1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2014 Nicira, Inc.
4 */
5
6#include "flow.h"
7#include "datapath.h"
8#include "flow_netlink.h"
9#include <linux/uaccess.h>
10#include <linux/netdevice.h>
11#include <linux/etherdevice.h>
12#include <linux/if_ether.h>
13#include <linux/if_vlan.h>
14#include <net/llc_pdu.h>
15#include <linux/kernel.h>
16#include <linux/jhash.h>
17#include <linux/jiffies.h>
18#include <linux/llc.h>
19#include <linux/module.h>
20#include <linux/in.h>
21#include <linux/rcupdate.h>
22#include <linux/cpumask.h>
23#include <linux/if_arp.h>
24#include <linux/ip.h>
25#include <linux/ipv6.h>
26#include <linux/sctp.h>
27#include <linux/tcp.h>
28#include <linux/udp.h>
29#include <linux/icmp.h>
30#include <linux/icmpv6.h>
31#include <linux/rculist.h>
32#include <linux/sort.h>
33#include <net/ip.h>
34#include <net/ipv6.h>
35#include <net/ndisc.h>
36
37#define TBL_MIN_BUCKETS		1024
38#define MASK_ARRAY_SIZE_MIN	16
39#define REHASH_INTERVAL		(10 * 60 * HZ)
40
41#define MC_DEFAULT_HASH_ENTRIES	256
42#define MC_HASH_SHIFT		8
43#define MC_HASH_SEGS		((sizeof(uint32_t) * 8) / MC_HASH_SHIFT)
44
45static struct kmem_cache *flow_cache;
46struct kmem_cache *flow_stats_cache __read_mostly;
47
48static u16 range_n_bytes(const struct sw_flow_key_range *range)
49{
50	return range->end - range->start;
51}
52
53void ovs_flow_mask_key(struct sw_flow_key *dst, const struct sw_flow_key *src,
54		       bool full, const struct sw_flow_mask *mask)
55{
56	int start = full ? 0 : mask->range.start;
57	int len = full ? sizeof *dst : range_n_bytes(&mask->range);
58	const long *m = (const long *)((const u8 *)&mask->key + start);
59	const long *s = (const long *)((const u8 *)src + start);
60	long *d = (long *)((u8 *)dst + start);
61	int i;
62
63	/* If 'full' is true then all of 'dst' is fully initialized. Otherwise,
64	 * if 'full' is false the memory outside of the 'mask->range' is left
65	 * uninitialized. This can be used as an optimization when further
66	 * operations on 'dst' only use contents within 'mask->range'.
67	 */
68	for (i = 0; i < len; i += sizeof(long))
69		*d++ = *s++ & *m++;
70}
71
72struct sw_flow *ovs_flow_alloc(void)
73{
74	struct sw_flow *flow;
75	struct sw_flow_stats *stats;
76
77	flow = kmem_cache_zalloc(flow_cache, GFP_KERNEL);
78	if (!flow)
79		return ERR_PTR(-ENOMEM);
80
81	flow->stats_last_writer = -1;
82	flow->cpu_used_mask = (struct cpumask *)&flow->stats[nr_cpu_ids];
83
84	/* Initialize the default stat node. */
85	stats = kmem_cache_alloc_node(flow_stats_cache,
86				      GFP_KERNEL | __GFP_ZERO,
87				      node_online(0) ? 0 : NUMA_NO_NODE);
88	if (!stats)
89		goto err;
90
91	spin_lock_init(&stats->lock);
92
93	RCU_INIT_POINTER(flow->stats[0], stats);
94
95	cpumask_set_cpu(0, flow->cpu_used_mask);
96
97	return flow;
98err:
99	kmem_cache_free(flow_cache, flow);
100	return ERR_PTR(-ENOMEM);
101}
102
103int ovs_flow_tbl_count(const struct flow_table *table)
104{
105	return table->count;
106}
107
108static void flow_free(struct sw_flow *flow)
109{
110	int cpu;
111
112	if (ovs_identifier_is_key(&flow->id))
113		kfree(flow->id.unmasked_key);
114	if (flow->sf_acts)
115		ovs_nla_free_flow_actions((struct sw_flow_actions __force *)
116					  flow->sf_acts);
117	/* We open code this to make sure cpu 0 is always considered */
118	for (cpu = 0; cpu < nr_cpu_ids;
119	     cpu = cpumask_next(cpu, flow->cpu_used_mask)) {
120		if (flow->stats[cpu])
121			kmem_cache_free(flow_stats_cache,
122					(struct sw_flow_stats __force *)flow->stats[cpu]);
123	}
124
125	kmem_cache_free(flow_cache, flow);
126}
127
128static void rcu_free_flow_callback(struct rcu_head *rcu)
129{
130	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu);
131
132	flow_free(flow);
133}
134
135void ovs_flow_free(struct sw_flow *flow, bool deferred)
136{
137	if (!flow)
138		return;
139
140	if (deferred)
141		call_rcu(&flow->rcu, rcu_free_flow_callback);
142	else
143		flow_free(flow);
144}
145
146static void __table_instance_destroy(struct table_instance *ti)
147{
148	kvfree(ti->buckets);
149	kfree(ti);
150}
151
152static struct table_instance *table_instance_alloc(int new_size)
153{
154	struct table_instance *ti = kmalloc(sizeof(*ti), GFP_KERNEL);
155	int i;
156
157	if (!ti)
158		return NULL;
159
160	ti->buckets = kvmalloc_array(new_size, sizeof(struct hlist_head),
161				     GFP_KERNEL);
162	if (!ti->buckets) {
163		kfree(ti);
164		return NULL;
165	}
166
167	for (i = 0; i < new_size; i++)
168		INIT_HLIST_HEAD(&ti->buckets[i]);
169
170	ti->n_buckets = new_size;
171	ti->node_ver = 0;
172	get_random_bytes(&ti->hash_seed, sizeof(u32));
173
174	return ti;
175}
176
177static void __mask_array_destroy(struct mask_array *ma)
178{
179	free_percpu(ma->masks_usage_stats);
180	kfree(ma);
181}
182
183static void mask_array_rcu_cb(struct rcu_head *rcu)
184{
185	struct mask_array *ma = container_of(rcu, struct mask_array, rcu);
186
187	__mask_array_destroy(ma);
188}
189
190static void tbl_mask_array_reset_counters(struct mask_array *ma)
191{
192	int i, cpu;
193
194	/* As the per CPU counters are not atomic we can not go ahead and
195	 * reset them from another CPU. To be able to still have an approximate
196	 * zero based counter we store the value at reset, and subtract it
197	 * later when processing.
198	 */
199	for (i = 0; i < ma->max; i++) {
200		ma->masks_usage_zero_cntr[i] = 0;
201
202		for_each_possible_cpu(cpu) {
203			struct mask_array_stats *stats;
204			unsigned int start;
205			u64 counter;
206
207			stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
208			do {
209				start = u64_stats_fetch_begin(&stats->syncp);
210				counter = stats->usage_cntrs[i];
211			} while (u64_stats_fetch_retry(&stats->syncp, start));
212
213			ma->masks_usage_zero_cntr[i] += counter;
214		}
215	}
216}
217
218static struct mask_array *tbl_mask_array_alloc(int size)
219{
220	struct mask_array *new;
221
222	size = max(MASK_ARRAY_SIZE_MIN, size);
223	new = kzalloc(sizeof(struct mask_array) +
224		      sizeof(struct sw_flow_mask *) * size +
225		      sizeof(u64) * size, GFP_KERNEL);
226	if (!new)
227		return NULL;
228
229	new->masks_usage_zero_cntr = (u64 *)((u8 *)new +
230					     sizeof(struct mask_array) +
231					     sizeof(struct sw_flow_mask *) *
232					     size);
233
234	new->masks_usage_stats = __alloc_percpu(sizeof(struct mask_array_stats) +
235						sizeof(u64) * size,
236						__alignof__(u64));
237	if (!new->masks_usage_stats) {
238		kfree(new);
239		return NULL;
240	}
241
242	new->count = 0;
243	new->max = size;
244
245	return new;
246}
247
248static int tbl_mask_array_realloc(struct flow_table *tbl, int size)
249{
250	struct mask_array *old;
251	struct mask_array *new;
252
253	new = tbl_mask_array_alloc(size);
254	if (!new)
255		return -ENOMEM;
256
257	old = ovsl_dereference(tbl->mask_array);
258	if (old) {
259		int i;
260
261		for (i = 0; i < old->max; i++) {
262			if (ovsl_dereference(old->masks[i]))
263				new->masks[new->count++] = old->masks[i];
264		}
265		call_rcu(&old->rcu, mask_array_rcu_cb);
266	}
267
268	rcu_assign_pointer(tbl->mask_array, new);
269
270	return 0;
271}
272
273static int tbl_mask_array_add_mask(struct flow_table *tbl,
274				   struct sw_flow_mask *new)
275{
276	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
277	int err, ma_count = READ_ONCE(ma->count);
278
279	if (ma_count >= ma->max) {
280		err = tbl_mask_array_realloc(tbl, ma->max +
281						  MASK_ARRAY_SIZE_MIN);
282		if (err)
283			return err;
284
285		ma = ovsl_dereference(tbl->mask_array);
286	} else {
287		/* On every add or delete we need to reset the counters so
288		 * every new mask gets a fair chance of being prioritized.
289		 */
290		tbl_mask_array_reset_counters(ma);
291	}
292
293	BUG_ON(ovsl_dereference(ma->masks[ma_count]));
294
295	rcu_assign_pointer(ma->masks[ma_count], new);
296	WRITE_ONCE(ma->count, ma_count + 1);
297
298	return 0;
299}
300
301static void tbl_mask_array_del_mask(struct flow_table *tbl,
302				    struct sw_flow_mask *mask)
303{
304	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
305	int i, ma_count = READ_ONCE(ma->count);
306
307	/* Remove the deleted mask pointers from the array */
308	for (i = 0; i < ma_count; i++) {
309		if (mask == ovsl_dereference(ma->masks[i]))
310			goto found;
311	}
312
313	BUG();
314	return;
315
316found:
317	WRITE_ONCE(ma->count, ma_count - 1);
318
319	rcu_assign_pointer(ma->masks[i], ma->masks[ma_count - 1]);
320	RCU_INIT_POINTER(ma->masks[ma_count - 1], NULL);
321
322	kfree_rcu(mask, rcu);
323
324	/* Shrink the mask array if necessary. */
325	if (ma->max >= (MASK_ARRAY_SIZE_MIN * 2) &&
326	    ma_count <= (ma->max / 3))
327		tbl_mask_array_realloc(tbl, ma->max / 2);
328	else
329		tbl_mask_array_reset_counters(ma);
330
331}
332
333/* Remove 'mask' from the mask list, if it is not needed any more. */
334static void flow_mask_remove(struct flow_table *tbl, struct sw_flow_mask *mask)
335{
336	if (mask) {
337		/* ovs-lock is required to protect mask-refcount and
338		 * mask list.
339		 */
340		ASSERT_OVSL();
341		BUG_ON(!mask->ref_count);
342		mask->ref_count--;
343
344		if (!mask->ref_count)
345			tbl_mask_array_del_mask(tbl, mask);
346	}
347}
348
349static void __mask_cache_destroy(struct mask_cache *mc)
350{
351	free_percpu(mc->mask_cache);
352	kfree(mc);
353}
354
355static void mask_cache_rcu_cb(struct rcu_head *rcu)
356{
357	struct mask_cache *mc = container_of(rcu, struct mask_cache, rcu);
358
359	__mask_cache_destroy(mc);
360}
361
362static struct mask_cache *tbl_mask_cache_alloc(u32 size)
363{
364	struct mask_cache_entry __percpu *cache = NULL;
365	struct mask_cache *new;
366
367	/* Only allow size to be 0, or a power of 2, and does not exceed
368	 * percpu allocation size.
369	 */
370	if ((!is_power_of_2(size) && size != 0) ||
371	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
372		return NULL;
373
374	new = kzalloc(sizeof(*new), GFP_KERNEL);
375	if (!new)
376		return NULL;
377
378	new->cache_size = size;
379	if (new->cache_size > 0) {
380		cache = __alloc_percpu(array_size(sizeof(struct mask_cache_entry),
381						  new->cache_size),
382				       __alignof__(struct mask_cache_entry));
383		if (!cache) {
384			kfree(new);
385			return NULL;
386		}
387	}
388
389	new->mask_cache = cache;
390	return new;
391}
392int ovs_flow_tbl_masks_cache_resize(struct flow_table *table, u32 size)
393{
394	struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
395	struct mask_cache *new;
396
397	if (size == mc->cache_size)
398		return 0;
399
400	if ((!is_power_of_2(size) && size != 0) ||
401	    (size * sizeof(struct mask_cache_entry)) > PCPU_MIN_UNIT_SIZE)
402		return -EINVAL;
403
404	new = tbl_mask_cache_alloc(size);
405	if (!new)
406		return -ENOMEM;
407
408	rcu_assign_pointer(table->mask_cache, new);
409	call_rcu(&mc->rcu, mask_cache_rcu_cb);
410
411	return 0;
412}
413
414int ovs_flow_tbl_init(struct flow_table *table)
415{
416	struct table_instance *ti, *ufid_ti;
417	struct mask_cache *mc;
418	struct mask_array *ma;
419
420	mc = tbl_mask_cache_alloc(MC_DEFAULT_HASH_ENTRIES);
421	if (!mc)
422		return -ENOMEM;
423
424	ma = tbl_mask_array_alloc(MASK_ARRAY_SIZE_MIN);
425	if (!ma)
426		goto free_mask_cache;
427
428	ti = table_instance_alloc(TBL_MIN_BUCKETS);
429	if (!ti)
430		goto free_mask_array;
431
432	ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
433	if (!ufid_ti)
434		goto free_ti;
435
436	rcu_assign_pointer(table->ti, ti);
437	rcu_assign_pointer(table->ufid_ti, ufid_ti);
438	rcu_assign_pointer(table->mask_array, ma);
439	rcu_assign_pointer(table->mask_cache, mc);
440	table->last_rehash = jiffies;
441	table->count = 0;
442	table->ufid_count = 0;
443	return 0;
444
445free_ti:
446	__table_instance_destroy(ti);
447free_mask_array:
448	__mask_array_destroy(ma);
449free_mask_cache:
450	__mask_cache_destroy(mc);
451	return -ENOMEM;
452}
453
454static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu)
455{
456	struct table_instance *ti;
457
458	ti = container_of(rcu, struct table_instance, rcu);
459	__table_instance_destroy(ti);
460}
461
462static void table_instance_flow_free(struct flow_table *table,
463				     struct table_instance *ti,
464				     struct table_instance *ufid_ti,
465				     struct sw_flow *flow)
466{
467	hlist_del_rcu(&flow->flow_table.node[ti->node_ver]);
468	table->count--;
469
470	if (ovs_identifier_is_ufid(&flow->id)) {
471		hlist_del_rcu(&flow->ufid_table.node[ufid_ti->node_ver]);
472		table->ufid_count--;
473	}
474
475	flow_mask_remove(table, flow->mask);
476}
477
478/* Must be called with OVS mutex held. */
479void table_instance_flow_flush(struct flow_table *table,
480			       struct table_instance *ti,
481			       struct table_instance *ufid_ti)
482{
483	int i;
484
485	for (i = 0; i < ti->n_buckets; i++) {
486		struct hlist_head *head = &ti->buckets[i];
487		struct hlist_node *n;
488		struct sw_flow *flow;
489
490		hlist_for_each_entry_safe(flow, n, head,
491					  flow_table.node[ti->node_ver]) {
492
493			table_instance_flow_free(table, ti, ufid_ti,
494						 flow);
495			ovs_flow_free(flow, true);
496		}
497	}
498
499	if (WARN_ON(table->count != 0 ||
500		    table->ufid_count != 0)) {
501		table->count = 0;
502		table->ufid_count = 0;
503	}
504}
505
506static void table_instance_destroy(struct table_instance *ti,
507				   struct table_instance *ufid_ti)
508{
509	call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
510	call_rcu(&ufid_ti->rcu, flow_tbl_destroy_rcu_cb);
511}
512
513/* No need for locking this function is called from RCU callback or
514 * error path.
515 */
516void ovs_flow_tbl_destroy(struct flow_table *table)
517{
518	struct table_instance *ti = rcu_dereference_raw(table->ti);
519	struct table_instance *ufid_ti = rcu_dereference_raw(table->ufid_ti);
520	struct mask_cache *mc = rcu_dereference_raw(table->mask_cache);
521	struct mask_array *ma = rcu_dereference_raw(table->mask_array);
522
523	call_rcu(&mc->rcu, mask_cache_rcu_cb);
524	call_rcu(&ma->rcu, mask_array_rcu_cb);
525	table_instance_destroy(ti, ufid_ti);
526}
527
528struct sw_flow *ovs_flow_tbl_dump_next(struct table_instance *ti,
529				       u32 *bucket, u32 *last)
530{
531	struct sw_flow *flow;
532	struct hlist_head *head;
533	int ver;
534	int i;
535
536	ver = ti->node_ver;
537	while (*bucket < ti->n_buckets) {
538		i = 0;
539		head = &ti->buckets[*bucket];
540		hlist_for_each_entry_rcu(flow, head, flow_table.node[ver]) {
541			if (i < *last) {
542				i++;
543				continue;
544			}
545			*last = i + 1;
546			return flow;
547		}
548		(*bucket)++;
549		*last = 0;
550	}
551
552	return NULL;
553}
554
555static struct hlist_head *find_bucket(struct table_instance *ti, u32 hash)
556{
557	hash = jhash_1word(hash, ti->hash_seed);
558	return &ti->buckets[hash & (ti->n_buckets - 1)];
559}
560
561static void table_instance_insert(struct table_instance *ti,
562				  struct sw_flow *flow)
563{
564	struct hlist_head *head;
565
566	head = find_bucket(ti, flow->flow_table.hash);
567	hlist_add_head_rcu(&flow->flow_table.node[ti->node_ver], head);
568}
569
570static void ufid_table_instance_insert(struct table_instance *ti,
571				       struct sw_flow *flow)
572{
573	struct hlist_head *head;
574
575	head = find_bucket(ti, flow->ufid_table.hash);
576	hlist_add_head_rcu(&flow->ufid_table.node[ti->node_ver], head);
577}
578
579static void flow_table_copy_flows(struct table_instance *old,
580				  struct table_instance *new, bool ufid)
581{
582	int old_ver;
583	int i;
584
585	old_ver = old->node_ver;
586	new->node_ver = !old_ver;
587
588	/* Insert in new table. */
589	for (i = 0; i < old->n_buckets; i++) {
590		struct sw_flow *flow;
591		struct hlist_head *head = &old->buckets[i];
592
593		if (ufid)
594			hlist_for_each_entry_rcu(flow, head,
595						 ufid_table.node[old_ver],
596						 lockdep_ovsl_is_held())
597				ufid_table_instance_insert(new, flow);
598		else
599			hlist_for_each_entry_rcu(flow, head,
600						 flow_table.node[old_ver],
601						 lockdep_ovsl_is_held())
602				table_instance_insert(new, flow);
603	}
604}
605
606static struct table_instance *table_instance_rehash(struct table_instance *ti,
607						    int n_buckets, bool ufid)
608{
609	struct table_instance *new_ti;
610
611	new_ti = table_instance_alloc(n_buckets);
612	if (!new_ti)
613		return NULL;
614
615	flow_table_copy_flows(ti, new_ti, ufid);
616
617	return new_ti;
618}
619
620int ovs_flow_tbl_flush(struct flow_table *flow_table)
621{
622	struct table_instance *old_ti, *new_ti;
623	struct table_instance *old_ufid_ti, *new_ufid_ti;
624
625	new_ti = table_instance_alloc(TBL_MIN_BUCKETS);
626	if (!new_ti)
627		return -ENOMEM;
628	new_ufid_ti = table_instance_alloc(TBL_MIN_BUCKETS);
629	if (!new_ufid_ti)
630		goto err_free_ti;
631
632	old_ti = ovsl_dereference(flow_table->ti);
633	old_ufid_ti = ovsl_dereference(flow_table->ufid_ti);
634
635	rcu_assign_pointer(flow_table->ti, new_ti);
636	rcu_assign_pointer(flow_table->ufid_ti, new_ufid_ti);
637	flow_table->last_rehash = jiffies;
638
639	table_instance_flow_flush(flow_table, old_ti, old_ufid_ti);
640	table_instance_destroy(old_ti, old_ufid_ti);
641	return 0;
642
643err_free_ti:
644	__table_instance_destroy(new_ti);
645	return -ENOMEM;
646}
647
648static u32 flow_hash(const struct sw_flow_key *key,
649		     const struct sw_flow_key_range *range)
650{
651	const u32 *hash_key = (const u32 *)((const u8 *)key + range->start);
652
653	/* Make sure number of hash bytes are multiple of u32. */
654	int hash_u32s = range_n_bytes(range) >> 2;
655
656	return jhash2(hash_key, hash_u32s, 0);
657}
658
659static int flow_key_start(const struct sw_flow_key *key)
660{
661	if (key->tun_proto)
662		return 0;
663	else
664		return rounddown(offsetof(struct sw_flow_key, phy),
665				 sizeof(long));
666}
667
668static bool cmp_key(const struct sw_flow_key *key1,
669		    const struct sw_flow_key *key2,
670		    int key_start, int key_end)
671{
672	const long *cp1 = (const long *)((const u8 *)key1 + key_start);
673	const long *cp2 = (const long *)((const u8 *)key2 + key_start);
674	int i;
675
676	for (i = key_start; i < key_end; i += sizeof(long))
677		if (*cp1++ ^ *cp2++)
678			return false;
679
680	return true;
681}
682
683static bool flow_cmp_masked_key(const struct sw_flow *flow,
684				const struct sw_flow_key *key,
685				const struct sw_flow_key_range *range)
686{
687	return cmp_key(&flow->key, key, range->start, range->end);
688}
689
690static bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow,
691				      const struct sw_flow_match *match)
692{
693	struct sw_flow_key *key = match->key;
694	int key_start = flow_key_start(key);
695	int key_end = match->range.end;
696
697	BUG_ON(ovs_identifier_is_ufid(&flow->id));
698	return cmp_key(flow->id.unmasked_key, key, key_start, key_end);
699}
700
701static struct sw_flow *masked_flow_lookup(struct table_instance *ti,
702					  const struct sw_flow_key *unmasked,
703					  const struct sw_flow_mask *mask,
704					  u32 *n_mask_hit)
705{
706	struct sw_flow *flow;
707	struct hlist_head *head;
708	u32 hash;
709	struct sw_flow_key masked_key;
710
711	ovs_flow_mask_key(&masked_key, unmasked, false, mask);
712	hash = flow_hash(&masked_key, &mask->range);
713	head = find_bucket(ti, hash);
714	(*n_mask_hit)++;
715
716	hlist_for_each_entry_rcu(flow, head, flow_table.node[ti->node_ver],
717				 lockdep_ovsl_is_held()) {
718		if (flow->mask == mask && flow->flow_table.hash == hash &&
719		    flow_cmp_masked_key(flow, &masked_key, &mask->range))
720			return flow;
721	}
722	return NULL;
723}
724
725/* Flow lookup does full lookup on flow table. It starts with
726 * mask from index passed in *index.
727 * This function MUST be called with BH disabled due to the use
728 * of CPU specific variables.
729 */
730static struct sw_flow *flow_lookup(struct flow_table *tbl,
731				   struct table_instance *ti,
732				   struct mask_array *ma,
733				   const struct sw_flow_key *key,
734				   u32 *n_mask_hit,
735				   u32 *n_cache_hit,
736				   u32 *index)
737{
738	struct mask_array_stats *stats = this_cpu_ptr(ma->masks_usage_stats);
739	struct sw_flow *flow;
740	struct sw_flow_mask *mask;
741	int i;
742
743	if (likely(*index < ma->max)) {
744		mask = rcu_dereference_ovsl(ma->masks[*index]);
745		if (mask) {
746			flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
747			if (flow) {
748				u64_stats_update_begin(&stats->syncp);
749				stats->usage_cntrs[*index]++;
750				u64_stats_update_end(&stats->syncp);
751				(*n_cache_hit)++;
752				return flow;
753			}
754		}
755	}
756
757	for (i = 0; i < ma->max; i++)  {
758
759		if (i == *index)
760			continue;
761
762		mask = rcu_dereference_ovsl(ma->masks[i]);
763		if (unlikely(!mask))
764			break;
765
766		flow = masked_flow_lookup(ti, key, mask, n_mask_hit);
767		if (flow) { /* Found */
768			*index = i;
769			u64_stats_update_begin(&stats->syncp);
770			stats->usage_cntrs[*index]++;
771			u64_stats_update_end(&stats->syncp);
772			return flow;
773		}
774	}
775
776	return NULL;
777}
778
779/*
780 * mask_cache maps flow to probable mask. This cache is not tightly
781 * coupled cache, It means updates to  mask list can result in inconsistent
782 * cache entry in mask cache.
783 * This is per cpu cache and is divided in MC_HASH_SEGS segments.
784 * In case of a hash collision the entry is hashed in next segment.
785 * */
786struct sw_flow *ovs_flow_tbl_lookup_stats(struct flow_table *tbl,
787					  const struct sw_flow_key *key,
788					  u32 skb_hash,
789					  u32 *n_mask_hit,
790					  u32 *n_cache_hit)
791{
792	struct mask_cache *mc = rcu_dereference(tbl->mask_cache);
793	struct mask_array *ma = rcu_dereference(tbl->mask_array);
794	struct table_instance *ti = rcu_dereference(tbl->ti);
795	struct mask_cache_entry *entries, *ce;
796	struct sw_flow *flow;
797	u32 hash;
798	int seg;
799
800	*n_mask_hit = 0;
801	*n_cache_hit = 0;
802	if (unlikely(!skb_hash || mc->cache_size == 0)) {
803		u32 mask_index = 0;
804		u32 cache = 0;
805
806		return flow_lookup(tbl, ti, ma, key, n_mask_hit, &cache,
807				   &mask_index);
808	}
809
810	/* Pre and post recirulation flows usually have the same skb_hash
811	 * value. To avoid hash collisions, rehash the 'skb_hash' with
812	 * 'recirc_id'.  */
813	if (key->recirc_id)
814		skb_hash = jhash_1word(skb_hash, key->recirc_id);
815
816	ce = NULL;
817	hash = skb_hash;
818	entries = this_cpu_ptr(mc->mask_cache);
819
820	/* Find the cache entry 'ce' to operate on. */
821	for (seg = 0; seg < MC_HASH_SEGS; seg++) {
822		int index = hash & (mc->cache_size - 1);
823		struct mask_cache_entry *e;
824
825		e = &entries[index];
826		if (e->skb_hash == skb_hash) {
827			flow = flow_lookup(tbl, ti, ma, key, n_mask_hit,
828					   n_cache_hit, &e->mask_index);
829			if (!flow)
830				e->skb_hash = 0;
831			return flow;
832		}
833
834		if (!ce || e->skb_hash < ce->skb_hash)
835			ce = e;  /* A better replacement cache candidate. */
836
837		hash >>= MC_HASH_SHIFT;
838	}
839
840	/* Cache miss, do full lookup. */
841	flow = flow_lookup(tbl, ti, ma, key, n_mask_hit, n_cache_hit,
842			   &ce->mask_index);
843	if (flow)
844		ce->skb_hash = skb_hash;
845
846	*n_cache_hit = 0;
847	return flow;
848}
849
850struct sw_flow *ovs_flow_tbl_lookup(struct flow_table *tbl,
851				    const struct sw_flow_key *key)
852{
853	struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
854	struct mask_array *ma = rcu_dereference_ovsl(tbl->mask_array);
855	u32 __always_unused n_mask_hit;
856	u32 __always_unused n_cache_hit;
857	struct sw_flow *flow;
858	u32 index = 0;
859
860	/* This function gets called trough the netlink interface and therefore
861	 * is preemptible. However, flow_lookup() function needs to be called
862	 * with BH disabled due to CPU specific variables.
863	 */
864	local_bh_disable();
865	flow = flow_lookup(tbl, ti, ma, key, &n_mask_hit, &n_cache_hit, &index);
866	local_bh_enable();
867	return flow;
868}
869
870struct sw_flow *ovs_flow_tbl_lookup_exact(struct flow_table *tbl,
871					  const struct sw_flow_match *match)
872{
873	struct mask_array *ma = ovsl_dereference(tbl->mask_array);
874	int i;
875
876	/* Always called under ovs-mutex. */
877	for (i = 0; i < ma->max; i++) {
878		struct table_instance *ti = rcu_dereference_ovsl(tbl->ti);
879		u32 __always_unused n_mask_hit;
880		struct sw_flow_mask *mask;
881		struct sw_flow *flow;
882
883		mask = ovsl_dereference(ma->masks[i]);
884		if (!mask)
885			continue;
886
887		flow = masked_flow_lookup(ti, match->key, mask, &n_mask_hit);
888		if (flow && ovs_identifier_is_key(&flow->id) &&
889		    ovs_flow_cmp_unmasked_key(flow, match)) {
890			return flow;
891		}
892	}
893
894	return NULL;
895}
896
897static u32 ufid_hash(const struct sw_flow_id *sfid)
898{
899	return jhash(sfid->ufid, sfid->ufid_len, 0);
900}
901
902static bool ovs_flow_cmp_ufid(const struct sw_flow *flow,
903			      const struct sw_flow_id *sfid)
904{
905	if (flow->id.ufid_len != sfid->ufid_len)
906		return false;
907
908	return !memcmp(flow->id.ufid, sfid->ufid, sfid->ufid_len);
909}
910
911bool ovs_flow_cmp(const struct sw_flow *flow,
912		  const struct sw_flow_match *match)
913{
914	if (ovs_identifier_is_ufid(&flow->id))
915		return flow_cmp_masked_key(flow, match->key, &match->range);
916
917	return ovs_flow_cmp_unmasked_key(flow, match);
918}
919
920struct sw_flow *ovs_flow_tbl_lookup_ufid(struct flow_table *tbl,
921					 const struct sw_flow_id *ufid)
922{
923	struct table_instance *ti = rcu_dereference_ovsl(tbl->ufid_ti);
924	struct sw_flow *flow;
925	struct hlist_head *head;
926	u32 hash;
927
928	hash = ufid_hash(ufid);
929	head = find_bucket(ti, hash);
930	hlist_for_each_entry_rcu(flow, head, ufid_table.node[ti->node_ver],
931				 lockdep_ovsl_is_held()) {
932		if (flow->ufid_table.hash == hash &&
933		    ovs_flow_cmp_ufid(flow, ufid))
934			return flow;
935	}
936	return NULL;
937}
938
939int ovs_flow_tbl_num_masks(const struct flow_table *table)
940{
941	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
942	return READ_ONCE(ma->count);
943}
944
945u32 ovs_flow_tbl_masks_cache_size(const struct flow_table *table)
946{
947	struct mask_cache *mc = rcu_dereference_ovsl(table->mask_cache);
948
949	return READ_ONCE(mc->cache_size);
950}
951
952static struct table_instance *table_instance_expand(struct table_instance *ti,
953						    bool ufid)
954{
955	return table_instance_rehash(ti, ti->n_buckets * 2, ufid);
956}
957
958/* Must be called with OVS mutex held. */
959void ovs_flow_tbl_remove(struct flow_table *table, struct sw_flow *flow)
960{
961	struct table_instance *ti = ovsl_dereference(table->ti);
962	struct table_instance *ufid_ti = ovsl_dereference(table->ufid_ti);
963
964	BUG_ON(table->count == 0);
965	table_instance_flow_free(table, ti, ufid_ti, flow);
966}
967
968static struct sw_flow_mask *mask_alloc(void)
969{
970	struct sw_flow_mask *mask;
971
972	mask = kmalloc(sizeof(*mask), GFP_KERNEL);
973	if (mask)
974		mask->ref_count = 1;
975
976	return mask;
977}
978
979static bool mask_equal(const struct sw_flow_mask *a,
980		       const struct sw_flow_mask *b)
981{
982	const u8 *a_ = (const u8 *)&a->key + a->range.start;
983	const u8 *b_ = (const u8 *)&b->key + b->range.start;
984
985	return  (a->range.end == b->range.end)
986		&& (a->range.start == b->range.start)
987		&& (memcmp(a_, b_, range_n_bytes(&a->range)) == 0);
988}
989
990static struct sw_flow_mask *flow_mask_find(const struct flow_table *tbl,
991					   const struct sw_flow_mask *mask)
992{
993	struct mask_array *ma;
994	int i;
995
996	ma = ovsl_dereference(tbl->mask_array);
997	for (i = 0; i < ma->max; i++) {
998		struct sw_flow_mask *t;
999		t = ovsl_dereference(ma->masks[i]);
1000
1001		if (t && mask_equal(mask, t))
1002			return t;
1003	}
1004
1005	return NULL;
1006}
1007
1008/* Add 'mask' into the mask list, if it is not already there. */
1009static int flow_mask_insert(struct flow_table *tbl, struct sw_flow *flow,
1010			    const struct sw_flow_mask *new)
1011{
1012	struct sw_flow_mask *mask;
1013
1014	mask = flow_mask_find(tbl, new);
1015	if (!mask) {
1016		/* Allocate a new mask if none exists. */
1017		mask = mask_alloc();
1018		if (!mask)
1019			return -ENOMEM;
1020		mask->key = new->key;
1021		mask->range = new->range;
1022
1023		/* Add mask to mask-list. */
1024		if (tbl_mask_array_add_mask(tbl, mask)) {
1025			kfree(mask);
1026			return -ENOMEM;
1027		}
1028	} else {
1029		BUG_ON(!mask->ref_count);
1030		mask->ref_count++;
1031	}
1032
1033	flow->mask = mask;
1034	return 0;
1035}
1036
1037/* Must be called with OVS mutex held. */
1038static void flow_key_insert(struct flow_table *table, struct sw_flow *flow)
1039{
1040	struct table_instance *new_ti = NULL;
1041	struct table_instance *ti;
1042
1043	flow->flow_table.hash = flow_hash(&flow->key, &flow->mask->range);
1044	ti = ovsl_dereference(table->ti);
1045	table_instance_insert(ti, flow);
1046	table->count++;
1047
1048	/* Expand table, if necessary, to make room. */
1049	if (table->count > ti->n_buckets)
1050		new_ti = table_instance_expand(ti, false);
1051	else if (time_after(jiffies, table->last_rehash + REHASH_INTERVAL))
1052		new_ti = table_instance_rehash(ti, ti->n_buckets, false);
1053
1054	if (new_ti) {
1055		rcu_assign_pointer(table->ti, new_ti);
1056		call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1057		table->last_rehash = jiffies;
1058	}
1059}
1060
1061/* Must be called with OVS mutex held. */
1062static void flow_ufid_insert(struct flow_table *table, struct sw_flow *flow)
1063{
1064	struct table_instance *ti;
1065
1066	flow->ufid_table.hash = ufid_hash(&flow->id);
1067	ti = ovsl_dereference(table->ufid_ti);
1068	ufid_table_instance_insert(ti, flow);
1069	table->ufid_count++;
1070
1071	/* Expand table, if necessary, to make room. */
1072	if (table->ufid_count > ti->n_buckets) {
1073		struct table_instance *new_ti;
1074
1075		new_ti = table_instance_expand(ti, true);
1076		if (new_ti) {
1077			rcu_assign_pointer(table->ufid_ti, new_ti);
1078			call_rcu(&ti->rcu, flow_tbl_destroy_rcu_cb);
1079		}
1080	}
1081}
1082
1083/* Must be called with OVS mutex held. */
1084int ovs_flow_tbl_insert(struct flow_table *table, struct sw_flow *flow,
1085			const struct sw_flow_mask *mask)
1086{
1087	int err;
1088
1089	err = flow_mask_insert(table, flow, mask);
1090	if (err)
1091		return err;
1092	flow_key_insert(table, flow);
1093	if (ovs_identifier_is_ufid(&flow->id))
1094		flow_ufid_insert(table, flow);
1095
1096	return 0;
1097}
1098
1099static int compare_mask_and_count(const void *a, const void *b)
1100{
1101	const struct mask_count *mc_a = a;
1102	const struct mask_count *mc_b = b;
1103
1104	return (s64)mc_b->counter - (s64)mc_a->counter;
1105}
1106
1107/* Must be called with OVS mutex held. */
1108void ovs_flow_masks_rebalance(struct flow_table *table)
1109{
1110	struct mask_array *ma = rcu_dereference_ovsl(table->mask_array);
1111	struct mask_count *masks_and_count;
1112	struct mask_array *new;
1113	int masks_entries = 0;
1114	int i;
1115
1116	/* Build array of all current entries with use counters. */
1117	masks_and_count = kmalloc_array(ma->max, sizeof(*masks_and_count),
1118					GFP_KERNEL);
1119	if (!masks_and_count)
1120		return;
1121
1122	for (i = 0; i < ma->max; i++) {
1123		struct sw_flow_mask *mask;
1124		int cpu;
1125
1126		mask = rcu_dereference_ovsl(ma->masks[i]);
1127		if (unlikely(!mask))
1128			break;
1129
1130		masks_and_count[i].index = i;
1131		masks_and_count[i].counter = 0;
1132
1133		for_each_possible_cpu(cpu) {
1134			struct mask_array_stats *stats;
1135			unsigned int start;
1136			u64 counter;
1137
1138			stats = per_cpu_ptr(ma->masks_usage_stats, cpu);
1139			do {
1140				start = u64_stats_fetch_begin(&stats->syncp);
1141				counter = stats->usage_cntrs[i];
1142			} while (u64_stats_fetch_retry(&stats->syncp, start));
1143
1144			masks_and_count[i].counter += counter;
1145		}
1146
1147		/* Subtract the zero count value. */
1148		masks_and_count[i].counter -= ma->masks_usage_zero_cntr[i];
1149
1150		/* Rather than calling tbl_mask_array_reset_counters()
1151		 * below when no change is needed, do it inline here.
1152		 */
1153		ma->masks_usage_zero_cntr[i] += masks_and_count[i].counter;
1154	}
1155
1156	if (i == 0)
1157		goto free_mask_entries;
1158
1159	/* Sort the entries */
1160	masks_entries = i;
1161	sort(masks_and_count, masks_entries, sizeof(*masks_and_count),
1162	     compare_mask_and_count, NULL);
1163
1164	/* If the order is the same, nothing to do... */
1165	for (i = 0; i < masks_entries; i++) {
1166		if (i != masks_and_count[i].index)
1167			break;
1168	}
1169	if (i == masks_entries)
1170		goto free_mask_entries;
1171
1172	/* Rebuilt the new list in order of usage. */
1173	new = tbl_mask_array_alloc(ma->max);
1174	if (!new)
1175		goto free_mask_entries;
1176
1177	for (i = 0; i < masks_entries; i++) {
1178		int index = masks_and_count[i].index;
1179
1180		if (ovsl_dereference(ma->masks[index]))
1181			new->masks[new->count++] = ma->masks[index];
1182	}
1183
1184	rcu_assign_pointer(table->mask_array, new);
1185	call_rcu(&ma->rcu, mask_array_rcu_cb);
1186
1187free_mask_entries:
1188	kfree(masks_and_count);
1189}
1190
1191/* Initializes the flow module.
1192 * Returns zero if successful or a negative error code. */
1193int ovs_flow_init(void)
1194{
1195	BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long));
1196	BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long));
1197
1198	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow)
1199				       + (nr_cpu_ids
1200					  * sizeof(struct sw_flow_stats *))
1201				       + cpumask_size(),
1202				       0, 0, NULL);
1203	if (flow_cache == NULL)
1204		return -ENOMEM;
1205
1206	flow_stats_cache
1207		= kmem_cache_create("sw_flow_stats", sizeof(struct sw_flow_stats),
1208				    0, SLAB_HWCACHE_ALIGN, NULL);
1209	if (flow_stats_cache == NULL) {
1210		kmem_cache_destroy(flow_cache);
1211		flow_cache = NULL;
1212		return -ENOMEM;
1213	}
1214
1215	return 0;
1216}
1217
1218/* Uninitializes the flow module. */
1219void ovs_flow_exit(void)
1220{
1221	kmem_cache_destroy(flow_stats_cache);
1222	kmem_cache_destroy(flow_cache);
1223}
1224