xref: /kernel/linux/linux-6.6/net/ipv4/udp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		The User Datagram Protocol (UDP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 *		Alan Cox	:	verify_area() calls
17 *		Alan Cox	: 	stopped close while in use off icmp
18 *					messages. Not a fix but a botch that
19 *					for udp at least is 'valid'.
20 *		Alan Cox	:	Fixed icmp handling properly
21 *		Alan Cox	: 	Correct error for oversized datagrams
22 *		Alan Cox	:	Tidied select() semantics.
23 *		Alan Cox	:	udp_err() fixed properly, also now
24 *					select and read wake correctly on errors
25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
26 *		Alan Cox	:	UDP can count its memory
27 *		Alan Cox	:	send to an unknown connection causes
28 *					an ECONNREFUSED off the icmp, but
29 *					does NOT close.
30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
32 *					bug no longer crashes it.
33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
34 *		Alan Cox	:	Uses skb_free_datagram
35 *		Alan Cox	:	Added get/set sockopt support.
36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
38 *		Alan Cox	:	Use ip_tos and ip_ttl
39 *		Alan Cox	:	SNMP Mibs
40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
41 *		Matt Dillon	:	UDP length checks.
42 *		Alan Cox	:	Smarter af_inet used properly.
43 *		Alan Cox	:	Use new kernel side addressing.
44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
46 *		Alan Cox	:	Cache last socket
47 *		Alan Cox	:	Route cache
48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
49 *		Mike Shaver	:	RFC1122 checks.
50 *		Alan Cox	:	Nonblocking error fix.
51 *	Willy Konynenberg	:	Transparent proxying support.
52 *		Mike McLagan	:	Routing by source
53 *		David S. Miller	:	New socket lookup architecture.
54 *					Last socket cache retained as it
55 *					does have a high hit rate.
56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
57 *		Andi Kleen	:	Some cleanups, cache destination entry
58 *					for connect.
59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
61 *					return ENOTCONN for unconnected sockets (POSIX)
62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
63 *					bound-to-device socket
64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
65 *					datagrams.
66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
70 *					a single port at the same time.
71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 *	James Chapman		:	Add L2TP encapsulation type.
73 */
74
75#define pr_fmt(fmt) "UDP: " fmt
76
77#include <linux/bpf-cgroup.h>
78#include <linux/uaccess.h>
79#include <asm/ioctls.h>
80#include <linux/memblock.h>
81#include <linux/highmem.h>
82#include <linux/types.h>
83#include <linux/fcntl.h>
84#include <linux/module.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/igmp.h>
88#include <linux/inetdevice.h>
89#include <linux/in.h>
90#include <linux/errno.h>
91#include <linux/timer.h>
92#include <linux/mm.h>
93#include <linux/inet.h>
94#include <linux/netdevice.h>
95#include <linux/slab.h>
96#include <net/tcp_states.h>
97#include <linux/skbuff.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <net/net_namespace.h>
101#include <net/icmp.h>
102#include <net/inet_hashtables.h>
103#include <net/ip_tunnels.h>
104#include <net/route.h>
105#include <net/checksum.h>
106#include <net/gso.h>
107#include <net/xfrm.h>
108#include <trace/events/udp.h>
109#include <linux/static_key.h>
110#include <linux/btf_ids.h>
111#include <trace/events/skb.h>
112#include <net/busy_poll.h>
113#include "udp_impl.h"
114#include <net/sock_reuseport.h>
115#include <net/addrconf.h>
116#include <net/udp_tunnel.h>
117#include <net/gro.h>
118#if IS_ENABLED(CONFIG_IPV6)
119#include <net/ipv6_stubs.h>
120#endif
121
122struct udp_table udp_table __read_mostly;
123EXPORT_SYMBOL(udp_table);
124
125long sysctl_udp_mem[3] __read_mostly;
126EXPORT_SYMBOL(sysctl_udp_mem);
127
128atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
129EXPORT_SYMBOL(udp_memory_allocated);
130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
132
133#define MAX_UDP_PORTS 65536
134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
135
136static struct udp_table *udp_get_table_prot(struct sock *sk)
137{
138	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
139}
140
141static int udp_lib_lport_inuse(struct net *net, __u16 num,
142			       const struct udp_hslot *hslot,
143			       unsigned long *bitmap,
144			       struct sock *sk, unsigned int log)
145{
146	struct sock *sk2;
147	kuid_t uid = sock_i_uid(sk);
148
149	sk_for_each(sk2, &hslot->head) {
150		if (net_eq(sock_net(sk2), net) &&
151		    sk2 != sk &&
152		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
153		    (!sk2->sk_reuse || !sk->sk_reuse) &&
154		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
155		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
156		    inet_rcv_saddr_equal(sk, sk2, true)) {
157			if (sk2->sk_reuseport && sk->sk_reuseport &&
158			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
159			    uid_eq(uid, sock_i_uid(sk2))) {
160				if (!bitmap)
161					return 0;
162			} else {
163				if (!bitmap)
164					return 1;
165				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
166					  bitmap);
167			}
168		}
169	}
170	return 0;
171}
172
173/*
174 * Note: we still hold spinlock of primary hash chain, so no other writer
175 * can insert/delete a socket with local_port == num
176 */
177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
178				struct udp_hslot *hslot2,
179				struct sock *sk)
180{
181	struct sock *sk2;
182	kuid_t uid = sock_i_uid(sk);
183	int res = 0;
184
185	spin_lock(&hslot2->lock);
186	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
187		if (net_eq(sock_net(sk2), net) &&
188		    sk2 != sk &&
189		    (udp_sk(sk2)->udp_port_hash == num) &&
190		    (!sk2->sk_reuse || !sk->sk_reuse) &&
191		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
192		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
193		    inet_rcv_saddr_equal(sk, sk2, true)) {
194			if (sk2->sk_reuseport && sk->sk_reuseport &&
195			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
196			    uid_eq(uid, sock_i_uid(sk2))) {
197				res = 0;
198			} else {
199				res = 1;
200			}
201			break;
202		}
203	}
204	spin_unlock(&hslot2->lock);
205	return res;
206}
207
208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
209{
210	struct net *net = sock_net(sk);
211	kuid_t uid = sock_i_uid(sk);
212	struct sock *sk2;
213
214	sk_for_each(sk2, &hslot->head) {
215		if (net_eq(sock_net(sk2), net) &&
216		    sk2 != sk &&
217		    sk2->sk_family == sk->sk_family &&
218		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
219		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
220		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
221		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
222		    inet_rcv_saddr_equal(sk, sk2, false)) {
223			return reuseport_add_sock(sk, sk2,
224						  inet_rcv_saddr_any(sk));
225		}
226	}
227
228	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
229}
230
231/**
232 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
233 *
234 *  @sk:          socket struct in question
235 *  @snum:        port number to look up
236 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
237 *                   with NULL address
238 */
239int udp_lib_get_port(struct sock *sk, unsigned short snum,
240		     unsigned int hash2_nulladdr)
241{
242	struct udp_table *udptable = udp_get_table_prot(sk);
243	struct udp_hslot *hslot, *hslot2;
244	struct net *net = sock_net(sk);
245	int error = -EADDRINUSE;
246
247	if (!snum) {
248		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
249		unsigned short first, last;
250		int low, high, remaining;
251		unsigned int rand;
252
253		inet_sk_get_local_port_range(sk, &low, &high);
254		remaining = (high - low) + 1;
255
256		rand = get_random_u32();
257		first = reciprocal_scale(rand, remaining) + low;
258		/*
259		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
260		 */
261		rand = (rand | 1) * (udptable->mask + 1);
262		last = first + udptable->mask + 1;
263		do {
264			hslot = udp_hashslot(udptable, net, first);
265			bitmap_zero(bitmap, PORTS_PER_CHAIN);
266			spin_lock_bh(&hslot->lock);
267			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
268					    udptable->log);
269
270			snum = first;
271			/*
272			 * Iterate on all possible values of snum for this hash.
273			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
274			 * give us randomization and full range coverage.
275			 */
276			do {
277				if (low <= snum && snum <= high &&
278				    !test_bit(snum >> udptable->log, bitmap) &&
279				    !inet_is_local_reserved_port(net, snum))
280					goto found;
281				snum += rand;
282			} while (snum != first);
283			spin_unlock_bh(&hslot->lock);
284			cond_resched();
285		} while (++first != last);
286		goto fail;
287	} else {
288		hslot = udp_hashslot(udptable, net, snum);
289		spin_lock_bh(&hslot->lock);
290		if (hslot->count > 10) {
291			int exist;
292			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
293
294			slot2          &= udptable->mask;
295			hash2_nulladdr &= udptable->mask;
296
297			hslot2 = udp_hashslot2(udptable, slot2);
298			if (hslot->count < hslot2->count)
299				goto scan_primary_hash;
300
301			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
302			if (!exist && (hash2_nulladdr != slot2)) {
303				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
304				exist = udp_lib_lport_inuse2(net, snum, hslot2,
305							     sk);
306			}
307			if (exist)
308				goto fail_unlock;
309			else
310				goto found;
311		}
312scan_primary_hash:
313		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
314			goto fail_unlock;
315	}
316found:
317	inet_sk(sk)->inet_num = snum;
318	udp_sk(sk)->udp_port_hash = snum;
319	udp_sk(sk)->udp_portaddr_hash ^= snum;
320	if (sk_unhashed(sk)) {
321		if (sk->sk_reuseport &&
322		    udp_reuseport_add_sock(sk, hslot)) {
323			inet_sk(sk)->inet_num = 0;
324			udp_sk(sk)->udp_port_hash = 0;
325			udp_sk(sk)->udp_portaddr_hash ^= snum;
326			goto fail_unlock;
327		}
328
329		sk_add_node_rcu(sk, &hslot->head);
330		hslot->count++;
331		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
332
333		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
334		spin_lock(&hslot2->lock);
335		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
336		    sk->sk_family == AF_INET6)
337			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
338					   &hslot2->head);
339		else
340			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
341					   &hslot2->head);
342		hslot2->count++;
343		spin_unlock(&hslot2->lock);
344	}
345	sock_set_flag(sk, SOCK_RCU_FREE);
346	error = 0;
347fail_unlock:
348	spin_unlock_bh(&hslot->lock);
349fail:
350	return error;
351}
352EXPORT_SYMBOL(udp_lib_get_port);
353
354int udp_v4_get_port(struct sock *sk, unsigned short snum)
355{
356	unsigned int hash2_nulladdr =
357		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
358	unsigned int hash2_partial =
359		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
360
361	/* precompute partial secondary hash */
362	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
363	return udp_lib_get_port(sk, snum, hash2_nulladdr);
364}
365
366static int compute_score(struct sock *sk, struct net *net,
367			 __be32 saddr, __be16 sport,
368			 __be32 daddr, unsigned short hnum,
369			 int dif, int sdif)
370{
371	int score;
372	struct inet_sock *inet;
373	bool dev_match;
374
375	if (!net_eq(sock_net(sk), net) ||
376	    udp_sk(sk)->udp_port_hash != hnum ||
377	    ipv6_only_sock(sk))
378		return -1;
379
380	if (sk->sk_rcv_saddr != daddr)
381		return -1;
382
383	score = (sk->sk_family == PF_INET) ? 2 : 1;
384
385	inet = inet_sk(sk);
386	if (inet->inet_daddr) {
387		if (inet->inet_daddr != saddr)
388			return -1;
389		score += 4;
390	}
391
392	if (inet->inet_dport) {
393		if (inet->inet_dport != sport)
394			return -1;
395		score += 4;
396	}
397
398	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
399					dif, sdif);
400	if (!dev_match)
401		return -1;
402	if (sk->sk_bound_dev_if)
403		score += 4;
404
405	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
406		score++;
407	return score;
408}
409
410INDIRECT_CALLABLE_SCOPE
411u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
412		const __be32 faddr, const __be16 fport)
413{
414	static u32 udp_ehash_secret __read_mostly;
415
416	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
417
418	return __inet_ehashfn(laddr, lport, faddr, fport,
419			      udp_ehash_secret + net_hash_mix(net));
420}
421
422/* called with rcu_read_lock() */
423static struct sock *udp4_lib_lookup2(struct net *net,
424				     __be32 saddr, __be16 sport,
425				     __be32 daddr, unsigned int hnum,
426				     int dif, int sdif,
427				     struct udp_hslot *hslot2,
428				     struct sk_buff *skb)
429{
430	struct sock *sk, *result;
431	int score, badness;
432
433	result = NULL;
434	badness = 0;
435	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
436		score = compute_score(sk, net, saddr, sport,
437				      daddr, hnum, dif, sdif);
438		if (score > badness) {
439			badness = score;
440
441			if (sk->sk_state == TCP_ESTABLISHED) {
442				result = sk;
443				continue;
444			}
445
446			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
447						       saddr, sport, daddr, hnum, udp_ehashfn);
448			if (!result) {
449				result = sk;
450				continue;
451			}
452
453			/* Fall back to scoring if group has connections */
454			if (!reuseport_has_conns(sk))
455				return result;
456
457			/* Reuseport logic returned an error, keep original score. */
458			if (IS_ERR(result))
459				continue;
460
461			badness = compute_score(result, net, saddr, sport,
462						daddr, hnum, dif, sdif);
463
464		}
465	}
466	return result;
467}
468
469/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
470 * harder than this. -DaveM
471 */
472struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
473		__be16 sport, __be32 daddr, __be16 dport, int dif,
474		int sdif, struct udp_table *udptable, struct sk_buff *skb)
475{
476	unsigned short hnum = ntohs(dport);
477	unsigned int hash2, slot2;
478	struct udp_hslot *hslot2;
479	struct sock *result, *sk;
480
481	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
482	slot2 = hash2 & udptable->mask;
483	hslot2 = &udptable->hash2[slot2];
484
485	/* Lookup connected or non-wildcard socket */
486	result = udp4_lib_lookup2(net, saddr, sport,
487				  daddr, hnum, dif, sdif,
488				  hslot2, skb);
489	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
490		goto done;
491
492	/* Lookup redirect from BPF */
493	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
494	    udptable == net->ipv4.udp_table) {
495		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
496					       saddr, sport, daddr, hnum, dif,
497					       udp_ehashfn);
498		if (sk) {
499			result = sk;
500			goto done;
501		}
502	}
503
504	/* Got non-wildcard socket or error on first lookup */
505	if (result)
506		goto done;
507
508	/* Lookup wildcard sockets */
509	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
510	slot2 = hash2 & udptable->mask;
511	hslot2 = &udptable->hash2[slot2];
512
513	result = udp4_lib_lookup2(net, saddr, sport,
514				  htonl(INADDR_ANY), hnum, dif, sdif,
515				  hslot2, skb);
516done:
517	if (IS_ERR(result))
518		return NULL;
519	return result;
520}
521EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
522
523static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
524						 __be16 sport, __be16 dport,
525						 struct udp_table *udptable)
526{
527	const struct iphdr *iph = ip_hdr(skb);
528
529	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
530				 iph->daddr, dport, inet_iif(skb),
531				 inet_sdif(skb), udptable, skb);
532}
533
534struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
535				 __be16 sport, __be16 dport)
536{
537	const struct iphdr *iph = ip_hdr(skb);
538	struct net *net = dev_net(skb->dev);
539	int iif, sdif;
540
541	inet_get_iif_sdif(skb, &iif, &sdif);
542
543	return __udp4_lib_lookup(net, iph->saddr, sport,
544				 iph->daddr, dport, iif,
545				 sdif, net->ipv4.udp_table, NULL);
546}
547
548/* Must be called under rcu_read_lock().
549 * Does increment socket refcount.
550 */
551#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
552struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
553			     __be32 daddr, __be16 dport, int dif)
554{
555	struct sock *sk;
556
557	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
558			       dif, 0, net->ipv4.udp_table, NULL);
559	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
560		sk = NULL;
561	return sk;
562}
563EXPORT_SYMBOL_GPL(udp4_lib_lookup);
564#endif
565
566static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
567				       __be16 loc_port, __be32 loc_addr,
568				       __be16 rmt_port, __be32 rmt_addr,
569				       int dif, int sdif, unsigned short hnum)
570{
571	const struct inet_sock *inet = inet_sk(sk);
572
573	if (!net_eq(sock_net(sk), net) ||
574	    udp_sk(sk)->udp_port_hash != hnum ||
575	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
576	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
577	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
578	    ipv6_only_sock(sk) ||
579	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
580		return false;
581	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
582		return false;
583	return true;
584}
585
586DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
587void udp_encap_enable(void)
588{
589	static_branch_inc(&udp_encap_needed_key);
590}
591EXPORT_SYMBOL(udp_encap_enable);
592
593void udp_encap_disable(void)
594{
595	static_branch_dec(&udp_encap_needed_key);
596}
597EXPORT_SYMBOL(udp_encap_disable);
598
599/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
600 * through error handlers in encapsulations looking for a match.
601 */
602static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
603{
604	int i;
605
606	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
607		int (*handler)(struct sk_buff *skb, u32 info);
608		const struct ip_tunnel_encap_ops *encap;
609
610		encap = rcu_dereference(iptun_encaps[i]);
611		if (!encap)
612			continue;
613		handler = encap->err_handler;
614		if (handler && !handler(skb, info))
615			return 0;
616	}
617
618	return -ENOENT;
619}
620
621/* Try to match ICMP errors to UDP tunnels by looking up a socket without
622 * reversing source and destination port: this will match tunnels that force the
623 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
624 * lwtunnels might actually break this assumption by being configured with
625 * different destination ports on endpoints, in this case we won't be able to
626 * trace ICMP messages back to them.
627 *
628 * If this doesn't match any socket, probe tunnels with arbitrary destination
629 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
630 * we've sent packets to won't necessarily match the local destination port.
631 *
632 * Then ask the tunnel implementation to match the error against a valid
633 * association.
634 *
635 * Return an error if we can't find a match, the socket if we need further
636 * processing, zero otherwise.
637 */
638static struct sock *__udp4_lib_err_encap(struct net *net,
639					 const struct iphdr *iph,
640					 struct udphdr *uh,
641					 struct udp_table *udptable,
642					 struct sock *sk,
643					 struct sk_buff *skb, u32 info)
644{
645	int (*lookup)(struct sock *sk, struct sk_buff *skb);
646	int network_offset, transport_offset;
647	struct udp_sock *up;
648
649	network_offset = skb_network_offset(skb);
650	transport_offset = skb_transport_offset(skb);
651
652	/* Network header needs to point to the outer IPv4 header inside ICMP */
653	skb_reset_network_header(skb);
654
655	/* Transport header needs to point to the UDP header */
656	skb_set_transport_header(skb, iph->ihl << 2);
657
658	if (sk) {
659		up = udp_sk(sk);
660
661		lookup = READ_ONCE(up->encap_err_lookup);
662		if (lookup && lookup(sk, skb))
663			sk = NULL;
664
665		goto out;
666	}
667
668	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
669			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
670			       udptable, NULL);
671	if (sk) {
672		up = udp_sk(sk);
673
674		lookup = READ_ONCE(up->encap_err_lookup);
675		if (!lookup || lookup(sk, skb))
676			sk = NULL;
677	}
678
679out:
680	if (!sk)
681		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
682
683	skb_set_transport_header(skb, transport_offset);
684	skb_set_network_header(skb, network_offset);
685
686	return sk;
687}
688
689/*
690 * This routine is called by the ICMP module when it gets some
691 * sort of error condition.  If err < 0 then the socket should
692 * be closed and the error returned to the user.  If err > 0
693 * it's just the icmp type << 8 | icmp code.
694 * Header points to the ip header of the error packet. We move
695 * on past this. Then (as it used to claim before adjustment)
696 * header points to the first 8 bytes of the udp header.  We need
697 * to find the appropriate port.
698 */
699
700int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
701{
702	struct inet_sock *inet;
703	const struct iphdr *iph = (const struct iphdr *)skb->data;
704	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
705	const int type = icmp_hdr(skb)->type;
706	const int code = icmp_hdr(skb)->code;
707	bool tunnel = false;
708	struct sock *sk;
709	int harderr;
710	int err;
711	struct net *net = dev_net(skb->dev);
712
713	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
714			       iph->saddr, uh->source, skb->dev->ifindex,
715			       inet_sdif(skb), udptable, NULL);
716
717	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
718		/* No socket for error: try tunnels before discarding */
719		if (static_branch_unlikely(&udp_encap_needed_key)) {
720			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
721						  info);
722			if (!sk)
723				return 0;
724		} else
725			sk = ERR_PTR(-ENOENT);
726
727		if (IS_ERR(sk)) {
728			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
729			return PTR_ERR(sk);
730		}
731
732		tunnel = true;
733	}
734
735	err = 0;
736	harderr = 0;
737	inet = inet_sk(sk);
738
739	switch (type) {
740	default:
741	case ICMP_TIME_EXCEEDED:
742		err = EHOSTUNREACH;
743		break;
744	case ICMP_SOURCE_QUENCH:
745		goto out;
746	case ICMP_PARAMETERPROB:
747		err = EPROTO;
748		harderr = 1;
749		break;
750	case ICMP_DEST_UNREACH:
751		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
752			ipv4_sk_update_pmtu(skb, sk, info);
753			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
754				err = EMSGSIZE;
755				harderr = 1;
756				break;
757			}
758			goto out;
759		}
760		err = EHOSTUNREACH;
761		if (code <= NR_ICMP_UNREACH) {
762			harderr = icmp_err_convert[code].fatal;
763			err = icmp_err_convert[code].errno;
764		}
765		break;
766	case ICMP_REDIRECT:
767		ipv4_sk_redirect(skb, sk);
768		goto out;
769	}
770
771	/*
772	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
773	 *	4.1.3.3.
774	 */
775	if (tunnel) {
776		/* ...not for tunnels though: we don't have a sending socket */
777		if (udp_sk(sk)->encap_err_rcv)
778			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
779						  (u8 *)(uh+1));
780		goto out;
781	}
782	if (!inet_test_bit(RECVERR, sk)) {
783		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
784			goto out;
785	} else
786		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
787
788	sk->sk_err = err;
789	sk_error_report(sk);
790out:
791	return 0;
792}
793
794int udp_err(struct sk_buff *skb, u32 info)
795{
796	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
797}
798
799/*
800 * Throw away all pending data and cancel the corking. Socket is locked.
801 */
802void udp_flush_pending_frames(struct sock *sk)
803{
804	struct udp_sock *up = udp_sk(sk);
805
806	if (up->pending) {
807		up->len = 0;
808		WRITE_ONCE(up->pending, 0);
809		ip_flush_pending_frames(sk);
810	}
811}
812EXPORT_SYMBOL(udp_flush_pending_frames);
813
814/**
815 * 	udp4_hwcsum  -  handle outgoing HW checksumming
816 * 	@skb: 	sk_buff containing the filled-in UDP header
817 * 	        (checksum field must be zeroed out)
818 *	@src:	source IP address
819 *	@dst:	destination IP address
820 */
821void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
822{
823	struct udphdr *uh = udp_hdr(skb);
824	int offset = skb_transport_offset(skb);
825	int len = skb->len - offset;
826	int hlen = len;
827	__wsum csum = 0;
828
829	if (!skb_has_frag_list(skb)) {
830		/*
831		 * Only one fragment on the socket.
832		 */
833		skb->csum_start = skb_transport_header(skb) - skb->head;
834		skb->csum_offset = offsetof(struct udphdr, check);
835		uh->check = ~csum_tcpudp_magic(src, dst, len,
836					       IPPROTO_UDP, 0);
837	} else {
838		struct sk_buff *frags;
839
840		/*
841		 * HW-checksum won't work as there are two or more
842		 * fragments on the socket so that all csums of sk_buffs
843		 * should be together
844		 */
845		skb_walk_frags(skb, frags) {
846			csum = csum_add(csum, frags->csum);
847			hlen -= frags->len;
848		}
849
850		csum = skb_checksum(skb, offset, hlen, csum);
851		skb->ip_summed = CHECKSUM_NONE;
852
853		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
854		if (uh->check == 0)
855			uh->check = CSUM_MANGLED_0;
856	}
857}
858EXPORT_SYMBOL_GPL(udp4_hwcsum);
859
860/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
861 * for the simple case like when setting the checksum for a UDP tunnel.
862 */
863void udp_set_csum(bool nocheck, struct sk_buff *skb,
864		  __be32 saddr, __be32 daddr, int len)
865{
866	struct udphdr *uh = udp_hdr(skb);
867
868	if (nocheck) {
869		uh->check = 0;
870	} else if (skb_is_gso(skb)) {
871		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
872	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
873		uh->check = 0;
874		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
875		if (uh->check == 0)
876			uh->check = CSUM_MANGLED_0;
877	} else {
878		skb->ip_summed = CHECKSUM_PARTIAL;
879		skb->csum_start = skb_transport_header(skb) - skb->head;
880		skb->csum_offset = offsetof(struct udphdr, check);
881		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
882	}
883}
884EXPORT_SYMBOL(udp_set_csum);
885
886static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
887			struct inet_cork *cork)
888{
889	struct sock *sk = skb->sk;
890	struct inet_sock *inet = inet_sk(sk);
891	struct udphdr *uh;
892	int err;
893	int is_udplite = IS_UDPLITE(sk);
894	int offset = skb_transport_offset(skb);
895	int len = skb->len - offset;
896	int datalen = len - sizeof(*uh);
897	__wsum csum = 0;
898
899	/*
900	 * Create a UDP header
901	 */
902	uh = udp_hdr(skb);
903	uh->source = inet->inet_sport;
904	uh->dest = fl4->fl4_dport;
905	uh->len = htons(len);
906	uh->check = 0;
907
908	if (cork->gso_size) {
909		const int hlen = skb_network_header_len(skb) +
910				 sizeof(struct udphdr);
911
912		if (hlen + cork->gso_size > cork->fragsize) {
913			kfree_skb(skb);
914			return -EINVAL;
915		}
916		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
917			kfree_skb(skb);
918			return -EINVAL;
919		}
920		if (sk->sk_no_check_tx) {
921			kfree_skb(skb);
922			return -EINVAL;
923		}
924		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
925		    dst_xfrm(skb_dst(skb))) {
926			kfree_skb(skb);
927			return -EIO;
928		}
929
930		if (datalen > cork->gso_size) {
931			skb_shinfo(skb)->gso_size = cork->gso_size;
932			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
933			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
934								 cork->gso_size);
935		}
936		goto csum_partial;
937	}
938
939	if (is_udplite)  				 /*     UDP-Lite      */
940		csum = udplite_csum(skb);
941
942	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
943
944		skb->ip_summed = CHECKSUM_NONE;
945		goto send;
946
947	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
948csum_partial:
949
950		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
951		goto send;
952
953	} else
954		csum = udp_csum(skb);
955
956	/* add protocol-dependent pseudo-header */
957	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
958				      sk->sk_protocol, csum);
959	if (uh->check == 0)
960		uh->check = CSUM_MANGLED_0;
961
962send:
963	err = ip_send_skb(sock_net(sk), skb);
964	if (err) {
965		if (err == -ENOBUFS &&
966		    !inet_test_bit(RECVERR, sk)) {
967			UDP_INC_STATS(sock_net(sk),
968				      UDP_MIB_SNDBUFERRORS, is_udplite);
969			err = 0;
970		}
971	} else
972		UDP_INC_STATS(sock_net(sk),
973			      UDP_MIB_OUTDATAGRAMS, is_udplite);
974	return err;
975}
976
977/*
978 * Push out all pending data as one UDP datagram. Socket is locked.
979 */
980int udp_push_pending_frames(struct sock *sk)
981{
982	struct udp_sock  *up = udp_sk(sk);
983	struct inet_sock *inet = inet_sk(sk);
984	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
985	struct sk_buff *skb;
986	int err = 0;
987
988	skb = ip_finish_skb(sk, fl4);
989	if (!skb)
990		goto out;
991
992	err = udp_send_skb(skb, fl4, &inet->cork.base);
993
994out:
995	up->len = 0;
996	WRITE_ONCE(up->pending, 0);
997	return err;
998}
999EXPORT_SYMBOL(udp_push_pending_frames);
1000
1001static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1002{
1003	switch (cmsg->cmsg_type) {
1004	case UDP_SEGMENT:
1005		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1006			return -EINVAL;
1007		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1008		return 0;
1009	default:
1010		return -EINVAL;
1011	}
1012}
1013
1014int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1015{
1016	struct cmsghdr *cmsg;
1017	bool need_ip = false;
1018	int err;
1019
1020	for_each_cmsghdr(cmsg, msg) {
1021		if (!CMSG_OK(msg, cmsg))
1022			return -EINVAL;
1023
1024		if (cmsg->cmsg_level != SOL_UDP) {
1025			need_ip = true;
1026			continue;
1027		}
1028
1029		err = __udp_cmsg_send(cmsg, gso_size);
1030		if (err)
1031			return err;
1032	}
1033
1034	return need_ip;
1035}
1036EXPORT_SYMBOL_GPL(udp_cmsg_send);
1037
1038int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1039{
1040	struct inet_sock *inet = inet_sk(sk);
1041	struct udp_sock *up = udp_sk(sk);
1042	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1043	struct flowi4 fl4_stack;
1044	struct flowi4 *fl4;
1045	int ulen = len;
1046	struct ipcm_cookie ipc;
1047	struct rtable *rt = NULL;
1048	int free = 0;
1049	int connected = 0;
1050	__be32 daddr, faddr, saddr;
1051	u8 tos, scope;
1052	__be16 dport;
1053	int err, is_udplite = IS_UDPLITE(sk);
1054	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1055	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1056	struct sk_buff *skb;
1057	struct ip_options_data opt_copy;
1058
1059	if (len > 0xFFFF)
1060		return -EMSGSIZE;
1061
1062	/*
1063	 *	Check the flags.
1064	 */
1065
1066	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1067		return -EOPNOTSUPP;
1068
1069	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1070
1071	fl4 = &inet->cork.fl.u.ip4;
1072	if (READ_ONCE(up->pending)) {
1073		/*
1074		 * There are pending frames.
1075		 * The socket lock must be held while it's corked.
1076		 */
1077		lock_sock(sk);
1078		if (likely(up->pending)) {
1079			if (unlikely(up->pending != AF_INET)) {
1080				release_sock(sk);
1081				return -EINVAL;
1082			}
1083			goto do_append_data;
1084		}
1085		release_sock(sk);
1086	}
1087	ulen += sizeof(struct udphdr);
1088
1089	/*
1090	 *	Get and verify the address.
1091	 */
1092	if (usin) {
1093		if (msg->msg_namelen < sizeof(*usin))
1094			return -EINVAL;
1095		if (usin->sin_family != AF_INET) {
1096			if (usin->sin_family != AF_UNSPEC)
1097				return -EAFNOSUPPORT;
1098		}
1099
1100		daddr = usin->sin_addr.s_addr;
1101		dport = usin->sin_port;
1102		if (dport == 0)
1103			return -EINVAL;
1104	} else {
1105		if (sk->sk_state != TCP_ESTABLISHED)
1106			return -EDESTADDRREQ;
1107		daddr = inet->inet_daddr;
1108		dport = inet->inet_dport;
1109		/* Open fast path for connected socket.
1110		   Route will not be used, if at least one option is set.
1111		 */
1112		connected = 1;
1113	}
1114
1115	ipcm_init_sk(&ipc, inet);
1116	ipc.gso_size = READ_ONCE(up->gso_size);
1117
1118	if (msg->msg_controllen) {
1119		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1120		if (err > 0)
1121			err = ip_cmsg_send(sk, msg, &ipc,
1122					   sk->sk_family == AF_INET6);
1123		if (unlikely(err < 0)) {
1124			kfree(ipc.opt);
1125			return err;
1126		}
1127		if (ipc.opt)
1128			free = 1;
1129		connected = 0;
1130	}
1131	if (!ipc.opt) {
1132		struct ip_options_rcu *inet_opt;
1133
1134		rcu_read_lock();
1135		inet_opt = rcu_dereference(inet->inet_opt);
1136		if (inet_opt) {
1137			memcpy(&opt_copy, inet_opt,
1138			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1139			ipc.opt = &opt_copy.opt;
1140		}
1141		rcu_read_unlock();
1142	}
1143
1144	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1145		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1146					    (struct sockaddr *)usin,
1147					    &msg->msg_namelen,
1148					    &ipc.addr);
1149		if (err)
1150			goto out_free;
1151		if (usin) {
1152			if (usin->sin_port == 0) {
1153				/* BPF program set invalid port. Reject it. */
1154				err = -EINVAL;
1155				goto out_free;
1156			}
1157			daddr = usin->sin_addr.s_addr;
1158			dport = usin->sin_port;
1159		}
1160	}
1161
1162	saddr = ipc.addr;
1163	ipc.addr = faddr = daddr;
1164
1165	if (ipc.opt && ipc.opt->opt.srr) {
1166		if (!daddr) {
1167			err = -EINVAL;
1168			goto out_free;
1169		}
1170		faddr = ipc.opt->opt.faddr;
1171		connected = 0;
1172	}
1173	tos = get_rttos(&ipc, inet);
1174	scope = ip_sendmsg_scope(inet, &ipc, msg);
1175	if (scope == RT_SCOPE_LINK)
1176		connected = 0;
1177
1178	if (ipv4_is_multicast(daddr)) {
1179		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1180			ipc.oif = inet->mc_index;
1181		if (!saddr)
1182			saddr = inet->mc_addr;
1183		connected = 0;
1184	} else if (!ipc.oif) {
1185		ipc.oif = inet->uc_index;
1186	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1187		/* oif is set, packet is to local broadcast and
1188		 * uc_index is set. oif is most likely set
1189		 * by sk_bound_dev_if. If uc_index != oif check if the
1190		 * oif is an L3 master and uc_index is an L3 slave.
1191		 * If so, we want to allow the send using the uc_index.
1192		 */
1193		if (ipc.oif != inet->uc_index &&
1194		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1195							      inet->uc_index)) {
1196			ipc.oif = inet->uc_index;
1197		}
1198	}
1199
1200	if (connected)
1201		rt = (struct rtable *)sk_dst_check(sk, 0);
1202
1203	if (!rt) {
1204		struct net *net = sock_net(sk);
1205		__u8 flow_flags = inet_sk_flowi_flags(sk);
1206
1207		fl4 = &fl4_stack;
1208
1209		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1210				   sk->sk_protocol, flow_flags, faddr, saddr,
1211				   dport, inet->inet_sport, sk->sk_uid);
1212
1213		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1214		rt = ip_route_output_flow(net, fl4, sk);
1215		if (IS_ERR(rt)) {
1216			err = PTR_ERR(rt);
1217			rt = NULL;
1218			if (err == -ENETUNREACH)
1219				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1220			goto out;
1221		}
1222
1223		err = -EACCES;
1224		if ((rt->rt_flags & RTCF_BROADCAST) &&
1225		    !sock_flag(sk, SOCK_BROADCAST))
1226			goto out;
1227		if (connected)
1228			sk_dst_set(sk, dst_clone(&rt->dst));
1229	}
1230
1231	if (msg->msg_flags&MSG_CONFIRM)
1232		goto do_confirm;
1233back_from_confirm:
1234
1235	saddr = fl4->saddr;
1236	if (!ipc.addr)
1237		daddr = ipc.addr = fl4->daddr;
1238
1239	/* Lockless fast path for the non-corking case. */
1240	if (!corkreq) {
1241		struct inet_cork cork;
1242
1243		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1244				  sizeof(struct udphdr), &ipc, &rt,
1245				  &cork, msg->msg_flags);
1246		err = PTR_ERR(skb);
1247		if (!IS_ERR_OR_NULL(skb))
1248			err = udp_send_skb(skb, fl4, &cork);
1249		goto out;
1250	}
1251
1252	lock_sock(sk);
1253	if (unlikely(up->pending)) {
1254		/* The socket is already corked while preparing it. */
1255		/* ... which is an evident application bug. --ANK */
1256		release_sock(sk);
1257
1258		net_dbg_ratelimited("socket already corked\n");
1259		err = -EINVAL;
1260		goto out;
1261	}
1262	/*
1263	 *	Now cork the socket to pend data.
1264	 */
1265	fl4 = &inet->cork.fl.u.ip4;
1266	fl4->daddr = daddr;
1267	fl4->saddr = saddr;
1268	fl4->fl4_dport = dport;
1269	fl4->fl4_sport = inet->inet_sport;
1270	WRITE_ONCE(up->pending, AF_INET);
1271
1272do_append_data:
1273	up->len += ulen;
1274	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1275			     sizeof(struct udphdr), &ipc, &rt,
1276			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1277	if (err)
1278		udp_flush_pending_frames(sk);
1279	else if (!corkreq)
1280		err = udp_push_pending_frames(sk);
1281	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1282		WRITE_ONCE(up->pending, 0);
1283	release_sock(sk);
1284
1285out:
1286	ip_rt_put(rt);
1287out_free:
1288	if (free)
1289		kfree(ipc.opt);
1290	if (!err)
1291		return len;
1292	/*
1293	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1294	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1295	 * we don't have a good statistic (IpOutDiscards but it can be too many
1296	 * things).  We could add another new stat but at least for now that
1297	 * seems like overkill.
1298	 */
1299	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1300		UDP_INC_STATS(sock_net(sk),
1301			      UDP_MIB_SNDBUFERRORS, is_udplite);
1302	}
1303	return err;
1304
1305do_confirm:
1306	if (msg->msg_flags & MSG_PROBE)
1307		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1308	if (!(msg->msg_flags&MSG_PROBE) || len)
1309		goto back_from_confirm;
1310	err = 0;
1311	goto out;
1312}
1313EXPORT_SYMBOL(udp_sendmsg);
1314
1315void udp_splice_eof(struct socket *sock)
1316{
1317	struct sock *sk = sock->sk;
1318	struct udp_sock *up = udp_sk(sk);
1319
1320	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1321		return;
1322
1323	lock_sock(sk);
1324	if (up->pending && !udp_test_bit(CORK, sk))
1325		udp_push_pending_frames(sk);
1326	release_sock(sk);
1327}
1328EXPORT_SYMBOL_GPL(udp_splice_eof);
1329
1330#define UDP_SKB_IS_STATELESS 0x80000000
1331
1332/* all head states (dst, sk, nf conntrack) except skb extensions are
1333 * cleared by udp_rcv().
1334 *
1335 * We need to preserve secpath, if present, to eventually process
1336 * IP_CMSG_PASSSEC at recvmsg() time.
1337 *
1338 * Other extensions can be cleared.
1339 */
1340static bool udp_try_make_stateless(struct sk_buff *skb)
1341{
1342	if (!skb_has_extensions(skb))
1343		return true;
1344
1345	if (!secpath_exists(skb)) {
1346		skb_ext_reset(skb);
1347		return true;
1348	}
1349
1350	return false;
1351}
1352
1353static void udp_set_dev_scratch(struct sk_buff *skb)
1354{
1355	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1356
1357	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1358	scratch->_tsize_state = skb->truesize;
1359#if BITS_PER_LONG == 64
1360	scratch->len = skb->len;
1361	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1362	scratch->is_linear = !skb_is_nonlinear(skb);
1363#endif
1364	if (udp_try_make_stateless(skb))
1365		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1366}
1367
1368static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1369{
1370	/* We come here after udp_lib_checksum_complete() returned 0.
1371	 * This means that __skb_checksum_complete() might have
1372	 * set skb->csum_valid to 1.
1373	 * On 64bit platforms, we can set csum_unnecessary
1374	 * to true, but only if the skb is not shared.
1375	 */
1376#if BITS_PER_LONG == 64
1377	if (!skb_shared(skb))
1378		udp_skb_scratch(skb)->csum_unnecessary = true;
1379#endif
1380}
1381
1382static int udp_skb_truesize(struct sk_buff *skb)
1383{
1384	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1385}
1386
1387static bool udp_skb_has_head_state(struct sk_buff *skb)
1388{
1389	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1390}
1391
1392/* fully reclaim rmem/fwd memory allocated for skb */
1393static void udp_rmem_release(struct sock *sk, int size, int partial,
1394			     bool rx_queue_lock_held)
1395{
1396	struct udp_sock *up = udp_sk(sk);
1397	struct sk_buff_head *sk_queue;
1398	int amt;
1399
1400	if (likely(partial)) {
1401		up->forward_deficit += size;
1402		size = up->forward_deficit;
1403		if (size < READ_ONCE(up->forward_threshold) &&
1404		    !skb_queue_empty(&up->reader_queue))
1405			return;
1406	} else {
1407		size += up->forward_deficit;
1408	}
1409	up->forward_deficit = 0;
1410
1411	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1412	 * if the called don't held it already
1413	 */
1414	sk_queue = &sk->sk_receive_queue;
1415	if (!rx_queue_lock_held)
1416		spin_lock(&sk_queue->lock);
1417
1418
1419	sk_forward_alloc_add(sk, size);
1420	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1421	sk_forward_alloc_add(sk, -amt);
1422
1423	if (amt)
1424		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1425
1426	atomic_sub(size, &sk->sk_rmem_alloc);
1427
1428	/* this can save us from acquiring the rx queue lock on next receive */
1429	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1430
1431	if (!rx_queue_lock_held)
1432		spin_unlock(&sk_queue->lock);
1433}
1434
1435/* Note: called with reader_queue.lock held.
1436 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1437 * This avoids a cache line miss while receive_queue lock is held.
1438 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1439 */
1440void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1441{
1442	prefetch(&skb->data);
1443	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1444}
1445EXPORT_SYMBOL(udp_skb_destructor);
1446
1447/* as above, but the caller held the rx queue lock, too */
1448static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1449{
1450	prefetch(&skb->data);
1451	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1452}
1453
1454/* Idea of busylocks is to let producers grab an extra spinlock
1455 * to relieve pressure on the receive_queue spinlock shared by consumer.
1456 * Under flood, this means that only one producer can be in line
1457 * trying to acquire the receive_queue spinlock.
1458 * These busylock can be allocated on a per cpu manner, instead of a
1459 * per socket one (that would consume a cache line per socket)
1460 */
1461static int udp_busylocks_log __read_mostly;
1462static spinlock_t *udp_busylocks __read_mostly;
1463
1464static spinlock_t *busylock_acquire(void *ptr)
1465{
1466	spinlock_t *busy;
1467
1468	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1469	spin_lock(busy);
1470	return busy;
1471}
1472
1473static void busylock_release(spinlock_t *busy)
1474{
1475	if (busy)
1476		spin_unlock(busy);
1477}
1478
1479static int udp_rmem_schedule(struct sock *sk, int size)
1480{
1481	int delta;
1482
1483	delta = size - sk->sk_forward_alloc;
1484	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1485		return -ENOBUFS;
1486
1487	return 0;
1488}
1489
1490int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1491{
1492	struct sk_buff_head *list = &sk->sk_receive_queue;
1493	int rmem, err = -ENOMEM;
1494	spinlock_t *busy = NULL;
1495	int size;
1496
1497	/* try to avoid the costly atomic add/sub pair when the receive
1498	 * queue is full; always allow at least a packet
1499	 */
1500	rmem = atomic_read(&sk->sk_rmem_alloc);
1501	if (rmem > sk->sk_rcvbuf)
1502		goto drop;
1503
1504	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1505	 * having linear skbs :
1506	 * - Reduce memory overhead and thus increase receive queue capacity
1507	 * - Less cache line misses at copyout() time
1508	 * - Less work at consume_skb() (less alien page frag freeing)
1509	 */
1510	if (rmem > (sk->sk_rcvbuf >> 1)) {
1511		skb_condense(skb);
1512
1513		busy = busylock_acquire(sk);
1514	}
1515	size = skb->truesize;
1516	udp_set_dev_scratch(skb);
1517
1518	/* we drop only if the receive buf is full and the receive
1519	 * queue contains some other skb
1520	 */
1521	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1522	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1523		goto uncharge_drop;
1524
1525	spin_lock(&list->lock);
1526	err = udp_rmem_schedule(sk, size);
1527	if (err) {
1528		spin_unlock(&list->lock);
1529		goto uncharge_drop;
1530	}
1531
1532	sk_forward_alloc_add(sk, -size);
1533
1534	/* no need to setup a destructor, we will explicitly release the
1535	 * forward allocated memory on dequeue
1536	 */
1537	sock_skb_set_dropcount(sk, skb);
1538
1539	__skb_queue_tail(list, skb);
1540	spin_unlock(&list->lock);
1541
1542	if (!sock_flag(sk, SOCK_DEAD))
1543		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1544
1545	busylock_release(busy);
1546	return 0;
1547
1548uncharge_drop:
1549	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1550
1551drop:
1552	atomic_inc(&sk->sk_drops);
1553	busylock_release(busy);
1554	return err;
1555}
1556EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1557
1558void udp_destruct_common(struct sock *sk)
1559{
1560	/* reclaim completely the forward allocated memory */
1561	struct udp_sock *up = udp_sk(sk);
1562	unsigned int total = 0;
1563	struct sk_buff *skb;
1564
1565	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1566	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1567		total += skb->truesize;
1568		kfree_skb(skb);
1569	}
1570	udp_rmem_release(sk, total, 0, true);
1571}
1572EXPORT_SYMBOL_GPL(udp_destruct_common);
1573
1574static void udp_destruct_sock(struct sock *sk)
1575{
1576	udp_destruct_common(sk);
1577	inet_sock_destruct(sk);
1578}
1579
1580int udp_init_sock(struct sock *sk)
1581{
1582	udp_lib_init_sock(sk);
1583	sk->sk_destruct = udp_destruct_sock;
1584	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1585	return 0;
1586}
1587
1588void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1589{
1590	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1591		bool slow = lock_sock_fast(sk);
1592
1593		sk_peek_offset_bwd(sk, len);
1594		unlock_sock_fast(sk, slow);
1595	}
1596
1597	if (!skb_unref(skb))
1598		return;
1599
1600	/* In the more common cases we cleared the head states previously,
1601	 * see __udp_queue_rcv_skb().
1602	 */
1603	if (unlikely(udp_skb_has_head_state(skb)))
1604		skb_release_head_state(skb);
1605	__consume_stateless_skb(skb);
1606}
1607EXPORT_SYMBOL_GPL(skb_consume_udp);
1608
1609static struct sk_buff *__first_packet_length(struct sock *sk,
1610					     struct sk_buff_head *rcvq,
1611					     int *total)
1612{
1613	struct sk_buff *skb;
1614
1615	while ((skb = skb_peek(rcvq)) != NULL) {
1616		if (udp_lib_checksum_complete(skb)) {
1617			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1618					IS_UDPLITE(sk));
1619			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1620					IS_UDPLITE(sk));
1621			atomic_inc(&sk->sk_drops);
1622			__skb_unlink(skb, rcvq);
1623			*total += skb->truesize;
1624			kfree_skb(skb);
1625		} else {
1626			udp_skb_csum_unnecessary_set(skb);
1627			break;
1628		}
1629	}
1630	return skb;
1631}
1632
1633/**
1634 *	first_packet_length	- return length of first packet in receive queue
1635 *	@sk: socket
1636 *
1637 *	Drops all bad checksum frames, until a valid one is found.
1638 *	Returns the length of found skb, or -1 if none is found.
1639 */
1640static int first_packet_length(struct sock *sk)
1641{
1642	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1643	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1644	struct sk_buff *skb;
1645	int total = 0;
1646	int res;
1647
1648	spin_lock_bh(&rcvq->lock);
1649	skb = __first_packet_length(sk, rcvq, &total);
1650	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1651		spin_lock(&sk_queue->lock);
1652		skb_queue_splice_tail_init(sk_queue, rcvq);
1653		spin_unlock(&sk_queue->lock);
1654
1655		skb = __first_packet_length(sk, rcvq, &total);
1656	}
1657	res = skb ? skb->len : -1;
1658	if (total)
1659		udp_rmem_release(sk, total, 1, false);
1660	spin_unlock_bh(&rcvq->lock);
1661	return res;
1662}
1663
1664/*
1665 *	IOCTL requests applicable to the UDP protocol
1666 */
1667
1668int udp_ioctl(struct sock *sk, int cmd, int *karg)
1669{
1670	switch (cmd) {
1671	case SIOCOUTQ:
1672	{
1673		*karg = sk_wmem_alloc_get(sk);
1674		return 0;
1675	}
1676
1677	case SIOCINQ:
1678	{
1679		*karg = max_t(int, 0, first_packet_length(sk));
1680		return 0;
1681	}
1682
1683	default:
1684		return -ENOIOCTLCMD;
1685	}
1686
1687	return 0;
1688}
1689EXPORT_SYMBOL(udp_ioctl);
1690
1691struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1692			       int *off, int *err)
1693{
1694	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1695	struct sk_buff_head *queue;
1696	struct sk_buff *last;
1697	long timeo;
1698	int error;
1699
1700	queue = &udp_sk(sk)->reader_queue;
1701	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1702	do {
1703		struct sk_buff *skb;
1704
1705		error = sock_error(sk);
1706		if (error)
1707			break;
1708
1709		error = -EAGAIN;
1710		do {
1711			spin_lock_bh(&queue->lock);
1712			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1713							err, &last);
1714			if (skb) {
1715				if (!(flags & MSG_PEEK))
1716					udp_skb_destructor(sk, skb);
1717				spin_unlock_bh(&queue->lock);
1718				return skb;
1719			}
1720
1721			if (skb_queue_empty_lockless(sk_queue)) {
1722				spin_unlock_bh(&queue->lock);
1723				goto busy_check;
1724			}
1725
1726			/* refill the reader queue and walk it again
1727			 * keep both queues locked to avoid re-acquiring
1728			 * the sk_receive_queue lock if fwd memory scheduling
1729			 * is needed.
1730			 */
1731			spin_lock(&sk_queue->lock);
1732			skb_queue_splice_tail_init(sk_queue, queue);
1733
1734			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1735							err, &last);
1736			if (skb && !(flags & MSG_PEEK))
1737				udp_skb_dtor_locked(sk, skb);
1738			spin_unlock(&sk_queue->lock);
1739			spin_unlock_bh(&queue->lock);
1740			if (skb)
1741				return skb;
1742
1743busy_check:
1744			if (!sk_can_busy_loop(sk))
1745				break;
1746
1747			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1748		} while (!skb_queue_empty_lockless(sk_queue));
1749
1750		/* sk_queue is empty, reader_queue may contain peeked packets */
1751	} while (timeo &&
1752		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1753					      &error, &timeo,
1754					      (struct sk_buff *)sk_queue));
1755
1756	*err = error;
1757	return NULL;
1758}
1759EXPORT_SYMBOL(__skb_recv_udp);
1760
1761int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1762{
1763	struct sk_buff *skb;
1764	int err;
1765
1766try_again:
1767	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1768	if (!skb)
1769		return err;
1770
1771	if (udp_lib_checksum_complete(skb)) {
1772		int is_udplite = IS_UDPLITE(sk);
1773		struct net *net = sock_net(sk);
1774
1775		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1776		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1777		atomic_inc(&sk->sk_drops);
1778		kfree_skb(skb);
1779		goto try_again;
1780	}
1781
1782	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1783	return recv_actor(sk, skb);
1784}
1785EXPORT_SYMBOL(udp_read_skb);
1786
1787/*
1788 * 	This should be easy, if there is something there we
1789 * 	return it, otherwise we block.
1790 */
1791
1792int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1793		int *addr_len)
1794{
1795	struct inet_sock *inet = inet_sk(sk);
1796	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1797	struct sk_buff *skb;
1798	unsigned int ulen, copied;
1799	int off, err, peeking = flags & MSG_PEEK;
1800	int is_udplite = IS_UDPLITE(sk);
1801	bool checksum_valid = false;
1802
1803	if (flags & MSG_ERRQUEUE)
1804		return ip_recv_error(sk, msg, len, addr_len);
1805
1806try_again:
1807	off = sk_peek_offset(sk, flags);
1808	skb = __skb_recv_udp(sk, flags, &off, &err);
1809	if (!skb)
1810		return err;
1811
1812	ulen = udp_skb_len(skb);
1813	copied = len;
1814	if (copied > ulen - off)
1815		copied = ulen - off;
1816	else if (copied < ulen)
1817		msg->msg_flags |= MSG_TRUNC;
1818
1819	/*
1820	 * If checksum is needed at all, try to do it while copying the
1821	 * data.  If the data is truncated, or if we only want a partial
1822	 * coverage checksum (UDP-Lite), do it before the copy.
1823	 */
1824
1825	if (copied < ulen || peeking ||
1826	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1827		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1828				!__udp_lib_checksum_complete(skb);
1829		if (!checksum_valid)
1830			goto csum_copy_err;
1831	}
1832
1833	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1834		if (udp_skb_is_linear(skb))
1835			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1836		else
1837			err = skb_copy_datagram_msg(skb, off, msg, copied);
1838	} else {
1839		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1840
1841		if (err == -EINVAL)
1842			goto csum_copy_err;
1843	}
1844
1845	if (unlikely(err)) {
1846		if (!peeking) {
1847			atomic_inc(&sk->sk_drops);
1848			UDP_INC_STATS(sock_net(sk),
1849				      UDP_MIB_INERRORS, is_udplite);
1850		}
1851		kfree_skb(skb);
1852		return err;
1853	}
1854
1855	if (!peeking)
1856		UDP_INC_STATS(sock_net(sk),
1857			      UDP_MIB_INDATAGRAMS, is_udplite);
1858
1859	sock_recv_cmsgs(msg, sk, skb);
1860
1861	/* Copy the address. */
1862	if (sin) {
1863		sin->sin_family = AF_INET;
1864		sin->sin_port = udp_hdr(skb)->source;
1865		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1866		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1867		*addr_len = sizeof(*sin);
1868
1869		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1870						      (struct sockaddr *)sin,
1871						      addr_len);
1872	}
1873
1874	if (udp_test_bit(GRO_ENABLED, sk))
1875		udp_cmsg_recv(msg, sk, skb);
1876
1877	if (inet_cmsg_flags(inet))
1878		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1879
1880	err = copied;
1881	if (flags & MSG_TRUNC)
1882		err = ulen;
1883
1884	skb_consume_udp(sk, skb, peeking ? -err : err);
1885	return err;
1886
1887csum_copy_err:
1888	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1889				 udp_skb_destructor)) {
1890		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1891		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1892	}
1893	kfree_skb(skb);
1894
1895	/* starting over for a new packet, but check if we need to yield */
1896	cond_resched();
1897	msg->msg_flags &= ~MSG_TRUNC;
1898	goto try_again;
1899}
1900
1901int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1902{
1903	/* This check is replicated from __ip4_datagram_connect() and
1904	 * intended to prevent BPF program called below from accessing bytes
1905	 * that are out of the bound specified by user in addr_len.
1906	 */
1907	if (addr_len < sizeof(struct sockaddr_in))
1908		return -EINVAL;
1909
1910	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1911}
1912EXPORT_SYMBOL(udp_pre_connect);
1913
1914int __udp_disconnect(struct sock *sk, int flags)
1915{
1916	struct inet_sock *inet = inet_sk(sk);
1917	/*
1918	 *	1003.1g - break association.
1919	 */
1920
1921	sk->sk_state = TCP_CLOSE;
1922	inet->inet_daddr = 0;
1923	inet->inet_dport = 0;
1924	sock_rps_reset_rxhash(sk);
1925	sk->sk_bound_dev_if = 0;
1926	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1927		inet_reset_saddr(sk);
1928		if (sk->sk_prot->rehash &&
1929		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1930			sk->sk_prot->rehash(sk);
1931	}
1932
1933	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1934		sk->sk_prot->unhash(sk);
1935		inet->inet_sport = 0;
1936	}
1937	sk_dst_reset(sk);
1938	return 0;
1939}
1940EXPORT_SYMBOL(__udp_disconnect);
1941
1942int udp_disconnect(struct sock *sk, int flags)
1943{
1944	lock_sock(sk);
1945	__udp_disconnect(sk, flags);
1946	release_sock(sk);
1947	return 0;
1948}
1949EXPORT_SYMBOL(udp_disconnect);
1950
1951void udp_lib_unhash(struct sock *sk)
1952{
1953	if (sk_hashed(sk)) {
1954		struct udp_table *udptable = udp_get_table_prot(sk);
1955		struct udp_hslot *hslot, *hslot2;
1956
1957		hslot  = udp_hashslot(udptable, sock_net(sk),
1958				      udp_sk(sk)->udp_port_hash);
1959		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1960
1961		spin_lock_bh(&hslot->lock);
1962		if (rcu_access_pointer(sk->sk_reuseport_cb))
1963			reuseport_detach_sock(sk);
1964		if (sk_del_node_init_rcu(sk)) {
1965			hslot->count--;
1966			inet_sk(sk)->inet_num = 0;
1967			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1968
1969			spin_lock(&hslot2->lock);
1970			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1971			hslot2->count--;
1972			spin_unlock(&hslot2->lock);
1973		}
1974		spin_unlock_bh(&hslot->lock);
1975	}
1976}
1977EXPORT_SYMBOL(udp_lib_unhash);
1978
1979/*
1980 * inet_rcv_saddr was changed, we must rehash secondary hash
1981 */
1982void udp_lib_rehash(struct sock *sk, u16 newhash)
1983{
1984	if (sk_hashed(sk)) {
1985		struct udp_table *udptable = udp_get_table_prot(sk);
1986		struct udp_hslot *hslot, *hslot2, *nhslot2;
1987
1988		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1989		nhslot2 = udp_hashslot2(udptable, newhash);
1990		udp_sk(sk)->udp_portaddr_hash = newhash;
1991
1992		if (hslot2 != nhslot2 ||
1993		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1994			hslot = udp_hashslot(udptable, sock_net(sk),
1995					     udp_sk(sk)->udp_port_hash);
1996			/* we must lock primary chain too */
1997			spin_lock_bh(&hslot->lock);
1998			if (rcu_access_pointer(sk->sk_reuseport_cb))
1999				reuseport_detach_sock(sk);
2000
2001			if (hslot2 != nhslot2) {
2002				spin_lock(&hslot2->lock);
2003				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2004				hslot2->count--;
2005				spin_unlock(&hslot2->lock);
2006
2007				spin_lock(&nhslot2->lock);
2008				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2009							 &nhslot2->head);
2010				nhslot2->count++;
2011				spin_unlock(&nhslot2->lock);
2012			}
2013
2014			spin_unlock_bh(&hslot->lock);
2015		}
2016	}
2017}
2018EXPORT_SYMBOL(udp_lib_rehash);
2019
2020void udp_v4_rehash(struct sock *sk)
2021{
2022	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2023					  inet_sk(sk)->inet_rcv_saddr,
2024					  inet_sk(sk)->inet_num);
2025	udp_lib_rehash(sk, new_hash);
2026}
2027
2028static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2029{
2030	int rc;
2031
2032	if (inet_sk(sk)->inet_daddr) {
2033		sock_rps_save_rxhash(sk, skb);
2034		sk_mark_napi_id(sk, skb);
2035		sk_incoming_cpu_update(sk);
2036	} else {
2037		sk_mark_napi_id_once(sk, skb);
2038	}
2039
2040	rc = __udp_enqueue_schedule_skb(sk, skb);
2041	if (rc < 0) {
2042		int is_udplite = IS_UDPLITE(sk);
2043		int drop_reason;
2044
2045		/* Note that an ENOMEM error is charged twice */
2046		if (rc == -ENOMEM) {
2047			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2048					is_udplite);
2049			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2050		} else {
2051			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2052				      is_udplite);
2053			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2054		}
2055		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2056		kfree_skb_reason(skb, drop_reason);
2057		trace_udp_fail_queue_rcv_skb(rc, sk);
2058		return -1;
2059	}
2060
2061	return 0;
2062}
2063
2064/* returns:
2065 *  -1: error
2066 *   0: success
2067 *  >0: "udp encap" protocol resubmission
2068 *
2069 * Note that in the success and error cases, the skb is assumed to
2070 * have either been requeued or freed.
2071 */
2072static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2073{
2074	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2075	struct udp_sock *up = udp_sk(sk);
2076	int is_udplite = IS_UDPLITE(sk);
2077
2078	/*
2079	 *	Charge it to the socket, dropping if the queue is full.
2080	 */
2081	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2082		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2083		goto drop;
2084	}
2085	nf_reset_ct(skb);
2086
2087	if (static_branch_unlikely(&udp_encap_needed_key) &&
2088	    READ_ONCE(up->encap_type)) {
2089		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2090
2091		/*
2092		 * This is an encapsulation socket so pass the skb to
2093		 * the socket's udp_encap_rcv() hook. Otherwise, just
2094		 * fall through and pass this up the UDP socket.
2095		 * up->encap_rcv() returns the following value:
2096		 * =0 if skb was successfully passed to the encap
2097		 *    handler or was discarded by it.
2098		 * >0 if skb should be passed on to UDP.
2099		 * <0 if skb should be resubmitted as proto -N
2100		 */
2101
2102		/* if we're overly short, let UDP handle it */
2103		encap_rcv = READ_ONCE(up->encap_rcv);
2104		if (encap_rcv) {
2105			int ret;
2106
2107			/* Verify checksum before giving to encap */
2108			if (udp_lib_checksum_complete(skb))
2109				goto csum_error;
2110
2111			ret = encap_rcv(sk, skb);
2112			if (ret <= 0) {
2113				__UDP_INC_STATS(sock_net(sk),
2114						UDP_MIB_INDATAGRAMS,
2115						is_udplite);
2116				return -ret;
2117			}
2118		}
2119
2120		/* FALLTHROUGH -- it's a UDP Packet */
2121	}
2122
2123	/*
2124	 * 	UDP-Lite specific tests, ignored on UDP sockets
2125	 */
2126	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2127		u16 pcrlen = READ_ONCE(up->pcrlen);
2128
2129		/*
2130		 * MIB statistics other than incrementing the error count are
2131		 * disabled for the following two types of errors: these depend
2132		 * on the application settings, not on the functioning of the
2133		 * protocol stack as such.
2134		 *
2135		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2136		 * way ... to ... at least let the receiving application block
2137		 * delivery of packets with coverage values less than a value
2138		 * provided by the application."
2139		 */
2140		if (pcrlen == 0) {          /* full coverage was set  */
2141			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2142					    UDP_SKB_CB(skb)->cscov, skb->len);
2143			goto drop;
2144		}
2145		/* The next case involves violating the min. coverage requested
2146		 * by the receiver. This is subtle: if receiver wants x and x is
2147		 * greater than the buffersize/MTU then receiver will complain
2148		 * that it wants x while sender emits packets of smaller size y.
2149		 * Therefore the above ...()->partial_cov statement is essential.
2150		 */
2151		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2152			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2153					    UDP_SKB_CB(skb)->cscov, pcrlen);
2154			goto drop;
2155		}
2156	}
2157
2158	prefetch(&sk->sk_rmem_alloc);
2159	if (rcu_access_pointer(sk->sk_filter) &&
2160	    udp_lib_checksum_complete(skb))
2161			goto csum_error;
2162
2163	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2164		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2165		goto drop;
2166	}
2167
2168	udp_csum_pull_header(skb);
2169
2170	ipv4_pktinfo_prepare(sk, skb, true);
2171	return __udp_queue_rcv_skb(sk, skb);
2172
2173csum_error:
2174	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2175	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2176drop:
2177	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2178	atomic_inc(&sk->sk_drops);
2179	kfree_skb_reason(skb, drop_reason);
2180	return -1;
2181}
2182
2183static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2184{
2185	struct sk_buff *next, *segs;
2186	int ret;
2187
2188	if (likely(!udp_unexpected_gso(sk, skb)))
2189		return udp_queue_rcv_one_skb(sk, skb);
2190
2191	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2192	__skb_push(skb, -skb_mac_offset(skb));
2193	segs = udp_rcv_segment(sk, skb, true);
2194	skb_list_walk_safe(segs, skb, next) {
2195		__skb_pull(skb, skb_transport_offset(skb));
2196
2197		udp_post_segment_fix_csum(skb);
2198		ret = udp_queue_rcv_one_skb(sk, skb);
2199		if (ret > 0)
2200			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2201	}
2202	return 0;
2203}
2204
2205/* For TCP sockets, sk_rx_dst is protected by socket lock
2206 * For UDP, we use xchg() to guard against concurrent changes.
2207 */
2208bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2209{
2210	struct dst_entry *old;
2211
2212	if (dst_hold_safe(dst)) {
2213		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2214		dst_release(old);
2215		return old != dst;
2216	}
2217	return false;
2218}
2219EXPORT_SYMBOL(udp_sk_rx_dst_set);
2220
2221/*
2222 *	Multicasts and broadcasts go to each listener.
2223 *
2224 *	Note: called only from the BH handler context.
2225 */
2226static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2227				    struct udphdr  *uh,
2228				    __be32 saddr, __be32 daddr,
2229				    struct udp_table *udptable,
2230				    int proto)
2231{
2232	struct sock *sk, *first = NULL;
2233	unsigned short hnum = ntohs(uh->dest);
2234	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2235	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2236	unsigned int offset = offsetof(typeof(*sk), sk_node);
2237	int dif = skb->dev->ifindex;
2238	int sdif = inet_sdif(skb);
2239	struct hlist_node *node;
2240	struct sk_buff *nskb;
2241
2242	if (use_hash2) {
2243		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2244			    udptable->mask;
2245		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2246start_lookup:
2247		hslot = &udptable->hash2[hash2];
2248		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2249	}
2250
2251	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2252		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2253					 uh->source, saddr, dif, sdif, hnum))
2254			continue;
2255
2256		if (!first) {
2257			first = sk;
2258			continue;
2259		}
2260		nskb = skb_clone(skb, GFP_ATOMIC);
2261
2262		if (unlikely(!nskb)) {
2263			atomic_inc(&sk->sk_drops);
2264			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2265					IS_UDPLITE(sk));
2266			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2267					IS_UDPLITE(sk));
2268			continue;
2269		}
2270		if (udp_queue_rcv_skb(sk, nskb) > 0)
2271			consume_skb(nskb);
2272	}
2273
2274	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2275	if (use_hash2 && hash2 != hash2_any) {
2276		hash2 = hash2_any;
2277		goto start_lookup;
2278	}
2279
2280	if (first) {
2281		if (udp_queue_rcv_skb(first, skb) > 0)
2282			consume_skb(skb);
2283	} else {
2284		kfree_skb(skb);
2285		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2286				proto == IPPROTO_UDPLITE);
2287	}
2288	return 0;
2289}
2290
2291/* Initialize UDP checksum. If exited with zero value (success),
2292 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2293 * Otherwise, csum completion requires checksumming packet body,
2294 * including udp header and folding it to skb->csum.
2295 */
2296static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2297				 int proto)
2298{
2299	int err;
2300
2301	UDP_SKB_CB(skb)->partial_cov = 0;
2302	UDP_SKB_CB(skb)->cscov = skb->len;
2303
2304	if (proto == IPPROTO_UDPLITE) {
2305		err = udplite_checksum_init(skb, uh);
2306		if (err)
2307			return err;
2308
2309		if (UDP_SKB_CB(skb)->partial_cov) {
2310			skb->csum = inet_compute_pseudo(skb, proto);
2311			return 0;
2312		}
2313	}
2314
2315	/* Note, we are only interested in != 0 or == 0, thus the
2316	 * force to int.
2317	 */
2318	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2319							inet_compute_pseudo);
2320	if (err)
2321		return err;
2322
2323	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2324		/* If SW calculated the value, we know it's bad */
2325		if (skb->csum_complete_sw)
2326			return 1;
2327
2328		/* HW says the value is bad. Let's validate that.
2329		 * skb->csum is no longer the full packet checksum,
2330		 * so don't treat it as such.
2331		 */
2332		skb_checksum_complete_unset(skb);
2333	}
2334
2335	return 0;
2336}
2337
2338/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2339 * return code conversion for ip layer consumption
2340 */
2341static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2342			       struct udphdr *uh)
2343{
2344	int ret;
2345
2346	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2347		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2348
2349	ret = udp_queue_rcv_skb(sk, skb);
2350
2351	/* a return value > 0 means to resubmit the input, but
2352	 * it wants the return to be -protocol, or 0
2353	 */
2354	if (ret > 0)
2355		return -ret;
2356	return 0;
2357}
2358
2359/*
2360 *	All we need to do is get the socket, and then do a checksum.
2361 */
2362
2363int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2364		   int proto)
2365{
2366	struct sock *sk;
2367	struct udphdr *uh;
2368	unsigned short ulen;
2369	struct rtable *rt = skb_rtable(skb);
2370	__be32 saddr, daddr;
2371	struct net *net = dev_net(skb->dev);
2372	bool refcounted;
2373	int drop_reason;
2374
2375	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2376
2377	/*
2378	 *  Validate the packet.
2379	 */
2380	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2381		goto drop;		/* No space for header. */
2382
2383	uh   = udp_hdr(skb);
2384	ulen = ntohs(uh->len);
2385	saddr = ip_hdr(skb)->saddr;
2386	daddr = ip_hdr(skb)->daddr;
2387
2388	if (ulen > skb->len)
2389		goto short_packet;
2390
2391	if (proto == IPPROTO_UDP) {
2392		/* UDP validates ulen. */
2393		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2394			goto short_packet;
2395		uh = udp_hdr(skb);
2396	}
2397
2398	if (udp4_csum_init(skb, uh, proto))
2399		goto csum_error;
2400
2401	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2402			     &refcounted, udp_ehashfn);
2403	if (IS_ERR(sk))
2404		goto no_sk;
2405
2406	if (sk) {
2407		struct dst_entry *dst = skb_dst(skb);
2408		int ret;
2409
2410		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2411			udp_sk_rx_dst_set(sk, dst);
2412
2413		ret = udp_unicast_rcv_skb(sk, skb, uh);
2414		if (refcounted)
2415			sock_put(sk);
2416		return ret;
2417	}
2418
2419	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2420		return __udp4_lib_mcast_deliver(net, skb, uh,
2421						saddr, daddr, udptable, proto);
2422
2423	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2424	if (sk)
2425		return udp_unicast_rcv_skb(sk, skb, uh);
2426no_sk:
2427	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2428		goto drop;
2429	nf_reset_ct(skb);
2430
2431	/* No socket. Drop packet silently, if checksum is wrong */
2432	if (udp_lib_checksum_complete(skb))
2433		goto csum_error;
2434
2435	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2436	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2437	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2438
2439	/*
2440	 * Hmm.  We got an UDP packet to a port to which we
2441	 * don't wanna listen.  Ignore it.
2442	 */
2443	kfree_skb_reason(skb, drop_reason);
2444	return 0;
2445
2446short_packet:
2447	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2448	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2449			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2450			    &saddr, ntohs(uh->source),
2451			    ulen, skb->len,
2452			    &daddr, ntohs(uh->dest));
2453	goto drop;
2454
2455csum_error:
2456	/*
2457	 * RFC1122: OK.  Discards the bad packet silently (as far as
2458	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2459	 */
2460	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2461	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2462			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2463			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2464			    ulen);
2465	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2466drop:
2467	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2468	kfree_skb_reason(skb, drop_reason);
2469	return 0;
2470}
2471
2472/* We can only early demux multicast if there is a single matching socket.
2473 * If more than one socket found returns NULL
2474 */
2475static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2476						  __be16 loc_port, __be32 loc_addr,
2477						  __be16 rmt_port, __be32 rmt_addr,
2478						  int dif, int sdif)
2479{
2480	struct udp_table *udptable = net->ipv4.udp_table;
2481	unsigned short hnum = ntohs(loc_port);
2482	struct sock *sk, *result;
2483	struct udp_hslot *hslot;
2484	unsigned int slot;
2485
2486	slot = udp_hashfn(net, hnum, udptable->mask);
2487	hslot = &udptable->hash[slot];
2488
2489	/* Do not bother scanning a too big list */
2490	if (hslot->count > 10)
2491		return NULL;
2492
2493	result = NULL;
2494	sk_for_each_rcu(sk, &hslot->head) {
2495		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2496					rmt_port, rmt_addr, dif, sdif, hnum)) {
2497			if (result)
2498				return NULL;
2499			result = sk;
2500		}
2501	}
2502
2503	return result;
2504}
2505
2506/* For unicast we should only early demux connected sockets or we can
2507 * break forwarding setups.  The chains here can be long so only check
2508 * if the first socket is an exact match and if not move on.
2509 */
2510static struct sock *__udp4_lib_demux_lookup(struct net *net,
2511					    __be16 loc_port, __be32 loc_addr,
2512					    __be16 rmt_port, __be32 rmt_addr,
2513					    int dif, int sdif)
2514{
2515	struct udp_table *udptable = net->ipv4.udp_table;
2516	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2517	unsigned short hnum = ntohs(loc_port);
2518	unsigned int hash2, slot2;
2519	struct udp_hslot *hslot2;
2520	__portpair ports;
2521	struct sock *sk;
2522
2523	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2524	slot2 = hash2 & udptable->mask;
2525	hslot2 = &udptable->hash2[slot2];
2526	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2527
2528	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2529		if (inet_match(net, sk, acookie, ports, dif, sdif))
2530			return sk;
2531		/* Only check first socket in chain */
2532		break;
2533	}
2534	return NULL;
2535}
2536
2537int udp_v4_early_demux(struct sk_buff *skb)
2538{
2539	struct net *net = dev_net(skb->dev);
2540	struct in_device *in_dev = NULL;
2541	const struct iphdr *iph;
2542	const struct udphdr *uh;
2543	struct sock *sk = NULL;
2544	struct dst_entry *dst;
2545	int dif = skb->dev->ifindex;
2546	int sdif = inet_sdif(skb);
2547	int ours;
2548
2549	/* validate the packet */
2550	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2551		return 0;
2552
2553	iph = ip_hdr(skb);
2554	uh = udp_hdr(skb);
2555
2556	if (skb->pkt_type == PACKET_MULTICAST) {
2557		in_dev = __in_dev_get_rcu(skb->dev);
2558
2559		if (!in_dev)
2560			return 0;
2561
2562		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2563				       iph->protocol);
2564		if (!ours)
2565			return 0;
2566
2567		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2568						   uh->source, iph->saddr,
2569						   dif, sdif);
2570	} else if (skb->pkt_type == PACKET_HOST) {
2571		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2572					     uh->source, iph->saddr, dif, sdif);
2573	}
2574
2575	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2576		return 0;
2577
2578	skb->sk = sk;
2579	skb->destructor = sock_efree;
2580	dst = rcu_dereference(sk->sk_rx_dst);
2581
2582	if (dst)
2583		dst = dst_check(dst, 0);
2584	if (dst) {
2585		u32 itag = 0;
2586
2587		/* set noref for now.
2588		 * any place which wants to hold dst has to call
2589		 * dst_hold_safe()
2590		 */
2591		skb_dst_set_noref(skb, dst);
2592
2593		/* for unconnected multicast sockets we need to validate
2594		 * the source on each packet
2595		 */
2596		if (!inet_sk(sk)->inet_daddr && in_dev)
2597			return ip_mc_validate_source(skb, iph->daddr,
2598						     iph->saddr,
2599						     iph->tos & IPTOS_RT_MASK,
2600						     skb->dev, in_dev, &itag);
2601	}
2602	return 0;
2603}
2604
2605int udp_rcv(struct sk_buff *skb)
2606{
2607	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2608}
2609
2610void udp_destroy_sock(struct sock *sk)
2611{
2612	struct udp_sock *up = udp_sk(sk);
2613	bool slow = lock_sock_fast(sk);
2614
2615	/* protects from races with udp_abort() */
2616	sock_set_flag(sk, SOCK_DEAD);
2617	udp_flush_pending_frames(sk);
2618	unlock_sock_fast(sk, slow);
2619	if (static_branch_unlikely(&udp_encap_needed_key)) {
2620		if (up->encap_type) {
2621			void (*encap_destroy)(struct sock *sk);
2622			encap_destroy = READ_ONCE(up->encap_destroy);
2623			if (encap_destroy)
2624				encap_destroy(sk);
2625		}
2626		if (udp_test_bit(ENCAP_ENABLED, sk))
2627			static_branch_dec(&udp_encap_needed_key);
2628	}
2629}
2630
2631/*
2632 *	Socket option code for UDP
2633 */
2634int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2635		       sockptr_t optval, unsigned int optlen,
2636		       int (*push_pending_frames)(struct sock *))
2637{
2638	struct udp_sock *up = udp_sk(sk);
2639	int val, valbool;
2640	int err = 0;
2641	int is_udplite = IS_UDPLITE(sk);
2642
2643	if (level == SOL_SOCKET) {
2644		err = sk_setsockopt(sk, level, optname, optval, optlen);
2645
2646		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2647			sockopt_lock_sock(sk);
2648			/* paired with READ_ONCE in udp_rmem_release() */
2649			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2650			sockopt_release_sock(sk);
2651		}
2652		return err;
2653	}
2654
2655	if (optlen < sizeof(int))
2656		return -EINVAL;
2657
2658	if (copy_from_sockptr(&val, optval, sizeof(val)))
2659		return -EFAULT;
2660
2661	valbool = val ? 1 : 0;
2662
2663	switch (optname) {
2664	case UDP_CORK:
2665		if (val != 0) {
2666			udp_set_bit(CORK, sk);
2667		} else {
2668			udp_clear_bit(CORK, sk);
2669			lock_sock(sk);
2670			push_pending_frames(sk);
2671			release_sock(sk);
2672		}
2673		break;
2674
2675	case UDP_ENCAP:
2676		switch (val) {
2677		case 0:
2678#ifdef CONFIG_XFRM
2679		case UDP_ENCAP_ESPINUDP:
2680		case UDP_ENCAP_ESPINUDP_NON_IKE:
2681#if IS_ENABLED(CONFIG_IPV6)
2682			if (sk->sk_family == AF_INET6)
2683				WRITE_ONCE(up->encap_rcv,
2684					   ipv6_stub->xfrm6_udp_encap_rcv);
2685			else
2686#endif
2687				WRITE_ONCE(up->encap_rcv,
2688					   xfrm4_udp_encap_rcv);
2689#endif
2690			fallthrough;
2691		case UDP_ENCAP_L2TPINUDP:
2692			WRITE_ONCE(up->encap_type, val);
2693			udp_tunnel_encap_enable(sk);
2694			break;
2695		default:
2696			err = -ENOPROTOOPT;
2697			break;
2698		}
2699		break;
2700
2701	case UDP_NO_CHECK6_TX:
2702		udp_set_no_check6_tx(sk, valbool);
2703		break;
2704
2705	case UDP_NO_CHECK6_RX:
2706		udp_set_no_check6_rx(sk, valbool);
2707		break;
2708
2709	case UDP_SEGMENT:
2710		if (val < 0 || val > USHRT_MAX)
2711			return -EINVAL;
2712		WRITE_ONCE(up->gso_size, val);
2713		break;
2714
2715	case UDP_GRO:
2716
2717		/* when enabling GRO, accept the related GSO packet type */
2718		if (valbool)
2719			udp_tunnel_encap_enable(sk);
2720		udp_assign_bit(GRO_ENABLED, sk, valbool);
2721		udp_assign_bit(ACCEPT_L4, sk, valbool);
2722		break;
2723
2724	/*
2725	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2726	 */
2727	/* The sender sets actual checksum coverage length via this option.
2728	 * The case coverage > packet length is handled by send module. */
2729	case UDPLITE_SEND_CSCOV:
2730		if (!is_udplite)         /* Disable the option on UDP sockets */
2731			return -ENOPROTOOPT;
2732		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2733			val = 8;
2734		else if (val > USHRT_MAX)
2735			val = USHRT_MAX;
2736		WRITE_ONCE(up->pcslen, val);
2737		udp_set_bit(UDPLITE_SEND_CC, sk);
2738		break;
2739
2740	/* The receiver specifies a minimum checksum coverage value. To make
2741	 * sense, this should be set to at least 8 (as done below). If zero is
2742	 * used, this again means full checksum coverage.                     */
2743	case UDPLITE_RECV_CSCOV:
2744		if (!is_udplite)         /* Disable the option on UDP sockets */
2745			return -ENOPROTOOPT;
2746		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2747			val = 8;
2748		else if (val > USHRT_MAX)
2749			val = USHRT_MAX;
2750		WRITE_ONCE(up->pcrlen, val);
2751		udp_set_bit(UDPLITE_RECV_CC, sk);
2752		break;
2753
2754	default:
2755		err = -ENOPROTOOPT;
2756		break;
2757	}
2758
2759	return err;
2760}
2761EXPORT_SYMBOL(udp_lib_setsockopt);
2762
2763int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2764		   unsigned int optlen)
2765{
2766	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2767		return udp_lib_setsockopt(sk, level, optname,
2768					  optval, optlen,
2769					  udp_push_pending_frames);
2770	return ip_setsockopt(sk, level, optname, optval, optlen);
2771}
2772
2773int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2774		       char __user *optval, int __user *optlen)
2775{
2776	struct udp_sock *up = udp_sk(sk);
2777	int val, len;
2778
2779	if (get_user(len, optlen))
2780		return -EFAULT;
2781
2782	if (len < 0)
2783		return -EINVAL;
2784
2785	len = min_t(unsigned int, len, sizeof(int));
2786
2787	switch (optname) {
2788	case UDP_CORK:
2789		val = udp_test_bit(CORK, sk);
2790		break;
2791
2792	case UDP_ENCAP:
2793		val = READ_ONCE(up->encap_type);
2794		break;
2795
2796	case UDP_NO_CHECK6_TX:
2797		val = udp_get_no_check6_tx(sk);
2798		break;
2799
2800	case UDP_NO_CHECK6_RX:
2801		val = udp_get_no_check6_rx(sk);
2802		break;
2803
2804	case UDP_SEGMENT:
2805		val = READ_ONCE(up->gso_size);
2806		break;
2807
2808	case UDP_GRO:
2809		val = udp_test_bit(GRO_ENABLED, sk);
2810		break;
2811
2812	/* The following two cannot be changed on UDP sockets, the return is
2813	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2814	case UDPLITE_SEND_CSCOV:
2815		val = READ_ONCE(up->pcslen);
2816		break;
2817
2818	case UDPLITE_RECV_CSCOV:
2819		val = READ_ONCE(up->pcrlen);
2820		break;
2821
2822	default:
2823		return -ENOPROTOOPT;
2824	}
2825
2826	if (put_user(len, optlen))
2827		return -EFAULT;
2828	if (copy_to_user(optval, &val, len))
2829		return -EFAULT;
2830	return 0;
2831}
2832EXPORT_SYMBOL(udp_lib_getsockopt);
2833
2834int udp_getsockopt(struct sock *sk, int level, int optname,
2835		   char __user *optval, int __user *optlen)
2836{
2837	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2838		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2839	return ip_getsockopt(sk, level, optname, optval, optlen);
2840}
2841
2842/**
2843 * 	udp_poll - wait for a UDP event.
2844 *	@file: - file struct
2845 *	@sock: - socket
2846 *	@wait: - poll table
2847 *
2848 *	This is same as datagram poll, except for the special case of
2849 *	blocking sockets. If application is using a blocking fd
2850 *	and a packet with checksum error is in the queue;
2851 *	then it could get return from select indicating data available
2852 *	but then block when reading it. Add special case code
2853 *	to work around these arguably broken applications.
2854 */
2855__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2856{
2857	__poll_t mask = datagram_poll(file, sock, wait);
2858	struct sock *sk = sock->sk;
2859
2860	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2861		mask |= EPOLLIN | EPOLLRDNORM;
2862
2863	/* Check for false positives due to checksum errors */
2864	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2865	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2866		mask &= ~(EPOLLIN | EPOLLRDNORM);
2867
2868	/* psock ingress_msg queue should not contain any bad checksum frames */
2869	if (sk_is_readable(sk))
2870		mask |= EPOLLIN | EPOLLRDNORM;
2871	return mask;
2872
2873}
2874EXPORT_SYMBOL(udp_poll);
2875
2876int udp_abort(struct sock *sk, int err)
2877{
2878	if (!has_current_bpf_ctx())
2879		lock_sock(sk);
2880
2881	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2882	 * with close()
2883	 */
2884	if (sock_flag(sk, SOCK_DEAD))
2885		goto out;
2886
2887	sk->sk_err = err;
2888	sk_error_report(sk);
2889	__udp_disconnect(sk, 0);
2890
2891out:
2892	if (!has_current_bpf_ctx())
2893		release_sock(sk);
2894
2895	return 0;
2896}
2897EXPORT_SYMBOL_GPL(udp_abort);
2898
2899struct proto udp_prot = {
2900	.name			= "UDP",
2901	.owner			= THIS_MODULE,
2902	.close			= udp_lib_close,
2903	.pre_connect		= udp_pre_connect,
2904	.connect		= ip4_datagram_connect,
2905	.disconnect		= udp_disconnect,
2906	.ioctl			= udp_ioctl,
2907	.init			= udp_init_sock,
2908	.destroy		= udp_destroy_sock,
2909	.setsockopt		= udp_setsockopt,
2910	.getsockopt		= udp_getsockopt,
2911	.sendmsg		= udp_sendmsg,
2912	.recvmsg		= udp_recvmsg,
2913	.splice_eof		= udp_splice_eof,
2914	.release_cb		= ip4_datagram_release_cb,
2915	.hash			= udp_lib_hash,
2916	.unhash			= udp_lib_unhash,
2917	.rehash			= udp_v4_rehash,
2918	.get_port		= udp_v4_get_port,
2919	.put_port		= udp_lib_unhash,
2920#ifdef CONFIG_BPF_SYSCALL
2921	.psock_update_sk_prot	= udp_bpf_update_proto,
2922#endif
2923	.memory_allocated	= &udp_memory_allocated,
2924	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2925
2926	.sysctl_mem		= sysctl_udp_mem,
2927	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2928	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2929	.obj_size		= sizeof(struct udp_sock),
2930	.h.udp_table		= NULL,
2931	.diag_destroy		= udp_abort,
2932};
2933EXPORT_SYMBOL(udp_prot);
2934
2935/* ------------------------------------------------------------------------ */
2936#ifdef CONFIG_PROC_FS
2937
2938static unsigned short seq_file_family(const struct seq_file *seq);
2939static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2940{
2941	unsigned short family = seq_file_family(seq);
2942
2943	/* AF_UNSPEC is used as a match all */
2944	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2945		net_eq(sock_net(sk), seq_file_net(seq)));
2946}
2947
2948#ifdef CONFIG_BPF_SYSCALL
2949static const struct seq_operations bpf_iter_udp_seq_ops;
2950#endif
2951static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2952					   struct net *net)
2953{
2954	const struct udp_seq_afinfo *afinfo;
2955
2956#ifdef CONFIG_BPF_SYSCALL
2957	if (seq->op == &bpf_iter_udp_seq_ops)
2958		return net->ipv4.udp_table;
2959#endif
2960
2961	afinfo = pde_data(file_inode(seq->file));
2962	return afinfo->udp_table ? : net->ipv4.udp_table;
2963}
2964
2965static struct sock *udp_get_first(struct seq_file *seq, int start)
2966{
2967	struct udp_iter_state *state = seq->private;
2968	struct net *net = seq_file_net(seq);
2969	struct udp_table *udptable;
2970	struct sock *sk;
2971
2972	udptable = udp_get_table_seq(seq, net);
2973
2974	for (state->bucket = start; state->bucket <= udptable->mask;
2975	     ++state->bucket) {
2976		struct udp_hslot *hslot = &udptable->hash[state->bucket];
2977
2978		if (hlist_empty(&hslot->head))
2979			continue;
2980
2981		spin_lock_bh(&hslot->lock);
2982		sk_for_each(sk, &hslot->head) {
2983			if (seq_sk_match(seq, sk))
2984				goto found;
2985		}
2986		spin_unlock_bh(&hslot->lock);
2987	}
2988	sk = NULL;
2989found:
2990	return sk;
2991}
2992
2993static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2994{
2995	struct udp_iter_state *state = seq->private;
2996	struct net *net = seq_file_net(seq);
2997	struct udp_table *udptable;
2998
2999	do {
3000		sk = sk_next(sk);
3001	} while (sk && !seq_sk_match(seq, sk));
3002
3003	if (!sk) {
3004		udptable = udp_get_table_seq(seq, net);
3005
3006		if (state->bucket <= udptable->mask)
3007			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3008
3009		return udp_get_first(seq, state->bucket + 1);
3010	}
3011	return sk;
3012}
3013
3014static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3015{
3016	struct sock *sk = udp_get_first(seq, 0);
3017
3018	if (sk)
3019		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3020			--pos;
3021	return pos ? NULL : sk;
3022}
3023
3024void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3025{
3026	struct udp_iter_state *state = seq->private;
3027	state->bucket = MAX_UDP_PORTS;
3028
3029	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3030}
3031EXPORT_SYMBOL(udp_seq_start);
3032
3033void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3034{
3035	struct sock *sk;
3036
3037	if (v == SEQ_START_TOKEN)
3038		sk = udp_get_idx(seq, 0);
3039	else
3040		sk = udp_get_next(seq, v);
3041
3042	++*pos;
3043	return sk;
3044}
3045EXPORT_SYMBOL(udp_seq_next);
3046
3047void udp_seq_stop(struct seq_file *seq, void *v)
3048{
3049	struct udp_iter_state *state = seq->private;
3050	struct udp_table *udptable;
3051
3052	udptable = udp_get_table_seq(seq, seq_file_net(seq));
3053
3054	if (state->bucket <= udptable->mask)
3055		spin_unlock_bh(&udptable->hash[state->bucket].lock);
3056}
3057EXPORT_SYMBOL(udp_seq_stop);
3058
3059/* ------------------------------------------------------------------------ */
3060static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3061		int bucket)
3062{
3063	struct inet_sock *inet = inet_sk(sp);
3064	__be32 dest = inet->inet_daddr;
3065	__be32 src  = inet->inet_rcv_saddr;
3066	__u16 destp	  = ntohs(inet->inet_dport);
3067	__u16 srcp	  = ntohs(inet->inet_sport);
3068
3069	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3070		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3071		bucket, src, srcp, dest, destp, sp->sk_state,
3072		sk_wmem_alloc_get(sp),
3073		udp_rqueue_get(sp),
3074		0, 0L, 0,
3075		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3076		0, sock_i_ino(sp),
3077		refcount_read(&sp->sk_refcnt), sp,
3078		atomic_read(&sp->sk_drops));
3079}
3080
3081int udp4_seq_show(struct seq_file *seq, void *v)
3082{
3083	seq_setwidth(seq, 127);
3084	if (v == SEQ_START_TOKEN)
3085		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3086			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3087			   "inode ref pointer drops");
3088	else {
3089		struct udp_iter_state *state = seq->private;
3090
3091		udp4_format_sock(v, seq, state->bucket);
3092	}
3093	seq_pad(seq, '\n');
3094	return 0;
3095}
3096
3097#ifdef CONFIG_BPF_SYSCALL
3098struct bpf_iter__udp {
3099	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3100	__bpf_md_ptr(struct udp_sock *, udp_sk);
3101	uid_t uid __aligned(8);
3102	int bucket __aligned(8);
3103};
3104
3105struct bpf_udp_iter_state {
3106	struct udp_iter_state state;
3107	unsigned int cur_sk;
3108	unsigned int end_sk;
3109	unsigned int max_sk;
3110	int offset;
3111	struct sock **batch;
3112	bool st_bucket_done;
3113};
3114
3115static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3116				      unsigned int new_batch_sz);
3117static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3118{
3119	struct bpf_udp_iter_state *iter = seq->private;
3120	struct udp_iter_state *state = &iter->state;
3121	struct net *net = seq_file_net(seq);
3122	int resume_bucket, resume_offset;
3123	struct udp_table *udptable;
3124	unsigned int batch_sks = 0;
3125	bool resized = false;
3126	struct sock *sk;
3127
3128	resume_bucket = state->bucket;
3129	resume_offset = iter->offset;
3130
3131	/* The current batch is done, so advance the bucket. */
3132	if (iter->st_bucket_done)
3133		state->bucket++;
3134
3135	udptable = udp_get_table_seq(seq, net);
3136
3137again:
3138	/* New batch for the next bucket.
3139	 * Iterate over the hash table to find a bucket with sockets matching
3140	 * the iterator attributes, and return the first matching socket from
3141	 * the bucket. The remaining matched sockets from the bucket are batched
3142	 * before releasing the bucket lock. This allows BPF programs that are
3143	 * called in seq_show to acquire the bucket lock if needed.
3144	 */
3145	iter->cur_sk = 0;
3146	iter->end_sk = 0;
3147	iter->st_bucket_done = false;
3148	batch_sks = 0;
3149
3150	for (; state->bucket <= udptable->mask; state->bucket++) {
3151		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3152
3153		if (hlist_empty(&hslot2->head))
3154			continue;
3155
3156		iter->offset = 0;
3157		spin_lock_bh(&hslot2->lock);
3158		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3159			if (seq_sk_match(seq, sk)) {
3160				/* Resume from the last iterated socket at the
3161				 * offset in the bucket before iterator was stopped.
3162				 */
3163				if (state->bucket == resume_bucket &&
3164				    iter->offset < resume_offset) {
3165					++iter->offset;
3166					continue;
3167				}
3168				if (iter->end_sk < iter->max_sk) {
3169					sock_hold(sk);
3170					iter->batch[iter->end_sk++] = sk;
3171				}
3172				batch_sks++;
3173			}
3174		}
3175		spin_unlock_bh(&hslot2->lock);
3176
3177		if (iter->end_sk)
3178			break;
3179	}
3180
3181	/* All done: no batch made. */
3182	if (!iter->end_sk)
3183		return NULL;
3184
3185	if (iter->end_sk == batch_sks) {
3186		/* Batching is done for the current bucket; return the first
3187		 * socket to be iterated from the batch.
3188		 */
3189		iter->st_bucket_done = true;
3190		goto done;
3191	}
3192	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3193		resized = true;
3194		/* After allocating a larger batch, retry one more time to grab
3195		 * the whole bucket.
3196		 */
3197		goto again;
3198	}
3199done:
3200	return iter->batch[0];
3201}
3202
3203static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3204{
3205	struct bpf_udp_iter_state *iter = seq->private;
3206	struct sock *sk;
3207
3208	/* Whenever seq_next() is called, the iter->cur_sk is
3209	 * done with seq_show(), so unref the iter->cur_sk.
3210	 */
3211	if (iter->cur_sk < iter->end_sk) {
3212		sock_put(iter->batch[iter->cur_sk++]);
3213		++iter->offset;
3214	}
3215
3216	/* After updating iter->cur_sk, check if there are more sockets
3217	 * available in the current bucket batch.
3218	 */
3219	if (iter->cur_sk < iter->end_sk)
3220		sk = iter->batch[iter->cur_sk];
3221	else
3222		/* Prepare a new batch. */
3223		sk = bpf_iter_udp_batch(seq);
3224
3225	++*pos;
3226	return sk;
3227}
3228
3229static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3230{
3231	/* bpf iter does not support lseek, so it always
3232	 * continue from where it was stop()-ped.
3233	 */
3234	if (*pos)
3235		return bpf_iter_udp_batch(seq);
3236
3237	return SEQ_START_TOKEN;
3238}
3239
3240static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3241			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3242{
3243	struct bpf_iter__udp ctx;
3244
3245	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3246	ctx.meta = meta;
3247	ctx.udp_sk = udp_sk;
3248	ctx.uid = uid;
3249	ctx.bucket = bucket;
3250	return bpf_iter_run_prog(prog, &ctx);
3251}
3252
3253static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3254{
3255	struct udp_iter_state *state = seq->private;
3256	struct bpf_iter_meta meta;
3257	struct bpf_prog *prog;
3258	struct sock *sk = v;
3259	uid_t uid;
3260	int ret;
3261
3262	if (v == SEQ_START_TOKEN)
3263		return 0;
3264
3265	lock_sock(sk);
3266
3267	if (unlikely(sk_unhashed(sk))) {
3268		ret = SEQ_SKIP;
3269		goto unlock;
3270	}
3271
3272	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3273	meta.seq = seq;
3274	prog = bpf_iter_get_info(&meta, false);
3275	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3276
3277unlock:
3278	release_sock(sk);
3279	return ret;
3280}
3281
3282static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3283{
3284	while (iter->cur_sk < iter->end_sk)
3285		sock_put(iter->batch[iter->cur_sk++]);
3286}
3287
3288static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3289{
3290	struct bpf_udp_iter_state *iter = seq->private;
3291	struct bpf_iter_meta meta;
3292	struct bpf_prog *prog;
3293
3294	if (!v) {
3295		meta.seq = seq;
3296		prog = bpf_iter_get_info(&meta, true);
3297		if (prog)
3298			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3299	}
3300
3301	if (iter->cur_sk < iter->end_sk) {
3302		bpf_iter_udp_put_batch(iter);
3303		iter->st_bucket_done = false;
3304	}
3305}
3306
3307static const struct seq_operations bpf_iter_udp_seq_ops = {
3308	.start		= bpf_iter_udp_seq_start,
3309	.next		= bpf_iter_udp_seq_next,
3310	.stop		= bpf_iter_udp_seq_stop,
3311	.show		= bpf_iter_udp_seq_show,
3312};
3313#endif
3314
3315static unsigned short seq_file_family(const struct seq_file *seq)
3316{
3317	const struct udp_seq_afinfo *afinfo;
3318
3319#ifdef CONFIG_BPF_SYSCALL
3320	/* BPF iterator: bpf programs to filter sockets. */
3321	if (seq->op == &bpf_iter_udp_seq_ops)
3322		return AF_UNSPEC;
3323#endif
3324
3325	/* Proc fs iterator */
3326	afinfo = pde_data(file_inode(seq->file));
3327	return afinfo->family;
3328}
3329
3330const struct seq_operations udp_seq_ops = {
3331	.start		= udp_seq_start,
3332	.next		= udp_seq_next,
3333	.stop		= udp_seq_stop,
3334	.show		= udp4_seq_show,
3335};
3336EXPORT_SYMBOL(udp_seq_ops);
3337
3338static struct udp_seq_afinfo udp4_seq_afinfo = {
3339	.family		= AF_INET,
3340	.udp_table	= NULL,
3341};
3342
3343static int __net_init udp4_proc_init_net(struct net *net)
3344{
3345	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3346			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3347		return -ENOMEM;
3348	return 0;
3349}
3350
3351static void __net_exit udp4_proc_exit_net(struct net *net)
3352{
3353	remove_proc_entry("udp", net->proc_net);
3354}
3355
3356static struct pernet_operations udp4_net_ops = {
3357	.init = udp4_proc_init_net,
3358	.exit = udp4_proc_exit_net,
3359};
3360
3361int __init udp4_proc_init(void)
3362{
3363	return register_pernet_subsys(&udp4_net_ops);
3364}
3365
3366void udp4_proc_exit(void)
3367{
3368	unregister_pernet_subsys(&udp4_net_ops);
3369}
3370#endif /* CONFIG_PROC_FS */
3371
3372static __initdata unsigned long uhash_entries;
3373static int __init set_uhash_entries(char *str)
3374{
3375	ssize_t ret;
3376
3377	if (!str)
3378		return 0;
3379
3380	ret = kstrtoul(str, 0, &uhash_entries);
3381	if (ret)
3382		return 0;
3383
3384	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3385		uhash_entries = UDP_HTABLE_SIZE_MIN;
3386	return 1;
3387}
3388__setup("uhash_entries=", set_uhash_entries);
3389
3390void __init udp_table_init(struct udp_table *table, const char *name)
3391{
3392	unsigned int i;
3393
3394	table->hash = alloc_large_system_hash(name,
3395					      2 * sizeof(struct udp_hslot),
3396					      uhash_entries,
3397					      21, /* one slot per 2 MB */
3398					      0,
3399					      &table->log,
3400					      &table->mask,
3401					      UDP_HTABLE_SIZE_MIN,
3402					      UDP_HTABLE_SIZE_MAX);
3403
3404	table->hash2 = table->hash + (table->mask + 1);
3405	for (i = 0; i <= table->mask; i++) {
3406		INIT_HLIST_HEAD(&table->hash[i].head);
3407		table->hash[i].count = 0;
3408		spin_lock_init(&table->hash[i].lock);
3409	}
3410	for (i = 0; i <= table->mask; i++) {
3411		INIT_HLIST_HEAD(&table->hash2[i].head);
3412		table->hash2[i].count = 0;
3413		spin_lock_init(&table->hash2[i].lock);
3414	}
3415}
3416
3417u32 udp_flow_hashrnd(void)
3418{
3419	static u32 hashrnd __read_mostly;
3420
3421	net_get_random_once(&hashrnd, sizeof(hashrnd));
3422
3423	return hashrnd;
3424}
3425EXPORT_SYMBOL(udp_flow_hashrnd);
3426
3427static void __net_init udp_sysctl_init(struct net *net)
3428{
3429	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3430	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3431
3432#ifdef CONFIG_NET_L3_MASTER_DEV
3433	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3434#endif
3435}
3436
3437static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3438{
3439	struct udp_table *udptable;
3440	int i;
3441
3442	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3443	if (!udptable)
3444		goto out;
3445
3446	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3447				      GFP_KERNEL_ACCOUNT);
3448	if (!udptable->hash)
3449		goto free_table;
3450
3451	udptable->hash2 = udptable->hash + hash_entries;
3452	udptable->mask = hash_entries - 1;
3453	udptable->log = ilog2(hash_entries);
3454
3455	for (i = 0; i < hash_entries; i++) {
3456		INIT_HLIST_HEAD(&udptable->hash[i].head);
3457		udptable->hash[i].count = 0;
3458		spin_lock_init(&udptable->hash[i].lock);
3459
3460		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3461		udptable->hash2[i].count = 0;
3462		spin_lock_init(&udptable->hash2[i].lock);
3463	}
3464
3465	return udptable;
3466
3467free_table:
3468	kfree(udptable);
3469out:
3470	return NULL;
3471}
3472
3473static void __net_exit udp_pernet_table_free(struct net *net)
3474{
3475	struct udp_table *udptable = net->ipv4.udp_table;
3476
3477	if (udptable == &udp_table)
3478		return;
3479
3480	kvfree(udptable->hash);
3481	kfree(udptable);
3482}
3483
3484static void __net_init udp_set_table(struct net *net)
3485{
3486	struct udp_table *udptable;
3487	unsigned int hash_entries;
3488	struct net *old_net;
3489
3490	if (net_eq(net, &init_net))
3491		goto fallback;
3492
3493	old_net = current->nsproxy->net_ns;
3494	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3495	if (!hash_entries)
3496		goto fallback;
3497
3498	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3499	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3500		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3501	else
3502		hash_entries = roundup_pow_of_two(hash_entries);
3503
3504	udptable = udp_pernet_table_alloc(hash_entries);
3505	if (udptable) {
3506		net->ipv4.udp_table = udptable;
3507	} else {
3508		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3509			"for a netns, fallback to the global one\n",
3510			hash_entries);
3511fallback:
3512		net->ipv4.udp_table = &udp_table;
3513	}
3514}
3515
3516static int __net_init udp_pernet_init(struct net *net)
3517{
3518	udp_sysctl_init(net);
3519	udp_set_table(net);
3520
3521	return 0;
3522}
3523
3524static void __net_exit udp_pernet_exit(struct net *net)
3525{
3526	udp_pernet_table_free(net);
3527}
3528
3529static struct pernet_operations __net_initdata udp_sysctl_ops = {
3530	.init	= udp_pernet_init,
3531	.exit	= udp_pernet_exit,
3532};
3533
3534#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3535DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3536		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3537
3538static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3539				      unsigned int new_batch_sz)
3540{
3541	struct sock **new_batch;
3542
3543	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3544				   GFP_USER | __GFP_NOWARN);
3545	if (!new_batch)
3546		return -ENOMEM;
3547
3548	bpf_iter_udp_put_batch(iter);
3549	kvfree(iter->batch);
3550	iter->batch = new_batch;
3551	iter->max_sk = new_batch_sz;
3552
3553	return 0;
3554}
3555
3556#define INIT_BATCH_SZ 16
3557
3558static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3559{
3560	struct bpf_udp_iter_state *iter = priv_data;
3561	int ret;
3562
3563	ret = bpf_iter_init_seq_net(priv_data, aux);
3564	if (ret)
3565		return ret;
3566
3567	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3568	if (ret)
3569		bpf_iter_fini_seq_net(priv_data);
3570
3571	return ret;
3572}
3573
3574static void bpf_iter_fini_udp(void *priv_data)
3575{
3576	struct bpf_udp_iter_state *iter = priv_data;
3577
3578	bpf_iter_fini_seq_net(priv_data);
3579	kvfree(iter->batch);
3580}
3581
3582static const struct bpf_iter_seq_info udp_seq_info = {
3583	.seq_ops		= &bpf_iter_udp_seq_ops,
3584	.init_seq_private	= bpf_iter_init_udp,
3585	.fini_seq_private	= bpf_iter_fini_udp,
3586	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3587};
3588
3589static struct bpf_iter_reg udp_reg_info = {
3590	.target			= "udp",
3591	.ctx_arg_info_size	= 1,
3592	.ctx_arg_info		= {
3593		{ offsetof(struct bpf_iter__udp, udp_sk),
3594		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3595	},
3596	.seq_info		= &udp_seq_info,
3597};
3598
3599static void __init bpf_iter_register(void)
3600{
3601	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3602	if (bpf_iter_reg_target(&udp_reg_info))
3603		pr_warn("Warning: could not register bpf iterator udp\n");
3604}
3605#endif
3606
3607void __init udp_init(void)
3608{
3609	unsigned long limit;
3610	unsigned int i;
3611
3612	udp_table_init(&udp_table, "UDP");
3613	limit = nr_free_buffer_pages() / 8;
3614	limit = max(limit, 128UL);
3615	sysctl_udp_mem[0] = limit / 4 * 3;
3616	sysctl_udp_mem[1] = limit;
3617	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3618
3619	/* 16 spinlocks per cpu */
3620	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3621	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3622				GFP_KERNEL);
3623	if (!udp_busylocks)
3624		panic("UDP: failed to alloc udp_busylocks\n");
3625	for (i = 0; i < (1U << udp_busylocks_log); i++)
3626		spin_lock_init(udp_busylocks + i);
3627
3628	if (register_pernet_subsys(&udp_sysctl_ops))
3629		panic("UDP: failed to init sysctl parameters.\n");
3630
3631#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3632	bpf_iter_register();
3633#endif
3634}
3635