xref: /kernel/linux/linux-6.6/net/tls/tls_device.c (revision 62306a36)
1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
2 *
3 * This software is available to you under a choice of one of two
4 * licenses.  You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
8 *
9 *     Redistribution and use in source and binary forms, with or
10 *     without modification, are permitted provided that the following
11 *     conditions are met:
12 *
13 *      - Redistributions of source code must retain the above
14 *        copyright notice, this list of conditions and the following
15 *        disclaimer.
16 *
17 *      - Redistributions in binary form must reproduce the above
18 *        copyright notice, this list of conditions and the following
19 *        disclaimer in the documentation and/or other materials
20 *        provided with the distribution.
21 *
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
30 */
31
32#include <crypto/aead.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/netdevice.h>
36#include <net/dst.h>
37#include <net/inet_connection_sock.h>
38#include <net/tcp.h>
39#include <net/tls.h>
40
41#include "tls.h"
42#include "trace.h"
43
44/* device_offload_lock is used to synchronize tls_dev_add
45 * against NETDEV_DOWN notifications.
46 */
47static DECLARE_RWSEM(device_offload_lock);
48
49static struct workqueue_struct *destruct_wq __read_mostly;
50
51static LIST_HEAD(tls_device_list);
52static LIST_HEAD(tls_device_down_list);
53static DEFINE_SPINLOCK(tls_device_lock);
54
55static struct page *dummy_page;
56
57static void tls_device_free_ctx(struct tls_context *ctx)
58{
59	if (ctx->tx_conf == TLS_HW) {
60		kfree(tls_offload_ctx_tx(ctx));
61		kfree(ctx->tx.rec_seq);
62		kfree(ctx->tx.iv);
63	}
64
65	if (ctx->rx_conf == TLS_HW)
66		kfree(tls_offload_ctx_rx(ctx));
67
68	tls_ctx_free(NULL, ctx);
69}
70
71static void tls_device_tx_del_task(struct work_struct *work)
72{
73	struct tls_offload_context_tx *offload_ctx =
74		container_of(work, struct tls_offload_context_tx, destruct_work);
75	struct tls_context *ctx = offload_ctx->ctx;
76	struct net_device *netdev;
77
78	/* Safe, because this is the destroy flow, refcount is 0, so
79	 * tls_device_down can't store this field in parallel.
80	 */
81	netdev = rcu_dereference_protected(ctx->netdev,
82					   !refcount_read(&ctx->refcount));
83
84	netdev->tlsdev_ops->tls_dev_del(netdev, ctx, TLS_OFFLOAD_CTX_DIR_TX);
85	dev_put(netdev);
86	ctx->netdev = NULL;
87	tls_device_free_ctx(ctx);
88}
89
90static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
91{
92	struct net_device *netdev;
93	unsigned long flags;
94	bool async_cleanup;
95
96	spin_lock_irqsave(&tls_device_lock, flags);
97	if (unlikely(!refcount_dec_and_test(&ctx->refcount))) {
98		spin_unlock_irqrestore(&tls_device_lock, flags);
99		return;
100	}
101
102	list_del(&ctx->list); /* Remove from tls_device_list / tls_device_down_list */
103
104	/* Safe, because this is the destroy flow, refcount is 0, so
105	 * tls_device_down can't store this field in parallel.
106	 */
107	netdev = rcu_dereference_protected(ctx->netdev,
108					   !refcount_read(&ctx->refcount));
109
110	async_cleanup = netdev && ctx->tx_conf == TLS_HW;
111	if (async_cleanup) {
112		struct tls_offload_context_tx *offload_ctx = tls_offload_ctx_tx(ctx);
113
114		/* queue_work inside the spinlock
115		 * to make sure tls_device_down waits for that work.
116		 */
117		queue_work(destruct_wq, &offload_ctx->destruct_work);
118	}
119	spin_unlock_irqrestore(&tls_device_lock, flags);
120
121	if (!async_cleanup)
122		tls_device_free_ctx(ctx);
123}
124
125/* We assume that the socket is already connected */
126static struct net_device *get_netdev_for_sock(struct sock *sk)
127{
128	struct dst_entry *dst = sk_dst_get(sk);
129	struct net_device *netdev = NULL;
130
131	if (likely(dst)) {
132		netdev = netdev_sk_get_lowest_dev(dst->dev, sk);
133		dev_hold(netdev);
134	}
135
136	dst_release(dst);
137
138	return netdev;
139}
140
141static void destroy_record(struct tls_record_info *record)
142{
143	int i;
144
145	for (i = 0; i < record->num_frags; i++)
146		__skb_frag_unref(&record->frags[i], false);
147	kfree(record);
148}
149
150static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
151{
152	struct tls_record_info *info, *temp;
153
154	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
155		list_del(&info->list);
156		destroy_record(info);
157	}
158
159	offload_ctx->retransmit_hint = NULL;
160}
161
162static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
163{
164	struct tls_context *tls_ctx = tls_get_ctx(sk);
165	struct tls_record_info *info, *temp;
166	struct tls_offload_context_tx *ctx;
167	u64 deleted_records = 0;
168	unsigned long flags;
169
170	if (!tls_ctx)
171		return;
172
173	ctx = tls_offload_ctx_tx(tls_ctx);
174
175	spin_lock_irqsave(&ctx->lock, flags);
176	info = ctx->retransmit_hint;
177	if (info && !before(acked_seq, info->end_seq))
178		ctx->retransmit_hint = NULL;
179
180	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
181		if (before(acked_seq, info->end_seq))
182			break;
183		list_del(&info->list);
184
185		destroy_record(info);
186		deleted_records++;
187	}
188
189	ctx->unacked_record_sn += deleted_records;
190	spin_unlock_irqrestore(&ctx->lock, flags);
191}
192
193/* At this point, there should be no references on this
194 * socket and no in-flight SKBs associated with this
195 * socket, so it is safe to free all the resources.
196 */
197void tls_device_sk_destruct(struct sock *sk)
198{
199	struct tls_context *tls_ctx = tls_get_ctx(sk);
200	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
201
202	tls_ctx->sk_destruct(sk);
203
204	if (tls_ctx->tx_conf == TLS_HW) {
205		if (ctx->open_record)
206			destroy_record(ctx->open_record);
207		delete_all_records(ctx);
208		crypto_free_aead(ctx->aead_send);
209		clean_acked_data_disable(inet_csk(sk));
210	}
211
212	tls_device_queue_ctx_destruction(tls_ctx);
213}
214EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
215
216void tls_device_free_resources_tx(struct sock *sk)
217{
218	struct tls_context *tls_ctx = tls_get_ctx(sk);
219
220	tls_free_partial_record(sk, tls_ctx);
221}
222
223void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
224{
225	struct tls_context *tls_ctx = tls_get_ctx(sk);
226
227	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
228	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
229}
230EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
231
232static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
233				 u32 seq)
234{
235	struct net_device *netdev;
236	struct sk_buff *skb;
237	int err = 0;
238	u8 *rcd_sn;
239
240	skb = tcp_write_queue_tail(sk);
241	if (skb)
242		TCP_SKB_CB(skb)->eor = 1;
243
244	rcd_sn = tls_ctx->tx.rec_seq;
245
246	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
247	down_read(&device_offload_lock);
248	netdev = rcu_dereference_protected(tls_ctx->netdev,
249					   lockdep_is_held(&device_offload_lock));
250	if (netdev)
251		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
252							 rcd_sn,
253							 TLS_OFFLOAD_CTX_DIR_TX);
254	up_read(&device_offload_lock);
255	if (err)
256		return;
257
258	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
259}
260
261static void tls_append_frag(struct tls_record_info *record,
262			    struct page_frag *pfrag,
263			    int size)
264{
265	skb_frag_t *frag;
266
267	frag = &record->frags[record->num_frags - 1];
268	if (skb_frag_page(frag) == pfrag->page &&
269	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
270		skb_frag_size_add(frag, size);
271	} else {
272		++frag;
273		skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
274					size);
275		++record->num_frags;
276		get_page(pfrag->page);
277	}
278
279	pfrag->offset += size;
280	record->len += size;
281}
282
283static int tls_push_record(struct sock *sk,
284			   struct tls_context *ctx,
285			   struct tls_offload_context_tx *offload_ctx,
286			   struct tls_record_info *record,
287			   int flags)
288{
289	struct tls_prot_info *prot = &ctx->prot_info;
290	struct tcp_sock *tp = tcp_sk(sk);
291	skb_frag_t *frag;
292	int i;
293
294	record->end_seq = tp->write_seq + record->len;
295	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
296	offload_ctx->open_record = NULL;
297
298	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
299		tls_device_resync_tx(sk, ctx, tp->write_seq);
300
301	tls_advance_record_sn(sk, prot, &ctx->tx);
302
303	for (i = 0; i < record->num_frags; i++) {
304		frag = &record->frags[i];
305		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
306		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
307			    skb_frag_size(frag), skb_frag_off(frag));
308		sk_mem_charge(sk, skb_frag_size(frag));
309		get_page(skb_frag_page(frag));
310	}
311	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
312
313	/* all ready, send */
314	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
315}
316
317static void tls_device_record_close(struct sock *sk,
318				    struct tls_context *ctx,
319				    struct tls_record_info *record,
320				    struct page_frag *pfrag,
321				    unsigned char record_type)
322{
323	struct tls_prot_info *prot = &ctx->prot_info;
324	struct page_frag dummy_tag_frag;
325
326	/* append tag
327	 * device will fill in the tag, we just need to append a placeholder
328	 * use socket memory to improve coalescing (re-using a single buffer
329	 * increases frag count)
330	 * if we can't allocate memory now use the dummy page
331	 */
332	if (unlikely(pfrag->size - pfrag->offset < prot->tag_size) &&
333	    !skb_page_frag_refill(prot->tag_size, pfrag, sk->sk_allocation)) {
334		dummy_tag_frag.page = dummy_page;
335		dummy_tag_frag.offset = 0;
336		pfrag = &dummy_tag_frag;
337	}
338	tls_append_frag(record, pfrag, prot->tag_size);
339
340	/* fill prepend */
341	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
342			 record->len - prot->overhead_size,
343			 record_type);
344}
345
346static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
347				 struct page_frag *pfrag,
348				 size_t prepend_size)
349{
350	struct tls_record_info *record;
351	skb_frag_t *frag;
352
353	record = kmalloc(sizeof(*record), GFP_KERNEL);
354	if (!record)
355		return -ENOMEM;
356
357	frag = &record->frags[0];
358	skb_frag_fill_page_desc(frag, pfrag->page, pfrag->offset,
359				prepend_size);
360
361	get_page(pfrag->page);
362	pfrag->offset += prepend_size;
363
364	record->num_frags = 1;
365	record->len = prepend_size;
366	offload_ctx->open_record = record;
367	return 0;
368}
369
370static int tls_do_allocation(struct sock *sk,
371			     struct tls_offload_context_tx *offload_ctx,
372			     struct page_frag *pfrag,
373			     size_t prepend_size)
374{
375	int ret;
376
377	if (!offload_ctx->open_record) {
378		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
379						   sk->sk_allocation))) {
380			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
381			sk_stream_moderate_sndbuf(sk);
382			return -ENOMEM;
383		}
384
385		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
386		if (ret)
387			return ret;
388
389		if (pfrag->size > pfrag->offset)
390			return 0;
391	}
392
393	if (!sk_page_frag_refill(sk, pfrag))
394		return -ENOMEM;
395
396	return 0;
397}
398
399static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
400{
401	size_t pre_copy, nocache;
402
403	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
404	if (pre_copy) {
405		pre_copy = min(pre_copy, bytes);
406		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
407			return -EFAULT;
408		bytes -= pre_copy;
409		addr += pre_copy;
410	}
411
412	nocache = round_down(bytes, SMP_CACHE_BYTES);
413	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
414		return -EFAULT;
415	bytes -= nocache;
416	addr += nocache;
417
418	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
419		return -EFAULT;
420
421	return 0;
422}
423
424static int tls_push_data(struct sock *sk,
425			 struct iov_iter *iter,
426			 size_t size, int flags,
427			 unsigned char record_type)
428{
429	struct tls_context *tls_ctx = tls_get_ctx(sk);
430	struct tls_prot_info *prot = &tls_ctx->prot_info;
431	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
432	struct tls_record_info *record;
433	int tls_push_record_flags;
434	struct page_frag *pfrag;
435	size_t orig_size = size;
436	u32 max_open_record_len;
437	bool more = false;
438	bool done = false;
439	int copy, rc = 0;
440	long timeo;
441
442	if (flags &
443	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
444	      MSG_SPLICE_PAGES | MSG_EOR))
445		return -EOPNOTSUPP;
446
447	if ((flags & (MSG_MORE | MSG_EOR)) == (MSG_MORE | MSG_EOR))
448		return -EINVAL;
449
450	if (unlikely(sk->sk_err))
451		return -sk->sk_err;
452
453	flags |= MSG_SENDPAGE_DECRYPTED;
454	tls_push_record_flags = flags | MSG_MORE;
455
456	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
457	if (tls_is_partially_sent_record(tls_ctx)) {
458		rc = tls_push_partial_record(sk, tls_ctx, flags);
459		if (rc < 0)
460			return rc;
461	}
462
463	pfrag = sk_page_frag(sk);
464
465	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
466	 * we need to leave room for an authentication tag.
467	 */
468	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
469			      prot->prepend_size;
470	do {
471		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
472		if (unlikely(rc)) {
473			rc = sk_stream_wait_memory(sk, &timeo);
474			if (!rc)
475				continue;
476
477			record = ctx->open_record;
478			if (!record)
479				break;
480handle_error:
481			if (record_type != TLS_RECORD_TYPE_DATA) {
482				/* avoid sending partial
483				 * record with type !=
484				 * application_data
485				 */
486				size = orig_size;
487				destroy_record(record);
488				ctx->open_record = NULL;
489			} else if (record->len > prot->prepend_size) {
490				goto last_record;
491			}
492
493			break;
494		}
495
496		record = ctx->open_record;
497
498		copy = min_t(size_t, size, max_open_record_len - record->len);
499		if (copy && (flags & MSG_SPLICE_PAGES)) {
500			struct page_frag zc_pfrag;
501			struct page **pages = &zc_pfrag.page;
502			size_t off;
503
504			rc = iov_iter_extract_pages(iter, &pages,
505						    copy, 1, 0, &off);
506			if (rc <= 0) {
507				if (rc == 0)
508					rc = -EIO;
509				goto handle_error;
510			}
511			copy = rc;
512
513			if (WARN_ON_ONCE(!sendpage_ok(zc_pfrag.page))) {
514				iov_iter_revert(iter, copy);
515				rc = -EIO;
516				goto handle_error;
517			}
518
519			zc_pfrag.offset = off;
520			zc_pfrag.size = copy;
521			tls_append_frag(record, &zc_pfrag, copy);
522		} else if (copy) {
523			copy = min_t(size_t, copy, pfrag->size - pfrag->offset);
524
525			rc = tls_device_copy_data(page_address(pfrag->page) +
526						  pfrag->offset, copy,
527						  iter);
528			if (rc)
529				goto handle_error;
530			tls_append_frag(record, pfrag, copy);
531		}
532
533		size -= copy;
534		if (!size) {
535last_record:
536			tls_push_record_flags = flags;
537			if (flags & MSG_MORE) {
538				more = true;
539				break;
540			}
541
542			done = true;
543		}
544
545		if (done || record->len >= max_open_record_len ||
546		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
547			tls_device_record_close(sk, tls_ctx, record,
548						pfrag, record_type);
549
550			rc = tls_push_record(sk,
551					     tls_ctx,
552					     ctx,
553					     record,
554					     tls_push_record_flags);
555			if (rc < 0)
556				break;
557		}
558	} while (!done);
559
560	tls_ctx->pending_open_record_frags = more;
561
562	if (orig_size - size > 0)
563		rc = orig_size - size;
564
565	return rc;
566}
567
568int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
569{
570	unsigned char record_type = TLS_RECORD_TYPE_DATA;
571	struct tls_context *tls_ctx = tls_get_ctx(sk);
572	int rc;
573
574	if (!tls_ctx->zerocopy_sendfile)
575		msg->msg_flags &= ~MSG_SPLICE_PAGES;
576
577	mutex_lock(&tls_ctx->tx_lock);
578	lock_sock(sk);
579
580	if (unlikely(msg->msg_controllen)) {
581		rc = tls_process_cmsg(sk, msg, &record_type);
582		if (rc)
583			goto out;
584	}
585
586	rc = tls_push_data(sk, &msg->msg_iter, size, msg->msg_flags,
587			   record_type);
588
589out:
590	release_sock(sk);
591	mutex_unlock(&tls_ctx->tx_lock);
592	return rc;
593}
594
595void tls_device_splice_eof(struct socket *sock)
596{
597	struct sock *sk = sock->sk;
598	struct tls_context *tls_ctx = tls_get_ctx(sk);
599	struct iov_iter iter = {};
600
601	if (!tls_is_partially_sent_record(tls_ctx))
602		return;
603
604	mutex_lock(&tls_ctx->tx_lock);
605	lock_sock(sk);
606
607	if (tls_is_partially_sent_record(tls_ctx)) {
608		iov_iter_bvec(&iter, ITER_SOURCE, NULL, 0, 0);
609		tls_push_data(sk, &iter, 0, 0, TLS_RECORD_TYPE_DATA);
610	}
611
612	release_sock(sk);
613	mutex_unlock(&tls_ctx->tx_lock);
614}
615
616struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
617				       u32 seq, u64 *p_record_sn)
618{
619	u64 record_sn = context->hint_record_sn;
620	struct tls_record_info *info, *last;
621
622	info = context->retransmit_hint;
623	if (!info ||
624	    before(seq, info->end_seq - info->len)) {
625		/* if retransmit_hint is irrelevant start
626		 * from the beginning of the list
627		 */
628		info = list_first_entry_or_null(&context->records_list,
629						struct tls_record_info, list);
630		if (!info)
631			return NULL;
632		/* send the start_marker record if seq number is before the
633		 * tls offload start marker sequence number. This record is
634		 * required to handle TCP packets which are before TLS offload
635		 * started.
636		 *  And if it's not start marker, look if this seq number
637		 * belongs to the list.
638		 */
639		if (likely(!tls_record_is_start_marker(info))) {
640			/* we have the first record, get the last record to see
641			 * if this seq number belongs to the list.
642			 */
643			last = list_last_entry(&context->records_list,
644					       struct tls_record_info, list);
645
646			if (!between(seq, tls_record_start_seq(info),
647				     last->end_seq))
648				return NULL;
649		}
650		record_sn = context->unacked_record_sn;
651	}
652
653	/* We just need the _rcu for the READ_ONCE() */
654	rcu_read_lock();
655	list_for_each_entry_from_rcu(info, &context->records_list, list) {
656		if (before(seq, info->end_seq)) {
657			if (!context->retransmit_hint ||
658			    after(info->end_seq,
659				  context->retransmit_hint->end_seq)) {
660				context->hint_record_sn = record_sn;
661				context->retransmit_hint = info;
662			}
663			*p_record_sn = record_sn;
664			goto exit_rcu_unlock;
665		}
666		record_sn++;
667	}
668	info = NULL;
669
670exit_rcu_unlock:
671	rcu_read_unlock();
672	return info;
673}
674EXPORT_SYMBOL(tls_get_record);
675
676static int tls_device_push_pending_record(struct sock *sk, int flags)
677{
678	struct iov_iter iter;
679
680	iov_iter_kvec(&iter, ITER_SOURCE, NULL, 0, 0);
681	return tls_push_data(sk, &iter, 0, flags, TLS_RECORD_TYPE_DATA);
682}
683
684void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
685{
686	if (tls_is_partially_sent_record(ctx)) {
687		gfp_t sk_allocation = sk->sk_allocation;
688
689		WARN_ON_ONCE(sk->sk_write_pending);
690
691		sk->sk_allocation = GFP_ATOMIC;
692		tls_push_partial_record(sk, ctx,
693					MSG_DONTWAIT | MSG_NOSIGNAL |
694					MSG_SENDPAGE_DECRYPTED);
695		sk->sk_allocation = sk_allocation;
696	}
697}
698
699static void tls_device_resync_rx(struct tls_context *tls_ctx,
700				 struct sock *sk, u32 seq, u8 *rcd_sn)
701{
702	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
703	struct net_device *netdev;
704
705	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
706	rcu_read_lock();
707	netdev = rcu_dereference(tls_ctx->netdev);
708	if (netdev)
709		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
710						   TLS_OFFLOAD_CTX_DIR_RX);
711	rcu_read_unlock();
712	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
713}
714
715static bool
716tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
717			   s64 resync_req, u32 *seq, u16 *rcd_delta)
718{
719	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
720	u32 req_seq = resync_req >> 32;
721	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
722	u16 i;
723
724	*rcd_delta = 0;
725
726	if (is_async) {
727		/* shouldn't get to wraparound:
728		 * too long in async stage, something bad happened
729		 */
730		if (WARN_ON_ONCE(resync_async->rcd_delta == USHRT_MAX))
731			return false;
732
733		/* asynchronous stage: log all headers seq such that
734		 * req_seq <= seq <= end_seq, and wait for real resync request
735		 */
736		if (before(*seq, req_seq))
737			return false;
738		if (!after(*seq, req_end) &&
739		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
740			resync_async->log[resync_async->loglen++] = *seq;
741
742		resync_async->rcd_delta++;
743
744		return false;
745	}
746
747	/* synchronous stage: check against the logged entries and
748	 * proceed to check the next entries if no match was found
749	 */
750	for (i = 0; i < resync_async->loglen; i++)
751		if (req_seq == resync_async->log[i] &&
752		    atomic64_try_cmpxchg(&resync_async->req, &resync_req, 0)) {
753			*rcd_delta = resync_async->rcd_delta - i;
754			*seq = req_seq;
755			resync_async->loglen = 0;
756			resync_async->rcd_delta = 0;
757			return true;
758		}
759
760	resync_async->loglen = 0;
761	resync_async->rcd_delta = 0;
762
763	if (req_seq == *seq &&
764	    atomic64_try_cmpxchg(&resync_async->req,
765				 &resync_req, 0))
766		return true;
767
768	return false;
769}
770
771void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
772{
773	struct tls_context *tls_ctx = tls_get_ctx(sk);
774	struct tls_offload_context_rx *rx_ctx;
775	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
776	u32 sock_data, is_req_pending;
777	struct tls_prot_info *prot;
778	s64 resync_req;
779	u16 rcd_delta;
780	u32 req_seq;
781
782	if (tls_ctx->rx_conf != TLS_HW)
783		return;
784	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags)))
785		return;
786
787	prot = &tls_ctx->prot_info;
788	rx_ctx = tls_offload_ctx_rx(tls_ctx);
789	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
790
791	switch (rx_ctx->resync_type) {
792	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
793		resync_req = atomic64_read(&rx_ctx->resync_req);
794		req_seq = resync_req >> 32;
795		seq += TLS_HEADER_SIZE - 1;
796		is_req_pending = resync_req;
797
798		if (likely(!is_req_pending) || req_seq != seq ||
799		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
800			return;
801		break;
802	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
803		if (likely(!rx_ctx->resync_nh_do_now))
804			return;
805
806		/* head of next rec is already in, note that the sock_inq will
807		 * include the currently parsed message when called from parser
808		 */
809		sock_data = tcp_inq(sk);
810		if (sock_data > rcd_len) {
811			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
812							    rcd_len);
813			return;
814		}
815
816		rx_ctx->resync_nh_do_now = 0;
817		seq += rcd_len;
818		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
819		break;
820	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
821		resync_req = atomic64_read(&rx_ctx->resync_async->req);
822		is_req_pending = resync_req;
823		if (likely(!is_req_pending))
824			return;
825
826		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
827						resync_req, &seq, &rcd_delta))
828			return;
829		tls_bigint_subtract(rcd_sn, rcd_delta);
830		break;
831	}
832
833	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
834}
835
836static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
837					   struct tls_offload_context_rx *ctx,
838					   struct sock *sk, struct sk_buff *skb)
839{
840	struct strp_msg *rxm;
841
842	/* device will request resyncs by itself based on stream scan */
843	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
844		return;
845	/* already scheduled */
846	if (ctx->resync_nh_do_now)
847		return;
848	/* seen decrypted fragments since last fully-failed record */
849	if (ctx->resync_nh_reset) {
850		ctx->resync_nh_reset = 0;
851		ctx->resync_nh.decrypted_failed = 1;
852		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
853		return;
854	}
855
856	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
857		return;
858
859	/* doing resync, bump the next target in case it fails */
860	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
861		ctx->resync_nh.decrypted_tgt *= 2;
862	else
863		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
864
865	rxm = strp_msg(skb);
866
867	/* head of next rec is already in, parser will sync for us */
868	if (tcp_inq(sk) > rxm->full_len) {
869		trace_tls_device_rx_resync_nh_schedule(sk);
870		ctx->resync_nh_do_now = 1;
871	} else {
872		struct tls_prot_info *prot = &tls_ctx->prot_info;
873		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
874
875		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
876		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
877
878		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
879				     rcd_sn);
880	}
881}
882
883static int
884tls_device_reencrypt(struct sock *sk, struct tls_context *tls_ctx)
885{
886	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
887	const struct tls_cipher_desc *cipher_desc;
888	int err, offset, copy, data_len, pos;
889	struct sk_buff *skb, *skb_iter;
890	struct scatterlist sg[1];
891	struct strp_msg *rxm;
892	char *orig_buf, *buf;
893
894	switch (tls_ctx->crypto_recv.info.cipher_type) {
895	case TLS_CIPHER_AES_GCM_128:
896	case TLS_CIPHER_AES_GCM_256:
897		break;
898	default:
899		return -EINVAL;
900	}
901	cipher_desc = get_cipher_desc(tls_ctx->crypto_recv.info.cipher_type);
902
903	rxm = strp_msg(tls_strp_msg(sw_ctx));
904	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv,
905			   sk->sk_allocation);
906	if (!orig_buf)
907		return -ENOMEM;
908	buf = orig_buf;
909
910	err = tls_strp_msg_cow(sw_ctx);
911	if (unlikely(err))
912		goto free_buf;
913
914	skb = tls_strp_msg(sw_ctx);
915	rxm = strp_msg(skb);
916	offset = rxm->offset;
917
918	sg_init_table(sg, 1);
919	sg_set_buf(&sg[0], buf,
920		   rxm->full_len + TLS_HEADER_SIZE + cipher_desc->iv);
921	err = skb_copy_bits(skb, offset, buf, TLS_HEADER_SIZE + cipher_desc->iv);
922	if (err)
923		goto free_buf;
924
925	/* We are interested only in the decrypted data not the auth */
926	err = decrypt_skb(sk, sg);
927	if (err != -EBADMSG)
928		goto free_buf;
929	else
930		err = 0;
931
932	data_len = rxm->full_len - cipher_desc->tag;
933
934	if (skb_pagelen(skb) > offset) {
935		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
936
937		if (skb->decrypted) {
938			err = skb_store_bits(skb, offset, buf, copy);
939			if (err)
940				goto free_buf;
941		}
942
943		offset += copy;
944		buf += copy;
945	}
946
947	pos = skb_pagelen(skb);
948	skb_walk_frags(skb, skb_iter) {
949		int frag_pos;
950
951		/* Practically all frags must belong to msg if reencrypt
952		 * is needed with current strparser and coalescing logic,
953		 * but strparser may "get optimized", so let's be safe.
954		 */
955		if (pos + skb_iter->len <= offset)
956			goto done_with_frag;
957		if (pos >= data_len + rxm->offset)
958			break;
959
960		frag_pos = offset - pos;
961		copy = min_t(int, skb_iter->len - frag_pos,
962			     data_len + rxm->offset - offset);
963
964		if (skb_iter->decrypted) {
965			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
966			if (err)
967				goto free_buf;
968		}
969
970		offset += copy;
971		buf += copy;
972done_with_frag:
973		pos += skb_iter->len;
974	}
975
976free_buf:
977	kfree(orig_buf);
978	return err;
979}
980
981int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx)
982{
983	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
984	struct tls_sw_context_rx *sw_ctx = tls_sw_ctx_rx(tls_ctx);
985	struct sk_buff *skb = tls_strp_msg(sw_ctx);
986	struct strp_msg *rxm = strp_msg(skb);
987	int is_decrypted, is_encrypted;
988
989	if (!tls_strp_msg_mixed_decrypted(sw_ctx)) {
990		is_decrypted = skb->decrypted;
991		is_encrypted = !is_decrypted;
992	} else {
993		is_decrypted = 0;
994		is_encrypted = 0;
995	}
996
997	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
998				   tls_ctx->rx.rec_seq, rxm->full_len,
999				   is_encrypted, is_decrypted);
1000
1001	if (unlikely(test_bit(TLS_RX_DEV_DEGRADED, &tls_ctx->flags))) {
1002		if (likely(is_encrypted || is_decrypted))
1003			return is_decrypted;
1004
1005		/* After tls_device_down disables the offload, the next SKB will
1006		 * likely have initial fragments decrypted, and final ones not
1007		 * decrypted. We need to reencrypt that single SKB.
1008		 */
1009		return tls_device_reencrypt(sk, tls_ctx);
1010	}
1011
1012	/* Return immediately if the record is either entirely plaintext or
1013	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
1014	 * record.
1015	 */
1016	if (is_decrypted) {
1017		ctx->resync_nh_reset = 1;
1018		return is_decrypted;
1019	}
1020	if (is_encrypted) {
1021		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
1022		return 0;
1023	}
1024
1025	ctx->resync_nh_reset = 1;
1026	return tls_device_reencrypt(sk, tls_ctx);
1027}
1028
1029static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
1030			      struct net_device *netdev)
1031{
1032	if (sk->sk_destruct != tls_device_sk_destruct) {
1033		refcount_set(&ctx->refcount, 1);
1034		dev_hold(netdev);
1035		RCU_INIT_POINTER(ctx->netdev, netdev);
1036		spin_lock_irq(&tls_device_lock);
1037		list_add_tail(&ctx->list, &tls_device_list);
1038		spin_unlock_irq(&tls_device_lock);
1039
1040		ctx->sk_destruct = sk->sk_destruct;
1041		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
1042	}
1043}
1044
1045int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
1046{
1047	struct tls_context *tls_ctx = tls_get_ctx(sk);
1048	struct tls_prot_info *prot = &tls_ctx->prot_info;
1049	const struct tls_cipher_desc *cipher_desc;
1050	struct tls_record_info *start_marker_record;
1051	struct tls_offload_context_tx *offload_ctx;
1052	struct tls_crypto_info *crypto_info;
1053	struct net_device *netdev;
1054	char *iv, *rec_seq;
1055	struct sk_buff *skb;
1056	__be64 rcd_sn;
1057	int rc;
1058
1059	if (!ctx)
1060		return -EINVAL;
1061
1062	if (ctx->priv_ctx_tx)
1063		return -EEXIST;
1064
1065	netdev = get_netdev_for_sock(sk);
1066	if (!netdev) {
1067		pr_err_ratelimited("%s: netdev not found\n", __func__);
1068		return -EINVAL;
1069	}
1070
1071	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1072		rc = -EOPNOTSUPP;
1073		goto release_netdev;
1074	}
1075
1076	crypto_info = &ctx->crypto_send.info;
1077	if (crypto_info->version != TLS_1_2_VERSION) {
1078		rc = -EOPNOTSUPP;
1079		goto release_netdev;
1080	}
1081
1082	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
1083	if (!cipher_desc || !cipher_desc->offloadable) {
1084		rc = -EINVAL;
1085		goto release_netdev;
1086	}
1087
1088	iv = crypto_info_iv(crypto_info, cipher_desc);
1089	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
1090
1091	prot->version = crypto_info->version;
1092	prot->cipher_type = crypto_info->cipher_type;
1093	prot->prepend_size = TLS_HEADER_SIZE + cipher_desc->iv;
1094	prot->tag_size = cipher_desc->tag;
1095	prot->overhead_size = prot->prepend_size + prot->tag_size;
1096	prot->iv_size = cipher_desc->iv;
1097	prot->salt_size = cipher_desc->salt;
1098	ctx->tx.iv = kmalloc(cipher_desc->iv + cipher_desc->salt, GFP_KERNEL);
1099	if (!ctx->tx.iv) {
1100		rc = -ENOMEM;
1101		goto release_netdev;
1102	}
1103
1104	memcpy(ctx->tx.iv + cipher_desc->salt, iv, cipher_desc->iv);
1105
1106	prot->rec_seq_size = cipher_desc->rec_seq;
1107	ctx->tx.rec_seq = kmemdup(rec_seq, cipher_desc->rec_seq, GFP_KERNEL);
1108	if (!ctx->tx.rec_seq) {
1109		rc = -ENOMEM;
1110		goto free_iv;
1111	}
1112
1113	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1114	if (!start_marker_record) {
1115		rc = -ENOMEM;
1116		goto free_rec_seq;
1117	}
1118
1119	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1120	if (!offload_ctx) {
1121		rc = -ENOMEM;
1122		goto free_marker_record;
1123	}
1124
1125	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1126	if (rc)
1127		goto free_offload_ctx;
1128
1129	/* start at rec_seq - 1 to account for the start marker record */
1130	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1131	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1132
1133	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1134	start_marker_record->len = 0;
1135	start_marker_record->num_frags = 0;
1136
1137	INIT_WORK(&offload_ctx->destruct_work, tls_device_tx_del_task);
1138	offload_ctx->ctx = ctx;
1139
1140	INIT_LIST_HEAD(&offload_ctx->records_list);
1141	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1142	spin_lock_init(&offload_ctx->lock);
1143	sg_init_table(offload_ctx->sg_tx_data,
1144		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1145
1146	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1147	ctx->push_pending_record = tls_device_push_pending_record;
1148
1149	/* TLS offload is greatly simplified if we don't send
1150	 * SKBs where only part of the payload needs to be encrypted.
1151	 * So mark the last skb in the write queue as end of record.
1152	 */
1153	skb = tcp_write_queue_tail(sk);
1154	if (skb)
1155		TCP_SKB_CB(skb)->eor = 1;
1156
1157	/* Avoid offloading if the device is down
1158	 * We don't want to offload new flows after
1159	 * the NETDEV_DOWN event
1160	 *
1161	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1162	 * handler thus protecting from the device going down before
1163	 * ctx was added to tls_device_list.
1164	 */
1165	down_read(&device_offload_lock);
1166	if (!(netdev->flags & IFF_UP)) {
1167		rc = -EINVAL;
1168		goto release_lock;
1169	}
1170
1171	ctx->priv_ctx_tx = offload_ctx;
1172	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1173					     &ctx->crypto_send.info,
1174					     tcp_sk(sk)->write_seq);
1175	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1176				     tcp_sk(sk)->write_seq, rec_seq, rc);
1177	if (rc)
1178		goto release_lock;
1179
1180	tls_device_attach(ctx, sk, netdev);
1181	up_read(&device_offload_lock);
1182
1183	/* following this assignment tls_is_skb_tx_device_offloaded
1184	 * will return true and the context might be accessed
1185	 * by the netdev's xmit function.
1186	 */
1187	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1188	dev_put(netdev);
1189
1190	return 0;
1191
1192release_lock:
1193	up_read(&device_offload_lock);
1194	clean_acked_data_disable(inet_csk(sk));
1195	crypto_free_aead(offload_ctx->aead_send);
1196free_offload_ctx:
1197	kfree(offload_ctx);
1198	ctx->priv_ctx_tx = NULL;
1199free_marker_record:
1200	kfree(start_marker_record);
1201free_rec_seq:
1202	kfree(ctx->tx.rec_seq);
1203free_iv:
1204	kfree(ctx->tx.iv);
1205release_netdev:
1206	dev_put(netdev);
1207	return rc;
1208}
1209
1210int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1211{
1212	struct tls12_crypto_info_aes_gcm_128 *info;
1213	struct tls_offload_context_rx *context;
1214	struct net_device *netdev;
1215	int rc = 0;
1216
1217	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1218		return -EOPNOTSUPP;
1219
1220	netdev = get_netdev_for_sock(sk);
1221	if (!netdev) {
1222		pr_err_ratelimited("%s: netdev not found\n", __func__);
1223		return -EINVAL;
1224	}
1225
1226	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1227		rc = -EOPNOTSUPP;
1228		goto release_netdev;
1229	}
1230
1231	/* Avoid offloading if the device is down
1232	 * We don't want to offload new flows after
1233	 * the NETDEV_DOWN event
1234	 *
1235	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1236	 * handler thus protecting from the device going down before
1237	 * ctx was added to tls_device_list.
1238	 */
1239	down_read(&device_offload_lock);
1240	if (!(netdev->flags & IFF_UP)) {
1241		rc = -EINVAL;
1242		goto release_lock;
1243	}
1244
1245	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1246	if (!context) {
1247		rc = -ENOMEM;
1248		goto release_lock;
1249	}
1250	context->resync_nh_reset = 1;
1251
1252	ctx->priv_ctx_rx = context;
1253	rc = tls_set_sw_offload(sk, ctx, 0);
1254	if (rc)
1255		goto release_ctx;
1256
1257	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1258					     &ctx->crypto_recv.info,
1259					     tcp_sk(sk)->copied_seq);
1260	info = (void *)&ctx->crypto_recv.info;
1261	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1262				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1263	if (rc)
1264		goto free_sw_resources;
1265
1266	tls_device_attach(ctx, sk, netdev);
1267	up_read(&device_offload_lock);
1268
1269	dev_put(netdev);
1270
1271	return 0;
1272
1273free_sw_resources:
1274	up_read(&device_offload_lock);
1275	tls_sw_free_resources_rx(sk);
1276	down_read(&device_offload_lock);
1277release_ctx:
1278	ctx->priv_ctx_rx = NULL;
1279release_lock:
1280	up_read(&device_offload_lock);
1281release_netdev:
1282	dev_put(netdev);
1283	return rc;
1284}
1285
1286void tls_device_offload_cleanup_rx(struct sock *sk)
1287{
1288	struct tls_context *tls_ctx = tls_get_ctx(sk);
1289	struct net_device *netdev;
1290
1291	down_read(&device_offload_lock);
1292	netdev = rcu_dereference_protected(tls_ctx->netdev,
1293					   lockdep_is_held(&device_offload_lock));
1294	if (!netdev)
1295		goto out;
1296
1297	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1298					TLS_OFFLOAD_CTX_DIR_RX);
1299
1300	if (tls_ctx->tx_conf != TLS_HW) {
1301		dev_put(netdev);
1302		rcu_assign_pointer(tls_ctx->netdev, NULL);
1303	} else {
1304		set_bit(TLS_RX_DEV_CLOSED, &tls_ctx->flags);
1305	}
1306out:
1307	up_read(&device_offload_lock);
1308	tls_sw_release_resources_rx(sk);
1309}
1310
1311static int tls_device_down(struct net_device *netdev)
1312{
1313	struct tls_context *ctx, *tmp;
1314	unsigned long flags;
1315	LIST_HEAD(list);
1316
1317	/* Request a write lock to block new offload attempts */
1318	down_write(&device_offload_lock);
1319
1320	spin_lock_irqsave(&tls_device_lock, flags);
1321	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1322		struct net_device *ctx_netdev =
1323			rcu_dereference_protected(ctx->netdev,
1324						  lockdep_is_held(&device_offload_lock));
1325
1326		if (ctx_netdev != netdev ||
1327		    !refcount_inc_not_zero(&ctx->refcount))
1328			continue;
1329
1330		list_move(&ctx->list, &list);
1331	}
1332	spin_unlock_irqrestore(&tls_device_lock, flags);
1333
1334	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1335		/* Stop offloaded TX and switch to the fallback.
1336		 * tls_is_skb_tx_device_offloaded will return false.
1337		 */
1338		WRITE_ONCE(ctx->sk->sk_validate_xmit_skb, tls_validate_xmit_skb_sw);
1339
1340		/* Stop the RX and TX resync.
1341		 * tls_dev_resync must not be called after tls_dev_del.
1342		 */
1343		rcu_assign_pointer(ctx->netdev, NULL);
1344
1345		/* Start skipping the RX resync logic completely. */
1346		set_bit(TLS_RX_DEV_DEGRADED, &ctx->flags);
1347
1348		/* Sync with inflight packets. After this point:
1349		 * TX: no non-encrypted packets will be passed to the driver.
1350		 * RX: resync requests from the driver will be ignored.
1351		 */
1352		synchronize_net();
1353
1354		/* Release the offload context on the driver side. */
1355		if (ctx->tx_conf == TLS_HW)
1356			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1357							TLS_OFFLOAD_CTX_DIR_TX);
1358		if (ctx->rx_conf == TLS_HW &&
1359		    !test_bit(TLS_RX_DEV_CLOSED, &ctx->flags))
1360			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1361							TLS_OFFLOAD_CTX_DIR_RX);
1362
1363		dev_put(netdev);
1364
1365		/* Move the context to a separate list for two reasons:
1366		 * 1. When the context is deallocated, list_del is called.
1367		 * 2. It's no longer an offloaded context, so we don't want to
1368		 *    run offload-specific code on this context.
1369		 */
1370		spin_lock_irqsave(&tls_device_lock, flags);
1371		list_move_tail(&ctx->list, &tls_device_down_list);
1372		spin_unlock_irqrestore(&tls_device_lock, flags);
1373
1374		/* Device contexts for RX and TX will be freed in on sk_destruct
1375		 * by tls_device_free_ctx. rx_conf and tx_conf stay in TLS_HW.
1376		 * Now release the ref taken above.
1377		 */
1378		if (refcount_dec_and_test(&ctx->refcount)) {
1379			/* sk_destruct ran after tls_device_down took a ref, and
1380			 * it returned early. Complete the destruction here.
1381			 */
1382			list_del(&ctx->list);
1383			tls_device_free_ctx(ctx);
1384		}
1385	}
1386
1387	up_write(&device_offload_lock);
1388
1389	flush_workqueue(destruct_wq);
1390
1391	return NOTIFY_DONE;
1392}
1393
1394static int tls_dev_event(struct notifier_block *this, unsigned long event,
1395			 void *ptr)
1396{
1397	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1398
1399	if (!dev->tlsdev_ops &&
1400	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1401		return NOTIFY_DONE;
1402
1403	switch (event) {
1404	case NETDEV_REGISTER:
1405	case NETDEV_FEAT_CHANGE:
1406		if (netif_is_bond_master(dev))
1407			return NOTIFY_DONE;
1408		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1409		    !dev->tlsdev_ops->tls_dev_resync)
1410			return NOTIFY_BAD;
1411
1412		if  (dev->tlsdev_ops &&
1413		     dev->tlsdev_ops->tls_dev_add &&
1414		     dev->tlsdev_ops->tls_dev_del)
1415			return NOTIFY_DONE;
1416		else
1417			return NOTIFY_BAD;
1418	case NETDEV_DOWN:
1419		return tls_device_down(dev);
1420	}
1421	return NOTIFY_DONE;
1422}
1423
1424static struct notifier_block tls_dev_notifier = {
1425	.notifier_call	= tls_dev_event,
1426};
1427
1428int __init tls_device_init(void)
1429{
1430	int err;
1431
1432	dummy_page = alloc_page(GFP_KERNEL);
1433	if (!dummy_page)
1434		return -ENOMEM;
1435
1436	destruct_wq = alloc_workqueue("ktls_device_destruct", 0, 0);
1437	if (!destruct_wq) {
1438		err = -ENOMEM;
1439		goto err_free_dummy;
1440	}
1441
1442	err = register_netdevice_notifier(&tls_dev_notifier);
1443	if (err)
1444		goto err_destroy_wq;
1445
1446	return 0;
1447
1448err_destroy_wq:
1449	destroy_workqueue(destruct_wq);
1450err_free_dummy:
1451	put_page(dummy_page);
1452	return err;
1453}
1454
1455void __exit tls_device_cleanup(void)
1456{
1457	unregister_netdevice_notifier(&tls_dev_notifier);
1458	destroy_workqueue(destruct_wq);
1459	clean_acked_data_flush();
1460	put_page(dummy_page);
1461}
1462