xref: /kernel/linux/linux-6.6/net/tls/tls_main.c (revision 62306a36)
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48#include "tls.h"
49
50MODULE_AUTHOR("Mellanox Technologies");
51MODULE_DESCRIPTION("Transport Layer Security Support");
52MODULE_LICENSE("Dual BSD/GPL");
53MODULE_ALIAS_TCP_ULP("tls");
54
55enum {
56	TLSV4,
57	TLSV6,
58	TLS_NUM_PROTS,
59};
60
61#define CHECK_CIPHER_DESC(cipher,ci)				\
62	static_assert(cipher ## _IV_SIZE <= MAX_IV_SIZE);		\
63	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
64	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
65	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
66	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
67	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
68	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
69
70#define __CIPHER_DESC(ci) \
71	.iv_offset = offsetof(struct ci, iv), \
72	.key_offset = offsetof(struct ci, key), \
73	.salt_offset = offsetof(struct ci, salt), \
74	.rec_seq_offset = offsetof(struct ci, rec_seq), \
75	.crypto_info = sizeof(struct ci)
76
77#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
78	.nonce = cipher ## _IV_SIZE, \
79	.iv = cipher ## _IV_SIZE, \
80	.key = cipher ## _KEY_SIZE, \
81	.salt = cipher ## _SALT_SIZE, \
82	.tag = cipher ## _TAG_SIZE, \
83	.rec_seq = cipher ## _REC_SEQ_SIZE, \
84	.cipher_name = algname,	\
85	.offloadable = _offloadable, \
86	__CIPHER_DESC(ci), \
87}
88
89#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
90	.nonce = 0, \
91	.iv = cipher ## _IV_SIZE, \
92	.key = cipher ## _KEY_SIZE, \
93	.salt = cipher ## _SALT_SIZE, \
94	.tag = cipher ## _TAG_SIZE, \
95	.rec_seq = cipher ## _REC_SEQ_SIZE, \
96	.cipher_name = algname,	\
97	.offloadable = _offloadable, \
98	__CIPHER_DESC(ci), \
99}
100
101const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
102	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
103	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
104	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
105	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
106	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
107	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
108	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
109	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
110};
111
112CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
114CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
115CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
116CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
118CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
120
121static const struct proto *saved_tcpv6_prot;
122static DEFINE_MUTEX(tcpv6_prot_mutex);
123static const struct proto *saved_tcpv4_prot;
124static DEFINE_MUTEX(tcpv4_prot_mutex);
125static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
126static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
127static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
128			 const struct proto *base);
129
130void update_sk_prot(struct sock *sk, struct tls_context *ctx)
131{
132	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
133
134	WRITE_ONCE(sk->sk_prot,
135		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
136	WRITE_ONCE(sk->sk_socket->ops,
137		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
138}
139
140int wait_on_pending_writer(struct sock *sk, long *timeo)
141{
142	DEFINE_WAIT_FUNC(wait, woken_wake_function);
143	int ret, rc = 0;
144
145	add_wait_queue(sk_sleep(sk), &wait);
146	while (1) {
147		if (!*timeo) {
148			rc = -EAGAIN;
149			break;
150		}
151
152		if (signal_pending(current)) {
153			rc = sock_intr_errno(*timeo);
154			break;
155		}
156
157		ret = sk_wait_event(sk, timeo,
158				    !READ_ONCE(sk->sk_write_pending), &wait);
159		if (ret) {
160			if (ret < 0)
161				rc = ret;
162			break;
163		}
164	}
165	remove_wait_queue(sk_sleep(sk), &wait);
166	return rc;
167}
168
169int tls_push_sg(struct sock *sk,
170		struct tls_context *ctx,
171		struct scatterlist *sg,
172		u16 first_offset,
173		int flags)
174{
175	struct bio_vec bvec;
176	struct msghdr msg = {
177		.msg_flags = MSG_SPLICE_PAGES | flags,
178	};
179	int ret = 0;
180	struct page *p;
181	size_t size;
182	int offset = first_offset;
183
184	size = sg->length - offset;
185	offset += sg->offset;
186
187	ctx->splicing_pages = true;
188	while (1) {
189		/* is sending application-limited? */
190		tcp_rate_check_app_limited(sk);
191		p = sg_page(sg);
192retry:
193		bvec_set_page(&bvec, p, size, offset);
194		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
195
196		ret = tcp_sendmsg_locked(sk, &msg, size);
197
198		if (ret != size) {
199			if (ret > 0) {
200				offset += ret;
201				size -= ret;
202				goto retry;
203			}
204
205			offset -= sg->offset;
206			ctx->partially_sent_offset = offset;
207			ctx->partially_sent_record = (void *)sg;
208			ctx->splicing_pages = false;
209			return ret;
210		}
211
212		put_page(p);
213		sk_mem_uncharge(sk, sg->length);
214		sg = sg_next(sg);
215		if (!sg)
216			break;
217
218		offset = sg->offset;
219		size = sg->length;
220	}
221
222	ctx->splicing_pages = false;
223
224	return 0;
225}
226
227static int tls_handle_open_record(struct sock *sk, int flags)
228{
229	struct tls_context *ctx = tls_get_ctx(sk);
230
231	if (tls_is_pending_open_record(ctx))
232		return ctx->push_pending_record(sk, flags);
233
234	return 0;
235}
236
237int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
238		     unsigned char *record_type)
239{
240	struct cmsghdr *cmsg;
241	int rc = -EINVAL;
242
243	for_each_cmsghdr(cmsg, msg) {
244		if (!CMSG_OK(msg, cmsg))
245			return -EINVAL;
246		if (cmsg->cmsg_level != SOL_TLS)
247			continue;
248
249		switch (cmsg->cmsg_type) {
250		case TLS_SET_RECORD_TYPE:
251			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
252				return -EINVAL;
253
254			if (msg->msg_flags & MSG_MORE)
255				return -EINVAL;
256
257			rc = tls_handle_open_record(sk, msg->msg_flags);
258			if (rc)
259				return rc;
260
261			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
262			rc = 0;
263			break;
264		default:
265			return -EINVAL;
266		}
267	}
268
269	return rc;
270}
271
272int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
273			    int flags)
274{
275	struct scatterlist *sg;
276	u16 offset;
277
278	sg = ctx->partially_sent_record;
279	offset = ctx->partially_sent_offset;
280
281	ctx->partially_sent_record = NULL;
282	return tls_push_sg(sk, ctx, sg, offset, flags);
283}
284
285void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
286{
287	struct scatterlist *sg;
288
289	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
290		put_page(sg_page(sg));
291		sk_mem_uncharge(sk, sg->length);
292	}
293	ctx->partially_sent_record = NULL;
294}
295
296static void tls_write_space(struct sock *sk)
297{
298	struct tls_context *ctx = tls_get_ctx(sk);
299
300	/* If splicing_pages call lower protocol write space handler
301	 * to ensure we wake up any waiting operations there. For example
302	 * if splicing pages where to call sk_wait_event.
303	 */
304	if (ctx->splicing_pages) {
305		ctx->sk_write_space(sk);
306		return;
307	}
308
309#ifdef CONFIG_TLS_DEVICE
310	if (ctx->tx_conf == TLS_HW)
311		tls_device_write_space(sk, ctx);
312	else
313#endif
314		tls_sw_write_space(sk, ctx);
315
316	ctx->sk_write_space(sk);
317}
318
319/**
320 * tls_ctx_free() - free TLS ULP context
321 * @sk:  socket to with @ctx is attached
322 * @ctx: TLS context structure
323 *
324 * Free TLS context. If @sk is %NULL caller guarantees that the socket
325 * to which @ctx was attached has no outstanding references.
326 */
327void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
328{
329	if (!ctx)
330		return;
331
332	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
333	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
334	mutex_destroy(&ctx->tx_lock);
335
336	if (sk)
337		kfree_rcu(ctx, rcu);
338	else
339		kfree(ctx);
340}
341
342static void tls_sk_proto_cleanup(struct sock *sk,
343				 struct tls_context *ctx, long timeo)
344{
345	if (unlikely(sk->sk_write_pending) &&
346	    !wait_on_pending_writer(sk, &timeo))
347		tls_handle_open_record(sk, 0);
348
349	/* We need these for tls_sw_fallback handling of other packets */
350	if (ctx->tx_conf == TLS_SW) {
351		kfree(ctx->tx.rec_seq);
352		kfree(ctx->tx.iv);
353		tls_sw_release_resources_tx(sk);
354		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
355	} else if (ctx->tx_conf == TLS_HW) {
356		tls_device_free_resources_tx(sk);
357		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
358	}
359
360	if (ctx->rx_conf == TLS_SW) {
361		tls_sw_release_resources_rx(sk);
362		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
363	} else if (ctx->rx_conf == TLS_HW) {
364		tls_device_offload_cleanup_rx(sk);
365		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
366	}
367}
368
369static void tls_sk_proto_close(struct sock *sk, long timeout)
370{
371	struct inet_connection_sock *icsk = inet_csk(sk);
372	struct tls_context *ctx = tls_get_ctx(sk);
373	long timeo = sock_sndtimeo(sk, 0);
374	bool free_ctx;
375
376	if (ctx->tx_conf == TLS_SW)
377		tls_sw_cancel_work_tx(ctx);
378
379	lock_sock(sk);
380	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
381
382	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
383		tls_sk_proto_cleanup(sk, ctx, timeo);
384
385	write_lock_bh(&sk->sk_callback_lock);
386	if (free_ctx)
387		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
388	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
389	if (sk->sk_write_space == tls_write_space)
390		sk->sk_write_space = ctx->sk_write_space;
391	write_unlock_bh(&sk->sk_callback_lock);
392	release_sock(sk);
393	if (ctx->tx_conf == TLS_SW)
394		tls_sw_free_ctx_tx(ctx);
395	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
396		tls_sw_strparser_done(ctx);
397	if (ctx->rx_conf == TLS_SW)
398		tls_sw_free_ctx_rx(ctx);
399	ctx->sk_proto->close(sk, timeout);
400
401	if (free_ctx)
402		tls_ctx_free(sk, ctx);
403}
404
405static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
406			    struct poll_table_struct *wait)
407{
408	struct tls_sw_context_rx *ctx;
409	struct tls_context *tls_ctx;
410	struct sock *sk = sock->sk;
411	struct sk_psock *psock;
412	__poll_t mask = 0;
413	u8 shutdown;
414	int state;
415
416	mask = tcp_poll(file, sock, wait);
417
418	state = inet_sk_state_load(sk);
419	shutdown = READ_ONCE(sk->sk_shutdown);
420	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
421		return mask;
422
423	tls_ctx = tls_get_ctx(sk);
424	ctx = tls_sw_ctx_rx(tls_ctx);
425	psock = sk_psock_get(sk);
426
427	if (skb_queue_empty_lockless(&ctx->rx_list) &&
428	    !tls_strp_msg_ready(ctx) &&
429	    sk_psock_queue_empty(psock))
430		mask &= ~(EPOLLIN | EPOLLRDNORM);
431
432	if (psock)
433		sk_psock_put(sk, psock);
434
435	return mask;
436}
437
438static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
439				  int __user *optlen, int tx)
440{
441	int rc = 0;
442	const struct tls_cipher_desc *cipher_desc;
443	struct tls_context *ctx = tls_get_ctx(sk);
444	struct tls_crypto_info *crypto_info;
445	struct cipher_context *cctx;
446	int len;
447
448	if (get_user(len, optlen))
449		return -EFAULT;
450
451	if (!optval || (len < sizeof(*crypto_info))) {
452		rc = -EINVAL;
453		goto out;
454	}
455
456	if (!ctx) {
457		rc = -EBUSY;
458		goto out;
459	}
460
461	/* get user crypto info */
462	if (tx) {
463		crypto_info = &ctx->crypto_send.info;
464		cctx = &ctx->tx;
465	} else {
466		crypto_info = &ctx->crypto_recv.info;
467		cctx = &ctx->rx;
468	}
469
470	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
471		rc = -EBUSY;
472		goto out;
473	}
474
475	if (len == sizeof(*crypto_info)) {
476		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
477			rc = -EFAULT;
478		goto out;
479	}
480
481	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
482	if (!cipher_desc || len != cipher_desc->crypto_info) {
483		rc = -EINVAL;
484		goto out;
485	}
486
487	memcpy(crypto_info_iv(crypto_info, cipher_desc),
488	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
489	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
490	       cctx->rec_seq, cipher_desc->rec_seq);
491
492	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
493		rc = -EFAULT;
494
495out:
496	return rc;
497}
498
499static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
500				   int __user *optlen)
501{
502	struct tls_context *ctx = tls_get_ctx(sk);
503	unsigned int value;
504	int len;
505
506	if (get_user(len, optlen))
507		return -EFAULT;
508
509	if (len != sizeof(value))
510		return -EINVAL;
511
512	value = ctx->zerocopy_sendfile;
513	if (copy_to_user(optval, &value, sizeof(value)))
514		return -EFAULT;
515
516	return 0;
517}
518
519static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
520				    int __user *optlen)
521{
522	struct tls_context *ctx = tls_get_ctx(sk);
523	int value, len;
524
525	if (ctx->prot_info.version != TLS_1_3_VERSION)
526		return -EINVAL;
527
528	if (get_user(len, optlen))
529		return -EFAULT;
530	if (len < sizeof(value))
531		return -EINVAL;
532
533	value = -EINVAL;
534	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
535		value = ctx->rx_no_pad;
536	if (value < 0)
537		return value;
538
539	if (put_user(sizeof(value), optlen))
540		return -EFAULT;
541	if (copy_to_user(optval, &value, sizeof(value)))
542		return -EFAULT;
543
544	return 0;
545}
546
547static int do_tls_getsockopt(struct sock *sk, int optname,
548			     char __user *optval, int __user *optlen)
549{
550	int rc = 0;
551
552	lock_sock(sk);
553
554	switch (optname) {
555	case TLS_TX:
556	case TLS_RX:
557		rc = do_tls_getsockopt_conf(sk, optval, optlen,
558					    optname == TLS_TX);
559		break;
560	case TLS_TX_ZEROCOPY_RO:
561		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
562		break;
563	case TLS_RX_EXPECT_NO_PAD:
564		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
565		break;
566	default:
567		rc = -ENOPROTOOPT;
568		break;
569	}
570
571	release_sock(sk);
572
573	return rc;
574}
575
576static int tls_getsockopt(struct sock *sk, int level, int optname,
577			  char __user *optval, int __user *optlen)
578{
579	struct tls_context *ctx = tls_get_ctx(sk);
580
581	if (level != SOL_TLS)
582		return ctx->sk_proto->getsockopt(sk, level,
583						 optname, optval, optlen);
584
585	return do_tls_getsockopt(sk, optname, optval, optlen);
586}
587
588static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
589				  unsigned int optlen, int tx)
590{
591	struct tls_crypto_info *crypto_info;
592	struct tls_crypto_info *alt_crypto_info;
593	struct tls_context *ctx = tls_get_ctx(sk);
594	const struct tls_cipher_desc *cipher_desc;
595	int rc = 0;
596	int conf;
597
598	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
599		return -EINVAL;
600
601	if (tx) {
602		crypto_info = &ctx->crypto_send.info;
603		alt_crypto_info = &ctx->crypto_recv.info;
604	} else {
605		crypto_info = &ctx->crypto_recv.info;
606		alt_crypto_info = &ctx->crypto_send.info;
607	}
608
609	/* Currently we don't support set crypto info more than one time */
610	if (TLS_CRYPTO_INFO_READY(crypto_info))
611		return -EBUSY;
612
613	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
614	if (rc) {
615		rc = -EFAULT;
616		goto err_crypto_info;
617	}
618
619	/* check version */
620	if (crypto_info->version != TLS_1_2_VERSION &&
621	    crypto_info->version != TLS_1_3_VERSION) {
622		rc = -EINVAL;
623		goto err_crypto_info;
624	}
625
626	/* Ensure that TLS version and ciphers are same in both directions */
627	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
628		if (alt_crypto_info->version != crypto_info->version ||
629		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
630			rc = -EINVAL;
631			goto err_crypto_info;
632		}
633	}
634
635	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
636	if (!cipher_desc) {
637		rc = -EINVAL;
638		goto err_crypto_info;
639	}
640
641	switch (crypto_info->cipher_type) {
642	case TLS_CIPHER_ARIA_GCM_128:
643	case TLS_CIPHER_ARIA_GCM_256:
644		if (crypto_info->version != TLS_1_2_VERSION) {
645			rc = -EINVAL;
646			goto err_crypto_info;
647		}
648		break;
649	}
650
651	if (optlen != cipher_desc->crypto_info) {
652		rc = -EINVAL;
653		goto err_crypto_info;
654	}
655
656	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
657				      sizeof(*crypto_info),
658				      optlen - sizeof(*crypto_info));
659	if (rc) {
660		rc = -EFAULT;
661		goto err_crypto_info;
662	}
663
664	if (tx) {
665		rc = tls_set_device_offload(sk, ctx);
666		conf = TLS_HW;
667		if (!rc) {
668			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
669			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
670		} else {
671			rc = tls_set_sw_offload(sk, ctx, 1);
672			if (rc)
673				goto err_crypto_info;
674			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
675			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
676			conf = TLS_SW;
677		}
678	} else {
679		rc = tls_set_device_offload_rx(sk, ctx);
680		conf = TLS_HW;
681		if (!rc) {
682			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
683			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
684		} else {
685			rc = tls_set_sw_offload(sk, ctx, 0);
686			if (rc)
687				goto err_crypto_info;
688			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
689			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
690			conf = TLS_SW;
691		}
692		tls_sw_strparser_arm(sk, ctx);
693	}
694
695	if (tx)
696		ctx->tx_conf = conf;
697	else
698		ctx->rx_conf = conf;
699	update_sk_prot(sk, ctx);
700	if (tx) {
701		ctx->sk_write_space = sk->sk_write_space;
702		sk->sk_write_space = tls_write_space;
703	} else {
704		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
705
706		tls_strp_check_rcv(&rx_ctx->strp);
707	}
708	return 0;
709
710err_crypto_info:
711	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
712	return rc;
713}
714
715static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
716				   unsigned int optlen)
717{
718	struct tls_context *ctx = tls_get_ctx(sk);
719	unsigned int value;
720
721	if (sockptr_is_null(optval) || optlen != sizeof(value))
722		return -EINVAL;
723
724	if (copy_from_sockptr(&value, optval, sizeof(value)))
725		return -EFAULT;
726
727	if (value > 1)
728		return -EINVAL;
729
730	ctx->zerocopy_sendfile = value;
731
732	return 0;
733}
734
735static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
736				    unsigned int optlen)
737{
738	struct tls_context *ctx = tls_get_ctx(sk);
739	u32 val;
740	int rc;
741
742	if (ctx->prot_info.version != TLS_1_3_VERSION ||
743	    sockptr_is_null(optval) || optlen < sizeof(val))
744		return -EINVAL;
745
746	rc = copy_from_sockptr(&val, optval, sizeof(val));
747	if (rc)
748		return -EFAULT;
749	if (val > 1)
750		return -EINVAL;
751	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
752	if (rc < 1)
753		return rc == 0 ? -EINVAL : rc;
754
755	lock_sock(sk);
756	rc = -EINVAL;
757	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
758		ctx->rx_no_pad = val;
759		tls_update_rx_zc_capable(ctx);
760		rc = 0;
761	}
762	release_sock(sk);
763
764	return rc;
765}
766
767static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
768			     unsigned int optlen)
769{
770	int rc = 0;
771
772	switch (optname) {
773	case TLS_TX:
774	case TLS_RX:
775		lock_sock(sk);
776		rc = do_tls_setsockopt_conf(sk, optval, optlen,
777					    optname == TLS_TX);
778		release_sock(sk);
779		break;
780	case TLS_TX_ZEROCOPY_RO:
781		lock_sock(sk);
782		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
783		release_sock(sk);
784		break;
785	case TLS_RX_EXPECT_NO_PAD:
786		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
787		break;
788	default:
789		rc = -ENOPROTOOPT;
790		break;
791	}
792	return rc;
793}
794
795static int tls_setsockopt(struct sock *sk, int level, int optname,
796			  sockptr_t optval, unsigned int optlen)
797{
798	struct tls_context *ctx = tls_get_ctx(sk);
799
800	if (level != SOL_TLS)
801		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
802						 optlen);
803
804	return do_tls_setsockopt(sk, optname, optval, optlen);
805}
806
807struct tls_context *tls_ctx_create(struct sock *sk)
808{
809	struct inet_connection_sock *icsk = inet_csk(sk);
810	struct tls_context *ctx;
811
812	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
813	if (!ctx)
814		return NULL;
815
816	mutex_init(&ctx->tx_lock);
817	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
818	ctx->sk_proto = READ_ONCE(sk->sk_prot);
819	ctx->sk = sk;
820	return ctx;
821}
822
823static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
824			    const struct proto_ops *base)
825{
826	ops[TLS_BASE][TLS_BASE] = *base;
827
828	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
829	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
830
831	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
832	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
833	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
834	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
835
836	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
837	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
838	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
839	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
840
841#ifdef CONFIG_TLS_DEVICE
842	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
843
844	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
845
846	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
847
848	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
849
850	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
851#endif
852#ifdef CONFIG_TLS_TOE
853	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
854#endif
855}
856
857static void tls_build_proto(struct sock *sk)
858{
859	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
860	struct proto *prot = READ_ONCE(sk->sk_prot);
861
862	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
863	if (ip_ver == TLSV6 &&
864	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
865		mutex_lock(&tcpv6_prot_mutex);
866		if (likely(prot != saved_tcpv6_prot)) {
867			build_protos(tls_prots[TLSV6], prot);
868			build_proto_ops(tls_proto_ops[TLSV6],
869					sk->sk_socket->ops);
870			smp_store_release(&saved_tcpv6_prot, prot);
871		}
872		mutex_unlock(&tcpv6_prot_mutex);
873	}
874
875	if (ip_ver == TLSV4 &&
876	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
877		mutex_lock(&tcpv4_prot_mutex);
878		if (likely(prot != saved_tcpv4_prot)) {
879			build_protos(tls_prots[TLSV4], prot);
880			build_proto_ops(tls_proto_ops[TLSV4],
881					sk->sk_socket->ops);
882			smp_store_release(&saved_tcpv4_prot, prot);
883		}
884		mutex_unlock(&tcpv4_prot_mutex);
885	}
886}
887
888static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
889			 const struct proto *base)
890{
891	prot[TLS_BASE][TLS_BASE] = *base;
892	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
893	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
894	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
895
896	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
897	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
898	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
899
900	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
901	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
902	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
903	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
904
905	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
906	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
907	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
908	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
909
910#ifdef CONFIG_TLS_DEVICE
911	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
912	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
913	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
914
915	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
916	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
917	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
918
919	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
920
921	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
922
923	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
924#endif
925#ifdef CONFIG_TLS_TOE
926	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
927	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
928	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
929#endif
930}
931
932static int tls_init(struct sock *sk)
933{
934	struct tls_context *ctx;
935	int rc = 0;
936
937	tls_build_proto(sk);
938
939#ifdef CONFIG_TLS_TOE
940	if (tls_toe_bypass(sk))
941		return 0;
942#endif
943
944	/* The TLS ulp is currently supported only for TCP sockets
945	 * in ESTABLISHED state.
946	 * Supporting sockets in LISTEN state will require us
947	 * to modify the accept implementation to clone rather then
948	 * share the ulp context.
949	 */
950	if (sk->sk_state != TCP_ESTABLISHED)
951		return -ENOTCONN;
952
953	/* allocate tls context */
954	write_lock_bh(&sk->sk_callback_lock);
955	ctx = tls_ctx_create(sk);
956	if (!ctx) {
957		rc = -ENOMEM;
958		goto out;
959	}
960
961	ctx->tx_conf = TLS_BASE;
962	ctx->rx_conf = TLS_BASE;
963	update_sk_prot(sk, ctx);
964out:
965	write_unlock_bh(&sk->sk_callback_lock);
966	return rc;
967}
968
969static void tls_update(struct sock *sk, struct proto *p,
970		       void (*write_space)(struct sock *sk))
971{
972	struct tls_context *ctx;
973
974	WARN_ON_ONCE(sk->sk_prot == p);
975
976	ctx = tls_get_ctx(sk);
977	if (likely(ctx)) {
978		ctx->sk_write_space = write_space;
979		ctx->sk_proto = p;
980	} else {
981		/* Pairs with lockless read in sk_clone_lock(). */
982		WRITE_ONCE(sk->sk_prot, p);
983		sk->sk_write_space = write_space;
984	}
985}
986
987static u16 tls_user_config(struct tls_context *ctx, bool tx)
988{
989	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
990
991	switch (config) {
992	case TLS_BASE:
993		return TLS_CONF_BASE;
994	case TLS_SW:
995		return TLS_CONF_SW;
996	case TLS_HW:
997		return TLS_CONF_HW;
998	case TLS_HW_RECORD:
999		return TLS_CONF_HW_RECORD;
1000	}
1001	return 0;
1002}
1003
1004static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1005{
1006	u16 version, cipher_type;
1007	struct tls_context *ctx;
1008	struct nlattr *start;
1009	int err;
1010
1011	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1012	if (!start)
1013		return -EMSGSIZE;
1014
1015	rcu_read_lock();
1016	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1017	if (!ctx) {
1018		err = 0;
1019		goto nla_failure;
1020	}
1021	version = ctx->prot_info.version;
1022	if (version) {
1023		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1024		if (err)
1025			goto nla_failure;
1026	}
1027	cipher_type = ctx->prot_info.cipher_type;
1028	if (cipher_type) {
1029		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1030		if (err)
1031			goto nla_failure;
1032	}
1033	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1034	if (err)
1035		goto nla_failure;
1036
1037	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1038	if (err)
1039		goto nla_failure;
1040
1041	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1042		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1043		if (err)
1044			goto nla_failure;
1045	}
1046	if (ctx->rx_no_pad) {
1047		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1048		if (err)
1049			goto nla_failure;
1050	}
1051
1052	rcu_read_unlock();
1053	nla_nest_end(skb, start);
1054	return 0;
1055
1056nla_failure:
1057	rcu_read_unlock();
1058	nla_nest_cancel(skb, start);
1059	return err;
1060}
1061
1062static size_t tls_get_info_size(const struct sock *sk)
1063{
1064	size_t size = 0;
1065
1066	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1067		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1068		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1069		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1070		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1071		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1072		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1073		0;
1074
1075	return size;
1076}
1077
1078static int __net_init tls_init_net(struct net *net)
1079{
1080	int err;
1081
1082	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1083	if (!net->mib.tls_statistics)
1084		return -ENOMEM;
1085
1086	err = tls_proc_init(net);
1087	if (err)
1088		goto err_free_stats;
1089
1090	return 0;
1091err_free_stats:
1092	free_percpu(net->mib.tls_statistics);
1093	return err;
1094}
1095
1096static void __net_exit tls_exit_net(struct net *net)
1097{
1098	tls_proc_fini(net);
1099	free_percpu(net->mib.tls_statistics);
1100}
1101
1102static struct pernet_operations tls_proc_ops = {
1103	.init = tls_init_net,
1104	.exit = tls_exit_net,
1105};
1106
1107static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1108	.name			= "tls",
1109	.owner			= THIS_MODULE,
1110	.init			= tls_init,
1111	.update			= tls_update,
1112	.get_info		= tls_get_info,
1113	.get_info_size		= tls_get_info_size,
1114};
1115
1116static int __init tls_register(void)
1117{
1118	int err;
1119
1120	err = register_pernet_subsys(&tls_proc_ops);
1121	if (err)
1122		return err;
1123
1124	err = tls_strp_dev_init();
1125	if (err)
1126		goto err_pernet;
1127
1128	err = tls_device_init();
1129	if (err)
1130		goto err_strp;
1131
1132	tcp_register_ulp(&tcp_tls_ulp_ops);
1133
1134	return 0;
1135err_strp:
1136	tls_strp_dev_exit();
1137err_pernet:
1138	unregister_pernet_subsys(&tls_proc_ops);
1139	return err;
1140}
1141
1142static void __exit tls_unregister(void)
1143{
1144	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1145	tls_strp_dev_exit();
1146	tls_device_cleanup();
1147	unregister_pernet_subsys(&tls_proc_ops);
1148}
1149
1150module_init(tls_register);
1151module_exit(tls_unregister);
1152