1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <linux/skbuff.h>
9#include <linux/in.h>
10#include <linux/ip.h>
11#include <linux/openvswitch.h>
12#include <linux/sctp.h>
13#include <linux/tcp.h>
14#include <linux/udp.h>
15#include <linux/in6.h>
16#include <linux/if_arp.h>
17#include <linux/if_vlan.h>
18
19#include <net/dst.h>
20#include <net/gso.h>
21#include <net/ip.h>
22#include <net/ipv6.h>
23#include <net/ip6_fib.h>
24#include <net/checksum.h>
25#include <net/dsfield.h>
26#include <net/mpls.h>
27#include <net/sctp/checksum.h>
28
29#include "datapath.h"
30#include "drop.h"
31#include "flow.h"
32#include "conntrack.h"
33#include "vport.h"
34#include "flow_netlink.h"
35#include "openvswitch_trace.h"
36
37struct deferred_action {
38	struct sk_buff *skb;
39	const struct nlattr *actions;
40	int actions_len;
41
42	/* Store pkt_key clone when creating deferred action. */
43	struct sw_flow_key pkt_key;
44};
45
46#define MAX_L2_LEN	(VLAN_ETH_HLEN + 3 * MPLS_HLEN)
47struct ovs_frag_data {
48	unsigned long dst;
49	struct vport *vport;
50	struct ovs_skb_cb cb;
51	__be16 inner_protocol;
52	u16 network_offset;	/* valid only for MPLS */
53	u16 vlan_tci;
54	__be16 vlan_proto;
55	unsigned int l2_len;
56	u8 mac_proto;
57	u8 l2_data[MAX_L2_LEN];
58};
59
60static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
61
62#define DEFERRED_ACTION_FIFO_SIZE 10
63#define OVS_RECURSION_LIMIT 5
64#define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
65struct action_fifo {
66	int head;
67	int tail;
68	/* Deferred action fifo queue storage. */
69	struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
70};
71
72struct action_flow_keys {
73	struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
74};
75
76static struct action_fifo __percpu *action_fifos;
77static struct action_flow_keys __percpu *flow_keys;
78static DEFINE_PER_CPU(int, exec_actions_level);
79
80/* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
81 * space. Return NULL if out of key spaces.
82 */
83static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
84{
85	struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
86	int level = this_cpu_read(exec_actions_level);
87	struct sw_flow_key *key = NULL;
88
89	if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
90		key = &keys->key[level - 1];
91		*key = *key_;
92	}
93
94	return key;
95}
96
97static void action_fifo_init(struct action_fifo *fifo)
98{
99	fifo->head = 0;
100	fifo->tail = 0;
101}
102
103static bool action_fifo_is_empty(const struct action_fifo *fifo)
104{
105	return (fifo->head == fifo->tail);
106}
107
108static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
109{
110	if (action_fifo_is_empty(fifo))
111		return NULL;
112
113	return &fifo->fifo[fifo->tail++];
114}
115
116static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
117{
118	if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
119		return NULL;
120
121	return &fifo->fifo[fifo->head++];
122}
123
124/* Return true if fifo is not full */
125static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
126				    const struct sw_flow_key *key,
127				    const struct nlattr *actions,
128				    const int actions_len)
129{
130	struct action_fifo *fifo;
131	struct deferred_action *da;
132
133	fifo = this_cpu_ptr(action_fifos);
134	da = action_fifo_put(fifo);
135	if (da) {
136		da->skb = skb;
137		da->actions = actions;
138		da->actions_len = actions_len;
139		da->pkt_key = *key;
140	}
141
142	return da;
143}
144
145static void invalidate_flow_key(struct sw_flow_key *key)
146{
147	key->mac_proto |= SW_FLOW_KEY_INVALID;
148}
149
150static bool is_flow_key_valid(const struct sw_flow_key *key)
151{
152	return !(key->mac_proto & SW_FLOW_KEY_INVALID);
153}
154
155static int clone_execute(struct datapath *dp, struct sk_buff *skb,
156			 struct sw_flow_key *key,
157			 u32 recirc_id,
158			 const struct nlattr *actions, int len,
159			 bool last, bool clone_flow_key);
160
161static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
162			      struct sw_flow_key *key,
163			      const struct nlattr *attr, int len);
164
165static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
166		     __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
167{
168	int err;
169
170	err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
171	if (err)
172		return err;
173
174	if (!mac_len)
175		key->mac_proto = MAC_PROTO_NONE;
176
177	invalidate_flow_key(key);
178	return 0;
179}
180
181static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
182		    const __be16 ethertype)
183{
184	int err;
185
186	err = skb_mpls_pop(skb, ethertype, skb->mac_len,
187			   ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
188	if (err)
189		return err;
190
191	if (ethertype == htons(ETH_P_TEB))
192		key->mac_proto = MAC_PROTO_ETHERNET;
193
194	invalidate_flow_key(key);
195	return 0;
196}
197
198static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
199		    const __be32 *mpls_lse, const __be32 *mask)
200{
201	struct mpls_shim_hdr *stack;
202	__be32 lse;
203	int err;
204
205	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
206		return -ENOMEM;
207
208	stack = mpls_hdr(skb);
209	lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
210	err = skb_mpls_update_lse(skb, lse);
211	if (err)
212		return err;
213
214	flow_key->mpls.lse[0] = lse;
215	return 0;
216}
217
218static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
219{
220	int err;
221
222	err = skb_vlan_pop(skb);
223	if (skb_vlan_tag_present(skb)) {
224		invalidate_flow_key(key);
225	} else {
226		key->eth.vlan.tci = 0;
227		key->eth.vlan.tpid = 0;
228	}
229	return err;
230}
231
232static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
233		     const struct ovs_action_push_vlan *vlan)
234{
235	if (skb_vlan_tag_present(skb)) {
236		invalidate_flow_key(key);
237	} else {
238		key->eth.vlan.tci = vlan->vlan_tci;
239		key->eth.vlan.tpid = vlan->vlan_tpid;
240	}
241	return skb_vlan_push(skb, vlan->vlan_tpid,
242			     ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
243}
244
245/* 'src' is already properly masked. */
246static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
247{
248	u16 *dst = (u16 *)dst_;
249	const u16 *src = (const u16 *)src_;
250	const u16 *mask = (const u16 *)mask_;
251
252	OVS_SET_MASKED(dst[0], src[0], mask[0]);
253	OVS_SET_MASKED(dst[1], src[1], mask[1]);
254	OVS_SET_MASKED(dst[2], src[2], mask[2]);
255}
256
257static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
258			const struct ovs_key_ethernet *key,
259			const struct ovs_key_ethernet *mask)
260{
261	int err;
262
263	err = skb_ensure_writable(skb, ETH_HLEN);
264	if (unlikely(err))
265		return err;
266
267	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
268
269	ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
270			       mask->eth_src);
271	ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
272			       mask->eth_dst);
273
274	skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
275
276	ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
277	ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
278	return 0;
279}
280
281/* pop_eth does not support VLAN packets as this action is never called
282 * for them.
283 */
284static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
285{
286	int err;
287
288	err = skb_eth_pop(skb);
289	if (err)
290		return err;
291
292	/* safe right before invalidate_flow_key */
293	key->mac_proto = MAC_PROTO_NONE;
294	invalidate_flow_key(key);
295	return 0;
296}
297
298static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
299		    const struct ovs_action_push_eth *ethh)
300{
301	int err;
302
303	err = skb_eth_push(skb, ethh->addresses.eth_dst,
304			   ethh->addresses.eth_src);
305	if (err)
306		return err;
307
308	/* safe right before invalidate_flow_key */
309	key->mac_proto = MAC_PROTO_ETHERNET;
310	invalidate_flow_key(key);
311	return 0;
312}
313
314static int push_nsh(struct sk_buff *skb, struct sw_flow_key *key,
315		    const struct nshhdr *nh)
316{
317	int err;
318
319	err = nsh_push(skb, nh);
320	if (err)
321		return err;
322
323	/* safe right before invalidate_flow_key */
324	key->mac_proto = MAC_PROTO_NONE;
325	invalidate_flow_key(key);
326	return 0;
327}
328
329static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
330{
331	int err;
332
333	err = nsh_pop(skb);
334	if (err)
335		return err;
336
337	/* safe right before invalidate_flow_key */
338	if (skb->protocol == htons(ETH_P_TEB))
339		key->mac_proto = MAC_PROTO_ETHERNET;
340	else
341		key->mac_proto = MAC_PROTO_NONE;
342	invalidate_flow_key(key);
343	return 0;
344}
345
346static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
347				  __be32 addr, __be32 new_addr)
348{
349	int transport_len = skb->len - skb_transport_offset(skb);
350
351	if (nh->frag_off & htons(IP_OFFSET))
352		return;
353
354	if (nh->protocol == IPPROTO_TCP) {
355		if (likely(transport_len >= sizeof(struct tcphdr)))
356			inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
357						 addr, new_addr, true);
358	} else if (nh->protocol == IPPROTO_UDP) {
359		if (likely(transport_len >= sizeof(struct udphdr))) {
360			struct udphdr *uh = udp_hdr(skb);
361
362			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
363				inet_proto_csum_replace4(&uh->check, skb,
364							 addr, new_addr, true);
365				if (!uh->check)
366					uh->check = CSUM_MANGLED_0;
367			}
368		}
369	}
370}
371
372static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
373			__be32 *addr, __be32 new_addr)
374{
375	update_ip_l4_checksum(skb, nh, *addr, new_addr);
376	csum_replace4(&nh->check, *addr, new_addr);
377	skb_clear_hash(skb);
378	ovs_ct_clear(skb, NULL);
379	*addr = new_addr;
380}
381
382static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
383				 __be32 addr[4], const __be32 new_addr[4])
384{
385	int transport_len = skb->len - skb_transport_offset(skb);
386
387	if (l4_proto == NEXTHDR_TCP) {
388		if (likely(transport_len >= sizeof(struct tcphdr)))
389			inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
390						  addr, new_addr, true);
391	} else if (l4_proto == NEXTHDR_UDP) {
392		if (likely(transport_len >= sizeof(struct udphdr))) {
393			struct udphdr *uh = udp_hdr(skb);
394
395			if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
396				inet_proto_csum_replace16(&uh->check, skb,
397							  addr, new_addr, true);
398				if (!uh->check)
399					uh->check = CSUM_MANGLED_0;
400			}
401		}
402	} else if (l4_proto == NEXTHDR_ICMP) {
403		if (likely(transport_len >= sizeof(struct icmp6hdr)))
404			inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
405						  skb, addr, new_addr, true);
406	}
407}
408
409static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
410			   const __be32 mask[4], __be32 masked[4])
411{
412	masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
413	masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
414	masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
415	masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
416}
417
418static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
419			  __be32 addr[4], const __be32 new_addr[4],
420			  bool recalculate_csum)
421{
422	if (recalculate_csum)
423		update_ipv6_checksum(skb, l4_proto, addr, new_addr);
424
425	skb_clear_hash(skb);
426	ovs_ct_clear(skb, NULL);
427	memcpy(addr, new_addr, sizeof(__be32[4]));
428}
429
430static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
431{
432	u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
433
434	ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
435
436	if (skb->ip_summed == CHECKSUM_COMPLETE)
437		csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
438			     (__force __wsum)(ipv6_tclass << 12));
439
440	ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
441}
442
443static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
444{
445	u32 ofl;
446
447	ofl = nh->flow_lbl[0] << 16 |  nh->flow_lbl[1] << 8 |  nh->flow_lbl[2];
448	fl = OVS_MASKED(ofl, fl, mask);
449
450	/* Bits 21-24 are always unmasked, so this retains their values. */
451	nh->flow_lbl[0] = (u8)(fl >> 16);
452	nh->flow_lbl[1] = (u8)(fl >> 8);
453	nh->flow_lbl[2] = (u8)fl;
454
455	if (skb->ip_summed == CHECKSUM_COMPLETE)
456		csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
457}
458
459static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
460{
461	new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
462
463	if (skb->ip_summed == CHECKSUM_COMPLETE)
464		csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
465			     (__force __wsum)(new_ttl << 8));
466	nh->hop_limit = new_ttl;
467}
468
469static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
470		       u8 mask)
471{
472	new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
473
474	csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
475	nh->ttl = new_ttl;
476}
477
478static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
479		    const struct ovs_key_ipv4 *key,
480		    const struct ovs_key_ipv4 *mask)
481{
482	struct iphdr *nh;
483	__be32 new_addr;
484	int err;
485
486	err = skb_ensure_writable(skb, skb_network_offset(skb) +
487				  sizeof(struct iphdr));
488	if (unlikely(err))
489		return err;
490
491	nh = ip_hdr(skb);
492
493	/* Setting an IP addresses is typically only a side effect of
494	 * matching on them in the current userspace implementation, so it
495	 * makes sense to check if the value actually changed.
496	 */
497	if (mask->ipv4_src) {
498		new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
499
500		if (unlikely(new_addr != nh->saddr)) {
501			set_ip_addr(skb, nh, &nh->saddr, new_addr);
502			flow_key->ipv4.addr.src = new_addr;
503		}
504	}
505	if (mask->ipv4_dst) {
506		new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
507
508		if (unlikely(new_addr != nh->daddr)) {
509			set_ip_addr(skb, nh, &nh->daddr, new_addr);
510			flow_key->ipv4.addr.dst = new_addr;
511		}
512	}
513	if (mask->ipv4_tos) {
514		ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
515		flow_key->ip.tos = nh->tos;
516	}
517	if (mask->ipv4_ttl) {
518		set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
519		flow_key->ip.ttl = nh->ttl;
520	}
521
522	return 0;
523}
524
525static bool is_ipv6_mask_nonzero(const __be32 addr[4])
526{
527	return !!(addr[0] | addr[1] | addr[2] | addr[3]);
528}
529
530static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
531		    const struct ovs_key_ipv6 *key,
532		    const struct ovs_key_ipv6 *mask)
533{
534	struct ipv6hdr *nh;
535	int err;
536
537	err = skb_ensure_writable(skb, skb_network_offset(skb) +
538				  sizeof(struct ipv6hdr));
539	if (unlikely(err))
540		return err;
541
542	nh = ipv6_hdr(skb);
543
544	/* Setting an IP addresses is typically only a side effect of
545	 * matching on them in the current userspace implementation, so it
546	 * makes sense to check if the value actually changed.
547	 */
548	if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
549		__be32 *saddr = (__be32 *)&nh->saddr;
550		__be32 masked[4];
551
552		mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
553
554		if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
555			set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
556				      true);
557			memcpy(&flow_key->ipv6.addr.src, masked,
558			       sizeof(flow_key->ipv6.addr.src));
559		}
560	}
561	if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
562		unsigned int offset = 0;
563		int flags = IP6_FH_F_SKIP_RH;
564		bool recalc_csum = true;
565		__be32 *daddr = (__be32 *)&nh->daddr;
566		__be32 masked[4];
567
568		mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
569
570		if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
571			if (ipv6_ext_hdr(nh->nexthdr))
572				recalc_csum = (ipv6_find_hdr(skb, &offset,
573							     NEXTHDR_ROUTING,
574							     NULL, &flags)
575					       != NEXTHDR_ROUTING);
576
577			set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
578				      recalc_csum);
579			memcpy(&flow_key->ipv6.addr.dst, masked,
580			       sizeof(flow_key->ipv6.addr.dst));
581		}
582	}
583	if (mask->ipv6_tclass) {
584		set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
585		flow_key->ip.tos = ipv6_get_dsfield(nh);
586	}
587	if (mask->ipv6_label) {
588		set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
589			    ntohl(mask->ipv6_label));
590		flow_key->ipv6.label =
591		    *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
592	}
593	if (mask->ipv6_hlimit) {
594		set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
595		flow_key->ip.ttl = nh->hop_limit;
596	}
597	return 0;
598}
599
600static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
601		   const struct nlattr *a)
602{
603	struct nshhdr *nh;
604	size_t length;
605	int err;
606	u8 flags;
607	u8 ttl;
608	int i;
609
610	struct ovs_key_nsh key;
611	struct ovs_key_nsh mask;
612
613	err = nsh_key_from_nlattr(a, &key, &mask);
614	if (err)
615		return err;
616
617	/* Make sure the NSH base header is there */
618	if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
619		return -ENOMEM;
620
621	nh = nsh_hdr(skb);
622	length = nsh_hdr_len(nh);
623
624	/* Make sure the whole NSH header is there */
625	err = skb_ensure_writable(skb, skb_network_offset(skb) +
626				       length);
627	if (unlikely(err))
628		return err;
629
630	nh = nsh_hdr(skb);
631	skb_postpull_rcsum(skb, nh, length);
632	flags = nsh_get_flags(nh);
633	flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
634	flow_key->nsh.base.flags = flags;
635	ttl = nsh_get_ttl(nh);
636	ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
637	flow_key->nsh.base.ttl = ttl;
638	nsh_set_flags_and_ttl(nh, flags, ttl);
639	nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
640				  mask.base.path_hdr);
641	flow_key->nsh.base.path_hdr = nh->path_hdr;
642	switch (nh->mdtype) {
643	case NSH_M_TYPE1:
644		for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
645			nh->md1.context[i] =
646			    OVS_MASKED(nh->md1.context[i], key.context[i],
647				       mask.context[i]);
648		}
649		memcpy(flow_key->nsh.context, nh->md1.context,
650		       sizeof(nh->md1.context));
651		break;
652	case NSH_M_TYPE2:
653		memset(flow_key->nsh.context, 0,
654		       sizeof(flow_key->nsh.context));
655		break;
656	default:
657		return -EINVAL;
658	}
659	skb_postpush_rcsum(skb, nh, length);
660	return 0;
661}
662
663/* Must follow skb_ensure_writable() since that can move the skb data. */
664static void set_tp_port(struct sk_buff *skb, __be16 *port,
665			__be16 new_port, __sum16 *check)
666{
667	ovs_ct_clear(skb, NULL);
668	inet_proto_csum_replace2(check, skb, *port, new_port, false);
669	*port = new_port;
670}
671
672static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
673		   const struct ovs_key_udp *key,
674		   const struct ovs_key_udp *mask)
675{
676	struct udphdr *uh;
677	__be16 src, dst;
678	int err;
679
680	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
681				  sizeof(struct udphdr));
682	if (unlikely(err))
683		return err;
684
685	uh = udp_hdr(skb);
686	/* Either of the masks is non-zero, so do not bother checking them. */
687	src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
688	dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
689
690	if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
691		if (likely(src != uh->source)) {
692			set_tp_port(skb, &uh->source, src, &uh->check);
693			flow_key->tp.src = src;
694		}
695		if (likely(dst != uh->dest)) {
696			set_tp_port(skb, &uh->dest, dst, &uh->check);
697			flow_key->tp.dst = dst;
698		}
699
700		if (unlikely(!uh->check))
701			uh->check = CSUM_MANGLED_0;
702	} else {
703		uh->source = src;
704		uh->dest = dst;
705		flow_key->tp.src = src;
706		flow_key->tp.dst = dst;
707		ovs_ct_clear(skb, NULL);
708	}
709
710	skb_clear_hash(skb);
711
712	return 0;
713}
714
715static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
716		   const struct ovs_key_tcp *key,
717		   const struct ovs_key_tcp *mask)
718{
719	struct tcphdr *th;
720	__be16 src, dst;
721	int err;
722
723	err = skb_ensure_writable(skb, skb_transport_offset(skb) +
724				  sizeof(struct tcphdr));
725	if (unlikely(err))
726		return err;
727
728	th = tcp_hdr(skb);
729	src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
730	if (likely(src != th->source)) {
731		set_tp_port(skb, &th->source, src, &th->check);
732		flow_key->tp.src = src;
733	}
734	dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
735	if (likely(dst != th->dest)) {
736		set_tp_port(skb, &th->dest, dst, &th->check);
737		flow_key->tp.dst = dst;
738	}
739	skb_clear_hash(skb);
740
741	return 0;
742}
743
744static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
745		    const struct ovs_key_sctp *key,
746		    const struct ovs_key_sctp *mask)
747{
748	unsigned int sctphoff = skb_transport_offset(skb);
749	struct sctphdr *sh;
750	__le32 old_correct_csum, new_csum, old_csum;
751	int err;
752
753	err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
754	if (unlikely(err))
755		return err;
756
757	sh = sctp_hdr(skb);
758	old_csum = sh->checksum;
759	old_correct_csum = sctp_compute_cksum(skb, sctphoff);
760
761	sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
762	sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
763
764	new_csum = sctp_compute_cksum(skb, sctphoff);
765
766	/* Carry any checksum errors through. */
767	sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
768
769	skb_clear_hash(skb);
770	ovs_ct_clear(skb, NULL);
771
772	flow_key->tp.src = sh->source;
773	flow_key->tp.dst = sh->dest;
774
775	return 0;
776}
777
778static int ovs_vport_output(struct net *net, struct sock *sk,
779			    struct sk_buff *skb)
780{
781	struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
782	struct vport *vport = data->vport;
783
784	if (skb_cow_head(skb, data->l2_len) < 0) {
785		kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
786		return -ENOMEM;
787	}
788
789	__skb_dst_copy(skb, data->dst);
790	*OVS_CB(skb) = data->cb;
791	skb->inner_protocol = data->inner_protocol;
792	if (data->vlan_tci & VLAN_CFI_MASK)
793		__vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
794	else
795		__vlan_hwaccel_clear_tag(skb);
796
797	/* Reconstruct the MAC header.  */
798	skb_push(skb, data->l2_len);
799	memcpy(skb->data, &data->l2_data, data->l2_len);
800	skb_postpush_rcsum(skb, skb->data, data->l2_len);
801	skb_reset_mac_header(skb);
802
803	if (eth_p_mpls(skb->protocol)) {
804		skb->inner_network_header = skb->network_header;
805		skb_set_network_header(skb, data->network_offset);
806		skb_reset_mac_len(skb);
807	}
808
809	ovs_vport_send(vport, skb, data->mac_proto);
810	return 0;
811}
812
813static unsigned int
814ovs_dst_get_mtu(const struct dst_entry *dst)
815{
816	return dst->dev->mtu;
817}
818
819static struct dst_ops ovs_dst_ops = {
820	.family = AF_UNSPEC,
821	.mtu = ovs_dst_get_mtu,
822};
823
824/* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
825 * ovs_vport_output(), which is called once per fragmented packet.
826 */
827static void prepare_frag(struct vport *vport, struct sk_buff *skb,
828			 u16 orig_network_offset, u8 mac_proto)
829{
830	unsigned int hlen = skb_network_offset(skb);
831	struct ovs_frag_data *data;
832
833	data = this_cpu_ptr(&ovs_frag_data_storage);
834	data->dst = skb->_skb_refdst;
835	data->vport = vport;
836	data->cb = *OVS_CB(skb);
837	data->inner_protocol = skb->inner_protocol;
838	data->network_offset = orig_network_offset;
839	if (skb_vlan_tag_present(skb))
840		data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
841	else
842		data->vlan_tci = 0;
843	data->vlan_proto = skb->vlan_proto;
844	data->mac_proto = mac_proto;
845	data->l2_len = hlen;
846	memcpy(&data->l2_data, skb->data, hlen);
847
848	memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
849	skb_pull(skb, hlen);
850}
851
852static void ovs_fragment(struct net *net, struct vport *vport,
853			 struct sk_buff *skb, u16 mru,
854			 struct sw_flow_key *key)
855{
856	enum ovs_drop_reason reason;
857	u16 orig_network_offset = 0;
858
859	if (eth_p_mpls(skb->protocol)) {
860		orig_network_offset = skb_network_offset(skb);
861		skb->network_header = skb->inner_network_header;
862	}
863
864	if (skb_network_offset(skb) > MAX_L2_LEN) {
865		OVS_NLERR(1, "L2 header too long to fragment");
866		reason = OVS_DROP_FRAG_L2_TOO_LONG;
867		goto err;
868	}
869
870	if (key->eth.type == htons(ETH_P_IP)) {
871		struct rtable ovs_rt = { 0 };
872		unsigned long orig_dst;
873
874		prepare_frag(vport, skb, orig_network_offset,
875			     ovs_key_mac_proto(key));
876		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
877			 DST_OBSOLETE_NONE, DST_NOCOUNT);
878		ovs_rt.dst.dev = vport->dev;
879
880		orig_dst = skb->_skb_refdst;
881		skb_dst_set_noref(skb, &ovs_rt.dst);
882		IPCB(skb)->frag_max_size = mru;
883
884		ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
885		refdst_drop(orig_dst);
886	} else if (key->eth.type == htons(ETH_P_IPV6)) {
887		unsigned long orig_dst;
888		struct rt6_info ovs_rt;
889
890		prepare_frag(vport, skb, orig_network_offset,
891			     ovs_key_mac_proto(key));
892		memset(&ovs_rt, 0, sizeof(ovs_rt));
893		dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL, 1,
894			 DST_OBSOLETE_NONE, DST_NOCOUNT);
895		ovs_rt.dst.dev = vport->dev;
896
897		orig_dst = skb->_skb_refdst;
898		skb_dst_set_noref(skb, &ovs_rt.dst);
899		IP6CB(skb)->frag_max_size = mru;
900
901		ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
902		refdst_drop(orig_dst);
903	} else {
904		WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
905			  ovs_vport_name(vport), ntohs(key->eth.type), mru,
906			  vport->dev->mtu);
907		reason = OVS_DROP_FRAG_INVALID_PROTO;
908		goto err;
909	}
910
911	return;
912err:
913	ovs_kfree_skb_reason(skb, reason);
914}
915
916static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
917		      struct sw_flow_key *key)
918{
919	struct vport *vport = ovs_vport_rcu(dp, out_port);
920
921	if (likely(vport && netif_carrier_ok(vport->dev))) {
922		u16 mru = OVS_CB(skb)->mru;
923		u32 cutlen = OVS_CB(skb)->cutlen;
924
925		if (unlikely(cutlen > 0)) {
926			if (skb->len - cutlen > ovs_mac_header_len(key))
927				pskb_trim(skb, skb->len - cutlen);
928			else
929				pskb_trim(skb, ovs_mac_header_len(key));
930		}
931
932		if (likely(!mru ||
933		           (skb->len <= mru + vport->dev->hard_header_len))) {
934			ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
935		} else if (mru <= vport->dev->mtu) {
936			struct net *net = read_pnet(&dp->net);
937
938			ovs_fragment(net, vport, skb, mru, key);
939		} else {
940			kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
941		}
942	} else {
943		kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
944	}
945}
946
947static int output_userspace(struct datapath *dp, struct sk_buff *skb,
948			    struct sw_flow_key *key, const struct nlattr *attr,
949			    const struct nlattr *actions, int actions_len,
950			    uint32_t cutlen)
951{
952	struct dp_upcall_info upcall;
953	const struct nlattr *a;
954	int rem;
955
956	memset(&upcall, 0, sizeof(upcall));
957	upcall.cmd = OVS_PACKET_CMD_ACTION;
958	upcall.mru = OVS_CB(skb)->mru;
959
960	for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
961	     a = nla_next(a, &rem)) {
962		switch (nla_type(a)) {
963		case OVS_USERSPACE_ATTR_USERDATA:
964			upcall.userdata = a;
965			break;
966
967		case OVS_USERSPACE_ATTR_PID:
968			if (dp->user_features &
969			    OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
970				upcall.portid =
971				  ovs_dp_get_upcall_portid(dp,
972							   smp_processor_id());
973			else
974				upcall.portid = nla_get_u32(a);
975			break;
976
977		case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
978			/* Get out tunnel info. */
979			struct vport *vport;
980
981			vport = ovs_vport_rcu(dp, nla_get_u32(a));
982			if (vport) {
983				int err;
984
985				err = dev_fill_metadata_dst(vport->dev, skb);
986				if (!err)
987					upcall.egress_tun_info = skb_tunnel_info(skb);
988			}
989
990			break;
991		}
992
993		case OVS_USERSPACE_ATTR_ACTIONS: {
994			/* Include actions. */
995			upcall.actions = actions;
996			upcall.actions_len = actions_len;
997			break;
998		}
999
1000		} /* End of switch. */
1001	}
1002
1003	return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1004}
1005
1006static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1007				     struct sw_flow_key *key,
1008				     const struct nlattr *attr)
1009{
1010	/* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1011	struct nlattr *actions = nla_data(attr);
1012
1013	if (nla_len(actions))
1014		return clone_execute(dp, skb, key, 0, nla_data(actions),
1015				     nla_len(actions), true, false);
1016
1017	ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1018	return 0;
1019}
1020
1021/* When 'last' is true, sample() should always consume the 'skb'.
1022 * Otherwise, sample() should keep 'skb' intact regardless what
1023 * actions are executed within sample().
1024 */
1025static int sample(struct datapath *dp, struct sk_buff *skb,
1026		  struct sw_flow_key *key, const struct nlattr *attr,
1027		  bool last)
1028{
1029	struct nlattr *actions;
1030	struct nlattr *sample_arg;
1031	int rem = nla_len(attr);
1032	const struct sample_arg *arg;
1033	bool clone_flow_key;
1034
1035	/* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1036	sample_arg = nla_data(attr);
1037	arg = nla_data(sample_arg);
1038	actions = nla_next(sample_arg, &rem);
1039
1040	if ((arg->probability != U32_MAX) &&
1041	    (!arg->probability || get_random_u32() > arg->probability)) {
1042		if (last)
1043			ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1044		return 0;
1045	}
1046
1047	clone_flow_key = !arg->exec;
1048	return clone_execute(dp, skb, key, 0, actions, rem, last,
1049			     clone_flow_key);
1050}
1051
1052/* When 'last' is true, clone() should always consume the 'skb'.
1053 * Otherwise, clone() should keep 'skb' intact regardless what
1054 * actions are executed within clone().
1055 */
1056static int clone(struct datapath *dp, struct sk_buff *skb,
1057		 struct sw_flow_key *key, const struct nlattr *attr,
1058		 bool last)
1059{
1060	struct nlattr *actions;
1061	struct nlattr *clone_arg;
1062	int rem = nla_len(attr);
1063	bool dont_clone_flow_key;
1064
1065	/* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1066	clone_arg = nla_data(attr);
1067	dont_clone_flow_key = nla_get_u32(clone_arg);
1068	actions = nla_next(clone_arg, &rem);
1069
1070	return clone_execute(dp, skb, key, 0, actions, rem, last,
1071			     !dont_clone_flow_key);
1072}
1073
1074static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1075			 const struct nlattr *attr)
1076{
1077	struct ovs_action_hash *hash_act = nla_data(attr);
1078	u32 hash = 0;
1079
1080	if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1081		/* OVS_HASH_ALG_L4 hasing type. */
1082		hash = skb_get_hash(skb);
1083	} else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1084		/* OVS_HASH_ALG_SYM_L4 hashing type.  NOTE: this doesn't
1085		 * extend past an encapsulated header.
1086		 */
1087		hash = __skb_get_hash_symmetric(skb);
1088	}
1089
1090	hash = jhash_1word(hash, hash_act->hash_basis);
1091	if (!hash)
1092		hash = 0x1;
1093
1094	key->ovs_flow_hash = hash;
1095}
1096
1097static int execute_set_action(struct sk_buff *skb,
1098			      struct sw_flow_key *flow_key,
1099			      const struct nlattr *a)
1100{
1101	/* Only tunnel set execution is supported without a mask. */
1102	if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1103		struct ovs_tunnel_info *tun = nla_data(a);
1104
1105		skb_dst_drop(skb);
1106		dst_hold((struct dst_entry *)tun->tun_dst);
1107		skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1108		return 0;
1109	}
1110
1111	return -EINVAL;
1112}
1113
1114/* Mask is at the midpoint of the data. */
1115#define get_mask(a, type) ((const type)nla_data(a) + 1)
1116
1117static int execute_masked_set_action(struct sk_buff *skb,
1118				     struct sw_flow_key *flow_key,
1119				     const struct nlattr *a)
1120{
1121	int err = 0;
1122
1123	switch (nla_type(a)) {
1124	case OVS_KEY_ATTR_PRIORITY:
1125		OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1126			       *get_mask(a, u32 *));
1127		flow_key->phy.priority = skb->priority;
1128		break;
1129
1130	case OVS_KEY_ATTR_SKB_MARK:
1131		OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1132		flow_key->phy.skb_mark = skb->mark;
1133		break;
1134
1135	case OVS_KEY_ATTR_TUNNEL_INFO:
1136		/* Masked data not supported for tunnel. */
1137		err = -EINVAL;
1138		break;
1139
1140	case OVS_KEY_ATTR_ETHERNET:
1141		err = set_eth_addr(skb, flow_key, nla_data(a),
1142				   get_mask(a, struct ovs_key_ethernet *));
1143		break;
1144
1145	case OVS_KEY_ATTR_NSH:
1146		err = set_nsh(skb, flow_key, a);
1147		break;
1148
1149	case OVS_KEY_ATTR_IPV4:
1150		err = set_ipv4(skb, flow_key, nla_data(a),
1151			       get_mask(a, struct ovs_key_ipv4 *));
1152		break;
1153
1154	case OVS_KEY_ATTR_IPV6:
1155		err = set_ipv6(skb, flow_key, nla_data(a),
1156			       get_mask(a, struct ovs_key_ipv6 *));
1157		break;
1158
1159	case OVS_KEY_ATTR_TCP:
1160		err = set_tcp(skb, flow_key, nla_data(a),
1161			      get_mask(a, struct ovs_key_tcp *));
1162		break;
1163
1164	case OVS_KEY_ATTR_UDP:
1165		err = set_udp(skb, flow_key, nla_data(a),
1166			      get_mask(a, struct ovs_key_udp *));
1167		break;
1168
1169	case OVS_KEY_ATTR_SCTP:
1170		err = set_sctp(skb, flow_key, nla_data(a),
1171			       get_mask(a, struct ovs_key_sctp *));
1172		break;
1173
1174	case OVS_KEY_ATTR_MPLS:
1175		err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1176								    __be32 *));
1177		break;
1178
1179	case OVS_KEY_ATTR_CT_STATE:
1180	case OVS_KEY_ATTR_CT_ZONE:
1181	case OVS_KEY_ATTR_CT_MARK:
1182	case OVS_KEY_ATTR_CT_LABELS:
1183	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1184	case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1185		err = -EINVAL;
1186		break;
1187	}
1188
1189	return err;
1190}
1191
1192static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1193			  struct sw_flow_key *key,
1194			  const struct nlattr *a, bool last)
1195{
1196	u32 recirc_id;
1197
1198	if (!is_flow_key_valid(key)) {
1199		int err;
1200
1201		err = ovs_flow_key_update(skb, key);
1202		if (err)
1203			return err;
1204	}
1205	BUG_ON(!is_flow_key_valid(key));
1206
1207	recirc_id = nla_get_u32(a);
1208	return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1209}
1210
1211static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1212				 struct sw_flow_key *key,
1213				 const struct nlattr *attr, bool last)
1214{
1215	struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1216	const struct nlattr *actions, *cpl_arg;
1217	int len, max_len, rem = nla_len(attr);
1218	const struct check_pkt_len_arg *arg;
1219	bool clone_flow_key;
1220
1221	/* The first netlink attribute in 'attr' is always
1222	 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1223	 */
1224	cpl_arg = nla_data(attr);
1225	arg = nla_data(cpl_arg);
1226
1227	len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1228	max_len = arg->pkt_len;
1229
1230	if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1231	    len <= max_len) {
1232		/* Second netlink attribute in 'attr' is always
1233		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1234		 */
1235		actions = nla_next(cpl_arg, &rem);
1236		clone_flow_key = !arg->exec_for_lesser_equal;
1237	} else {
1238		/* Third netlink attribute in 'attr' is always
1239		 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1240		 */
1241		actions = nla_next(cpl_arg, &rem);
1242		actions = nla_next(actions, &rem);
1243		clone_flow_key = !arg->exec_for_greater;
1244	}
1245
1246	return clone_execute(dp, skb, key, 0, nla_data(actions),
1247			     nla_len(actions), last, clone_flow_key);
1248}
1249
1250static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1251{
1252	int err;
1253
1254	if (skb->protocol == htons(ETH_P_IPV6)) {
1255		struct ipv6hdr *nh;
1256
1257		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1258					  sizeof(*nh));
1259		if (unlikely(err))
1260			return err;
1261
1262		nh = ipv6_hdr(skb);
1263
1264		if (nh->hop_limit <= 1)
1265			return -EHOSTUNREACH;
1266
1267		key->ip.ttl = --nh->hop_limit;
1268	} else if (skb->protocol == htons(ETH_P_IP)) {
1269		struct iphdr *nh;
1270		u8 old_ttl;
1271
1272		err = skb_ensure_writable(skb, skb_network_offset(skb) +
1273					  sizeof(*nh));
1274		if (unlikely(err))
1275			return err;
1276
1277		nh = ip_hdr(skb);
1278		if (nh->ttl <= 1)
1279			return -EHOSTUNREACH;
1280
1281		old_ttl = nh->ttl--;
1282		csum_replace2(&nh->check, htons(old_ttl << 8),
1283			      htons(nh->ttl << 8));
1284		key->ip.ttl = nh->ttl;
1285	}
1286	return 0;
1287}
1288
1289/* Execute a list of actions against 'skb'. */
1290static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1291			      struct sw_flow_key *key,
1292			      const struct nlattr *attr, int len)
1293{
1294	const struct nlattr *a;
1295	int rem;
1296
1297	for (a = attr, rem = len; rem > 0;
1298	     a = nla_next(a, &rem)) {
1299		int err = 0;
1300
1301		if (trace_ovs_do_execute_action_enabled())
1302			trace_ovs_do_execute_action(dp, skb, key, a, rem);
1303
1304		/* Actions that rightfully have to consume the skb should do it
1305		 * and return directly.
1306		 */
1307		switch (nla_type(a)) {
1308		case OVS_ACTION_ATTR_OUTPUT: {
1309			int port = nla_get_u32(a);
1310			struct sk_buff *clone;
1311
1312			/* Every output action needs a separate clone
1313			 * of 'skb', In case the output action is the
1314			 * last action, cloning can be avoided.
1315			 */
1316			if (nla_is_last(a, rem)) {
1317				do_output(dp, skb, port, key);
1318				/* 'skb' has been used for output.
1319				 */
1320				return 0;
1321			}
1322
1323			clone = skb_clone(skb, GFP_ATOMIC);
1324			if (clone)
1325				do_output(dp, clone, port, key);
1326			OVS_CB(skb)->cutlen = 0;
1327			break;
1328		}
1329
1330		case OVS_ACTION_ATTR_TRUNC: {
1331			struct ovs_action_trunc *trunc = nla_data(a);
1332
1333			if (skb->len > trunc->max_len)
1334				OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1335			break;
1336		}
1337
1338		case OVS_ACTION_ATTR_USERSPACE:
1339			output_userspace(dp, skb, key, a, attr,
1340						     len, OVS_CB(skb)->cutlen);
1341			OVS_CB(skb)->cutlen = 0;
1342			if (nla_is_last(a, rem)) {
1343				consume_skb(skb);
1344				return 0;
1345			}
1346			break;
1347
1348		case OVS_ACTION_ATTR_HASH:
1349			execute_hash(skb, key, a);
1350			break;
1351
1352		case OVS_ACTION_ATTR_PUSH_MPLS: {
1353			struct ovs_action_push_mpls *mpls = nla_data(a);
1354
1355			err = push_mpls(skb, key, mpls->mpls_lse,
1356					mpls->mpls_ethertype, skb->mac_len);
1357			break;
1358		}
1359		case OVS_ACTION_ATTR_ADD_MPLS: {
1360			struct ovs_action_add_mpls *mpls = nla_data(a);
1361			__u16 mac_len = 0;
1362
1363			if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1364				mac_len = skb->mac_len;
1365
1366			err = push_mpls(skb, key, mpls->mpls_lse,
1367					mpls->mpls_ethertype, mac_len);
1368			break;
1369		}
1370		case OVS_ACTION_ATTR_POP_MPLS:
1371			err = pop_mpls(skb, key, nla_get_be16(a));
1372			break;
1373
1374		case OVS_ACTION_ATTR_PUSH_VLAN:
1375			err = push_vlan(skb, key, nla_data(a));
1376			break;
1377
1378		case OVS_ACTION_ATTR_POP_VLAN:
1379			err = pop_vlan(skb, key);
1380			break;
1381
1382		case OVS_ACTION_ATTR_RECIRC: {
1383			bool last = nla_is_last(a, rem);
1384
1385			err = execute_recirc(dp, skb, key, a, last);
1386			if (last) {
1387				/* If this is the last action, the skb has
1388				 * been consumed or freed.
1389				 * Return immediately.
1390				 */
1391				return err;
1392			}
1393			break;
1394		}
1395
1396		case OVS_ACTION_ATTR_SET:
1397			err = execute_set_action(skb, key, nla_data(a));
1398			break;
1399
1400		case OVS_ACTION_ATTR_SET_MASKED:
1401		case OVS_ACTION_ATTR_SET_TO_MASKED:
1402			err = execute_masked_set_action(skb, key, nla_data(a));
1403			break;
1404
1405		case OVS_ACTION_ATTR_SAMPLE: {
1406			bool last = nla_is_last(a, rem);
1407
1408			err = sample(dp, skb, key, a, last);
1409			if (last)
1410				return err;
1411
1412			break;
1413		}
1414
1415		case OVS_ACTION_ATTR_CT:
1416			if (!is_flow_key_valid(key)) {
1417				err = ovs_flow_key_update(skb, key);
1418				if (err)
1419					return err;
1420			}
1421
1422			err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1423					     nla_data(a));
1424
1425			/* Hide stolen IP fragments from user space. */
1426			if (err)
1427				return err == -EINPROGRESS ? 0 : err;
1428			break;
1429
1430		case OVS_ACTION_ATTR_CT_CLEAR:
1431			err = ovs_ct_clear(skb, key);
1432			break;
1433
1434		case OVS_ACTION_ATTR_PUSH_ETH:
1435			err = push_eth(skb, key, nla_data(a));
1436			break;
1437
1438		case OVS_ACTION_ATTR_POP_ETH:
1439			err = pop_eth(skb, key);
1440			break;
1441
1442		case OVS_ACTION_ATTR_PUSH_NSH: {
1443			u8 buffer[NSH_HDR_MAX_LEN];
1444			struct nshhdr *nh = (struct nshhdr *)buffer;
1445
1446			err = nsh_hdr_from_nlattr(nla_data(a), nh,
1447						  NSH_HDR_MAX_LEN);
1448			if (unlikely(err))
1449				break;
1450			err = push_nsh(skb, key, nh);
1451			break;
1452		}
1453
1454		case OVS_ACTION_ATTR_POP_NSH:
1455			err = pop_nsh(skb, key);
1456			break;
1457
1458		case OVS_ACTION_ATTR_METER:
1459			if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1460				ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1461				return 0;
1462			}
1463			break;
1464
1465		case OVS_ACTION_ATTR_CLONE: {
1466			bool last = nla_is_last(a, rem);
1467
1468			err = clone(dp, skb, key, a, last);
1469			if (last)
1470				return err;
1471
1472			break;
1473		}
1474
1475		case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1476			bool last = nla_is_last(a, rem);
1477
1478			err = execute_check_pkt_len(dp, skb, key, a, last);
1479			if (last)
1480				return err;
1481
1482			break;
1483		}
1484
1485		case OVS_ACTION_ATTR_DEC_TTL:
1486			err = execute_dec_ttl(skb, key);
1487			if (err == -EHOSTUNREACH)
1488				return dec_ttl_exception_handler(dp, skb,
1489								 key, a);
1490			break;
1491
1492		case OVS_ACTION_ATTR_DROP: {
1493			enum ovs_drop_reason reason = nla_get_u32(a)
1494				? OVS_DROP_EXPLICIT_WITH_ERROR
1495				: OVS_DROP_EXPLICIT;
1496
1497			ovs_kfree_skb_reason(skb, reason);
1498			return 0;
1499		}
1500		}
1501
1502		if (unlikely(err)) {
1503			ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1504			return err;
1505		}
1506	}
1507
1508	ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1509	return 0;
1510}
1511
1512/* Execute the actions on the clone of the packet. The effect of the
1513 * execution does not affect the original 'skb' nor the original 'key'.
1514 *
1515 * The execution may be deferred in case the actions can not be executed
1516 * immediately.
1517 */
1518static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1519			 struct sw_flow_key *key, u32 recirc_id,
1520			 const struct nlattr *actions, int len,
1521			 bool last, bool clone_flow_key)
1522{
1523	struct deferred_action *da;
1524	struct sw_flow_key *clone;
1525
1526	skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1527	if (!skb) {
1528		/* Out of memory, skip this action.
1529		 */
1530		return 0;
1531	}
1532
1533	/* When clone_flow_key is false, the 'key' will not be change
1534	 * by the actions, then the 'key' can be used directly.
1535	 * Otherwise, try to clone key from the next recursion level of
1536	 * 'flow_keys'. If clone is successful, execute the actions
1537	 * without deferring.
1538	 */
1539	clone = clone_flow_key ? clone_key(key) : key;
1540	if (clone) {
1541		int err = 0;
1542
1543		if (actions) { /* Sample action */
1544			if (clone_flow_key)
1545				__this_cpu_inc(exec_actions_level);
1546
1547			err = do_execute_actions(dp, skb, clone,
1548						 actions, len);
1549
1550			if (clone_flow_key)
1551				__this_cpu_dec(exec_actions_level);
1552		} else { /* Recirc action */
1553			clone->recirc_id = recirc_id;
1554			ovs_dp_process_packet(skb, clone);
1555		}
1556		return err;
1557	}
1558
1559	/* Out of 'flow_keys' space. Defer actions */
1560	da = add_deferred_actions(skb, key, actions, len);
1561	if (da) {
1562		if (!actions) { /* Recirc action */
1563			key = &da->pkt_key;
1564			key->recirc_id = recirc_id;
1565		}
1566	} else {
1567		/* Out of per CPU action FIFO space. Drop the 'skb' and
1568		 * log an error.
1569		 */
1570		ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1571
1572		if (net_ratelimit()) {
1573			if (actions) { /* Sample action */
1574				pr_warn("%s: deferred action limit reached, drop sample action\n",
1575					ovs_dp_name(dp));
1576			} else {  /* Recirc action */
1577				pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1578					ovs_dp_name(dp), recirc_id);
1579			}
1580		}
1581	}
1582	return 0;
1583}
1584
1585static void process_deferred_actions(struct datapath *dp)
1586{
1587	struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1588
1589	/* Do not touch the FIFO in case there is no deferred actions. */
1590	if (action_fifo_is_empty(fifo))
1591		return;
1592
1593	/* Finishing executing all deferred actions. */
1594	do {
1595		struct deferred_action *da = action_fifo_get(fifo);
1596		struct sk_buff *skb = da->skb;
1597		struct sw_flow_key *key = &da->pkt_key;
1598		const struct nlattr *actions = da->actions;
1599		int actions_len = da->actions_len;
1600
1601		if (actions)
1602			do_execute_actions(dp, skb, key, actions, actions_len);
1603		else
1604			ovs_dp_process_packet(skb, key);
1605	} while (!action_fifo_is_empty(fifo));
1606
1607	/* Reset FIFO for the next packet.  */
1608	action_fifo_init(fifo);
1609}
1610
1611/* Execute a list of actions against 'skb'. */
1612int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1613			const struct sw_flow_actions *acts,
1614			struct sw_flow_key *key)
1615{
1616	int err, level;
1617
1618	level = __this_cpu_inc_return(exec_actions_level);
1619	if (unlikely(level > OVS_RECURSION_LIMIT)) {
1620		net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1621				     ovs_dp_name(dp));
1622		ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1623		err = -ENETDOWN;
1624		goto out;
1625	}
1626
1627	OVS_CB(skb)->acts_origlen = acts->orig_len;
1628	err = do_execute_actions(dp, skb, key,
1629				 acts->actions, acts->actions_len);
1630
1631	if (level == 1)
1632		process_deferred_actions(dp);
1633
1634out:
1635	__this_cpu_dec(exec_actions_level);
1636	return err;
1637}
1638
1639int action_fifos_init(void)
1640{
1641	action_fifos = alloc_percpu(struct action_fifo);
1642	if (!action_fifos)
1643		return -ENOMEM;
1644
1645	flow_keys = alloc_percpu(struct action_flow_keys);
1646	if (!flow_keys) {
1647		free_percpu(action_fifos);
1648		return -ENOMEM;
1649	}
1650
1651	return 0;
1652}
1653
1654void action_fifos_exit(void)
1655{
1656	free_percpu(action_fifos);
1657	free_percpu(flow_keys);
1658}
1659