1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * VMware vSockets Driver
4 *
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
7
8/* Implementation notes:
9 *
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
12 *
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup.  Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
25 *
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
29 *
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state.  When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket.  These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection.  If it does, we process the packet for the
38 * pending socket.  When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue.  Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue.  If the socket cannot be accepted
42 * for some reason then it is marked rejected.  Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
45 *
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request.  Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established.  This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation).  Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
55 *
56 * - Lock ordering for pending or accept queue sockets is:
57 *
58 *     lock_sock(listener);
59 *     lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
60 *
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
63 *
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked.  Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
69 *
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed.  Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference.  When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
77 *
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
80 *
81 *   TCP_CLOSE - unconnected
82 *   TCP_SYN_SENT - connecting
83 *   TCP_ESTABLISHED - connected
84 *   TCP_CLOSING - disconnecting
85 *   TCP_LISTEN - listening
86 */
87
88#include <linux/compat.h>
89#include <linux/types.h>
90#include <linux/bitops.h>
91#include <linux/cred.h>
92#include <linux/errqueue.h>
93#include <linux/init.h>
94#include <linux/io.h>
95#include <linux/kernel.h>
96#include <linux/sched/signal.h>
97#include <linux/kmod.h>
98#include <linux/list.h>
99#include <linux/miscdevice.h>
100#include <linux/module.h>
101#include <linux/mutex.h>
102#include <linux/net.h>
103#include <linux/poll.h>
104#include <linux/random.h>
105#include <linux/skbuff.h>
106#include <linux/smp.h>
107#include <linux/socket.h>
108#include <linux/stddef.h>
109#include <linux/unistd.h>
110#include <linux/wait.h>
111#include <linux/workqueue.h>
112#include <net/sock.h>
113#include <net/af_vsock.h>
114#include <uapi/linux/vm_sockets.h>
115
116static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
117static void vsock_sk_destruct(struct sock *sk);
118static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
119
120/* Protocol family. */
121struct proto vsock_proto = {
122	.name = "AF_VSOCK",
123	.owner = THIS_MODULE,
124	.obj_size = sizeof(struct vsock_sock),
125#ifdef CONFIG_BPF_SYSCALL
126	.psock_update_sk_prot = vsock_bpf_update_proto,
127#endif
128};
129
130/* The default peer timeout indicates how long we will wait for a peer response
131 * to a control message.
132 */
133#define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
134
135#define VSOCK_DEFAULT_BUFFER_SIZE     (1024 * 256)
136#define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
137#define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
138
139/* Transport used for host->guest communication */
140static const struct vsock_transport *transport_h2g;
141/* Transport used for guest->host communication */
142static const struct vsock_transport *transport_g2h;
143/* Transport used for DGRAM communication */
144static const struct vsock_transport *transport_dgram;
145/* Transport used for local communication */
146static const struct vsock_transport *transport_local;
147static DEFINE_MUTEX(vsock_register_mutex);
148
149/**** UTILS ****/
150
151/* Each bound VSocket is stored in the bind hash table and each connected
152 * VSocket is stored in the connected hash table.
153 *
154 * Unbound sockets are all put on the same list attached to the end of the hash
155 * table (vsock_unbound_sockets).  Bound sockets are added to the hash table in
156 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
157 * represents the list that addr hashes to).
158 *
159 * Specifically, we initialize the vsock_bind_table array to a size of
160 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
161 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
162 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets.  The hash function
163 * mods with VSOCK_HASH_SIZE to ensure this.
164 */
165#define MAX_PORT_RETRIES        24
166
167#define VSOCK_HASH(addr)        ((addr)->svm_port % VSOCK_HASH_SIZE)
168#define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
169#define vsock_unbound_sockets     (&vsock_bind_table[VSOCK_HASH_SIZE])
170
171/* XXX This can probably be implemented in a better way. */
172#define VSOCK_CONN_HASH(src, dst)				\
173	(((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
174#define vsock_connected_sockets(src, dst)		\
175	(&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
176#define vsock_connected_sockets_vsk(vsk)				\
177	vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
178
179struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
180EXPORT_SYMBOL_GPL(vsock_bind_table);
181struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
182EXPORT_SYMBOL_GPL(vsock_connected_table);
183DEFINE_SPINLOCK(vsock_table_lock);
184EXPORT_SYMBOL_GPL(vsock_table_lock);
185
186/* Autobind this socket to the local address if necessary. */
187static int vsock_auto_bind(struct vsock_sock *vsk)
188{
189	struct sock *sk = sk_vsock(vsk);
190	struct sockaddr_vm local_addr;
191
192	if (vsock_addr_bound(&vsk->local_addr))
193		return 0;
194	vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
195	return __vsock_bind(sk, &local_addr);
196}
197
198static void vsock_init_tables(void)
199{
200	int i;
201
202	for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
203		INIT_LIST_HEAD(&vsock_bind_table[i]);
204
205	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
206		INIT_LIST_HEAD(&vsock_connected_table[i]);
207}
208
209static void __vsock_insert_bound(struct list_head *list,
210				 struct vsock_sock *vsk)
211{
212	sock_hold(&vsk->sk);
213	list_add(&vsk->bound_table, list);
214}
215
216static void __vsock_insert_connected(struct list_head *list,
217				     struct vsock_sock *vsk)
218{
219	sock_hold(&vsk->sk);
220	list_add(&vsk->connected_table, list);
221}
222
223static void __vsock_remove_bound(struct vsock_sock *vsk)
224{
225	list_del_init(&vsk->bound_table);
226	sock_put(&vsk->sk);
227}
228
229static void __vsock_remove_connected(struct vsock_sock *vsk)
230{
231	list_del_init(&vsk->connected_table);
232	sock_put(&vsk->sk);
233}
234
235static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
236{
237	struct vsock_sock *vsk;
238
239	list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
240		if (vsock_addr_equals_addr(addr, &vsk->local_addr))
241			return sk_vsock(vsk);
242
243		if (addr->svm_port == vsk->local_addr.svm_port &&
244		    (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
245		     addr->svm_cid == VMADDR_CID_ANY))
246			return sk_vsock(vsk);
247	}
248
249	return NULL;
250}
251
252static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
253						  struct sockaddr_vm *dst)
254{
255	struct vsock_sock *vsk;
256
257	list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
258			    connected_table) {
259		if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
260		    dst->svm_port == vsk->local_addr.svm_port) {
261			return sk_vsock(vsk);
262		}
263	}
264
265	return NULL;
266}
267
268static void vsock_insert_unbound(struct vsock_sock *vsk)
269{
270	spin_lock_bh(&vsock_table_lock);
271	__vsock_insert_bound(vsock_unbound_sockets, vsk);
272	spin_unlock_bh(&vsock_table_lock);
273}
274
275void vsock_insert_connected(struct vsock_sock *vsk)
276{
277	struct list_head *list = vsock_connected_sockets(
278		&vsk->remote_addr, &vsk->local_addr);
279
280	spin_lock_bh(&vsock_table_lock);
281	__vsock_insert_connected(list, vsk);
282	spin_unlock_bh(&vsock_table_lock);
283}
284EXPORT_SYMBOL_GPL(vsock_insert_connected);
285
286void vsock_remove_bound(struct vsock_sock *vsk)
287{
288	spin_lock_bh(&vsock_table_lock);
289	if (__vsock_in_bound_table(vsk))
290		__vsock_remove_bound(vsk);
291	spin_unlock_bh(&vsock_table_lock);
292}
293EXPORT_SYMBOL_GPL(vsock_remove_bound);
294
295void vsock_remove_connected(struct vsock_sock *vsk)
296{
297	spin_lock_bh(&vsock_table_lock);
298	if (__vsock_in_connected_table(vsk))
299		__vsock_remove_connected(vsk);
300	spin_unlock_bh(&vsock_table_lock);
301}
302EXPORT_SYMBOL_GPL(vsock_remove_connected);
303
304struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
305{
306	struct sock *sk;
307
308	spin_lock_bh(&vsock_table_lock);
309	sk = __vsock_find_bound_socket(addr);
310	if (sk)
311		sock_hold(sk);
312
313	spin_unlock_bh(&vsock_table_lock);
314
315	return sk;
316}
317EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
318
319struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
320					 struct sockaddr_vm *dst)
321{
322	struct sock *sk;
323
324	spin_lock_bh(&vsock_table_lock);
325	sk = __vsock_find_connected_socket(src, dst);
326	if (sk)
327		sock_hold(sk);
328
329	spin_unlock_bh(&vsock_table_lock);
330
331	return sk;
332}
333EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
334
335void vsock_remove_sock(struct vsock_sock *vsk)
336{
337	vsock_remove_bound(vsk);
338	vsock_remove_connected(vsk);
339}
340EXPORT_SYMBOL_GPL(vsock_remove_sock);
341
342void vsock_for_each_connected_socket(struct vsock_transport *transport,
343				     void (*fn)(struct sock *sk))
344{
345	int i;
346
347	spin_lock_bh(&vsock_table_lock);
348
349	for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
350		struct vsock_sock *vsk;
351		list_for_each_entry(vsk, &vsock_connected_table[i],
352				    connected_table) {
353			if (vsk->transport != transport)
354				continue;
355
356			fn(sk_vsock(vsk));
357		}
358	}
359
360	spin_unlock_bh(&vsock_table_lock);
361}
362EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
363
364void vsock_add_pending(struct sock *listener, struct sock *pending)
365{
366	struct vsock_sock *vlistener;
367	struct vsock_sock *vpending;
368
369	vlistener = vsock_sk(listener);
370	vpending = vsock_sk(pending);
371
372	sock_hold(pending);
373	sock_hold(listener);
374	list_add_tail(&vpending->pending_links, &vlistener->pending_links);
375}
376EXPORT_SYMBOL_GPL(vsock_add_pending);
377
378void vsock_remove_pending(struct sock *listener, struct sock *pending)
379{
380	struct vsock_sock *vpending = vsock_sk(pending);
381
382	list_del_init(&vpending->pending_links);
383	sock_put(listener);
384	sock_put(pending);
385}
386EXPORT_SYMBOL_GPL(vsock_remove_pending);
387
388void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
389{
390	struct vsock_sock *vlistener;
391	struct vsock_sock *vconnected;
392
393	vlistener = vsock_sk(listener);
394	vconnected = vsock_sk(connected);
395
396	sock_hold(connected);
397	sock_hold(listener);
398	list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
399}
400EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
401
402static bool vsock_use_local_transport(unsigned int remote_cid)
403{
404	if (!transport_local)
405		return false;
406
407	if (remote_cid == VMADDR_CID_LOCAL)
408		return true;
409
410	if (transport_g2h) {
411		return remote_cid == transport_g2h->get_local_cid();
412	} else {
413		return remote_cid == VMADDR_CID_HOST;
414	}
415}
416
417static void vsock_deassign_transport(struct vsock_sock *vsk)
418{
419	if (!vsk->transport)
420		return;
421
422	vsk->transport->destruct(vsk);
423	module_put(vsk->transport->module);
424	vsk->transport = NULL;
425}
426
427/* Assign a transport to a socket and call the .init transport callback.
428 *
429 * Note: for connection oriented socket this must be called when vsk->remote_addr
430 * is set (e.g. during the connect() or when a connection request on a listener
431 * socket is received).
432 * The vsk->remote_addr is used to decide which transport to use:
433 *  - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
434 *    g2h is not loaded, will use local transport;
435 *  - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
436 *    includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
437 *  - remote CID > VMADDR_CID_HOST will use host->guest transport;
438 */
439int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
440{
441	const struct vsock_transport *new_transport;
442	struct sock *sk = sk_vsock(vsk);
443	unsigned int remote_cid = vsk->remote_addr.svm_cid;
444	__u8 remote_flags;
445	int ret;
446
447	/* If the packet is coming with the source and destination CIDs higher
448	 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
449	 * forwarded to the host should be established. Then the host will
450	 * need to forward the packets to the guest.
451	 *
452	 * The flag is set on the (listen) receive path (psk is not NULL). On
453	 * the connect path the flag can be set by the user space application.
454	 */
455	if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
456	    vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
457		vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
458
459	remote_flags = vsk->remote_addr.svm_flags;
460
461	switch (sk->sk_type) {
462	case SOCK_DGRAM:
463		new_transport = transport_dgram;
464		break;
465	case SOCK_STREAM:
466	case SOCK_SEQPACKET:
467		if (vsock_use_local_transport(remote_cid))
468			new_transport = transport_local;
469		else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
470			 (remote_flags & VMADDR_FLAG_TO_HOST))
471			new_transport = transport_g2h;
472		else
473			new_transport = transport_h2g;
474		break;
475	default:
476		return -ESOCKTNOSUPPORT;
477	}
478
479	if (vsk->transport) {
480		if (vsk->transport == new_transport)
481			return 0;
482
483		/* transport->release() must be called with sock lock acquired.
484		 * This path can only be taken during vsock_connect(), where we
485		 * have already held the sock lock. In the other cases, this
486		 * function is called on a new socket which is not assigned to
487		 * any transport.
488		 */
489		vsk->transport->release(vsk);
490		vsock_deassign_transport(vsk);
491	}
492
493	/* We increase the module refcnt to prevent the transport unloading
494	 * while there are open sockets assigned to it.
495	 */
496	if (!new_transport || !try_module_get(new_transport->module))
497		return -ENODEV;
498
499	if (sk->sk_type == SOCK_SEQPACKET) {
500		if (!new_transport->seqpacket_allow ||
501		    !new_transport->seqpacket_allow(remote_cid)) {
502			module_put(new_transport->module);
503			return -ESOCKTNOSUPPORT;
504		}
505	}
506
507	ret = new_transport->init(vsk, psk);
508	if (ret) {
509		module_put(new_transport->module);
510		return ret;
511	}
512
513	vsk->transport = new_transport;
514
515	return 0;
516}
517EXPORT_SYMBOL_GPL(vsock_assign_transport);
518
519bool vsock_find_cid(unsigned int cid)
520{
521	if (transport_g2h && cid == transport_g2h->get_local_cid())
522		return true;
523
524	if (transport_h2g && cid == VMADDR_CID_HOST)
525		return true;
526
527	if (transport_local && cid == VMADDR_CID_LOCAL)
528		return true;
529
530	return false;
531}
532EXPORT_SYMBOL_GPL(vsock_find_cid);
533
534static struct sock *vsock_dequeue_accept(struct sock *listener)
535{
536	struct vsock_sock *vlistener;
537	struct vsock_sock *vconnected;
538
539	vlistener = vsock_sk(listener);
540
541	if (list_empty(&vlistener->accept_queue))
542		return NULL;
543
544	vconnected = list_entry(vlistener->accept_queue.next,
545				struct vsock_sock, accept_queue);
546
547	list_del_init(&vconnected->accept_queue);
548	sock_put(listener);
549	/* The caller will need a reference on the connected socket so we let
550	 * it call sock_put().
551	 */
552
553	return sk_vsock(vconnected);
554}
555
556static bool vsock_is_accept_queue_empty(struct sock *sk)
557{
558	struct vsock_sock *vsk = vsock_sk(sk);
559	return list_empty(&vsk->accept_queue);
560}
561
562static bool vsock_is_pending(struct sock *sk)
563{
564	struct vsock_sock *vsk = vsock_sk(sk);
565	return !list_empty(&vsk->pending_links);
566}
567
568static int vsock_send_shutdown(struct sock *sk, int mode)
569{
570	struct vsock_sock *vsk = vsock_sk(sk);
571
572	if (!vsk->transport)
573		return -ENODEV;
574
575	return vsk->transport->shutdown(vsk, mode);
576}
577
578static void vsock_pending_work(struct work_struct *work)
579{
580	struct sock *sk;
581	struct sock *listener;
582	struct vsock_sock *vsk;
583	bool cleanup;
584
585	vsk = container_of(work, struct vsock_sock, pending_work.work);
586	sk = sk_vsock(vsk);
587	listener = vsk->listener;
588	cleanup = true;
589
590	lock_sock(listener);
591	lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
592
593	if (vsock_is_pending(sk)) {
594		vsock_remove_pending(listener, sk);
595
596		sk_acceptq_removed(listener);
597	} else if (!vsk->rejected) {
598		/* We are not on the pending list and accept() did not reject
599		 * us, so we must have been accepted by our user process.  We
600		 * just need to drop our references to the sockets and be on
601		 * our way.
602		 */
603		cleanup = false;
604		goto out;
605	}
606
607	/* We need to remove ourself from the global connected sockets list so
608	 * incoming packets can't find this socket, and to reduce the reference
609	 * count.
610	 */
611	vsock_remove_connected(vsk);
612
613	sk->sk_state = TCP_CLOSE;
614
615out:
616	release_sock(sk);
617	release_sock(listener);
618	if (cleanup)
619		sock_put(sk);
620
621	sock_put(sk);
622	sock_put(listener);
623}
624
625/**** SOCKET OPERATIONS ****/
626
627static int __vsock_bind_connectible(struct vsock_sock *vsk,
628				    struct sockaddr_vm *addr)
629{
630	static u32 port;
631	struct sockaddr_vm new_addr;
632
633	if (!port)
634		port = get_random_u32_above(LAST_RESERVED_PORT);
635
636	vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
637
638	if (addr->svm_port == VMADDR_PORT_ANY) {
639		bool found = false;
640		unsigned int i;
641
642		for (i = 0; i < MAX_PORT_RETRIES; i++) {
643			if (port <= LAST_RESERVED_PORT)
644				port = LAST_RESERVED_PORT + 1;
645
646			new_addr.svm_port = port++;
647
648			if (!__vsock_find_bound_socket(&new_addr)) {
649				found = true;
650				break;
651			}
652		}
653
654		if (!found)
655			return -EADDRNOTAVAIL;
656	} else {
657		/* If port is in reserved range, ensure caller
658		 * has necessary privileges.
659		 */
660		if (addr->svm_port <= LAST_RESERVED_PORT &&
661		    !capable(CAP_NET_BIND_SERVICE)) {
662			return -EACCES;
663		}
664
665		if (__vsock_find_bound_socket(&new_addr))
666			return -EADDRINUSE;
667	}
668
669	vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
670
671	/* Remove connection oriented sockets from the unbound list and add them
672	 * to the hash table for easy lookup by its address.  The unbound list
673	 * is simply an extra entry at the end of the hash table, a trick used
674	 * by AF_UNIX.
675	 */
676	__vsock_remove_bound(vsk);
677	__vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
678
679	return 0;
680}
681
682static int __vsock_bind_dgram(struct vsock_sock *vsk,
683			      struct sockaddr_vm *addr)
684{
685	return vsk->transport->dgram_bind(vsk, addr);
686}
687
688static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
689{
690	struct vsock_sock *vsk = vsock_sk(sk);
691	int retval;
692
693	/* First ensure this socket isn't already bound. */
694	if (vsock_addr_bound(&vsk->local_addr))
695		return -EINVAL;
696
697	/* Now bind to the provided address or select appropriate values if
698	 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY).  Note that
699	 * like AF_INET prevents binding to a non-local IP address (in most
700	 * cases), we only allow binding to a local CID.
701	 */
702	if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
703		return -EADDRNOTAVAIL;
704
705	switch (sk->sk_socket->type) {
706	case SOCK_STREAM:
707	case SOCK_SEQPACKET:
708		spin_lock_bh(&vsock_table_lock);
709		retval = __vsock_bind_connectible(vsk, addr);
710		spin_unlock_bh(&vsock_table_lock);
711		break;
712
713	case SOCK_DGRAM:
714		retval = __vsock_bind_dgram(vsk, addr);
715		break;
716
717	default:
718		retval = -EINVAL;
719		break;
720	}
721
722	return retval;
723}
724
725static void vsock_connect_timeout(struct work_struct *work);
726
727static struct sock *__vsock_create(struct net *net,
728				   struct socket *sock,
729				   struct sock *parent,
730				   gfp_t priority,
731				   unsigned short type,
732				   int kern)
733{
734	struct sock *sk;
735	struct vsock_sock *psk;
736	struct vsock_sock *vsk;
737
738	sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
739	if (!sk)
740		return NULL;
741
742	sock_init_data(sock, sk);
743
744	/* sk->sk_type is normally set in sock_init_data, but only if sock is
745	 * non-NULL. We make sure that our sockets always have a type by
746	 * setting it here if needed.
747	 */
748	if (!sock)
749		sk->sk_type = type;
750
751	vsk = vsock_sk(sk);
752	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
753	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
754
755	sk->sk_destruct = vsock_sk_destruct;
756	sk->sk_backlog_rcv = vsock_queue_rcv_skb;
757	sock_reset_flag(sk, SOCK_DONE);
758
759	INIT_LIST_HEAD(&vsk->bound_table);
760	INIT_LIST_HEAD(&vsk->connected_table);
761	vsk->listener = NULL;
762	INIT_LIST_HEAD(&vsk->pending_links);
763	INIT_LIST_HEAD(&vsk->accept_queue);
764	vsk->rejected = false;
765	vsk->sent_request = false;
766	vsk->ignore_connecting_rst = false;
767	vsk->peer_shutdown = 0;
768	INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
769	INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
770
771	psk = parent ? vsock_sk(parent) : NULL;
772	if (parent) {
773		vsk->trusted = psk->trusted;
774		vsk->owner = get_cred(psk->owner);
775		vsk->connect_timeout = psk->connect_timeout;
776		vsk->buffer_size = psk->buffer_size;
777		vsk->buffer_min_size = psk->buffer_min_size;
778		vsk->buffer_max_size = psk->buffer_max_size;
779		security_sk_clone(parent, sk);
780	} else {
781		vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
782		vsk->owner = get_current_cred();
783		vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
784		vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
785		vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
786		vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
787	}
788
789	return sk;
790}
791
792static bool sock_type_connectible(u16 type)
793{
794	return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
795}
796
797static void __vsock_release(struct sock *sk, int level)
798{
799	if (sk) {
800		struct sock *pending;
801		struct vsock_sock *vsk;
802
803		vsk = vsock_sk(sk);
804		pending = NULL;	/* Compiler warning. */
805
806		/* When "level" is SINGLE_DEPTH_NESTING, use the nested
807		 * version to avoid the warning "possible recursive locking
808		 * detected". When "level" is 0, lock_sock_nested(sk, level)
809		 * is the same as lock_sock(sk).
810		 */
811		lock_sock_nested(sk, level);
812
813		if (vsk->transport)
814			vsk->transport->release(vsk);
815		else if (sock_type_connectible(sk->sk_type))
816			vsock_remove_sock(vsk);
817
818		sock_orphan(sk);
819		sk->sk_shutdown = SHUTDOWN_MASK;
820
821		skb_queue_purge(&sk->sk_receive_queue);
822
823		/* Clean up any sockets that never were accepted. */
824		while ((pending = vsock_dequeue_accept(sk)) != NULL) {
825			__vsock_release(pending, SINGLE_DEPTH_NESTING);
826			sock_put(pending);
827		}
828
829		release_sock(sk);
830		sock_put(sk);
831	}
832}
833
834static void vsock_sk_destruct(struct sock *sk)
835{
836	struct vsock_sock *vsk = vsock_sk(sk);
837
838	vsock_deassign_transport(vsk);
839
840	/* When clearing these addresses, there's no need to set the family and
841	 * possibly register the address family with the kernel.
842	 */
843	vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
844	vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
845
846	put_cred(vsk->owner);
847}
848
849static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
850{
851	int err;
852
853	err = sock_queue_rcv_skb(sk, skb);
854	if (err)
855		kfree_skb(skb);
856
857	return err;
858}
859
860struct sock *vsock_create_connected(struct sock *parent)
861{
862	return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
863			      parent->sk_type, 0);
864}
865EXPORT_SYMBOL_GPL(vsock_create_connected);
866
867s64 vsock_stream_has_data(struct vsock_sock *vsk)
868{
869	return vsk->transport->stream_has_data(vsk);
870}
871EXPORT_SYMBOL_GPL(vsock_stream_has_data);
872
873s64 vsock_connectible_has_data(struct vsock_sock *vsk)
874{
875	struct sock *sk = sk_vsock(vsk);
876
877	if (sk->sk_type == SOCK_SEQPACKET)
878		return vsk->transport->seqpacket_has_data(vsk);
879	else
880		return vsock_stream_has_data(vsk);
881}
882EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
883
884s64 vsock_stream_has_space(struct vsock_sock *vsk)
885{
886	return vsk->transport->stream_has_space(vsk);
887}
888EXPORT_SYMBOL_GPL(vsock_stream_has_space);
889
890void vsock_data_ready(struct sock *sk)
891{
892	struct vsock_sock *vsk = vsock_sk(sk);
893
894	if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
895	    sock_flag(sk, SOCK_DONE))
896		sk->sk_data_ready(sk);
897}
898EXPORT_SYMBOL_GPL(vsock_data_ready);
899
900static int vsock_release(struct socket *sock)
901{
902	__vsock_release(sock->sk, 0);
903	sock->sk = NULL;
904	sock->state = SS_FREE;
905
906	return 0;
907}
908
909static int
910vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
911{
912	int err;
913	struct sock *sk;
914	struct sockaddr_vm *vm_addr;
915
916	sk = sock->sk;
917
918	if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
919		return -EINVAL;
920
921	lock_sock(sk);
922	err = __vsock_bind(sk, vm_addr);
923	release_sock(sk);
924
925	return err;
926}
927
928static int vsock_getname(struct socket *sock,
929			 struct sockaddr *addr, int peer)
930{
931	int err;
932	struct sock *sk;
933	struct vsock_sock *vsk;
934	struct sockaddr_vm *vm_addr;
935
936	sk = sock->sk;
937	vsk = vsock_sk(sk);
938	err = 0;
939
940	lock_sock(sk);
941
942	if (peer) {
943		if (sock->state != SS_CONNECTED) {
944			err = -ENOTCONN;
945			goto out;
946		}
947		vm_addr = &vsk->remote_addr;
948	} else {
949		vm_addr = &vsk->local_addr;
950	}
951
952	if (!vm_addr) {
953		err = -EINVAL;
954		goto out;
955	}
956
957	/* sys_getsockname() and sys_getpeername() pass us a
958	 * MAX_SOCK_ADDR-sized buffer and don't set addr_len.  Unfortunately
959	 * that macro is defined in socket.c instead of .h, so we hardcode its
960	 * value here.
961	 */
962	BUILD_BUG_ON(sizeof(*vm_addr) > 128);
963	memcpy(addr, vm_addr, sizeof(*vm_addr));
964	err = sizeof(*vm_addr);
965
966out:
967	release_sock(sk);
968	return err;
969}
970
971static int vsock_shutdown(struct socket *sock, int mode)
972{
973	int err;
974	struct sock *sk;
975
976	/* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
977	 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
978	 * here like the other address families do.  Note also that the
979	 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
980	 * which is what we want.
981	 */
982	mode++;
983
984	if ((mode & ~SHUTDOWN_MASK) || !mode)
985		return -EINVAL;
986
987	/* If this is a connection oriented socket and it is not connected then
988	 * bail out immediately.  If it is a DGRAM socket then we must first
989	 * kick the socket so that it wakes up from any sleeping calls, for
990	 * example recv(), and then afterwards return the error.
991	 */
992
993	sk = sock->sk;
994
995	lock_sock(sk);
996	if (sock->state == SS_UNCONNECTED) {
997		err = -ENOTCONN;
998		if (sock_type_connectible(sk->sk_type))
999			goto out;
1000	} else {
1001		sock->state = SS_DISCONNECTING;
1002		err = 0;
1003	}
1004
1005	/* Receive and send shutdowns are treated alike. */
1006	mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1007	if (mode) {
1008		sk->sk_shutdown |= mode;
1009		sk->sk_state_change(sk);
1010
1011		if (sock_type_connectible(sk->sk_type)) {
1012			sock_reset_flag(sk, SOCK_DONE);
1013			vsock_send_shutdown(sk, mode);
1014		}
1015	}
1016
1017out:
1018	release_sock(sk);
1019	return err;
1020}
1021
1022static __poll_t vsock_poll(struct file *file, struct socket *sock,
1023			       poll_table *wait)
1024{
1025	struct sock *sk;
1026	__poll_t mask;
1027	struct vsock_sock *vsk;
1028
1029	sk = sock->sk;
1030	vsk = vsock_sk(sk);
1031
1032	poll_wait(file, sk_sleep(sk), wait);
1033	mask = 0;
1034
1035	if (sk->sk_err)
1036		/* Signify that there has been an error on this socket. */
1037		mask |= EPOLLERR;
1038
1039	/* INET sockets treat local write shutdown and peer write shutdown as a
1040	 * case of EPOLLHUP set.
1041	 */
1042	if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1043	    ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1044	     (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1045		mask |= EPOLLHUP;
1046	}
1047
1048	if (sk->sk_shutdown & RCV_SHUTDOWN ||
1049	    vsk->peer_shutdown & SEND_SHUTDOWN) {
1050		mask |= EPOLLRDHUP;
1051	}
1052
1053	if (sock->type == SOCK_DGRAM) {
1054		/* For datagram sockets we can read if there is something in
1055		 * the queue and write as long as the socket isn't shutdown for
1056		 * sending.
1057		 */
1058		if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1059		    (sk->sk_shutdown & RCV_SHUTDOWN)) {
1060			mask |= EPOLLIN | EPOLLRDNORM;
1061		}
1062
1063		if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1064			mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1065
1066	} else if (sock_type_connectible(sk->sk_type)) {
1067		const struct vsock_transport *transport;
1068
1069		lock_sock(sk);
1070
1071		transport = vsk->transport;
1072
1073		/* Listening sockets that have connections in their accept
1074		 * queue can be read.
1075		 */
1076		if (sk->sk_state == TCP_LISTEN
1077		    && !vsock_is_accept_queue_empty(sk))
1078			mask |= EPOLLIN | EPOLLRDNORM;
1079
1080		/* If there is something in the queue then we can read. */
1081		if (transport && transport->stream_is_active(vsk) &&
1082		    !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1083			bool data_ready_now = false;
1084			int target = sock_rcvlowat(sk, 0, INT_MAX);
1085			int ret = transport->notify_poll_in(
1086					vsk, target, &data_ready_now);
1087			if (ret < 0) {
1088				mask |= EPOLLERR;
1089			} else {
1090				if (data_ready_now)
1091					mask |= EPOLLIN | EPOLLRDNORM;
1092
1093			}
1094		}
1095
1096		/* Sockets whose connections have been closed, reset, or
1097		 * terminated should also be considered read, and we check the
1098		 * shutdown flag for that.
1099		 */
1100		if (sk->sk_shutdown & RCV_SHUTDOWN ||
1101		    vsk->peer_shutdown & SEND_SHUTDOWN) {
1102			mask |= EPOLLIN | EPOLLRDNORM;
1103		}
1104
1105		/* Connected sockets that can produce data can be written. */
1106		if (transport && sk->sk_state == TCP_ESTABLISHED) {
1107			if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1108				bool space_avail_now = false;
1109				int ret = transport->notify_poll_out(
1110						vsk, 1, &space_avail_now);
1111				if (ret < 0) {
1112					mask |= EPOLLERR;
1113				} else {
1114					if (space_avail_now)
1115						/* Remove EPOLLWRBAND since INET
1116						 * sockets are not setting it.
1117						 */
1118						mask |= EPOLLOUT | EPOLLWRNORM;
1119
1120				}
1121			}
1122		}
1123
1124		/* Simulate INET socket poll behaviors, which sets
1125		 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1126		 * but local send is not shutdown.
1127		 */
1128		if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1129			if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1130				mask |= EPOLLOUT | EPOLLWRNORM;
1131
1132		}
1133
1134		release_sock(sk);
1135	}
1136
1137	return mask;
1138}
1139
1140static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1141{
1142	struct vsock_sock *vsk = vsock_sk(sk);
1143
1144	return vsk->transport->read_skb(vsk, read_actor);
1145}
1146
1147static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1148			       size_t len)
1149{
1150	int err;
1151	struct sock *sk;
1152	struct vsock_sock *vsk;
1153	struct sockaddr_vm *remote_addr;
1154	const struct vsock_transport *transport;
1155
1156	if (msg->msg_flags & MSG_OOB)
1157		return -EOPNOTSUPP;
1158
1159	/* For now, MSG_DONTWAIT is always assumed... */
1160	err = 0;
1161	sk = sock->sk;
1162	vsk = vsock_sk(sk);
1163
1164	lock_sock(sk);
1165
1166	transport = vsk->transport;
1167
1168	err = vsock_auto_bind(vsk);
1169	if (err)
1170		goto out;
1171
1172
1173	/* If the provided message contains an address, use that.  Otherwise
1174	 * fall back on the socket's remote handle (if it has been connected).
1175	 */
1176	if (msg->msg_name &&
1177	    vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1178			    &remote_addr) == 0) {
1179		/* Ensure this address is of the right type and is a valid
1180		 * destination.
1181		 */
1182
1183		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1184			remote_addr->svm_cid = transport->get_local_cid();
1185
1186		if (!vsock_addr_bound(remote_addr)) {
1187			err = -EINVAL;
1188			goto out;
1189		}
1190	} else if (sock->state == SS_CONNECTED) {
1191		remote_addr = &vsk->remote_addr;
1192
1193		if (remote_addr->svm_cid == VMADDR_CID_ANY)
1194			remote_addr->svm_cid = transport->get_local_cid();
1195
1196		/* XXX Should connect() or this function ensure remote_addr is
1197		 * bound?
1198		 */
1199		if (!vsock_addr_bound(&vsk->remote_addr)) {
1200			err = -EINVAL;
1201			goto out;
1202		}
1203	} else {
1204		err = -EINVAL;
1205		goto out;
1206	}
1207
1208	if (!transport->dgram_allow(remote_addr->svm_cid,
1209				    remote_addr->svm_port)) {
1210		err = -EINVAL;
1211		goto out;
1212	}
1213
1214	err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1215
1216out:
1217	release_sock(sk);
1218	return err;
1219}
1220
1221static int vsock_dgram_connect(struct socket *sock,
1222			       struct sockaddr *addr, int addr_len, int flags)
1223{
1224	int err;
1225	struct sock *sk;
1226	struct vsock_sock *vsk;
1227	struct sockaddr_vm *remote_addr;
1228
1229	sk = sock->sk;
1230	vsk = vsock_sk(sk);
1231
1232	err = vsock_addr_cast(addr, addr_len, &remote_addr);
1233	if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1234		lock_sock(sk);
1235		vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1236				VMADDR_PORT_ANY);
1237		sock->state = SS_UNCONNECTED;
1238		release_sock(sk);
1239		return 0;
1240	} else if (err != 0)
1241		return -EINVAL;
1242
1243	lock_sock(sk);
1244
1245	err = vsock_auto_bind(vsk);
1246	if (err)
1247		goto out;
1248
1249	if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1250					 remote_addr->svm_port)) {
1251		err = -EINVAL;
1252		goto out;
1253	}
1254
1255	memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1256	sock->state = SS_CONNECTED;
1257
1258	/* sock map disallows redirection of non-TCP sockets with sk_state !=
1259	 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1260	 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1261	 *
1262	 * This doesn't seem to be abnormal state for datagram sockets, as the
1263	 * same approach can be see in other datagram socket types as well
1264	 * (such as unix sockets).
1265	 */
1266	sk->sk_state = TCP_ESTABLISHED;
1267
1268out:
1269	release_sock(sk);
1270	return err;
1271}
1272
1273int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1274			size_t len, int flags)
1275{
1276#ifdef CONFIG_BPF_SYSCALL
1277	const struct proto *prot;
1278#endif
1279	struct vsock_sock *vsk;
1280	struct sock *sk;
1281
1282	sk = sock->sk;
1283	vsk = vsock_sk(sk);
1284
1285#ifdef CONFIG_BPF_SYSCALL
1286	prot = READ_ONCE(sk->sk_prot);
1287	if (prot != &vsock_proto)
1288		return prot->recvmsg(sk, msg, len, flags, NULL);
1289#endif
1290
1291	return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1292}
1293EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1294
1295static const struct proto_ops vsock_dgram_ops = {
1296	.family = PF_VSOCK,
1297	.owner = THIS_MODULE,
1298	.release = vsock_release,
1299	.bind = vsock_bind,
1300	.connect = vsock_dgram_connect,
1301	.socketpair = sock_no_socketpair,
1302	.accept = sock_no_accept,
1303	.getname = vsock_getname,
1304	.poll = vsock_poll,
1305	.ioctl = sock_no_ioctl,
1306	.listen = sock_no_listen,
1307	.shutdown = vsock_shutdown,
1308	.sendmsg = vsock_dgram_sendmsg,
1309	.recvmsg = vsock_dgram_recvmsg,
1310	.mmap = sock_no_mmap,
1311	.read_skb = vsock_read_skb,
1312};
1313
1314static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1315{
1316	const struct vsock_transport *transport = vsk->transport;
1317
1318	if (!transport || !transport->cancel_pkt)
1319		return -EOPNOTSUPP;
1320
1321	return transport->cancel_pkt(vsk);
1322}
1323
1324static void vsock_connect_timeout(struct work_struct *work)
1325{
1326	struct sock *sk;
1327	struct vsock_sock *vsk;
1328
1329	vsk = container_of(work, struct vsock_sock, connect_work.work);
1330	sk = sk_vsock(vsk);
1331
1332	lock_sock(sk);
1333	if (sk->sk_state == TCP_SYN_SENT &&
1334	    (sk->sk_shutdown != SHUTDOWN_MASK)) {
1335		sk->sk_state = TCP_CLOSE;
1336		sk->sk_socket->state = SS_UNCONNECTED;
1337		sk->sk_err = ETIMEDOUT;
1338		sk_error_report(sk);
1339		vsock_transport_cancel_pkt(vsk);
1340	}
1341	release_sock(sk);
1342
1343	sock_put(sk);
1344}
1345
1346static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1347			 int addr_len, int flags)
1348{
1349	int err;
1350	struct sock *sk;
1351	struct vsock_sock *vsk;
1352	const struct vsock_transport *transport;
1353	struct sockaddr_vm *remote_addr;
1354	long timeout;
1355	DEFINE_WAIT(wait);
1356
1357	err = 0;
1358	sk = sock->sk;
1359	vsk = vsock_sk(sk);
1360
1361	lock_sock(sk);
1362
1363	/* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1364	switch (sock->state) {
1365	case SS_CONNECTED:
1366		err = -EISCONN;
1367		goto out;
1368	case SS_DISCONNECTING:
1369		err = -EINVAL;
1370		goto out;
1371	case SS_CONNECTING:
1372		/* This continues on so we can move sock into the SS_CONNECTED
1373		 * state once the connection has completed (at which point err
1374		 * will be set to zero also).  Otherwise, we will either wait
1375		 * for the connection or return -EALREADY should this be a
1376		 * non-blocking call.
1377		 */
1378		err = -EALREADY;
1379		if (flags & O_NONBLOCK)
1380			goto out;
1381		break;
1382	default:
1383		if ((sk->sk_state == TCP_LISTEN) ||
1384		    vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1385			err = -EINVAL;
1386			goto out;
1387		}
1388
1389		/* Set the remote address that we are connecting to. */
1390		memcpy(&vsk->remote_addr, remote_addr,
1391		       sizeof(vsk->remote_addr));
1392
1393		err = vsock_assign_transport(vsk, NULL);
1394		if (err)
1395			goto out;
1396
1397		transport = vsk->transport;
1398
1399		/* The hypervisor and well-known contexts do not have socket
1400		 * endpoints.
1401		 */
1402		if (!transport ||
1403		    !transport->stream_allow(remote_addr->svm_cid,
1404					     remote_addr->svm_port)) {
1405			err = -ENETUNREACH;
1406			goto out;
1407		}
1408
1409		err = vsock_auto_bind(vsk);
1410		if (err)
1411			goto out;
1412
1413		sk->sk_state = TCP_SYN_SENT;
1414
1415		err = transport->connect(vsk);
1416		if (err < 0)
1417			goto out;
1418
1419		/* Mark sock as connecting and set the error code to in
1420		 * progress in case this is a non-blocking connect.
1421		 */
1422		sock->state = SS_CONNECTING;
1423		err = -EINPROGRESS;
1424	}
1425
1426	/* The receive path will handle all communication until we are able to
1427	 * enter the connected state.  Here we wait for the connection to be
1428	 * completed or a notification of an error.
1429	 */
1430	timeout = vsk->connect_timeout;
1431	prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1432
1433	while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1434		if (flags & O_NONBLOCK) {
1435			/* If we're not going to block, we schedule a timeout
1436			 * function to generate a timeout on the connection
1437			 * attempt, in case the peer doesn't respond in a
1438			 * timely manner. We hold on to the socket until the
1439			 * timeout fires.
1440			 */
1441			sock_hold(sk);
1442
1443			/* If the timeout function is already scheduled,
1444			 * reschedule it, then ungrab the socket refcount to
1445			 * keep it balanced.
1446			 */
1447			if (mod_delayed_work(system_wq, &vsk->connect_work,
1448					     timeout))
1449				sock_put(sk);
1450
1451			/* Skip ahead to preserve error code set above. */
1452			goto out_wait;
1453		}
1454
1455		release_sock(sk);
1456		timeout = schedule_timeout(timeout);
1457		lock_sock(sk);
1458
1459		if (signal_pending(current)) {
1460			err = sock_intr_errno(timeout);
1461			sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1462			sock->state = SS_UNCONNECTED;
1463			vsock_transport_cancel_pkt(vsk);
1464			vsock_remove_connected(vsk);
1465			goto out_wait;
1466		} else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1467			err = -ETIMEDOUT;
1468			sk->sk_state = TCP_CLOSE;
1469			sock->state = SS_UNCONNECTED;
1470			vsock_transport_cancel_pkt(vsk);
1471			goto out_wait;
1472		}
1473
1474		prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1475	}
1476
1477	if (sk->sk_err) {
1478		err = -sk->sk_err;
1479		sk->sk_state = TCP_CLOSE;
1480		sock->state = SS_UNCONNECTED;
1481	} else {
1482		err = 0;
1483	}
1484
1485out_wait:
1486	finish_wait(sk_sleep(sk), &wait);
1487out:
1488	release_sock(sk);
1489	return err;
1490}
1491
1492static int vsock_accept(struct socket *sock, struct socket *newsock, int flags,
1493			bool kern)
1494{
1495	struct sock *listener;
1496	int err;
1497	struct sock *connected;
1498	struct vsock_sock *vconnected;
1499	long timeout;
1500	DEFINE_WAIT(wait);
1501
1502	err = 0;
1503	listener = sock->sk;
1504
1505	lock_sock(listener);
1506
1507	if (!sock_type_connectible(sock->type)) {
1508		err = -EOPNOTSUPP;
1509		goto out;
1510	}
1511
1512	if (listener->sk_state != TCP_LISTEN) {
1513		err = -EINVAL;
1514		goto out;
1515	}
1516
1517	/* Wait for children sockets to appear; these are the new sockets
1518	 * created upon connection establishment.
1519	 */
1520	timeout = sock_rcvtimeo(listener, flags & O_NONBLOCK);
1521	prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1522
1523	while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1524	       listener->sk_err == 0) {
1525		release_sock(listener);
1526		timeout = schedule_timeout(timeout);
1527		finish_wait(sk_sleep(listener), &wait);
1528		lock_sock(listener);
1529
1530		if (signal_pending(current)) {
1531			err = sock_intr_errno(timeout);
1532			goto out;
1533		} else if (timeout == 0) {
1534			err = -EAGAIN;
1535			goto out;
1536		}
1537
1538		prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1539	}
1540	finish_wait(sk_sleep(listener), &wait);
1541
1542	if (listener->sk_err)
1543		err = -listener->sk_err;
1544
1545	if (connected) {
1546		sk_acceptq_removed(listener);
1547
1548		lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1549		vconnected = vsock_sk(connected);
1550
1551		/* If the listener socket has received an error, then we should
1552		 * reject this socket and return.  Note that we simply mark the
1553		 * socket rejected, drop our reference, and let the cleanup
1554		 * function handle the cleanup; the fact that we found it in
1555		 * the listener's accept queue guarantees that the cleanup
1556		 * function hasn't run yet.
1557		 */
1558		if (err) {
1559			vconnected->rejected = true;
1560		} else {
1561			newsock->state = SS_CONNECTED;
1562			sock_graft(connected, newsock);
1563		}
1564
1565		release_sock(connected);
1566		sock_put(connected);
1567	}
1568
1569out:
1570	release_sock(listener);
1571	return err;
1572}
1573
1574static int vsock_listen(struct socket *sock, int backlog)
1575{
1576	int err;
1577	struct sock *sk;
1578	struct vsock_sock *vsk;
1579
1580	sk = sock->sk;
1581
1582	lock_sock(sk);
1583
1584	if (!sock_type_connectible(sk->sk_type)) {
1585		err = -EOPNOTSUPP;
1586		goto out;
1587	}
1588
1589	if (sock->state != SS_UNCONNECTED) {
1590		err = -EINVAL;
1591		goto out;
1592	}
1593
1594	vsk = vsock_sk(sk);
1595
1596	if (!vsock_addr_bound(&vsk->local_addr)) {
1597		err = -EINVAL;
1598		goto out;
1599	}
1600
1601	sk->sk_max_ack_backlog = backlog;
1602	sk->sk_state = TCP_LISTEN;
1603
1604	err = 0;
1605
1606out:
1607	release_sock(sk);
1608	return err;
1609}
1610
1611static void vsock_update_buffer_size(struct vsock_sock *vsk,
1612				     const struct vsock_transport *transport,
1613				     u64 val)
1614{
1615	if (val > vsk->buffer_max_size)
1616		val = vsk->buffer_max_size;
1617
1618	if (val < vsk->buffer_min_size)
1619		val = vsk->buffer_min_size;
1620
1621	if (val != vsk->buffer_size &&
1622	    transport && transport->notify_buffer_size)
1623		transport->notify_buffer_size(vsk, &val);
1624
1625	vsk->buffer_size = val;
1626}
1627
1628static int vsock_connectible_setsockopt(struct socket *sock,
1629					int level,
1630					int optname,
1631					sockptr_t optval,
1632					unsigned int optlen)
1633{
1634	int err;
1635	struct sock *sk;
1636	struct vsock_sock *vsk;
1637	const struct vsock_transport *transport;
1638	u64 val;
1639
1640	if (level != AF_VSOCK)
1641		return -ENOPROTOOPT;
1642
1643#define COPY_IN(_v)                                       \
1644	do {						  \
1645		if (optlen < sizeof(_v)) {		  \
1646			err = -EINVAL;			  \
1647			goto exit;			  \
1648		}					  \
1649		if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) {	\
1650			err = -EFAULT;					\
1651			goto exit;					\
1652		}							\
1653	} while (0)
1654
1655	err = 0;
1656	sk = sock->sk;
1657	vsk = vsock_sk(sk);
1658
1659	lock_sock(sk);
1660
1661	transport = vsk->transport;
1662
1663	switch (optname) {
1664	case SO_VM_SOCKETS_BUFFER_SIZE:
1665		COPY_IN(val);
1666		vsock_update_buffer_size(vsk, transport, val);
1667		break;
1668
1669	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1670		COPY_IN(val);
1671		vsk->buffer_max_size = val;
1672		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1673		break;
1674
1675	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1676		COPY_IN(val);
1677		vsk->buffer_min_size = val;
1678		vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1679		break;
1680
1681	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1682	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1683		struct __kernel_sock_timeval tv;
1684
1685		err = sock_copy_user_timeval(&tv, optval, optlen,
1686					     optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1687		if (err)
1688			break;
1689		if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1690		    tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1691			vsk->connect_timeout = tv.tv_sec * HZ +
1692				DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1693			if (vsk->connect_timeout == 0)
1694				vsk->connect_timeout =
1695				    VSOCK_DEFAULT_CONNECT_TIMEOUT;
1696
1697		} else {
1698			err = -ERANGE;
1699		}
1700		break;
1701	}
1702
1703	default:
1704		err = -ENOPROTOOPT;
1705		break;
1706	}
1707
1708#undef COPY_IN
1709
1710exit:
1711	release_sock(sk);
1712	return err;
1713}
1714
1715static int vsock_connectible_getsockopt(struct socket *sock,
1716					int level, int optname,
1717					char __user *optval,
1718					int __user *optlen)
1719{
1720	struct sock *sk = sock->sk;
1721	struct vsock_sock *vsk = vsock_sk(sk);
1722
1723	union {
1724		u64 val64;
1725		struct old_timeval32 tm32;
1726		struct __kernel_old_timeval tm;
1727		struct  __kernel_sock_timeval stm;
1728	} v;
1729
1730	int lv = sizeof(v.val64);
1731	int len;
1732
1733	if (level != AF_VSOCK)
1734		return -ENOPROTOOPT;
1735
1736	if (get_user(len, optlen))
1737		return -EFAULT;
1738
1739	memset(&v, 0, sizeof(v));
1740
1741	switch (optname) {
1742	case SO_VM_SOCKETS_BUFFER_SIZE:
1743		v.val64 = vsk->buffer_size;
1744		break;
1745
1746	case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1747		v.val64 = vsk->buffer_max_size;
1748		break;
1749
1750	case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1751		v.val64 = vsk->buffer_min_size;
1752		break;
1753
1754	case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1755	case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1756		lv = sock_get_timeout(vsk->connect_timeout, &v,
1757				      optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1758		break;
1759
1760	default:
1761		return -ENOPROTOOPT;
1762	}
1763
1764	if (len < lv)
1765		return -EINVAL;
1766	if (len > lv)
1767		len = lv;
1768	if (copy_to_user(optval, &v, len))
1769		return -EFAULT;
1770
1771	if (put_user(len, optlen))
1772		return -EFAULT;
1773
1774	return 0;
1775}
1776
1777static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1778				     size_t len)
1779{
1780	struct sock *sk;
1781	struct vsock_sock *vsk;
1782	const struct vsock_transport *transport;
1783	ssize_t total_written;
1784	long timeout;
1785	int err;
1786	struct vsock_transport_send_notify_data send_data;
1787	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1788
1789	sk = sock->sk;
1790	vsk = vsock_sk(sk);
1791	total_written = 0;
1792	err = 0;
1793
1794	if (msg->msg_flags & MSG_OOB)
1795		return -EOPNOTSUPP;
1796
1797	lock_sock(sk);
1798
1799	transport = vsk->transport;
1800
1801	/* Callers should not provide a destination with connection oriented
1802	 * sockets.
1803	 */
1804	if (msg->msg_namelen) {
1805		err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1806		goto out;
1807	}
1808
1809	/* Send data only if both sides are not shutdown in the direction. */
1810	if (sk->sk_shutdown & SEND_SHUTDOWN ||
1811	    vsk->peer_shutdown & RCV_SHUTDOWN) {
1812		err = -EPIPE;
1813		goto out;
1814	}
1815
1816	if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1817	    !vsock_addr_bound(&vsk->local_addr)) {
1818		err = -ENOTCONN;
1819		goto out;
1820	}
1821
1822	if (!vsock_addr_bound(&vsk->remote_addr)) {
1823		err = -EDESTADDRREQ;
1824		goto out;
1825	}
1826
1827	/* Wait for room in the produce queue to enqueue our user's data. */
1828	timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1829
1830	err = transport->notify_send_init(vsk, &send_data);
1831	if (err < 0)
1832		goto out;
1833
1834	while (total_written < len) {
1835		ssize_t written;
1836
1837		add_wait_queue(sk_sleep(sk), &wait);
1838		while (vsock_stream_has_space(vsk) == 0 &&
1839		       sk->sk_err == 0 &&
1840		       !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1841		       !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1842
1843			/* Don't wait for non-blocking sockets. */
1844			if (timeout == 0) {
1845				err = -EAGAIN;
1846				remove_wait_queue(sk_sleep(sk), &wait);
1847				goto out_err;
1848			}
1849
1850			err = transport->notify_send_pre_block(vsk, &send_data);
1851			if (err < 0) {
1852				remove_wait_queue(sk_sleep(sk), &wait);
1853				goto out_err;
1854			}
1855
1856			release_sock(sk);
1857			timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1858			lock_sock(sk);
1859			if (signal_pending(current)) {
1860				err = sock_intr_errno(timeout);
1861				remove_wait_queue(sk_sleep(sk), &wait);
1862				goto out_err;
1863			} else if (timeout == 0) {
1864				err = -EAGAIN;
1865				remove_wait_queue(sk_sleep(sk), &wait);
1866				goto out_err;
1867			}
1868		}
1869		remove_wait_queue(sk_sleep(sk), &wait);
1870
1871		/* These checks occur both as part of and after the loop
1872		 * conditional since we need to check before and after
1873		 * sleeping.
1874		 */
1875		if (sk->sk_err) {
1876			err = -sk->sk_err;
1877			goto out_err;
1878		} else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
1879			   (vsk->peer_shutdown & RCV_SHUTDOWN)) {
1880			err = -EPIPE;
1881			goto out_err;
1882		}
1883
1884		err = transport->notify_send_pre_enqueue(vsk, &send_data);
1885		if (err < 0)
1886			goto out_err;
1887
1888		/* Note that enqueue will only write as many bytes as are free
1889		 * in the produce queue, so we don't need to ensure len is
1890		 * smaller than the queue size.  It is the caller's
1891		 * responsibility to check how many bytes we were able to send.
1892		 */
1893
1894		if (sk->sk_type == SOCK_SEQPACKET) {
1895			written = transport->seqpacket_enqueue(vsk,
1896						msg, len - total_written);
1897		} else {
1898			written = transport->stream_enqueue(vsk,
1899					msg, len - total_written);
1900		}
1901
1902		if (written < 0) {
1903			err = written;
1904			goto out_err;
1905		}
1906
1907		total_written += written;
1908
1909		err = transport->notify_send_post_enqueue(
1910				vsk, written, &send_data);
1911		if (err < 0)
1912			goto out_err;
1913
1914	}
1915
1916out_err:
1917	if (total_written > 0) {
1918		/* Return number of written bytes only if:
1919		 * 1) SOCK_STREAM socket.
1920		 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
1921		 */
1922		if (sk->sk_type == SOCK_STREAM || total_written == len)
1923			err = total_written;
1924	}
1925out:
1926	release_sock(sk);
1927	return err;
1928}
1929
1930static int vsock_connectible_wait_data(struct sock *sk,
1931				       struct wait_queue_entry *wait,
1932				       long timeout,
1933				       struct vsock_transport_recv_notify_data *recv_data,
1934				       size_t target)
1935{
1936	const struct vsock_transport *transport;
1937	struct vsock_sock *vsk;
1938	s64 data;
1939	int err;
1940
1941	vsk = vsock_sk(sk);
1942	err = 0;
1943	transport = vsk->transport;
1944
1945	while (1) {
1946		prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
1947		data = vsock_connectible_has_data(vsk);
1948		if (data != 0)
1949			break;
1950
1951		if (sk->sk_err != 0 ||
1952		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
1953		    (vsk->peer_shutdown & SEND_SHUTDOWN)) {
1954			break;
1955		}
1956
1957		/* Don't wait for non-blocking sockets. */
1958		if (timeout == 0) {
1959			err = -EAGAIN;
1960			break;
1961		}
1962
1963		if (recv_data) {
1964			err = transport->notify_recv_pre_block(vsk, target, recv_data);
1965			if (err < 0)
1966				break;
1967		}
1968
1969		release_sock(sk);
1970		timeout = schedule_timeout(timeout);
1971		lock_sock(sk);
1972
1973		if (signal_pending(current)) {
1974			err = sock_intr_errno(timeout);
1975			break;
1976		} else if (timeout == 0) {
1977			err = -EAGAIN;
1978			break;
1979		}
1980	}
1981
1982	finish_wait(sk_sleep(sk), wait);
1983
1984	if (err)
1985		return err;
1986
1987	/* Internal transport error when checking for available
1988	 * data. XXX This should be changed to a connection
1989	 * reset in a later change.
1990	 */
1991	if (data < 0)
1992		return -ENOMEM;
1993
1994	return data;
1995}
1996
1997static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
1998				  size_t len, int flags)
1999{
2000	struct vsock_transport_recv_notify_data recv_data;
2001	const struct vsock_transport *transport;
2002	struct vsock_sock *vsk;
2003	ssize_t copied;
2004	size_t target;
2005	long timeout;
2006	int err;
2007
2008	DEFINE_WAIT(wait);
2009
2010	vsk = vsock_sk(sk);
2011	transport = vsk->transport;
2012
2013	/* We must not copy less than target bytes into the user's buffer
2014	 * before returning successfully, so we wait for the consume queue to
2015	 * have that much data to consume before dequeueing.  Note that this
2016	 * makes it impossible to handle cases where target is greater than the
2017	 * queue size.
2018	 */
2019	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2020	if (target >= transport->stream_rcvhiwat(vsk)) {
2021		err = -ENOMEM;
2022		goto out;
2023	}
2024	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2025	copied = 0;
2026
2027	err = transport->notify_recv_init(vsk, target, &recv_data);
2028	if (err < 0)
2029		goto out;
2030
2031
2032	while (1) {
2033		ssize_t read;
2034
2035		err = vsock_connectible_wait_data(sk, &wait, timeout,
2036						  &recv_data, target);
2037		if (err <= 0)
2038			break;
2039
2040		err = transport->notify_recv_pre_dequeue(vsk, target,
2041							 &recv_data);
2042		if (err < 0)
2043			break;
2044
2045		read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2046		if (read < 0) {
2047			err = read;
2048			break;
2049		}
2050
2051		copied += read;
2052
2053		err = transport->notify_recv_post_dequeue(vsk, target, read,
2054						!(flags & MSG_PEEK), &recv_data);
2055		if (err < 0)
2056			goto out;
2057
2058		if (read >= target || flags & MSG_PEEK)
2059			break;
2060
2061		target -= read;
2062	}
2063
2064	if (sk->sk_err)
2065		err = -sk->sk_err;
2066	else if (sk->sk_shutdown & RCV_SHUTDOWN)
2067		err = 0;
2068
2069	if (copied > 0)
2070		err = copied;
2071
2072out:
2073	return err;
2074}
2075
2076static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2077				     size_t len, int flags)
2078{
2079	const struct vsock_transport *transport;
2080	struct vsock_sock *vsk;
2081	ssize_t msg_len;
2082	long timeout;
2083	int err = 0;
2084	DEFINE_WAIT(wait);
2085
2086	vsk = vsock_sk(sk);
2087	transport = vsk->transport;
2088
2089	timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2090
2091	err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2092	if (err <= 0)
2093		goto out;
2094
2095	msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2096
2097	if (msg_len < 0) {
2098		err = msg_len;
2099		goto out;
2100	}
2101
2102	if (sk->sk_err) {
2103		err = -sk->sk_err;
2104	} else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2105		err = 0;
2106	} else {
2107		/* User sets MSG_TRUNC, so return real length of
2108		 * packet.
2109		 */
2110		if (flags & MSG_TRUNC)
2111			err = msg_len;
2112		else
2113			err = len - msg_data_left(msg);
2114
2115		/* Always set MSG_TRUNC if real length of packet is
2116		 * bigger than user's buffer.
2117		 */
2118		if (msg_len > len)
2119			msg->msg_flags |= MSG_TRUNC;
2120	}
2121
2122out:
2123	return err;
2124}
2125
2126int
2127vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2128			  int flags)
2129{
2130	struct sock *sk;
2131	struct vsock_sock *vsk;
2132	const struct vsock_transport *transport;
2133#ifdef CONFIG_BPF_SYSCALL
2134	const struct proto *prot;
2135#endif
2136	int err;
2137
2138	sk = sock->sk;
2139
2140	if (unlikely(flags & MSG_ERRQUEUE))
2141		return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2142
2143	vsk = vsock_sk(sk);
2144	err = 0;
2145
2146	lock_sock(sk);
2147
2148	transport = vsk->transport;
2149
2150	if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2151		/* Recvmsg is supposed to return 0 if a peer performs an
2152		 * orderly shutdown. Differentiate between that case and when a
2153		 * peer has not connected or a local shutdown occurred with the
2154		 * SOCK_DONE flag.
2155		 */
2156		if (sock_flag(sk, SOCK_DONE))
2157			err = 0;
2158		else
2159			err = -ENOTCONN;
2160
2161		goto out;
2162	}
2163
2164	if (flags & MSG_OOB) {
2165		err = -EOPNOTSUPP;
2166		goto out;
2167	}
2168
2169	/* We don't check peer_shutdown flag here since peer may actually shut
2170	 * down, but there can be data in the queue that a local socket can
2171	 * receive.
2172	 */
2173	if (sk->sk_shutdown & RCV_SHUTDOWN) {
2174		err = 0;
2175		goto out;
2176	}
2177
2178	/* It is valid on Linux to pass in a zero-length receive buffer.  This
2179	 * is not an error.  We may as well bail out now.
2180	 */
2181	if (!len) {
2182		err = 0;
2183		goto out;
2184	}
2185
2186#ifdef CONFIG_BPF_SYSCALL
2187	prot = READ_ONCE(sk->sk_prot);
2188	if (prot != &vsock_proto) {
2189		release_sock(sk);
2190		return prot->recvmsg(sk, msg, len, flags, NULL);
2191	}
2192#endif
2193
2194	if (sk->sk_type == SOCK_STREAM)
2195		err = __vsock_stream_recvmsg(sk, msg, len, flags);
2196	else
2197		err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2198
2199out:
2200	release_sock(sk);
2201	return err;
2202}
2203EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2204
2205static int vsock_set_rcvlowat(struct sock *sk, int val)
2206{
2207	const struct vsock_transport *transport;
2208	struct vsock_sock *vsk;
2209
2210	vsk = vsock_sk(sk);
2211
2212	if (val > vsk->buffer_size)
2213		return -EINVAL;
2214
2215	transport = vsk->transport;
2216
2217	if (transport && transport->notify_set_rcvlowat) {
2218		int err;
2219
2220		err = transport->notify_set_rcvlowat(vsk, val);
2221		if (err)
2222			return err;
2223	}
2224
2225	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2226	return 0;
2227}
2228
2229static const struct proto_ops vsock_stream_ops = {
2230	.family = PF_VSOCK,
2231	.owner = THIS_MODULE,
2232	.release = vsock_release,
2233	.bind = vsock_bind,
2234	.connect = vsock_connect,
2235	.socketpair = sock_no_socketpair,
2236	.accept = vsock_accept,
2237	.getname = vsock_getname,
2238	.poll = vsock_poll,
2239	.ioctl = sock_no_ioctl,
2240	.listen = vsock_listen,
2241	.shutdown = vsock_shutdown,
2242	.setsockopt = vsock_connectible_setsockopt,
2243	.getsockopt = vsock_connectible_getsockopt,
2244	.sendmsg = vsock_connectible_sendmsg,
2245	.recvmsg = vsock_connectible_recvmsg,
2246	.mmap = sock_no_mmap,
2247	.set_rcvlowat = vsock_set_rcvlowat,
2248	.read_skb = vsock_read_skb,
2249};
2250
2251static const struct proto_ops vsock_seqpacket_ops = {
2252	.family = PF_VSOCK,
2253	.owner = THIS_MODULE,
2254	.release = vsock_release,
2255	.bind = vsock_bind,
2256	.connect = vsock_connect,
2257	.socketpair = sock_no_socketpair,
2258	.accept = vsock_accept,
2259	.getname = vsock_getname,
2260	.poll = vsock_poll,
2261	.ioctl = sock_no_ioctl,
2262	.listen = vsock_listen,
2263	.shutdown = vsock_shutdown,
2264	.setsockopt = vsock_connectible_setsockopt,
2265	.getsockopt = vsock_connectible_getsockopt,
2266	.sendmsg = vsock_connectible_sendmsg,
2267	.recvmsg = vsock_connectible_recvmsg,
2268	.mmap = sock_no_mmap,
2269	.read_skb = vsock_read_skb,
2270};
2271
2272static int vsock_create(struct net *net, struct socket *sock,
2273			int protocol, int kern)
2274{
2275	struct vsock_sock *vsk;
2276	struct sock *sk;
2277	int ret;
2278
2279	if (!sock)
2280		return -EINVAL;
2281
2282	if (protocol && protocol != PF_VSOCK)
2283		return -EPROTONOSUPPORT;
2284
2285	switch (sock->type) {
2286	case SOCK_DGRAM:
2287		sock->ops = &vsock_dgram_ops;
2288		break;
2289	case SOCK_STREAM:
2290		sock->ops = &vsock_stream_ops;
2291		break;
2292	case SOCK_SEQPACKET:
2293		sock->ops = &vsock_seqpacket_ops;
2294		break;
2295	default:
2296		return -ESOCKTNOSUPPORT;
2297	}
2298
2299	sock->state = SS_UNCONNECTED;
2300
2301	sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2302	if (!sk)
2303		return -ENOMEM;
2304
2305	vsk = vsock_sk(sk);
2306
2307	if (sock->type == SOCK_DGRAM) {
2308		ret = vsock_assign_transport(vsk, NULL);
2309		if (ret < 0) {
2310			sock_put(sk);
2311			return ret;
2312		}
2313	}
2314
2315	vsock_insert_unbound(vsk);
2316
2317	return 0;
2318}
2319
2320static const struct net_proto_family vsock_family_ops = {
2321	.family = AF_VSOCK,
2322	.create = vsock_create,
2323	.owner = THIS_MODULE,
2324};
2325
2326static long vsock_dev_do_ioctl(struct file *filp,
2327			       unsigned int cmd, void __user *ptr)
2328{
2329	u32 __user *p = ptr;
2330	u32 cid = VMADDR_CID_ANY;
2331	int retval = 0;
2332
2333	switch (cmd) {
2334	case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2335		/* To be compatible with the VMCI behavior, we prioritize the
2336		 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2337		 */
2338		if (transport_g2h)
2339			cid = transport_g2h->get_local_cid();
2340		else if (transport_h2g)
2341			cid = transport_h2g->get_local_cid();
2342
2343		if (put_user(cid, p) != 0)
2344			retval = -EFAULT;
2345		break;
2346
2347	default:
2348		retval = -ENOIOCTLCMD;
2349	}
2350
2351	return retval;
2352}
2353
2354static long vsock_dev_ioctl(struct file *filp,
2355			    unsigned int cmd, unsigned long arg)
2356{
2357	return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2358}
2359
2360#ifdef CONFIG_COMPAT
2361static long vsock_dev_compat_ioctl(struct file *filp,
2362				   unsigned int cmd, unsigned long arg)
2363{
2364	return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2365}
2366#endif
2367
2368static const struct file_operations vsock_device_ops = {
2369	.owner		= THIS_MODULE,
2370	.unlocked_ioctl	= vsock_dev_ioctl,
2371#ifdef CONFIG_COMPAT
2372	.compat_ioctl	= vsock_dev_compat_ioctl,
2373#endif
2374	.open		= nonseekable_open,
2375};
2376
2377static struct miscdevice vsock_device = {
2378	.name		= "vsock",
2379	.fops		= &vsock_device_ops,
2380};
2381
2382static int __init vsock_init(void)
2383{
2384	int err = 0;
2385
2386	vsock_init_tables();
2387
2388	vsock_proto.owner = THIS_MODULE;
2389	vsock_device.minor = MISC_DYNAMIC_MINOR;
2390	err = misc_register(&vsock_device);
2391	if (err) {
2392		pr_err("Failed to register misc device\n");
2393		goto err_reset_transport;
2394	}
2395
2396	err = proto_register(&vsock_proto, 1);	/* we want our slab */
2397	if (err) {
2398		pr_err("Cannot register vsock protocol\n");
2399		goto err_deregister_misc;
2400	}
2401
2402	err = sock_register(&vsock_family_ops);
2403	if (err) {
2404		pr_err("could not register af_vsock (%d) address family: %d\n",
2405		       AF_VSOCK, err);
2406		goto err_unregister_proto;
2407	}
2408
2409	vsock_bpf_build_proto();
2410
2411	return 0;
2412
2413err_unregister_proto:
2414	proto_unregister(&vsock_proto);
2415err_deregister_misc:
2416	misc_deregister(&vsock_device);
2417err_reset_transport:
2418	return err;
2419}
2420
2421static void __exit vsock_exit(void)
2422{
2423	misc_deregister(&vsock_device);
2424	sock_unregister(AF_VSOCK);
2425	proto_unregister(&vsock_proto);
2426}
2427
2428const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2429{
2430	return vsk->transport;
2431}
2432EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2433
2434int vsock_core_register(const struct vsock_transport *t, int features)
2435{
2436	const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2437	int err = mutex_lock_interruptible(&vsock_register_mutex);
2438
2439	if (err)
2440		return err;
2441
2442	t_h2g = transport_h2g;
2443	t_g2h = transport_g2h;
2444	t_dgram = transport_dgram;
2445	t_local = transport_local;
2446
2447	if (features & VSOCK_TRANSPORT_F_H2G) {
2448		if (t_h2g) {
2449			err = -EBUSY;
2450			goto err_busy;
2451		}
2452		t_h2g = t;
2453	}
2454
2455	if (features & VSOCK_TRANSPORT_F_G2H) {
2456		if (t_g2h) {
2457			err = -EBUSY;
2458			goto err_busy;
2459		}
2460		t_g2h = t;
2461	}
2462
2463	if (features & VSOCK_TRANSPORT_F_DGRAM) {
2464		if (t_dgram) {
2465			err = -EBUSY;
2466			goto err_busy;
2467		}
2468		t_dgram = t;
2469	}
2470
2471	if (features & VSOCK_TRANSPORT_F_LOCAL) {
2472		if (t_local) {
2473			err = -EBUSY;
2474			goto err_busy;
2475		}
2476		t_local = t;
2477	}
2478
2479	transport_h2g = t_h2g;
2480	transport_g2h = t_g2h;
2481	transport_dgram = t_dgram;
2482	transport_local = t_local;
2483
2484err_busy:
2485	mutex_unlock(&vsock_register_mutex);
2486	return err;
2487}
2488EXPORT_SYMBOL_GPL(vsock_core_register);
2489
2490void vsock_core_unregister(const struct vsock_transport *t)
2491{
2492	mutex_lock(&vsock_register_mutex);
2493
2494	if (transport_h2g == t)
2495		transport_h2g = NULL;
2496
2497	if (transport_g2h == t)
2498		transport_g2h = NULL;
2499
2500	if (transport_dgram == t)
2501		transport_dgram = NULL;
2502
2503	if (transport_local == t)
2504		transport_local = NULL;
2505
2506	mutex_unlock(&vsock_register_mutex);
2507}
2508EXPORT_SYMBOL_GPL(vsock_core_unregister);
2509
2510module_init(vsock_init);
2511module_exit(vsock_exit);
2512
2513MODULE_AUTHOR("VMware, Inc.");
2514MODULE_DESCRIPTION("VMware Virtual Socket Family");
2515MODULE_VERSION("1.0.2.0-k");
2516MODULE_LICENSE("GPL v2");
2517