xref: /kernel/linux/linux-6.6/net/wireless/reg.c (revision 62306a36)
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007	Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011	Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014  Intel Mobile Communications GmbH
7 * Copyright      2017  Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2023 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 *	be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 *	regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83	REG_REQ_OK,
84	REG_REQ_IGNORE,
85	REG_REQ_INTERSECT,
86	REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90	.initiator = NL80211_REGDOM_SET_BY_CORE,
91	.alpha2[0] = '0',
92	.alpha2[1] = '0',
93	.intersect = false,
94	.processed = true,
95	.country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103	(void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140	return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150	return rcu_dereference_check(wiphy->regd,
151				     lockdep_is_held(&wiphy->mtx) ||
152				     lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158	switch (dfs_region) {
159	case NL80211_DFS_UNSET:
160		return "unset";
161	case NL80211_DFS_FCC:
162		return "FCC";
163	case NL80211_DFS_ETSI:
164		return "ETSI";
165	case NL80211_DFS_JP:
166		return "JP";
167	}
168	return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173	const struct ieee80211_regdomain *regd = NULL;
174	const struct ieee80211_regdomain *wiphy_regd = NULL;
175	enum nl80211_dfs_regions dfs_region;
176
177	rcu_read_lock();
178	regd = get_cfg80211_regdom();
179	dfs_region = regd->dfs_region;
180
181	if (!wiphy)
182		goto out;
183
184	wiphy_regd = get_wiphy_regdom(wiphy);
185	if (!wiphy_regd)
186		goto out;
187
188	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189		dfs_region = wiphy_regd->dfs_region;
190		goto out;
191	}
192
193	if (wiphy_regd->dfs_region == regd->dfs_region)
194		goto out;
195
196	pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197		 dev_name(&wiphy->dev),
198		 reg_dfs_region_str(wiphy_regd->dfs_region),
199		 reg_dfs_region_str(regd->dfs_region));
200
201out:
202	rcu_read_unlock();
203
204	return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209	if (!r)
210		return;
211	kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216	return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231	struct list_head list;
232	struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243	.n_reg_rules = 8,
244	.alpha2 =  "00",
245	.reg_rules = {
246		/* IEEE 802.11b/g, channels 1..11 */
247		REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248		/* IEEE 802.11b/g, channels 12..13. */
249		REG_RULE(2467-10, 2472+10, 20, 6, 20,
250			NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251		/* IEEE 802.11 channel 14 - Only JP enables
252		 * this and for 802.11b only */
253		REG_RULE(2484-10, 2484+10, 20, 6, 20,
254			NL80211_RRF_NO_IR |
255			NL80211_RRF_NO_OFDM),
256		/* IEEE 802.11a, channel 36..48 */
257		REG_RULE(5180-10, 5240+10, 80, 6, 20,
258                        NL80211_RRF_NO_IR |
259                        NL80211_RRF_AUTO_BW),
260
261		/* IEEE 802.11a, channel 52..64 - DFS required */
262		REG_RULE(5260-10, 5320+10, 80, 6, 20,
263			NL80211_RRF_NO_IR |
264			NL80211_RRF_AUTO_BW |
265			NL80211_RRF_DFS),
266
267		/* IEEE 802.11a, channel 100..144 - DFS required */
268		REG_RULE(5500-10, 5720+10, 160, 6, 20,
269			NL80211_RRF_NO_IR |
270			NL80211_RRF_DFS),
271
272		/* IEEE 802.11a, channel 149..165 */
273		REG_RULE(5745-10, 5825+10, 80, 6, 20,
274			NL80211_RRF_NO_IR),
275
276		/* IEEE 802.11ad (60GHz), channels 1..3 */
277		REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278	}
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283	&world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294	if (request == &core_request_world)
295		return;
296
297	if (request != get_last_request())
298		kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303	struct regulatory_request *lr = get_last_request();
304
305	if (lr != &core_request_world && lr)
306		kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311	struct regulatory_request *lr;
312
313	lr = get_last_request();
314	if (lr == request)
315		return;
316
317	reg_free_last_request();
318	rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322			     const struct ieee80211_regdomain *new_regdom)
323{
324	const struct ieee80211_regdomain *r;
325
326	ASSERT_RTNL();
327
328	r = get_cfg80211_regdom();
329
330	/* avoid freeing static information or freeing something twice */
331	if (r == cfg80211_world_regdom)
332		r = NULL;
333	if (cfg80211_world_regdom == &world_regdom)
334		cfg80211_world_regdom = NULL;
335	if (r == &world_regdom)
336		r = NULL;
337
338	rcu_free_regdom(r);
339	rcu_free_regdom(cfg80211_world_regdom);
340
341	cfg80211_world_regdom = &world_regdom;
342	rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344	if (!full_reset)
345		return;
346
347	reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356	struct regulatory_request *lr;
357
358	lr = get_last_request();
359
360	WARN_ON(!lr);
361
362	reset_regdomains(false, rd);
363
364	cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369	if (!alpha2)
370		return false;
371	return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376	if (!alpha2)
377		return false;
378	return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383	if (!alpha2)
384		return false;
385	/*
386	 * Special case where regulatory domain was built by driver
387	 * but a specific alpha2 cannot be determined
388	 */
389	return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394	if (!alpha2)
395		return false;
396	/*
397	 * Special case where regulatory domain is the
398	 * result of an intersection between two regulatory domain
399	 * structures
400	 */
401	return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406	if (!alpha2)
407		return false;
408	return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413	if (!alpha2_x || !alpha2_y)
414		return false;
415	return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420	const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422	if (!r)
423		return true;
424	return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434	if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435		return false;
436
437	/* This would indicate a mistake on the design */
438	if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439		 "Unexpected user alpha2: %c%c\n",
440		 user_alpha2[0], user_alpha2[1]))
441		return false;
442
443	return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449	struct ieee80211_regdomain *regd;
450	unsigned int i;
451
452	regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453		       GFP_KERNEL);
454	if (!regd)
455		return ERR_PTR(-ENOMEM);
456
457	memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459	for (i = 0; i < src_regd->n_reg_rules; i++)
460		memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
461		       sizeof(struct ieee80211_reg_rule));
462
463	return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468	ASSERT_RTNL();
469
470	if (!IS_ERR(cfg80211_user_regdom))
471		kfree(cfg80211_user_regdom);
472	cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476	struct list_head list;
477	const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485	struct reg_regdb_apply_request *request;
486
487	rtnl_lock();
488
489	mutex_lock(&reg_regdb_apply_mutex);
490	while (!list_empty(&reg_regdb_apply_list)) {
491		request = list_first_entry(&reg_regdb_apply_list,
492					   struct reg_regdb_apply_request,
493					   list);
494		list_del(&request->list);
495
496		set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497		kfree(request);
498	}
499	mutex_unlock(&reg_regdb_apply_mutex);
500
501	rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508	struct reg_regdb_apply_request *request;
509
510	request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511	if (!request) {
512		kfree(regdom);
513		return -ENOMEM;
514	}
515
516	request->regdom = regdom;
517
518	mutex_lock(&reg_regdb_apply_mutex);
519	list_add_tail(&request->list, &reg_regdb_apply_list);
520	mutex_unlock(&reg_regdb_apply_mutex);
521
522	schedule_work(&reg_regdb_work);
523	return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA  */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537	pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538	rtnl_lock();
539	reg_crda_timeouts++;
540	restore_regulatory_settings(true, false);
541	rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546	cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551	cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556	reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565	char country[12];
566	char *env[] = { country, NULL };
567	int ret;
568
569	snprintf(country, sizeof(country), "COUNTRY=%c%c",
570		 alpha2[0], alpha2[1]);
571
572	if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573		pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574		return -EINVAL;
575	}
576
577	if (!is_world_regdom((char *) alpha2))
578		pr_debug("Calling CRDA for country: %c%c\n",
579			 alpha2[0], alpha2[1]);
580	else
581		pr_debug("Calling CRDA to update world regulatory domain\n");
582
583	ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
584	if (ret)
585		return ret;
586
587	queue_delayed_work(system_power_efficient_wq,
588			   &crda_timeout, msecs_to_jiffies(3142));
589	return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597	return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605	u8 alpha2[2];
606	__be16 coll_ptr;
607	/* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611	u8 len;
612	u8 n_rules;
613	u8 dfs_region;
614	/* no optional data yet */
615	/* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619	FWDB_FLAG_NO_OFDM	= BIT(0),
620	FWDB_FLAG_NO_OUTDOOR	= BIT(1),
621	FWDB_FLAG_DFS		= BIT(2),
622	FWDB_FLAG_NO_IR		= BIT(3),
623	FWDB_FLAG_AUTO_BW	= BIT(4),
624};
625
626struct fwdb_wmm_ac {
627	u8 ecw;
628	u8 aifsn;
629	__be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633	struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634	struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638	u8 len;
639	u8 flags;
640	__be16 max_eirp;
641	__be32 start, end, max_bw;
642	/* start of optional data */
643	__be16 cac_timeout;
644	__be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651	__be32 magic;
652	__be32 version;
653	struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658	return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663	struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664	int i;
665
666	for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667		u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668		u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669		u8 aifsn = ac[i].aifsn;
670
671		if (cw_min >= cw_max)
672			return false;
673
674		if (aifsn < 1)
675			return false;
676	}
677
678	return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683	struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685	if ((u8 *)rule + sizeof(rule->len) > data + size)
686		return false;
687
688	/* mandatory fields */
689	if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690		return false;
691	if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692		u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693		struct fwdb_wmm_rule *wmm;
694
695		if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696			return false;
697
698		wmm = (void *)(data + wmm_ptr);
699
700		if (!valid_wmm(wmm))
701			return false;
702	}
703	return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707			  const struct fwdb_country *country)
708{
709	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710	struct fwdb_collection *coll = (void *)(data + ptr);
711	__be16 *rules_ptr;
712	unsigned int i;
713
714	/* make sure we can read len/n_rules */
715	if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716		return false;
717
718	/* make sure base struct and all rules fit */
719	if ((u8 *)coll + ALIGN(coll->len, 2) +
720	    (coll->n_rules * 2) > data + size)
721		return false;
722
723	/* mandatory fields must exist */
724	if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725		return false;
726
727	rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729	for (i = 0; i < coll->n_rules; i++) {
730		u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732		if (!valid_rule(data, size, rule_ptr))
733			return false;
734	}
735
736	return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740#include <keys/asymmetric-type.h>
741
742static struct key *builtin_regdb_keys;
743
744static int __init load_builtin_regdb_keys(void)
745{
746	builtin_regdb_keys =
747		keyring_alloc(".builtin_regdb_keys",
748			      KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749			      ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750			      KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751			      KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752	if (IS_ERR(builtin_regdb_keys))
753		return PTR_ERR(builtin_regdb_keys);
754
755	pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758	x509_load_certificate_list(shipped_regdb_certs,
759				   shipped_regdb_certs_len,
760				   builtin_regdb_keys);
761#endif
762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763	if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764		x509_load_certificate_list(extra_regdb_certs,
765					   extra_regdb_certs_len,
766					   builtin_regdb_keys);
767#endif
768
769	return 0;
770}
771
772MODULE_FIRMWARE("regulatory.db.p7s");
773
774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775{
776	const struct firmware *sig;
777	bool result;
778
779	if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
780		return false;
781
782	result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783					builtin_regdb_keys,
784					VERIFYING_UNSPECIFIED_SIGNATURE,
785					NULL, NULL) == 0;
786
787	release_firmware(sig);
788
789	return result;
790}
791
792static void free_regdb_keyring(void)
793{
794	key_put(builtin_regdb_keys);
795}
796#else
797static int load_builtin_regdb_keys(void)
798{
799	return 0;
800}
801
802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803{
804	return true;
805}
806
807static void free_regdb_keyring(void)
808{
809}
810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812static bool valid_regdb(const u8 *data, unsigned int size)
813{
814	const struct fwdb_header *hdr = (void *)data;
815	const struct fwdb_country *country;
816
817	if (size < sizeof(*hdr))
818		return false;
819
820	if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821		return false;
822
823	if (hdr->version != cpu_to_be32(FWDB_VERSION))
824		return false;
825
826	if (!regdb_has_valid_signature(data, size))
827		return false;
828
829	country = &hdr->country[0];
830	while ((u8 *)(country + 1) <= data + size) {
831		if (!country->coll_ptr)
832			break;
833		if (!valid_country(data, size, country))
834			return false;
835		country++;
836	}
837
838	return true;
839}
840
841static void set_wmm_rule(const struct fwdb_header *db,
842			 const struct fwdb_country *country,
843			 const struct fwdb_rule *rule,
844			 struct ieee80211_reg_rule *rrule)
845{
846	struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847	struct fwdb_wmm_rule *wmm;
848	unsigned int i, wmm_ptr;
849
850	wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851	wmm = (void *)((u8 *)db + wmm_ptr);
852
853	if (!valid_wmm(wmm)) {
854		pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855		       be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856		       country->alpha2[0], country->alpha2[1]);
857		return;
858	}
859
860	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861		wmm_rule->client[i].cw_min =
862			ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863		wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864		wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
865		wmm_rule->client[i].cot =
866			1000 * be16_to_cpu(wmm->client[i].cot);
867		wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868		wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869		wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870		wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871	}
872
873	rrule->has_wmm = true;
874}
875
876static int __regdb_query_wmm(const struct fwdb_header *db,
877			     const struct fwdb_country *country, int freq,
878			     struct ieee80211_reg_rule *rrule)
879{
880	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882	int i;
883
884	for (i = 0; i < coll->n_rules; i++) {
885		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889		if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890			continue;
891
892		if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893		    freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894			set_wmm_rule(db, country, rule, rrule);
895			return 0;
896		}
897	}
898
899	return -ENODATA;
900}
901
902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903{
904	const struct fwdb_header *hdr = regdb;
905	const struct fwdb_country *country;
906
907	if (!regdb)
908		return -ENODATA;
909
910	if (IS_ERR(regdb))
911		return PTR_ERR(regdb);
912
913	country = &hdr->country[0];
914	while (country->coll_ptr) {
915		if (alpha2_equal(alpha2, country->alpha2))
916			return __regdb_query_wmm(regdb, country, freq, rule);
917
918		country++;
919	}
920
921	return -ENODATA;
922}
923EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925static int regdb_query_country(const struct fwdb_header *db,
926			       const struct fwdb_country *country)
927{
928	unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929	struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930	struct ieee80211_regdomain *regdom;
931	unsigned int i;
932
933	regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934			 GFP_KERNEL);
935	if (!regdom)
936		return -ENOMEM;
937
938	regdom->n_reg_rules = coll->n_rules;
939	regdom->alpha2[0] = country->alpha2[0];
940	regdom->alpha2[1] = country->alpha2[1];
941	regdom->dfs_region = coll->dfs_region;
942
943	for (i = 0; i < regdom->n_reg_rules; i++) {
944		__be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945		unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946		struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947		struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
948
949		rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950		rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951		rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953		rrule->power_rule.max_antenna_gain = 0;
954		rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956		rrule->flags = 0;
957		if (rule->flags & FWDB_FLAG_NO_OFDM)
958			rrule->flags |= NL80211_RRF_NO_OFDM;
959		if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960			rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961		if (rule->flags & FWDB_FLAG_DFS)
962			rrule->flags |= NL80211_RRF_DFS;
963		if (rule->flags & FWDB_FLAG_NO_IR)
964			rrule->flags |= NL80211_RRF_NO_IR;
965		if (rule->flags & FWDB_FLAG_AUTO_BW)
966			rrule->flags |= NL80211_RRF_AUTO_BW;
967
968		rrule->dfs_cac_ms = 0;
969
970		/* handle optional data */
971		if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972			rrule->dfs_cac_ms =
973				1000 * be16_to_cpu(rule->cac_timeout);
974		if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975			set_wmm_rule(db, country, rule, rrule);
976	}
977
978	return reg_schedule_apply(regdom);
979}
980
981static int query_regdb(const char *alpha2)
982{
983	const struct fwdb_header *hdr = regdb;
984	const struct fwdb_country *country;
985
986	ASSERT_RTNL();
987
988	if (IS_ERR(regdb))
989		return PTR_ERR(regdb);
990
991	country = &hdr->country[0];
992	while (country->coll_ptr) {
993		if (alpha2_equal(alpha2, country->alpha2))
994			return regdb_query_country(regdb, country);
995		country++;
996	}
997
998	return -ENODATA;
999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003	int set_error = 0;
1004	bool restore = true;
1005	void *db;
1006
1007	if (!fw) {
1008		pr_info("failed to load regulatory.db\n");
1009		set_error = -ENODATA;
1010	} else if (!valid_regdb(fw->data, fw->size)) {
1011		pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012		set_error = -EINVAL;
1013	}
1014
1015	rtnl_lock();
1016	if (regdb && !IS_ERR(regdb)) {
1017		/* negative case - a bug
1018		 * positive case - can happen due to race in case of multiple cb's in
1019		 * queue, due to usage of asynchronous callback
1020		 *
1021		 * Either case, just restore and free new db.
1022		 */
1023	} else if (set_error) {
1024		regdb = ERR_PTR(set_error);
1025	} else if (fw) {
1026		db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027		if (db) {
1028			regdb = db;
1029			restore = context && query_regdb(context);
1030		} else {
1031			restore = true;
1032		}
1033	}
1034
1035	if (restore)
1036		restore_regulatory_settings(true, false);
1037
1038	rtnl_unlock();
1039
1040	kfree(context);
1041
1042	release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049	int err;
1050
1051	ASSERT_RTNL();
1052
1053	if (regdb)
1054		return query_regdb(alpha2);
1055
1056	alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057	if (!alpha2)
1058		return -ENOMEM;
1059
1060	err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061				      &reg_pdev->dev, GFP_KERNEL,
1062				      (void *)alpha2, regdb_fw_cb);
1063	if (err)
1064		kfree(alpha2);
1065
1066	return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071	const struct firmware *fw;
1072	void *db;
1073	int err;
1074	const struct ieee80211_regdomain *current_regdomain;
1075	struct regulatory_request *request;
1076
1077	err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1078	if (err)
1079		return err;
1080
1081	if (!valid_regdb(fw->data, fw->size)) {
1082		err = -ENODATA;
1083		goto out;
1084	}
1085
1086	db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087	if (!db) {
1088		err = -ENOMEM;
1089		goto out;
1090	}
1091
1092	rtnl_lock();
1093	if (!IS_ERR_OR_NULL(regdb))
1094		kfree(regdb);
1095	regdb = db;
1096
1097	/* reset regulatory domain */
1098	current_regdomain = get_cfg80211_regdom();
1099
1100	request = kzalloc(sizeof(*request), GFP_KERNEL);
1101	if (!request) {
1102		err = -ENOMEM;
1103		goto out_unlock;
1104	}
1105
1106	request->wiphy_idx = WIPHY_IDX_INVALID;
1107	request->alpha2[0] = current_regdomain->alpha2[0];
1108	request->alpha2[1] = current_regdomain->alpha2[1];
1109	request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110	request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112	reg_process_hint(request);
1113
1114out_unlock:
1115	rtnl_unlock();
1116 out:
1117	release_firmware(fw);
1118	return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123	if (query_regdb_file(request->alpha2) == 0)
1124		return true;
1125
1126	if (call_crda(request->alpha2) == 0)
1127		return true;
1128
1129	return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134	struct regulatory_request *lr = get_last_request();
1135
1136	if (!lr || lr->processed)
1137		return false;
1138
1139	return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144	struct regulatory_request *lr = get_last_request();
1145
1146	/*
1147	 * Follow the driver's regulatory domain, if present, unless a country
1148	 * IE has been processed or a user wants to help complaince further
1149	 */
1150	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151	    lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152	    wiphy->regd)
1153		return get_wiphy_regdom(wiphy);
1154
1155	return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160				 const struct ieee80211_reg_rule *rule)
1161{
1162	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163	const struct ieee80211_freq_range *freq_range_tmp;
1164	const struct ieee80211_reg_rule *tmp;
1165	u32 start_freq, end_freq, idx, no;
1166
1167	for (idx = 0; idx < rd->n_reg_rules; idx++)
1168		if (rule == &rd->reg_rules[idx])
1169			break;
1170
1171	if (idx == rd->n_reg_rules)
1172		return 0;
1173
1174	/* get start_freq */
1175	no = idx;
1176
1177	while (no) {
1178		tmp = &rd->reg_rules[--no];
1179		freq_range_tmp = &tmp->freq_range;
1180
1181		if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182			break;
1183
1184		freq_range = freq_range_tmp;
1185	}
1186
1187	start_freq = freq_range->start_freq_khz;
1188
1189	/* get end_freq */
1190	freq_range = &rule->freq_range;
1191	no = idx;
1192
1193	while (no < rd->n_reg_rules - 1) {
1194		tmp = &rd->reg_rules[++no];
1195		freq_range_tmp = &tmp->freq_range;
1196
1197		if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198			break;
1199
1200		freq_range = freq_range_tmp;
1201	}
1202
1203	end_freq = freq_range->end_freq_khz;
1204
1205	return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209				   const struct ieee80211_reg_rule *rule)
1210{
1211	unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213	if (rule->flags & NL80211_RRF_NO_320MHZ)
1214		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215	if (rule->flags & NL80211_RRF_NO_160MHZ)
1216		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217	if (rule->flags & NL80211_RRF_NO_80MHZ)
1218		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220	/*
1221	 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222	 * are not allowed.
1223	 */
1224	if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225	    rule->flags & NL80211_RRF_NO_HT40PLUS)
1226		bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228	return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234	const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235	u32 freq_diff;
1236
1237	if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238		return false;
1239
1240	if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241		return false;
1242
1243	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245	if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246	    freq_range->max_bandwidth_khz > freq_diff)
1247		return false;
1248
1249	return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254	const struct ieee80211_reg_rule *reg_rule = NULL;
1255	unsigned int i;
1256
1257	if (!rd->n_reg_rules)
1258		return false;
1259
1260	if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261		return false;
1262
1263	for (i = 0; i < rd->n_reg_rules; i++) {
1264		reg_rule = &rd->reg_rules[i];
1265		if (!is_valid_reg_rule(reg_rule))
1266			return false;
1267	}
1268
1269	return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 **/
1287static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288			      u32 freq_khz)
1289{
1290#define ONE_GHZ_IN_KHZ	1000000
1291	/*
1292	 * From 802.11ad: directional multi-gigabit (DMG):
1293	 * Pertaining to operation in a frequency band containing a channel
1294	 * with the Channel starting frequency above 45 GHz.
1295	 */
1296	u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297			20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298	if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299		return true;
1300	if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301		return true;
1302	return false;
1303#undef ONE_GHZ_IN_KHZ
1304}
1305
1306/*
1307 * Later on we can perhaps use the more restrictive DFS
1308 * region but we don't have information for that yet so
1309 * for now simply disallow conflicts.
1310 */
1311static enum nl80211_dfs_regions
1312reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313			 const enum nl80211_dfs_regions dfs_region2)
1314{
1315	if (dfs_region1 != dfs_region2)
1316		return NL80211_DFS_UNSET;
1317	return dfs_region1;
1318}
1319
1320static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321				    const struct ieee80211_wmm_ac *wmm_ac2,
1322				    struct ieee80211_wmm_ac *intersect)
1323{
1324	intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325	intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326	intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327	intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328}
1329
1330/*
1331 * Helper for regdom_intersect(), this does the real
1332 * mathematical intersection fun
1333 */
1334static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335			       const struct ieee80211_regdomain *rd2,
1336			       const struct ieee80211_reg_rule *rule1,
1337			       const struct ieee80211_reg_rule *rule2,
1338			       struct ieee80211_reg_rule *intersected_rule)
1339{
1340	const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341	struct ieee80211_freq_range *freq_range;
1342	const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343	struct ieee80211_power_rule *power_rule;
1344	const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345	struct ieee80211_wmm_rule *wmm_rule;
1346	u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348	freq_range1 = &rule1->freq_range;
1349	freq_range2 = &rule2->freq_range;
1350	freq_range = &intersected_rule->freq_range;
1351
1352	power_rule1 = &rule1->power_rule;
1353	power_rule2 = &rule2->power_rule;
1354	power_rule = &intersected_rule->power_rule;
1355
1356	wmm_rule1 = &rule1->wmm_rule;
1357	wmm_rule2 = &rule2->wmm_rule;
1358	wmm_rule = &intersected_rule->wmm_rule;
1359
1360	freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361					 freq_range2->start_freq_khz);
1362	freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363				       freq_range2->end_freq_khz);
1364
1365	max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366	max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368	if (rule1->flags & NL80211_RRF_AUTO_BW)
1369		max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370	if (rule2->flags & NL80211_RRF_AUTO_BW)
1371		max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373	freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375	intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377	/*
1378	 * In case NL80211_RRF_AUTO_BW requested for both rules
1379	 * set AUTO_BW in intersected rule also. Next we will
1380	 * calculate BW correctly in handle_channel function.
1381	 * In other case remove AUTO_BW flag while we calculate
1382	 * maximum bandwidth correctly and auto calculation is
1383	 * not required.
1384	 */
1385	if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386	    (rule2->flags & NL80211_RRF_AUTO_BW))
1387		intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388	else
1389		intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391	freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392	if (freq_range->max_bandwidth_khz > freq_diff)
1393		freq_range->max_bandwidth_khz = freq_diff;
1394
1395	power_rule->max_eirp = min(power_rule1->max_eirp,
1396		power_rule2->max_eirp);
1397	power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398		power_rule2->max_antenna_gain);
1399
1400	intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401					   rule2->dfs_cac_ms);
1402
1403	if (rule1->has_wmm && rule2->has_wmm) {
1404		u8 ac;
1405
1406		for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407			reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408						&wmm_rule2->client[ac],
1409						&wmm_rule->client[ac]);
1410			reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411						&wmm_rule2->ap[ac],
1412						&wmm_rule->ap[ac]);
1413		}
1414
1415		intersected_rule->has_wmm = true;
1416	} else if (rule1->has_wmm) {
1417		*wmm_rule = *wmm_rule1;
1418		intersected_rule->has_wmm = true;
1419	} else if (rule2->has_wmm) {
1420		*wmm_rule = *wmm_rule2;
1421		intersected_rule->has_wmm = true;
1422	} else {
1423		intersected_rule->has_wmm = false;
1424	}
1425
1426	if (!is_valid_reg_rule(intersected_rule))
1427		return -EINVAL;
1428
1429	return 0;
1430}
1431
1432/* check whether old rule contains new rule */
1433static bool rule_contains(struct ieee80211_reg_rule *r1,
1434			  struct ieee80211_reg_rule *r2)
1435{
1436	/* for simplicity, currently consider only same flags */
1437	if (r1->flags != r2->flags)
1438		return false;
1439
1440	/* verify r1 is more restrictive */
1441	if ((r1->power_rule.max_antenna_gain >
1442	     r2->power_rule.max_antenna_gain) ||
1443	    r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444		return false;
1445
1446	/* make sure r2's range is contained within r1 */
1447	if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448	    r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449		return false;
1450
1451	/* and finally verify that r1.max_bw >= r2.max_bw */
1452	if (r1->freq_range.max_bandwidth_khz <
1453	    r2->freq_range.max_bandwidth_khz)
1454		return false;
1455
1456	return true;
1457}
1458
1459/* add or extend current rules. do nothing if rule is already contained */
1460static void add_rule(struct ieee80211_reg_rule *rule,
1461		     struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462{
1463	struct ieee80211_reg_rule *tmp_rule;
1464	int i;
1465
1466	for (i = 0; i < *n_rules; i++) {
1467		tmp_rule = &reg_rules[i];
1468		/* rule is already contained - do nothing */
1469		if (rule_contains(tmp_rule, rule))
1470			return;
1471
1472		/* extend rule if possible */
1473		if (rule_contains(rule, tmp_rule)) {
1474			memcpy(tmp_rule, rule, sizeof(*rule));
1475			return;
1476		}
1477	}
1478
1479	memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1480	(*n_rules)++;
1481}
1482
1483/**
1484 * regdom_intersect - do the intersection between two regulatory domains
1485 * @rd1: first regulatory domain
1486 * @rd2: second regulatory domain
1487 *
1488 * Use this function to get the intersection between two regulatory domains.
1489 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490 * as no one single alpha2 can represent this regulatory domain.
1491 *
1492 * Returns a pointer to the regulatory domain structure which will hold the
1493 * resulting intersection of rules between rd1 and rd2. We will
1494 * kzalloc() this structure for you.
1495 */
1496static struct ieee80211_regdomain *
1497regdom_intersect(const struct ieee80211_regdomain *rd1,
1498		 const struct ieee80211_regdomain *rd2)
1499{
1500	int r;
1501	unsigned int x, y;
1502	unsigned int num_rules = 0;
1503	const struct ieee80211_reg_rule *rule1, *rule2;
1504	struct ieee80211_reg_rule intersected_rule;
1505	struct ieee80211_regdomain *rd;
1506
1507	if (!rd1 || !rd2)
1508		return NULL;
1509
1510	/*
1511	 * First we get a count of the rules we'll need, then we actually
1512	 * build them. This is to so we can malloc() and free() a
1513	 * regdomain once. The reason we use reg_rules_intersect() here
1514	 * is it will return -EINVAL if the rule computed makes no sense.
1515	 * All rules that do check out OK are valid.
1516	 */
1517
1518	for (x = 0; x < rd1->n_reg_rules; x++) {
1519		rule1 = &rd1->reg_rules[x];
1520		for (y = 0; y < rd2->n_reg_rules; y++) {
1521			rule2 = &rd2->reg_rules[y];
1522			if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523						 &intersected_rule))
1524				num_rules++;
1525		}
1526	}
1527
1528	if (!num_rules)
1529		return NULL;
1530
1531	rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532	if (!rd)
1533		return NULL;
1534
1535	for (x = 0; x < rd1->n_reg_rules; x++) {
1536		rule1 = &rd1->reg_rules[x];
1537		for (y = 0; y < rd2->n_reg_rules; y++) {
1538			rule2 = &rd2->reg_rules[y];
1539			r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540						&intersected_rule);
1541			/*
1542			 * No need to memset here the intersected rule here as
1543			 * we're not using the stack anymore
1544			 */
1545			if (r)
1546				continue;
1547
1548			add_rule(&intersected_rule, rd->reg_rules,
1549				 &rd->n_reg_rules);
1550		}
1551	}
1552
1553	rd->alpha2[0] = '9';
1554	rd->alpha2[1] = '8';
1555	rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556						  rd2->dfs_region);
1557
1558	return rd;
1559}
1560
1561/*
1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563 * want to just have the channel structure use these
1564 */
1565static u32 map_regdom_flags(u32 rd_flags)
1566{
1567	u32 channel_flags = 0;
1568	if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569		channel_flags |= IEEE80211_CHAN_NO_IR;
1570	if (rd_flags & NL80211_RRF_DFS)
1571		channel_flags |= IEEE80211_CHAN_RADAR;
1572	if (rd_flags & NL80211_RRF_NO_OFDM)
1573		channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574	if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575		channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576	if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577		channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578	if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579		channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580	if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581		channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582	if (rd_flags & NL80211_RRF_NO_80MHZ)
1583		channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584	if (rd_flags & NL80211_RRF_NO_160MHZ)
1585		channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586	if (rd_flags & NL80211_RRF_NO_HE)
1587		channel_flags |= IEEE80211_CHAN_NO_HE;
1588	if (rd_flags & NL80211_RRF_NO_320MHZ)
1589		channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590	if (rd_flags & NL80211_RRF_NO_EHT)
1591		channel_flags |= IEEE80211_CHAN_NO_EHT;
1592	return channel_flags;
1593}
1594
1595static const struct ieee80211_reg_rule *
1596freq_reg_info_regd(u32 center_freq,
1597		   const struct ieee80211_regdomain *regd, u32 bw)
1598{
1599	int i;
1600	bool band_rule_found = false;
1601	bool bw_fits = false;
1602
1603	if (!regd)
1604		return ERR_PTR(-EINVAL);
1605
1606	for (i = 0; i < regd->n_reg_rules; i++) {
1607		const struct ieee80211_reg_rule *rr;
1608		const struct ieee80211_freq_range *fr = NULL;
1609
1610		rr = &regd->reg_rules[i];
1611		fr = &rr->freq_range;
1612
1613		/*
1614		 * We only need to know if one frequency rule was
1615		 * in center_freq's band, that's enough, so let's
1616		 * not overwrite it once found
1617		 */
1618		if (!band_rule_found)
1619			band_rule_found = freq_in_rule_band(fr, center_freq);
1620
1621		bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1622
1623		if (band_rule_found && bw_fits)
1624			return rr;
1625	}
1626
1627	if (!band_rule_found)
1628		return ERR_PTR(-ERANGE);
1629
1630	return ERR_PTR(-EINVAL);
1631}
1632
1633static const struct ieee80211_reg_rule *
1634__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1635{
1636	const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1637	static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1638	const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1639	int i = ARRAY_SIZE(bws) - 1;
1640	u32 bw;
1641
1642	for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1643		reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1644		if (!IS_ERR(reg_rule))
1645			return reg_rule;
1646	}
1647
1648	return reg_rule;
1649}
1650
1651const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1652					       u32 center_freq)
1653{
1654	u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1655
1656	return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1657}
1658EXPORT_SYMBOL(freq_reg_info);
1659
1660const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1661{
1662	switch (initiator) {
1663	case NL80211_REGDOM_SET_BY_CORE:
1664		return "core";
1665	case NL80211_REGDOM_SET_BY_USER:
1666		return "user";
1667	case NL80211_REGDOM_SET_BY_DRIVER:
1668		return "driver";
1669	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1670		return "country element";
1671	default:
1672		WARN_ON(1);
1673		return "bug";
1674	}
1675}
1676EXPORT_SYMBOL(reg_initiator_name);
1677
1678static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1679					  const struct ieee80211_reg_rule *reg_rule,
1680					  const struct ieee80211_channel *chan)
1681{
1682	const struct ieee80211_freq_range *freq_range = NULL;
1683	u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1684	bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1685
1686	freq_range = &reg_rule->freq_range;
1687
1688	max_bandwidth_khz = freq_range->max_bandwidth_khz;
1689	center_freq_khz = ieee80211_channel_to_khz(chan);
1690	/* Check if auto calculation requested */
1691	if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1692		max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1693
1694	/* If we get a reg_rule we can assume that at least 5Mhz fit */
1695	if (!cfg80211_does_bw_fit_range(freq_range,
1696					center_freq_khz,
1697					MHZ_TO_KHZ(10)))
1698		bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1699	if (!cfg80211_does_bw_fit_range(freq_range,
1700					center_freq_khz,
1701					MHZ_TO_KHZ(20)))
1702		bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1703
1704	if (is_s1g) {
1705		/* S1G is strict about non overlapping channels. We can
1706		 * calculate which bandwidth is allowed per channel by finding
1707		 * the largest bandwidth which cleanly divides the freq_range.
1708		 */
1709		int edge_offset;
1710		int ch_bw = max_bandwidth_khz;
1711
1712		while (ch_bw) {
1713			edge_offset = (center_freq_khz - ch_bw / 2) -
1714				      freq_range->start_freq_khz;
1715			if (edge_offset % ch_bw == 0) {
1716				switch (KHZ_TO_MHZ(ch_bw)) {
1717				case 1:
1718					bw_flags |= IEEE80211_CHAN_1MHZ;
1719					break;
1720				case 2:
1721					bw_flags |= IEEE80211_CHAN_2MHZ;
1722					break;
1723				case 4:
1724					bw_flags |= IEEE80211_CHAN_4MHZ;
1725					break;
1726				case 8:
1727					bw_flags |= IEEE80211_CHAN_8MHZ;
1728					break;
1729				case 16:
1730					bw_flags |= IEEE80211_CHAN_16MHZ;
1731					break;
1732				default:
1733					/* If we got here, no bandwidths fit on
1734					 * this frequency, ie. band edge.
1735					 */
1736					bw_flags |= IEEE80211_CHAN_DISABLED;
1737					break;
1738				}
1739				break;
1740			}
1741			ch_bw /= 2;
1742		}
1743	} else {
1744		if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1745			bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1746		if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1747			bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1748		if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1749			bw_flags |= IEEE80211_CHAN_NO_HT40;
1750		if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1751			bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1752		if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1753			bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1754		if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1755			bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1756	}
1757	return bw_flags;
1758}
1759
1760static void handle_channel_single_rule(struct wiphy *wiphy,
1761				       enum nl80211_reg_initiator initiator,
1762				       struct ieee80211_channel *chan,
1763				       u32 flags,
1764				       struct regulatory_request *lr,
1765				       struct wiphy *request_wiphy,
1766				       const struct ieee80211_reg_rule *reg_rule)
1767{
1768	u32 bw_flags = 0;
1769	const struct ieee80211_power_rule *power_rule = NULL;
1770	const struct ieee80211_regdomain *regd;
1771
1772	regd = reg_get_regdomain(wiphy);
1773
1774	power_rule = &reg_rule->power_rule;
1775	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1776
1777	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1778	    request_wiphy && request_wiphy == wiphy &&
1779	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1780		/*
1781		 * This guarantees the driver's requested regulatory domain
1782		 * will always be used as a base for further regulatory
1783		 * settings
1784		 */
1785		chan->flags = chan->orig_flags =
1786			map_regdom_flags(reg_rule->flags) | bw_flags;
1787		chan->max_antenna_gain = chan->orig_mag =
1788			(int) MBI_TO_DBI(power_rule->max_antenna_gain);
1789		chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1790			(int) MBM_TO_DBM(power_rule->max_eirp);
1791
1792		if (chan->flags & IEEE80211_CHAN_RADAR) {
1793			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1794			if (reg_rule->dfs_cac_ms)
1795				chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1796		}
1797
1798		return;
1799	}
1800
1801	chan->dfs_state = NL80211_DFS_USABLE;
1802	chan->dfs_state_entered = jiffies;
1803
1804	chan->beacon_found = false;
1805	chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1806	chan->max_antenna_gain =
1807		min_t(int, chan->orig_mag,
1808		      MBI_TO_DBI(power_rule->max_antenna_gain));
1809	chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1810
1811	if (chan->flags & IEEE80211_CHAN_RADAR) {
1812		if (reg_rule->dfs_cac_ms)
1813			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1814		else
1815			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1816	}
1817
1818	if (chan->orig_mpwr) {
1819		/*
1820		 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1821		 * will always follow the passed country IE power settings.
1822		 */
1823		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1824		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1825			chan->max_power = chan->max_reg_power;
1826		else
1827			chan->max_power = min(chan->orig_mpwr,
1828					      chan->max_reg_power);
1829	} else
1830		chan->max_power = chan->max_reg_power;
1831}
1832
1833static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1834					  enum nl80211_reg_initiator initiator,
1835					  struct ieee80211_channel *chan,
1836					  u32 flags,
1837					  struct regulatory_request *lr,
1838					  struct wiphy *request_wiphy,
1839					  const struct ieee80211_reg_rule *rrule1,
1840					  const struct ieee80211_reg_rule *rrule2,
1841					  struct ieee80211_freq_range *comb_range)
1842{
1843	u32 bw_flags1 = 0;
1844	u32 bw_flags2 = 0;
1845	const struct ieee80211_power_rule *power_rule1 = NULL;
1846	const struct ieee80211_power_rule *power_rule2 = NULL;
1847	const struct ieee80211_regdomain *regd;
1848
1849	regd = reg_get_regdomain(wiphy);
1850
1851	power_rule1 = &rrule1->power_rule;
1852	power_rule2 = &rrule2->power_rule;
1853	bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1854	bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1855
1856	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1857	    request_wiphy && request_wiphy == wiphy &&
1858	    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1859		/* This guarantees the driver's requested regulatory domain
1860		 * will always be used as a base for further regulatory
1861		 * settings
1862		 */
1863		chan->flags =
1864			map_regdom_flags(rrule1->flags) |
1865			map_regdom_flags(rrule2->flags) |
1866			bw_flags1 |
1867			bw_flags2;
1868		chan->orig_flags = chan->flags;
1869		chan->max_antenna_gain =
1870			min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1871			      MBI_TO_DBI(power_rule2->max_antenna_gain));
1872		chan->orig_mag = chan->max_antenna_gain;
1873		chan->max_reg_power =
1874			min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1875			      MBM_TO_DBM(power_rule2->max_eirp));
1876		chan->max_power = chan->max_reg_power;
1877		chan->orig_mpwr = chan->max_reg_power;
1878
1879		if (chan->flags & IEEE80211_CHAN_RADAR) {
1880			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1881			if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1882				chan->dfs_cac_ms = max_t(unsigned int,
1883							 rrule1->dfs_cac_ms,
1884							 rrule2->dfs_cac_ms);
1885		}
1886
1887		return;
1888	}
1889
1890	chan->dfs_state = NL80211_DFS_USABLE;
1891	chan->dfs_state_entered = jiffies;
1892
1893	chan->beacon_found = false;
1894	chan->flags = flags | bw_flags1 | bw_flags2 |
1895		      map_regdom_flags(rrule1->flags) |
1896		      map_regdom_flags(rrule2->flags);
1897
1898	/* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1899	 * (otherwise no adj. rule case), recheck therefore
1900	 */
1901	if (cfg80211_does_bw_fit_range(comb_range,
1902				       ieee80211_channel_to_khz(chan),
1903				       MHZ_TO_KHZ(10)))
1904		chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1905	if (cfg80211_does_bw_fit_range(comb_range,
1906				       ieee80211_channel_to_khz(chan),
1907				       MHZ_TO_KHZ(20)))
1908		chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1909
1910	chan->max_antenna_gain =
1911		min_t(int, chan->orig_mag,
1912		      min_t(int,
1913			    MBI_TO_DBI(power_rule1->max_antenna_gain),
1914			    MBI_TO_DBI(power_rule2->max_antenna_gain)));
1915	chan->max_reg_power = min_t(int,
1916				    MBM_TO_DBM(power_rule1->max_eirp),
1917				    MBM_TO_DBM(power_rule2->max_eirp));
1918
1919	if (chan->flags & IEEE80211_CHAN_RADAR) {
1920		if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1921			chan->dfs_cac_ms = max_t(unsigned int,
1922						 rrule1->dfs_cac_ms,
1923						 rrule2->dfs_cac_ms);
1924		else
1925			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1926	}
1927
1928	if (chan->orig_mpwr) {
1929		/* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1930		 * will always follow the passed country IE power settings.
1931		 */
1932		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1933		    wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1934			chan->max_power = chan->max_reg_power;
1935		else
1936			chan->max_power = min(chan->orig_mpwr,
1937					      chan->max_reg_power);
1938	} else {
1939		chan->max_power = chan->max_reg_power;
1940	}
1941}
1942
1943/* Note that right now we assume the desired channel bandwidth
1944 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1945 * per channel, the primary and the extension channel).
1946 */
1947static void handle_channel(struct wiphy *wiphy,
1948			   enum nl80211_reg_initiator initiator,
1949			   struct ieee80211_channel *chan)
1950{
1951	const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1952	struct regulatory_request *lr = get_last_request();
1953	struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1954	const struct ieee80211_reg_rule *rrule = NULL;
1955	const struct ieee80211_reg_rule *rrule1 = NULL;
1956	const struct ieee80211_reg_rule *rrule2 = NULL;
1957
1958	u32 flags = chan->orig_flags;
1959
1960	rrule = freq_reg_info(wiphy, orig_chan_freq);
1961	if (IS_ERR(rrule)) {
1962		/* check for adjacent match, therefore get rules for
1963		 * chan - 20 MHz and chan + 20 MHz and test
1964		 * if reg rules are adjacent
1965		 */
1966		rrule1 = freq_reg_info(wiphy,
1967				       orig_chan_freq - MHZ_TO_KHZ(20));
1968		rrule2 = freq_reg_info(wiphy,
1969				       orig_chan_freq + MHZ_TO_KHZ(20));
1970		if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1971			struct ieee80211_freq_range comb_range;
1972
1973			if (rrule1->freq_range.end_freq_khz !=
1974			    rrule2->freq_range.start_freq_khz)
1975				goto disable_chan;
1976
1977			comb_range.start_freq_khz =
1978				rrule1->freq_range.start_freq_khz;
1979			comb_range.end_freq_khz =
1980				rrule2->freq_range.end_freq_khz;
1981			comb_range.max_bandwidth_khz =
1982				min_t(u32,
1983				      rrule1->freq_range.max_bandwidth_khz,
1984				      rrule2->freq_range.max_bandwidth_khz);
1985
1986			if (!cfg80211_does_bw_fit_range(&comb_range,
1987							orig_chan_freq,
1988							MHZ_TO_KHZ(20)))
1989				goto disable_chan;
1990
1991			handle_channel_adjacent_rules(wiphy, initiator, chan,
1992						      flags, lr, request_wiphy,
1993						      rrule1, rrule2,
1994						      &comb_range);
1995			return;
1996		}
1997
1998disable_chan:
1999		/* We will disable all channels that do not match our
2000		 * received regulatory rule unless the hint is coming
2001		 * from a Country IE and the Country IE had no information
2002		 * about a band. The IEEE 802.11 spec allows for an AP
2003		 * to send only a subset of the regulatory rules allowed,
2004		 * so an AP in the US that only supports 2.4 GHz may only send
2005		 * a country IE with information for the 2.4 GHz band
2006		 * while 5 GHz is still supported.
2007		 */
2008		if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2009		    PTR_ERR(rrule) == -ERANGE)
2010			return;
2011
2012		if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2013		    request_wiphy && request_wiphy == wiphy &&
2014		    request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2015			pr_debug("Disabling freq %d.%03d MHz for good\n",
2016				 chan->center_freq, chan->freq_offset);
2017			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2018			chan->flags = chan->orig_flags;
2019		} else {
2020			pr_debug("Disabling freq %d.%03d MHz\n",
2021				 chan->center_freq, chan->freq_offset);
2022			chan->flags |= IEEE80211_CHAN_DISABLED;
2023		}
2024		return;
2025	}
2026
2027	handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2028				   request_wiphy, rrule);
2029}
2030
2031static void handle_band(struct wiphy *wiphy,
2032			enum nl80211_reg_initiator initiator,
2033			struct ieee80211_supported_band *sband)
2034{
2035	unsigned int i;
2036
2037	if (!sband)
2038		return;
2039
2040	for (i = 0; i < sband->n_channels; i++)
2041		handle_channel(wiphy, initiator, &sband->channels[i]);
2042}
2043
2044static bool reg_request_cell_base(struct regulatory_request *request)
2045{
2046	if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2047		return false;
2048	return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2049}
2050
2051bool reg_last_request_cell_base(void)
2052{
2053	return reg_request_cell_base(get_last_request());
2054}
2055
2056#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2057/* Core specific check */
2058static enum reg_request_treatment
2059reg_ignore_cell_hint(struct regulatory_request *pending_request)
2060{
2061	struct regulatory_request *lr = get_last_request();
2062
2063	if (!reg_num_devs_support_basehint)
2064		return REG_REQ_IGNORE;
2065
2066	if (reg_request_cell_base(lr) &&
2067	    !regdom_changes(pending_request->alpha2))
2068		return REG_REQ_ALREADY_SET;
2069
2070	return REG_REQ_OK;
2071}
2072
2073/* Device specific check */
2074static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2075{
2076	return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2077}
2078#else
2079static enum reg_request_treatment
2080reg_ignore_cell_hint(struct regulatory_request *pending_request)
2081{
2082	return REG_REQ_IGNORE;
2083}
2084
2085static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2086{
2087	return true;
2088}
2089#endif
2090
2091static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2092{
2093	if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2094	    !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2095		return true;
2096	return false;
2097}
2098
2099static bool ignore_reg_update(struct wiphy *wiphy,
2100			      enum nl80211_reg_initiator initiator)
2101{
2102	struct regulatory_request *lr = get_last_request();
2103
2104	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2105		return true;
2106
2107	if (!lr) {
2108		pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2109			 reg_initiator_name(initiator));
2110		return true;
2111	}
2112
2113	if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2114	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2115		pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2116			 reg_initiator_name(initiator));
2117		return true;
2118	}
2119
2120	/*
2121	 * wiphy->regd will be set once the device has its own
2122	 * desired regulatory domain set
2123	 */
2124	if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2125	    initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2126	    !is_world_regdom(lr->alpha2)) {
2127		pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2128			 reg_initiator_name(initiator));
2129		return true;
2130	}
2131
2132	if (reg_request_cell_base(lr))
2133		return reg_dev_ignore_cell_hint(wiphy);
2134
2135	return false;
2136}
2137
2138static bool reg_is_world_roaming(struct wiphy *wiphy)
2139{
2140	const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2141	const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2142	struct regulatory_request *lr = get_last_request();
2143
2144	if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2145		return true;
2146
2147	if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2148	    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2149		return true;
2150
2151	return false;
2152}
2153
2154static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2155			      struct reg_beacon *reg_beacon)
2156{
2157	struct ieee80211_supported_band *sband;
2158	struct ieee80211_channel *chan;
2159	bool channel_changed = false;
2160	struct ieee80211_channel chan_before;
2161
2162	sband = wiphy->bands[reg_beacon->chan.band];
2163	chan = &sband->channels[chan_idx];
2164
2165	if (likely(!ieee80211_channel_equal(chan, &reg_beacon->chan)))
2166		return;
2167
2168	if (chan->beacon_found)
2169		return;
2170
2171	chan->beacon_found = true;
2172
2173	if (!reg_is_world_roaming(wiphy))
2174		return;
2175
2176	if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2177		return;
2178
2179	chan_before = *chan;
2180
2181	if (chan->flags & IEEE80211_CHAN_NO_IR) {
2182		chan->flags &= ~IEEE80211_CHAN_NO_IR;
2183		channel_changed = true;
2184	}
2185
2186	if (channel_changed)
2187		nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2188}
2189
2190/*
2191 * Called when a scan on a wiphy finds a beacon on
2192 * new channel
2193 */
2194static void wiphy_update_new_beacon(struct wiphy *wiphy,
2195				    struct reg_beacon *reg_beacon)
2196{
2197	unsigned int i;
2198	struct ieee80211_supported_band *sband;
2199
2200	if (!wiphy->bands[reg_beacon->chan.band])
2201		return;
2202
2203	sband = wiphy->bands[reg_beacon->chan.band];
2204
2205	for (i = 0; i < sband->n_channels; i++)
2206		handle_reg_beacon(wiphy, i, reg_beacon);
2207}
2208
2209/*
2210 * Called upon reg changes or a new wiphy is added
2211 */
2212static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2213{
2214	unsigned int i;
2215	struct ieee80211_supported_band *sband;
2216	struct reg_beacon *reg_beacon;
2217
2218	list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2219		if (!wiphy->bands[reg_beacon->chan.band])
2220			continue;
2221		sband = wiphy->bands[reg_beacon->chan.band];
2222		for (i = 0; i < sband->n_channels; i++)
2223			handle_reg_beacon(wiphy, i, reg_beacon);
2224	}
2225}
2226
2227/* Reap the advantages of previously found beacons */
2228static void reg_process_beacons(struct wiphy *wiphy)
2229{
2230	/*
2231	 * Means we are just firing up cfg80211, so no beacons would
2232	 * have been processed yet.
2233	 */
2234	if (!last_request)
2235		return;
2236	wiphy_update_beacon_reg(wiphy);
2237}
2238
2239static bool is_ht40_allowed(struct ieee80211_channel *chan)
2240{
2241	if (!chan)
2242		return false;
2243	if (chan->flags & IEEE80211_CHAN_DISABLED)
2244		return false;
2245	/* This would happen when regulatory rules disallow HT40 completely */
2246	if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2247		return false;
2248	return true;
2249}
2250
2251static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2252					 struct ieee80211_channel *channel)
2253{
2254	struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2255	struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2256	const struct ieee80211_regdomain *regd;
2257	unsigned int i;
2258	u32 flags;
2259
2260	if (!is_ht40_allowed(channel)) {
2261		channel->flags |= IEEE80211_CHAN_NO_HT40;
2262		return;
2263	}
2264
2265	/*
2266	 * We need to ensure the extension channels exist to
2267	 * be able to use HT40- or HT40+, this finds them (or not)
2268	 */
2269	for (i = 0; i < sband->n_channels; i++) {
2270		struct ieee80211_channel *c = &sband->channels[i];
2271
2272		if (c->center_freq == (channel->center_freq - 20))
2273			channel_before = c;
2274		if (c->center_freq == (channel->center_freq + 20))
2275			channel_after = c;
2276	}
2277
2278	flags = 0;
2279	regd = get_wiphy_regdom(wiphy);
2280	if (regd) {
2281		const struct ieee80211_reg_rule *reg_rule =
2282			freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2283					   regd, MHZ_TO_KHZ(20));
2284
2285		if (!IS_ERR(reg_rule))
2286			flags = reg_rule->flags;
2287	}
2288
2289	/*
2290	 * Please note that this assumes target bandwidth is 20 MHz,
2291	 * if that ever changes we also need to change the below logic
2292	 * to include that as well.
2293	 */
2294	if (!is_ht40_allowed(channel_before) ||
2295	    flags & NL80211_RRF_NO_HT40MINUS)
2296		channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2297	else
2298		channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2299
2300	if (!is_ht40_allowed(channel_after) ||
2301	    flags & NL80211_RRF_NO_HT40PLUS)
2302		channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2303	else
2304		channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2305}
2306
2307static void reg_process_ht_flags_band(struct wiphy *wiphy,
2308				      struct ieee80211_supported_band *sband)
2309{
2310	unsigned int i;
2311
2312	if (!sband)
2313		return;
2314
2315	for (i = 0; i < sband->n_channels; i++)
2316		reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2317}
2318
2319static void reg_process_ht_flags(struct wiphy *wiphy)
2320{
2321	enum nl80211_band band;
2322
2323	if (!wiphy)
2324		return;
2325
2326	for (band = 0; band < NUM_NL80211_BANDS; band++)
2327		reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2328}
2329
2330static void reg_call_notifier(struct wiphy *wiphy,
2331			      struct regulatory_request *request)
2332{
2333	if (wiphy->reg_notifier)
2334		wiphy->reg_notifier(wiphy, request);
2335}
2336
2337static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2338{
2339	struct cfg80211_chan_def chandef = {};
2340	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2341	enum nl80211_iftype iftype;
2342	bool ret;
2343	int link;
2344
2345	wdev_lock(wdev);
2346	iftype = wdev->iftype;
2347
2348	/* make sure the interface is active */
2349	if (!wdev->netdev || !netif_running(wdev->netdev))
2350		goto wdev_inactive_unlock;
2351
2352	for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2353		struct ieee80211_channel *chan;
2354
2355		if (!wdev->valid_links && link > 0)
2356			break;
2357		if (wdev->valid_links && !(wdev->valid_links & BIT(link)))
2358			continue;
2359		switch (iftype) {
2360		case NL80211_IFTYPE_AP:
2361		case NL80211_IFTYPE_P2P_GO:
2362			if (!wdev->links[link].ap.beacon_interval)
2363				continue;
2364			chandef = wdev->links[link].ap.chandef;
2365			break;
2366		case NL80211_IFTYPE_MESH_POINT:
2367			if (!wdev->u.mesh.beacon_interval)
2368				continue;
2369			chandef = wdev->u.mesh.chandef;
2370			break;
2371		case NL80211_IFTYPE_ADHOC:
2372			if (!wdev->u.ibss.ssid_len)
2373				continue;
2374			chandef = wdev->u.ibss.chandef;
2375			break;
2376		case NL80211_IFTYPE_STATION:
2377		case NL80211_IFTYPE_P2P_CLIENT:
2378			/* Maybe we could consider disabling that link only? */
2379			if (!wdev->links[link].client.current_bss)
2380				continue;
2381
2382			chan = wdev->links[link].client.current_bss->pub.channel;
2383			if (!chan)
2384				continue;
2385
2386			if (!rdev->ops->get_channel ||
2387			    rdev_get_channel(rdev, wdev, link, &chandef))
2388				cfg80211_chandef_create(&chandef, chan,
2389							NL80211_CHAN_NO_HT);
2390			break;
2391		case NL80211_IFTYPE_MONITOR:
2392		case NL80211_IFTYPE_AP_VLAN:
2393		case NL80211_IFTYPE_P2P_DEVICE:
2394			/* no enforcement required */
2395			break;
2396		case NL80211_IFTYPE_OCB:
2397			if (!wdev->u.ocb.chandef.chan)
2398				continue;
2399			chandef = wdev->u.ocb.chandef;
2400			break;
2401		case NL80211_IFTYPE_NAN:
2402			/* we have no info, but NAN is also pretty universal */
2403			continue;
2404		default:
2405			/* others not implemented for now */
2406			WARN_ON_ONCE(1);
2407			break;
2408		}
2409
2410		wdev_unlock(wdev);
2411
2412		switch (iftype) {
2413		case NL80211_IFTYPE_AP:
2414		case NL80211_IFTYPE_P2P_GO:
2415		case NL80211_IFTYPE_ADHOC:
2416		case NL80211_IFTYPE_MESH_POINT:
2417			ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2418							    iftype);
2419			if (!ret)
2420				return ret;
2421			break;
2422		case NL80211_IFTYPE_STATION:
2423		case NL80211_IFTYPE_P2P_CLIENT:
2424			ret = cfg80211_chandef_usable(wiphy, &chandef,
2425						      IEEE80211_CHAN_DISABLED);
2426			if (!ret)
2427				return ret;
2428			break;
2429		default:
2430			break;
2431		}
2432
2433		wdev_lock(wdev);
2434	}
2435
2436	wdev_unlock(wdev);
2437
2438	return true;
2439
2440wdev_inactive_unlock:
2441	wdev_unlock(wdev);
2442	return true;
2443}
2444
2445static void reg_leave_invalid_chans(struct wiphy *wiphy)
2446{
2447	struct wireless_dev *wdev;
2448	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2449
2450	wiphy_lock(wiphy);
2451	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2452		if (!reg_wdev_chan_valid(wiphy, wdev))
2453			cfg80211_leave(rdev, wdev);
2454	wiphy_unlock(wiphy);
2455}
2456
2457static void reg_check_chans_work(struct work_struct *work)
2458{
2459	struct cfg80211_registered_device *rdev;
2460
2461	pr_debug("Verifying active interfaces after reg change\n");
2462	rtnl_lock();
2463
2464	list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2465		reg_leave_invalid_chans(&rdev->wiphy);
2466
2467	rtnl_unlock();
2468}
2469
2470static void reg_check_channels(void)
2471{
2472	/*
2473	 * Give usermode a chance to do something nicer (move to another
2474	 * channel, orderly disconnection), before forcing a disconnection.
2475	 */
2476	mod_delayed_work(system_power_efficient_wq,
2477			 &reg_check_chans,
2478			 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2479}
2480
2481static void wiphy_update_regulatory(struct wiphy *wiphy,
2482				    enum nl80211_reg_initiator initiator)
2483{
2484	enum nl80211_band band;
2485	struct regulatory_request *lr = get_last_request();
2486
2487	if (ignore_reg_update(wiphy, initiator)) {
2488		/*
2489		 * Regulatory updates set by CORE are ignored for custom
2490		 * regulatory cards. Let us notify the changes to the driver,
2491		 * as some drivers used this to restore its orig_* reg domain.
2492		 */
2493		if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2494		    wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2495		    !(wiphy->regulatory_flags &
2496		      REGULATORY_WIPHY_SELF_MANAGED))
2497			reg_call_notifier(wiphy, lr);
2498		return;
2499	}
2500
2501	lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2502
2503	for (band = 0; band < NUM_NL80211_BANDS; band++)
2504		handle_band(wiphy, initiator, wiphy->bands[band]);
2505
2506	reg_process_beacons(wiphy);
2507	reg_process_ht_flags(wiphy);
2508	reg_call_notifier(wiphy, lr);
2509}
2510
2511static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2512{
2513	struct cfg80211_registered_device *rdev;
2514	struct wiphy *wiphy;
2515
2516	ASSERT_RTNL();
2517
2518	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2519		wiphy = &rdev->wiphy;
2520		wiphy_update_regulatory(wiphy, initiator);
2521	}
2522
2523	reg_check_channels();
2524}
2525
2526static void handle_channel_custom(struct wiphy *wiphy,
2527				  struct ieee80211_channel *chan,
2528				  const struct ieee80211_regdomain *regd,
2529				  u32 min_bw)
2530{
2531	u32 bw_flags = 0;
2532	const struct ieee80211_reg_rule *reg_rule = NULL;
2533	const struct ieee80211_power_rule *power_rule = NULL;
2534	u32 bw, center_freq_khz;
2535
2536	center_freq_khz = ieee80211_channel_to_khz(chan);
2537	for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2538		reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2539		if (!IS_ERR(reg_rule))
2540			break;
2541	}
2542
2543	if (IS_ERR_OR_NULL(reg_rule)) {
2544		pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2545			 chan->center_freq, chan->freq_offset);
2546		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2547			chan->flags |= IEEE80211_CHAN_DISABLED;
2548		} else {
2549			chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2550			chan->flags = chan->orig_flags;
2551		}
2552		return;
2553	}
2554
2555	power_rule = &reg_rule->power_rule;
2556	bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2557
2558	chan->dfs_state_entered = jiffies;
2559	chan->dfs_state = NL80211_DFS_USABLE;
2560
2561	chan->beacon_found = false;
2562
2563	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2564		chan->flags = chan->orig_flags | bw_flags |
2565			      map_regdom_flags(reg_rule->flags);
2566	else
2567		chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2568
2569	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2570	chan->max_reg_power = chan->max_power =
2571		(int) MBM_TO_DBM(power_rule->max_eirp);
2572
2573	if (chan->flags & IEEE80211_CHAN_RADAR) {
2574		if (reg_rule->dfs_cac_ms)
2575			chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2576		else
2577			chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2578	}
2579
2580	chan->max_power = chan->max_reg_power;
2581}
2582
2583static void handle_band_custom(struct wiphy *wiphy,
2584			       struct ieee80211_supported_band *sband,
2585			       const struct ieee80211_regdomain *regd)
2586{
2587	unsigned int i;
2588
2589	if (!sband)
2590		return;
2591
2592	/*
2593	 * We currently assume that you always want at least 20 MHz,
2594	 * otherwise channel 12 might get enabled if this rule is
2595	 * compatible to US, which permits 2402 - 2472 MHz.
2596	 */
2597	for (i = 0; i < sband->n_channels; i++)
2598		handle_channel_custom(wiphy, &sband->channels[i], regd,
2599				      MHZ_TO_KHZ(20));
2600}
2601
2602/* Used by drivers prior to wiphy registration */
2603void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2604				   const struct ieee80211_regdomain *regd)
2605{
2606	const struct ieee80211_regdomain *new_regd, *tmp;
2607	enum nl80211_band band;
2608	unsigned int bands_set = 0;
2609
2610	WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2611	     "wiphy should have REGULATORY_CUSTOM_REG\n");
2612	wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2613
2614	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2615		if (!wiphy->bands[band])
2616			continue;
2617		handle_band_custom(wiphy, wiphy->bands[band], regd);
2618		bands_set++;
2619	}
2620
2621	/*
2622	 * no point in calling this if it won't have any effect
2623	 * on your device's supported bands.
2624	 */
2625	WARN_ON(!bands_set);
2626	new_regd = reg_copy_regd(regd);
2627	if (IS_ERR(new_regd))
2628		return;
2629
2630	rtnl_lock();
2631	wiphy_lock(wiphy);
2632
2633	tmp = get_wiphy_regdom(wiphy);
2634	rcu_assign_pointer(wiphy->regd, new_regd);
2635	rcu_free_regdom(tmp);
2636
2637	wiphy_unlock(wiphy);
2638	rtnl_unlock();
2639}
2640EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2641
2642static void reg_set_request_processed(void)
2643{
2644	bool need_more_processing = false;
2645	struct regulatory_request *lr = get_last_request();
2646
2647	lr->processed = true;
2648
2649	spin_lock(&reg_requests_lock);
2650	if (!list_empty(&reg_requests_list))
2651		need_more_processing = true;
2652	spin_unlock(&reg_requests_lock);
2653
2654	cancel_crda_timeout();
2655
2656	if (need_more_processing)
2657		schedule_work(&reg_work);
2658}
2659
2660/**
2661 * reg_process_hint_core - process core regulatory requests
2662 * @core_request: a pending core regulatory request
2663 *
2664 * The wireless subsystem can use this function to process
2665 * a regulatory request issued by the regulatory core.
2666 */
2667static enum reg_request_treatment
2668reg_process_hint_core(struct regulatory_request *core_request)
2669{
2670	if (reg_query_database(core_request)) {
2671		core_request->intersect = false;
2672		core_request->processed = false;
2673		reg_update_last_request(core_request);
2674		return REG_REQ_OK;
2675	}
2676
2677	return REG_REQ_IGNORE;
2678}
2679
2680static enum reg_request_treatment
2681__reg_process_hint_user(struct regulatory_request *user_request)
2682{
2683	struct regulatory_request *lr = get_last_request();
2684
2685	if (reg_request_cell_base(user_request))
2686		return reg_ignore_cell_hint(user_request);
2687
2688	if (reg_request_cell_base(lr))
2689		return REG_REQ_IGNORE;
2690
2691	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2692		return REG_REQ_INTERSECT;
2693	/*
2694	 * If the user knows better the user should set the regdom
2695	 * to their country before the IE is picked up
2696	 */
2697	if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2698	    lr->intersect)
2699		return REG_REQ_IGNORE;
2700	/*
2701	 * Process user requests only after previous user/driver/core
2702	 * requests have been processed
2703	 */
2704	if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2705	     lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2706	     lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2707	    regdom_changes(lr->alpha2))
2708		return REG_REQ_IGNORE;
2709
2710	if (!regdom_changes(user_request->alpha2))
2711		return REG_REQ_ALREADY_SET;
2712
2713	return REG_REQ_OK;
2714}
2715
2716/**
2717 * reg_process_hint_user - process user regulatory requests
2718 * @user_request: a pending user regulatory request
2719 *
2720 * The wireless subsystem can use this function to process
2721 * a regulatory request initiated by userspace.
2722 */
2723static enum reg_request_treatment
2724reg_process_hint_user(struct regulatory_request *user_request)
2725{
2726	enum reg_request_treatment treatment;
2727
2728	treatment = __reg_process_hint_user(user_request);
2729	if (treatment == REG_REQ_IGNORE ||
2730	    treatment == REG_REQ_ALREADY_SET)
2731		return REG_REQ_IGNORE;
2732
2733	user_request->intersect = treatment == REG_REQ_INTERSECT;
2734	user_request->processed = false;
2735
2736	if (reg_query_database(user_request)) {
2737		reg_update_last_request(user_request);
2738		user_alpha2[0] = user_request->alpha2[0];
2739		user_alpha2[1] = user_request->alpha2[1];
2740		return REG_REQ_OK;
2741	}
2742
2743	return REG_REQ_IGNORE;
2744}
2745
2746static enum reg_request_treatment
2747__reg_process_hint_driver(struct regulatory_request *driver_request)
2748{
2749	struct regulatory_request *lr = get_last_request();
2750
2751	if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2752		if (regdom_changes(driver_request->alpha2))
2753			return REG_REQ_OK;
2754		return REG_REQ_ALREADY_SET;
2755	}
2756
2757	/*
2758	 * This would happen if you unplug and plug your card
2759	 * back in or if you add a new device for which the previously
2760	 * loaded card also agrees on the regulatory domain.
2761	 */
2762	if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2763	    !regdom_changes(driver_request->alpha2))
2764		return REG_REQ_ALREADY_SET;
2765
2766	return REG_REQ_INTERSECT;
2767}
2768
2769/**
2770 * reg_process_hint_driver - process driver regulatory requests
2771 * @wiphy: the wireless device for the regulatory request
2772 * @driver_request: a pending driver regulatory request
2773 *
2774 * The wireless subsystem can use this function to process
2775 * a regulatory request issued by an 802.11 driver.
2776 *
2777 * Returns one of the different reg request treatment values.
2778 */
2779static enum reg_request_treatment
2780reg_process_hint_driver(struct wiphy *wiphy,
2781			struct regulatory_request *driver_request)
2782{
2783	const struct ieee80211_regdomain *regd, *tmp;
2784	enum reg_request_treatment treatment;
2785
2786	treatment = __reg_process_hint_driver(driver_request);
2787
2788	switch (treatment) {
2789	case REG_REQ_OK:
2790		break;
2791	case REG_REQ_IGNORE:
2792		return REG_REQ_IGNORE;
2793	case REG_REQ_INTERSECT:
2794	case REG_REQ_ALREADY_SET:
2795		regd = reg_copy_regd(get_cfg80211_regdom());
2796		if (IS_ERR(regd))
2797			return REG_REQ_IGNORE;
2798
2799		tmp = get_wiphy_regdom(wiphy);
2800		ASSERT_RTNL();
2801		wiphy_lock(wiphy);
2802		rcu_assign_pointer(wiphy->regd, regd);
2803		wiphy_unlock(wiphy);
2804		rcu_free_regdom(tmp);
2805	}
2806
2807
2808	driver_request->intersect = treatment == REG_REQ_INTERSECT;
2809	driver_request->processed = false;
2810
2811	/*
2812	 * Since CRDA will not be called in this case as we already
2813	 * have applied the requested regulatory domain before we just
2814	 * inform userspace we have processed the request
2815	 */
2816	if (treatment == REG_REQ_ALREADY_SET) {
2817		nl80211_send_reg_change_event(driver_request);
2818		reg_update_last_request(driver_request);
2819		reg_set_request_processed();
2820		return REG_REQ_ALREADY_SET;
2821	}
2822
2823	if (reg_query_database(driver_request)) {
2824		reg_update_last_request(driver_request);
2825		return REG_REQ_OK;
2826	}
2827
2828	return REG_REQ_IGNORE;
2829}
2830
2831static enum reg_request_treatment
2832__reg_process_hint_country_ie(struct wiphy *wiphy,
2833			      struct regulatory_request *country_ie_request)
2834{
2835	struct wiphy *last_wiphy = NULL;
2836	struct regulatory_request *lr = get_last_request();
2837
2838	if (reg_request_cell_base(lr)) {
2839		/* Trust a Cell base station over the AP's country IE */
2840		if (regdom_changes(country_ie_request->alpha2))
2841			return REG_REQ_IGNORE;
2842		return REG_REQ_ALREADY_SET;
2843	} else {
2844		if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2845			return REG_REQ_IGNORE;
2846	}
2847
2848	if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2849		return -EINVAL;
2850
2851	if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2852		return REG_REQ_OK;
2853
2854	last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2855
2856	if (last_wiphy != wiphy) {
2857		/*
2858		 * Two cards with two APs claiming different
2859		 * Country IE alpha2s. We could
2860		 * intersect them, but that seems unlikely
2861		 * to be correct. Reject second one for now.
2862		 */
2863		if (regdom_changes(country_ie_request->alpha2))
2864			return REG_REQ_IGNORE;
2865		return REG_REQ_ALREADY_SET;
2866	}
2867
2868	if (regdom_changes(country_ie_request->alpha2))
2869		return REG_REQ_OK;
2870	return REG_REQ_ALREADY_SET;
2871}
2872
2873/**
2874 * reg_process_hint_country_ie - process regulatory requests from country IEs
2875 * @wiphy: the wireless device for the regulatory request
2876 * @country_ie_request: a regulatory request from a country IE
2877 *
2878 * The wireless subsystem can use this function to process
2879 * a regulatory request issued by a country Information Element.
2880 *
2881 * Returns one of the different reg request treatment values.
2882 */
2883static enum reg_request_treatment
2884reg_process_hint_country_ie(struct wiphy *wiphy,
2885			    struct regulatory_request *country_ie_request)
2886{
2887	enum reg_request_treatment treatment;
2888
2889	treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2890
2891	switch (treatment) {
2892	case REG_REQ_OK:
2893		break;
2894	case REG_REQ_IGNORE:
2895		return REG_REQ_IGNORE;
2896	case REG_REQ_ALREADY_SET:
2897		reg_free_request(country_ie_request);
2898		return REG_REQ_ALREADY_SET;
2899	case REG_REQ_INTERSECT:
2900		/*
2901		 * This doesn't happen yet, not sure we
2902		 * ever want to support it for this case.
2903		 */
2904		WARN_ONCE(1, "Unexpected intersection for country elements");
2905		return REG_REQ_IGNORE;
2906	}
2907
2908	country_ie_request->intersect = false;
2909	country_ie_request->processed = false;
2910
2911	if (reg_query_database(country_ie_request)) {
2912		reg_update_last_request(country_ie_request);
2913		return REG_REQ_OK;
2914	}
2915
2916	return REG_REQ_IGNORE;
2917}
2918
2919bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2920{
2921	const struct ieee80211_regdomain *wiphy1_regd = NULL;
2922	const struct ieee80211_regdomain *wiphy2_regd = NULL;
2923	const struct ieee80211_regdomain *cfg80211_regd = NULL;
2924	bool dfs_domain_same;
2925
2926	rcu_read_lock();
2927
2928	cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2929	wiphy1_regd = rcu_dereference(wiphy1->regd);
2930	if (!wiphy1_regd)
2931		wiphy1_regd = cfg80211_regd;
2932
2933	wiphy2_regd = rcu_dereference(wiphy2->regd);
2934	if (!wiphy2_regd)
2935		wiphy2_regd = cfg80211_regd;
2936
2937	dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2938
2939	rcu_read_unlock();
2940
2941	return dfs_domain_same;
2942}
2943
2944static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2945				    struct ieee80211_channel *src_chan)
2946{
2947	if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2948	    !(src_chan->flags & IEEE80211_CHAN_RADAR))
2949		return;
2950
2951	if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2952	    src_chan->flags & IEEE80211_CHAN_DISABLED)
2953		return;
2954
2955	if (src_chan->center_freq == dst_chan->center_freq &&
2956	    dst_chan->dfs_state == NL80211_DFS_USABLE) {
2957		dst_chan->dfs_state = src_chan->dfs_state;
2958		dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2959	}
2960}
2961
2962static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2963				       struct wiphy *src_wiphy)
2964{
2965	struct ieee80211_supported_band *src_sband, *dst_sband;
2966	struct ieee80211_channel *src_chan, *dst_chan;
2967	int i, j, band;
2968
2969	if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2970		return;
2971
2972	for (band = 0; band < NUM_NL80211_BANDS; band++) {
2973		dst_sband = dst_wiphy->bands[band];
2974		src_sband = src_wiphy->bands[band];
2975		if (!dst_sband || !src_sband)
2976			continue;
2977
2978		for (i = 0; i < dst_sband->n_channels; i++) {
2979			dst_chan = &dst_sband->channels[i];
2980			for (j = 0; j < src_sband->n_channels; j++) {
2981				src_chan = &src_sband->channels[j];
2982				reg_copy_dfs_chan_state(dst_chan, src_chan);
2983			}
2984		}
2985	}
2986}
2987
2988static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2989{
2990	struct cfg80211_registered_device *rdev;
2991
2992	ASSERT_RTNL();
2993
2994	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2995		if (wiphy == &rdev->wiphy)
2996			continue;
2997		wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2998	}
2999}
3000
3001/* This processes *all* regulatory hints */
3002static void reg_process_hint(struct regulatory_request *reg_request)
3003{
3004	struct wiphy *wiphy = NULL;
3005	enum reg_request_treatment treatment;
3006	enum nl80211_reg_initiator initiator = reg_request->initiator;
3007
3008	if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3009		wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3010
3011	switch (initiator) {
3012	case NL80211_REGDOM_SET_BY_CORE:
3013		treatment = reg_process_hint_core(reg_request);
3014		break;
3015	case NL80211_REGDOM_SET_BY_USER:
3016		treatment = reg_process_hint_user(reg_request);
3017		break;
3018	case NL80211_REGDOM_SET_BY_DRIVER:
3019		if (!wiphy)
3020			goto out_free;
3021		treatment = reg_process_hint_driver(wiphy, reg_request);
3022		break;
3023	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3024		if (!wiphy)
3025			goto out_free;
3026		treatment = reg_process_hint_country_ie(wiphy, reg_request);
3027		break;
3028	default:
3029		WARN(1, "invalid initiator %d\n", initiator);
3030		goto out_free;
3031	}
3032
3033	if (treatment == REG_REQ_IGNORE)
3034		goto out_free;
3035
3036	WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3037	     "unexpected treatment value %d\n", treatment);
3038
3039	/* This is required so that the orig_* parameters are saved.
3040	 * NOTE: treatment must be set for any case that reaches here!
3041	 */
3042	if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3043	    wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3044		wiphy_update_regulatory(wiphy, initiator);
3045		wiphy_all_share_dfs_chan_state(wiphy);
3046		reg_check_channels();
3047	}
3048
3049	return;
3050
3051out_free:
3052	reg_free_request(reg_request);
3053}
3054
3055static void notify_self_managed_wiphys(struct regulatory_request *request)
3056{
3057	struct cfg80211_registered_device *rdev;
3058	struct wiphy *wiphy;
3059
3060	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3061		wiphy = &rdev->wiphy;
3062		if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3063		    request->initiator == NL80211_REGDOM_SET_BY_USER)
3064			reg_call_notifier(wiphy, request);
3065	}
3066}
3067
3068/*
3069 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3070 * Regulatory hints come on a first come first serve basis and we
3071 * must process each one atomically.
3072 */
3073static void reg_process_pending_hints(void)
3074{
3075	struct regulatory_request *reg_request, *lr;
3076
3077	lr = get_last_request();
3078
3079	/* When last_request->processed becomes true this will be rescheduled */
3080	if (lr && !lr->processed) {
3081		pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3082		return;
3083	}
3084
3085	spin_lock(&reg_requests_lock);
3086
3087	if (list_empty(&reg_requests_list)) {
3088		spin_unlock(&reg_requests_lock);
3089		return;
3090	}
3091
3092	reg_request = list_first_entry(&reg_requests_list,
3093				       struct regulatory_request,
3094				       list);
3095	list_del_init(&reg_request->list);
3096
3097	spin_unlock(&reg_requests_lock);
3098
3099	notify_self_managed_wiphys(reg_request);
3100
3101	reg_process_hint(reg_request);
3102
3103	lr = get_last_request();
3104
3105	spin_lock(&reg_requests_lock);
3106	if (!list_empty(&reg_requests_list) && lr && lr->processed)
3107		schedule_work(&reg_work);
3108	spin_unlock(&reg_requests_lock);
3109}
3110
3111/* Processes beacon hints -- this has nothing to do with country IEs */
3112static void reg_process_pending_beacon_hints(void)
3113{
3114	struct cfg80211_registered_device *rdev;
3115	struct reg_beacon *pending_beacon, *tmp;
3116
3117	/* This goes through the _pending_ beacon list */
3118	spin_lock_bh(&reg_pending_beacons_lock);
3119
3120	list_for_each_entry_safe(pending_beacon, tmp,
3121				 &reg_pending_beacons, list) {
3122		list_del_init(&pending_beacon->list);
3123
3124		/* Applies the beacon hint to current wiphys */
3125		list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3126			wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3127
3128		/* Remembers the beacon hint for new wiphys or reg changes */
3129		list_add_tail(&pending_beacon->list, &reg_beacon_list);
3130	}
3131
3132	spin_unlock_bh(&reg_pending_beacons_lock);
3133}
3134
3135static void reg_process_self_managed_hint(struct wiphy *wiphy)
3136{
3137	struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3138	const struct ieee80211_regdomain *tmp;
3139	const struct ieee80211_regdomain *regd;
3140	enum nl80211_band band;
3141	struct regulatory_request request = {};
3142
3143	ASSERT_RTNL();
3144	lockdep_assert_wiphy(wiphy);
3145
3146	spin_lock(&reg_requests_lock);
3147	regd = rdev->requested_regd;
3148	rdev->requested_regd = NULL;
3149	spin_unlock(&reg_requests_lock);
3150
3151	if (!regd)
3152		return;
3153
3154	tmp = get_wiphy_regdom(wiphy);
3155	rcu_assign_pointer(wiphy->regd, regd);
3156	rcu_free_regdom(tmp);
3157
3158	for (band = 0; band < NUM_NL80211_BANDS; band++)
3159		handle_band_custom(wiphy, wiphy->bands[band], regd);
3160
3161	reg_process_ht_flags(wiphy);
3162
3163	request.wiphy_idx = get_wiphy_idx(wiphy);
3164	request.alpha2[0] = regd->alpha2[0];
3165	request.alpha2[1] = regd->alpha2[1];
3166	request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3167
3168	if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3169		reg_call_notifier(wiphy, &request);
3170
3171	nl80211_send_wiphy_reg_change_event(&request);
3172}
3173
3174static void reg_process_self_managed_hints(void)
3175{
3176	struct cfg80211_registered_device *rdev;
3177
3178	ASSERT_RTNL();
3179
3180	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3181		wiphy_lock(&rdev->wiphy);
3182		reg_process_self_managed_hint(&rdev->wiphy);
3183		wiphy_unlock(&rdev->wiphy);
3184	}
3185
3186	reg_check_channels();
3187}
3188
3189static void reg_todo(struct work_struct *work)
3190{
3191	rtnl_lock();
3192	reg_process_pending_hints();
3193	reg_process_pending_beacon_hints();
3194	reg_process_self_managed_hints();
3195	rtnl_unlock();
3196}
3197
3198static void queue_regulatory_request(struct regulatory_request *request)
3199{
3200	request->alpha2[0] = toupper(request->alpha2[0]);
3201	request->alpha2[1] = toupper(request->alpha2[1]);
3202
3203	spin_lock(&reg_requests_lock);
3204	list_add_tail(&request->list, &reg_requests_list);
3205	spin_unlock(&reg_requests_lock);
3206
3207	schedule_work(&reg_work);
3208}
3209
3210/*
3211 * Core regulatory hint -- happens during cfg80211_init()
3212 * and when we restore regulatory settings.
3213 */
3214static int regulatory_hint_core(const char *alpha2)
3215{
3216	struct regulatory_request *request;
3217
3218	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3219	if (!request)
3220		return -ENOMEM;
3221
3222	request->alpha2[0] = alpha2[0];
3223	request->alpha2[1] = alpha2[1];
3224	request->initiator = NL80211_REGDOM_SET_BY_CORE;
3225	request->wiphy_idx = WIPHY_IDX_INVALID;
3226
3227	queue_regulatory_request(request);
3228
3229	return 0;
3230}
3231
3232/* User hints */
3233int regulatory_hint_user(const char *alpha2,
3234			 enum nl80211_user_reg_hint_type user_reg_hint_type)
3235{
3236	struct regulatory_request *request;
3237
3238	if (WARN_ON(!alpha2))
3239		return -EINVAL;
3240
3241	if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3242		return -EINVAL;
3243
3244	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3245	if (!request)
3246		return -ENOMEM;
3247
3248	request->wiphy_idx = WIPHY_IDX_INVALID;
3249	request->alpha2[0] = alpha2[0];
3250	request->alpha2[1] = alpha2[1];
3251	request->initiator = NL80211_REGDOM_SET_BY_USER;
3252	request->user_reg_hint_type = user_reg_hint_type;
3253
3254	/* Allow calling CRDA again */
3255	reset_crda_timeouts();
3256
3257	queue_regulatory_request(request);
3258
3259	return 0;
3260}
3261
3262int regulatory_hint_indoor(bool is_indoor, u32 portid)
3263{
3264	spin_lock(&reg_indoor_lock);
3265
3266	/* It is possible that more than one user space process is trying to
3267	 * configure the indoor setting. To handle such cases, clear the indoor
3268	 * setting in case that some process does not think that the device
3269	 * is operating in an indoor environment. In addition, if a user space
3270	 * process indicates that it is controlling the indoor setting, save its
3271	 * portid, i.e., make it the owner.
3272	 */
3273	reg_is_indoor = is_indoor;
3274	if (reg_is_indoor) {
3275		if (!reg_is_indoor_portid)
3276			reg_is_indoor_portid = portid;
3277	} else {
3278		reg_is_indoor_portid = 0;
3279	}
3280
3281	spin_unlock(&reg_indoor_lock);
3282
3283	if (!is_indoor)
3284		reg_check_channels();
3285
3286	return 0;
3287}
3288
3289void regulatory_netlink_notify(u32 portid)
3290{
3291	spin_lock(&reg_indoor_lock);
3292
3293	if (reg_is_indoor_portid != portid) {
3294		spin_unlock(&reg_indoor_lock);
3295		return;
3296	}
3297
3298	reg_is_indoor = false;
3299	reg_is_indoor_portid = 0;
3300
3301	spin_unlock(&reg_indoor_lock);
3302
3303	reg_check_channels();
3304}
3305
3306/* Driver hints */
3307int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3308{
3309	struct regulatory_request *request;
3310
3311	if (WARN_ON(!alpha2 || !wiphy))
3312		return -EINVAL;
3313
3314	wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3315
3316	request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3317	if (!request)
3318		return -ENOMEM;
3319
3320	request->wiphy_idx = get_wiphy_idx(wiphy);
3321
3322	request->alpha2[0] = alpha2[0];
3323	request->alpha2[1] = alpha2[1];
3324	request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3325
3326	/* Allow calling CRDA again */
3327	reset_crda_timeouts();
3328
3329	queue_regulatory_request(request);
3330
3331	return 0;
3332}
3333EXPORT_SYMBOL(regulatory_hint);
3334
3335void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3336				const u8 *country_ie, u8 country_ie_len)
3337{
3338	char alpha2[2];
3339	enum environment_cap env = ENVIRON_ANY;
3340	struct regulatory_request *request = NULL, *lr;
3341
3342	/* IE len must be evenly divisible by 2 */
3343	if (country_ie_len & 0x01)
3344		return;
3345
3346	if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3347		return;
3348
3349	request = kzalloc(sizeof(*request), GFP_KERNEL);
3350	if (!request)
3351		return;
3352
3353	alpha2[0] = country_ie[0];
3354	alpha2[1] = country_ie[1];
3355
3356	if (country_ie[2] == 'I')
3357		env = ENVIRON_INDOOR;
3358	else if (country_ie[2] == 'O')
3359		env = ENVIRON_OUTDOOR;
3360
3361	rcu_read_lock();
3362	lr = get_last_request();
3363
3364	if (unlikely(!lr))
3365		goto out;
3366
3367	/*
3368	 * We will run this only upon a successful connection on cfg80211.
3369	 * We leave conflict resolution to the workqueue, where can hold
3370	 * the RTNL.
3371	 */
3372	if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3373	    lr->wiphy_idx != WIPHY_IDX_INVALID)
3374		goto out;
3375
3376	request->wiphy_idx = get_wiphy_idx(wiphy);
3377	request->alpha2[0] = alpha2[0];
3378	request->alpha2[1] = alpha2[1];
3379	request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3380	request->country_ie_env = env;
3381
3382	/* Allow calling CRDA again */
3383	reset_crda_timeouts();
3384
3385	queue_regulatory_request(request);
3386	request = NULL;
3387out:
3388	kfree(request);
3389	rcu_read_unlock();
3390}
3391
3392static void restore_alpha2(char *alpha2, bool reset_user)
3393{
3394	/* indicates there is no alpha2 to consider for restoration */
3395	alpha2[0] = '9';
3396	alpha2[1] = '7';
3397
3398	/* The user setting has precedence over the module parameter */
3399	if (is_user_regdom_saved()) {
3400		/* Unless we're asked to ignore it and reset it */
3401		if (reset_user) {
3402			pr_debug("Restoring regulatory settings including user preference\n");
3403			user_alpha2[0] = '9';
3404			user_alpha2[1] = '7';
3405
3406			/*
3407			 * If we're ignoring user settings, we still need to
3408			 * check the module parameter to ensure we put things
3409			 * back as they were for a full restore.
3410			 */
3411			if (!is_world_regdom(ieee80211_regdom)) {
3412				pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3413					 ieee80211_regdom[0], ieee80211_regdom[1]);
3414				alpha2[0] = ieee80211_regdom[0];
3415				alpha2[1] = ieee80211_regdom[1];
3416			}
3417		} else {
3418			pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3419				 user_alpha2[0], user_alpha2[1]);
3420			alpha2[0] = user_alpha2[0];
3421			alpha2[1] = user_alpha2[1];
3422		}
3423	} else if (!is_world_regdom(ieee80211_regdom)) {
3424		pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3425			 ieee80211_regdom[0], ieee80211_regdom[1]);
3426		alpha2[0] = ieee80211_regdom[0];
3427		alpha2[1] = ieee80211_regdom[1];
3428	} else
3429		pr_debug("Restoring regulatory settings\n");
3430}
3431
3432static void restore_custom_reg_settings(struct wiphy *wiphy)
3433{
3434	struct ieee80211_supported_band *sband;
3435	enum nl80211_band band;
3436	struct ieee80211_channel *chan;
3437	int i;
3438
3439	for (band = 0; band < NUM_NL80211_BANDS; band++) {
3440		sband = wiphy->bands[band];
3441		if (!sband)
3442			continue;
3443		for (i = 0; i < sband->n_channels; i++) {
3444			chan = &sband->channels[i];
3445			chan->flags = chan->orig_flags;
3446			chan->max_antenna_gain = chan->orig_mag;
3447			chan->max_power = chan->orig_mpwr;
3448			chan->beacon_found = false;
3449		}
3450	}
3451}
3452
3453/*
3454 * Restoring regulatory settings involves ignoring any
3455 * possibly stale country IE information and user regulatory
3456 * settings if so desired, this includes any beacon hints
3457 * learned as we could have traveled outside to another country
3458 * after disconnection. To restore regulatory settings we do
3459 * exactly what we did at bootup:
3460 *
3461 *   - send a core regulatory hint
3462 *   - send a user regulatory hint if applicable
3463 *
3464 * Device drivers that send a regulatory hint for a specific country
3465 * keep their own regulatory domain on wiphy->regd so that does
3466 * not need to be remembered.
3467 */
3468static void restore_regulatory_settings(bool reset_user, bool cached)
3469{
3470	char alpha2[2];
3471	char world_alpha2[2];
3472	struct reg_beacon *reg_beacon, *btmp;
3473	LIST_HEAD(tmp_reg_req_list);
3474	struct cfg80211_registered_device *rdev;
3475
3476	ASSERT_RTNL();
3477
3478	/*
3479	 * Clear the indoor setting in case that it is not controlled by user
3480	 * space, as otherwise there is no guarantee that the device is still
3481	 * operating in an indoor environment.
3482	 */
3483	spin_lock(&reg_indoor_lock);
3484	if (reg_is_indoor && !reg_is_indoor_portid) {
3485		reg_is_indoor = false;
3486		reg_check_channels();
3487	}
3488	spin_unlock(&reg_indoor_lock);
3489
3490	reset_regdomains(true, &world_regdom);
3491	restore_alpha2(alpha2, reset_user);
3492
3493	/*
3494	 * If there's any pending requests we simply
3495	 * stash them to a temporary pending queue and
3496	 * add then after we've restored regulatory
3497	 * settings.
3498	 */
3499	spin_lock(&reg_requests_lock);
3500	list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3501	spin_unlock(&reg_requests_lock);
3502
3503	/* Clear beacon hints */
3504	spin_lock_bh(&reg_pending_beacons_lock);
3505	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3506		list_del(&reg_beacon->list);
3507		kfree(reg_beacon);
3508	}
3509	spin_unlock_bh(&reg_pending_beacons_lock);
3510
3511	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3512		list_del(&reg_beacon->list);
3513		kfree(reg_beacon);
3514	}
3515
3516	/* First restore to the basic regulatory settings */
3517	world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3518	world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3519
3520	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3521		if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3522			continue;
3523		if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3524			restore_custom_reg_settings(&rdev->wiphy);
3525	}
3526
3527	if (cached && (!is_an_alpha2(alpha2) ||
3528		       !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3529		reset_regdomains(false, cfg80211_world_regdom);
3530		update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3531		print_regdomain(get_cfg80211_regdom());
3532		nl80211_send_reg_change_event(&core_request_world);
3533		reg_set_request_processed();
3534
3535		if (is_an_alpha2(alpha2) &&
3536		    !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3537			struct regulatory_request *ureq;
3538
3539			spin_lock(&reg_requests_lock);
3540			ureq = list_last_entry(&reg_requests_list,
3541					       struct regulatory_request,
3542					       list);
3543			list_del(&ureq->list);
3544			spin_unlock(&reg_requests_lock);
3545
3546			notify_self_managed_wiphys(ureq);
3547			reg_update_last_request(ureq);
3548			set_regdom(reg_copy_regd(cfg80211_user_regdom),
3549				   REGD_SOURCE_CACHED);
3550		}
3551	} else {
3552		regulatory_hint_core(world_alpha2);
3553
3554		/*
3555		 * This restores the ieee80211_regdom module parameter
3556		 * preference or the last user requested regulatory
3557		 * settings, user regulatory settings takes precedence.
3558		 */
3559		if (is_an_alpha2(alpha2))
3560			regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3561	}
3562
3563	spin_lock(&reg_requests_lock);
3564	list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3565	spin_unlock(&reg_requests_lock);
3566
3567	pr_debug("Kicking the queue\n");
3568
3569	schedule_work(&reg_work);
3570}
3571
3572static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3573{
3574	struct cfg80211_registered_device *rdev;
3575	struct wireless_dev *wdev;
3576
3577	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3578		list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3579			wdev_lock(wdev);
3580			if (!(wdev->wiphy->regulatory_flags & flag)) {
3581				wdev_unlock(wdev);
3582				return false;
3583			}
3584			wdev_unlock(wdev);
3585		}
3586	}
3587
3588	return true;
3589}
3590
3591void regulatory_hint_disconnect(void)
3592{
3593	/* Restore of regulatory settings is not required when wiphy(s)
3594	 * ignore IE from connected access point but clearance of beacon hints
3595	 * is required when wiphy(s) supports beacon hints.
3596	 */
3597	if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3598		struct reg_beacon *reg_beacon, *btmp;
3599
3600		if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3601			return;
3602
3603		spin_lock_bh(&reg_pending_beacons_lock);
3604		list_for_each_entry_safe(reg_beacon, btmp,
3605					 &reg_pending_beacons, list) {
3606			list_del(&reg_beacon->list);
3607			kfree(reg_beacon);
3608		}
3609		spin_unlock_bh(&reg_pending_beacons_lock);
3610
3611		list_for_each_entry_safe(reg_beacon, btmp,
3612					 &reg_beacon_list, list) {
3613			list_del(&reg_beacon->list);
3614			kfree(reg_beacon);
3615		}
3616
3617		return;
3618	}
3619
3620	pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3621	restore_regulatory_settings(false, true);
3622}
3623
3624static bool freq_is_chan_12_13_14(u32 freq)
3625{
3626	if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3627	    freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3628	    freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3629		return true;
3630	return false;
3631}
3632
3633static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3634{
3635	struct reg_beacon *pending_beacon;
3636
3637	list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3638		if (ieee80211_channel_equal(beacon_chan,
3639					    &pending_beacon->chan))
3640			return true;
3641	return false;
3642}
3643
3644int regulatory_hint_found_beacon(struct wiphy *wiphy,
3645				 struct ieee80211_channel *beacon_chan,
3646				 gfp_t gfp)
3647{
3648	struct reg_beacon *reg_beacon;
3649	bool processing;
3650
3651	if (beacon_chan->beacon_found ||
3652	    beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3653	    (beacon_chan->band == NL80211_BAND_2GHZ &&
3654	     !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3655		return 0;
3656
3657	spin_lock_bh(&reg_pending_beacons_lock);
3658	processing = pending_reg_beacon(beacon_chan);
3659	spin_unlock_bh(&reg_pending_beacons_lock);
3660
3661	if (processing)
3662		return 0;
3663
3664	reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3665	if (!reg_beacon)
3666		return -ENOMEM;
3667
3668	pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3669		 beacon_chan->center_freq, beacon_chan->freq_offset,
3670		 ieee80211_freq_khz_to_channel(
3671			 ieee80211_channel_to_khz(beacon_chan)),
3672		 wiphy_name(wiphy));
3673
3674	memcpy(&reg_beacon->chan, beacon_chan,
3675	       sizeof(struct ieee80211_channel));
3676
3677	/*
3678	 * Since we can be called from BH or and non-BH context
3679	 * we must use spin_lock_bh()
3680	 */
3681	spin_lock_bh(&reg_pending_beacons_lock);
3682	list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3683	spin_unlock_bh(&reg_pending_beacons_lock);
3684
3685	schedule_work(&reg_work);
3686
3687	return 0;
3688}
3689
3690static void print_rd_rules(const struct ieee80211_regdomain *rd)
3691{
3692	unsigned int i;
3693	const struct ieee80211_reg_rule *reg_rule = NULL;
3694	const struct ieee80211_freq_range *freq_range = NULL;
3695	const struct ieee80211_power_rule *power_rule = NULL;
3696	char bw[32], cac_time[32];
3697
3698	pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3699
3700	for (i = 0; i < rd->n_reg_rules; i++) {
3701		reg_rule = &rd->reg_rules[i];
3702		freq_range = &reg_rule->freq_range;
3703		power_rule = &reg_rule->power_rule;
3704
3705		if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3706			snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3707				 freq_range->max_bandwidth_khz,
3708				 reg_get_max_bandwidth(rd, reg_rule));
3709		else
3710			snprintf(bw, sizeof(bw), "%d KHz",
3711				 freq_range->max_bandwidth_khz);
3712
3713		if (reg_rule->flags & NL80211_RRF_DFS)
3714			scnprintf(cac_time, sizeof(cac_time), "%u s",
3715				  reg_rule->dfs_cac_ms/1000);
3716		else
3717			scnprintf(cac_time, sizeof(cac_time), "N/A");
3718
3719
3720		/*
3721		 * There may not be documentation for max antenna gain
3722		 * in certain regions
3723		 */
3724		if (power_rule->max_antenna_gain)
3725			pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3726				freq_range->start_freq_khz,
3727				freq_range->end_freq_khz,
3728				bw,
3729				power_rule->max_antenna_gain,
3730				power_rule->max_eirp,
3731				cac_time);
3732		else
3733			pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3734				freq_range->start_freq_khz,
3735				freq_range->end_freq_khz,
3736				bw,
3737				power_rule->max_eirp,
3738				cac_time);
3739	}
3740}
3741
3742bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3743{
3744	switch (dfs_region) {
3745	case NL80211_DFS_UNSET:
3746	case NL80211_DFS_FCC:
3747	case NL80211_DFS_ETSI:
3748	case NL80211_DFS_JP:
3749		return true;
3750	default:
3751		pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3752		return false;
3753	}
3754}
3755
3756static void print_regdomain(const struct ieee80211_regdomain *rd)
3757{
3758	struct regulatory_request *lr = get_last_request();
3759
3760	if (is_intersected_alpha2(rd->alpha2)) {
3761		if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3762			struct cfg80211_registered_device *rdev;
3763			rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3764			if (rdev) {
3765				pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3766					rdev->country_ie_alpha2[0],
3767					rdev->country_ie_alpha2[1]);
3768			} else
3769				pr_debug("Current regulatory domain intersected:\n");
3770		} else
3771			pr_debug("Current regulatory domain intersected:\n");
3772	} else if (is_world_regdom(rd->alpha2)) {
3773		pr_debug("World regulatory domain updated:\n");
3774	} else {
3775		if (is_unknown_alpha2(rd->alpha2))
3776			pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3777		else {
3778			if (reg_request_cell_base(lr))
3779				pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3780					rd->alpha2[0], rd->alpha2[1]);
3781			else
3782				pr_debug("Regulatory domain changed to country: %c%c\n",
3783					rd->alpha2[0], rd->alpha2[1]);
3784		}
3785	}
3786
3787	pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3788	print_rd_rules(rd);
3789}
3790
3791static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3792{
3793	pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3794	print_rd_rules(rd);
3795}
3796
3797static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3798{
3799	if (!is_world_regdom(rd->alpha2))
3800		return -EINVAL;
3801	update_world_regdomain(rd);
3802	return 0;
3803}
3804
3805static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3806			   struct regulatory_request *user_request)
3807{
3808	const struct ieee80211_regdomain *intersected_rd = NULL;
3809
3810	if (!regdom_changes(rd->alpha2))
3811		return -EALREADY;
3812
3813	if (!is_valid_rd(rd)) {
3814		pr_err("Invalid regulatory domain detected: %c%c\n",
3815		       rd->alpha2[0], rd->alpha2[1]);
3816		print_regdomain_info(rd);
3817		return -EINVAL;
3818	}
3819
3820	if (!user_request->intersect) {
3821		reset_regdomains(false, rd);
3822		return 0;
3823	}
3824
3825	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3826	if (!intersected_rd)
3827		return -EINVAL;
3828
3829	kfree(rd);
3830	rd = NULL;
3831	reset_regdomains(false, intersected_rd);
3832
3833	return 0;
3834}
3835
3836static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3837			     struct regulatory_request *driver_request)
3838{
3839	const struct ieee80211_regdomain *regd;
3840	const struct ieee80211_regdomain *intersected_rd = NULL;
3841	const struct ieee80211_regdomain *tmp;
3842	struct wiphy *request_wiphy;
3843
3844	if (is_world_regdom(rd->alpha2))
3845		return -EINVAL;
3846
3847	if (!regdom_changes(rd->alpha2))
3848		return -EALREADY;
3849
3850	if (!is_valid_rd(rd)) {
3851		pr_err("Invalid regulatory domain detected: %c%c\n",
3852		       rd->alpha2[0], rd->alpha2[1]);
3853		print_regdomain_info(rd);
3854		return -EINVAL;
3855	}
3856
3857	request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3858	if (!request_wiphy)
3859		return -ENODEV;
3860
3861	if (!driver_request->intersect) {
3862		ASSERT_RTNL();
3863		wiphy_lock(request_wiphy);
3864		if (request_wiphy->regd) {
3865			wiphy_unlock(request_wiphy);
3866			return -EALREADY;
3867		}
3868
3869		regd = reg_copy_regd(rd);
3870		if (IS_ERR(regd)) {
3871			wiphy_unlock(request_wiphy);
3872			return PTR_ERR(regd);
3873		}
3874
3875		rcu_assign_pointer(request_wiphy->regd, regd);
3876		wiphy_unlock(request_wiphy);
3877		reset_regdomains(false, rd);
3878		return 0;
3879	}
3880
3881	intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3882	if (!intersected_rd)
3883		return -EINVAL;
3884
3885	/*
3886	 * We can trash what CRDA provided now.
3887	 * However if a driver requested this specific regulatory
3888	 * domain we keep it for its private use
3889	 */
3890	tmp = get_wiphy_regdom(request_wiphy);
3891	rcu_assign_pointer(request_wiphy->regd, rd);
3892	rcu_free_regdom(tmp);
3893
3894	rd = NULL;
3895
3896	reset_regdomains(false, intersected_rd);
3897
3898	return 0;
3899}
3900
3901static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3902				 struct regulatory_request *country_ie_request)
3903{
3904	struct wiphy *request_wiphy;
3905
3906	if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3907	    !is_unknown_alpha2(rd->alpha2))
3908		return -EINVAL;
3909
3910	/*
3911	 * Lets only bother proceeding on the same alpha2 if the current
3912	 * rd is non static (it means CRDA was present and was used last)
3913	 * and the pending request came in from a country IE
3914	 */
3915
3916	if (!is_valid_rd(rd)) {
3917		pr_err("Invalid regulatory domain detected: %c%c\n",
3918		       rd->alpha2[0], rd->alpha2[1]);
3919		print_regdomain_info(rd);
3920		return -EINVAL;
3921	}
3922
3923	request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3924	if (!request_wiphy)
3925		return -ENODEV;
3926
3927	if (country_ie_request->intersect)
3928		return -EINVAL;
3929
3930	reset_regdomains(false, rd);
3931	return 0;
3932}
3933
3934/*
3935 * Use this call to set the current regulatory domain. Conflicts with
3936 * multiple drivers can be ironed out later. Caller must've already
3937 * kmalloc'd the rd structure.
3938 */
3939int set_regdom(const struct ieee80211_regdomain *rd,
3940	       enum ieee80211_regd_source regd_src)
3941{
3942	struct regulatory_request *lr;
3943	bool user_reset = false;
3944	int r;
3945
3946	if (IS_ERR_OR_NULL(rd))
3947		return -ENODATA;
3948
3949	if (!reg_is_valid_request(rd->alpha2)) {
3950		kfree(rd);
3951		return -EINVAL;
3952	}
3953
3954	if (regd_src == REGD_SOURCE_CRDA)
3955		reset_crda_timeouts();
3956
3957	lr = get_last_request();
3958
3959	/* Note that this doesn't update the wiphys, this is done below */
3960	switch (lr->initiator) {
3961	case NL80211_REGDOM_SET_BY_CORE:
3962		r = reg_set_rd_core(rd);
3963		break;
3964	case NL80211_REGDOM_SET_BY_USER:
3965		cfg80211_save_user_regdom(rd);
3966		r = reg_set_rd_user(rd, lr);
3967		user_reset = true;
3968		break;
3969	case NL80211_REGDOM_SET_BY_DRIVER:
3970		r = reg_set_rd_driver(rd, lr);
3971		break;
3972	case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3973		r = reg_set_rd_country_ie(rd, lr);
3974		break;
3975	default:
3976		WARN(1, "invalid initiator %d\n", lr->initiator);
3977		kfree(rd);
3978		return -EINVAL;
3979	}
3980
3981	if (r) {
3982		switch (r) {
3983		case -EALREADY:
3984			reg_set_request_processed();
3985			break;
3986		default:
3987			/* Back to world regulatory in case of errors */
3988			restore_regulatory_settings(user_reset, false);
3989		}
3990
3991		kfree(rd);
3992		return r;
3993	}
3994
3995	/* This would make this whole thing pointless */
3996	if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3997		return -EINVAL;
3998
3999	/* update all wiphys now with the new established regulatory domain */
4000	update_all_wiphy_regulatory(lr->initiator);
4001
4002	print_regdomain(get_cfg80211_regdom());
4003
4004	nl80211_send_reg_change_event(lr);
4005
4006	reg_set_request_processed();
4007
4008	return 0;
4009}
4010
4011static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4012				       struct ieee80211_regdomain *rd)
4013{
4014	const struct ieee80211_regdomain *regd;
4015	const struct ieee80211_regdomain *prev_regd;
4016	struct cfg80211_registered_device *rdev;
4017
4018	if (WARN_ON(!wiphy || !rd))
4019		return -EINVAL;
4020
4021	if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4022		 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4023		return -EPERM;
4024
4025	if (WARN(!is_valid_rd(rd),
4026		 "Invalid regulatory domain detected: %c%c\n",
4027		 rd->alpha2[0], rd->alpha2[1])) {
4028		print_regdomain_info(rd);
4029		return -EINVAL;
4030	}
4031
4032	regd = reg_copy_regd(rd);
4033	if (IS_ERR(regd))
4034		return PTR_ERR(regd);
4035
4036	rdev = wiphy_to_rdev(wiphy);
4037
4038	spin_lock(&reg_requests_lock);
4039	prev_regd = rdev->requested_regd;
4040	rdev->requested_regd = regd;
4041	spin_unlock(&reg_requests_lock);
4042
4043	kfree(prev_regd);
4044	return 0;
4045}
4046
4047int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4048			      struct ieee80211_regdomain *rd)
4049{
4050	int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4051
4052	if (ret)
4053		return ret;
4054
4055	schedule_work(&reg_work);
4056	return 0;
4057}
4058EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4059
4060int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4061				   struct ieee80211_regdomain *rd)
4062{
4063	int ret;
4064
4065	ASSERT_RTNL();
4066
4067	ret = __regulatory_set_wiphy_regd(wiphy, rd);
4068	if (ret)
4069		return ret;
4070
4071	/* process the request immediately */
4072	reg_process_self_managed_hint(wiphy);
4073	reg_check_channels();
4074	return 0;
4075}
4076EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4077
4078void wiphy_regulatory_register(struct wiphy *wiphy)
4079{
4080	struct regulatory_request *lr = get_last_request();
4081
4082	/* self-managed devices ignore beacon hints and country IE */
4083	if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4084		wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4085					   REGULATORY_COUNTRY_IE_IGNORE;
4086
4087		/*
4088		 * The last request may have been received before this
4089		 * registration call. Call the driver notifier if
4090		 * initiator is USER.
4091		 */
4092		if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4093			reg_call_notifier(wiphy, lr);
4094	}
4095
4096	if (!reg_dev_ignore_cell_hint(wiphy))
4097		reg_num_devs_support_basehint++;
4098
4099	wiphy_update_regulatory(wiphy, lr->initiator);
4100	wiphy_all_share_dfs_chan_state(wiphy);
4101	reg_process_self_managed_hints();
4102}
4103
4104void wiphy_regulatory_deregister(struct wiphy *wiphy)
4105{
4106	struct wiphy *request_wiphy = NULL;
4107	struct regulatory_request *lr;
4108
4109	lr = get_last_request();
4110
4111	if (!reg_dev_ignore_cell_hint(wiphy))
4112		reg_num_devs_support_basehint--;
4113
4114	rcu_free_regdom(get_wiphy_regdom(wiphy));
4115	RCU_INIT_POINTER(wiphy->regd, NULL);
4116
4117	if (lr)
4118		request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4119
4120	if (!request_wiphy || request_wiphy != wiphy)
4121		return;
4122
4123	lr->wiphy_idx = WIPHY_IDX_INVALID;
4124	lr->country_ie_env = ENVIRON_ANY;
4125}
4126
4127/*
4128 * See FCC notices for UNII band definitions
4129 *  5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4130 *  6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4131 */
4132int cfg80211_get_unii(int freq)
4133{
4134	/* UNII-1 */
4135	if (freq >= 5150 && freq <= 5250)
4136		return 0;
4137
4138	/* UNII-2A */
4139	if (freq > 5250 && freq <= 5350)
4140		return 1;
4141
4142	/* UNII-2B */
4143	if (freq > 5350 && freq <= 5470)
4144		return 2;
4145
4146	/* UNII-2C */
4147	if (freq > 5470 && freq <= 5725)
4148		return 3;
4149
4150	/* UNII-3 */
4151	if (freq > 5725 && freq <= 5825)
4152		return 4;
4153
4154	/* UNII-5 */
4155	if (freq > 5925 && freq <= 6425)
4156		return 5;
4157
4158	/* UNII-6 */
4159	if (freq > 6425 && freq <= 6525)
4160		return 6;
4161
4162	/* UNII-7 */
4163	if (freq > 6525 && freq <= 6875)
4164		return 7;
4165
4166	/* UNII-8 */
4167	if (freq > 6875 && freq <= 7125)
4168		return 8;
4169
4170	return -EINVAL;
4171}
4172
4173bool regulatory_indoor_allowed(void)
4174{
4175	return reg_is_indoor;
4176}
4177
4178bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4179{
4180	const struct ieee80211_regdomain *regd = NULL;
4181	const struct ieee80211_regdomain *wiphy_regd = NULL;
4182	bool pre_cac_allowed = false;
4183
4184	rcu_read_lock();
4185
4186	regd = rcu_dereference(cfg80211_regdomain);
4187	wiphy_regd = rcu_dereference(wiphy->regd);
4188	if (!wiphy_regd) {
4189		if (regd->dfs_region == NL80211_DFS_ETSI)
4190			pre_cac_allowed = true;
4191
4192		rcu_read_unlock();
4193
4194		return pre_cac_allowed;
4195	}
4196
4197	if (regd->dfs_region == wiphy_regd->dfs_region &&
4198	    wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4199		pre_cac_allowed = true;
4200
4201	rcu_read_unlock();
4202
4203	return pre_cac_allowed;
4204}
4205EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4206
4207static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4208{
4209	struct wireless_dev *wdev;
4210	/* If we finished CAC or received radar, we should end any
4211	 * CAC running on the same channels.
4212	 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4213	 * either all channels are available - those the CAC_FINISHED
4214	 * event has effected another wdev state, or there is a channel
4215	 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4216	 * event has effected another wdev state.
4217	 * In both cases we should end the CAC on the wdev.
4218	 */
4219	list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4220		struct cfg80211_chan_def *chandef;
4221
4222		if (!wdev->cac_started)
4223			continue;
4224
4225		/* FIXME: radar detection is tied to link 0 for now */
4226		chandef = wdev_chandef(wdev, 0);
4227		if (!chandef)
4228			continue;
4229
4230		if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4231			rdev_end_cac(rdev, wdev->netdev);
4232	}
4233}
4234
4235void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4236				    struct cfg80211_chan_def *chandef,
4237				    enum nl80211_dfs_state dfs_state,
4238				    enum nl80211_radar_event event)
4239{
4240	struct cfg80211_registered_device *rdev;
4241
4242	ASSERT_RTNL();
4243
4244	if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4245		return;
4246
4247	list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4248		if (wiphy == &rdev->wiphy)
4249			continue;
4250
4251		if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4252			continue;
4253
4254		if (!ieee80211_get_channel(&rdev->wiphy,
4255					   chandef->chan->center_freq))
4256			continue;
4257
4258		cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4259
4260		if (event == NL80211_RADAR_DETECTED ||
4261		    event == NL80211_RADAR_CAC_FINISHED) {
4262			cfg80211_sched_dfs_chan_update(rdev);
4263			cfg80211_check_and_end_cac(rdev);
4264		}
4265
4266		nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4267	}
4268}
4269
4270static int __init regulatory_init_db(void)
4271{
4272	int err;
4273
4274	/*
4275	 * It's possible that - due to other bugs/issues - cfg80211
4276	 * never called regulatory_init() below, or that it failed;
4277	 * in that case, don't try to do any further work here as
4278	 * it's doomed to lead to crashes.
4279	 */
4280	if (IS_ERR_OR_NULL(reg_pdev))
4281		return -EINVAL;
4282
4283	err = load_builtin_regdb_keys();
4284	if (err) {
4285		platform_device_unregister(reg_pdev);
4286		return err;
4287	}
4288
4289	/* We always try to get an update for the static regdomain */
4290	err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4291	if (err) {
4292		if (err == -ENOMEM) {
4293			platform_device_unregister(reg_pdev);
4294			return err;
4295		}
4296		/*
4297		 * N.B. kobject_uevent_env() can fail mainly for when we're out
4298		 * memory which is handled and propagated appropriately above
4299		 * but it can also fail during a netlink_broadcast() or during
4300		 * early boot for call_usermodehelper(). For now treat these
4301		 * errors as non-fatal.
4302		 */
4303		pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4304	}
4305
4306	/*
4307	 * Finally, if the user set the module parameter treat it
4308	 * as a user hint.
4309	 */
4310	if (!is_world_regdom(ieee80211_regdom))
4311		regulatory_hint_user(ieee80211_regdom,
4312				     NL80211_USER_REG_HINT_USER);
4313
4314	return 0;
4315}
4316#ifndef MODULE
4317late_initcall(regulatory_init_db);
4318#endif
4319
4320int __init regulatory_init(void)
4321{
4322	reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4323	if (IS_ERR(reg_pdev))
4324		return PTR_ERR(reg_pdev);
4325
4326	rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4327
4328	user_alpha2[0] = '9';
4329	user_alpha2[1] = '7';
4330
4331#ifdef MODULE
4332	return regulatory_init_db();
4333#else
4334	return 0;
4335#endif
4336}
4337
4338void regulatory_exit(void)
4339{
4340	struct regulatory_request *reg_request, *tmp;
4341	struct reg_beacon *reg_beacon, *btmp;
4342
4343	cancel_work_sync(&reg_work);
4344	cancel_crda_timeout_sync();
4345	cancel_delayed_work_sync(&reg_check_chans);
4346
4347	/* Lock to suppress warnings */
4348	rtnl_lock();
4349	reset_regdomains(true, NULL);
4350	rtnl_unlock();
4351
4352	dev_set_uevent_suppress(&reg_pdev->dev, true);
4353
4354	platform_device_unregister(reg_pdev);
4355
4356	list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4357		list_del(&reg_beacon->list);
4358		kfree(reg_beacon);
4359	}
4360
4361	list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4362		list_del(&reg_beacon->list);
4363		kfree(reg_beacon);
4364	}
4365
4366	list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4367		list_del(&reg_request->list);
4368		kfree(reg_request);
4369	}
4370
4371	if (!IS_ERR_OR_NULL(regdb))
4372		kfree(regdb);
4373	if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4374		kfree(cfg80211_user_regdom);
4375
4376	free_regdb_keyring();
4377}
4378