr->links, 0,
1162		       sizeof(dev->ieee80211_ptr->links));
1163	}
1164
1165	err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1166
1167	WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1168
1169	if (!err && params && params->use_4addr != -1)
1170		dev->ieee80211_ptr->use_4addr = params->use_4addr;
1171
1172	if (!err) {
1173		dev->priv_flags &= ~IFF_DONT_BRIDGE;
1174		switch (ntype) {
1175		case NL80211_IFTYPE_STATION:
1176			if (dev->ieee80211_ptr->use_4addr)
1177				break;
1178			fallthrough;
1179		case NL80211_IFTYPE_OCB:
1180		case NL80211_IFTYPE_P2P_CLIENT:
1181		case NL80211_IFTYPE_ADHOC:
1182			dev->priv_flags |= IFF_DONT_BRIDGE;
1183			break;
1184		case NL80211_IFTYPE_P2P_GO:
1185		case NL80211_IFTYPE_AP:
1186		case NL80211_IFTYPE_AP_VLAN:
1187		case NL80211_IFTYPE_MESH_POINT:
1188			/* bridging OK */
1189			break;
1190		case NL80211_IFTYPE_MONITOR:
1191			/* monitor can't bridge anyway */
1192			break;
1193		case NL80211_IFTYPE_UNSPECIFIED:
1194		case NUM_NL80211_IFTYPES:
1195			/* not happening */
1196			break;
1197		case NL80211_IFTYPE_P2P_DEVICE:
1198		case NL80211_IFTYPE_WDS:
1199		case NL80211_IFTYPE_NAN:
1200			WARN_ON(1);
1201			break;
1202		}
1203	}
1204
1205	if (!err && ntype != otype && netif_running(dev)) {
1206		cfg80211_update_iface_num(rdev, ntype, 1);
1207		cfg80211_update_iface_num(rdev, otype, -1);
1208	}
1209
1210	return err;
1211}
1212
1213static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1214{
1215	int modulation, streams, bitrate;
1216
1217	/* the formula below does only work for MCS values smaller than 32 */
1218	if (WARN_ON_ONCE(rate->mcs >= 32))
1219		return 0;
1220
1221	modulation = rate->mcs & 7;
1222	streams = (rate->mcs >> 3) + 1;
1223
1224	bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1225
1226	if (modulation < 4)
1227		bitrate *= (modulation + 1);
1228	else if (modulation == 4)
1229		bitrate *= (modulation + 2);
1230	else
1231		bitrate *= (modulation + 3);
1232
1233	bitrate *= streams;
1234
1235	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1236		bitrate = (bitrate / 9) * 10;
1237
1238	/* do NOT round down here */
1239	return (bitrate + 50000) / 100000;
1240}
1241
1242static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1243{
1244	static const u32 __mcs2bitrate[] = {
1245		/* control PHY */
1246		[0] =   275,
1247		/* SC PHY */
1248		[1] =  3850,
1249		[2] =  7700,
1250		[3] =  9625,
1251		[4] = 11550,
1252		[5] = 12512, /* 1251.25 mbps */
1253		[6] = 15400,
1254		[7] = 19250,
1255		[8] = 23100,
1256		[9] = 25025,
1257		[10] = 30800,
1258		[11] = 38500,
1259		[12] = 46200,
1260		/* OFDM PHY */
1261		[13] =  6930,
1262		[14] =  8662, /* 866.25 mbps */
1263		[15] = 13860,
1264		[16] = 17325,
1265		[17] = 20790,
1266		[18] = 27720,
1267		[19] = 34650,
1268		[20] = 41580,
1269		[21] = 45045,
1270		[22] = 51975,
1271		[23] = 62370,
1272		[24] = 67568, /* 6756.75 mbps */
1273		/* LP-SC PHY */
1274		[25] =  6260,
1275		[26] =  8340,
1276		[27] = 11120,
1277		[28] = 12510,
1278		[29] = 16680,
1279		[30] = 22240,
1280		[31] = 25030,
1281	};
1282
1283	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1284		return 0;
1285
1286	return __mcs2bitrate[rate->mcs];
1287}
1288
1289static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1290{
1291	static const u32 __mcs2bitrate[] = {
1292		[6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1293		[7 - 6] = 50050, /* MCS 12.1 */
1294		[8 - 6] = 53900,
1295		[9 - 6] = 57750,
1296		[10 - 6] = 63900,
1297		[11 - 6] = 75075,
1298		[12 - 6] = 80850,
1299	};
1300
1301	/* Extended SC MCS not defined for base MCS below 6 or above 12 */
1302	if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1303		return 0;
1304
1305	return __mcs2bitrate[rate->mcs - 6];
1306}
1307
1308static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1309{
1310	static const u32 __mcs2bitrate[] = {
1311		/* control PHY */
1312		[0] =   275,
1313		/* SC PHY */
1314		[1] =  3850,
1315		[2] =  7700,
1316		[3] =  9625,
1317		[4] = 11550,
1318		[5] = 12512, /* 1251.25 mbps */
1319		[6] = 13475,
1320		[7] = 15400,
1321		[8] = 19250,
1322		[9] = 23100,
1323		[10] = 25025,
1324		[11] = 26950,
1325		[12] = 30800,
1326		[13] = 38500,
1327		[14] = 46200,
1328		[15] = 50050,
1329		[16] = 53900,
1330		[17] = 57750,
1331		[18] = 69300,
1332		[19] = 75075,
1333		[20] = 80850,
1334	};
1335
1336	if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1337		return 0;
1338
1339	return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1340}
1341
1342static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1343{
1344	static const u32 base[4][12] = {
1345		{   6500000,
1346		   13000000,
1347		   19500000,
1348		   26000000,
1349		   39000000,
1350		   52000000,
1351		   58500000,
1352		   65000000,
1353		   78000000,
1354		/* not in the spec, but some devices use this: */
1355		   86700000,
1356		   97500000,
1357		  108300000,
1358		},
1359		{  13500000,
1360		   27000000,
1361		   40500000,
1362		   54000000,
1363		   81000000,
1364		  108000000,
1365		  121500000,
1366		  135000000,
1367		  162000000,
1368		  180000000,
1369		  202500000,
1370		  225000000,
1371		},
1372		{  29300000,
1373		   58500000,
1374		   87800000,
1375		  117000000,
1376		  175500000,
1377		  234000000,
1378		  263300000,
1379		  292500000,
1380		  351000000,
1381		  390000000,
1382		  438800000,
1383		  487500000,
1384		},
1385		{  58500000,
1386		  117000000,
1387		  175500000,
1388		  234000000,
1389		  351000000,
1390		  468000000,
1391		  526500000,
1392		  585000000,
1393		  702000000,
1394		  780000000,
1395		  877500000,
1396		  975000000,
1397		},
1398	};
1399	u32 bitrate;
1400	int idx;
1401
1402	if (rate->mcs > 11)
1403		goto warn;
1404
1405	switch (rate->bw) {
1406	case RATE_INFO_BW_160:
1407		idx = 3;
1408		break;
1409	case RATE_INFO_BW_80:
1410		idx = 2;
1411		break;
1412	case RATE_INFO_BW_40:
1413		idx = 1;
1414		break;
1415	case RATE_INFO_BW_5:
1416	case RATE_INFO_BW_10:
1417	default:
1418		goto warn;
1419	case RATE_INFO_BW_20:
1420		idx = 0;
1421	}
1422
1423	bitrate = base[idx][rate->mcs];
1424	bitrate *= rate->nss;
1425
1426	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1427		bitrate = (bitrate / 9) * 10;
1428
1429	/* do NOT round down here */
1430	return (bitrate + 50000) / 100000;
1431 warn:
1432	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1433		  rate->bw, rate->mcs, rate->nss);
1434	return 0;
1435}
1436
1437static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1438{
1439#define SCALE 6144
1440	u32 mcs_divisors[14] = {
1441		102399, /* 16.666666... */
1442		 51201, /*  8.333333... */
1443		 34134, /*  5.555555... */
1444		 25599, /*  4.166666... */
1445		 17067, /*  2.777777... */
1446		 12801, /*  2.083333... */
1447		 11377, /*  1.851725... */
1448		 10239, /*  1.666666... */
1449		  8532, /*  1.388888... */
1450		  7680, /*  1.250000... */
1451		  6828, /*  1.111111... */
1452		  6144, /*  1.000000... */
1453		  5690, /*  0.926106... */
1454		  5120, /*  0.833333... */
1455	};
1456	u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1457	u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1458	u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1459	u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1460	u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1461	u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1462	u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1463	u64 tmp;
1464	u32 result;
1465
1466	if (WARN_ON_ONCE(rate->mcs > 13))
1467		return 0;
1468
1469	if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1470		return 0;
1471	if (WARN_ON_ONCE(rate->he_ru_alloc >
1472			 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1473		return 0;
1474	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1475		return 0;
1476
1477	if (rate->bw == RATE_INFO_BW_160)
1478		result = rates_160M[rate->he_gi];
1479	else if (rate->bw == RATE_INFO_BW_80 ||
1480		 (rate->bw == RATE_INFO_BW_HE_RU &&
1481		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1482		result = rates_969[rate->he_gi];
1483	else if (rate->bw == RATE_INFO_BW_40 ||
1484		 (rate->bw == RATE_INFO_BW_HE_RU &&
1485		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1486		result = rates_484[rate->he_gi];
1487	else if (rate->bw == RATE_INFO_BW_20 ||
1488		 (rate->bw == RATE_INFO_BW_HE_RU &&
1489		  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1490		result = rates_242[rate->he_gi];
1491	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1492		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1493		result = rates_106[rate->he_gi];
1494	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1495		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1496		result = rates_52[rate->he_gi];
1497	else if (rate->bw == RATE_INFO_BW_HE_RU &&
1498		 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1499		result = rates_26[rate->he_gi];
1500	else {
1501		WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1502		     rate->bw, rate->he_ru_alloc);
1503		return 0;
1504	}
1505
1506	/* now scale to the appropriate MCS */
1507	tmp = result;
1508	tmp *= SCALE;
1509	do_div(tmp, mcs_divisors[rate->mcs]);
1510	result = tmp;
1511
1512	/* and take NSS, DCM into account */
1513	result = (result * rate->nss) / 8;
1514	if (rate->he_dcm)
1515		result /= 2;
1516
1517	return result / 10000;
1518}
1519
1520static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1521{
1522#define SCALE 6144
1523	static const u32 mcs_divisors[16] = {
1524		102399, /* 16.666666... */
1525		 51201, /*  8.333333... */
1526		 34134, /*  5.555555... */
1527		 25599, /*  4.166666... */
1528		 17067, /*  2.777777... */
1529		 12801, /*  2.083333... */
1530		 11377, /*  1.851725... */
1531		 10239, /*  1.666666... */
1532		  8532, /*  1.388888... */
1533		  7680, /*  1.250000... */
1534		  6828, /*  1.111111... */
1535		  6144, /*  1.000000... */
1536		  5690, /*  0.926106... */
1537		  5120, /*  0.833333... */
1538		409600, /* 66.666666... */
1539		204800, /* 33.333333... */
1540	};
1541	static const u32 rates_996[3] =  { 480388888, 453700000, 408333333 };
1542	static const u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1543	static const u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1544	static const u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1545	static const u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1546	static const u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1547	u64 tmp;
1548	u32 result;
1549
1550	if (WARN_ON_ONCE(rate->mcs > 15))
1551		return 0;
1552	if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1553		return 0;
1554	if (WARN_ON_ONCE(rate->eht_ru_alloc >
1555			 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1556		return 0;
1557	if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1558		return 0;
1559
1560	/* Bandwidth checks for MCS 14 */
1561	if (rate->mcs == 14) {
1562		if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1563		     rate->bw != RATE_INFO_BW_80 &&
1564		     rate->bw != RATE_INFO_BW_160 &&
1565		     rate->bw != RATE_INFO_BW_320) ||
1566		    (rate->bw == RATE_INFO_BW_EHT_RU &&
1567		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1568		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1569		     rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1570			WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1571			     rate->bw, rate->eht_ru_alloc);
1572			return 0;
1573		}
1574	}
1575
1576	if (rate->bw == RATE_INFO_BW_320 ||
1577	    (rate->bw == RATE_INFO_BW_EHT_RU &&
1578	     rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1579		result = 4 * rates_996[rate->eht_gi];
1580	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1581		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1582		result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1583	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1584		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1585		result = 3 * rates_996[rate->eht_gi];
1586	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1587		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1588		result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1589	else if (rate->bw == RATE_INFO_BW_160 ||
1590		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1591		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1592		result = 2 * rates_996[rate->eht_gi];
1593	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1594		 rate->eht_ru_alloc ==
1595		 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1596		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1597			 + rates_242[rate->eht_gi];
1598	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1599		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1600		result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1601	else if (rate->bw == RATE_INFO_BW_80 ||
1602		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1603		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1604		result = rates_996[rate->eht_gi];
1605	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1606		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1607		result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1608	else if (rate->bw == RATE_INFO_BW_40 ||
1609		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1610		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1611		result = rates_484[rate->eht_gi];
1612	else if (rate->bw == RATE_INFO_BW_20 ||
1613		 (rate->bw == RATE_INFO_BW_EHT_RU &&
1614		  rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1615		result = rates_242[rate->eht_gi];
1616	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1617		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1618		result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1619	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1620		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1621		result = rates_106[rate->eht_gi];
1622	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1623		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1624		result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1625	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1626		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1627		result = rates_52[rate->eht_gi];
1628	else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1629		 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1630		result = rates_26[rate->eht_gi];
1631	else {
1632		WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1633		     rate->bw, rate->eht_ru_alloc);
1634		return 0;
1635	}
1636
1637	/* now scale to the appropriate MCS */
1638	tmp = result;
1639	tmp *= SCALE;
1640	do_div(tmp, mcs_divisors[rate->mcs]);
1641
1642	/* and take NSS */
1643	tmp *= rate->nss;
1644	do_div(tmp, 8);
1645
1646	result = tmp;
1647
1648	return result / 10000;
1649}
1650
1651static u32 cfg80211_calculate_bitrate_s1g(struct rate_info *rate)
1652{
1653	/* For 1, 2, 4, 8 and 16 MHz channels */
1654	static const u32 base[5][11] = {
1655		{  300000,
1656		   600000,
1657		   900000,
1658		  1200000,
1659		  1800000,
1660		  2400000,
1661		  2700000,
1662		  3000000,
1663		  3600000,
1664		  4000000,
1665		  /* MCS 10 supported in 1 MHz only */
1666		  150000,
1667		},
1668		{  650000,
1669		  1300000,
1670		  1950000,
1671		  2600000,
1672		  3900000,
1673		  5200000,
1674		  5850000,
1675		  6500000,
1676		  7800000,
1677		  /* MCS 9 not valid */
1678		},
1679		{  1350000,
1680		   2700000,
1681		   4050000,
1682		   5400000,
1683		   8100000,
1684		  10800000,
1685		  12150000,
1686		  13500000,
1687		  16200000,
1688		  18000000,
1689		},
1690		{  2925000,
1691		   5850000,
1692		   8775000,
1693		  11700000,
1694		  17550000,
1695		  23400000,
1696		  26325000,
1697		  29250000,
1698		  35100000,
1699		  39000000,
1700		},
1701		{  8580000,
1702		  11700000,
1703		  17550000,
1704		  23400000,
1705		  35100000,
1706		  46800000,
1707		  52650000,
1708		  58500000,
1709		  70200000,
1710		  78000000,
1711		},
1712	};
1713	u32 bitrate;
1714	/* default is 1 MHz index */
1715	int idx = 0;
1716
1717	if (rate->mcs >= 11)
1718		goto warn;
1719
1720	switch (rate->bw) {
1721	case RATE_INFO_BW_16:
1722		idx = 4;
1723		break;
1724	case RATE_INFO_BW_8:
1725		idx = 3;
1726		break;
1727	case RATE_INFO_BW_4:
1728		idx = 2;
1729		break;
1730	case RATE_INFO_BW_2:
1731		idx = 1;
1732		break;
1733	case RATE_INFO_BW_1:
1734		idx = 0;
1735		break;
1736	case RATE_INFO_BW_5:
1737	case RATE_INFO_BW_10:
1738	case RATE_INFO_BW_20:
1739	case RATE_INFO_BW_40:
1740	case RATE_INFO_BW_80:
1741	case RATE_INFO_BW_160:
1742	default:
1743		goto warn;
1744	}
1745
1746	bitrate = base[idx][rate->mcs];
1747	bitrate *= rate->nss;
1748
1749	if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1750		bitrate = (bitrate / 9) * 10;
1751	/* do NOT round down here */
1752	return (bitrate + 50000) / 100000;
1753warn:
1754	WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1755		  rate->bw, rate->mcs, rate->nss);
1756	return 0;
1757}
1758
1759u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1760{
1761	if (rate->flags & RATE_INFO_FLAGS_MCS)
1762		return cfg80211_calculate_bitrate_ht(rate);
1763	if (rate->flags & RATE_INFO_FLAGS_DMG)
1764		return cfg80211_calculate_bitrate_dmg(rate);
1765	if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1766		return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1767	if (rate->flags & RATE_INFO_FLAGS_EDMG)
1768		return cfg80211_calculate_bitrate_edmg(rate);
1769	if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1770		return cfg80211_calculate_bitrate_vht(rate);
1771	if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1772		return cfg80211_calculate_bitrate_he(rate);
1773	if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1774		return cfg80211_calculate_bitrate_eht(rate);
1775	if (rate->flags & RATE_INFO_FLAGS_S1G_MCS)
1776		return cfg80211_calculate_bitrate_s1g(rate);
1777
1778	return rate->legacy;
1779}
1780EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1781
1782int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1783			  enum ieee80211_p2p_attr_id attr,
1784			  u8 *buf, unsigned int bufsize)
1785{
1786	u8 *out = buf;
1787	u16 attr_remaining = 0;
1788	bool desired_attr = false;
1789	u16 desired_len = 0;
1790
1791	while (len > 0) {
1792		unsigned int iedatalen;
1793		unsigned int copy;
1794		const u8 *iedata;
1795
1796		if (len < 2)
1797			return -EILSEQ;
1798		iedatalen = ies[1];
1799		if (iedatalen + 2 > len)
1800			return -EILSEQ;
1801
1802		if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1803			goto cont;
1804
1805		if (iedatalen < 4)
1806			goto cont;
1807
1808		iedata = ies + 2;
1809
1810		/* check WFA OUI, P2P subtype */
1811		if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1812		    iedata[2] != 0x9a || iedata[3] != 0x09)
1813			goto cont;
1814
1815		iedatalen -= 4;
1816		iedata += 4;
1817
1818		/* check attribute continuation into this IE */
1819		copy = min_t(unsigned int, attr_remaining, iedatalen);
1820		if (copy && desired_attr) {
1821			desired_len += copy;
1822			if (out) {
1823				memcpy(out, iedata, min(bufsize, copy));
1824				out += min(bufsize, copy);
1825				bufsize -= min(bufsize, copy);
1826			}
1827
1828
1829			if (copy == attr_remaining)
1830				return desired_len;
1831		}
1832
1833		attr_remaining -= copy;
1834		if (attr_remaining)
1835			goto cont;
1836
1837		iedatalen -= copy;
1838		iedata += copy;
1839
1840		while (iedatalen > 0) {
1841			u16 attr_len;
1842
1843			/* P2P attribute ID & size must fit */
1844			if (iedatalen < 3)
1845				return -EILSEQ;
1846			desired_attr = iedata[0] == attr;
1847			attr_len = get_unaligned_le16(iedata + 1);
1848			iedatalen -= 3;
1849			iedata += 3;
1850
1851			copy = min_t(unsigned int, attr_len, iedatalen);
1852
1853			if (desired_attr) {
1854				desired_len += copy;
1855				if (out) {
1856					memcpy(out, iedata, min(bufsize, copy));
1857					out += min(bufsize, copy);
1858					bufsize -= min(bufsize, copy);
1859				}
1860
1861				if (copy == attr_len)
1862					return desired_len;
1863			}
1864
1865			iedata += copy;
1866			iedatalen -= copy;
1867			attr_remaining = attr_len - copy;
1868		}
1869
1870 cont:
1871		len -= ies[1] + 2;
1872		ies += ies[1] + 2;
1873	}
1874
1875	if (attr_remaining && desired_attr)
1876		return -EILSEQ;
1877
1878	return -ENOENT;
1879}
1880EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1881
1882static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1883{
1884	int i;
1885
1886	/* Make sure array values are legal */
1887	if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1888		return false;
1889
1890	i = 0;
1891	while (i < n_ids) {
1892		if (ids[i] == WLAN_EID_EXTENSION) {
1893			if (id_ext && (ids[i + 1] == id))
1894				return true;
1895
1896			i += 2;
1897			continue;
1898		}
1899
1900		if (ids[i] == id && !id_ext)
1901			return true;
1902
1903		i++;
1904	}
1905	return false;
1906}
1907
1908static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1909{
1910	/* we assume a validly formed IEs buffer */
1911	u8 len = ies[pos + 1];
1912
1913	pos += 2 + len;
1914
1915	/* the IE itself must have 255 bytes for fragments to follow */
1916	if (len < 255)
1917		return pos;
1918
1919	while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1920		len = ies[pos + 1];
1921		pos += 2 + len;
1922	}
1923
1924	return pos;
1925}
1926
1927size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1928			      const u8 *ids, int n_ids,
1929			      const u8 *after_ric, int n_after_ric,
1930			      size_t offset)
1931{
1932	size_t pos = offset;
1933
1934	while (pos < ielen) {
1935		u8 ext = 0;
1936
1937		if (ies[pos] == WLAN_EID_EXTENSION)
1938			ext = 2;
1939		if ((pos + ext) >= ielen)
1940			break;
1941
1942		if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1943					  ies[pos] == WLAN_EID_EXTENSION))
1944			break;
1945
1946		if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1947			pos = skip_ie(ies, ielen, pos);
1948
1949			while (pos < ielen) {
1950				if (ies[pos] == WLAN_EID_EXTENSION)
1951					ext = 2;
1952				else
1953					ext = 0;
1954
1955				if ((pos + ext) >= ielen)
1956					break;
1957
1958				if (!ieee80211_id_in_list(after_ric,
1959							  n_after_ric,
1960							  ies[pos + ext],
1961							  ext == 2))
1962					pos = skip_ie(ies, ielen, pos);
1963				else
1964					break;
1965			}
1966		} else {
1967			pos = skip_ie(ies, ielen, pos);
1968		}
1969	}
1970
1971	return pos;
1972}
1973EXPORT_SYMBOL(ieee80211_ie_split_ric);
1974
1975bool ieee80211_operating_class_to_band(u8 operating_class,
1976				       enum nl80211_band *band)
1977{
1978	switch (operating_class) {
1979	case 112:
1980	case 115 ... 127:
1981	case 128 ... 130:
1982		*band = NL80211_BAND_5GHZ;
1983		return true;
1984	case 131 ... 135:
1985		*band = NL80211_BAND_6GHZ;
1986		return true;
1987	case 81:
1988	case 82:
1989	case 83:
1990	case 84:
1991		*band = NL80211_BAND_2GHZ;
1992		return true;
1993	case 180:
1994		*band = NL80211_BAND_60GHZ;
1995		return true;
1996	}
1997
1998	return false;
1999}
2000EXPORT_SYMBOL(ieee80211_operating_class_to_band);
2001
2002bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
2003					  u8 *op_class)
2004{
2005	u8 vht_opclass;
2006	u32 freq = chandef->center_freq1;
2007
2008	if (freq >= 2412 && freq <= 2472) {
2009		if (chandef->width > NL80211_CHAN_WIDTH_40)
2010			return false;
2011
2012		/* 2.407 GHz, channels 1..13 */
2013		if (chandef->width == NL80211_CHAN_WIDTH_40) {
2014			if (freq > chandef->chan->center_freq)
2015				*op_class = 83; /* HT40+ */
2016			else
2017				*op_class = 84; /* HT40- */
2018		} else {
2019			*op_class = 81;
2020		}
2021
2022		return true;
2023	}
2024
2025	if (freq == 2484) {
2026		/* channel 14 is only for IEEE 802.11b */
2027		if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
2028			return false;
2029
2030		*op_class = 82; /* channel 14 */
2031		return true;
2032	}
2033
2034	switch (chandef->width) {
2035	case NL80211_CHAN_WIDTH_80:
2036		vht_opclass = 128;
2037		break;
2038	case NL80211_CHAN_WIDTH_160:
2039		vht_opclass = 129;
2040		break;
2041	case NL80211_CHAN_WIDTH_80P80:
2042		vht_opclass = 130;
2043		break;
2044	case NL80211_CHAN_WIDTH_10:
2045	case NL80211_CHAN_WIDTH_5:
2046		return false; /* unsupported for now */
2047	default:
2048		vht_opclass = 0;
2049		break;
2050	}
2051
2052	/* 5 GHz, channels 36..48 */
2053	if (freq >= 5180 && freq <= 5240) {
2054		if (vht_opclass) {
2055			*op_class = vht_opclass;
2056		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2057			if (freq > chandef->chan->center_freq)
2058				*op_class = 116;
2059			else
2060				*op_class = 117;
2061		} else {
2062			*op_class = 115;
2063		}
2064
2065		return true;
2066	}
2067
2068	/* 5 GHz, channels 52..64 */
2069	if (freq >= 5260 && freq <= 5320) {
2070		if (vht_opclass) {
2071			*op_class = vht_opclass;
2072		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2073			if (freq > chandef->chan->center_freq)
2074				*op_class = 119;
2075			else
2076				*op_class = 120;
2077		} else {
2078			*op_class = 118;
2079		}
2080
2081		return true;
2082	}
2083
2084	/* 5 GHz, channels 100..144 */
2085	if (freq >= 5500 && freq <= 5720) {
2086		if (vht_opclass) {
2087			*op_class = vht_opclass;
2088		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2089			if (freq > chandef->chan->center_freq)
2090				*op_class = 122;
2091			else
2092				*op_class = 123;
2093		} else {
2094			*op_class = 121;
2095		}
2096
2097		return true;
2098	}
2099
2100	/* 5 GHz, channels 149..169 */
2101	if (freq >= 5745 && freq <= 5845) {
2102		if (vht_opclass) {
2103			*op_class = vht_opclass;
2104		} else if (chandef->width == NL80211_CHAN_WIDTH_40) {
2105			if (freq > chandef->chan->center_freq)
2106				*op_class = 126;
2107			else
2108				*op_class = 127;
2109		} else if (freq <= 5805) {
2110			*op_class = 124;
2111		} else {
2112			*op_class = 125;
2113		}
2114
2115		return true;
2116	}
2117
2118	/* 56.16 GHz, channel 1..4 */
2119	if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2120		if (chandef->width >= NL80211_CHAN_WIDTH_40)
2121			return false;
2122
2123		*op_class = 180;
2124		return true;
2125	}
2126
2127	/* not supported yet */
2128	return false;
2129}
2130EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2131
2132static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2133{
2134	switch (wdev->iftype) {
2135	case NL80211_IFTYPE_AP:
2136	case NL80211_IFTYPE_P2P_GO:
2137		WARN_ON(wdev->valid_links);
2138		return wdev->links[0].ap.beacon_interval;
2139	case NL80211_IFTYPE_MESH_POINT:
2140		return wdev->u.mesh.beacon_interval;
2141	case NL80211_IFTYPE_ADHOC:
2142		return wdev->u.ibss.beacon_interval;
2143	default:
2144		break;
2145	}
2146
2147	return 0;
2148}
2149
2150static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2151				       u32 *beacon_int_gcd,
2152				       bool *beacon_int_different)
2153{
2154	struct wireless_dev *wdev;
2155
2156	*beacon_int_gcd = 0;
2157	*beacon_int_different = false;
2158
2159	list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2160		int wdev_bi;
2161
2162		/* this feature isn't supported with MLO */
2163		if (wdev->valid_links)
2164			continue;
2165
2166		wdev_bi = cfg80211_wdev_bi(wdev);
2167
2168		if (!wdev_bi)
2169			continue;
2170
2171		if (!*beacon_int_gcd) {
2172			*beacon_int_gcd = wdev_bi;
2173			continue;
2174		}
2175
2176		if (wdev_bi == *beacon_int_gcd)
2177			continue;
2178
2179		*beacon_int_different = true;
2180		*beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2181	}
2182
2183	if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2184		if (*beacon_int_gcd)
2185			*beacon_int_different = true;
2186		*beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2187	}
2188}
2189
2190int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2191				 enum nl80211_iftype iftype, u32 beacon_int)
2192{
2193	/*
2194	 * This is just a basic pre-condition check; if interface combinations
2195	 * are possible the driver must already be checking those with a call
2196	 * to cfg80211_check_combinations(), in which case we'll validate more
2197	 * through the cfg80211_calculate_bi_data() call and code in
2198	 * cfg80211_iter_combinations().
2199	 */
2200
2201	if (beacon_int < 10 || beacon_int > 10000)
2202		return -EINVAL;
2203
2204	return 0;
2205}
2206
2207int cfg80211_iter_combinations(struct wiphy *wiphy,
2208			       struct iface_combination_params *params,
2209			       void (*iter)(const struct ieee80211_iface_combination *c,
2210					    void *data),
2211			       void *data)
2212{
2213	const struct ieee80211_regdomain *regdom;
2214	enum nl80211_dfs_regions region = 0;
2215	int i, j, iftype;
2216	int num_interfaces = 0;
2217	u32 used_iftypes = 0;
2218	u32 beacon_int_gcd;
2219	bool beacon_int_different;
2220
2221	/*
2222	 * This is a bit strange, since the iteration used to rely only on
2223	 * the data given by the driver, but here it now relies on context,
2224	 * in form of the currently operating interfaces.
2225	 * This is OK for all current users, and saves us from having to
2226	 * push the GCD calculations into all the drivers.
2227	 * In the future, this should probably rely more on data that's in
2228	 * cfg80211 already - the only thing not would appear to be any new
2229	 * interfaces (while being brought up) and channel/radar data.
2230	 */
2231	cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2232				   &beacon_int_gcd, &beacon_int_different);
2233
2234	if (params->radar_detect) {
2235		rcu_read_lock();
2236		regdom = rcu_dereference(cfg80211_regdomain);
2237		if (regdom)
2238			region = regdom->dfs_region;
2239		rcu_read_unlock();
2240	}
2241
2242	for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2243		num_interfaces += params->iftype_num[iftype];
2244		if (params->iftype_num[iftype] > 0 &&
2245		    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2246			used_iftypes |= BIT(iftype);
2247	}
2248
2249	for (i = 0; i < wiphy->n_iface_combinations; i++) {
2250		const struct ieee80211_iface_combination *c;
2251		struct ieee80211_iface_limit *limits;
2252		u32 all_iftypes = 0;
2253
2254		c = &wiphy->iface_combinations[i];
2255
2256		if (num_interfaces > c->max_interfaces)
2257			continue;
2258		if (params->num_different_channels > c->num_different_channels)
2259			continue;
2260
2261		limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2262				 GFP_KERNEL);
2263		if (!limits)
2264			return -ENOMEM;
2265
2266		for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2267			if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2268				continue;
2269			for (j = 0; j < c->n_limits; j++) {
2270				all_iftypes |= limits[j].types;
2271				if (!(limits[j].types & BIT(iftype)))
2272					continue;
2273				if (limits[j].max < params->iftype_num[iftype])
2274					goto cont;
2275				limits[j].max -= params->iftype_num[iftype];
2276			}
2277		}
2278
2279		if (params->radar_detect !=
2280			(c->radar_detect_widths & params->radar_detect))
2281			goto cont;
2282
2283		if (params->radar_detect && c->radar_detect_regions &&
2284		    !(c->radar_detect_regions & BIT(region)))
2285			goto cont;
2286
2287		/* Finally check that all iftypes that we're currently
2288		 * using are actually part of this combination. If they
2289		 * aren't then we can't use this combination and have
2290		 * to continue to the next.
2291		 */
2292		if ((all_iftypes & used_iftypes) != used_iftypes)
2293			goto cont;
2294
2295		if (beacon_int_gcd) {
2296			if (c->beacon_int_min_gcd &&
2297			    beacon_int_gcd < c->beacon_int_min_gcd)
2298				goto cont;
2299			if (!c->beacon_int_min_gcd && beacon_int_different)
2300				goto cont;
2301		}
2302
2303		/* This combination covered all interface types and
2304		 * supported the requested numbers, so we're good.
2305		 */
2306
2307		(*iter)(c, data);
2308 cont:
2309		kfree(limits);
2310	}
2311
2312	return 0;
2313}
2314EXPORT_SYMBOL(cfg80211_iter_combinations);
2315
2316static void
2317cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2318			  void *data)
2319{
2320	int *num = data;
2321	(*num)++;
2322}
2323
2324int cfg80211_check_combinations(struct wiphy *wiphy,
2325				struct iface_combination_params *params)
2326{
2327	int err, num = 0;
2328
2329	err = cfg80211_iter_combinations(wiphy, params,
2330					 cfg80211_iter_sum_ifcombs, &num);
2331	if (err)
2332		return err;
2333	if (num == 0)
2334		return -EBUSY;
2335
2336	return 0;
2337}
2338EXPORT_SYMBOL(cfg80211_check_combinations);
2339
2340int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2341			   const u8 *rates, unsigned int n_rates,
2342			   u32 *mask)
2343{
2344	int i, j;
2345
2346	if (!sband)
2347		return -EINVAL;
2348
2349	if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2350		return -EINVAL;
2351
2352	*mask = 0;
2353
2354	for (i = 0; i < n_rates; i++) {
2355		int rate = (rates[i] & 0x7f) * 5;
2356		bool found = false;
2357
2358		for (j = 0; j < sband->n_bitrates; j++) {
2359			if (sband->bitrates[j].bitrate == rate) {
2360				found = true;
2361				*mask |= BIT(j);
2362				break;
2363			}
2364		}
2365		if (!found)
2366			return -EINVAL;
2367	}
2368
2369	/*
2370	 * mask must have at least one bit set here since we
2371	 * didn't accept a 0-length rates array nor allowed
2372	 * entries in the array that didn't exist
2373	 */
2374
2375	return 0;
2376}
2377
2378unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2379{
2380	enum nl80211_band band;
2381	unsigned int n_channels = 0;
2382
2383	for (band = 0; band < NUM_NL80211_BANDS; band++)
2384		if (wiphy->bands[band])
2385			n_channels += wiphy->bands[band]->n_channels;
2386
2387	return n_channels;
2388}
2389EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2390
2391int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2392			 struct station_info *sinfo)
2393{
2394	struct cfg80211_registered_device *rdev;
2395	struct wireless_dev *wdev;
2396
2397	wdev = dev->ieee80211_ptr;
2398	if (!wdev)
2399		return -EOPNOTSUPP;
2400
2401	rdev = wiphy_to_rdev(wdev->wiphy);
2402	if (!rdev->ops->get_station)
2403		return -EOPNOTSUPP;
2404
2405	memset(sinfo, 0, sizeof(*sinfo));
2406
2407	return rdev_get_station(rdev, dev, mac_addr, sinfo);
2408}
2409EXPORT_SYMBOL(cfg80211_get_station);
2410
2411void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2412{
2413	int i;
2414
2415	if (!f)
2416		return;
2417
2418	kfree(f->serv_spec_info);
2419	kfree(f->srf_bf);
2420	kfree(f->srf_macs);
2421	for (i = 0; i < f->num_rx_filters; i++)
2422		kfree(f->rx_filters[i].filter);
2423
2424	for (i = 0; i < f->num_tx_filters; i++)
2425		kfree(f->tx_filters[i].filter);
2426
2427	kfree(f->rx_filters);
2428	kfree(f->tx_filters);
2429	kfree(f);
2430}
2431EXPORT_SYMBOL(cfg80211_free_nan_func);
2432
2433bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2434				u32 center_freq_khz, u32 bw_khz)
2435{
2436	u32 start_freq_khz, end_freq_khz;
2437
2438	start_freq_khz = center_freq_khz - (bw_khz / 2);
2439	end_freq_khz = center_freq_khz + (bw_khz / 2);
2440
2441	if (start_freq_khz >= freq_range->start_freq_khz &&
2442	    end_freq_khz <= freq_range->end_freq_khz)
2443		return true;
2444
2445	return false;
2446}
2447
2448int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2449{
2450	sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2451				sizeof(*(sinfo->pertid)),
2452				gfp);
2453	if (!sinfo->pertid)
2454		return -ENOMEM;
2455
2456	return 0;
2457}
2458EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2459
2460/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2461/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2462const unsigned char rfc1042_header[] __aligned(2) =
2463	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2464EXPORT_SYMBOL(rfc1042_header);
2465
2466/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2467const unsigned char bridge_tunnel_header[] __aligned(2) =
2468	{ 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2469EXPORT_SYMBOL(bridge_tunnel_header);
2470
2471/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2472struct iapp_layer2_update {
2473	u8 da[ETH_ALEN];	/* broadcast */
2474	u8 sa[ETH_ALEN];	/* STA addr */
2475	__be16 len;		/* 6 */
2476	u8 dsap;		/* 0 */
2477	u8 ssap;		/* 0 */
2478	u8 control;
2479	u8 xid_info[3];
2480} __packed;
2481
2482void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2483{
2484	struct iapp_layer2_update *msg;
2485	struct sk_buff *skb;
2486
2487	/* Send Level 2 Update Frame to update forwarding tables in layer 2
2488	 * bridge devices */
2489
2490	skb = dev_alloc_skb(sizeof(*msg));
2491	if (!skb)
2492		return;
2493	msg = skb_put(skb, sizeof(*msg));
2494
2495	/* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2496	 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2497
2498	eth_broadcast_addr(msg->da);
2499	ether_addr_copy(msg->sa, addr);
2500	msg->len = htons(6);
2501	msg->dsap = 0;
2502	msg->ssap = 0x01;	/* NULL LSAP, CR Bit: Response */
2503	msg->control = 0xaf;	/* XID response lsb.1111F101.
2504				 * F=0 (no poll command; unsolicited frame) */
2505	msg->xid_info[0] = 0x81;	/* XID format identifier */
2506	msg->xid_info[1] = 1;	/* LLC types/classes: Type 1 LLC */
2507	msg->xid_info[2] = 0;	/* XID sender's receive window size (RW) */
2508
2509	skb->dev = dev;
2510	skb->protocol = eth_type_trans(skb, dev);
2511	memset(skb->cb, 0, sizeof(skb->cb));
2512	netif_rx(skb);
2513}
2514EXPORT_SYMBOL(cfg80211_send_layer2_update);
2515
2516int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2517			      enum ieee80211_vht_chanwidth bw,
2518			      int mcs, bool ext_nss_bw_capable,
2519			      unsigned int max_vht_nss)
2520{
2521	u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2522	int ext_nss_bw;
2523	int supp_width;
2524	int i, mcs_encoding;
2525
2526	if (map == 0xffff)
2527		return 0;
2528
2529	if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2530		return 0;
2531	if (mcs <= 7)
2532		mcs_encoding = 0;
2533	else if (mcs == 8)
2534		mcs_encoding = 1;
2535	else
2536		mcs_encoding = 2;
2537
2538	if (!max_vht_nss) {
2539		/* find max_vht_nss for the given MCS */
2540		for (i = 7; i >= 0; i--) {
2541			int supp = (map >> (2 * i)) & 3;
2542
2543			if (supp == 3)
2544				continue;
2545
2546			if (supp >= mcs_encoding) {
2547				max_vht_nss = i + 1;
2548				break;
2549			}
2550		}
2551	}
2552
2553	if (!(cap->supp_mcs.tx_mcs_map &
2554			cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2555		return max_vht_nss;
2556
2557	ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2558				   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2559	supp_width = le32_get_bits(cap->vht_cap_info,
2560				   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2561
2562	/* if not capable, treat ext_nss_bw as 0 */
2563	if (!ext_nss_bw_capable)
2564		ext_nss_bw = 0;
2565
2566	/* This is invalid */
2567	if (supp_width == 3)
2568		return 0;
2569
2570	/* This is an invalid combination so pretend nothing is supported */
2571	if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2572		return 0;
2573
2574	/*
2575	 * Cover all the special cases according to IEEE 802.11-2016
2576	 * Table 9-250. All other cases are either factor of 1 or not
2577	 * valid/supported.
2578	 */
2579	switch (bw) {
2580	case IEEE80211_VHT_CHANWIDTH_USE_HT:
2581	case IEEE80211_VHT_CHANWIDTH_80MHZ:
2582		if ((supp_width == 1 || supp_width == 2) &&
2583		    ext_nss_bw == 3)
2584			return 2 * max_vht_nss;
2585		break;
2586	case IEEE80211_VHT_CHANWIDTH_160MHZ:
2587		if (supp_width == 0 &&
2588		    (ext_nss_bw == 1 || ext_nss_bw == 2))
2589			return max_vht_nss / 2;
2590		if (supp_width == 0 &&
2591		    ext_nss_bw == 3)
2592			return (3 * max_vht_nss) / 4;
2593		if (supp_width == 1 &&
2594		    ext_nss_bw == 3)
2595			return 2 * max_vht_nss;
2596		break;
2597	case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2598		if (supp_width == 0 && ext_nss_bw == 1)
2599			return 0; /* not possible */
2600		if (supp_width == 0 &&
2601		    ext_nss_bw == 2)
2602			return max_vht_nss / 2;
2603		if (supp_width == 0 &&
2604		    ext_nss_bw == 3)
2605			return (3 * max_vht_nss) / 4;
2606		if (supp_width == 1 &&
2607		    ext_nss_bw == 0)
2608			return 0; /* not possible */
2609		if (supp_width == 1 &&
2610		    ext_nss_bw == 1)
2611			return max_vht_nss / 2;
2612		if (supp_width == 1 &&
2613		    ext_nss_bw == 2)
2614			return (3 * max_vht_nss) / 4;
2615		break;
2616	}
2617
2618	/* not covered or invalid combination received */
2619	return max_vht_nss;
2620}
2621EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2622
2623bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2624			     bool is_4addr, u8 check_swif)
2625
2626{
2627	bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2628
2629	switch (check_swif) {
2630	case 0:
2631		if (is_vlan && is_4addr)
2632			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2633		return wiphy->interface_modes & BIT(iftype);
2634	case 1:
2635		if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2636			return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2637		return wiphy->software_iftypes & BIT(iftype);
2638	default:
2639		break;
2640	}
2641
2642	return false;
2643}
2644EXPORT_SYMBOL(cfg80211_iftype_allowed);
2645
2646void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2647{
2648	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2649
2650	ASSERT_WDEV_LOCK(wdev);
2651
2652	switch (wdev->iftype) {
2653	case NL80211_IFTYPE_AP:
2654	case NL80211_IFTYPE_P2P_GO:
2655		__cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2656		break;
2657	default:
2658		/* per-link not relevant */
2659		break;
2660	}
2661
2662	wdev->valid_links &= ~BIT(link_id);
2663
2664	rdev_del_intf_link(rdev, wdev, link_id);
2665
2666	eth_zero_addr(wdev->links[link_id].addr);
2667}
2668
2669void cfg80211_remove_links(struct wireless_dev *wdev)
2670{
2671	unsigned int link_id;
2672
2673	/*
2674	 * links are controlled by upper layers (userspace/cfg)
2675	 * only for AP mode, so only remove them here for AP
2676	 */
2677	if (wdev->iftype != NL80211_IFTYPE_AP)
2678		return;
2679
2680	wdev_lock(wdev);
2681	if (wdev->valid_links) {
2682		for_each_valid_link(wdev, link_id)
2683			cfg80211_remove_link(wdev, link_id);
2684	}
2685	wdev_unlock(wdev);
2686}
2687
2688int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2689				 struct wireless_dev *wdev)
2690{
2691	cfg80211_remove_links(wdev);
2692
2693	return rdev_del_virtual_intf(rdev, wdev);
2694}
2695
2696const struct wiphy_iftype_ext_capab *
2697cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2698{
2699	int i;
2700
2701	for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2702		if (wiphy->iftype_ext_capab[i].iftype == type)
2703			return &wiphy->iftype_ext_capab[i];
2704	}
2705
2706	return NULL;
2707}
2708EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);
2709