xref: /kernel/linux/linux-6.6/net/qrtr/af_qrtr.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2015, Sony Mobile Communications Inc.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6#include <linux/module.h>
7#include <linux/netlink.h>
8#include <linux/qrtr.h>
9#include <linux/termios.h>	/* For TIOCINQ/OUTQ */
10#include <linux/spinlock.h>
11#include <linux/wait.h>
12
13#include <net/sock.h>
14
15#include "qrtr.h"
16
17#define QRTR_PROTO_VER_1 1
18#define QRTR_PROTO_VER_2 3
19
20/* auto-bind range */
21#define QRTR_MIN_EPH_SOCKET 0x4000
22#define QRTR_MAX_EPH_SOCKET 0x7fff
23#define QRTR_EPH_PORT_RANGE \
24		XA_LIMIT(QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET)
25
26#define QRTR_PORT_CTRL_LEGACY 0xffff
27
28/**
29 * struct qrtr_hdr_v1 - (I|R)PCrouter packet header version 1
30 * @version: protocol version
31 * @type: packet type; one of QRTR_TYPE_*
32 * @src_node_id: source node
33 * @src_port_id: source port
34 * @confirm_rx: boolean; whether a resume-tx packet should be send in reply
35 * @size: length of packet, excluding this header
36 * @dst_node_id: destination node
37 * @dst_port_id: destination port
38 */
39struct qrtr_hdr_v1 {
40	__le32 version;
41	__le32 type;
42	__le32 src_node_id;
43	__le32 src_port_id;
44	__le32 confirm_rx;
45	__le32 size;
46	__le32 dst_node_id;
47	__le32 dst_port_id;
48} __packed;
49
50/**
51 * struct qrtr_hdr_v2 - (I|R)PCrouter packet header later versions
52 * @version: protocol version
53 * @type: packet type; one of QRTR_TYPE_*
54 * @flags: bitmask of QRTR_FLAGS_*
55 * @optlen: length of optional header data
56 * @size: length of packet, excluding this header and optlen
57 * @src_node_id: source node
58 * @src_port_id: source port
59 * @dst_node_id: destination node
60 * @dst_port_id: destination port
61 */
62struct qrtr_hdr_v2 {
63	u8 version;
64	u8 type;
65	u8 flags;
66	u8 optlen;
67	__le32 size;
68	__le16 src_node_id;
69	__le16 src_port_id;
70	__le16 dst_node_id;
71	__le16 dst_port_id;
72};
73
74#define QRTR_FLAGS_CONFIRM_RX	BIT(0)
75
76struct qrtr_cb {
77	u32 src_node;
78	u32 src_port;
79	u32 dst_node;
80	u32 dst_port;
81
82	u8 type;
83	u8 confirm_rx;
84};
85
86#define QRTR_HDR_MAX_SIZE max_t(size_t, sizeof(struct qrtr_hdr_v1), \
87					sizeof(struct qrtr_hdr_v2))
88
89struct qrtr_sock {
90	/* WARNING: sk must be the first member */
91	struct sock sk;
92	struct sockaddr_qrtr us;
93	struct sockaddr_qrtr peer;
94};
95
96static inline struct qrtr_sock *qrtr_sk(struct sock *sk)
97{
98	BUILD_BUG_ON(offsetof(struct qrtr_sock, sk) != 0);
99	return container_of(sk, struct qrtr_sock, sk);
100}
101
102static unsigned int qrtr_local_nid = 1;
103
104/* for node ids */
105static RADIX_TREE(qrtr_nodes, GFP_ATOMIC);
106static DEFINE_SPINLOCK(qrtr_nodes_lock);
107/* broadcast list */
108static LIST_HEAD(qrtr_all_nodes);
109/* lock for qrtr_all_nodes and node reference */
110static DEFINE_MUTEX(qrtr_node_lock);
111
112/* local port allocation management */
113static DEFINE_XARRAY_ALLOC(qrtr_ports);
114
115/**
116 * struct qrtr_node - endpoint node
117 * @ep_lock: lock for endpoint management and callbacks
118 * @ep: endpoint
119 * @ref: reference count for node
120 * @nid: node id
121 * @qrtr_tx_flow: tree of qrtr_tx_flow, keyed by node << 32 | port
122 * @qrtr_tx_lock: lock for qrtr_tx_flow inserts
123 * @rx_queue: receive queue
124 * @item: list item for broadcast list
125 */
126struct qrtr_node {
127	struct mutex ep_lock;
128	struct qrtr_endpoint *ep;
129	struct kref ref;
130	unsigned int nid;
131
132	struct radix_tree_root qrtr_tx_flow;
133	struct mutex qrtr_tx_lock; /* for qrtr_tx_flow */
134
135	struct sk_buff_head rx_queue;
136	struct list_head item;
137};
138
139/**
140 * struct qrtr_tx_flow - tx flow control
141 * @resume_tx: waiters for a resume tx from the remote
142 * @pending: number of waiting senders
143 * @tx_failed: indicates that a message with confirm_rx flag was lost
144 */
145struct qrtr_tx_flow {
146	struct wait_queue_head resume_tx;
147	int pending;
148	int tx_failed;
149};
150
151#define QRTR_TX_FLOW_HIGH	10
152#define QRTR_TX_FLOW_LOW	5
153
154static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
155			      int type, struct sockaddr_qrtr *from,
156			      struct sockaddr_qrtr *to);
157static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
158			      int type, struct sockaddr_qrtr *from,
159			      struct sockaddr_qrtr *to);
160static struct qrtr_sock *qrtr_port_lookup(int port);
161static void qrtr_port_put(struct qrtr_sock *ipc);
162
163/* Release node resources and free the node.
164 *
165 * Do not call directly, use qrtr_node_release.  To be used with
166 * kref_put_mutex.  As such, the node mutex is expected to be locked on call.
167 */
168static void __qrtr_node_release(struct kref *kref)
169{
170	struct qrtr_node *node = container_of(kref, struct qrtr_node, ref);
171	struct radix_tree_iter iter;
172	struct qrtr_tx_flow *flow;
173	unsigned long flags;
174	void __rcu **slot;
175
176	spin_lock_irqsave(&qrtr_nodes_lock, flags);
177	/* If the node is a bridge for other nodes, there are possibly
178	 * multiple entries pointing to our released node, delete them all.
179	 */
180	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
181		if (*slot == node)
182			radix_tree_iter_delete(&qrtr_nodes, &iter, slot);
183	}
184	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
185
186	list_del(&node->item);
187	mutex_unlock(&qrtr_node_lock);
188
189	skb_queue_purge(&node->rx_queue);
190
191	/* Free tx flow counters */
192	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
193		flow = *slot;
194		radix_tree_iter_delete(&node->qrtr_tx_flow, &iter, slot);
195		kfree(flow);
196	}
197	kfree(node);
198}
199
200/* Increment reference to node. */
201static struct qrtr_node *qrtr_node_acquire(struct qrtr_node *node)
202{
203	if (node)
204		kref_get(&node->ref);
205	return node;
206}
207
208/* Decrement reference to node and release as necessary. */
209static void qrtr_node_release(struct qrtr_node *node)
210{
211	if (!node)
212		return;
213	kref_put_mutex(&node->ref, __qrtr_node_release, &qrtr_node_lock);
214}
215
216/**
217 * qrtr_tx_resume() - reset flow control counter
218 * @node:	qrtr_node that the QRTR_TYPE_RESUME_TX packet arrived on
219 * @skb:	resume_tx packet
220 */
221static void qrtr_tx_resume(struct qrtr_node *node, struct sk_buff *skb)
222{
223	struct qrtr_ctrl_pkt *pkt = (struct qrtr_ctrl_pkt *)skb->data;
224	u64 remote_node = le32_to_cpu(pkt->client.node);
225	u32 remote_port = le32_to_cpu(pkt->client.port);
226	struct qrtr_tx_flow *flow;
227	unsigned long key;
228
229	key = remote_node << 32 | remote_port;
230
231	rcu_read_lock();
232	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
233	rcu_read_unlock();
234	if (flow) {
235		spin_lock(&flow->resume_tx.lock);
236		flow->pending = 0;
237		spin_unlock(&flow->resume_tx.lock);
238		wake_up_interruptible_all(&flow->resume_tx);
239	}
240
241	consume_skb(skb);
242}
243
244/**
245 * qrtr_tx_wait() - flow control for outgoing packets
246 * @node:	qrtr_node that the packet is to be send to
247 * @dest_node:	node id of the destination
248 * @dest_port:	port number of the destination
249 * @type:	type of message
250 *
251 * The flow control scheme is based around the low and high "watermarks". When
252 * the low watermark is passed the confirm_rx flag is set on the outgoing
253 * message, which will trigger the remote to send a control message of the type
254 * QRTR_TYPE_RESUME_TX to reset the counter. If the high watermark is hit
255 * further transmision should be paused.
256 *
257 * Return: 1 if confirm_rx should be set, 0 otherwise or errno failure
258 */
259static int qrtr_tx_wait(struct qrtr_node *node, int dest_node, int dest_port,
260			int type)
261{
262	unsigned long key = (u64)dest_node << 32 | dest_port;
263	struct qrtr_tx_flow *flow;
264	int confirm_rx = 0;
265	int ret;
266
267	/* Never set confirm_rx on non-data packets */
268	if (type != QRTR_TYPE_DATA)
269		return 0;
270
271	mutex_lock(&node->qrtr_tx_lock);
272	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
273	if (!flow) {
274		flow = kzalloc(sizeof(*flow), GFP_KERNEL);
275		if (flow) {
276			init_waitqueue_head(&flow->resume_tx);
277			if (radix_tree_insert(&node->qrtr_tx_flow, key, flow)) {
278				kfree(flow);
279				flow = NULL;
280			}
281		}
282	}
283	mutex_unlock(&node->qrtr_tx_lock);
284
285	/* Set confirm_rx if we where unable to find and allocate a flow */
286	if (!flow)
287		return 1;
288
289	spin_lock_irq(&flow->resume_tx.lock);
290	ret = wait_event_interruptible_locked_irq(flow->resume_tx,
291						  flow->pending < QRTR_TX_FLOW_HIGH ||
292						  flow->tx_failed ||
293						  !node->ep);
294	if (ret < 0) {
295		confirm_rx = ret;
296	} else if (!node->ep) {
297		confirm_rx = -EPIPE;
298	} else if (flow->tx_failed) {
299		flow->tx_failed = 0;
300		confirm_rx = 1;
301	} else {
302		flow->pending++;
303		confirm_rx = flow->pending == QRTR_TX_FLOW_LOW;
304	}
305	spin_unlock_irq(&flow->resume_tx.lock);
306
307	return confirm_rx;
308}
309
310/**
311 * qrtr_tx_flow_failed() - flag that tx of confirm_rx flagged messages failed
312 * @node:	qrtr_node that the packet is to be send to
313 * @dest_node:	node id of the destination
314 * @dest_port:	port number of the destination
315 *
316 * Signal that the transmission of a message with confirm_rx flag failed. The
317 * flow's "pending" counter will keep incrementing towards QRTR_TX_FLOW_HIGH,
318 * at which point transmission would stall forever waiting for the resume TX
319 * message associated with the dropped confirm_rx message.
320 * Work around this by marking the flow as having a failed transmission and
321 * cause the next transmission attempt to be sent with the confirm_rx.
322 */
323static void qrtr_tx_flow_failed(struct qrtr_node *node, int dest_node,
324				int dest_port)
325{
326	unsigned long key = (u64)dest_node << 32 | dest_port;
327	struct qrtr_tx_flow *flow;
328
329	rcu_read_lock();
330	flow = radix_tree_lookup(&node->qrtr_tx_flow, key);
331	rcu_read_unlock();
332	if (flow) {
333		spin_lock_irq(&flow->resume_tx.lock);
334		flow->tx_failed = 1;
335		spin_unlock_irq(&flow->resume_tx.lock);
336	}
337}
338
339/* Pass an outgoing packet socket buffer to the endpoint driver. */
340static int qrtr_node_enqueue(struct qrtr_node *node, struct sk_buff *skb,
341			     int type, struct sockaddr_qrtr *from,
342			     struct sockaddr_qrtr *to)
343{
344	struct qrtr_hdr_v1 *hdr;
345	size_t len = skb->len;
346	int rc, confirm_rx;
347
348	confirm_rx = qrtr_tx_wait(node, to->sq_node, to->sq_port, type);
349	if (confirm_rx < 0) {
350		kfree_skb(skb);
351		return confirm_rx;
352	}
353
354	hdr = skb_push(skb, sizeof(*hdr));
355	hdr->version = cpu_to_le32(QRTR_PROTO_VER_1);
356	hdr->type = cpu_to_le32(type);
357	hdr->src_node_id = cpu_to_le32(from->sq_node);
358	hdr->src_port_id = cpu_to_le32(from->sq_port);
359	if (to->sq_port == QRTR_PORT_CTRL) {
360		hdr->dst_node_id = cpu_to_le32(node->nid);
361		hdr->dst_port_id = cpu_to_le32(QRTR_PORT_CTRL);
362	} else {
363		hdr->dst_node_id = cpu_to_le32(to->sq_node);
364		hdr->dst_port_id = cpu_to_le32(to->sq_port);
365	}
366
367	hdr->size = cpu_to_le32(len);
368	hdr->confirm_rx = !!confirm_rx;
369
370	rc = skb_put_padto(skb, ALIGN(len, 4) + sizeof(*hdr));
371
372	if (!rc) {
373		mutex_lock(&node->ep_lock);
374		rc = -ENODEV;
375		if (node->ep)
376			rc = node->ep->xmit(node->ep, skb);
377		else
378			kfree_skb(skb);
379		mutex_unlock(&node->ep_lock);
380	}
381	/* Need to ensure that a subsequent message carries the otherwise lost
382	 * confirm_rx flag if we dropped this one */
383	if (rc && confirm_rx)
384		qrtr_tx_flow_failed(node, to->sq_node, to->sq_port);
385
386	return rc;
387}
388
389/* Lookup node by id.
390 *
391 * callers must release with qrtr_node_release()
392 */
393static struct qrtr_node *qrtr_node_lookup(unsigned int nid)
394{
395	struct qrtr_node *node;
396	unsigned long flags;
397
398	mutex_lock(&qrtr_node_lock);
399	spin_lock_irqsave(&qrtr_nodes_lock, flags);
400	node = radix_tree_lookup(&qrtr_nodes, nid);
401	node = qrtr_node_acquire(node);
402	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
403	mutex_unlock(&qrtr_node_lock);
404
405	return node;
406}
407
408/* Assign node id to node.
409 *
410 * This is mostly useful for automatic node id assignment, based on
411 * the source id in the incoming packet.
412 */
413static void qrtr_node_assign(struct qrtr_node *node, unsigned int nid)
414{
415	unsigned long flags;
416
417	if (nid == QRTR_EP_NID_AUTO)
418		return;
419
420	spin_lock_irqsave(&qrtr_nodes_lock, flags);
421	radix_tree_insert(&qrtr_nodes, nid, node);
422	if (node->nid == QRTR_EP_NID_AUTO)
423		node->nid = nid;
424	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
425}
426
427/**
428 * qrtr_endpoint_post() - post incoming data
429 * @ep: endpoint handle
430 * @data: data pointer
431 * @len: size of data in bytes
432 *
433 * Return: 0 on success; negative error code on failure
434 */
435int qrtr_endpoint_post(struct qrtr_endpoint *ep, const void *data, size_t len)
436{
437	struct qrtr_node *node = ep->node;
438	const struct qrtr_hdr_v1 *v1;
439	const struct qrtr_hdr_v2 *v2;
440	struct qrtr_sock *ipc;
441	struct sk_buff *skb;
442	struct qrtr_cb *cb;
443	size_t size;
444	unsigned int ver;
445	size_t hdrlen;
446
447	if (len == 0 || len & 3)
448		return -EINVAL;
449
450	skb = __netdev_alloc_skb(NULL, len, GFP_ATOMIC | __GFP_NOWARN);
451	if (!skb)
452		return -ENOMEM;
453
454	cb = (struct qrtr_cb *)skb->cb;
455
456	/* Version field in v1 is little endian, so this works for both cases */
457	ver = *(u8*)data;
458
459	switch (ver) {
460	case QRTR_PROTO_VER_1:
461		if (len < sizeof(*v1))
462			goto err;
463		v1 = data;
464		hdrlen = sizeof(*v1);
465
466		cb->type = le32_to_cpu(v1->type);
467		cb->src_node = le32_to_cpu(v1->src_node_id);
468		cb->src_port = le32_to_cpu(v1->src_port_id);
469		cb->confirm_rx = !!v1->confirm_rx;
470		cb->dst_node = le32_to_cpu(v1->dst_node_id);
471		cb->dst_port = le32_to_cpu(v1->dst_port_id);
472
473		size = le32_to_cpu(v1->size);
474		break;
475	case QRTR_PROTO_VER_2:
476		if (len < sizeof(*v2))
477			goto err;
478		v2 = data;
479		hdrlen = sizeof(*v2) + v2->optlen;
480
481		cb->type = v2->type;
482		cb->confirm_rx = !!(v2->flags & QRTR_FLAGS_CONFIRM_RX);
483		cb->src_node = le16_to_cpu(v2->src_node_id);
484		cb->src_port = le16_to_cpu(v2->src_port_id);
485		cb->dst_node = le16_to_cpu(v2->dst_node_id);
486		cb->dst_port = le16_to_cpu(v2->dst_port_id);
487
488		if (cb->src_port == (u16)QRTR_PORT_CTRL)
489			cb->src_port = QRTR_PORT_CTRL;
490		if (cb->dst_port == (u16)QRTR_PORT_CTRL)
491			cb->dst_port = QRTR_PORT_CTRL;
492
493		size = le32_to_cpu(v2->size);
494		break;
495	default:
496		pr_err("qrtr: Invalid version %d\n", ver);
497		goto err;
498	}
499
500	if (cb->dst_port == QRTR_PORT_CTRL_LEGACY)
501		cb->dst_port = QRTR_PORT_CTRL;
502
503	if (!size || len != ALIGN(size, 4) + hdrlen)
504		goto err;
505
506	if ((cb->type == QRTR_TYPE_NEW_SERVER ||
507	     cb->type == QRTR_TYPE_RESUME_TX) &&
508	    size < sizeof(struct qrtr_ctrl_pkt))
509		goto err;
510
511	if (cb->dst_port != QRTR_PORT_CTRL && cb->type != QRTR_TYPE_DATA &&
512	    cb->type != QRTR_TYPE_RESUME_TX)
513		goto err;
514
515	skb_put_data(skb, data + hdrlen, size);
516
517	qrtr_node_assign(node, cb->src_node);
518
519	if (cb->type == QRTR_TYPE_NEW_SERVER) {
520		/* Remote node endpoint can bridge other distant nodes */
521		const struct qrtr_ctrl_pkt *pkt;
522
523		pkt = data + hdrlen;
524		qrtr_node_assign(node, le32_to_cpu(pkt->server.node));
525	}
526
527	if (cb->type == QRTR_TYPE_RESUME_TX) {
528		qrtr_tx_resume(node, skb);
529	} else {
530		ipc = qrtr_port_lookup(cb->dst_port);
531		if (!ipc)
532			goto err;
533
534		if (sock_queue_rcv_skb(&ipc->sk, skb)) {
535			qrtr_port_put(ipc);
536			goto err;
537		}
538
539		qrtr_port_put(ipc);
540	}
541
542	return 0;
543
544err:
545	kfree_skb(skb);
546	return -EINVAL;
547
548}
549EXPORT_SYMBOL_GPL(qrtr_endpoint_post);
550
551/**
552 * qrtr_alloc_ctrl_packet() - allocate control packet skb
553 * @pkt: reference to qrtr_ctrl_pkt pointer
554 * @flags: the type of memory to allocate
555 *
556 * Returns newly allocated sk_buff, or NULL on failure
557 *
558 * This function allocates a sk_buff large enough to carry a qrtr_ctrl_pkt and
559 * on success returns a reference to the control packet in @pkt.
560 */
561static struct sk_buff *qrtr_alloc_ctrl_packet(struct qrtr_ctrl_pkt **pkt,
562					      gfp_t flags)
563{
564	const int pkt_len = sizeof(struct qrtr_ctrl_pkt);
565	struct sk_buff *skb;
566
567	skb = alloc_skb(QRTR_HDR_MAX_SIZE + pkt_len, flags);
568	if (!skb)
569		return NULL;
570
571	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
572	*pkt = skb_put_zero(skb, pkt_len);
573
574	return skb;
575}
576
577/**
578 * qrtr_endpoint_register() - register a new endpoint
579 * @ep: endpoint to register
580 * @nid: desired node id; may be QRTR_EP_NID_AUTO for auto-assignment
581 * Return: 0 on success; negative error code on failure
582 *
583 * The specified endpoint must have the xmit function pointer set on call.
584 */
585int qrtr_endpoint_register(struct qrtr_endpoint *ep, unsigned int nid)
586{
587	struct qrtr_node *node;
588
589	if (!ep || !ep->xmit)
590		return -EINVAL;
591
592	node = kzalloc(sizeof(*node), GFP_KERNEL);
593	if (!node)
594		return -ENOMEM;
595
596	kref_init(&node->ref);
597	mutex_init(&node->ep_lock);
598	skb_queue_head_init(&node->rx_queue);
599	node->nid = QRTR_EP_NID_AUTO;
600	node->ep = ep;
601
602	INIT_RADIX_TREE(&node->qrtr_tx_flow, GFP_KERNEL);
603	mutex_init(&node->qrtr_tx_lock);
604
605	qrtr_node_assign(node, nid);
606
607	mutex_lock(&qrtr_node_lock);
608	list_add(&node->item, &qrtr_all_nodes);
609	mutex_unlock(&qrtr_node_lock);
610	ep->node = node;
611
612	return 0;
613}
614EXPORT_SYMBOL_GPL(qrtr_endpoint_register);
615
616/**
617 * qrtr_endpoint_unregister - unregister endpoint
618 * @ep: endpoint to unregister
619 */
620void qrtr_endpoint_unregister(struct qrtr_endpoint *ep)
621{
622	struct qrtr_node *node = ep->node;
623	struct sockaddr_qrtr src = {AF_QIPCRTR, node->nid, QRTR_PORT_CTRL};
624	struct sockaddr_qrtr dst = {AF_QIPCRTR, qrtr_local_nid, QRTR_PORT_CTRL};
625	struct radix_tree_iter iter;
626	struct qrtr_ctrl_pkt *pkt;
627	struct qrtr_tx_flow *flow;
628	struct sk_buff *skb;
629	unsigned long flags;
630	void __rcu **slot;
631
632	mutex_lock(&node->ep_lock);
633	node->ep = NULL;
634	mutex_unlock(&node->ep_lock);
635
636	/* Notify the local controller about the event */
637	spin_lock_irqsave(&qrtr_nodes_lock, flags);
638	radix_tree_for_each_slot(slot, &qrtr_nodes, &iter, 0) {
639		if (*slot != node)
640			continue;
641		src.sq_node = iter.index;
642		skb = qrtr_alloc_ctrl_packet(&pkt, GFP_ATOMIC);
643		if (skb) {
644			pkt->cmd = cpu_to_le32(QRTR_TYPE_BYE);
645			qrtr_local_enqueue(NULL, skb, QRTR_TYPE_BYE, &src, &dst);
646		}
647	}
648	spin_unlock_irqrestore(&qrtr_nodes_lock, flags);
649
650	/* Wake up any transmitters waiting for resume-tx from the node */
651	mutex_lock(&node->qrtr_tx_lock);
652	radix_tree_for_each_slot(slot, &node->qrtr_tx_flow, &iter, 0) {
653		flow = *slot;
654		wake_up_interruptible_all(&flow->resume_tx);
655	}
656	mutex_unlock(&node->qrtr_tx_lock);
657
658	qrtr_node_release(node);
659	ep->node = NULL;
660}
661EXPORT_SYMBOL_GPL(qrtr_endpoint_unregister);
662
663/* Lookup socket by port.
664 *
665 * Callers must release with qrtr_port_put()
666 */
667static struct qrtr_sock *qrtr_port_lookup(int port)
668{
669	struct qrtr_sock *ipc;
670
671	if (port == QRTR_PORT_CTRL)
672		port = 0;
673
674	rcu_read_lock();
675	ipc = xa_load(&qrtr_ports, port);
676	if (ipc)
677		sock_hold(&ipc->sk);
678	rcu_read_unlock();
679
680	return ipc;
681}
682
683/* Release acquired socket. */
684static void qrtr_port_put(struct qrtr_sock *ipc)
685{
686	sock_put(&ipc->sk);
687}
688
689/* Remove port assignment. */
690static void qrtr_port_remove(struct qrtr_sock *ipc)
691{
692	struct qrtr_ctrl_pkt *pkt;
693	struct sk_buff *skb;
694	int port = ipc->us.sq_port;
695	struct sockaddr_qrtr to;
696
697	to.sq_family = AF_QIPCRTR;
698	to.sq_node = QRTR_NODE_BCAST;
699	to.sq_port = QRTR_PORT_CTRL;
700
701	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
702	if (skb) {
703		pkt->cmd = cpu_to_le32(QRTR_TYPE_DEL_CLIENT);
704		pkt->client.node = cpu_to_le32(ipc->us.sq_node);
705		pkt->client.port = cpu_to_le32(ipc->us.sq_port);
706
707		skb_set_owner_w(skb, &ipc->sk);
708		qrtr_bcast_enqueue(NULL, skb, QRTR_TYPE_DEL_CLIENT, &ipc->us,
709				   &to);
710	}
711
712	if (port == QRTR_PORT_CTRL)
713		port = 0;
714
715	__sock_put(&ipc->sk);
716
717	xa_erase(&qrtr_ports, port);
718
719	/* Ensure that if qrtr_port_lookup() did enter the RCU read section we
720	 * wait for it to up increment the refcount */
721	synchronize_rcu();
722}
723
724/* Assign port number to socket.
725 *
726 * Specify port in the integer pointed to by port, and it will be adjusted
727 * on return as necesssary.
728 *
729 * Port may be:
730 *   0: Assign ephemeral port in [QRTR_MIN_EPH_SOCKET, QRTR_MAX_EPH_SOCKET]
731 *   <QRTR_MIN_EPH_SOCKET: Specified; requires CAP_NET_ADMIN
732 *   >QRTR_MIN_EPH_SOCKET: Specified; available to all
733 */
734static int qrtr_port_assign(struct qrtr_sock *ipc, int *port)
735{
736	int rc;
737
738	if (!*port) {
739		rc = xa_alloc(&qrtr_ports, port, ipc, QRTR_EPH_PORT_RANGE,
740				GFP_KERNEL);
741	} else if (*port < QRTR_MIN_EPH_SOCKET && !capable(CAP_NET_ADMIN)) {
742		rc = -EACCES;
743	} else if (*port == QRTR_PORT_CTRL) {
744		rc = xa_insert(&qrtr_ports, 0, ipc, GFP_KERNEL);
745	} else {
746		rc = xa_insert(&qrtr_ports, *port, ipc, GFP_KERNEL);
747	}
748
749	if (rc == -EBUSY)
750		return -EADDRINUSE;
751	else if (rc < 0)
752		return rc;
753
754	sock_hold(&ipc->sk);
755
756	return 0;
757}
758
759/* Reset all non-control ports */
760static void qrtr_reset_ports(void)
761{
762	struct qrtr_sock *ipc;
763	unsigned long index;
764
765	rcu_read_lock();
766	xa_for_each_start(&qrtr_ports, index, ipc, 1) {
767		sock_hold(&ipc->sk);
768		ipc->sk.sk_err = ENETRESET;
769		sk_error_report(&ipc->sk);
770		sock_put(&ipc->sk);
771	}
772	rcu_read_unlock();
773}
774
775/* Bind socket to address.
776 *
777 * Socket should be locked upon call.
778 */
779static int __qrtr_bind(struct socket *sock,
780		       const struct sockaddr_qrtr *addr, int zapped)
781{
782	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
783	struct sock *sk = sock->sk;
784	int port;
785	int rc;
786
787	/* rebinding ok */
788	if (!zapped && addr->sq_port == ipc->us.sq_port)
789		return 0;
790
791	port = addr->sq_port;
792	rc = qrtr_port_assign(ipc, &port);
793	if (rc)
794		return rc;
795
796	/* unbind previous, if any */
797	if (!zapped)
798		qrtr_port_remove(ipc);
799	ipc->us.sq_port = port;
800
801	sock_reset_flag(sk, SOCK_ZAPPED);
802
803	/* Notify all open ports about the new controller */
804	if (port == QRTR_PORT_CTRL)
805		qrtr_reset_ports();
806
807	return 0;
808}
809
810/* Auto bind to an ephemeral port. */
811static int qrtr_autobind(struct socket *sock)
812{
813	struct sock *sk = sock->sk;
814	struct sockaddr_qrtr addr;
815
816	if (!sock_flag(sk, SOCK_ZAPPED))
817		return 0;
818
819	addr.sq_family = AF_QIPCRTR;
820	addr.sq_node = qrtr_local_nid;
821	addr.sq_port = 0;
822
823	return __qrtr_bind(sock, &addr, 1);
824}
825
826/* Bind socket to specified sockaddr. */
827static int qrtr_bind(struct socket *sock, struct sockaddr *saddr, int len)
828{
829	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
830	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
831	struct sock *sk = sock->sk;
832	int rc;
833
834	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
835		return -EINVAL;
836
837	if (addr->sq_node != ipc->us.sq_node)
838		return -EINVAL;
839
840	lock_sock(sk);
841	rc = __qrtr_bind(sock, addr, sock_flag(sk, SOCK_ZAPPED));
842	release_sock(sk);
843
844	return rc;
845}
846
847/* Queue packet to local peer socket. */
848static int qrtr_local_enqueue(struct qrtr_node *node, struct sk_buff *skb,
849			      int type, struct sockaddr_qrtr *from,
850			      struct sockaddr_qrtr *to)
851{
852	struct qrtr_sock *ipc;
853	struct qrtr_cb *cb;
854
855	ipc = qrtr_port_lookup(to->sq_port);
856	if (!ipc || &ipc->sk == skb->sk) { /* do not send to self */
857		if (ipc)
858			qrtr_port_put(ipc);
859		kfree_skb(skb);
860		return -ENODEV;
861	}
862
863	cb = (struct qrtr_cb *)skb->cb;
864	cb->src_node = from->sq_node;
865	cb->src_port = from->sq_port;
866
867	if (sock_queue_rcv_skb(&ipc->sk, skb)) {
868		qrtr_port_put(ipc);
869		kfree_skb(skb);
870		return -ENOSPC;
871	}
872
873	qrtr_port_put(ipc);
874
875	return 0;
876}
877
878/* Queue packet for broadcast. */
879static int qrtr_bcast_enqueue(struct qrtr_node *node, struct sk_buff *skb,
880			      int type, struct sockaddr_qrtr *from,
881			      struct sockaddr_qrtr *to)
882{
883	struct sk_buff *skbn;
884
885	mutex_lock(&qrtr_node_lock);
886	list_for_each_entry(node, &qrtr_all_nodes, item) {
887		skbn = skb_clone(skb, GFP_KERNEL);
888		if (!skbn)
889			break;
890		skb_set_owner_w(skbn, skb->sk);
891		qrtr_node_enqueue(node, skbn, type, from, to);
892	}
893	mutex_unlock(&qrtr_node_lock);
894
895	qrtr_local_enqueue(NULL, skb, type, from, to);
896
897	return 0;
898}
899
900static int qrtr_sendmsg(struct socket *sock, struct msghdr *msg, size_t len)
901{
902	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
903	int (*enqueue_fn)(struct qrtr_node *, struct sk_buff *, int,
904			  struct sockaddr_qrtr *, struct sockaddr_qrtr *);
905	__le32 qrtr_type = cpu_to_le32(QRTR_TYPE_DATA);
906	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
907	struct sock *sk = sock->sk;
908	struct qrtr_node *node;
909	struct sk_buff *skb;
910	size_t plen;
911	u32 type;
912	int rc;
913
914	if (msg->msg_flags & ~(MSG_DONTWAIT))
915		return -EINVAL;
916
917	if (len > 65535)
918		return -EMSGSIZE;
919
920	lock_sock(sk);
921
922	if (addr) {
923		if (msg->msg_namelen < sizeof(*addr)) {
924			release_sock(sk);
925			return -EINVAL;
926		}
927
928		if (addr->sq_family != AF_QIPCRTR) {
929			release_sock(sk);
930			return -EINVAL;
931		}
932
933		rc = qrtr_autobind(sock);
934		if (rc) {
935			release_sock(sk);
936			return rc;
937		}
938	} else if (sk->sk_state == TCP_ESTABLISHED) {
939		addr = &ipc->peer;
940	} else {
941		release_sock(sk);
942		return -ENOTCONN;
943	}
944
945	node = NULL;
946	if (addr->sq_node == QRTR_NODE_BCAST) {
947		if (addr->sq_port != QRTR_PORT_CTRL &&
948		    qrtr_local_nid != QRTR_NODE_BCAST) {
949			release_sock(sk);
950			return -ENOTCONN;
951		}
952		enqueue_fn = qrtr_bcast_enqueue;
953	} else if (addr->sq_node == ipc->us.sq_node) {
954		enqueue_fn = qrtr_local_enqueue;
955	} else {
956		node = qrtr_node_lookup(addr->sq_node);
957		if (!node) {
958			release_sock(sk);
959			return -ECONNRESET;
960		}
961		enqueue_fn = qrtr_node_enqueue;
962	}
963
964	plen = (len + 3) & ~3;
965	skb = sock_alloc_send_skb(sk, plen + QRTR_HDR_MAX_SIZE,
966				  msg->msg_flags & MSG_DONTWAIT, &rc);
967	if (!skb) {
968		rc = -ENOMEM;
969		goto out_node;
970	}
971
972	skb_reserve(skb, QRTR_HDR_MAX_SIZE);
973
974	rc = memcpy_from_msg(skb_put(skb, len), msg, len);
975	if (rc) {
976		kfree_skb(skb);
977		goto out_node;
978	}
979
980	if (ipc->us.sq_port == QRTR_PORT_CTRL) {
981		if (len < 4) {
982			rc = -EINVAL;
983			kfree_skb(skb);
984			goto out_node;
985		}
986
987		/* control messages already require the type as 'command' */
988		skb_copy_bits(skb, 0, &qrtr_type, 4);
989	}
990
991	type = le32_to_cpu(qrtr_type);
992	rc = enqueue_fn(node, skb, type, &ipc->us, addr);
993	if (rc >= 0)
994		rc = len;
995
996out_node:
997	qrtr_node_release(node);
998	release_sock(sk);
999
1000	return rc;
1001}
1002
1003static int qrtr_send_resume_tx(struct qrtr_cb *cb)
1004{
1005	struct sockaddr_qrtr remote = { AF_QIPCRTR, cb->src_node, cb->src_port };
1006	struct sockaddr_qrtr local = { AF_QIPCRTR, cb->dst_node, cb->dst_port };
1007	struct qrtr_ctrl_pkt *pkt;
1008	struct qrtr_node *node;
1009	struct sk_buff *skb;
1010	int ret;
1011
1012	node = qrtr_node_lookup(remote.sq_node);
1013	if (!node)
1014		return -EINVAL;
1015
1016	skb = qrtr_alloc_ctrl_packet(&pkt, GFP_KERNEL);
1017	if (!skb)
1018		return -ENOMEM;
1019
1020	pkt->cmd = cpu_to_le32(QRTR_TYPE_RESUME_TX);
1021	pkt->client.node = cpu_to_le32(cb->dst_node);
1022	pkt->client.port = cpu_to_le32(cb->dst_port);
1023
1024	ret = qrtr_node_enqueue(node, skb, QRTR_TYPE_RESUME_TX, &local, &remote);
1025
1026	qrtr_node_release(node);
1027
1028	return ret;
1029}
1030
1031static int qrtr_recvmsg(struct socket *sock, struct msghdr *msg,
1032			size_t size, int flags)
1033{
1034	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, msg->msg_name);
1035	struct sock *sk = sock->sk;
1036	struct sk_buff *skb;
1037	struct qrtr_cb *cb;
1038	int copied, rc;
1039
1040	lock_sock(sk);
1041
1042	if (sock_flag(sk, SOCK_ZAPPED)) {
1043		release_sock(sk);
1044		return -EADDRNOTAVAIL;
1045	}
1046
1047	skb = skb_recv_datagram(sk, flags, &rc);
1048	if (!skb) {
1049		release_sock(sk);
1050		return rc;
1051	}
1052	cb = (struct qrtr_cb *)skb->cb;
1053
1054	copied = skb->len;
1055	if (copied > size) {
1056		copied = size;
1057		msg->msg_flags |= MSG_TRUNC;
1058	}
1059
1060	rc = skb_copy_datagram_msg(skb, 0, msg, copied);
1061	if (rc < 0)
1062		goto out;
1063	rc = copied;
1064
1065	if (addr) {
1066		/* There is an anonymous 2-byte hole after sq_family,
1067		 * make sure to clear it.
1068		 */
1069		memset(addr, 0, sizeof(*addr));
1070
1071		addr->sq_family = AF_QIPCRTR;
1072		addr->sq_node = cb->src_node;
1073		addr->sq_port = cb->src_port;
1074		msg->msg_namelen = sizeof(*addr);
1075	}
1076
1077out:
1078	if (cb->confirm_rx)
1079		qrtr_send_resume_tx(cb);
1080
1081	skb_free_datagram(sk, skb);
1082	release_sock(sk);
1083
1084	return rc;
1085}
1086
1087static int qrtr_connect(struct socket *sock, struct sockaddr *saddr,
1088			int len, int flags)
1089{
1090	DECLARE_SOCKADDR(struct sockaddr_qrtr *, addr, saddr);
1091	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1092	struct sock *sk = sock->sk;
1093	int rc;
1094
1095	if (len < sizeof(*addr) || addr->sq_family != AF_QIPCRTR)
1096		return -EINVAL;
1097
1098	lock_sock(sk);
1099
1100	sk->sk_state = TCP_CLOSE;
1101	sock->state = SS_UNCONNECTED;
1102
1103	rc = qrtr_autobind(sock);
1104	if (rc) {
1105		release_sock(sk);
1106		return rc;
1107	}
1108
1109	ipc->peer = *addr;
1110	sock->state = SS_CONNECTED;
1111	sk->sk_state = TCP_ESTABLISHED;
1112
1113	release_sock(sk);
1114
1115	return 0;
1116}
1117
1118static int qrtr_getname(struct socket *sock, struct sockaddr *saddr,
1119			int peer)
1120{
1121	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1122	struct sockaddr_qrtr qaddr;
1123	struct sock *sk = sock->sk;
1124
1125	lock_sock(sk);
1126	if (peer) {
1127		if (sk->sk_state != TCP_ESTABLISHED) {
1128			release_sock(sk);
1129			return -ENOTCONN;
1130		}
1131
1132		qaddr = ipc->peer;
1133	} else {
1134		qaddr = ipc->us;
1135	}
1136	release_sock(sk);
1137
1138	qaddr.sq_family = AF_QIPCRTR;
1139
1140	memcpy(saddr, &qaddr, sizeof(qaddr));
1141
1142	return sizeof(qaddr);
1143}
1144
1145static int qrtr_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg)
1146{
1147	void __user *argp = (void __user *)arg;
1148	struct qrtr_sock *ipc = qrtr_sk(sock->sk);
1149	struct sock *sk = sock->sk;
1150	struct sockaddr_qrtr *sq;
1151	struct sk_buff *skb;
1152	struct ifreq ifr;
1153	long len = 0;
1154	int rc = 0;
1155
1156	lock_sock(sk);
1157
1158	switch (cmd) {
1159	case TIOCOUTQ:
1160		len = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
1161		if (len < 0)
1162			len = 0;
1163		rc = put_user(len, (int __user *)argp);
1164		break;
1165	case TIOCINQ:
1166		skb = skb_peek(&sk->sk_receive_queue);
1167		if (skb)
1168			len = skb->len;
1169		rc = put_user(len, (int __user *)argp);
1170		break;
1171	case SIOCGIFADDR:
1172		if (get_user_ifreq(&ifr, NULL, argp)) {
1173			rc = -EFAULT;
1174			break;
1175		}
1176
1177		sq = (struct sockaddr_qrtr *)&ifr.ifr_addr;
1178		*sq = ipc->us;
1179		if (put_user_ifreq(&ifr, argp)) {
1180			rc = -EFAULT;
1181			break;
1182		}
1183		break;
1184	case SIOCADDRT:
1185	case SIOCDELRT:
1186	case SIOCSIFADDR:
1187	case SIOCGIFDSTADDR:
1188	case SIOCSIFDSTADDR:
1189	case SIOCGIFBRDADDR:
1190	case SIOCSIFBRDADDR:
1191	case SIOCGIFNETMASK:
1192	case SIOCSIFNETMASK:
1193		rc = -EINVAL;
1194		break;
1195	default:
1196		rc = -ENOIOCTLCMD;
1197		break;
1198	}
1199
1200	release_sock(sk);
1201
1202	return rc;
1203}
1204
1205static int qrtr_release(struct socket *sock)
1206{
1207	struct sock *sk = sock->sk;
1208	struct qrtr_sock *ipc;
1209
1210	if (!sk)
1211		return 0;
1212
1213	lock_sock(sk);
1214
1215	ipc = qrtr_sk(sk);
1216	sk->sk_shutdown = SHUTDOWN_MASK;
1217	if (!sock_flag(sk, SOCK_DEAD))
1218		sk->sk_state_change(sk);
1219
1220	sock_set_flag(sk, SOCK_DEAD);
1221	sock_orphan(sk);
1222	sock->sk = NULL;
1223
1224	if (!sock_flag(sk, SOCK_ZAPPED))
1225		qrtr_port_remove(ipc);
1226
1227	skb_queue_purge(&sk->sk_receive_queue);
1228
1229	release_sock(sk);
1230	sock_put(sk);
1231
1232	return 0;
1233}
1234
1235static const struct proto_ops qrtr_proto_ops = {
1236	.owner		= THIS_MODULE,
1237	.family		= AF_QIPCRTR,
1238	.bind		= qrtr_bind,
1239	.connect	= qrtr_connect,
1240	.socketpair	= sock_no_socketpair,
1241	.accept		= sock_no_accept,
1242	.listen		= sock_no_listen,
1243	.sendmsg	= qrtr_sendmsg,
1244	.recvmsg	= qrtr_recvmsg,
1245	.getname	= qrtr_getname,
1246	.ioctl		= qrtr_ioctl,
1247	.gettstamp	= sock_gettstamp,
1248	.poll		= datagram_poll,
1249	.shutdown	= sock_no_shutdown,
1250	.release	= qrtr_release,
1251	.mmap		= sock_no_mmap,
1252};
1253
1254static struct proto qrtr_proto = {
1255	.name		= "QIPCRTR",
1256	.owner		= THIS_MODULE,
1257	.obj_size	= sizeof(struct qrtr_sock),
1258};
1259
1260static int qrtr_create(struct net *net, struct socket *sock,
1261		       int protocol, int kern)
1262{
1263	struct qrtr_sock *ipc;
1264	struct sock *sk;
1265
1266	if (sock->type != SOCK_DGRAM)
1267		return -EPROTOTYPE;
1268
1269	sk = sk_alloc(net, AF_QIPCRTR, GFP_KERNEL, &qrtr_proto, kern);
1270	if (!sk)
1271		return -ENOMEM;
1272
1273	sock_set_flag(sk, SOCK_ZAPPED);
1274
1275	sock_init_data(sock, sk);
1276	sock->ops = &qrtr_proto_ops;
1277
1278	ipc = qrtr_sk(sk);
1279	ipc->us.sq_family = AF_QIPCRTR;
1280	ipc->us.sq_node = qrtr_local_nid;
1281	ipc->us.sq_port = 0;
1282
1283	return 0;
1284}
1285
1286static const struct net_proto_family qrtr_family = {
1287	.owner	= THIS_MODULE,
1288	.family	= AF_QIPCRTR,
1289	.create	= qrtr_create,
1290};
1291
1292static int __init qrtr_proto_init(void)
1293{
1294	int rc;
1295
1296	rc = proto_register(&qrtr_proto, 1);
1297	if (rc)
1298		return rc;
1299
1300	rc = sock_register(&qrtr_family);
1301	if (rc)
1302		goto err_proto;
1303
1304	rc = qrtr_ns_init();
1305	if (rc)
1306		goto err_sock;
1307
1308	return 0;
1309
1310err_sock:
1311	sock_unregister(qrtr_family.family);
1312err_proto:
1313	proto_unregister(&qrtr_proto);
1314	return rc;
1315}
1316postcore_initcall(qrtr_proto_init);
1317
1318static void __exit qrtr_proto_fini(void)
1319{
1320	qrtr_ns_remove();
1321	sock_unregister(qrtr_family.family);
1322	proto_unregister(&qrtr_proto);
1323}
1324module_exit(qrtr_proto_fini);
1325
1326MODULE_DESCRIPTION("Qualcomm IPC-router driver");
1327MODULE_LICENSE("GPL v2");
1328MODULE_ALIAS_NETPROTO(PF_QIPCRTR);
1329