xref: /kernel/linux/linux-6.6/net/ipv4/tcp_input.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22/*
23 * Changes:
24 *		Pedro Roque	:	Fast Retransmit/Recovery.
25 *					Two receive queues.
26 *					Retransmit queue handled by TCP.
27 *					Better retransmit timer handling.
28 *					New congestion avoidance.
29 *					Header prediction.
30 *					Variable renaming.
31 *
32 *		Eric		:	Fast Retransmit.
33 *		Randy Scott	:	MSS option defines.
34 *		Eric Schenk	:	Fixes to slow start algorithm.
35 *		Eric Schenk	:	Yet another double ACK bug.
36 *		Eric Schenk	:	Delayed ACK bug fixes.
37 *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38 *		David S. Miller	:	Don't allow zero congestion window.
39 *		Eric Schenk	:	Fix retransmitter so that it sends
40 *					next packet on ack of previous packet.
41 *		Andi Kleen	:	Moved open_request checking here
42 *					and process RSTs for open_requests.
43 *		Andi Kleen	:	Better prune_queue, and other fixes.
44 *		Andrey Savochkin:	Fix RTT measurements in the presence of
45 *					timestamps.
46 *		Andrey Savochkin:	Check sequence numbers correctly when
47 *					removing SACKs due to in sequence incoming
48 *					data segments.
49 *		Andi Kleen:		Make sure we never ack data there is not
50 *					enough room for. Also make this condition
51 *					a fatal error if it might still happen.
52 *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53 *					connections with MSS<min(MTU,ann. MSS)
54 *					work without delayed acks.
55 *		Andi Kleen:		Process packets with PSH set in the
56 *					fast path.
57 *		J Hadi Salim:		ECN support
58 *	 	Andrei Gurtov,
59 *		Pasi Sarolahti,
60 *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61 *					engine. Lots of bugs are found.
62 *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63 */
64
65#define pr_fmt(fmt) "TCP: " fmt
66
67#include <linux/mm.h>
68#include <linux/slab.h>
69#include <linux/module.h>
70#include <linux/sysctl.h>
71#include <linux/kernel.h>
72#include <linux/prefetch.h>
73#include <net/dst.h>
74#include <net/tcp.h>
75#include <net/inet_common.h>
76#include <linux/ipsec.h>
77#include <asm/unaligned.h>
78#include <linux/errqueue.h>
79#include <trace/events/tcp.h>
80#include <linux/jump_label_ratelimit.h>
81#include <net/busy_poll.h>
82#include <net/mptcp.h>
83
84int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
85
86#define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
87#define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
88#define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
89#define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
90#define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
91#define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
92#define FLAG_ECE		0x40 /* ECE in this ACK				*/
93#define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
94#define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
95#define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
96#define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
97#define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
98#define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
99#define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
100#define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
101#define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
102#define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
103#define FLAG_DSACK_TLP		0x20000 /* DSACK for tail loss probe */
104
105#define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
106#define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
107#define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
108#define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
109
110#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
111#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
112
113#define REXMIT_NONE	0 /* no loss recovery to do */
114#define REXMIT_LOST	1 /* retransmit packets marked lost */
115#define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
116
117#if IS_ENABLED(CONFIG_TLS_DEVICE)
118static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
119
120void clean_acked_data_enable(struct inet_connection_sock *icsk,
121			     void (*cad)(struct sock *sk, u32 ack_seq))
122{
123	icsk->icsk_clean_acked = cad;
124	static_branch_deferred_inc(&clean_acked_data_enabled);
125}
126EXPORT_SYMBOL_GPL(clean_acked_data_enable);
127
128void clean_acked_data_disable(struct inet_connection_sock *icsk)
129{
130	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
131	icsk->icsk_clean_acked = NULL;
132}
133EXPORT_SYMBOL_GPL(clean_acked_data_disable);
134
135void clean_acked_data_flush(void)
136{
137	static_key_deferred_flush(&clean_acked_data_enabled);
138}
139EXPORT_SYMBOL_GPL(clean_acked_data_flush);
140#endif
141
142#ifdef CONFIG_CGROUP_BPF
143static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
144{
145	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
146		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
147				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
148	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
150	struct bpf_sock_ops_kern sock_ops;
151
152	if (likely(!unknown_opt && !parse_all_opt))
153		return;
154
155	/* The skb will be handled in the
156	 * bpf_skops_established() or
157	 * bpf_skops_write_hdr_opt().
158	 */
159	switch (sk->sk_state) {
160	case TCP_SYN_RECV:
161	case TCP_SYN_SENT:
162	case TCP_LISTEN:
163		return;
164	}
165
166	sock_owned_by_me(sk);
167
168	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
169	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
170	sock_ops.is_fullsock = 1;
171	sock_ops.sk = sk;
172	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
173
174	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
175}
176
177static void bpf_skops_established(struct sock *sk, int bpf_op,
178				  struct sk_buff *skb)
179{
180	struct bpf_sock_ops_kern sock_ops;
181
182	sock_owned_by_me(sk);
183
184	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
185	sock_ops.op = bpf_op;
186	sock_ops.is_fullsock = 1;
187	sock_ops.sk = sk;
188	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
189	if (skb)
190		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
191
192	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
193}
194#else
195static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
196{
197}
198
199static void bpf_skops_established(struct sock *sk, int bpf_op,
200				  struct sk_buff *skb)
201{
202}
203#endif
204
205static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
206			     unsigned int len)
207{
208	static bool __once __read_mostly;
209
210	if (!__once) {
211		struct net_device *dev;
212
213		__once = true;
214
215		rcu_read_lock();
216		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
217		if (!dev || len >= dev->mtu)
218			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
219				dev ? dev->name : "Unknown driver");
220		rcu_read_unlock();
221	}
222}
223
224/* Adapt the MSS value used to make delayed ack decision to the
225 * real world.
226 */
227static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
228{
229	struct inet_connection_sock *icsk = inet_csk(sk);
230	const unsigned int lss = icsk->icsk_ack.last_seg_size;
231	unsigned int len;
232
233	icsk->icsk_ack.last_seg_size = 0;
234
235	/* skb->len may jitter because of SACKs, even if peer
236	 * sends good full-sized frames.
237	 */
238	len = skb_shinfo(skb)->gso_size ? : skb->len;
239	if (len >= icsk->icsk_ack.rcv_mss) {
240		/* Note: divides are still a bit expensive.
241		 * For the moment, only adjust scaling_ratio
242		 * when we update icsk_ack.rcv_mss.
243		 */
244		if (unlikely(len != icsk->icsk_ack.rcv_mss)) {
245			u64 val = (u64)skb->len << TCP_RMEM_TO_WIN_SCALE;
246
247			do_div(val, skb->truesize);
248			tcp_sk(sk)->scaling_ratio = val ? val : 1;
249		}
250		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
251					       tcp_sk(sk)->advmss);
252		/* Account for possibly-removed options */
253		if (unlikely(len > icsk->icsk_ack.rcv_mss +
254				   MAX_TCP_OPTION_SPACE))
255			tcp_gro_dev_warn(sk, skb, len);
256		/* If the skb has a len of exactly 1*MSS and has the PSH bit
257		 * set then it is likely the end of an application write. So
258		 * more data may not be arriving soon, and yet the data sender
259		 * may be waiting for an ACK if cwnd-bound or using TX zero
260		 * copy. So we set ICSK_ACK_PUSHED here so that
261		 * tcp_cleanup_rbuf() will send an ACK immediately if the app
262		 * reads all of the data and is not ping-pong. If len > MSS
263		 * then this logic does not matter (and does not hurt) because
264		 * tcp_cleanup_rbuf() will always ACK immediately if the app
265		 * reads data and there is more than an MSS of unACKed data.
266		 */
267		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_PSH)
268			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
269	} else {
270		/* Otherwise, we make more careful check taking into account,
271		 * that SACKs block is variable.
272		 *
273		 * "len" is invariant segment length, including TCP header.
274		 */
275		len += skb->data - skb_transport_header(skb);
276		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
277		    /* If PSH is not set, packet should be
278		     * full sized, provided peer TCP is not badly broken.
279		     * This observation (if it is correct 8)) allows
280		     * to handle super-low mtu links fairly.
281		     */
282		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
283		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
284			/* Subtract also invariant (if peer is RFC compliant),
285			 * tcp header plus fixed timestamp option length.
286			 * Resulting "len" is MSS free of SACK jitter.
287			 */
288			len -= tcp_sk(sk)->tcp_header_len;
289			icsk->icsk_ack.last_seg_size = len;
290			if (len == lss) {
291				icsk->icsk_ack.rcv_mss = len;
292				return;
293			}
294		}
295		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
296			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
297		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
298	}
299}
300
301static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
302{
303	struct inet_connection_sock *icsk = inet_csk(sk);
304	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
305
306	if (quickacks == 0)
307		quickacks = 2;
308	quickacks = min(quickacks, max_quickacks);
309	if (quickacks > icsk->icsk_ack.quick)
310		icsk->icsk_ack.quick = quickacks;
311}
312
313static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
314{
315	struct inet_connection_sock *icsk = inet_csk(sk);
316
317	tcp_incr_quickack(sk, max_quickacks);
318	inet_csk_exit_pingpong_mode(sk);
319	icsk->icsk_ack.ato = TCP_ATO_MIN;
320}
321
322/* Send ACKs quickly, if "quick" count is not exhausted
323 * and the session is not interactive.
324 */
325
326static bool tcp_in_quickack_mode(struct sock *sk)
327{
328	const struct inet_connection_sock *icsk = inet_csk(sk);
329	const struct dst_entry *dst = __sk_dst_get(sk);
330
331	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
332		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
333}
334
335static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
336{
337	if (tp->ecn_flags & TCP_ECN_OK)
338		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
339}
340
341static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
342{
343	if (tcp_hdr(skb)->cwr) {
344		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
345
346		/* If the sender is telling us it has entered CWR, then its
347		 * cwnd may be very low (even just 1 packet), so we should ACK
348		 * immediately.
349		 */
350		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
351			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
352	}
353}
354
355static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
356{
357	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
358}
359
360static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
361{
362	struct tcp_sock *tp = tcp_sk(sk);
363
364	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
365	case INET_ECN_NOT_ECT:
366		/* Funny extension: if ECT is not set on a segment,
367		 * and we already seen ECT on a previous segment,
368		 * it is probably a retransmit.
369		 */
370		if (tp->ecn_flags & TCP_ECN_SEEN)
371			tcp_enter_quickack_mode(sk, 2);
372		break;
373	case INET_ECN_CE:
374		if (tcp_ca_needs_ecn(sk))
375			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
376
377		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
378			/* Better not delay acks, sender can have a very low cwnd */
379			tcp_enter_quickack_mode(sk, 2);
380			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
381		}
382		tp->ecn_flags |= TCP_ECN_SEEN;
383		break;
384	default:
385		if (tcp_ca_needs_ecn(sk))
386			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
387		tp->ecn_flags |= TCP_ECN_SEEN;
388		break;
389	}
390}
391
392static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
393{
394	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
395		__tcp_ecn_check_ce(sk, skb);
396}
397
398static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
399{
400	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
401		tp->ecn_flags &= ~TCP_ECN_OK;
402}
403
404static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
405{
406	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
407		tp->ecn_flags &= ~TCP_ECN_OK;
408}
409
410static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
411{
412	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
413		return true;
414	return false;
415}
416
417/* Buffer size and advertised window tuning.
418 *
419 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
420 */
421
422static void tcp_sndbuf_expand(struct sock *sk)
423{
424	const struct tcp_sock *tp = tcp_sk(sk);
425	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
426	int sndmem, per_mss;
427	u32 nr_segs;
428
429	/* Worst case is non GSO/TSO : each frame consumes one skb
430	 * and skb->head is kmalloced using power of two area of memory
431	 */
432	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
433		  MAX_TCP_HEADER +
434		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
435
436	per_mss = roundup_pow_of_two(per_mss) +
437		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
438
439	nr_segs = max_t(u32, TCP_INIT_CWND, tcp_snd_cwnd(tp));
440	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
441
442	/* Fast Recovery (RFC 5681 3.2) :
443	 * Cubic needs 1.7 factor, rounded to 2 to include
444	 * extra cushion (application might react slowly to EPOLLOUT)
445	 */
446	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
447	sndmem *= nr_segs * per_mss;
448
449	if (sk->sk_sndbuf < sndmem)
450		WRITE_ONCE(sk->sk_sndbuf,
451			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
452}
453
454/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
455 *
456 * All tcp_full_space() is split to two parts: "network" buffer, allocated
457 * forward and advertised in receiver window (tp->rcv_wnd) and
458 * "application buffer", required to isolate scheduling/application
459 * latencies from network.
460 * window_clamp is maximal advertised window. It can be less than
461 * tcp_full_space(), in this case tcp_full_space() - window_clamp
462 * is reserved for "application" buffer. The less window_clamp is
463 * the smoother our behaviour from viewpoint of network, but the lower
464 * throughput and the higher sensitivity of the connection to losses. 8)
465 *
466 * rcv_ssthresh is more strict window_clamp used at "slow start"
467 * phase to predict further behaviour of this connection.
468 * It is used for two goals:
469 * - to enforce header prediction at sender, even when application
470 *   requires some significant "application buffer". It is check #1.
471 * - to prevent pruning of receive queue because of misprediction
472 *   of receiver window. Check #2.
473 *
474 * The scheme does not work when sender sends good segments opening
475 * window and then starts to feed us spaghetti. But it should work
476 * in common situations. Otherwise, we have to rely on queue collapsing.
477 */
478
479/* Slow part of check#2. */
480static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
481			     unsigned int skbtruesize)
482{
483	const struct tcp_sock *tp = tcp_sk(sk);
484	/* Optimize this! */
485	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
486	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
487
488	while (tp->rcv_ssthresh <= window) {
489		if (truesize <= skb->len)
490			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
491
492		truesize >>= 1;
493		window >>= 1;
494	}
495	return 0;
496}
497
498/* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
499 * can play nice with us, as sk_buff and skb->head might be either
500 * freed or shared with up to MAX_SKB_FRAGS segments.
501 * Only give a boost to drivers using page frag(s) to hold the frame(s),
502 * and if no payload was pulled in skb->head before reaching us.
503 */
504static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
505{
506	u32 truesize = skb->truesize;
507
508	if (adjust && !skb_headlen(skb)) {
509		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
510		/* paranoid check, some drivers might be buggy */
511		if (unlikely((int)truesize < (int)skb->len))
512			truesize = skb->truesize;
513	}
514	return truesize;
515}
516
517static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
518			    bool adjust)
519{
520	struct tcp_sock *tp = tcp_sk(sk);
521	int room;
522
523	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
524
525	if (room <= 0)
526		return;
527
528	/* Check #1 */
529	if (!tcp_under_memory_pressure(sk)) {
530		unsigned int truesize = truesize_adjust(adjust, skb);
531		int incr;
532
533		/* Check #2. Increase window, if skb with such overhead
534		 * will fit to rcvbuf in future.
535		 */
536		if (tcp_win_from_space(sk, truesize) <= skb->len)
537			incr = 2 * tp->advmss;
538		else
539			incr = __tcp_grow_window(sk, skb, truesize);
540
541		if (incr) {
542			incr = max_t(int, incr, 2 * skb->len);
543			tp->rcv_ssthresh += min(room, incr);
544			inet_csk(sk)->icsk_ack.quick |= 1;
545		}
546	} else {
547		/* Under pressure:
548		 * Adjust rcv_ssthresh according to reserved mem
549		 */
550		tcp_adjust_rcv_ssthresh(sk);
551	}
552}
553
554/* 3. Try to fixup all. It is made immediately after connection enters
555 *    established state.
556 */
557static void tcp_init_buffer_space(struct sock *sk)
558{
559	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
560	struct tcp_sock *tp = tcp_sk(sk);
561	int maxwin;
562
563	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
564		tcp_sndbuf_expand(sk);
565
566	tcp_mstamp_refresh(tp);
567	tp->rcvq_space.time = tp->tcp_mstamp;
568	tp->rcvq_space.seq = tp->copied_seq;
569
570	maxwin = tcp_full_space(sk);
571
572	if (tp->window_clamp >= maxwin) {
573		tp->window_clamp = maxwin;
574
575		if (tcp_app_win && maxwin > 4 * tp->advmss)
576			tp->window_clamp = max(maxwin -
577					       (maxwin >> tcp_app_win),
578					       4 * tp->advmss);
579	}
580
581	/* Force reservation of one segment. */
582	if (tcp_app_win &&
583	    tp->window_clamp > 2 * tp->advmss &&
584	    tp->window_clamp + tp->advmss > maxwin)
585		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
586
587	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
588	tp->snd_cwnd_stamp = tcp_jiffies32;
589	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
590				    (u32)TCP_INIT_CWND * tp->advmss);
591}
592
593/* 4. Recalculate window clamp after socket hit its memory bounds. */
594static void tcp_clamp_window(struct sock *sk)
595{
596	struct tcp_sock *tp = tcp_sk(sk);
597	struct inet_connection_sock *icsk = inet_csk(sk);
598	struct net *net = sock_net(sk);
599	int rmem2;
600
601	icsk->icsk_ack.quick = 0;
602	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
603
604	if (sk->sk_rcvbuf < rmem2 &&
605	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
606	    !tcp_under_memory_pressure(sk) &&
607	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
608		WRITE_ONCE(sk->sk_rcvbuf,
609			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
610	}
611	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
612		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
613}
614
615/* Initialize RCV_MSS value.
616 * RCV_MSS is an our guess about MSS used by the peer.
617 * We haven't any direct information about the MSS.
618 * It's better to underestimate the RCV_MSS rather than overestimate.
619 * Overestimations make us ACKing less frequently than needed.
620 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
621 */
622void tcp_initialize_rcv_mss(struct sock *sk)
623{
624	const struct tcp_sock *tp = tcp_sk(sk);
625	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
626
627	hint = min(hint, tp->rcv_wnd / 2);
628	hint = min(hint, TCP_MSS_DEFAULT);
629	hint = max(hint, TCP_MIN_MSS);
630
631	inet_csk(sk)->icsk_ack.rcv_mss = hint;
632}
633EXPORT_SYMBOL(tcp_initialize_rcv_mss);
634
635/* Receiver "autotuning" code.
636 *
637 * The algorithm for RTT estimation w/o timestamps is based on
638 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
639 * <https://public.lanl.gov/radiant/pubs.html#DRS>
640 *
641 * More detail on this code can be found at
642 * <http://staff.psc.edu/jheffner/>,
643 * though this reference is out of date.  A new paper
644 * is pending.
645 */
646static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
647{
648	u32 new_sample = tp->rcv_rtt_est.rtt_us;
649	long m = sample;
650
651	if (new_sample != 0) {
652		/* If we sample in larger samples in the non-timestamp
653		 * case, we could grossly overestimate the RTT especially
654		 * with chatty applications or bulk transfer apps which
655		 * are stalled on filesystem I/O.
656		 *
657		 * Also, since we are only going for a minimum in the
658		 * non-timestamp case, we do not smooth things out
659		 * else with timestamps disabled convergence takes too
660		 * long.
661		 */
662		if (!win_dep) {
663			m -= (new_sample >> 3);
664			new_sample += m;
665		} else {
666			m <<= 3;
667			if (m < new_sample)
668				new_sample = m;
669		}
670	} else {
671		/* No previous measure. */
672		new_sample = m << 3;
673	}
674
675	tp->rcv_rtt_est.rtt_us = new_sample;
676}
677
678static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
679{
680	u32 delta_us;
681
682	if (tp->rcv_rtt_est.time == 0)
683		goto new_measure;
684	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
685		return;
686	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
687	if (!delta_us)
688		delta_us = 1;
689	tcp_rcv_rtt_update(tp, delta_us, 1);
690
691new_measure:
692	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
693	tp->rcv_rtt_est.time = tp->tcp_mstamp;
694}
695
696static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
697					  const struct sk_buff *skb)
698{
699	struct tcp_sock *tp = tcp_sk(sk);
700
701	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
702		return;
703	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
704
705	if (TCP_SKB_CB(skb)->end_seq -
706	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
707		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
708		u32 delta_us;
709
710		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
711			if (!delta)
712				delta = 1;
713			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
714			tcp_rcv_rtt_update(tp, delta_us, 0);
715		}
716	}
717}
718
719/*
720 * This function should be called every time data is copied to user space.
721 * It calculates the appropriate TCP receive buffer space.
722 */
723void tcp_rcv_space_adjust(struct sock *sk)
724{
725	struct tcp_sock *tp = tcp_sk(sk);
726	u32 copied;
727	int time;
728
729	trace_tcp_rcv_space_adjust(sk);
730
731	tcp_mstamp_refresh(tp);
732	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
733	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
734		return;
735
736	/* Number of bytes copied to user in last RTT */
737	copied = tp->copied_seq - tp->rcvq_space.seq;
738	if (copied <= tp->rcvq_space.space)
739		goto new_measure;
740
741	/* A bit of theory :
742	 * copied = bytes received in previous RTT, our base window
743	 * To cope with packet losses, we need a 2x factor
744	 * To cope with slow start, and sender growing its cwin by 100 %
745	 * every RTT, we need a 4x factor, because the ACK we are sending
746	 * now is for the next RTT, not the current one :
747	 * <prev RTT . ><current RTT .. ><next RTT .... >
748	 */
749
750	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
751	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
752		u64 rcvwin, grow;
753		int rcvbuf;
754
755		/* minimal window to cope with packet losses, assuming
756		 * steady state. Add some cushion because of small variations.
757		 */
758		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
759
760		/* Accommodate for sender rate increase (eg. slow start) */
761		grow = rcvwin * (copied - tp->rcvq_space.space);
762		do_div(grow, tp->rcvq_space.space);
763		rcvwin += (grow << 1);
764
765		rcvbuf = min_t(u64, tcp_space_from_win(sk, rcvwin),
766			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
767		if (rcvbuf > sk->sk_rcvbuf) {
768			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
769
770			/* Make the window clamp follow along.  */
771			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
772		}
773	}
774	tp->rcvq_space.space = copied;
775
776new_measure:
777	tp->rcvq_space.seq = tp->copied_seq;
778	tp->rcvq_space.time = tp->tcp_mstamp;
779}
780
781/* There is something which you must keep in mind when you analyze the
782 * behavior of the tp->ato delayed ack timeout interval.  When a
783 * connection starts up, we want to ack as quickly as possible.  The
784 * problem is that "good" TCP's do slow start at the beginning of data
785 * transmission.  The means that until we send the first few ACK's the
786 * sender will sit on his end and only queue most of his data, because
787 * he can only send snd_cwnd unacked packets at any given time.  For
788 * each ACK we send, he increments snd_cwnd and transmits more of his
789 * queue.  -DaveM
790 */
791static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
792{
793	struct tcp_sock *tp = tcp_sk(sk);
794	struct inet_connection_sock *icsk = inet_csk(sk);
795	u32 now;
796
797	inet_csk_schedule_ack(sk);
798
799	tcp_measure_rcv_mss(sk, skb);
800
801	tcp_rcv_rtt_measure(tp);
802
803	now = tcp_jiffies32;
804
805	if (!icsk->icsk_ack.ato) {
806		/* The _first_ data packet received, initialize
807		 * delayed ACK engine.
808		 */
809		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
810		icsk->icsk_ack.ato = TCP_ATO_MIN;
811	} else {
812		int m = now - icsk->icsk_ack.lrcvtime;
813
814		if (m <= TCP_ATO_MIN / 2) {
815			/* The fastest case is the first. */
816			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
817		} else if (m < icsk->icsk_ack.ato) {
818			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
819			if (icsk->icsk_ack.ato > icsk->icsk_rto)
820				icsk->icsk_ack.ato = icsk->icsk_rto;
821		} else if (m > icsk->icsk_rto) {
822			/* Too long gap. Apparently sender failed to
823			 * restart window, so that we send ACKs quickly.
824			 */
825			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
826		}
827	}
828	icsk->icsk_ack.lrcvtime = now;
829
830	tcp_ecn_check_ce(sk, skb);
831
832	if (skb->len >= 128)
833		tcp_grow_window(sk, skb, true);
834}
835
836/* Called to compute a smoothed rtt estimate. The data fed to this
837 * routine either comes from timestamps, or from segments that were
838 * known _not_ to have been retransmitted [see Karn/Partridge
839 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
840 * piece by Van Jacobson.
841 * NOTE: the next three routines used to be one big routine.
842 * To save cycles in the RFC 1323 implementation it was better to break
843 * it up into three procedures. -- erics
844 */
845static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
846{
847	struct tcp_sock *tp = tcp_sk(sk);
848	long m = mrtt_us; /* RTT */
849	u32 srtt = tp->srtt_us;
850
851	/*	The following amusing code comes from Jacobson's
852	 *	article in SIGCOMM '88.  Note that rtt and mdev
853	 *	are scaled versions of rtt and mean deviation.
854	 *	This is designed to be as fast as possible
855	 *	m stands for "measurement".
856	 *
857	 *	On a 1990 paper the rto value is changed to:
858	 *	RTO = rtt + 4 * mdev
859	 *
860	 * Funny. This algorithm seems to be very broken.
861	 * These formulae increase RTO, when it should be decreased, increase
862	 * too slowly, when it should be increased quickly, decrease too quickly
863	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
864	 * does not matter how to _calculate_ it. Seems, it was trap
865	 * that VJ failed to avoid. 8)
866	 */
867	if (srtt != 0) {
868		m -= (srtt >> 3);	/* m is now error in rtt est */
869		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
870		if (m < 0) {
871			m = -m;		/* m is now abs(error) */
872			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
873			/* This is similar to one of Eifel findings.
874			 * Eifel blocks mdev updates when rtt decreases.
875			 * This solution is a bit different: we use finer gain
876			 * for mdev in this case (alpha*beta).
877			 * Like Eifel it also prevents growth of rto,
878			 * but also it limits too fast rto decreases,
879			 * happening in pure Eifel.
880			 */
881			if (m > 0)
882				m >>= 3;
883		} else {
884			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
885		}
886		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
887		if (tp->mdev_us > tp->mdev_max_us) {
888			tp->mdev_max_us = tp->mdev_us;
889			if (tp->mdev_max_us > tp->rttvar_us)
890				tp->rttvar_us = tp->mdev_max_us;
891		}
892		if (after(tp->snd_una, tp->rtt_seq)) {
893			if (tp->mdev_max_us < tp->rttvar_us)
894				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
895			tp->rtt_seq = tp->snd_nxt;
896			tp->mdev_max_us = tcp_rto_min_us(sk);
897
898			tcp_bpf_rtt(sk);
899		}
900	} else {
901		/* no previous measure. */
902		srtt = m << 3;		/* take the measured time to be rtt */
903		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
904		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
905		tp->mdev_max_us = tp->rttvar_us;
906		tp->rtt_seq = tp->snd_nxt;
907
908		tcp_bpf_rtt(sk);
909	}
910	tp->srtt_us = max(1U, srtt);
911}
912
913static void tcp_update_pacing_rate(struct sock *sk)
914{
915	const struct tcp_sock *tp = tcp_sk(sk);
916	u64 rate;
917
918	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
919	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
920
921	/* current rate is (cwnd * mss) / srtt
922	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
923	 * In Congestion Avoidance phase, set it to 120 % the current rate.
924	 *
925	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
926	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
927	 *	 end of slow start and should slow down.
928	 */
929	if (tcp_snd_cwnd(tp) < tp->snd_ssthresh / 2)
930		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio);
931	else
932		rate *= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio);
933
934	rate *= max(tcp_snd_cwnd(tp), tp->packets_out);
935
936	if (likely(tp->srtt_us))
937		do_div(rate, tp->srtt_us);
938
939	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
940	 * without any lock. We want to make sure compiler wont store
941	 * intermediate values in this location.
942	 */
943	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
944					     sk->sk_max_pacing_rate));
945}
946
947/* Calculate rto without backoff.  This is the second half of Van Jacobson's
948 * routine referred to above.
949 */
950static void tcp_set_rto(struct sock *sk)
951{
952	const struct tcp_sock *tp = tcp_sk(sk);
953	/* Old crap is replaced with new one. 8)
954	 *
955	 * More seriously:
956	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
957	 *    It cannot be less due to utterly erratic ACK generation made
958	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
959	 *    to do with delayed acks, because at cwnd>2 true delack timeout
960	 *    is invisible. Actually, Linux-2.4 also generates erratic
961	 *    ACKs in some circumstances.
962	 */
963	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
964
965	/* 2. Fixups made earlier cannot be right.
966	 *    If we do not estimate RTO correctly without them,
967	 *    all the algo is pure shit and should be replaced
968	 *    with correct one. It is exactly, which we pretend to do.
969	 */
970
971	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
972	 * guarantees that rto is higher.
973	 */
974	tcp_bound_rto(sk);
975}
976
977__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
978{
979	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
980
981	if (!cwnd)
982		cwnd = TCP_INIT_CWND;
983	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
984}
985
986struct tcp_sacktag_state {
987	/* Timestamps for earliest and latest never-retransmitted segment
988	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
989	 * but congestion control should still get an accurate delay signal.
990	 */
991	u64	first_sackt;
992	u64	last_sackt;
993	u32	reord;
994	u32	sack_delivered;
995	int	flag;
996	unsigned int mss_now;
997	struct rate_sample *rate;
998};
999
1000/* Take a notice that peer is sending D-SACKs. Skip update of data delivery
1001 * and spurious retransmission information if this DSACK is unlikely caused by
1002 * sender's action:
1003 * - DSACKed sequence range is larger than maximum receiver's window.
1004 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
1005 */
1006static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
1007			  u32 end_seq, struct tcp_sacktag_state *state)
1008{
1009	u32 seq_len, dup_segs = 1;
1010
1011	if (!before(start_seq, end_seq))
1012		return 0;
1013
1014	seq_len = end_seq - start_seq;
1015	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
1016	if (seq_len > tp->max_window)
1017		return 0;
1018	if (seq_len > tp->mss_cache)
1019		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
1020	else if (tp->tlp_high_seq && tp->tlp_high_seq == end_seq)
1021		state->flag |= FLAG_DSACK_TLP;
1022
1023	tp->dsack_dups += dup_segs;
1024	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1025	if (tp->dsack_dups > tp->total_retrans)
1026		return 0;
1027
1028	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1029	/* We increase the RACK ordering window in rounds where we receive
1030	 * DSACKs that may have been due to reordering causing RACK to trigger
1031	 * a spurious fast recovery. Thus RACK ignores DSACKs that happen
1032	 * without having seen reordering, or that match TLP probes (TLP
1033	 * is timer-driven, not triggered by RACK).
1034	 */
1035	if (tp->reord_seen && !(state->flag & FLAG_DSACK_TLP))
1036		tp->rack.dsack_seen = 1;
1037
1038	state->flag |= FLAG_DSACKING_ACK;
1039	/* A spurious retransmission is delivered */
1040	state->sack_delivered += dup_segs;
1041
1042	return dup_segs;
1043}
1044
1045/* It's reordering when higher sequence was delivered (i.e. sacked) before
1046 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1047 * distance is approximated in full-mss packet distance ("reordering").
1048 */
1049static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1050				      const int ts)
1051{
1052	struct tcp_sock *tp = tcp_sk(sk);
1053	const u32 mss = tp->mss_cache;
1054	u32 fack, metric;
1055
1056	fack = tcp_highest_sack_seq(tp);
1057	if (!before(low_seq, fack))
1058		return;
1059
1060	metric = fack - low_seq;
1061	if ((metric > tp->reordering * mss) && mss) {
1062#if FASTRETRANS_DEBUG > 1
1063		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1064			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1065			 tp->reordering,
1066			 0,
1067			 tp->sacked_out,
1068			 tp->undo_marker ? tp->undo_retrans : 0);
1069#endif
1070		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1071				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1072	}
1073
1074	/* This exciting event is worth to be remembered. 8) */
1075	tp->reord_seen++;
1076	NET_INC_STATS(sock_net(sk),
1077		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1078}
1079
1080 /* This must be called before lost_out or retrans_out are updated
1081  * on a new loss, because we want to know if all skbs previously
1082  * known to be lost have already been retransmitted, indicating
1083  * that this newly lost skb is our next skb to retransmit.
1084  */
1085static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1086{
1087	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1088	    (tp->retransmit_skb_hint &&
1089	     before(TCP_SKB_CB(skb)->seq,
1090		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1091		tp->retransmit_skb_hint = skb;
1092}
1093
1094/* Sum the number of packets on the wire we have marked as lost, and
1095 * notify the congestion control module that the given skb was marked lost.
1096 */
1097static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1098{
1099	tp->lost += tcp_skb_pcount(skb);
1100}
1101
1102void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1103{
1104	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1105	struct tcp_sock *tp = tcp_sk(sk);
1106
1107	if (sacked & TCPCB_SACKED_ACKED)
1108		return;
1109
1110	tcp_verify_retransmit_hint(tp, skb);
1111	if (sacked & TCPCB_LOST) {
1112		if (sacked & TCPCB_SACKED_RETRANS) {
1113			/* Account for retransmits that are lost again */
1114			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1115			tp->retrans_out -= tcp_skb_pcount(skb);
1116			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1117				      tcp_skb_pcount(skb));
1118			tcp_notify_skb_loss_event(tp, skb);
1119		}
1120	} else {
1121		tp->lost_out += tcp_skb_pcount(skb);
1122		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1123		tcp_notify_skb_loss_event(tp, skb);
1124	}
1125}
1126
1127/* Updates the delivered and delivered_ce counts */
1128static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1129				bool ece_ack)
1130{
1131	tp->delivered += delivered;
1132	if (ece_ack)
1133		tp->delivered_ce += delivered;
1134}
1135
1136/* This procedure tags the retransmission queue when SACKs arrive.
1137 *
1138 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1139 * Packets in queue with these bits set are counted in variables
1140 * sacked_out, retrans_out and lost_out, correspondingly.
1141 *
1142 * Valid combinations are:
1143 * Tag  InFlight	Description
1144 * 0	1		- orig segment is in flight.
1145 * S	0		- nothing flies, orig reached receiver.
1146 * L	0		- nothing flies, orig lost by net.
1147 * R	2		- both orig and retransmit are in flight.
1148 * L|R	1		- orig is lost, retransmit is in flight.
1149 * S|R  1		- orig reached receiver, retrans is still in flight.
1150 * (L|S|R is logically valid, it could occur when L|R is sacked,
1151 *  but it is equivalent to plain S and code short-curcuits it to S.
1152 *  L|S is logically invalid, it would mean -1 packet in flight 8))
1153 *
1154 * These 6 states form finite state machine, controlled by the following events:
1155 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1156 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1157 * 3. Loss detection event of two flavors:
1158 *	A. Scoreboard estimator decided the packet is lost.
1159 *	   A'. Reno "three dupacks" marks head of queue lost.
1160 *	B. SACK arrives sacking SND.NXT at the moment, when the
1161 *	   segment was retransmitted.
1162 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1163 *
1164 * It is pleasant to note, that state diagram turns out to be commutative,
1165 * so that we are allowed not to be bothered by order of our actions,
1166 * when multiple events arrive simultaneously. (see the function below).
1167 *
1168 * Reordering detection.
1169 * --------------------
1170 * Reordering metric is maximal distance, which a packet can be displaced
1171 * in packet stream. With SACKs we can estimate it:
1172 *
1173 * 1. SACK fills old hole and the corresponding segment was not
1174 *    ever retransmitted -> reordering. Alas, we cannot use it
1175 *    when segment was retransmitted.
1176 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1177 *    for retransmitted and already SACKed segment -> reordering..
1178 * Both of these heuristics are not used in Loss state, when we cannot
1179 * account for retransmits accurately.
1180 *
1181 * SACK block validation.
1182 * ----------------------
1183 *
1184 * SACK block range validation checks that the received SACK block fits to
1185 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1186 * Note that SND.UNA is not included to the range though being valid because
1187 * it means that the receiver is rather inconsistent with itself reporting
1188 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1189 * perfectly valid, however, in light of RFC2018 which explicitly states
1190 * that "SACK block MUST reflect the newest segment.  Even if the newest
1191 * segment is going to be discarded ...", not that it looks very clever
1192 * in case of head skb. Due to potentional receiver driven attacks, we
1193 * choose to avoid immediate execution of a walk in write queue due to
1194 * reneging and defer head skb's loss recovery to standard loss recovery
1195 * procedure that will eventually trigger (nothing forbids us doing this).
1196 *
1197 * Implements also blockage to start_seq wrap-around. Problem lies in the
1198 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1199 * there's no guarantee that it will be before snd_nxt (n). The problem
1200 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1201 * wrap (s_w):
1202 *
1203 *         <- outs wnd ->                          <- wrapzone ->
1204 *         u     e      n                         u_w   e_w  s n_w
1205 *         |     |      |                          |     |   |  |
1206 * |<------------+------+----- TCP seqno space --------------+---------->|
1207 * ...-- <2^31 ->|                                           |<--------...
1208 * ...---- >2^31 ------>|                                    |<--------...
1209 *
1210 * Current code wouldn't be vulnerable but it's better still to discard such
1211 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1212 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1213 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1214 * equal to the ideal case (infinite seqno space without wrap caused issues).
1215 *
1216 * With D-SACK the lower bound is extended to cover sequence space below
1217 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1218 * again, D-SACK block must not to go across snd_una (for the same reason as
1219 * for the normal SACK blocks, explained above). But there all simplicity
1220 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1221 * fully below undo_marker they do not affect behavior in anyway and can
1222 * therefore be safely ignored. In rare cases (which are more or less
1223 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1224 * fragmentation and packet reordering past skb's retransmission. To consider
1225 * them correctly, the acceptable range must be extended even more though
1226 * the exact amount is rather hard to quantify. However, tp->max_window can
1227 * be used as an exaggerated estimate.
1228 */
1229static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1230				   u32 start_seq, u32 end_seq)
1231{
1232	/* Too far in future, or reversed (interpretation is ambiguous) */
1233	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1234		return false;
1235
1236	/* Nasty start_seq wrap-around check (see comments above) */
1237	if (!before(start_seq, tp->snd_nxt))
1238		return false;
1239
1240	/* In outstanding window? ...This is valid exit for D-SACKs too.
1241	 * start_seq == snd_una is non-sensical (see comments above)
1242	 */
1243	if (after(start_seq, tp->snd_una))
1244		return true;
1245
1246	if (!is_dsack || !tp->undo_marker)
1247		return false;
1248
1249	/* ...Then it's D-SACK, and must reside below snd_una completely */
1250	if (after(end_seq, tp->snd_una))
1251		return false;
1252
1253	if (!before(start_seq, tp->undo_marker))
1254		return true;
1255
1256	/* Too old */
1257	if (!after(end_seq, tp->undo_marker))
1258		return false;
1259
1260	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1261	 *   start_seq < undo_marker and end_seq >= undo_marker.
1262	 */
1263	return !before(start_seq, end_seq - tp->max_window);
1264}
1265
1266static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1267			    struct tcp_sack_block_wire *sp, int num_sacks,
1268			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1269{
1270	struct tcp_sock *tp = tcp_sk(sk);
1271	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1272	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1273	u32 dup_segs;
1274
1275	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1276		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1277	} else if (num_sacks > 1) {
1278		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1279		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1280
1281		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1282			return false;
1283		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1284	} else {
1285		return false;
1286	}
1287
1288	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1289	if (!dup_segs) {	/* Skip dubious DSACK */
1290		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1291		return false;
1292	}
1293
1294	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1295
1296	/* D-SACK for already forgotten data... Do dumb counting. */
1297	if (tp->undo_marker && tp->undo_retrans > 0 &&
1298	    !after(end_seq_0, prior_snd_una) &&
1299	    after(end_seq_0, tp->undo_marker))
1300		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1301
1302	return true;
1303}
1304
1305/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1306 * the incoming SACK may not exactly match but we can find smaller MSS
1307 * aligned portion of it that matches. Therefore we might need to fragment
1308 * which may fail and creates some hassle (caller must handle error case
1309 * returns).
1310 *
1311 * FIXME: this could be merged to shift decision code
1312 */
1313static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1314				  u32 start_seq, u32 end_seq)
1315{
1316	int err;
1317	bool in_sack;
1318	unsigned int pkt_len;
1319	unsigned int mss;
1320
1321	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1322		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1323
1324	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1325	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1326		mss = tcp_skb_mss(skb);
1327		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1328
1329		if (!in_sack) {
1330			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1331			if (pkt_len < mss)
1332				pkt_len = mss;
1333		} else {
1334			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1335			if (pkt_len < mss)
1336				return -EINVAL;
1337		}
1338
1339		/* Round if necessary so that SACKs cover only full MSSes
1340		 * and/or the remaining small portion (if present)
1341		 */
1342		if (pkt_len > mss) {
1343			unsigned int new_len = (pkt_len / mss) * mss;
1344			if (!in_sack && new_len < pkt_len)
1345				new_len += mss;
1346			pkt_len = new_len;
1347		}
1348
1349		if (pkt_len >= skb->len && !in_sack)
1350			return 0;
1351
1352		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1353				   pkt_len, mss, GFP_ATOMIC);
1354		if (err < 0)
1355			return err;
1356	}
1357
1358	return in_sack;
1359}
1360
1361/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1362static u8 tcp_sacktag_one(struct sock *sk,
1363			  struct tcp_sacktag_state *state, u8 sacked,
1364			  u32 start_seq, u32 end_seq,
1365			  int dup_sack, int pcount,
1366			  u64 xmit_time)
1367{
1368	struct tcp_sock *tp = tcp_sk(sk);
1369
1370	/* Account D-SACK for retransmitted packet. */
1371	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1372		if (tp->undo_marker && tp->undo_retrans > 0 &&
1373		    after(end_seq, tp->undo_marker))
1374			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1375		if ((sacked & TCPCB_SACKED_ACKED) &&
1376		    before(start_seq, state->reord))
1377				state->reord = start_seq;
1378	}
1379
1380	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1381	if (!after(end_seq, tp->snd_una))
1382		return sacked;
1383
1384	if (!(sacked & TCPCB_SACKED_ACKED)) {
1385		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1386
1387		if (sacked & TCPCB_SACKED_RETRANS) {
1388			/* If the segment is not tagged as lost,
1389			 * we do not clear RETRANS, believing
1390			 * that retransmission is still in flight.
1391			 */
1392			if (sacked & TCPCB_LOST) {
1393				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1394				tp->lost_out -= pcount;
1395				tp->retrans_out -= pcount;
1396			}
1397		} else {
1398			if (!(sacked & TCPCB_RETRANS)) {
1399				/* New sack for not retransmitted frame,
1400				 * which was in hole. It is reordering.
1401				 */
1402				if (before(start_seq,
1403					   tcp_highest_sack_seq(tp)) &&
1404				    before(start_seq, state->reord))
1405					state->reord = start_seq;
1406
1407				if (!after(end_seq, tp->high_seq))
1408					state->flag |= FLAG_ORIG_SACK_ACKED;
1409				if (state->first_sackt == 0)
1410					state->first_sackt = xmit_time;
1411				state->last_sackt = xmit_time;
1412			}
1413
1414			if (sacked & TCPCB_LOST) {
1415				sacked &= ~TCPCB_LOST;
1416				tp->lost_out -= pcount;
1417			}
1418		}
1419
1420		sacked |= TCPCB_SACKED_ACKED;
1421		state->flag |= FLAG_DATA_SACKED;
1422		tp->sacked_out += pcount;
1423		/* Out-of-order packets delivered */
1424		state->sack_delivered += pcount;
1425
1426		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1427		if (tp->lost_skb_hint &&
1428		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1429			tp->lost_cnt_hint += pcount;
1430	}
1431
1432	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1433	 * frames and clear it. undo_retrans is decreased above, L|R frames
1434	 * are accounted above as well.
1435	 */
1436	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1437		sacked &= ~TCPCB_SACKED_RETRANS;
1438		tp->retrans_out -= pcount;
1439	}
1440
1441	return sacked;
1442}
1443
1444/* Shift newly-SACKed bytes from this skb to the immediately previous
1445 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1446 */
1447static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1448			    struct sk_buff *skb,
1449			    struct tcp_sacktag_state *state,
1450			    unsigned int pcount, int shifted, int mss,
1451			    bool dup_sack)
1452{
1453	struct tcp_sock *tp = tcp_sk(sk);
1454	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1455	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1456
1457	BUG_ON(!pcount);
1458
1459	/* Adjust counters and hints for the newly sacked sequence
1460	 * range but discard the return value since prev is already
1461	 * marked. We must tag the range first because the seq
1462	 * advancement below implicitly advances
1463	 * tcp_highest_sack_seq() when skb is highest_sack.
1464	 */
1465	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1466			start_seq, end_seq, dup_sack, pcount,
1467			tcp_skb_timestamp_us(skb));
1468	tcp_rate_skb_delivered(sk, skb, state->rate);
1469
1470	if (skb == tp->lost_skb_hint)
1471		tp->lost_cnt_hint += pcount;
1472
1473	TCP_SKB_CB(prev)->end_seq += shifted;
1474	TCP_SKB_CB(skb)->seq += shifted;
1475
1476	tcp_skb_pcount_add(prev, pcount);
1477	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1478	tcp_skb_pcount_add(skb, -pcount);
1479
1480	/* When we're adding to gso_segs == 1, gso_size will be zero,
1481	 * in theory this shouldn't be necessary but as long as DSACK
1482	 * code can come after this skb later on it's better to keep
1483	 * setting gso_size to something.
1484	 */
1485	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1486		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1487
1488	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1489	if (tcp_skb_pcount(skb) <= 1)
1490		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1491
1492	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1493	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1494
1495	if (skb->len > 0) {
1496		BUG_ON(!tcp_skb_pcount(skb));
1497		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1498		return false;
1499	}
1500
1501	/* Whole SKB was eaten :-) */
1502
1503	if (skb == tp->retransmit_skb_hint)
1504		tp->retransmit_skb_hint = prev;
1505	if (skb == tp->lost_skb_hint) {
1506		tp->lost_skb_hint = prev;
1507		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1508	}
1509
1510	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1511	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1512	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1513		TCP_SKB_CB(prev)->end_seq++;
1514
1515	if (skb == tcp_highest_sack(sk))
1516		tcp_advance_highest_sack(sk, skb);
1517
1518	tcp_skb_collapse_tstamp(prev, skb);
1519	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1520		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1521
1522	tcp_rtx_queue_unlink_and_free(skb, sk);
1523
1524	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1525
1526	return true;
1527}
1528
1529/* I wish gso_size would have a bit more sane initialization than
1530 * something-or-zero which complicates things
1531 */
1532static int tcp_skb_seglen(const struct sk_buff *skb)
1533{
1534	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1535}
1536
1537/* Shifting pages past head area doesn't work */
1538static int skb_can_shift(const struct sk_buff *skb)
1539{
1540	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1541}
1542
1543int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1544		  int pcount, int shiftlen)
1545{
1546	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1547	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1548	 * to make sure not storing more than 65535 * 8 bytes per skb,
1549	 * even if current MSS is bigger.
1550	 */
1551	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1552		return 0;
1553	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1554		return 0;
1555	return skb_shift(to, from, shiftlen);
1556}
1557
1558/* Try collapsing SACK blocks spanning across multiple skbs to a single
1559 * skb.
1560 */
1561static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1562					  struct tcp_sacktag_state *state,
1563					  u32 start_seq, u32 end_seq,
1564					  bool dup_sack)
1565{
1566	struct tcp_sock *tp = tcp_sk(sk);
1567	struct sk_buff *prev;
1568	int mss;
1569	int pcount = 0;
1570	int len;
1571	int in_sack;
1572
1573	/* Normally R but no L won't result in plain S */
1574	if (!dup_sack &&
1575	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1576		goto fallback;
1577	if (!skb_can_shift(skb))
1578		goto fallback;
1579	/* This frame is about to be dropped (was ACKed). */
1580	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1581		goto fallback;
1582
1583	/* Can only happen with delayed DSACK + discard craziness */
1584	prev = skb_rb_prev(skb);
1585	if (!prev)
1586		goto fallback;
1587
1588	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1589		goto fallback;
1590
1591	if (!tcp_skb_can_collapse(prev, skb))
1592		goto fallback;
1593
1594	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1595		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1596
1597	if (in_sack) {
1598		len = skb->len;
1599		pcount = tcp_skb_pcount(skb);
1600		mss = tcp_skb_seglen(skb);
1601
1602		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1603		 * drop this restriction as unnecessary
1604		 */
1605		if (mss != tcp_skb_seglen(prev))
1606			goto fallback;
1607	} else {
1608		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1609			goto noop;
1610		/* CHECKME: This is non-MSS split case only?, this will
1611		 * cause skipped skbs due to advancing loop btw, original
1612		 * has that feature too
1613		 */
1614		if (tcp_skb_pcount(skb) <= 1)
1615			goto noop;
1616
1617		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1618		if (!in_sack) {
1619			/* TODO: head merge to next could be attempted here
1620			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1621			 * though it might not be worth of the additional hassle
1622			 *
1623			 * ...we can probably just fallback to what was done
1624			 * previously. We could try merging non-SACKed ones
1625			 * as well but it probably isn't going to buy off
1626			 * because later SACKs might again split them, and
1627			 * it would make skb timestamp tracking considerably
1628			 * harder problem.
1629			 */
1630			goto fallback;
1631		}
1632
1633		len = end_seq - TCP_SKB_CB(skb)->seq;
1634		BUG_ON(len < 0);
1635		BUG_ON(len > skb->len);
1636
1637		/* MSS boundaries should be honoured or else pcount will
1638		 * severely break even though it makes things bit trickier.
1639		 * Optimize common case to avoid most of the divides
1640		 */
1641		mss = tcp_skb_mss(skb);
1642
1643		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1644		 * drop this restriction as unnecessary
1645		 */
1646		if (mss != tcp_skb_seglen(prev))
1647			goto fallback;
1648
1649		if (len == mss) {
1650			pcount = 1;
1651		} else if (len < mss) {
1652			goto noop;
1653		} else {
1654			pcount = len / mss;
1655			len = pcount * mss;
1656		}
1657	}
1658
1659	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1660	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1661		goto fallback;
1662
1663	if (!tcp_skb_shift(prev, skb, pcount, len))
1664		goto fallback;
1665	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1666		goto out;
1667
1668	/* Hole filled allows collapsing with the next as well, this is very
1669	 * useful when hole on every nth skb pattern happens
1670	 */
1671	skb = skb_rb_next(prev);
1672	if (!skb)
1673		goto out;
1674
1675	if (!skb_can_shift(skb) ||
1676	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1677	    (mss != tcp_skb_seglen(skb)))
1678		goto out;
1679
1680	if (!tcp_skb_can_collapse(prev, skb))
1681		goto out;
1682	len = skb->len;
1683	pcount = tcp_skb_pcount(skb);
1684	if (tcp_skb_shift(prev, skb, pcount, len))
1685		tcp_shifted_skb(sk, prev, skb, state, pcount,
1686				len, mss, 0);
1687
1688out:
1689	return prev;
1690
1691noop:
1692	return skb;
1693
1694fallback:
1695	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1696	return NULL;
1697}
1698
1699static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1700					struct tcp_sack_block *next_dup,
1701					struct tcp_sacktag_state *state,
1702					u32 start_seq, u32 end_seq,
1703					bool dup_sack_in)
1704{
1705	struct tcp_sock *tp = tcp_sk(sk);
1706	struct sk_buff *tmp;
1707
1708	skb_rbtree_walk_from(skb) {
1709		int in_sack = 0;
1710		bool dup_sack = dup_sack_in;
1711
1712		/* queue is in-order => we can short-circuit the walk early */
1713		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1714			break;
1715
1716		if (next_dup  &&
1717		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1718			in_sack = tcp_match_skb_to_sack(sk, skb,
1719							next_dup->start_seq,
1720							next_dup->end_seq);
1721			if (in_sack > 0)
1722				dup_sack = true;
1723		}
1724
1725		/* skb reference here is a bit tricky to get right, since
1726		 * shifting can eat and free both this skb and the next,
1727		 * so not even _safe variant of the loop is enough.
1728		 */
1729		if (in_sack <= 0) {
1730			tmp = tcp_shift_skb_data(sk, skb, state,
1731						 start_seq, end_seq, dup_sack);
1732			if (tmp) {
1733				if (tmp != skb) {
1734					skb = tmp;
1735					continue;
1736				}
1737
1738				in_sack = 0;
1739			} else {
1740				in_sack = tcp_match_skb_to_sack(sk, skb,
1741								start_seq,
1742								end_seq);
1743			}
1744		}
1745
1746		if (unlikely(in_sack < 0))
1747			break;
1748
1749		if (in_sack) {
1750			TCP_SKB_CB(skb)->sacked =
1751				tcp_sacktag_one(sk,
1752						state,
1753						TCP_SKB_CB(skb)->sacked,
1754						TCP_SKB_CB(skb)->seq,
1755						TCP_SKB_CB(skb)->end_seq,
1756						dup_sack,
1757						tcp_skb_pcount(skb),
1758						tcp_skb_timestamp_us(skb));
1759			tcp_rate_skb_delivered(sk, skb, state->rate);
1760			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1761				list_del_init(&skb->tcp_tsorted_anchor);
1762
1763			if (!before(TCP_SKB_CB(skb)->seq,
1764				    tcp_highest_sack_seq(tp)))
1765				tcp_advance_highest_sack(sk, skb);
1766		}
1767	}
1768	return skb;
1769}
1770
1771static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1772{
1773	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1774	struct sk_buff *skb;
1775
1776	while (*p) {
1777		parent = *p;
1778		skb = rb_to_skb(parent);
1779		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1780			p = &parent->rb_left;
1781			continue;
1782		}
1783		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1784			p = &parent->rb_right;
1785			continue;
1786		}
1787		return skb;
1788	}
1789	return NULL;
1790}
1791
1792static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1793					u32 skip_to_seq)
1794{
1795	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1796		return skb;
1797
1798	return tcp_sacktag_bsearch(sk, skip_to_seq);
1799}
1800
1801static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1802						struct sock *sk,
1803						struct tcp_sack_block *next_dup,
1804						struct tcp_sacktag_state *state,
1805						u32 skip_to_seq)
1806{
1807	if (!next_dup)
1808		return skb;
1809
1810	if (before(next_dup->start_seq, skip_to_seq)) {
1811		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1812		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1813				       next_dup->start_seq, next_dup->end_seq,
1814				       1);
1815	}
1816
1817	return skb;
1818}
1819
1820static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1821{
1822	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1823}
1824
1825static int
1826tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1827			u32 prior_snd_una, struct tcp_sacktag_state *state)
1828{
1829	struct tcp_sock *tp = tcp_sk(sk);
1830	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1831				    TCP_SKB_CB(ack_skb)->sacked);
1832	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1833	struct tcp_sack_block sp[TCP_NUM_SACKS];
1834	struct tcp_sack_block *cache;
1835	struct sk_buff *skb;
1836	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1837	int used_sacks;
1838	bool found_dup_sack = false;
1839	int i, j;
1840	int first_sack_index;
1841
1842	state->flag = 0;
1843	state->reord = tp->snd_nxt;
1844
1845	if (!tp->sacked_out)
1846		tcp_highest_sack_reset(sk);
1847
1848	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1849					 num_sacks, prior_snd_una, state);
1850
1851	/* Eliminate too old ACKs, but take into
1852	 * account more or less fresh ones, they can
1853	 * contain valid SACK info.
1854	 */
1855	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1856		return 0;
1857
1858	if (!tp->packets_out)
1859		goto out;
1860
1861	used_sacks = 0;
1862	first_sack_index = 0;
1863	for (i = 0; i < num_sacks; i++) {
1864		bool dup_sack = !i && found_dup_sack;
1865
1866		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1867		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1868
1869		if (!tcp_is_sackblock_valid(tp, dup_sack,
1870					    sp[used_sacks].start_seq,
1871					    sp[used_sacks].end_seq)) {
1872			int mib_idx;
1873
1874			if (dup_sack) {
1875				if (!tp->undo_marker)
1876					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1877				else
1878					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1879			} else {
1880				/* Don't count olds caused by ACK reordering */
1881				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1882				    !after(sp[used_sacks].end_seq, tp->snd_una))
1883					continue;
1884				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1885			}
1886
1887			NET_INC_STATS(sock_net(sk), mib_idx);
1888			if (i == 0)
1889				first_sack_index = -1;
1890			continue;
1891		}
1892
1893		/* Ignore very old stuff early */
1894		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1895			if (i == 0)
1896				first_sack_index = -1;
1897			continue;
1898		}
1899
1900		used_sacks++;
1901	}
1902
1903	/* order SACK blocks to allow in order walk of the retrans queue */
1904	for (i = used_sacks - 1; i > 0; i--) {
1905		for (j = 0; j < i; j++) {
1906			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1907				swap(sp[j], sp[j + 1]);
1908
1909				/* Track where the first SACK block goes to */
1910				if (j == first_sack_index)
1911					first_sack_index = j + 1;
1912			}
1913		}
1914	}
1915
1916	state->mss_now = tcp_current_mss(sk);
1917	skb = NULL;
1918	i = 0;
1919
1920	if (!tp->sacked_out) {
1921		/* It's already past, so skip checking against it */
1922		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1923	} else {
1924		cache = tp->recv_sack_cache;
1925		/* Skip empty blocks in at head of the cache */
1926		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1927		       !cache->end_seq)
1928			cache++;
1929	}
1930
1931	while (i < used_sacks) {
1932		u32 start_seq = sp[i].start_seq;
1933		u32 end_seq = sp[i].end_seq;
1934		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1935		struct tcp_sack_block *next_dup = NULL;
1936
1937		if (found_dup_sack && ((i + 1) == first_sack_index))
1938			next_dup = &sp[i + 1];
1939
1940		/* Skip too early cached blocks */
1941		while (tcp_sack_cache_ok(tp, cache) &&
1942		       !before(start_seq, cache->end_seq))
1943			cache++;
1944
1945		/* Can skip some work by looking recv_sack_cache? */
1946		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1947		    after(end_seq, cache->start_seq)) {
1948
1949			/* Head todo? */
1950			if (before(start_seq, cache->start_seq)) {
1951				skb = tcp_sacktag_skip(skb, sk, start_seq);
1952				skb = tcp_sacktag_walk(skb, sk, next_dup,
1953						       state,
1954						       start_seq,
1955						       cache->start_seq,
1956						       dup_sack);
1957			}
1958
1959			/* Rest of the block already fully processed? */
1960			if (!after(end_seq, cache->end_seq))
1961				goto advance_sp;
1962
1963			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1964						       state,
1965						       cache->end_seq);
1966
1967			/* ...tail remains todo... */
1968			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1969				/* ...but better entrypoint exists! */
1970				skb = tcp_highest_sack(sk);
1971				if (!skb)
1972					break;
1973				cache++;
1974				goto walk;
1975			}
1976
1977			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1978			/* Check overlap against next cached too (past this one already) */
1979			cache++;
1980			continue;
1981		}
1982
1983		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1984			skb = tcp_highest_sack(sk);
1985			if (!skb)
1986				break;
1987		}
1988		skb = tcp_sacktag_skip(skb, sk, start_seq);
1989
1990walk:
1991		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1992				       start_seq, end_seq, dup_sack);
1993
1994advance_sp:
1995		i++;
1996	}
1997
1998	/* Clear the head of the cache sack blocks so we can skip it next time */
1999	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
2000		tp->recv_sack_cache[i].start_seq = 0;
2001		tp->recv_sack_cache[i].end_seq = 0;
2002	}
2003	for (j = 0; j < used_sacks; j++)
2004		tp->recv_sack_cache[i++] = sp[j];
2005
2006	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
2007		tcp_check_sack_reordering(sk, state->reord, 0);
2008
2009	tcp_verify_left_out(tp);
2010out:
2011
2012#if FASTRETRANS_DEBUG > 0
2013	WARN_ON((int)tp->sacked_out < 0);
2014	WARN_ON((int)tp->lost_out < 0);
2015	WARN_ON((int)tp->retrans_out < 0);
2016	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
2017#endif
2018	return state->flag;
2019}
2020
2021/* Limits sacked_out so that sum with lost_out isn't ever larger than
2022 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
2023 */
2024static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
2025{
2026	u32 holes;
2027
2028	holes = max(tp->lost_out, 1U);
2029	holes = min(holes, tp->packets_out);
2030
2031	if ((tp->sacked_out + holes) > tp->packets_out) {
2032		tp->sacked_out = tp->packets_out - holes;
2033		return true;
2034	}
2035	return false;
2036}
2037
2038/* If we receive more dupacks than we expected counting segments
2039 * in assumption of absent reordering, interpret this as reordering.
2040 * The only another reason could be bug in receiver TCP.
2041 */
2042static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2043{
2044	struct tcp_sock *tp = tcp_sk(sk);
2045
2046	if (!tcp_limit_reno_sacked(tp))
2047		return;
2048
2049	tp->reordering = min_t(u32, tp->packets_out + addend,
2050			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2051	tp->reord_seen++;
2052	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2053}
2054
2055/* Emulate SACKs for SACKless connection: account for a new dupack. */
2056
2057static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2058{
2059	if (num_dupack) {
2060		struct tcp_sock *tp = tcp_sk(sk);
2061		u32 prior_sacked = tp->sacked_out;
2062		s32 delivered;
2063
2064		tp->sacked_out += num_dupack;
2065		tcp_check_reno_reordering(sk, 0);
2066		delivered = tp->sacked_out - prior_sacked;
2067		if (delivered > 0)
2068			tcp_count_delivered(tp, delivered, ece_ack);
2069		tcp_verify_left_out(tp);
2070	}
2071}
2072
2073/* Account for ACK, ACKing some data in Reno Recovery phase. */
2074
2075static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2076{
2077	struct tcp_sock *tp = tcp_sk(sk);
2078
2079	if (acked > 0) {
2080		/* One ACK acked hole. The rest eat duplicate ACKs. */
2081		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2082				    ece_ack);
2083		if (acked - 1 >= tp->sacked_out)
2084			tp->sacked_out = 0;
2085		else
2086			tp->sacked_out -= acked - 1;
2087	}
2088	tcp_check_reno_reordering(sk, acked);
2089	tcp_verify_left_out(tp);
2090}
2091
2092static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2093{
2094	tp->sacked_out = 0;
2095}
2096
2097void tcp_clear_retrans(struct tcp_sock *tp)
2098{
2099	tp->retrans_out = 0;
2100	tp->lost_out = 0;
2101	tp->undo_marker = 0;
2102	tp->undo_retrans = -1;
2103	tp->sacked_out = 0;
2104}
2105
2106static inline void tcp_init_undo(struct tcp_sock *tp)
2107{
2108	tp->undo_marker = tp->snd_una;
2109	/* Retransmission still in flight may cause DSACKs later. */
2110	tp->undo_retrans = tp->retrans_out ? : -1;
2111}
2112
2113static bool tcp_is_rack(const struct sock *sk)
2114{
2115	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2116		TCP_RACK_LOSS_DETECTION;
2117}
2118
2119/* If we detect SACK reneging, forget all SACK information
2120 * and reset tags completely, otherwise preserve SACKs. If receiver
2121 * dropped its ofo queue, we will know this due to reneging detection.
2122 */
2123static void tcp_timeout_mark_lost(struct sock *sk)
2124{
2125	struct tcp_sock *tp = tcp_sk(sk);
2126	struct sk_buff *skb, *head;
2127	bool is_reneg;			/* is receiver reneging on SACKs? */
2128
2129	head = tcp_rtx_queue_head(sk);
2130	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2131	if (is_reneg) {
2132		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2133		tp->sacked_out = 0;
2134		/* Mark SACK reneging until we recover from this loss event. */
2135		tp->is_sack_reneg = 1;
2136	} else if (tcp_is_reno(tp)) {
2137		tcp_reset_reno_sack(tp);
2138	}
2139
2140	skb = head;
2141	skb_rbtree_walk_from(skb) {
2142		if (is_reneg)
2143			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2144		else if (tcp_is_rack(sk) && skb != head &&
2145			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2146			continue; /* Don't mark recently sent ones lost yet */
2147		tcp_mark_skb_lost(sk, skb);
2148	}
2149	tcp_verify_left_out(tp);
2150	tcp_clear_all_retrans_hints(tp);
2151}
2152
2153/* Enter Loss state. */
2154void tcp_enter_loss(struct sock *sk)
2155{
2156	const struct inet_connection_sock *icsk = inet_csk(sk);
2157	struct tcp_sock *tp = tcp_sk(sk);
2158	struct net *net = sock_net(sk);
2159	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2160	u8 reordering;
2161
2162	tcp_timeout_mark_lost(sk);
2163
2164	/* Reduce ssthresh if it has not yet been made inside this window. */
2165	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2166	    !after(tp->high_seq, tp->snd_una) ||
2167	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2168		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2169		tp->prior_cwnd = tcp_snd_cwnd(tp);
2170		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2171		tcp_ca_event(sk, CA_EVENT_LOSS);
2172		tcp_init_undo(tp);
2173	}
2174	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + 1);
2175	tp->snd_cwnd_cnt   = 0;
2176	tp->snd_cwnd_stamp = tcp_jiffies32;
2177
2178	/* Timeout in disordered state after receiving substantial DUPACKs
2179	 * suggests that the degree of reordering is over-estimated.
2180	 */
2181	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2182	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2183	    tp->sacked_out >= reordering)
2184		tp->reordering = min_t(unsigned int, tp->reordering,
2185				       reordering);
2186
2187	tcp_set_ca_state(sk, TCP_CA_Loss);
2188	tp->high_seq = tp->snd_nxt;
2189	tcp_ecn_queue_cwr(tp);
2190
2191	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2192	 * loss recovery is underway except recurring timeout(s) on
2193	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2194	 */
2195	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2196		   (new_recovery || icsk->icsk_retransmits) &&
2197		   !inet_csk(sk)->icsk_mtup.probe_size;
2198}
2199
2200/* If ACK arrived pointing to a remembered SACK, it means that our
2201 * remembered SACKs do not reflect real state of receiver i.e.
2202 * receiver _host_ is heavily congested (or buggy).
2203 *
2204 * To avoid big spurious retransmission bursts due to transient SACK
2205 * scoreboard oddities that look like reneging, we give the receiver a
2206 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2207 * restore sanity to the SACK scoreboard. If the apparent reneging
2208 * persists until this RTO then we'll clear the SACK scoreboard.
2209 */
2210static bool tcp_check_sack_reneging(struct sock *sk, int *ack_flag)
2211{
2212	if (*ack_flag & FLAG_SACK_RENEGING &&
2213	    *ack_flag & FLAG_SND_UNA_ADVANCED) {
2214		struct tcp_sock *tp = tcp_sk(sk);
2215		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2216					  msecs_to_jiffies(10));
2217
2218		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2219					  delay, TCP_RTO_MAX);
2220		*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2221		return true;
2222	}
2223	return false;
2224}
2225
2226/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2227 * counter when SACK is enabled (without SACK, sacked_out is used for
2228 * that purpose).
2229 *
2230 * With reordering, holes may still be in flight, so RFC3517 recovery
2231 * uses pure sacked_out (total number of SACKed segments) even though
2232 * it violates the RFC that uses duplicate ACKs, often these are equal
2233 * but when e.g. out-of-window ACKs or packet duplication occurs,
2234 * they differ. Since neither occurs due to loss, TCP should really
2235 * ignore them.
2236 */
2237static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2238{
2239	return tp->sacked_out + 1;
2240}
2241
2242/* Linux NewReno/SACK/ECN state machine.
2243 * --------------------------------------
2244 *
2245 * "Open"	Normal state, no dubious events, fast path.
2246 * "Disorder"   In all the respects it is "Open",
2247 *		but requires a bit more attention. It is entered when
2248 *		we see some SACKs or dupacks. It is split of "Open"
2249 *		mainly to move some processing from fast path to slow one.
2250 * "CWR"	CWND was reduced due to some Congestion Notification event.
2251 *		It can be ECN, ICMP source quench, local device congestion.
2252 * "Recovery"	CWND was reduced, we are fast-retransmitting.
2253 * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2254 *
2255 * tcp_fastretrans_alert() is entered:
2256 * - each incoming ACK, if state is not "Open"
2257 * - when arrived ACK is unusual, namely:
2258 *	* SACK
2259 *	* Duplicate ACK.
2260 *	* ECN ECE.
2261 *
2262 * Counting packets in flight is pretty simple.
2263 *
2264 *	in_flight = packets_out - left_out + retrans_out
2265 *
2266 *	packets_out is SND.NXT-SND.UNA counted in packets.
2267 *
2268 *	retrans_out is number of retransmitted segments.
2269 *
2270 *	left_out is number of segments left network, but not ACKed yet.
2271 *
2272 *		left_out = sacked_out + lost_out
2273 *
2274 *     sacked_out: Packets, which arrived to receiver out of order
2275 *		   and hence not ACKed. With SACKs this number is simply
2276 *		   amount of SACKed data. Even without SACKs
2277 *		   it is easy to give pretty reliable estimate of this number,
2278 *		   counting duplicate ACKs.
2279 *
2280 *       lost_out: Packets lost by network. TCP has no explicit
2281 *		   "loss notification" feedback from network (for now).
2282 *		   It means that this number can be only _guessed_.
2283 *		   Actually, it is the heuristics to predict lossage that
2284 *		   distinguishes different algorithms.
2285 *
2286 *	F.e. after RTO, when all the queue is considered as lost,
2287 *	lost_out = packets_out and in_flight = retrans_out.
2288 *
2289 *		Essentially, we have now a few algorithms detecting
2290 *		lost packets.
2291 *
2292 *		If the receiver supports SACK:
2293 *
2294 *		RFC6675/3517: It is the conventional algorithm. A packet is
2295 *		considered lost if the number of higher sequence packets
2296 *		SACKed is greater than or equal the DUPACK thoreshold
2297 *		(reordering). This is implemented in tcp_mark_head_lost and
2298 *		tcp_update_scoreboard.
2299 *
2300 *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2301 *		(2017-) that checks timing instead of counting DUPACKs.
2302 *		Essentially a packet is considered lost if it's not S/ACKed
2303 *		after RTT + reordering_window, where both metrics are
2304 *		dynamically measured and adjusted. This is implemented in
2305 *		tcp_rack_mark_lost.
2306 *
2307 *		If the receiver does not support SACK:
2308 *
2309 *		NewReno (RFC6582): in Recovery we assume that one segment
2310 *		is lost (classic Reno). While we are in Recovery and
2311 *		a partial ACK arrives, we assume that one more packet
2312 *		is lost (NewReno). This heuristics are the same in NewReno
2313 *		and SACK.
2314 *
2315 * Really tricky (and requiring careful tuning) part of algorithm
2316 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2317 * The first determines the moment _when_ we should reduce CWND and,
2318 * hence, slow down forward transmission. In fact, it determines the moment
2319 * when we decide that hole is caused by loss, rather than by a reorder.
2320 *
2321 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2322 * holes, caused by lost packets.
2323 *
2324 * And the most logically complicated part of algorithm is undo
2325 * heuristics. We detect false retransmits due to both too early
2326 * fast retransmit (reordering) and underestimated RTO, analyzing
2327 * timestamps and D-SACKs. When we detect that some segments were
2328 * retransmitted by mistake and CWND reduction was wrong, we undo
2329 * window reduction and abort recovery phase. This logic is hidden
2330 * inside several functions named tcp_try_undo_<something>.
2331 */
2332
2333/* This function decides, when we should leave Disordered state
2334 * and enter Recovery phase, reducing congestion window.
2335 *
2336 * Main question: may we further continue forward transmission
2337 * with the same cwnd?
2338 */
2339static bool tcp_time_to_recover(struct sock *sk, int flag)
2340{
2341	struct tcp_sock *tp = tcp_sk(sk);
2342
2343	/* Trick#1: The loss is proven. */
2344	if (tp->lost_out)
2345		return true;
2346
2347	/* Not-A-Trick#2 : Classic rule... */
2348	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2349		return true;
2350
2351	return false;
2352}
2353
2354/* Detect loss in event "A" above by marking head of queue up as lost.
2355 * For RFC3517 SACK, a segment is considered lost if it
2356 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2357 * the maximum SACKed segments to pass before reaching this limit.
2358 */
2359static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2360{
2361	struct tcp_sock *tp = tcp_sk(sk);
2362	struct sk_buff *skb;
2363	int cnt;
2364	/* Use SACK to deduce losses of new sequences sent during recovery */
2365	const u32 loss_high = tp->snd_nxt;
2366
2367	WARN_ON(packets > tp->packets_out);
2368	skb = tp->lost_skb_hint;
2369	if (skb) {
2370		/* Head already handled? */
2371		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2372			return;
2373		cnt = tp->lost_cnt_hint;
2374	} else {
2375		skb = tcp_rtx_queue_head(sk);
2376		cnt = 0;
2377	}
2378
2379	skb_rbtree_walk_from(skb) {
2380		/* TODO: do this better */
2381		/* this is not the most efficient way to do this... */
2382		tp->lost_skb_hint = skb;
2383		tp->lost_cnt_hint = cnt;
2384
2385		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2386			break;
2387
2388		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2389			cnt += tcp_skb_pcount(skb);
2390
2391		if (cnt > packets)
2392			break;
2393
2394		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2395			tcp_mark_skb_lost(sk, skb);
2396
2397		if (mark_head)
2398			break;
2399	}
2400	tcp_verify_left_out(tp);
2401}
2402
2403/* Account newly detected lost packet(s) */
2404
2405static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2406{
2407	struct tcp_sock *tp = tcp_sk(sk);
2408
2409	if (tcp_is_sack(tp)) {
2410		int sacked_upto = tp->sacked_out - tp->reordering;
2411		if (sacked_upto >= 0)
2412			tcp_mark_head_lost(sk, sacked_upto, 0);
2413		else if (fast_rexmit)
2414			tcp_mark_head_lost(sk, 1, 1);
2415	}
2416}
2417
2418static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2419{
2420	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2421	       before(tp->rx_opt.rcv_tsecr, when);
2422}
2423
2424/* skb is spurious retransmitted if the returned timestamp echo
2425 * reply is prior to the skb transmission time
2426 */
2427static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2428				     const struct sk_buff *skb)
2429{
2430	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2431	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2432}
2433
2434/* Nothing was retransmitted or returned timestamp is less
2435 * than timestamp of the first retransmission.
2436 */
2437static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2438{
2439	return tp->retrans_stamp &&
2440	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2441}
2442
2443/* Undo procedures. */
2444
2445/* We can clear retrans_stamp when there are no retransmissions in the
2446 * window. It would seem that it is trivially available for us in
2447 * tp->retrans_out, however, that kind of assumptions doesn't consider
2448 * what will happen if errors occur when sending retransmission for the
2449 * second time. ...It could the that such segment has only
2450 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2451 * the head skb is enough except for some reneging corner cases that
2452 * are not worth the effort.
2453 *
2454 * Main reason for all this complexity is the fact that connection dying
2455 * time now depends on the validity of the retrans_stamp, in particular,
2456 * that successive retransmissions of a segment must not advance
2457 * retrans_stamp under any conditions.
2458 */
2459static bool tcp_any_retrans_done(const struct sock *sk)
2460{
2461	const struct tcp_sock *tp = tcp_sk(sk);
2462	struct sk_buff *skb;
2463
2464	if (tp->retrans_out)
2465		return true;
2466
2467	skb = tcp_rtx_queue_head(sk);
2468	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2469		return true;
2470
2471	return false;
2472}
2473
2474static void DBGUNDO(struct sock *sk, const char *msg)
2475{
2476#if FASTRETRANS_DEBUG > 1
2477	struct tcp_sock *tp = tcp_sk(sk);
2478	struct inet_sock *inet = inet_sk(sk);
2479
2480	if (sk->sk_family == AF_INET) {
2481		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2482			 msg,
2483			 &inet->inet_daddr, ntohs(inet->inet_dport),
2484			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2485			 tp->snd_ssthresh, tp->prior_ssthresh,
2486			 tp->packets_out);
2487	}
2488#if IS_ENABLED(CONFIG_IPV6)
2489	else if (sk->sk_family == AF_INET6) {
2490		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2491			 msg,
2492			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2493			 tcp_snd_cwnd(tp), tcp_left_out(tp),
2494			 tp->snd_ssthresh, tp->prior_ssthresh,
2495			 tp->packets_out);
2496	}
2497#endif
2498#endif
2499}
2500
2501static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2502{
2503	struct tcp_sock *tp = tcp_sk(sk);
2504
2505	if (unmark_loss) {
2506		struct sk_buff *skb;
2507
2508		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2509			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2510		}
2511		tp->lost_out = 0;
2512		tcp_clear_all_retrans_hints(tp);
2513	}
2514
2515	if (tp->prior_ssthresh) {
2516		const struct inet_connection_sock *icsk = inet_csk(sk);
2517
2518		tcp_snd_cwnd_set(tp, icsk->icsk_ca_ops->undo_cwnd(sk));
2519
2520		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2521			tp->snd_ssthresh = tp->prior_ssthresh;
2522			tcp_ecn_withdraw_cwr(tp);
2523		}
2524	}
2525	tp->snd_cwnd_stamp = tcp_jiffies32;
2526	tp->undo_marker = 0;
2527	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2528}
2529
2530static inline bool tcp_may_undo(const struct tcp_sock *tp)
2531{
2532	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2533}
2534
2535static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2536{
2537	struct tcp_sock *tp = tcp_sk(sk);
2538
2539	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2540		/* Hold old state until something *above* high_seq
2541		 * is ACKed. For Reno it is MUST to prevent false
2542		 * fast retransmits (RFC2582). SACK TCP is safe. */
2543		if (!tcp_any_retrans_done(sk))
2544			tp->retrans_stamp = 0;
2545		return true;
2546	}
2547	return false;
2548}
2549
2550/* People celebrate: "We love our President!" */
2551static bool tcp_try_undo_recovery(struct sock *sk)
2552{
2553	struct tcp_sock *tp = tcp_sk(sk);
2554
2555	if (tcp_may_undo(tp)) {
2556		int mib_idx;
2557
2558		/* Happy end! We did not retransmit anything
2559		 * or our original transmission succeeded.
2560		 */
2561		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2562		tcp_undo_cwnd_reduction(sk, false);
2563		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2564			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2565		else
2566			mib_idx = LINUX_MIB_TCPFULLUNDO;
2567
2568		NET_INC_STATS(sock_net(sk), mib_idx);
2569	} else if (tp->rack.reo_wnd_persist) {
2570		tp->rack.reo_wnd_persist--;
2571	}
2572	if (tcp_is_non_sack_preventing_reopen(sk))
2573		return true;
2574	tcp_set_ca_state(sk, TCP_CA_Open);
2575	tp->is_sack_reneg = 0;
2576	return false;
2577}
2578
2579/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2580static bool tcp_try_undo_dsack(struct sock *sk)
2581{
2582	struct tcp_sock *tp = tcp_sk(sk);
2583
2584	if (tp->undo_marker && !tp->undo_retrans) {
2585		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2586					       tp->rack.reo_wnd_persist + 1);
2587		DBGUNDO(sk, "D-SACK");
2588		tcp_undo_cwnd_reduction(sk, false);
2589		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2590		return true;
2591	}
2592	return false;
2593}
2594
2595/* Undo during loss recovery after partial ACK or using F-RTO. */
2596static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2597{
2598	struct tcp_sock *tp = tcp_sk(sk);
2599
2600	if (frto_undo || tcp_may_undo(tp)) {
2601		tcp_undo_cwnd_reduction(sk, true);
2602
2603		DBGUNDO(sk, "partial loss");
2604		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2605		if (frto_undo)
2606			NET_INC_STATS(sock_net(sk),
2607					LINUX_MIB_TCPSPURIOUSRTOS);
2608		inet_csk(sk)->icsk_retransmits = 0;
2609		if (tcp_is_non_sack_preventing_reopen(sk))
2610			return true;
2611		if (frto_undo || tcp_is_sack(tp)) {
2612			tcp_set_ca_state(sk, TCP_CA_Open);
2613			tp->is_sack_reneg = 0;
2614		}
2615		return true;
2616	}
2617	return false;
2618}
2619
2620/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2621 * It computes the number of packets to send (sndcnt) based on packets newly
2622 * delivered:
2623 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2624 *	cwnd reductions across a full RTT.
2625 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2626 *      But when SND_UNA is acked without further losses,
2627 *      slow starts cwnd up to ssthresh to speed up the recovery.
2628 */
2629static void tcp_init_cwnd_reduction(struct sock *sk)
2630{
2631	struct tcp_sock *tp = tcp_sk(sk);
2632
2633	tp->high_seq = tp->snd_nxt;
2634	tp->tlp_high_seq = 0;
2635	tp->snd_cwnd_cnt = 0;
2636	tp->prior_cwnd = tcp_snd_cwnd(tp);
2637	tp->prr_delivered = 0;
2638	tp->prr_out = 0;
2639	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2640	tcp_ecn_queue_cwr(tp);
2641}
2642
2643void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag)
2644{
2645	struct tcp_sock *tp = tcp_sk(sk);
2646	int sndcnt = 0;
2647	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2648
2649	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2650		return;
2651
2652	tp->prr_delivered += newly_acked_sacked;
2653	if (delta < 0) {
2654		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2655			       tp->prior_cwnd - 1;
2656		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2657	} else {
2658		sndcnt = max_t(int, tp->prr_delivered - tp->prr_out,
2659			       newly_acked_sacked);
2660		if (flag & FLAG_SND_UNA_ADVANCED && !newly_lost)
2661			sndcnt++;
2662		sndcnt = min(delta, sndcnt);
2663	}
2664	/* Force a fast retransmit upon entering fast recovery */
2665	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2666	tcp_snd_cwnd_set(tp, tcp_packets_in_flight(tp) + sndcnt);
2667}
2668
2669static inline void tcp_end_cwnd_reduction(struct sock *sk)
2670{
2671	struct tcp_sock *tp = tcp_sk(sk);
2672
2673	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2674		return;
2675
2676	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2677	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2678	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2679		tcp_snd_cwnd_set(tp, tp->snd_ssthresh);
2680		tp->snd_cwnd_stamp = tcp_jiffies32;
2681	}
2682	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2683}
2684
2685/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2686void tcp_enter_cwr(struct sock *sk)
2687{
2688	struct tcp_sock *tp = tcp_sk(sk);
2689
2690	tp->prior_ssthresh = 0;
2691	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2692		tp->undo_marker = 0;
2693		tcp_init_cwnd_reduction(sk);
2694		tcp_set_ca_state(sk, TCP_CA_CWR);
2695	}
2696}
2697EXPORT_SYMBOL(tcp_enter_cwr);
2698
2699static void tcp_try_keep_open(struct sock *sk)
2700{
2701	struct tcp_sock *tp = tcp_sk(sk);
2702	int state = TCP_CA_Open;
2703
2704	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2705		state = TCP_CA_Disorder;
2706
2707	if (inet_csk(sk)->icsk_ca_state != state) {
2708		tcp_set_ca_state(sk, state);
2709		tp->high_seq = tp->snd_nxt;
2710	}
2711}
2712
2713static void tcp_try_to_open(struct sock *sk, int flag)
2714{
2715	struct tcp_sock *tp = tcp_sk(sk);
2716
2717	tcp_verify_left_out(tp);
2718
2719	if (!tcp_any_retrans_done(sk))
2720		tp->retrans_stamp = 0;
2721
2722	if (flag & FLAG_ECE)
2723		tcp_enter_cwr(sk);
2724
2725	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2726		tcp_try_keep_open(sk);
2727	}
2728}
2729
2730static void tcp_mtup_probe_failed(struct sock *sk)
2731{
2732	struct inet_connection_sock *icsk = inet_csk(sk);
2733
2734	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2735	icsk->icsk_mtup.probe_size = 0;
2736	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2737}
2738
2739static void tcp_mtup_probe_success(struct sock *sk)
2740{
2741	struct tcp_sock *tp = tcp_sk(sk);
2742	struct inet_connection_sock *icsk = inet_csk(sk);
2743	u64 val;
2744
2745	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2746
2747	val = (u64)tcp_snd_cwnd(tp) * tcp_mss_to_mtu(sk, tp->mss_cache);
2748	do_div(val, icsk->icsk_mtup.probe_size);
2749	DEBUG_NET_WARN_ON_ONCE((u32)val != val);
2750	tcp_snd_cwnd_set(tp, max_t(u32, 1U, val));
2751
2752	tp->snd_cwnd_cnt = 0;
2753	tp->snd_cwnd_stamp = tcp_jiffies32;
2754	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2755
2756	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2757	icsk->icsk_mtup.probe_size = 0;
2758	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2759	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2760}
2761
2762/* Do a simple retransmit without using the backoff mechanisms in
2763 * tcp_timer. This is used for path mtu discovery.
2764 * The socket is already locked here.
2765 */
2766void tcp_simple_retransmit(struct sock *sk)
2767{
2768	const struct inet_connection_sock *icsk = inet_csk(sk);
2769	struct tcp_sock *tp = tcp_sk(sk);
2770	struct sk_buff *skb;
2771	int mss;
2772
2773	/* A fastopen SYN request is stored as two separate packets within
2774	 * the retransmit queue, this is done by tcp_send_syn_data().
2775	 * As a result simply checking the MSS of the frames in the queue
2776	 * will not work for the SYN packet.
2777	 *
2778	 * Us being here is an indication of a path MTU issue so we can
2779	 * assume that the fastopen SYN was lost and just mark all the
2780	 * frames in the retransmit queue as lost. We will use an MSS of
2781	 * -1 to mark all frames as lost, otherwise compute the current MSS.
2782	 */
2783	if (tp->syn_data && sk->sk_state == TCP_SYN_SENT)
2784		mss = -1;
2785	else
2786		mss = tcp_current_mss(sk);
2787
2788	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2789		if (tcp_skb_seglen(skb) > mss)
2790			tcp_mark_skb_lost(sk, skb);
2791	}
2792
2793	tcp_clear_retrans_hints_partial(tp);
2794
2795	if (!tp->lost_out)
2796		return;
2797
2798	if (tcp_is_reno(tp))
2799		tcp_limit_reno_sacked(tp);
2800
2801	tcp_verify_left_out(tp);
2802
2803	/* Don't muck with the congestion window here.
2804	 * Reason is that we do not increase amount of _data_
2805	 * in network, but units changed and effective
2806	 * cwnd/ssthresh really reduced now.
2807	 */
2808	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2809		tp->high_seq = tp->snd_nxt;
2810		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2811		tp->prior_ssthresh = 0;
2812		tp->undo_marker = 0;
2813		tcp_set_ca_state(sk, TCP_CA_Loss);
2814	}
2815	tcp_xmit_retransmit_queue(sk);
2816}
2817EXPORT_SYMBOL(tcp_simple_retransmit);
2818
2819void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2820{
2821	struct tcp_sock *tp = tcp_sk(sk);
2822	int mib_idx;
2823
2824	if (tcp_is_reno(tp))
2825		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2826	else
2827		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2828
2829	NET_INC_STATS(sock_net(sk), mib_idx);
2830
2831	tp->prior_ssthresh = 0;
2832	tcp_init_undo(tp);
2833
2834	if (!tcp_in_cwnd_reduction(sk)) {
2835		if (!ece_ack)
2836			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2837		tcp_init_cwnd_reduction(sk);
2838	}
2839	tcp_set_ca_state(sk, TCP_CA_Recovery);
2840}
2841
2842/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2843 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2844 */
2845static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2846			     int *rexmit)
2847{
2848	struct tcp_sock *tp = tcp_sk(sk);
2849	bool recovered = !before(tp->snd_una, tp->high_seq);
2850
2851	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2852	    tcp_try_undo_loss(sk, false))
2853		return;
2854
2855	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2856		/* Step 3.b. A timeout is spurious if not all data are
2857		 * lost, i.e., never-retransmitted data are (s)acked.
2858		 */
2859		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2860		    tcp_try_undo_loss(sk, true))
2861			return;
2862
2863		if (after(tp->snd_nxt, tp->high_seq)) {
2864			if (flag & FLAG_DATA_SACKED || num_dupack)
2865				tp->frto = 0; /* Step 3.a. loss was real */
2866		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2867			tp->high_seq = tp->snd_nxt;
2868			/* Step 2.b. Try send new data (but deferred until cwnd
2869			 * is updated in tcp_ack()). Otherwise fall back to
2870			 * the conventional recovery.
2871			 */
2872			if (!tcp_write_queue_empty(sk) &&
2873			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2874				*rexmit = REXMIT_NEW;
2875				return;
2876			}
2877			tp->frto = 0;
2878		}
2879	}
2880
2881	if (recovered) {
2882		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2883		tcp_try_undo_recovery(sk);
2884		return;
2885	}
2886	if (tcp_is_reno(tp)) {
2887		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2888		 * delivered. Lower inflight to clock out (re)transmissions.
2889		 */
2890		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2891			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2892		else if (flag & FLAG_SND_UNA_ADVANCED)
2893			tcp_reset_reno_sack(tp);
2894	}
2895	*rexmit = REXMIT_LOST;
2896}
2897
2898static bool tcp_force_fast_retransmit(struct sock *sk)
2899{
2900	struct tcp_sock *tp = tcp_sk(sk);
2901
2902	return after(tcp_highest_sack_seq(tp),
2903		     tp->snd_una + tp->reordering * tp->mss_cache);
2904}
2905
2906/* Undo during fast recovery after partial ACK. */
2907static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2908				 bool *do_lost)
2909{
2910	struct tcp_sock *tp = tcp_sk(sk);
2911
2912	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2913		/* Plain luck! Hole if filled with delayed
2914		 * packet, rather than with a retransmit. Check reordering.
2915		 */
2916		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2917
2918		/* We are getting evidence that the reordering degree is higher
2919		 * than we realized. If there are no retransmits out then we
2920		 * can undo. Otherwise we clock out new packets but do not
2921		 * mark more packets lost or retransmit more.
2922		 */
2923		if (tp->retrans_out)
2924			return true;
2925
2926		if (!tcp_any_retrans_done(sk))
2927			tp->retrans_stamp = 0;
2928
2929		DBGUNDO(sk, "partial recovery");
2930		tcp_undo_cwnd_reduction(sk, true);
2931		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2932		tcp_try_keep_open(sk);
2933	} else {
2934		/* Partial ACK arrived. Force fast retransmit. */
2935		*do_lost = tcp_force_fast_retransmit(sk);
2936	}
2937	return false;
2938}
2939
2940static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2941{
2942	struct tcp_sock *tp = tcp_sk(sk);
2943
2944	if (tcp_rtx_queue_empty(sk))
2945		return;
2946
2947	if (unlikely(tcp_is_reno(tp))) {
2948		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2949	} else if (tcp_is_rack(sk)) {
2950		u32 prior_retrans = tp->retrans_out;
2951
2952		if (tcp_rack_mark_lost(sk))
2953			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2954		if (prior_retrans > tp->retrans_out)
2955			*ack_flag |= FLAG_LOST_RETRANS;
2956	}
2957}
2958
2959/* Process an event, which can update packets-in-flight not trivially.
2960 * Main goal of this function is to calculate new estimate for left_out,
2961 * taking into account both packets sitting in receiver's buffer and
2962 * packets lost by network.
2963 *
2964 * Besides that it updates the congestion state when packet loss or ECN
2965 * is detected. But it does not reduce the cwnd, it is done by the
2966 * congestion control later.
2967 *
2968 * It does _not_ decide what to send, it is made in function
2969 * tcp_xmit_retransmit_queue().
2970 */
2971static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2972				  int num_dupack, int *ack_flag, int *rexmit)
2973{
2974	struct inet_connection_sock *icsk = inet_csk(sk);
2975	struct tcp_sock *tp = tcp_sk(sk);
2976	int fast_rexmit = 0, flag = *ack_flag;
2977	bool ece_ack = flag & FLAG_ECE;
2978	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2979				      tcp_force_fast_retransmit(sk));
2980
2981	if (!tp->packets_out && tp->sacked_out)
2982		tp->sacked_out = 0;
2983
2984	/* Now state machine starts.
2985	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2986	if (ece_ack)
2987		tp->prior_ssthresh = 0;
2988
2989	/* B. In all the states check for reneging SACKs. */
2990	if (tcp_check_sack_reneging(sk, ack_flag))
2991		return;
2992
2993	/* C. Check consistency of the current state. */
2994	tcp_verify_left_out(tp);
2995
2996	/* D. Check state exit conditions. State can be terminated
2997	 *    when high_seq is ACKed. */
2998	if (icsk->icsk_ca_state == TCP_CA_Open) {
2999		WARN_ON(tp->retrans_out != 0 && !tp->syn_data);
3000		tp->retrans_stamp = 0;
3001	} else if (!before(tp->snd_una, tp->high_seq)) {
3002		switch (icsk->icsk_ca_state) {
3003		case TCP_CA_CWR:
3004			/* CWR is to be held something *above* high_seq
3005			 * is ACKed for CWR bit to reach receiver. */
3006			if (tp->snd_una != tp->high_seq) {
3007				tcp_end_cwnd_reduction(sk);
3008				tcp_set_ca_state(sk, TCP_CA_Open);
3009			}
3010			break;
3011
3012		case TCP_CA_Recovery:
3013			if (tcp_is_reno(tp))
3014				tcp_reset_reno_sack(tp);
3015			if (tcp_try_undo_recovery(sk))
3016				return;
3017			tcp_end_cwnd_reduction(sk);
3018			break;
3019		}
3020	}
3021
3022	/* E. Process state. */
3023	switch (icsk->icsk_ca_state) {
3024	case TCP_CA_Recovery:
3025		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
3026			if (tcp_is_reno(tp))
3027				tcp_add_reno_sack(sk, num_dupack, ece_ack);
3028		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
3029			return;
3030
3031		if (tcp_try_undo_dsack(sk))
3032			tcp_try_keep_open(sk);
3033
3034		tcp_identify_packet_loss(sk, ack_flag);
3035		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
3036			if (!tcp_time_to_recover(sk, flag))
3037				return;
3038			/* Undo reverts the recovery state. If loss is evident,
3039			 * starts a new recovery (e.g. reordering then loss);
3040			 */
3041			tcp_enter_recovery(sk, ece_ack);
3042		}
3043		break;
3044	case TCP_CA_Loss:
3045		tcp_process_loss(sk, flag, num_dupack, rexmit);
3046		tcp_identify_packet_loss(sk, ack_flag);
3047		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3048		      (*ack_flag & FLAG_LOST_RETRANS)))
3049			return;
3050		/* Change state if cwnd is undone or retransmits are lost */
3051		fallthrough;
3052	default:
3053		if (tcp_is_reno(tp)) {
3054			if (flag & FLAG_SND_UNA_ADVANCED)
3055				tcp_reset_reno_sack(tp);
3056			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3057		}
3058
3059		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3060			tcp_try_undo_dsack(sk);
3061
3062		tcp_identify_packet_loss(sk, ack_flag);
3063		if (!tcp_time_to_recover(sk, flag)) {
3064			tcp_try_to_open(sk, flag);
3065			return;
3066		}
3067
3068		/* MTU probe failure: don't reduce cwnd */
3069		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3070		    icsk->icsk_mtup.probe_size &&
3071		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3072			tcp_mtup_probe_failed(sk);
3073			/* Restores the reduction we did in tcp_mtup_probe() */
3074			tcp_snd_cwnd_set(tp, tcp_snd_cwnd(tp) + 1);
3075			tcp_simple_retransmit(sk);
3076			return;
3077		}
3078
3079		/* Otherwise enter Recovery state */
3080		tcp_enter_recovery(sk, ece_ack);
3081		fast_rexmit = 1;
3082	}
3083
3084	if (!tcp_is_rack(sk) && do_lost)
3085		tcp_update_scoreboard(sk, fast_rexmit);
3086	*rexmit = REXMIT_LOST;
3087}
3088
3089static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3090{
3091	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3092	struct tcp_sock *tp = tcp_sk(sk);
3093
3094	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3095		/* If the remote keeps returning delayed ACKs, eventually
3096		 * the min filter would pick it up and overestimate the
3097		 * prop. delay when it expires. Skip suspected delayed ACKs.
3098		 */
3099		return;
3100	}
3101	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3102			   rtt_us ? : jiffies_to_usecs(1));
3103}
3104
3105static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3106			       long seq_rtt_us, long sack_rtt_us,
3107			       long ca_rtt_us, struct rate_sample *rs)
3108{
3109	const struct tcp_sock *tp = tcp_sk(sk);
3110
3111	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3112	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3113	 * Karn's algorithm forbids taking RTT if some retransmitted data
3114	 * is acked (RFC6298).
3115	 */
3116	if (seq_rtt_us < 0)
3117		seq_rtt_us = sack_rtt_us;
3118
3119	/* RTTM Rule: A TSecr value received in a segment is used to
3120	 * update the averaged RTT measurement only if the segment
3121	 * acknowledges some new data, i.e., only if it advances the
3122	 * left edge of the send window.
3123	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3124	 */
3125	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3126	    flag & FLAG_ACKED) {
3127		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3128
3129		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3130			if (!delta)
3131				delta = 1;
3132			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3133			ca_rtt_us = seq_rtt_us;
3134		}
3135	}
3136	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3137	if (seq_rtt_us < 0)
3138		return false;
3139
3140	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3141	 * always taken together with ACK, SACK, or TS-opts. Any negative
3142	 * values will be skipped with the seq_rtt_us < 0 check above.
3143	 */
3144	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3145	tcp_rtt_estimator(sk, seq_rtt_us);
3146	tcp_set_rto(sk);
3147
3148	/* RFC6298: only reset backoff on valid RTT measurement. */
3149	inet_csk(sk)->icsk_backoff = 0;
3150	return true;
3151}
3152
3153/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
3154void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3155{
3156	struct rate_sample rs;
3157	long rtt_us = -1L;
3158
3159	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3160		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3161
3162	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3163}
3164
3165
3166static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3167{
3168	const struct inet_connection_sock *icsk = inet_csk(sk);
3169
3170	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3171	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3172}
3173
3174/* Restart timer after forward progress on connection.
3175 * RFC2988 recommends to restart timer to now+rto.
3176 */
3177void tcp_rearm_rto(struct sock *sk)
3178{
3179	const struct inet_connection_sock *icsk = inet_csk(sk);
3180	struct tcp_sock *tp = tcp_sk(sk);
3181
3182	/* If the retrans timer is currently being used by Fast Open
3183	 * for SYN-ACK retrans purpose, stay put.
3184	 */
3185	if (rcu_access_pointer(tp->fastopen_rsk))
3186		return;
3187
3188	if (!tp->packets_out) {
3189		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3190	} else {
3191		u32 rto = inet_csk(sk)->icsk_rto;
3192		/* Offset the time elapsed after installing regular RTO */
3193		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3194		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3195			s64 delta_us = tcp_rto_delta_us(sk);
3196			/* delta_us may not be positive if the socket is locked
3197			 * when the retrans timer fires and is rescheduled.
3198			 */
3199			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3200		}
3201		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3202				     TCP_RTO_MAX);
3203	}
3204}
3205
3206/* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
3207static void tcp_set_xmit_timer(struct sock *sk)
3208{
3209	if (!tcp_schedule_loss_probe(sk, true))
3210		tcp_rearm_rto(sk);
3211}
3212
3213/* If we get here, the whole TSO packet has not been acked. */
3214static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3215{
3216	struct tcp_sock *tp = tcp_sk(sk);
3217	u32 packets_acked;
3218
3219	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3220
3221	packets_acked = tcp_skb_pcount(skb);
3222	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3223		return 0;
3224	packets_acked -= tcp_skb_pcount(skb);
3225
3226	if (packets_acked) {
3227		BUG_ON(tcp_skb_pcount(skb) == 0);
3228		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3229	}
3230
3231	return packets_acked;
3232}
3233
3234static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3235			   const struct sk_buff *ack_skb, u32 prior_snd_una)
3236{
3237	const struct skb_shared_info *shinfo;
3238
3239	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3240	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3241		return;
3242
3243	shinfo = skb_shinfo(skb);
3244	if (!before(shinfo->tskey, prior_snd_una) &&
3245	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3246		tcp_skb_tsorted_save(skb) {
3247			__skb_tstamp_tx(skb, ack_skb, NULL, sk, SCM_TSTAMP_ACK);
3248		} tcp_skb_tsorted_restore(skb);
3249	}
3250}
3251
3252/* Remove acknowledged frames from the retransmission queue. If our packet
3253 * is before the ack sequence we can discard it as it's confirmed to have
3254 * arrived at the other end.
3255 */
3256static int tcp_clean_rtx_queue(struct sock *sk, const struct sk_buff *ack_skb,
3257			       u32 prior_fack, u32 prior_snd_una,
3258			       struct tcp_sacktag_state *sack, bool ece_ack)
3259{
3260	const struct inet_connection_sock *icsk = inet_csk(sk);
3261	u64 first_ackt, last_ackt;
3262	struct tcp_sock *tp = tcp_sk(sk);
3263	u32 prior_sacked = tp->sacked_out;
3264	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3265	struct sk_buff *skb, *next;
3266	bool fully_acked = true;
3267	long sack_rtt_us = -1L;
3268	long seq_rtt_us = -1L;
3269	long ca_rtt_us = -1L;
3270	u32 pkts_acked = 0;
3271	bool rtt_update;
3272	int flag = 0;
3273
3274	first_ackt = 0;
3275
3276	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3277		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3278		const u32 start_seq = scb->seq;
3279		u8 sacked = scb->sacked;
3280		u32 acked_pcount;
3281
3282		/* Determine how many packets and what bytes were acked, tso and else */
3283		if (after(scb->end_seq, tp->snd_una)) {
3284			if (tcp_skb_pcount(skb) == 1 ||
3285			    !after(tp->snd_una, scb->seq))
3286				break;
3287
3288			acked_pcount = tcp_tso_acked(sk, skb);
3289			if (!acked_pcount)
3290				break;
3291			fully_acked = false;
3292		} else {
3293			acked_pcount = tcp_skb_pcount(skb);
3294		}
3295
3296		if (unlikely(sacked & TCPCB_RETRANS)) {
3297			if (sacked & TCPCB_SACKED_RETRANS)
3298				tp->retrans_out -= acked_pcount;
3299			flag |= FLAG_RETRANS_DATA_ACKED;
3300		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3301			last_ackt = tcp_skb_timestamp_us(skb);
3302			WARN_ON_ONCE(last_ackt == 0);
3303			if (!first_ackt)
3304				first_ackt = last_ackt;
3305
3306			if (before(start_seq, reord))
3307				reord = start_seq;
3308			if (!after(scb->end_seq, tp->high_seq))
3309				flag |= FLAG_ORIG_SACK_ACKED;
3310		}
3311
3312		if (sacked & TCPCB_SACKED_ACKED) {
3313			tp->sacked_out -= acked_pcount;
3314		} else if (tcp_is_sack(tp)) {
3315			tcp_count_delivered(tp, acked_pcount, ece_ack);
3316			if (!tcp_skb_spurious_retrans(tp, skb))
3317				tcp_rack_advance(tp, sacked, scb->end_seq,
3318						 tcp_skb_timestamp_us(skb));
3319		}
3320		if (sacked & TCPCB_LOST)
3321			tp->lost_out -= acked_pcount;
3322
3323		tp->packets_out -= acked_pcount;
3324		pkts_acked += acked_pcount;
3325		tcp_rate_skb_delivered(sk, skb, sack->rate);
3326
3327		/* Initial outgoing SYN's get put onto the write_queue
3328		 * just like anything else we transmit.  It is not
3329		 * true data, and if we misinform our callers that
3330		 * this ACK acks real data, we will erroneously exit
3331		 * connection startup slow start one packet too
3332		 * quickly.  This is severely frowned upon behavior.
3333		 */
3334		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3335			flag |= FLAG_DATA_ACKED;
3336		} else {
3337			flag |= FLAG_SYN_ACKED;
3338			tp->retrans_stamp = 0;
3339		}
3340
3341		if (!fully_acked)
3342			break;
3343
3344		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3345
3346		next = skb_rb_next(skb);
3347		if (unlikely(skb == tp->retransmit_skb_hint))
3348			tp->retransmit_skb_hint = NULL;
3349		if (unlikely(skb == tp->lost_skb_hint))
3350			tp->lost_skb_hint = NULL;
3351		tcp_highest_sack_replace(sk, skb, next);
3352		tcp_rtx_queue_unlink_and_free(skb, sk);
3353	}
3354
3355	if (!skb)
3356		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3357
3358	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3359		tp->snd_up = tp->snd_una;
3360
3361	if (skb) {
3362		tcp_ack_tstamp(sk, skb, ack_skb, prior_snd_una);
3363		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3364			flag |= FLAG_SACK_RENEGING;
3365	}
3366
3367	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3368		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3369		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3370
3371		if (pkts_acked == 1 && fully_acked && !prior_sacked &&
3372		    (tp->snd_una - prior_snd_una) < tp->mss_cache &&
3373		    sack->rate->prior_delivered + 1 == tp->delivered &&
3374		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3375			/* Conservatively mark a delayed ACK. It's typically
3376			 * from a lone runt packet over the round trip to
3377			 * a receiver w/o out-of-order or CE events.
3378			 */
3379			flag |= FLAG_ACK_MAYBE_DELAYED;
3380		}
3381	}
3382	if (sack->first_sackt) {
3383		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3384		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3385	}
3386	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3387					ca_rtt_us, sack->rate);
3388
3389	if (flag & FLAG_ACKED) {
3390		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3391		if (unlikely(icsk->icsk_mtup.probe_size &&
3392			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3393			tcp_mtup_probe_success(sk);
3394		}
3395
3396		if (tcp_is_reno(tp)) {
3397			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3398
3399			/* If any of the cumulatively ACKed segments was
3400			 * retransmitted, non-SACK case cannot confirm that
3401			 * progress was due to original transmission due to
3402			 * lack of TCPCB_SACKED_ACKED bits even if some of
3403			 * the packets may have been never retransmitted.
3404			 */
3405			if (flag & FLAG_RETRANS_DATA_ACKED)
3406				flag &= ~FLAG_ORIG_SACK_ACKED;
3407		} else {
3408			int delta;
3409
3410			/* Non-retransmitted hole got filled? That's reordering */
3411			if (before(reord, prior_fack))
3412				tcp_check_sack_reordering(sk, reord, 0);
3413
3414			delta = prior_sacked - tp->sacked_out;
3415			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3416		}
3417	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3418		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3419						    tcp_skb_timestamp_us(skb))) {
3420		/* Do not re-arm RTO if the sack RTT is measured from data sent
3421		 * after when the head was last (re)transmitted. Otherwise the
3422		 * timeout may continue to extend in loss recovery.
3423		 */
3424		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3425	}
3426
3427	if (icsk->icsk_ca_ops->pkts_acked) {
3428		struct ack_sample sample = { .pkts_acked = pkts_acked,
3429					     .rtt_us = sack->rate->rtt_us };
3430
3431		sample.in_flight = tp->mss_cache *
3432			(tp->delivered - sack->rate->prior_delivered);
3433		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3434	}
3435
3436#if FASTRETRANS_DEBUG > 0
3437	WARN_ON((int)tp->sacked_out < 0);
3438	WARN_ON((int)tp->lost_out < 0);
3439	WARN_ON((int)tp->retrans_out < 0);
3440	if (!tp->packets_out && tcp_is_sack(tp)) {
3441		icsk = inet_csk(sk);
3442		if (tp->lost_out) {
3443			pr_debug("Leak l=%u %d\n",
3444				 tp->lost_out, icsk->icsk_ca_state);
3445			tp->lost_out = 0;
3446		}
3447		if (tp->sacked_out) {
3448			pr_debug("Leak s=%u %d\n",
3449				 tp->sacked_out, icsk->icsk_ca_state);
3450			tp->sacked_out = 0;
3451		}
3452		if (tp->retrans_out) {
3453			pr_debug("Leak r=%u %d\n",
3454				 tp->retrans_out, icsk->icsk_ca_state);
3455			tp->retrans_out = 0;
3456		}
3457	}
3458#endif
3459	return flag;
3460}
3461
3462static void tcp_ack_probe(struct sock *sk)
3463{
3464	struct inet_connection_sock *icsk = inet_csk(sk);
3465	struct sk_buff *head = tcp_send_head(sk);
3466	const struct tcp_sock *tp = tcp_sk(sk);
3467
3468	/* Was it a usable window open? */
3469	if (!head)
3470		return;
3471	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3472		icsk->icsk_backoff = 0;
3473		icsk->icsk_probes_tstamp = 0;
3474		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3475		/* Socket must be waked up by subsequent tcp_data_snd_check().
3476		 * This function is not for random using!
3477		 */
3478	} else {
3479		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3480
3481		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3482		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3483	}
3484}
3485
3486static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3487{
3488	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3489		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3490}
3491
3492/* Decide wheather to run the increase function of congestion control. */
3493static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3494{
3495	/* If reordering is high then always grow cwnd whenever data is
3496	 * delivered regardless of its ordering. Otherwise stay conservative
3497	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3498	 * new SACK or ECE mark may first advance cwnd here and later reduce
3499	 * cwnd in tcp_fastretrans_alert() based on more states.
3500	 */
3501	if (tcp_sk(sk)->reordering >
3502	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3503		return flag & FLAG_FORWARD_PROGRESS;
3504
3505	return flag & FLAG_DATA_ACKED;
3506}
3507
3508/* The "ultimate" congestion control function that aims to replace the rigid
3509 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3510 * It's called toward the end of processing an ACK with precise rate
3511 * information. All transmission or retransmission are delayed afterwards.
3512 */
3513static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3514			     int flag, const struct rate_sample *rs)
3515{
3516	const struct inet_connection_sock *icsk = inet_csk(sk);
3517
3518	if (icsk->icsk_ca_ops->cong_control) {
3519		icsk->icsk_ca_ops->cong_control(sk, rs);
3520		return;
3521	}
3522
3523	if (tcp_in_cwnd_reduction(sk)) {
3524		/* Reduce cwnd if state mandates */
3525		tcp_cwnd_reduction(sk, acked_sacked, rs->losses, flag);
3526	} else if (tcp_may_raise_cwnd(sk, flag)) {
3527		/* Advance cwnd if state allows */
3528		tcp_cong_avoid(sk, ack, acked_sacked);
3529	}
3530	tcp_update_pacing_rate(sk);
3531}
3532
3533/* Check that window update is acceptable.
3534 * The function assumes that snd_una<=ack<=snd_next.
3535 */
3536static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3537					const u32 ack, const u32 ack_seq,
3538					const u32 nwin)
3539{
3540	return	after(ack, tp->snd_una) ||
3541		after(ack_seq, tp->snd_wl1) ||
3542		(ack_seq == tp->snd_wl1 && (nwin > tp->snd_wnd || !nwin));
3543}
3544
3545/* If we update tp->snd_una, also update tp->bytes_acked */
3546static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3547{
3548	u32 delta = ack - tp->snd_una;
3549
3550	sock_owned_by_me((struct sock *)tp);
3551	tp->bytes_acked += delta;
3552	tp->snd_una = ack;
3553}
3554
3555/* If we update tp->rcv_nxt, also update tp->bytes_received */
3556static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3557{
3558	u32 delta = seq - tp->rcv_nxt;
3559
3560	sock_owned_by_me((struct sock *)tp);
3561	tp->bytes_received += delta;
3562	WRITE_ONCE(tp->rcv_nxt, seq);
3563}
3564
3565/* Update our send window.
3566 *
3567 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3568 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3569 */
3570static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3571				 u32 ack_seq)
3572{
3573	struct tcp_sock *tp = tcp_sk(sk);
3574	int flag = 0;
3575	u32 nwin = ntohs(tcp_hdr(skb)->window);
3576
3577	if (likely(!tcp_hdr(skb)->syn))
3578		nwin <<= tp->rx_opt.snd_wscale;
3579
3580	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3581		flag |= FLAG_WIN_UPDATE;
3582		tcp_update_wl(tp, ack_seq);
3583
3584		if (tp->snd_wnd != nwin) {
3585			tp->snd_wnd = nwin;
3586
3587			/* Note, it is the only place, where
3588			 * fast path is recovered for sending TCP.
3589			 */
3590			tp->pred_flags = 0;
3591			tcp_fast_path_check(sk);
3592
3593			if (!tcp_write_queue_empty(sk))
3594				tcp_slow_start_after_idle_check(sk);
3595
3596			if (nwin > tp->max_window) {
3597				tp->max_window = nwin;
3598				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3599			}
3600		}
3601	}
3602
3603	tcp_snd_una_update(tp, ack);
3604
3605	return flag;
3606}
3607
3608static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3609				   u32 *last_oow_ack_time)
3610{
3611	/* Paired with the WRITE_ONCE() in this function. */
3612	u32 val = READ_ONCE(*last_oow_ack_time);
3613
3614	if (val) {
3615		s32 elapsed = (s32)(tcp_jiffies32 - val);
3616
3617		if (0 <= elapsed &&
3618		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3619			NET_INC_STATS(net, mib_idx);
3620			return true;	/* rate-limited: don't send yet! */
3621		}
3622	}
3623
3624	/* Paired with the prior READ_ONCE() and with itself,
3625	 * as we might be lockless.
3626	 */
3627	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3628
3629	return false;	/* not rate-limited: go ahead, send dupack now! */
3630}
3631
3632/* Return true if we're currently rate-limiting out-of-window ACKs and
3633 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3634 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3635 * attacks that send repeated SYNs or ACKs for the same connection. To
3636 * do this, we do not send a duplicate SYNACK or ACK if the remote
3637 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3638 */
3639bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3640			  int mib_idx, u32 *last_oow_ack_time)
3641{
3642	/* Data packets without SYNs are not likely part of an ACK loop. */
3643	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3644	    !tcp_hdr(skb)->syn)
3645		return false;
3646
3647	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3648}
3649
3650/* RFC 5961 7 [ACK Throttling] */
3651static void tcp_send_challenge_ack(struct sock *sk)
3652{
3653	struct tcp_sock *tp = tcp_sk(sk);
3654	struct net *net = sock_net(sk);
3655	u32 count, now, ack_limit;
3656
3657	/* First check our per-socket dupack rate limit. */
3658	if (__tcp_oow_rate_limited(net,
3659				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3660				   &tp->last_oow_ack_time))
3661		return;
3662
3663	ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3664	if (ack_limit == INT_MAX)
3665		goto send_ack;
3666
3667	/* Then check host-wide RFC 5961 rate limit. */
3668	now = jiffies / HZ;
3669	if (now != READ_ONCE(net->ipv4.tcp_challenge_timestamp)) {
3670		u32 half = (ack_limit + 1) >> 1;
3671
3672		WRITE_ONCE(net->ipv4.tcp_challenge_timestamp, now);
3673		WRITE_ONCE(net->ipv4.tcp_challenge_count,
3674			   get_random_u32_inclusive(half, ack_limit + half - 1));
3675	}
3676	count = READ_ONCE(net->ipv4.tcp_challenge_count);
3677	if (count > 0) {
3678		WRITE_ONCE(net->ipv4.tcp_challenge_count, count - 1);
3679send_ack:
3680		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3681		tcp_send_ack(sk);
3682	}
3683}
3684
3685static void tcp_store_ts_recent(struct tcp_sock *tp)
3686{
3687	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3688	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3689}
3690
3691static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3692{
3693	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3694		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3695		 * extra check below makes sure this can only happen
3696		 * for pure ACK frames.  -DaveM
3697		 *
3698		 * Not only, also it occurs for expired timestamps.
3699		 */
3700
3701		if (tcp_paws_check(&tp->rx_opt, 0))
3702			tcp_store_ts_recent(tp);
3703	}
3704}
3705
3706/* This routine deals with acks during a TLP episode and ends an episode by
3707 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3708 */
3709static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3710{
3711	struct tcp_sock *tp = tcp_sk(sk);
3712
3713	if (before(ack, tp->tlp_high_seq))
3714		return;
3715
3716	if (!tp->tlp_retrans) {
3717		/* TLP of new data has been acknowledged */
3718		tp->tlp_high_seq = 0;
3719	} else if (flag & FLAG_DSACK_TLP) {
3720		/* This DSACK means original and TLP probe arrived; no loss */
3721		tp->tlp_high_seq = 0;
3722	} else if (after(ack, tp->tlp_high_seq)) {
3723		/* ACK advances: there was a loss, so reduce cwnd. Reset
3724		 * tlp_high_seq in tcp_init_cwnd_reduction()
3725		 */
3726		tcp_init_cwnd_reduction(sk);
3727		tcp_set_ca_state(sk, TCP_CA_CWR);
3728		tcp_end_cwnd_reduction(sk);
3729		tcp_try_keep_open(sk);
3730		NET_INC_STATS(sock_net(sk),
3731				LINUX_MIB_TCPLOSSPROBERECOVERY);
3732	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3733			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3734		/* Pure dupack: original and TLP probe arrived; no loss */
3735		tp->tlp_high_seq = 0;
3736	}
3737}
3738
3739static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3740{
3741	const struct inet_connection_sock *icsk = inet_csk(sk);
3742
3743	if (icsk->icsk_ca_ops->in_ack_event)
3744		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3745}
3746
3747/* Congestion control has updated the cwnd already. So if we're in
3748 * loss recovery then now we do any new sends (for FRTO) or
3749 * retransmits (for CA_Loss or CA_recovery) that make sense.
3750 */
3751static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3752{
3753	struct tcp_sock *tp = tcp_sk(sk);
3754
3755	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3756		return;
3757
3758	if (unlikely(rexmit == REXMIT_NEW)) {
3759		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3760					  TCP_NAGLE_OFF);
3761		if (after(tp->snd_nxt, tp->high_seq))
3762			return;
3763		tp->frto = 0;
3764	}
3765	tcp_xmit_retransmit_queue(sk);
3766}
3767
3768/* Returns the number of packets newly acked or sacked by the current ACK */
3769static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3770{
3771	const struct net *net = sock_net(sk);
3772	struct tcp_sock *tp = tcp_sk(sk);
3773	u32 delivered;
3774
3775	delivered = tp->delivered - prior_delivered;
3776	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3777	if (flag & FLAG_ECE)
3778		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3779
3780	return delivered;
3781}
3782
3783/* This routine deals with incoming acks, but not outgoing ones. */
3784static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3785{
3786	struct inet_connection_sock *icsk = inet_csk(sk);
3787	struct tcp_sock *tp = tcp_sk(sk);
3788	struct tcp_sacktag_state sack_state;
3789	struct rate_sample rs = { .prior_delivered = 0 };
3790	u32 prior_snd_una = tp->snd_una;
3791	bool is_sack_reneg = tp->is_sack_reneg;
3792	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3793	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3794	int num_dupack = 0;
3795	int prior_packets = tp->packets_out;
3796	u32 delivered = tp->delivered;
3797	u32 lost = tp->lost;
3798	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3799	u32 prior_fack;
3800
3801	sack_state.first_sackt = 0;
3802	sack_state.rate = &rs;
3803	sack_state.sack_delivered = 0;
3804
3805	/* We very likely will need to access rtx queue. */
3806	prefetch(sk->tcp_rtx_queue.rb_node);
3807
3808	/* If the ack is older than previous acks
3809	 * then we can probably ignore it.
3810	 */
3811	if (before(ack, prior_snd_una)) {
3812		u32 max_window;
3813
3814		/* do not accept ACK for bytes we never sent. */
3815		max_window = min_t(u64, tp->max_window, tp->bytes_acked);
3816		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3817		if (before(ack, prior_snd_una - max_window)) {
3818			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3819				tcp_send_challenge_ack(sk);
3820			return -SKB_DROP_REASON_TCP_TOO_OLD_ACK;
3821		}
3822		goto old_ack;
3823	}
3824
3825	/* If the ack includes data we haven't sent yet, discard
3826	 * this segment (RFC793 Section 3.9).
3827	 */
3828	if (after(ack, tp->snd_nxt))
3829		return -SKB_DROP_REASON_TCP_ACK_UNSENT_DATA;
3830
3831	if (after(ack, prior_snd_una)) {
3832		flag |= FLAG_SND_UNA_ADVANCED;
3833		icsk->icsk_retransmits = 0;
3834
3835#if IS_ENABLED(CONFIG_TLS_DEVICE)
3836		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3837			if (icsk->icsk_clean_acked)
3838				icsk->icsk_clean_acked(sk, ack);
3839#endif
3840	}
3841
3842	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3843	rs.prior_in_flight = tcp_packets_in_flight(tp);
3844
3845	/* ts_recent update must be made after we are sure that the packet
3846	 * is in window.
3847	 */
3848	if (flag & FLAG_UPDATE_TS_RECENT)
3849		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3850
3851	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3852	    FLAG_SND_UNA_ADVANCED) {
3853		/* Window is constant, pure forward advance.
3854		 * No more checks are required.
3855		 * Note, we use the fact that SND.UNA>=SND.WL2.
3856		 */
3857		tcp_update_wl(tp, ack_seq);
3858		tcp_snd_una_update(tp, ack);
3859		flag |= FLAG_WIN_UPDATE;
3860
3861		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3862
3863		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3864	} else {
3865		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3866
3867		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3868			flag |= FLAG_DATA;
3869		else
3870			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3871
3872		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3873
3874		if (TCP_SKB_CB(skb)->sacked)
3875			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3876							&sack_state);
3877
3878		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3879			flag |= FLAG_ECE;
3880			ack_ev_flags |= CA_ACK_ECE;
3881		}
3882
3883		if (sack_state.sack_delivered)
3884			tcp_count_delivered(tp, sack_state.sack_delivered,
3885					    flag & FLAG_ECE);
3886
3887		if (flag & FLAG_WIN_UPDATE)
3888			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3889
3890		tcp_in_ack_event(sk, ack_ev_flags);
3891	}
3892
3893	/* This is a deviation from RFC3168 since it states that:
3894	 * "When the TCP data sender is ready to set the CWR bit after reducing
3895	 * the congestion window, it SHOULD set the CWR bit only on the first
3896	 * new data packet that it transmits."
3897	 * We accept CWR on pure ACKs to be more robust
3898	 * with widely-deployed TCP implementations that do this.
3899	 */
3900	tcp_ecn_accept_cwr(sk, skb);
3901
3902	/* We passed data and got it acked, remove any soft error
3903	 * log. Something worked...
3904	 */
3905	WRITE_ONCE(sk->sk_err_soft, 0);
3906	icsk->icsk_probes_out = 0;
3907	tp->rcv_tstamp = tcp_jiffies32;
3908	if (!prior_packets)
3909		goto no_queue;
3910
3911	/* See if we can take anything off of the retransmit queue. */
3912	flag |= tcp_clean_rtx_queue(sk, skb, prior_fack, prior_snd_una,
3913				    &sack_state, flag & FLAG_ECE);
3914
3915	tcp_rack_update_reo_wnd(sk, &rs);
3916
3917	if (tp->tlp_high_seq)
3918		tcp_process_tlp_ack(sk, ack, flag);
3919
3920	if (tcp_ack_is_dubious(sk, flag)) {
3921		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3922			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3923			num_dupack = 1;
3924			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3925			if (!(flag & FLAG_DATA))
3926				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3927		}
3928		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3929				      &rexmit);
3930	}
3931
3932	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3933	if (flag & FLAG_SET_XMIT_TIMER)
3934		tcp_set_xmit_timer(sk);
3935
3936	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3937		sk_dst_confirm(sk);
3938
3939	delivered = tcp_newly_delivered(sk, delivered, flag);
3940	lost = tp->lost - lost;			/* freshly marked lost */
3941	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3942	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3943	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3944	tcp_xmit_recovery(sk, rexmit);
3945	return 1;
3946
3947no_queue:
3948	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3949	if (flag & FLAG_DSACKING_ACK) {
3950		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3951				      &rexmit);
3952		tcp_newly_delivered(sk, delivered, flag);
3953	}
3954	/* If this ack opens up a zero window, clear backoff.  It was
3955	 * being used to time the probes, and is probably far higher than
3956	 * it needs to be for normal retransmission.
3957	 */
3958	tcp_ack_probe(sk);
3959
3960	if (tp->tlp_high_seq)
3961		tcp_process_tlp_ack(sk, ack, flag);
3962	return 1;
3963
3964old_ack:
3965	/* If data was SACKed, tag it and see if we should send more data.
3966	 * If data was DSACKed, see if we can undo a cwnd reduction.
3967	 */
3968	if (TCP_SKB_CB(skb)->sacked) {
3969		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3970						&sack_state);
3971		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3972				      &rexmit);
3973		tcp_newly_delivered(sk, delivered, flag);
3974		tcp_xmit_recovery(sk, rexmit);
3975	}
3976
3977	return 0;
3978}
3979
3980static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3981				      bool syn, struct tcp_fastopen_cookie *foc,
3982				      bool exp_opt)
3983{
3984	/* Valid only in SYN or SYN-ACK with an even length.  */
3985	if (!foc || !syn || len < 0 || (len & 1))
3986		return;
3987
3988	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3989	    len <= TCP_FASTOPEN_COOKIE_MAX)
3990		memcpy(foc->val, cookie, len);
3991	else if (len != 0)
3992		len = -1;
3993	foc->len = len;
3994	foc->exp = exp_opt;
3995}
3996
3997static bool smc_parse_options(const struct tcphdr *th,
3998			      struct tcp_options_received *opt_rx,
3999			      const unsigned char *ptr,
4000			      int opsize)
4001{
4002#if IS_ENABLED(CONFIG_SMC)
4003	if (static_branch_unlikely(&tcp_have_smc)) {
4004		if (th->syn && !(opsize & 1) &&
4005		    opsize >= TCPOLEN_EXP_SMC_BASE &&
4006		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
4007			opt_rx->smc_ok = 1;
4008			return true;
4009		}
4010	}
4011#endif
4012	return false;
4013}
4014
4015/* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
4016 * value on success.
4017 */
4018u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
4019{
4020	const unsigned char *ptr = (const unsigned char *)(th + 1);
4021	int length = (th->doff * 4) - sizeof(struct tcphdr);
4022	u16 mss = 0;
4023
4024	while (length > 0) {
4025		int opcode = *ptr++;
4026		int opsize;
4027
4028		switch (opcode) {
4029		case TCPOPT_EOL:
4030			return mss;
4031		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4032			length--;
4033			continue;
4034		default:
4035			if (length < 2)
4036				return mss;
4037			opsize = *ptr++;
4038			if (opsize < 2) /* "silly options" */
4039				return mss;
4040			if (opsize > length)
4041				return mss;	/* fail on partial options */
4042			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
4043				u16 in_mss = get_unaligned_be16(ptr);
4044
4045				if (in_mss) {
4046					if (user_mss && user_mss < in_mss)
4047						in_mss = user_mss;
4048					mss = in_mss;
4049				}
4050			}
4051			ptr += opsize - 2;
4052			length -= opsize;
4053		}
4054	}
4055	return mss;
4056}
4057EXPORT_SYMBOL_GPL(tcp_parse_mss_option);
4058
4059/* Look for tcp options. Normally only called on SYN and SYNACK packets.
4060 * But, this can also be called on packets in the established flow when
4061 * the fast version below fails.
4062 */
4063void tcp_parse_options(const struct net *net,
4064		       const struct sk_buff *skb,
4065		       struct tcp_options_received *opt_rx, int estab,
4066		       struct tcp_fastopen_cookie *foc)
4067{
4068	const unsigned char *ptr;
4069	const struct tcphdr *th = tcp_hdr(skb);
4070	int length = (th->doff * 4) - sizeof(struct tcphdr);
4071
4072	ptr = (const unsigned char *)(th + 1);
4073	opt_rx->saw_tstamp = 0;
4074	opt_rx->saw_unknown = 0;
4075
4076	while (length > 0) {
4077		int opcode = *ptr++;
4078		int opsize;
4079
4080		switch (opcode) {
4081		case TCPOPT_EOL:
4082			return;
4083		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4084			length--;
4085			continue;
4086		default:
4087			if (length < 2)
4088				return;
4089			opsize = *ptr++;
4090			if (opsize < 2) /* "silly options" */
4091				return;
4092			if (opsize > length)
4093				return;	/* don't parse partial options */
4094			switch (opcode) {
4095			case TCPOPT_MSS:
4096				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4097					u16 in_mss = get_unaligned_be16(ptr);
4098					if (in_mss) {
4099						if (opt_rx->user_mss &&
4100						    opt_rx->user_mss < in_mss)
4101							in_mss = opt_rx->user_mss;
4102						opt_rx->mss_clamp = in_mss;
4103					}
4104				}
4105				break;
4106			case TCPOPT_WINDOW:
4107				if (opsize == TCPOLEN_WINDOW && th->syn &&
4108				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4109					__u8 snd_wscale = *(__u8 *)ptr;
4110					opt_rx->wscale_ok = 1;
4111					if (snd_wscale > TCP_MAX_WSCALE) {
4112						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4113								     __func__,
4114								     snd_wscale,
4115								     TCP_MAX_WSCALE);
4116						snd_wscale = TCP_MAX_WSCALE;
4117					}
4118					opt_rx->snd_wscale = snd_wscale;
4119				}
4120				break;
4121			case TCPOPT_TIMESTAMP:
4122				if ((opsize == TCPOLEN_TIMESTAMP) &&
4123				    ((estab && opt_rx->tstamp_ok) ||
4124				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4125					opt_rx->saw_tstamp = 1;
4126					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4127					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4128				}
4129				break;
4130			case TCPOPT_SACK_PERM:
4131				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4132				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4133					opt_rx->sack_ok = TCP_SACK_SEEN;
4134					tcp_sack_reset(opt_rx);
4135				}
4136				break;
4137
4138			case TCPOPT_SACK:
4139				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4140				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4141				   opt_rx->sack_ok) {
4142					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4143				}
4144				break;
4145#ifdef CONFIG_TCP_MD5SIG
4146			case TCPOPT_MD5SIG:
4147				/* The MD5 Hash has already been
4148				 * checked (see tcp_v{4,6}_rcv()).
4149				 */
4150				break;
4151#endif
4152			case TCPOPT_FASTOPEN:
4153				tcp_parse_fastopen_option(
4154					opsize - TCPOLEN_FASTOPEN_BASE,
4155					ptr, th->syn, foc, false);
4156				break;
4157
4158			case TCPOPT_EXP:
4159				/* Fast Open option shares code 254 using a
4160				 * 16 bits magic number.
4161				 */
4162				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4163				    get_unaligned_be16(ptr) ==
4164				    TCPOPT_FASTOPEN_MAGIC) {
4165					tcp_parse_fastopen_option(opsize -
4166						TCPOLEN_EXP_FASTOPEN_BASE,
4167						ptr + 2, th->syn, foc, true);
4168					break;
4169				}
4170
4171				if (smc_parse_options(th, opt_rx, ptr, opsize))
4172					break;
4173
4174				opt_rx->saw_unknown = 1;
4175				break;
4176
4177			default:
4178				opt_rx->saw_unknown = 1;
4179			}
4180			ptr += opsize-2;
4181			length -= opsize;
4182		}
4183	}
4184}
4185EXPORT_SYMBOL(tcp_parse_options);
4186
4187static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4188{
4189	const __be32 *ptr = (const __be32 *)(th + 1);
4190
4191	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4192			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4193		tp->rx_opt.saw_tstamp = 1;
4194		++ptr;
4195		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4196		++ptr;
4197		if (*ptr)
4198			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4199		else
4200			tp->rx_opt.rcv_tsecr = 0;
4201		return true;
4202	}
4203	return false;
4204}
4205
4206/* Fast parse options. This hopes to only see timestamps.
4207 * If it is wrong it falls back on tcp_parse_options().
4208 */
4209static bool tcp_fast_parse_options(const struct net *net,
4210				   const struct sk_buff *skb,
4211				   const struct tcphdr *th, struct tcp_sock *tp)
4212{
4213	/* In the spirit of fast parsing, compare doff directly to constant
4214	 * values.  Because equality is used, short doff can be ignored here.
4215	 */
4216	if (th->doff == (sizeof(*th) / 4)) {
4217		tp->rx_opt.saw_tstamp = 0;
4218		return false;
4219	} else if (tp->rx_opt.tstamp_ok &&
4220		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4221		if (tcp_parse_aligned_timestamp(tp, th))
4222			return true;
4223	}
4224
4225	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4226	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4227		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4228
4229	return true;
4230}
4231
4232#ifdef CONFIG_TCP_MD5SIG
4233/*
4234 * Parse MD5 Signature option
4235 */
4236const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4237{
4238	int length = (th->doff << 2) - sizeof(*th);
4239	const u8 *ptr = (const u8 *)(th + 1);
4240
4241	/* If not enough data remaining, we can short cut */
4242	while (length >= TCPOLEN_MD5SIG) {
4243		int opcode = *ptr++;
4244		int opsize;
4245
4246		switch (opcode) {
4247		case TCPOPT_EOL:
4248			return NULL;
4249		case TCPOPT_NOP:
4250			length--;
4251			continue;
4252		default:
4253			opsize = *ptr++;
4254			if (opsize < 2 || opsize > length)
4255				return NULL;
4256			if (opcode == TCPOPT_MD5SIG)
4257				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4258		}
4259		ptr += opsize - 2;
4260		length -= opsize;
4261	}
4262	return NULL;
4263}
4264EXPORT_SYMBOL(tcp_parse_md5sig_option);
4265#endif
4266
4267/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4268 *
4269 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4270 * it can pass through stack. So, the following predicate verifies that
4271 * this segment is not used for anything but congestion avoidance or
4272 * fast retransmit. Moreover, we even are able to eliminate most of such
4273 * second order effects, if we apply some small "replay" window (~RTO)
4274 * to timestamp space.
4275 *
4276 * All these measures still do not guarantee that we reject wrapped ACKs
4277 * on networks with high bandwidth, when sequence space is recycled fastly,
4278 * but it guarantees that such events will be very rare and do not affect
4279 * connection seriously. This doesn't look nice, but alas, PAWS is really
4280 * buggy extension.
4281 *
4282 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4283 * states that events when retransmit arrives after original data are rare.
4284 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4285 * the biggest problem on large power networks even with minor reordering.
4286 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4287 * up to bandwidth of 18Gigabit/sec. 8) ]
4288 */
4289
4290static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4291{
4292	const struct tcp_sock *tp = tcp_sk(sk);
4293	const struct tcphdr *th = tcp_hdr(skb);
4294	u32 seq = TCP_SKB_CB(skb)->seq;
4295	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4296
4297	return (/* 1. Pure ACK with correct sequence number. */
4298		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4299
4300		/* 2. ... and duplicate ACK. */
4301		ack == tp->snd_una &&
4302
4303		/* 3. ... and does not update window. */
4304		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4305
4306		/* 4. ... and sits in replay window. */
4307		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4308}
4309
4310static inline bool tcp_paws_discard(const struct sock *sk,
4311				   const struct sk_buff *skb)
4312{
4313	const struct tcp_sock *tp = tcp_sk(sk);
4314
4315	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4316	       !tcp_disordered_ack(sk, skb);
4317}
4318
4319/* Check segment sequence number for validity.
4320 *
4321 * Segment controls are considered valid, if the segment
4322 * fits to the window after truncation to the window. Acceptability
4323 * of data (and SYN, FIN, of course) is checked separately.
4324 * See tcp_data_queue(), for example.
4325 *
4326 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4327 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4328 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4329 * (borrowed from freebsd)
4330 */
4331
4332static enum skb_drop_reason tcp_sequence(const struct tcp_sock *tp,
4333					 u32 seq, u32 end_seq)
4334{
4335	if (before(end_seq, tp->rcv_wup))
4336		return SKB_DROP_REASON_TCP_OLD_SEQUENCE;
4337
4338	if (after(seq, tp->rcv_nxt + tcp_receive_window(tp)))
4339		return SKB_DROP_REASON_TCP_INVALID_SEQUENCE;
4340
4341	return SKB_NOT_DROPPED_YET;
4342}
4343
4344/* When we get a reset we do this. */
4345void tcp_reset(struct sock *sk, struct sk_buff *skb)
4346{
4347	trace_tcp_receive_reset(sk);
4348
4349	/* mptcp can't tell us to ignore reset pkts,
4350	 * so just ignore the return value of mptcp_incoming_options().
4351	 */
4352	if (sk_is_mptcp(sk))
4353		mptcp_incoming_options(sk, skb);
4354
4355	/* We want the right error as BSD sees it (and indeed as we do). */
4356	switch (sk->sk_state) {
4357	case TCP_SYN_SENT:
4358		WRITE_ONCE(sk->sk_err, ECONNREFUSED);
4359		break;
4360	case TCP_CLOSE_WAIT:
4361		WRITE_ONCE(sk->sk_err, EPIPE);
4362		break;
4363	case TCP_CLOSE:
4364		return;
4365	default:
4366		WRITE_ONCE(sk->sk_err, ECONNRESET);
4367	}
4368	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4369	smp_wmb();
4370
4371	tcp_write_queue_purge(sk);
4372	tcp_done(sk);
4373
4374	if (!sock_flag(sk, SOCK_DEAD))
4375		sk_error_report(sk);
4376}
4377
4378/*
4379 * 	Process the FIN bit. This now behaves as it is supposed to work
4380 *	and the FIN takes effect when it is validly part of sequence
4381 *	space. Not before when we get holes.
4382 *
4383 *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4384 *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4385 *	TIME-WAIT)
4386 *
4387 *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4388 *	close and we go into CLOSING (and later onto TIME-WAIT)
4389 *
4390 *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4391 */
4392void tcp_fin(struct sock *sk)
4393{
4394	struct tcp_sock *tp = tcp_sk(sk);
4395
4396	inet_csk_schedule_ack(sk);
4397
4398	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4399	sock_set_flag(sk, SOCK_DONE);
4400
4401	switch (sk->sk_state) {
4402	case TCP_SYN_RECV:
4403	case TCP_ESTABLISHED:
4404		/* Move to CLOSE_WAIT */
4405		tcp_set_state(sk, TCP_CLOSE_WAIT);
4406		inet_csk_enter_pingpong_mode(sk);
4407		break;
4408
4409	case TCP_CLOSE_WAIT:
4410	case TCP_CLOSING:
4411		/* Received a retransmission of the FIN, do
4412		 * nothing.
4413		 */
4414		break;
4415	case TCP_LAST_ACK:
4416		/* RFC793: Remain in the LAST-ACK state. */
4417		break;
4418
4419	case TCP_FIN_WAIT1:
4420		/* This case occurs when a simultaneous close
4421		 * happens, we must ack the received FIN and
4422		 * enter the CLOSING state.
4423		 */
4424		tcp_send_ack(sk);
4425		tcp_set_state(sk, TCP_CLOSING);
4426		break;
4427	case TCP_FIN_WAIT2:
4428		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4429		tcp_send_ack(sk);
4430		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4431		break;
4432	default:
4433		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4434		 * cases we should never reach this piece of code.
4435		 */
4436		pr_err("%s: Impossible, sk->sk_state=%d\n",
4437		       __func__, sk->sk_state);
4438		break;
4439	}
4440
4441	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4442	 * Probably, we should reset in this case. For now drop them.
4443	 */
4444	skb_rbtree_purge(&tp->out_of_order_queue);
4445	if (tcp_is_sack(tp))
4446		tcp_sack_reset(&tp->rx_opt);
4447
4448	if (!sock_flag(sk, SOCK_DEAD)) {
4449		sk->sk_state_change(sk);
4450
4451		/* Do not send POLL_HUP for half duplex close. */
4452		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4453		    sk->sk_state == TCP_CLOSE)
4454			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4455		else
4456			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4457	}
4458}
4459
4460static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4461				  u32 end_seq)
4462{
4463	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4464		if (before(seq, sp->start_seq))
4465			sp->start_seq = seq;
4466		if (after(end_seq, sp->end_seq))
4467			sp->end_seq = end_seq;
4468		return true;
4469	}
4470	return false;
4471}
4472
4473static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4474{
4475	struct tcp_sock *tp = tcp_sk(sk);
4476
4477	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4478		int mib_idx;
4479
4480		if (before(seq, tp->rcv_nxt))
4481			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4482		else
4483			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4484
4485		NET_INC_STATS(sock_net(sk), mib_idx);
4486
4487		tp->rx_opt.dsack = 1;
4488		tp->duplicate_sack[0].start_seq = seq;
4489		tp->duplicate_sack[0].end_seq = end_seq;
4490	}
4491}
4492
4493static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4494{
4495	struct tcp_sock *tp = tcp_sk(sk);
4496
4497	if (!tp->rx_opt.dsack)
4498		tcp_dsack_set(sk, seq, end_seq);
4499	else
4500		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4501}
4502
4503static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4504{
4505	/* When the ACK path fails or drops most ACKs, the sender would
4506	 * timeout and spuriously retransmit the same segment repeatedly.
4507	 * The receiver remembers and reflects via DSACKs. Leverage the
4508	 * DSACK state and change the txhash to re-route speculatively.
4509	 */
4510	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4511	    sk_rethink_txhash(sk))
4512		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4513}
4514
4515static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4516{
4517	struct tcp_sock *tp = tcp_sk(sk);
4518
4519	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4520	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4521		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4522		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4523
4524		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4525			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4526
4527			tcp_rcv_spurious_retrans(sk, skb);
4528			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4529				end_seq = tp->rcv_nxt;
4530			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4531		}
4532	}
4533
4534	tcp_send_ack(sk);
4535}
4536
4537/* These routines update the SACK block as out-of-order packets arrive or
4538 * in-order packets close up the sequence space.
4539 */
4540static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4541{
4542	int this_sack;
4543	struct tcp_sack_block *sp = &tp->selective_acks[0];
4544	struct tcp_sack_block *swalk = sp + 1;
4545
4546	/* See if the recent change to the first SACK eats into
4547	 * or hits the sequence space of other SACK blocks, if so coalesce.
4548	 */
4549	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4550		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4551			int i;
4552
4553			/* Zap SWALK, by moving every further SACK up by one slot.
4554			 * Decrease num_sacks.
4555			 */
4556			tp->rx_opt.num_sacks--;
4557			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4558				sp[i] = sp[i + 1];
4559			continue;
4560		}
4561		this_sack++;
4562		swalk++;
4563	}
4564}
4565
4566void tcp_sack_compress_send_ack(struct sock *sk)
4567{
4568	struct tcp_sock *tp = tcp_sk(sk);
4569
4570	if (!tp->compressed_ack)
4571		return;
4572
4573	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4574		__sock_put(sk);
4575
4576	/* Since we have to send one ack finally,
4577	 * substract one from tp->compressed_ack to keep
4578	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4579	 */
4580	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4581		      tp->compressed_ack - 1);
4582
4583	tp->compressed_ack = 0;
4584	tcp_send_ack(sk);
4585}
4586
4587/* Reasonable amount of sack blocks included in TCP SACK option
4588 * The max is 4, but this becomes 3 if TCP timestamps are there.
4589 * Given that SACK packets might be lost, be conservative and use 2.
4590 */
4591#define TCP_SACK_BLOCKS_EXPECTED 2
4592
4593static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4594{
4595	struct tcp_sock *tp = tcp_sk(sk);
4596	struct tcp_sack_block *sp = &tp->selective_acks[0];
4597	int cur_sacks = tp->rx_opt.num_sacks;
4598	int this_sack;
4599
4600	if (!cur_sacks)
4601		goto new_sack;
4602
4603	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4604		if (tcp_sack_extend(sp, seq, end_seq)) {
4605			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4606				tcp_sack_compress_send_ack(sk);
4607			/* Rotate this_sack to the first one. */
4608			for (; this_sack > 0; this_sack--, sp--)
4609				swap(*sp, *(sp - 1));
4610			if (cur_sacks > 1)
4611				tcp_sack_maybe_coalesce(tp);
4612			return;
4613		}
4614	}
4615
4616	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4617		tcp_sack_compress_send_ack(sk);
4618
4619	/* Could not find an adjacent existing SACK, build a new one,
4620	 * put it at the front, and shift everyone else down.  We
4621	 * always know there is at least one SACK present already here.
4622	 *
4623	 * If the sack array is full, forget about the last one.
4624	 */
4625	if (this_sack >= TCP_NUM_SACKS) {
4626		this_sack--;
4627		tp->rx_opt.num_sacks--;
4628		sp--;
4629	}
4630	for (; this_sack > 0; this_sack--, sp--)
4631		*sp = *(sp - 1);
4632
4633new_sack:
4634	/* Build the new head SACK, and we're done. */
4635	sp->start_seq = seq;
4636	sp->end_seq = end_seq;
4637	tp->rx_opt.num_sacks++;
4638}
4639
4640/* RCV.NXT advances, some SACKs should be eaten. */
4641
4642static void tcp_sack_remove(struct tcp_sock *tp)
4643{
4644	struct tcp_sack_block *sp = &tp->selective_acks[0];
4645	int num_sacks = tp->rx_opt.num_sacks;
4646	int this_sack;
4647
4648	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4649	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4650		tp->rx_opt.num_sacks = 0;
4651		return;
4652	}
4653
4654	for (this_sack = 0; this_sack < num_sacks;) {
4655		/* Check if the start of the sack is covered by RCV.NXT. */
4656		if (!before(tp->rcv_nxt, sp->start_seq)) {
4657			int i;
4658
4659			/* RCV.NXT must cover all the block! */
4660			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4661
4662			/* Zap this SACK, by moving forward any other SACKS. */
4663			for (i = this_sack+1; i < num_sacks; i++)
4664				tp->selective_acks[i-1] = tp->selective_acks[i];
4665			num_sacks--;
4666			continue;
4667		}
4668		this_sack++;
4669		sp++;
4670	}
4671	tp->rx_opt.num_sacks = num_sacks;
4672}
4673
4674/**
4675 * tcp_try_coalesce - try to merge skb to prior one
4676 * @sk: socket
4677 * @to: prior buffer
4678 * @from: buffer to add in queue
4679 * @fragstolen: pointer to boolean
4680 *
4681 * Before queueing skb @from after @to, try to merge them
4682 * to reduce overall memory use and queue lengths, if cost is small.
4683 * Packets in ofo or receive queues can stay a long time.
4684 * Better try to coalesce them right now to avoid future collapses.
4685 * Returns true if caller should free @from instead of queueing it
4686 */
4687static bool tcp_try_coalesce(struct sock *sk,
4688			     struct sk_buff *to,
4689			     struct sk_buff *from,
4690			     bool *fragstolen)
4691{
4692	int delta;
4693
4694	*fragstolen = false;
4695
4696	/* Its possible this segment overlaps with prior segment in queue */
4697	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4698		return false;
4699
4700	if (!mptcp_skb_can_collapse(to, from))
4701		return false;
4702
4703#ifdef CONFIG_TLS_DEVICE
4704	if (from->decrypted != to->decrypted)
4705		return false;
4706#endif
4707
4708	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4709		return false;
4710
4711	atomic_add(delta, &sk->sk_rmem_alloc);
4712	sk_mem_charge(sk, delta);
4713	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4714	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4715	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4716	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4717
4718	if (TCP_SKB_CB(from)->has_rxtstamp) {
4719		TCP_SKB_CB(to)->has_rxtstamp = true;
4720		to->tstamp = from->tstamp;
4721		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4722	}
4723
4724	return true;
4725}
4726
4727static bool tcp_ooo_try_coalesce(struct sock *sk,
4728			     struct sk_buff *to,
4729			     struct sk_buff *from,
4730			     bool *fragstolen)
4731{
4732	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4733
4734	/* In case tcp_drop_reason() is called later, update to->gso_segs */
4735	if (res) {
4736		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4737			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4738
4739		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4740	}
4741	return res;
4742}
4743
4744static void tcp_drop_reason(struct sock *sk, struct sk_buff *skb,
4745			    enum skb_drop_reason reason)
4746{
4747	sk_drops_add(sk, skb);
4748	kfree_skb_reason(skb, reason);
4749}
4750
4751/* This one checks to see if we can put data from the
4752 * out_of_order queue into the receive_queue.
4753 */
4754static void tcp_ofo_queue(struct sock *sk)
4755{
4756	struct tcp_sock *tp = tcp_sk(sk);
4757	__u32 dsack_high = tp->rcv_nxt;
4758	bool fin, fragstolen, eaten;
4759	struct sk_buff *skb, *tail;
4760	struct rb_node *p;
4761
4762	p = rb_first(&tp->out_of_order_queue);
4763	while (p) {
4764		skb = rb_to_skb(p);
4765		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4766			break;
4767
4768		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4769			__u32 dsack = dsack_high;
4770			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4771				dsack_high = TCP_SKB_CB(skb)->end_seq;
4772			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4773		}
4774		p = rb_next(p);
4775		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4776
4777		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4778			tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_DROP);
4779			continue;
4780		}
4781
4782		tail = skb_peek_tail(&sk->sk_receive_queue);
4783		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4784		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4785		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4786		if (!eaten)
4787			__skb_queue_tail(&sk->sk_receive_queue, skb);
4788		else
4789			kfree_skb_partial(skb, fragstolen);
4790
4791		if (unlikely(fin)) {
4792			tcp_fin(sk);
4793			/* tcp_fin() purges tp->out_of_order_queue,
4794			 * so we must end this loop right now.
4795			 */
4796			break;
4797		}
4798	}
4799}
4800
4801static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb);
4802static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb);
4803
4804static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4805				 unsigned int size)
4806{
4807	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4808	    !sk_rmem_schedule(sk, skb, size)) {
4809
4810		if (tcp_prune_queue(sk, skb) < 0)
4811			return -1;
4812
4813		while (!sk_rmem_schedule(sk, skb, size)) {
4814			if (!tcp_prune_ofo_queue(sk, skb))
4815				return -1;
4816		}
4817	}
4818	return 0;
4819}
4820
4821static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4822{
4823	struct tcp_sock *tp = tcp_sk(sk);
4824	struct rb_node **p, *parent;
4825	struct sk_buff *skb1;
4826	u32 seq, end_seq;
4827	bool fragstolen;
4828
4829	tcp_ecn_check_ce(sk, skb);
4830
4831	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4832		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4833		sk->sk_data_ready(sk);
4834		tcp_drop_reason(sk, skb, SKB_DROP_REASON_PROTO_MEM);
4835		return;
4836	}
4837
4838	/* Disable header prediction. */
4839	tp->pred_flags = 0;
4840	inet_csk_schedule_ack(sk);
4841
4842	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4843	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4844	seq = TCP_SKB_CB(skb)->seq;
4845	end_seq = TCP_SKB_CB(skb)->end_seq;
4846
4847	p = &tp->out_of_order_queue.rb_node;
4848	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4849		/* Initial out of order segment, build 1 SACK. */
4850		if (tcp_is_sack(tp)) {
4851			tp->rx_opt.num_sacks = 1;
4852			tp->selective_acks[0].start_seq = seq;
4853			tp->selective_acks[0].end_seq = end_seq;
4854		}
4855		rb_link_node(&skb->rbnode, NULL, p);
4856		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4857		tp->ooo_last_skb = skb;
4858		goto end;
4859	}
4860
4861	/* In the typical case, we are adding an skb to the end of the list.
4862	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4863	 */
4864	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4865				 skb, &fragstolen)) {
4866coalesce_done:
4867		/* For non sack flows, do not grow window to force DUPACK
4868		 * and trigger fast retransmit.
4869		 */
4870		if (tcp_is_sack(tp))
4871			tcp_grow_window(sk, skb, true);
4872		kfree_skb_partial(skb, fragstolen);
4873		skb = NULL;
4874		goto add_sack;
4875	}
4876	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4877	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4878		parent = &tp->ooo_last_skb->rbnode;
4879		p = &parent->rb_right;
4880		goto insert;
4881	}
4882
4883	/* Find place to insert this segment. Handle overlaps on the way. */
4884	parent = NULL;
4885	while (*p) {
4886		parent = *p;
4887		skb1 = rb_to_skb(parent);
4888		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4889			p = &parent->rb_left;
4890			continue;
4891		}
4892		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4893			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4894				/* All the bits are present. Drop. */
4895				NET_INC_STATS(sock_net(sk),
4896					      LINUX_MIB_TCPOFOMERGE);
4897				tcp_drop_reason(sk, skb,
4898						SKB_DROP_REASON_TCP_OFOMERGE);
4899				skb = NULL;
4900				tcp_dsack_set(sk, seq, end_seq);
4901				goto add_sack;
4902			}
4903			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4904				/* Partial overlap. */
4905				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4906			} else {
4907				/* skb's seq == skb1's seq and skb covers skb1.
4908				 * Replace skb1 with skb.
4909				 */
4910				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4911						&tp->out_of_order_queue);
4912				tcp_dsack_extend(sk,
4913						 TCP_SKB_CB(skb1)->seq,
4914						 TCP_SKB_CB(skb1)->end_seq);
4915				NET_INC_STATS(sock_net(sk),
4916					      LINUX_MIB_TCPOFOMERGE);
4917				tcp_drop_reason(sk, skb1,
4918						SKB_DROP_REASON_TCP_OFOMERGE);
4919				goto merge_right;
4920			}
4921		} else if (tcp_ooo_try_coalesce(sk, skb1,
4922						skb, &fragstolen)) {
4923			goto coalesce_done;
4924		}
4925		p = &parent->rb_right;
4926	}
4927insert:
4928	/* Insert segment into RB tree. */
4929	rb_link_node(&skb->rbnode, parent, p);
4930	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4931
4932merge_right:
4933	/* Remove other segments covered by skb. */
4934	while ((skb1 = skb_rb_next(skb)) != NULL) {
4935		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4936			break;
4937		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4938			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4939					 end_seq);
4940			break;
4941		}
4942		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4943		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4944				 TCP_SKB_CB(skb1)->end_seq);
4945		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4946		tcp_drop_reason(sk, skb1, SKB_DROP_REASON_TCP_OFOMERGE);
4947	}
4948	/* If there is no skb after us, we are the last_skb ! */
4949	if (!skb1)
4950		tp->ooo_last_skb = skb;
4951
4952add_sack:
4953	if (tcp_is_sack(tp))
4954		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4955end:
4956	if (skb) {
4957		/* For non sack flows, do not grow window to force DUPACK
4958		 * and trigger fast retransmit.
4959		 */
4960		if (tcp_is_sack(tp))
4961			tcp_grow_window(sk, skb, false);
4962		skb_condense(skb);
4963		skb_set_owner_r(skb, sk);
4964	}
4965}
4966
4967static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4968				      bool *fragstolen)
4969{
4970	int eaten;
4971	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4972
4973	eaten = (tail &&
4974		 tcp_try_coalesce(sk, tail,
4975				  skb, fragstolen)) ? 1 : 0;
4976	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4977	if (!eaten) {
4978		__skb_queue_tail(&sk->sk_receive_queue, skb);
4979		skb_set_owner_r(skb, sk);
4980	}
4981	return eaten;
4982}
4983
4984int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4985{
4986	struct sk_buff *skb;
4987	int err = -ENOMEM;
4988	int data_len = 0;
4989	bool fragstolen;
4990
4991	if (size == 0)
4992		return 0;
4993
4994	if (size > PAGE_SIZE) {
4995		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4996
4997		data_len = npages << PAGE_SHIFT;
4998		size = data_len + (size & ~PAGE_MASK);
4999	}
5000	skb = alloc_skb_with_frags(size - data_len, data_len,
5001				   PAGE_ALLOC_COSTLY_ORDER,
5002				   &err, sk->sk_allocation);
5003	if (!skb)
5004		goto err;
5005
5006	skb_put(skb, size - data_len);
5007	skb->data_len = data_len;
5008	skb->len = size;
5009
5010	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5011		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5012		goto err_free;
5013	}
5014
5015	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
5016	if (err)
5017		goto err_free;
5018
5019	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
5020	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
5021	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
5022
5023	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
5024		WARN_ON_ONCE(fragstolen); /* should not happen */
5025		__kfree_skb(skb);
5026	}
5027	return size;
5028
5029err_free:
5030	kfree_skb(skb);
5031err:
5032	return err;
5033
5034}
5035
5036void tcp_data_ready(struct sock *sk)
5037{
5038	if (tcp_epollin_ready(sk, sk->sk_rcvlowat) || sock_flag(sk, SOCK_DONE))
5039		sk->sk_data_ready(sk);
5040}
5041
5042static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
5043{
5044	struct tcp_sock *tp = tcp_sk(sk);
5045	enum skb_drop_reason reason;
5046	bool fragstolen;
5047	int eaten;
5048
5049	/* If a subflow has been reset, the packet should not continue
5050	 * to be processed, drop the packet.
5051	 */
5052	if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb)) {
5053		__kfree_skb(skb);
5054		return;
5055	}
5056
5057	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
5058		__kfree_skb(skb);
5059		return;
5060	}
5061	skb_dst_drop(skb);
5062	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
5063
5064	reason = SKB_DROP_REASON_NOT_SPECIFIED;
5065	tp->rx_opt.dsack = 0;
5066
5067	/*  Queue data for delivery to the user.
5068	 *  Packets in sequence go to the receive queue.
5069	 *  Out of sequence packets to the out_of_order_queue.
5070	 */
5071	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5072		if (tcp_receive_window(tp) == 0) {
5073			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5074			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5075			goto out_of_window;
5076		}
5077
5078		/* Ok. In sequence. In window. */
5079queue_and_out:
5080		if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5081			/* TODO: maybe ratelimit these WIN 0 ACK ? */
5082			inet_csk(sk)->icsk_ack.pending |=
5083					(ICSK_ACK_NOMEM | ICSK_ACK_NOW);
5084			inet_csk_schedule_ack(sk);
5085			sk->sk_data_ready(sk);
5086
5087			if (skb_queue_len(&sk->sk_receive_queue)) {
5088				reason = SKB_DROP_REASON_PROTO_MEM;
5089				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5090				goto drop;
5091			}
5092			sk_forced_mem_schedule(sk, skb->truesize);
5093		}
5094
5095		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5096		if (skb->len)
5097			tcp_event_data_recv(sk, skb);
5098		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5099			tcp_fin(sk);
5100
5101		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5102			tcp_ofo_queue(sk);
5103
5104			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5105			 * gap in queue is filled.
5106			 */
5107			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5108				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5109		}
5110
5111		if (tp->rx_opt.num_sacks)
5112			tcp_sack_remove(tp);
5113
5114		tcp_fast_path_check(sk);
5115
5116		if (eaten > 0)
5117			kfree_skb_partial(skb, fragstolen);
5118		if (!sock_flag(sk, SOCK_DEAD))
5119			tcp_data_ready(sk);
5120		return;
5121	}
5122
5123	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5124		tcp_rcv_spurious_retrans(sk, skb);
5125		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5126		reason = SKB_DROP_REASON_TCP_OLD_DATA;
5127		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5128		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5129
5130out_of_window:
5131		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5132		inet_csk_schedule_ack(sk);
5133drop:
5134		tcp_drop_reason(sk, skb, reason);
5135		return;
5136	}
5137
5138	/* Out of window. F.e. zero window probe. */
5139	if (!before(TCP_SKB_CB(skb)->seq,
5140		    tp->rcv_nxt + tcp_receive_window(tp))) {
5141		reason = SKB_DROP_REASON_TCP_OVERWINDOW;
5142		goto out_of_window;
5143	}
5144
5145	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5146		/* Partial packet, seq < rcv_next < end_seq */
5147		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5148
5149		/* If window is closed, drop tail of packet. But after
5150		 * remembering D-SACK for its head made in previous line.
5151		 */
5152		if (!tcp_receive_window(tp)) {
5153			reason = SKB_DROP_REASON_TCP_ZEROWINDOW;
5154			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5155			goto out_of_window;
5156		}
5157		goto queue_and_out;
5158	}
5159
5160	tcp_data_queue_ofo(sk, skb);
5161}
5162
5163static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5164{
5165	if (list)
5166		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5167
5168	return skb_rb_next(skb);
5169}
5170
5171static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5172					struct sk_buff_head *list,
5173					struct rb_root *root)
5174{
5175	struct sk_buff *next = tcp_skb_next(skb, list);
5176
5177	if (list)
5178		__skb_unlink(skb, list);
5179	else
5180		rb_erase(&skb->rbnode, root);
5181
5182	__kfree_skb(skb);
5183	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5184
5185	return next;
5186}
5187
5188/* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
5189void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5190{
5191	struct rb_node **p = &root->rb_node;
5192	struct rb_node *parent = NULL;
5193	struct sk_buff *skb1;
5194
5195	while (*p) {
5196		parent = *p;
5197		skb1 = rb_to_skb(parent);
5198		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5199			p = &parent->rb_left;
5200		else
5201			p = &parent->rb_right;
5202	}
5203	rb_link_node(&skb->rbnode, parent, p);
5204	rb_insert_color(&skb->rbnode, root);
5205}
5206
5207/* Collapse contiguous sequence of skbs head..tail with
5208 * sequence numbers start..end.
5209 *
5210 * If tail is NULL, this means until the end of the queue.
5211 *
5212 * Segments with FIN/SYN are not collapsed (only because this
5213 * simplifies code)
5214 */
5215static void
5216tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5217	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5218{
5219	struct sk_buff *skb = head, *n;
5220	struct sk_buff_head tmp;
5221	bool end_of_skbs;
5222
5223	/* First, check that queue is collapsible and find
5224	 * the point where collapsing can be useful.
5225	 */
5226restart:
5227	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5228		n = tcp_skb_next(skb, list);
5229
5230		/* No new bits? It is possible on ofo queue. */
5231		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5232			skb = tcp_collapse_one(sk, skb, list, root);
5233			if (!skb)
5234				break;
5235			goto restart;
5236		}
5237
5238		/* The first skb to collapse is:
5239		 * - not SYN/FIN and
5240		 * - bloated or contains data before "start" or
5241		 *   overlaps to the next one and mptcp allow collapsing.
5242		 */
5243		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5244		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5245		     before(TCP_SKB_CB(skb)->seq, start))) {
5246			end_of_skbs = false;
5247			break;
5248		}
5249
5250		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5251		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5252			end_of_skbs = false;
5253			break;
5254		}
5255
5256		/* Decided to skip this, advance start seq. */
5257		start = TCP_SKB_CB(skb)->end_seq;
5258	}
5259	if (end_of_skbs ||
5260	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5261		return;
5262
5263	__skb_queue_head_init(&tmp);
5264
5265	while (before(start, end)) {
5266		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5267		struct sk_buff *nskb;
5268
5269		nskb = alloc_skb(copy, GFP_ATOMIC);
5270		if (!nskb)
5271			break;
5272
5273		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5274#ifdef CONFIG_TLS_DEVICE
5275		nskb->decrypted = skb->decrypted;
5276#endif
5277		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5278		if (list)
5279			__skb_queue_before(list, skb, nskb);
5280		else
5281			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5282		skb_set_owner_r(nskb, sk);
5283		mptcp_skb_ext_move(nskb, skb);
5284
5285		/* Copy data, releasing collapsed skbs. */
5286		while (copy > 0) {
5287			int offset = start - TCP_SKB_CB(skb)->seq;
5288			int size = TCP_SKB_CB(skb)->end_seq - start;
5289
5290			BUG_ON(offset < 0);
5291			if (size > 0) {
5292				size = min(copy, size);
5293				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5294					BUG();
5295				TCP_SKB_CB(nskb)->end_seq += size;
5296				copy -= size;
5297				start += size;
5298			}
5299			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5300				skb = tcp_collapse_one(sk, skb, list, root);
5301				if (!skb ||
5302				    skb == tail ||
5303				    !mptcp_skb_can_collapse(nskb, skb) ||
5304				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5305					goto end;
5306#ifdef CONFIG_TLS_DEVICE
5307				if (skb->decrypted != nskb->decrypted)
5308					goto end;
5309#endif
5310			}
5311		}
5312	}
5313end:
5314	skb_queue_walk_safe(&tmp, skb, n)
5315		tcp_rbtree_insert(root, skb);
5316}
5317
5318/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5319 * and tcp_collapse() them until all the queue is collapsed.
5320 */
5321static void tcp_collapse_ofo_queue(struct sock *sk)
5322{
5323	struct tcp_sock *tp = tcp_sk(sk);
5324	u32 range_truesize, sum_tiny = 0;
5325	struct sk_buff *skb, *head;
5326	u32 start, end;
5327
5328	skb = skb_rb_first(&tp->out_of_order_queue);
5329new_range:
5330	if (!skb) {
5331		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5332		return;
5333	}
5334	start = TCP_SKB_CB(skb)->seq;
5335	end = TCP_SKB_CB(skb)->end_seq;
5336	range_truesize = skb->truesize;
5337
5338	for (head = skb;;) {
5339		skb = skb_rb_next(skb);
5340
5341		/* Range is terminated when we see a gap or when
5342		 * we are at the queue end.
5343		 */
5344		if (!skb ||
5345		    after(TCP_SKB_CB(skb)->seq, end) ||
5346		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5347			/* Do not attempt collapsing tiny skbs */
5348			if (range_truesize != head->truesize ||
5349			    end - start >= SKB_WITH_OVERHEAD(PAGE_SIZE)) {
5350				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5351					     head, skb, start, end);
5352			} else {
5353				sum_tiny += range_truesize;
5354				if (sum_tiny > sk->sk_rcvbuf >> 3)
5355					return;
5356			}
5357			goto new_range;
5358		}
5359
5360		range_truesize += skb->truesize;
5361		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5362			start = TCP_SKB_CB(skb)->seq;
5363		if (after(TCP_SKB_CB(skb)->end_seq, end))
5364			end = TCP_SKB_CB(skb)->end_seq;
5365	}
5366}
5367
5368/*
5369 * Clean the out-of-order queue to make room.
5370 * We drop high sequences packets to :
5371 * 1) Let a chance for holes to be filled.
5372 *    This means we do not drop packets from ooo queue if their sequence
5373 *    is before incoming packet sequence.
5374 * 2) not add too big latencies if thousands of packets sit there.
5375 *    (But if application shrinks SO_RCVBUF, we could still end up
5376 *     freeing whole queue here)
5377 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5378 *
5379 * Return true if queue has shrunk.
5380 */
5381static bool tcp_prune_ofo_queue(struct sock *sk, const struct sk_buff *in_skb)
5382{
5383	struct tcp_sock *tp = tcp_sk(sk);
5384	struct rb_node *node, *prev;
5385	bool pruned = false;
5386	int goal;
5387
5388	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5389		return false;
5390
5391	goal = sk->sk_rcvbuf >> 3;
5392	node = &tp->ooo_last_skb->rbnode;
5393
5394	do {
5395		struct sk_buff *skb = rb_to_skb(node);
5396
5397		/* If incoming skb would land last in ofo queue, stop pruning. */
5398		if (after(TCP_SKB_CB(in_skb)->seq, TCP_SKB_CB(skb)->seq))
5399			break;
5400		pruned = true;
5401		prev = rb_prev(node);
5402		rb_erase(node, &tp->out_of_order_queue);
5403		goal -= skb->truesize;
5404		tcp_drop_reason(sk, skb, SKB_DROP_REASON_TCP_OFO_QUEUE_PRUNE);
5405		tp->ooo_last_skb = rb_to_skb(prev);
5406		if (!prev || goal <= 0) {
5407			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5408			    !tcp_under_memory_pressure(sk))
5409				break;
5410			goal = sk->sk_rcvbuf >> 3;
5411		}
5412		node = prev;
5413	} while (node);
5414
5415	if (pruned) {
5416		NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5417		/* Reset SACK state.  A conforming SACK implementation will
5418		 * do the same at a timeout based retransmit.  When a connection
5419		 * is in a sad state like this, we care only about integrity
5420		 * of the connection not performance.
5421		 */
5422		if (tp->rx_opt.sack_ok)
5423			tcp_sack_reset(&tp->rx_opt);
5424	}
5425	return pruned;
5426}
5427
5428/* Reduce allocated memory if we can, trying to get
5429 * the socket within its memory limits again.
5430 *
5431 * Return less than zero if we should start dropping frames
5432 * until the socket owning process reads some of the data
5433 * to stabilize the situation.
5434 */
5435static int tcp_prune_queue(struct sock *sk, const struct sk_buff *in_skb)
5436{
5437	struct tcp_sock *tp = tcp_sk(sk);
5438
5439	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5440
5441	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5442		tcp_clamp_window(sk);
5443	else if (tcp_under_memory_pressure(sk))
5444		tcp_adjust_rcv_ssthresh(sk);
5445
5446	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5447		return 0;
5448
5449	tcp_collapse_ofo_queue(sk);
5450	if (!skb_queue_empty(&sk->sk_receive_queue))
5451		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5452			     skb_peek(&sk->sk_receive_queue),
5453			     NULL,
5454			     tp->copied_seq, tp->rcv_nxt);
5455
5456	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5457		return 0;
5458
5459	/* Collapsing did not help, destructive actions follow.
5460	 * This must not ever occur. */
5461
5462	tcp_prune_ofo_queue(sk, in_skb);
5463
5464	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5465		return 0;
5466
5467	/* If we are really being abused, tell the caller to silently
5468	 * drop receive data on the floor.  It will get retransmitted
5469	 * and hopefully then we'll have sufficient space.
5470	 */
5471	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5472
5473	/* Massive buffer overcommit. */
5474	tp->pred_flags = 0;
5475	return -1;
5476}
5477
5478static bool tcp_should_expand_sndbuf(struct sock *sk)
5479{
5480	const struct tcp_sock *tp = tcp_sk(sk);
5481
5482	/* If the user specified a specific send buffer setting, do
5483	 * not modify it.
5484	 */
5485	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5486		return false;
5487
5488	/* If we are under global TCP memory pressure, do not expand.  */
5489	if (tcp_under_memory_pressure(sk)) {
5490		int unused_mem = sk_unused_reserved_mem(sk);
5491
5492		/* Adjust sndbuf according to reserved mem. But make sure
5493		 * it never goes below SOCK_MIN_SNDBUF.
5494		 * See sk_stream_moderate_sndbuf() for more details.
5495		 */
5496		if (unused_mem > SOCK_MIN_SNDBUF)
5497			WRITE_ONCE(sk->sk_sndbuf, unused_mem);
5498
5499		return false;
5500	}
5501
5502	/* If we are under soft global TCP memory pressure, do not expand.  */
5503	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5504		return false;
5505
5506	/* If we filled the congestion window, do not expand.  */
5507	if (tcp_packets_in_flight(tp) >= tcp_snd_cwnd(tp))
5508		return false;
5509
5510	return true;
5511}
5512
5513static void tcp_new_space(struct sock *sk)
5514{
5515	struct tcp_sock *tp = tcp_sk(sk);
5516
5517	if (tcp_should_expand_sndbuf(sk)) {
5518		tcp_sndbuf_expand(sk);
5519		tp->snd_cwnd_stamp = tcp_jiffies32;
5520	}
5521
5522	INDIRECT_CALL_1(sk->sk_write_space, sk_stream_write_space, sk);
5523}
5524
5525/* Caller made space either from:
5526 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5527 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5528 *
5529 * We might be able to generate EPOLLOUT to the application if:
5530 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5531 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5532 *    small enough that tcp_stream_memory_free() decides it
5533 *    is time to generate EPOLLOUT.
5534 */
5535void tcp_check_space(struct sock *sk)
5536{
5537	/* pairs with tcp_poll() */
5538	smp_mb();
5539	if (sk->sk_socket &&
5540	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5541		tcp_new_space(sk);
5542		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5543			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5544	}
5545}
5546
5547static inline void tcp_data_snd_check(struct sock *sk)
5548{
5549	tcp_push_pending_frames(sk);
5550	tcp_check_space(sk);
5551}
5552
5553/*
5554 * Check if sending an ack is needed.
5555 */
5556static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5557{
5558	struct tcp_sock *tp = tcp_sk(sk);
5559	unsigned long rtt, delay;
5560
5561	    /* More than one full frame received... */
5562	if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5563	     /* ... and right edge of window advances far enough.
5564	      * (tcp_recvmsg() will send ACK otherwise).
5565	      * If application uses SO_RCVLOWAT, we want send ack now if
5566	      * we have not received enough bytes to satisfy the condition.
5567	      */
5568	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5569	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5570	    /* We ACK each frame or... */
5571	    tcp_in_quickack_mode(sk) ||
5572	    /* Protocol state mandates a one-time immediate ACK */
5573	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5574send_now:
5575		tcp_send_ack(sk);
5576		return;
5577	}
5578
5579	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5580		tcp_send_delayed_ack(sk);
5581		return;
5582	}
5583
5584	if (!tcp_is_sack(tp) ||
5585	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5586		goto send_now;
5587
5588	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5589		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5590		tp->dup_ack_counter = 0;
5591	}
5592	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5593		tp->dup_ack_counter++;
5594		goto send_now;
5595	}
5596	tp->compressed_ack++;
5597	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5598		return;
5599
5600	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5601
5602	rtt = tp->rcv_rtt_est.rtt_us;
5603	if (tp->srtt_us && tp->srtt_us < rtt)
5604		rtt = tp->srtt_us;
5605
5606	delay = min_t(unsigned long,
5607		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5608		      rtt * (NSEC_PER_USEC >> 3)/20);
5609	sock_hold(sk);
5610	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5611			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5612			       HRTIMER_MODE_REL_PINNED_SOFT);
5613}
5614
5615static inline void tcp_ack_snd_check(struct sock *sk)
5616{
5617	if (!inet_csk_ack_scheduled(sk)) {
5618		/* We sent a data segment already. */
5619		return;
5620	}
5621	__tcp_ack_snd_check(sk, 1);
5622}
5623
5624/*
5625 *	This routine is only called when we have urgent data
5626 *	signaled. Its the 'slow' part of tcp_urg. It could be
5627 *	moved inline now as tcp_urg is only called from one
5628 *	place. We handle URGent data wrong. We have to - as
5629 *	BSD still doesn't use the correction from RFC961.
5630 *	For 1003.1g we should support a new option TCP_STDURG to permit
5631 *	either form (or just set the sysctl tcp_stdurg).
5632 */
5633
5634static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5635{
5636	struct tcp_sock *tp = tcp_sk(sk);
5637	u32 ptr = ntohs(th->urg_ptr);
5638
5639	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5640		ptr--;
5641	ptr += ntohl(th->seq);
5642
5643	/* Ignore urgent data that we've already seen and read. */
5644	if (after(tp->copied_seq, ptr))
5645		return;
5646
5647	/* Do not replay urg ptr.
5648	 *
5649	 * NOTE: interesting situation not covered by specs.
5650	 * Misbehaving sender may send urg ptr, pointing to segment,
5651	 * which we already have in ofo queue. We are not able to fetch
5652	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5653	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5654	 * situations. But it is worth to think about possibility of some
5655	 * DoSes using some hypothetical application level deadlock.
5656	 */
5657	if (before(ptr, tp->rcv_nxt))
5658		return;
5659
5660	/* Do we already have a newer (or duplicate) urgent pointer? */
5661	if (tp->urg_data && !after(ptr, tp->urg_seq))
5662		return;
5663
5664	/* Tell the world about our new urgent pointer. */
5665	sk_send_sigurg(sk);
5666
5667	/* We may be adding urgent data when the last byte read was
5668	 * urgent. To do this requires some care. We cannot just ignore
5669	 * tp->copied_seq since we would read the last urgent byte again
5670	 * as data, nor can we alter copied_seq until this data arrives
5671	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5672	 *
5673	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5674	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5675	 * and expect that both A and B disappear from stream. This is _wrong_.
5676	 * Though this happens in BSD with high probability, this is occasional.
5677	 * Any application relying on this is buggy. Note also, that fix "works"
5678	 * only in this artificial test. Insert some normal data between A and B and we will
5679	 * decline of BSD again. Verdict: it is better to remove to trap
5680	 * buggy users.
5681	 */
5682	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5683	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5684		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5685		tp->copied_seq++;
5686		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5687			__skb_unlink(skb, &sk->sk_receive_queue);
5688			__kfree_skb(skb);
5689		}
5690	}
5691
5692	WRITE_ONCE(tp->urg_data, TCP_URG_NOTYET);
5693	WRITE_ONCE(tp->urg_seq, ptr);
5694
5695	/* Disable header prediction. */
5696	tp->pred_flags = 0;
5697}
5698
5699/* This is the 'fast' part of urgent handling. */
5700static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5701{
5702	struct tcp_sock *tp = tcp_sk(sk);
5703
5704	/* Check if we get a new urgent pointer - normally not. */
5705	if (unlikely(th->urg))
5706		tcp_check_urg(sk, th);
5707
5708	/* Do we wait for any urgent data? - normally not... */
5709	if (unlikely(tp->urg_data == TCP_URG_NOTYET)) {
5710		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5711			  th->syn;
5712
5713		/* Is the urgent pointer pointing into this packet? */
5714		if (ptr < skb->len) {
5715			u8 tmp;
5716			if (skb_copy_bits(skb, ptr, &tmp, 1))
5717				BUG();
5718			WRITE_ONCE(tp->urg_data, TCP_URG_VALID | tmp);
5719			if (!sock_flag(sk, SOCK_DEAD))
5720				sk->sk_data_ready(sk);
5721		}
5722	}
5723}
5724
5725/* Accept RST for rcv_nxt - 1 after a FIN.
5726 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5727 * FIN is sent followed by a RST packet. The RST is sent with the same
5728 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5729 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5730 * ACKs on the closed socket. In addition middleboxes can drop either the
5731 * challenge ACK or a subsequent RST.
5732 */
5733static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5734{
5735	const struct tcp_sock *tp = tcp_sk(sk);
5736
5737	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5738			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5739					       TCPF_CLOSING));
5740}
5741
5742/* Does PAWS and seqno based validation of an incoming segment, flags will
5743 * play significant role here.
5744 */
5745static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5746				  const struct tcphdr *th, int syn_inerr)
5747{
5748	struct tcp_sock *tp = tcp_sk(sk);
5749	SKB_DR(reason);
5750
5751	/* RFC1323: H1. Apply PAWS check first. */
5752	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5753	    tp->rx_opt.saw_tstamp &&
5754	    tcp_paws_discard(sk, skb)) {
5755		if (!th->rst) {
5756			if (unlikely(th->syn))
5757				goto syn_challenge;
5758			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5759			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5760						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5761						  &tp->last_oow_ack_time))
5762				tcp_send_dupack(sk, skb);
5763			SKB_DR_SET(reason, TCP_RFC7323_PAWS);
5764			goto discard;
5765		}
5766		/* Reset is accepted even if it did not pass PAWS. */
5767	}
5768
5769	/* Step 1: check sequence number */
5770	reason = tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5771	if (reason) {
5772		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5773		 * (RST) segments are validated by checking their SEQ-fields."
5774		 * And page 69: "If an incoming segment is not acceptable,
5775		 * an acknowledgment should be sent in reply (unless the RST
5776		 * bit is set, if so drop the segment and return)".
5777		 */
5778		if (!th->rst) {
5779			if (th->syn)
5780				goto syn_challenge;
5781			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5782						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5783						  &tp->last_oow_ack_time))
5784				tcp_send_dupack(sk, skb);
5785		} else if (tcp_reset_check(sk, skb)) {
5786			goto reset;
5787		}
5788		goto discard;
5789	}
5790
5791	/* Step 2: check RST bit */
5792	if (th->rst) {
5793		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5794		 * FIN and SACK too if available):
5795		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5796		 * the right-most SACK block,
5797		 * then
5798		 *     RESET the connection
5799		 * else
5800		 *     Send a challenge ACK
5801		 */
5802		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5803		    tcp_reset_check(sk, skb))
5804			goto reset;
5805
5806		if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5807			struct tcp_sack_block *sp = &tp->selective_acks[0];
5808			int max_sack = sp[0].end_seq;
5809			int this_sack;
5810
5811			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5812			     ++this_sack) {
5813				max_sack = after(sp[this_sack].end_seq,
5814						 max_sack) ?
5815					sp[this_sack].end_seq : max_sack;
5816			}
5817
5818			if (TCP_SKB_CB(skb)->seq == max_sack)
5819				goto reset;
5820		}
5821
5822		/* Disable TFO if RST is out-of-order
5823		 * and no data has been received
5824		 * for current active TFO socket
5825		 */
5826		if (tp->syn_fastopen && !tp->data_segs_in &&
5827		    sk->sk_state == TCP_ESTABLISHED)
5828			tcp_fastopen_active_disable(sk);
5829		tcp_send_challenge_ack(sk);
5830		SKB_DR_SET(reason, TCP_RESET);
5831		goto discard;
5832	}
5833
5834	/* step 3: check security and precedence [ignored] */
5835
5836	/* step 4: Check for a SYN
5837	 * RFC 5961 4.2 : Send a challenge ack
5838	 */
5839	if (th->syn) {
5840syn_challenge:
5841		if (syn_inerr)
5842			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5843		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5844		tcp_send_challenge_ack(sk);
5845		SKB_DR_SET(reason, TCP_INVALID_SYN);
5846		goto discard;
5847	}
5848
5849	bpf_skops_parse_hdr(sk, skb);
5850
5851	return true;
5852
5853discard:
5854	tcp_drop_reason(sk, skb, reason);
5855	return false;
5856
5857reset:
5858	tcp_reset(sk, skb);
5859	__kfree_skb(skb);
5860	return false;
5861}
5862
5863/*
5864 *	TCP receive function for the ESTABLISHED state.
5865 *
5866 *	It is split into a fast path and a slow path. The fast path is
5867 * 	disabled when:
5868 *	- A zero window was announced from us - zero window probing
5869 *        is only handled properly in the slow path.
5870 *	- Out of order segments arrived.
5871 *	- Urgent data is expected.
5872 *	- There is no buffer space left
5873 *	- Unexpected TCP flags/window values/header lengths are received
5874 *	  (detected by checking the TCP header against pred_flags)
5875 *	- Data is sent in both directions. Fast path only supports pure senders
5876 *	  or pure receivers (this means either the sequence number or the ack
5877 *	  value must stay constant)
5878 *	- Unexpected TCP option.
5879 *
5880 *	When these conditions are not satisfied it drops into a standard
5881 *	receive procedure patterned after RFC793 to handle all cases.
5882 *	The first three cases are guaranteed by proper pred_flags setting,
5883 *	the rest is checked inline. Fast processing is turned on in
5884 *	tcp_data_queue when everything is OK.
5885 */
5886void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5887{
5888	enum skb_drop_reason reason = SKB_DROP_REASON_NOT_SPECIFIED;
5889	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5890	struct tcp_sock *tp = tcp_sk(sk);
5891	unsigned int len = skb->len;
5892
5893	/* TCP congestion window tracking */
5894	trace_tcp_probe(sk, skb);
5895
5896	tcp_mstamp_refresh(tp);
5897	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5898		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5899	/*
5900	 *	Header prediction.
5901	 *	The code loosely follows the one in the famous
5902	 *	"30 instruction TCP receive" Van Jacobson mail.
5903	 *
5904	 *	Van's trick is to deposit buffers into socket queue
5905	 *	on a device interrupt, to call tcp_recv function
5906	 *	on the receive process context and checksum and copy
5907	 *	the buffer to user space. smart...
5908	 *
5909	 *	Our current scheme is not silly either but we take the
5910	 *	extra cost of the net_bh soft interrupt processing...
5911	 *	We do checksum and copy also but from device to kernel.
5912	 */
5913
5914	tp->rx_opt.saw_tstamp = 0;
5915
5916	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5917	 *	if header_prediction is to be made
5918	 *	'S' will always be tp->tcp_header_len >> 2
5919	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5920	 *  turn it off	(when there are holes in the receive
5921	 *	 space for instance)
5922	 *	PSH flag is ignored.
5923	 */
5924
5925	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5926	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5927	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5928		int tcp_header_len = tp->tcp_header_len;
5929
5930		/* Timestamp header prediction: tcp_header_len
5931		 * is automatically equal to th->doff*4 due to pred_flags
5932		 * match.
5933		 */
5934
5935		/* Check timestamp */
5936		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5937			/* No? Slow path! */
5938			if (!tcp_parse_aligned_timestamp(tp, th))
5939				goto slow_path;
5940
5941			/* If PAWS failed, check it more carefully in slow path */
5942			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5943				goto slow_path;
5944
5945			/* DO NOT update ts_recent here, if checksum fails
5946			 * and timestamp was corrupted part, it will result
5947			 * in a hung connection since we will drop all
5948			 * future packets due to the PAWS test.
5949			 */
5950		}
5951
5952		if (len <= tcp_header_len) {
5953			/* Bulk data transfer: sender */
5954			if (len == tcp_header_len) {
5955				/* Predicted packet is in window by definition.
5956				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5957				 * Hence, check seq<=rcv_wup reduces to:
5958				 */
5959				if (tcp_header_len ==
5960				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5961				    tp->rcv_nxt == tp->rcv_wup)
5962					tcp_store_ts_recent(tp);
5963
5964				/* We know that such packets are checksummed
5965				 * on entry.
5966				 */
5967				tcp_ack(sk, skb, 0);
5968				__kfree_skb(skb);
5969				tcp_data_snd_check(sk);
5970				/* When receiving pure ack in fast path, update
5971				 * last ts ecr directly instead of calling
5972				 * tcp_rcv_rtt_measure_ts()
5973				 */
5974				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5975				return;
5976			} else { /* Header too small */
5977				reason = SKB_DROP_REASON_PKT_TOO_SMALL;
5978				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5979				goto discard;
5980			}
5981		} else {
5982			int eaten = 0;
5983			bool fragstolen = false;
5984
5985			if (tcp_checksum_complete(skb))
5986				goto csum_error;
5987
5988			if ((int)skb->truesize > sk->sk_forward_alloc)
5989				goto step5;
5990
5991			/* Predicted packet is in window by definition.
5992			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5993			 * Hence, check seq<=rcv_wup reduces to:
5994			 */
5995			if (tcp_header_len ==
5996			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5997			    tp->rcv_nxt == tp->rcv_wup)
5998				tcp_store_ts_recent(tp);
5999
6000			tcp_rcv_rtt_measure_ts(sk, skb);
6001
6002			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
6003
6004			/* Bulk data transfer: receiver */
6005			skb_dst_drop(skb);
6006			__skb_pull(skb, tcp_header_len);
6007			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
6008
6009			tcp_event_data_recv(sk, skb);
6010
6011			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
6012				/* Well, only one small jumplet in fast path... */
6013				tcp_ack(sk, skb, FLAG_DATA);
6014				tcp_data_snd_check(sk);
6015				if (!inet_csk_ack_scheduled(sk))
6016					goto no_ack;
6017			} else {
6018				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
6019			}
6020
6021			__tcp_ack_snd_check(sk, 0);
6022no_ack:
6023			if (eaten)
6024				kfree_skb_partial(skb, fragstolen);
6025			tcp_data_ready(sk);
6026			return;
6027		}
6028	}
6029
6030slow_path:
6031	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
6032		goto csum_error;
6033
6034	if (!th->ack && !th->rst && !th->syn) {
6035		reason = SKB_DROP_REASON_TCP_FLAGS;
6036		goto discard;
6037	}
6038
6039	/*
6040	 *	Standard slow path.
6041	 */
6042
6043	if (!tcp_validate_incoming(sk, skb, th, 1))
6044		return;
6045
6046step5:
6047	reason = tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT);
6048	if ((int)reason < 0) {
6049		reason = -reason;
6050		goto discard;
6051	}
6052	tcp_rcv_rtt_measure_ts(sk, skb);
6053
6054	/* Process urgent data. */
6055	tcp_urg(sk, skb, th);
6056
6057	/* step 7: process the segment text */
6058	tcp_data_queue(sk, skb);
6059
6060	tcp_data_snd_check(sk);
6061	tcp_ack_snd_check(sk);
6062	return;
6063
6064csum_error:
6065	reason = SKB_DROP_REASON_TCP_CSUM;
6066	trace_tcp_bad_csum(skb);
6067	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
6068	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
6069
6070discard:
6071	tcp_drop_reason(sk, skb, reason);
6072}
6073EXPORT_SYMBOL(tcp_rcv_established);
6074
6075void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
6076{
6077	struct inet_connection_sock *icsk = inet_csk(sk);
6078	struct tcp_sock *tp = tcp_sk(sk);
6079
6080	tcp_mtup_init(sk);
6081	icsk->icsk_af_ops->rebuild_header(sk);
6082	tcp_init_metrics(sk);
6083
6084	/* Initialize the congestion window to start the transfer.
6085	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
6086	 * retransmitted. In light of RFC6298 more aggressive 1sec
6087	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
6088	 * retransmission has occurred.
6089	 */
6090	if (tp->total_retrans > 1 && tp->undo_marker)
6091		tcp_snd_cwnd_set(tp, 1);
6092	else
6093		tcp_snd_cwnd_set(tp, tcp_init_cwnd(tp, __sk_dst_get(sk)));
6094	tp->snd_cwnd_stamp = tcp_jiffies32;
6095
6096	bpf_skops_established(sk, bpf_op, skb);
6097	/* Initialize congestion control unless BPF initialized it already: */
6098	if (!icsk->icsk_ca_initialized)
6099		tcp_init_congestion_control(sk);
6100	tcp_init_buffer_space(sk);
6101}
6102
6103void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
6104{
6105	struct tcp_sock *tp = tcp_sk(sk);
6106	struct inet_connection_sock *icsk = inet_csk(sk);
6107
6108	tcp_set_state(sk, TCP_ESTABLISHED);
6109	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
6110
6111	if (skb) {
6112		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6113		security_inet_conn_established(sk, skb);
6114		sk_mark_napi_id(sk, skb);
6115	}
6116
6117	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6118
6119	/* Prevent spurious tcp_cwnd_restart() on first data
6120	 * packet.
6121	 */
6122	tp->lsndtime = tcp_jiffies32;
6123
6124	if (sock_flag(sk, SOCK_KEEPOPEN))
6125		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6126
6127	if (!tp->rx_opt.snd_wscale)
6128		__tcp_fast_path_on(tp, tp->snd_wnd);
6129	else
6130		tp->pred_flags = 0;
6131}
6132
6133static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6134				    struct tcp_fastopen_cookie *cookie)
6135{
6136	struct tcp_sock *tp = tcp_sk(sk);
6137	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6138	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6139	bool syn_drop = false;
6140
6141	if (mss == tp->rx_opt.user_mss) {
6142		struct tcp_options_received opt;
6143
6144		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6145		tcp_clear_options(&opt);
6146		opt.user_mss = opt.mss_clamp = 0;
6147		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6148		mss = opt.mss_clamp;
6149	}
6150
6151	if (!tp->syn_fastopen) {
6152		/* Ignore an unsolicited cookie */
6153		cookie->len = -1;
6154	} else if (tp->total_retrans) {
6155		/* SYN timed out and the SYN-ACK neither has a cookie nor
6156		 * acknowledges data. Presumably the remote received only
6157		 * the retransmitted (regular) SYNs: either the original
6158		 * SYN-data or the corresponding SYN-ACK was dropped.
6159		 */
6160		syn_drop = (cookie->len < 0 && data);
6161	} else if (cookie->len < 0 && !tp->syn_data) {
6162		/* We requested a cookie but didn't get it. If we did not use
6163		 * the (old) exp opt format then try so next time (try_exp=1).
6164		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6165		 */
6166		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6167	}
6168
6169	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6170
6171	if (data) { /* Retransmit unacked data in SYN */
6172		if (tp->total_retrans)
6173			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6174		else
6175			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6176		skb_rbtree_walk_from(data)
6177			 tcp_mark_skb_lost(sk, data);
6178		tcp_xmit_retransmit_queue(sk);
6179		NET_INC_STATS(sock_net(sk),
6180				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6181		return true;
6182	}
6183	tp->syn_data_acked = tp->syn_data;
6184	if (tp->syn_data_acked) {
6185		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6186		/* SYN-data is counted as two separate packets in tcp_ack() */
6187		if (tp->delivered > 1)
6188			--tp->delivered;
6189	}
6190
6191	tcp_fastopen_add_skb(sk, synack);
6192
6193	return false;
6194}
6195
6196static void smc_check_reset_syn(struct tcp_sock *tp)
6197{
6198#if IS_ENABLED(CONFIG_SMC)
6199	if (static_branch_unlikely(&tcp_have_smc)) {
6200		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6201			tp->syn_smc = 0;
6202	}
6203#endif
6204}
6205
6206static void tcp_try_undo_spurious_syn(struct sock *sk)
6207{
6208	struct tcp_sock *tp = tcp_sk(sk);
6209	u32 syn_stamp;
6210
6211	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6212	 * spurious if the ACK's timestamp option echo value matches the
6213	 * original SYN timestamp.
6214	 */
6215	syn_stamp = tp->retrans_stamp;
6216	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6217	    syn_stamp == tp->rx_opt.rcv_tsecr)
6218		tp->undo_marker = 0;
6219}
6220
6221static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6222					 const struct tcphdr *th)
6223{
6224	struct inet_connection_sock *icsk = inet_csk(sk);
6225	struct tcp_sock *tp = tcp_sk(sk);
6226	struct tcp_fastopen_cookie foc = { .len = -1 };
6227	int saved_clamp = tp->rx_opt.mss_clamp;
6228	bool fastopen_fail;
6229	SKB_DR(reason);
6230
6231	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6232	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6233		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6234
6235	if (th->ack) {
6236		/* rfc793:
6237		 * "If the state is SYN-SENT then
6238		 *    first check the ACK bit
6239		 *      If the ACK bit is set
6240		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6241		 *        a reset (unless the RST bit is set, if so drop
6242		 *        the segment and return)"
6243		 */
6244		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6245		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6246			/* Previous FIN/ACK or RST/ACK might be ignored. */
6247			if (icsk->icsk_retransmits == 0)
6248				inet_csk_reset_xmit_timer(sk,
6249						ICSK_TIME_RETRANS,
6250						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6251			goto reset_and_undo;
6252		}
6253
6254		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6255		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6256			     tcp_time_stamp(tp))) {
6257			NET_INC_STATS(sock_net(sk),
6258					LINUX_MIB_PAWSACTIVEREJECTED);
6259			goto reset_and_undo;
6260		}
6261
6262		/* Now ACK is acceptable.
6263		 *
6264		 * "If the RST bit is set
6265		 *    If the ACK was acceptable then signal the user "error:
6266		 *    connection reset", drop the segment, enter CLOSED state,
6267		 *    delete TCB, and return."
6268		 */
6269
6270		if (th->rst) {
6271			tcp_reset(sk, skb);
6272consume:
6273			__kfree_skb(skb);
6274			return 0;
6275		}
6276
6277		/* rfc793:
6278		 *   "fifth, if neither of the SYN or RST bits is set then
6279		 *    drop the segment and return."
6280		 *
6281		 *    See note below!
6282		 *                                        --ANK(990513)
6283		 */
6284		if (!th->syn) {
6285			SKB_DR_SET(reason, TCP_FLAGS);
6286			goto discard_and_undo;
6287		}
6288		/* rfc793:
6289		 *   "If the SYN bit is on ...
6290		 *    are acceptable then ...
6291		 *    (our SYN has been ACKed), change the connection
6292		 *    state to ESTABLISHED..."
6293		 */
6294
6295		tcp_ecn_rcv_synack(tp, th);
6296
6297		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6298		tcp_try_undo_spurious_syn(sk);
6299		tcp_ack(sk, skb, FLAG_SLOWPATH);
6300
6301		/* Ok.. it's good. Set up sequence numbers and
6302		 * move to established.
6303		 */
6304		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6305		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6306
6307		/* RFC1323: The window in SYN & SYN/ACK segments is
6308		 * never scaled.
6309		 */
6310		tp->snd_wnd = ntohs(th->window);
6311
6312		if (!tp->rx_opt.wscale_ok) {
6313			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6314			tp->window_clamp = min(tp->window_clamp, 65535U);
6315		}
6316
6317		if (tp->rx_opt.saw_tstamp) {
6318			tp->rx_opt.tstamp_ok	   = 1;
6319			tp->tcp_header_len =
6320				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6321			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6322			tcp_store_ts_recent(tp);
6323		} else {
6324			tp->tcp_header_len = sizeof(struct tcphdr);
6325		}
6326
6327		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6328		tcp_initialize_rcv_mss(sk);
6329
6330		/* Remember, tcp_poll() does not lock socket!
6331		 * Change state from SYN-SENT only after copied_seq
6332		 * is initialized. */
6333		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6334
6335		smc_check_reset_syn(tp);
6336
6337		smp_mb();
6338
6339		tcp_finish_connect(sk, skb);
6340
6341		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6342				tcp_rcv_fastopen_synack(sk, skb, &foc);
6343
6344		if (!sock_flag(sk, SOCK_DEAD)) {
6345			sk->sk_state_change(sk);
6346			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6347		}
6348		if (fastopen_fail)
6349			return -1;
6350		if (sk->sk_write_pending ||
6351		    READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept) ||
6352		    inet_csk_in_pingpong_mode(sk)) {
6353			/* Save one ACK. Data will be ready after
6354			 * several ticks, if write_pending is set.
6355			 *
6356			 * It may be deleted, but with this feature tcpdumps
6357			 * look so _wonderfully_ clever, that I was not able
6358			 * to stand against the temptation 8)     --ANK
6359			 */
6360			inet_csk_schedule_ack(sk);
6361			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6362			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6363						  TCP_DELACK_MAX, TCP_RTO_MAX);
6364			goto consume;
6365		}
6366		tcp_send_ack(sk);
6367		return -1;
6368	}
6369
6370	/* No ACK in the segment */
6371
6372	if (th->rst) {
6373		/* rfc793:
6374		 * "If the RST bit is set
6375		 *
6376		 *      Otherwise (no ACK) drop the segment and return."
6377		 */
6378		SKB_DR_SET(reason, TCP_RESET);
6379		goto discard_and_undo;
6380	}
6381
6382	/* PAWS check. */
6383	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6384	    tcp_paws_reject(&tp->rx_opt, 0)) {
6385		SKB_DR_SET(reason, TCP_RFC7323_PAWS);
6386		goto discard_and_undo;
6387	}
6388	if (th->syn) {
6389		/* We see SYN without ACK. It is attempt of
6390		 * simultaneous connect with crossed SYNs.
6391		 * Particularly, it can be connect to self.
6392		 */
6393		tcp_set_state(sk, TCP_SYN_RECV);
6394
6395		if (tp->rx_opt.saw_tstamp) {
6396			tp->rx_opt.tstamp_ok = 1;
6397			tcp_store_ts_recent(tp);
6398			tp->tcp_header_len =
6399				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6400		} else {
6401			tp->tcp_header_len = sizeof(struct tcphdr);
6402		}
6403
6404		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6405		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6406		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6407
6408		/* RFC1323: The window in SYN & SYN/ACK segments is
6409		 * never scaled.
6410		 */
6411		tp->snd_wnd    = ntohs(th->window);
6412		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6413		tp->max_window = tp->snd_wnd;
6414
6415		tcp_ecn_rcv_syn(tp, th);
6416
6417		tcp_mtup_init(sk);
6418		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6419		tcp_initialize_rcv_mss(sk);
6420
6421		tcp_send_synack(sk);
6422#if 0
6423		/* Note, we could accept data and URG from this segment.
6424		 * There are no obstacles to make this (except that we must
6425		 * either change tcp_recvmsg() to prevent it from returning data
6426		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6427		 *
6428		 * However, if we ignore data in ACKless segments sometimes,
6429		 * we have no reasons to accept it sometimes.
6430		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6431		 * is not flawless. So, discard packet for sanity.
6432		 * Uncomment this return to process the data.
6433		 */
6434		return -1;
6435#else
6436		goto consume;
6437#endif
6438	}
6439	/* "fifth, if neither of the SYN or RST bits is set then
6440	 * drop the segment and return."
6441	 */
6442
6443discard_and_undo:
6444	tcp_clear_options(&tp->rx_opt);
6445	tp->rx_opt.mss_clamp = saved_clamp;
6446	tcp_drop_reason(sk, skb, reason);
6447	return 0;
6448
6449reset_and_undo:
6450	tcp_clear_options(&tp->rx_opt);
6451	tp->rx_opt.mss_clamp = saved_clamp;
6452	return 1;
6453}
6454
6455static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6456{
6457	struct tcp_sock *tp = tcp_sk(sk);
6458	struct request_sock *req;
6459
6460	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6461	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6462	 */
6463	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss && !tp->packets_out)
6464		tcp_try_undo_recovery(sk);
6465
6466	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6467	tp->retrans_stamp = 0;
6468	inet_csk(sk)->icsk_retransmits = 0;
6469
6470	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6471	 * we no longer need req so release it.
6472	 */
6473	req = rcu_dereference_protected(tp->fastopen_rsk,
6474					lockdep_sock_is_held(sk));
6475	reqsk_fastopen_remove(sk, req, false);
6476
6477	/* Re-arm the timer because data may have been sent out.
6478	 * This is similar to the regular data transmission case
6479	 * when new data has just been ack'ed.
6480	 *
6481	 * (TFO) - we could try to be more aggressive and
6482	 * retransmitting any data sooner based on when they
6483	 * are sent out.
6484	 */
6485	tcp_rearm_rto(sk);
6486}
6487
6488/*
6489 *	This function implements the receiving procedure of RFC 793 for
6490 *	all states except ESTABLISHED and TIME_WAIT.
6491 *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6492 *	address independent.
6493 */
6494
6495int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6496{
6497	struct tcp_sock *tp = tcp_sk(sk);
6498	struct inet_connection_sock *icsk = inet_csk(sk);
6499	const struct tcphdr *th = tcp_hdr(skb);
6500	struct request_sock *req;
6501	int queued = 0;
6502	bool acceptable;
6503	SKB_DR(reason);
6504
6505	switch (sk->sk_state) {
6506	case TCP_CLOSE:
6507		SKB_DR_SET(reason, TCP_CLOSE);
6508		goto discard;
6509
6510	case TCP_LISTEN:
6511		if (th->ack)
6512			return 1;
6513
6514		if (th->rst) {
6515			SKB_DR_SET(reason, TCP_RESET);
6516			goto discard;
6517		}
6518		if (th->syn) {
6519			if (th->fin) {
6520				SKB_DR_SET(reason, TCP_FLAGS);
6521				goto discard;
6522			}
6523			/* It is possible that we process SYN packets from backlog,
6524			 * so we need to make sure to disable BH and RCU right there.
6525			 */
6526			rcu_read_lock();
6527			local_bh_disable();
6528			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6529			local_bh_enable();
6530			rcu_read_unlock();
6531
6532			if (!acceptable)
6533				return 1;
6534			consume_skb(skb);
6535			return 0;
6536		}
6537		SKB_DR_SET(reason, TCP_FLAGS);
6538		goto discard;
6539
6540	case TCP_SYN_SENT:
6541		tp->rx_opt.saw_tstamp = 0;
6542		tcp_mstamp_refresh(tp);
6543		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6544		if (queued >= 0)
6545			return queued;
6546
6547		/* Do step6 onward by hand. */
6548		tcp_urg(sk, skb, th);
6549		__kfree_skb(skb);
6550		tcp_data_snd_check(sk);
6551		return 0;
6552	}
6553
6554	tcp_mstamp_refresh(tp);
6555	tp->rx_opt.saw_tstamp = 0;
6556	req = rcu_dereference_protected(tp->fastopen_rsk,
6557					lockdep_sock_is_held(sk));
6558	if (req) {
6559		bool req_stolen;
6560
6561		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6562		    sk->sk_state != TCP_FIN_WAIT1);
6563
6564		if (!tcp_check_req(sk, skb, req, true, &req_stolen)) {
6565			SKB_DR_SET(reason, TCP_FASTOPEN);
6566			goto discard;
6567		}
6568	}
6569
6570	if (!th->ack && !th->rst && !th->syn) {
6571		SKB_DR_SET(reason, TCP_FLAGS);
6572		goto discard;
6573	}
6574	if (!tcp_validate_incoming(sk, skb, th, 0))
6575		return 0;
6576
6577	/* step 5: check the ACK field */
6578	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6579				      FLAG_UPDATE_TS_RECENT |
6580				      FLAG_NO_CHALLENGE_ACK) > 0;
6581
6582	if (!acceptable) {
6583		if (sk->sk_state == TCP_SYN_RECV)
6584			return 1;	/* send one RST */
6585		tcp_send_challenge_ack(sk);
6586		SKB_DR_SET(reason, TCP_OLD_ACK);
6587		goto discard;
6588	}
6589	switch (sk->sk_state) {
6590	case TCP_SYN_RECV:
6591		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6592		if (!tp->srtt_us)
6593			tcp_synack_rtt_meas(sk, req);
6594
6595		if (req) {
6596			tcp_rcv_synrecv_state_fastopen(sk);
6597		} else {
6598			tcp_try_undo_spurious_syn(sk);
6599			tp->retrans_stamp = 0;
6600			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6601					  skb);
6602			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6603		}
6604		smp_mb();
6605		tcp_set_state(sk, TCP_ESTABLISHED);
6606		sk->sk_state_change(sk);
6607
6608		/* Note, that this wakeup is only for marginal crossed SYN case.
6609		 * Passively open sockets are not waked up, because
6610		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6611		 */
6612		if (sk->sk_socket)
6613			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6614
6615		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6616		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6617		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6618
6619		if (tp->rx_opt.tstamp_ok)
6620			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6621
6622		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6623			tcp_update_pacing_rate(sk);
6624
6625		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6626		tp->lsndtime = tcp_jiffies32;
6627
6628		tcp_initialize_rcv_mss(sk);
6629		tcp_fast_path_on(tp);
6630		break;
6631
6632	case TCP_FIN_WAIT1: {
6633		int tmo;
6634
6635		if (req)
6636			tcp_rcv_synrecv_state_fastopen(sk);
6637
6638		if (tp->snd_una != tp->write_seq)
6639			break;
6640
6641		tcp_set_state(sk, TCP_FIN_WAIT2);
6642		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6643
6644		sk_dst_confirm(sk);
6645
6646		if (!sock_flag(sk, SOCK_DEAD)) {
6647			/* Wake up lingering close() */
6648			sk->sk_state_change(sk);
6649			break;
6650		}
6651
6652		if (READ_ONCE(tp->linger2) < 0) {
6653			tcp_done(sk);
6654			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6655			return 1;
6656		}
6657		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6658		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6659			/* Receive out of order FIN after close() */
6660			if (tp->syn_fastopen && th->fin)
6661				tcp_fastopen_active_disable(sk);
6662			tcp_done(sk);
6663			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6664			return 1;
6665		}
6666
6667		tmo = tcp_fin_time(sk);
6668		if (tmo > TCP_TIMEWAIT_LEN) {
6669			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6670		} else if (th->fin || sock_owned_by_user(sk)) {
6671			/* Bad case. We could lose such FIN otherwise.
6672			 * It is not a big problem, but it looks confusing
6673			 * and not so rare event. We still can lose it now,
6674			 * if it spins in bh_lock_sock(), but it is really
6675			 * marginal case.
6676			 */
6677			inet_csk_reset_keepalive_timer(sk, tmo);
6678		} else {
6679			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6680			goto consume;
6681		}
6682		break;
6683	}
6684
6685	case TCP_CLOSING:
6686		if (tp->snd_una == tp->write_seq) {
6687			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6688			goto consume;
6689		}
6690		break;
6691
6692	case TCP_LAST_ACK:
6693		if (tp->snd_una == tp->write_seq) {
6694			tcp_update_metrics(sk);
6695			tcp_done(sk);
6696			goto consume;
6697		}
6698		break;
6699	}
6700
6701	/* step 6: check the URG bit */
6702	tcp_urg(sk, skb, th);
6703
6704	/* step 7: process the segment text */
6705	switch (sk->sk_state) {
6706	case TCP_CLOSE_WAIT:
6707	case TCP_CLOSING:
6708	case TCP_LAST_ACK:
6709		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6710			/* If a subflow has been reset, the packet should not
6711			 * continue to be processed, drop the packet.
6712			 */
6713			if (sk_is_mptcp(sk) && !mptcp_incoming_options(sk, skb))
6714				goto discard;
6715			break;
6716		}
6717		fallthrough;
6718	case TCP_FIN_WAIT1:
6719	case TCP_FIN_WAIT2:
6720		/* RFC 793 says to queue data in these states,
6721		 * RFC 1122 says we MUST send a reset.
6722		 * BSD 4.4 also does reset.
6723		 */
6724		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6725			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6726			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6727				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6728				tcp_reset(sk, skb);
6729				return 1;
6730			}
6731		}
6732		fallthrough;
6733	case TCP_ESTABLISHED:
6734		tcp_data_queue(sk, skb);
6735		queued = 1;
6736		break;
6737	}
6738
6739	/* tcp_data could move socket to TIME-WAIT */
6740	if (sk->sk_state != TCP_CLOSE) {
6741		tcp_data_snd_check(sk);
6742		tcp_ack_snd_check(sk);
6743	}
6744
6745	if (!queued) {
6746discard:
6747		tcp_drop_reason(sk, skb, reason);
6748	}
6749	return 0;
6750
6751consume:
6752	__kfree_skb(skb);
6753	return 0;
6754}
6755EXPORT_SYMBOL(tcp_rcv_state_process);
6756
6757static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6758{
6759	struct inet_request_sock *ireq = inet_rsk(req);
6760
6761	if (family == AF_INET)
6762		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6763				    &ireq->ir_rmt_addr, port);
6764#if IS_ENABLED(CONFIG_IPV6)
6765	else if (family == AF_INET6)
6766		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6767				    &ireq->ir_v6_rmt_addr, port);
6768#endif
6769}
6770
6771/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6772 *
6773 * If we receive a SYN packet with these bits set, it means a
6774 * network is playing bad games with TOS bits. In order to
6775 * avoid possible false congestion notifications, we disable
6776 * TCP ECN negotiation.
6777 *
6778 * Exception: tcp_ca wants ECN. This is required for DCTCP
6779 * congestion control: Linux DCTCP asserts ECT on all packets,
6780 * including SYN, which is most optimal solution; however,
6781 * others, such as FreeBSD do not.
6782 *
6783 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6784 * set, indicating the use of a future TCP extension (such as AccECN). See
6785 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6786 * extensions.
6787 */
6788static void tcp_ecn_create_request(struct request_sock *req,
6789				   const struct sk_buff *skb,
6790				   const struct sock *listen_sk,
6791				   const struct dst_entry *dst)
6792{
6793	const struct tcphdr *th = tcp_hdr(skb);
6794	const struct net *net = sock_net(listen_sk);
6795	bool th_ecn = th->ece && th->cwr;
6796	bool ect, ecn_ok;
6797	u32 ecn_ok_dst;
6798
6799	if (!th_ecn)
6800		return;
6801
6802	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6803	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6804	ecn_ok = READ_ONCE(net->ipv4.sysctl_tcp_ecn) || ecn_ok_dst;
6805
6806	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6807	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6808	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6809		inet_rsk(req)->ecn_ok = 1;
6810}
6811
6812static void tcp_openreq_init(struct request_sock *req,
6813			     const struct tcp_options_received *rx_opt,
6814			     struct sk_buff *skb, const struct sock *sk)
6815{
6816	struct inet_request_sock *ireq = inet_rsk(req);
6817
6818	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6819	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6820	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6821	tcp_rsk(req)->snt_synack = 0;
6822	tcp_rsk(req)->last_oow_ack_time = 0;
6823	req->mss = rx_opt->mss_clamp;
6824	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6825	ireq->tstamp_ok = rx_opt->tstamp_ok;
6826	ireq->sack_ok = rx_opt->sack_ok;
6827	ireq->snd_wscale = rx_opt->snd_wscale;
6828	ireq->wscale_ok = rx_opt->wscale_ok;
6829	ireq->acked = 0;
6830	ireq->ecn_ok = 0;
6831	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6832	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6833	ireq->ir_mark = inet_request_mark(sk, skb);
6834#if IS_ENABLED(CONFIG_SMC)
6835	ireq->smc_ok = rx_opt->smc_ok && !(tcp_sk(sk)->smc_hs_congested &&
6836			tcp_sk(sk)->smc_hs_congested(sk));
6837#endif
6838}
6839
6840struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6841				      struct sock *sk_listener,
6842				      bool attach_listener)
6843{
6844	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6845					       attach_listener);
6846
6847	if (req) {
6848		struct inet_request_sock *ireq = inet_rsk(req);
6849
6850		ireq->ireq_opt = NULL;
6851#if IS_ENABLED(CONFIG_IPV6)
6852		ireq->pktopts = NULL;
6853#endif
6854		atomic64_set(&ireq->ir_cookie, 0);
6855		ireq->ireq_state = TCP_NEW_SYN_RECV;
6856		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6857		ireq->ireq_family = sk_listener->sk_family;
6858		req->timeout = TCP_TIMEOUT_INIT;
6859	}
6860
6861	return req;
6862}
6863EXPORT_SYMBOL(inet_reqsk_alloc);
6864
6865/*
6866 * Return true if a syncookie should be sent
6867 */
6868static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6869{
6870	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6871	const char *msg = "Dropping request";
6872	struct net *net = sock_net(sk);
6873	bool want_cookie = false;
6874	u8 syncookies;
6875
6876	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6877
6878#ifdef CONFIG_SYN_COOKIES
6879	if (syncookies) {
6880		msg = "Sending cookies";
6881		want_cookie = true;
6882		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6883	} else
6884#endif
6885		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6886
6887	if (!READ_ONCE(queue->synflood_warned) && syncookies != 2 &&
6888	    xchg(&queue->synflood_warned, 1) == 0) {
6889		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_family == AF_INET6) {
6890			net_info_ratelimited("%s: Possible SYN flooding on port [%pI6c]:%u. %s.\n",
6891					proto, inet6_rcv_saddr(sk),
6892					sk->sk_num, msg);
6893		} else {
6894			net_info_ratelimited("%s: Possible SYN flooding on port %pI4:%u. %s.\n",
6895					proto, &sk->sk_rcv_saddr,
6896					sk->sk_num, msg);
6897		}
6898	}
6899
6900	return want_cookie;
6901}
6902
6903static void tcp_reqsk_record_syn(const struct sock *sk,
6904				 struct request_sock *req,
6905				 const struct sk_buff *skb)
6906{
6907	if (tcp_sk(sk)->save_syn) {
6908		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6909		struct saved_syn *saved_syn;
6910		u32 mac_hdrlen;
6911		void *base;
6912
6913		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6914			base = skb_mac_header(skb);
6915			mac_hdrlen = skb_mac_header_len(skb);
6916			len += mac_hdrlen;
6917		} else {
6918			base = skb_network_header(skb);
6919			mac_hdrlen = 0;
6920		}
6921
6922		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6923				    GFP_ATOMIC);
6924		if (saved_syn) {
6925			saved_syn->mac_hdrlen = mac_hdrlen;
6926			saved_syn->network_hdrlen = skb_network_header_len(skb);
6927			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6928			memcpy(saved_syn->data, base, len);
6929			req->saved_syn = saved_syn;
6930		}
6931	}
6932}
6933
6934/* If a SYN cookie is required and supported, returns a clamped MSS value to be
6935 * used for SYN cookie generation.
6936 */
6937u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6938			  const struct tcp_request_sock_ops *af_ops,
6939			  struct sock *sk, struct tcphdr *th)
6940{
6941	struct tcp_sock *tp = tcp_sk(sk);
6942	u16 mss;
6943
6944	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6945	    !inet_csk_reqsk_queue_is_full(sk))
6946		return 0;
6947
6948	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6949		return 0;
6950
6951	if (sk_acceptq_is_full(sk)) {
6952		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6953		return 0;
6954	}
6955
6956	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6957	if (!mss)
6958		mss = af_ops->mss_clamp;
6959
6960	return mss;
6961}
6962EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6963
6964int tcp_conn_request(struct request_sock_ops *rsk_ops,
6965		     const struct tcp_request_sock_ops *af_ops,
6966		     struct sock *sk, struct sk_buff *skb)
6967{
6968	struct tcp_fastopen_cookie foc = { .len = -1 };
6969	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6970	struct tcp_options_received tmp_opt;
6971	struct tcp_sock *tp = tcp_sk(sk);
6972	struct net *net = sock_net(sk);
6973	struct sock *fastopen_sk = NULL;
6974	struct request_sock *req;
6975	bool want_cookie = false;
6976	struct dst_entry *dst;
6977	struct flowi fl;
6978	u8 syncookies;
6979
6980	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6981
6982	/* TW buckets are converted to open requests without
6983	 * limitations, they conserve resources and peer is
6984	 * evidently real one.
6985	 */
6986	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6987		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6988		if (!want_cookie)
6989			goto drop;
6990	}
6991
6992	if (sk_acceptq_is_full(sk)) {
6993		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6994		goto drop;
6995	}
6996
6997	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6998	if (!req)
6999		goto drop;
7000
7001	req->syncookie = want_cookie;
7002	tcp_rsk(req)->af_specific = af_ops;
7003	tcp_rsk(req)->ts_off = 0;
7004#if IS_ENABLED(CONFIG_MPTCP)
7005	tcp_rsk(req)->is_mptcp = 0;
7006#endif
7007
7008	tcp_clear_options(&tmp_opt);
7009	tmp_opt.mss_clamp = af_ops->mss_clamp;
7010	tmp_opt.user_mss  = tp->rx_opt.user_mss;
7011	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
7012			  want_cookie ? NULL : &foc);
7013
7014	if (want_cookie && !tmp_opt.saw_tstamp)
7015		tcp_clear_options(&tmp_opt);
7016
7017	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
7018		tmp_opt.smc_ok = 0;
7019
7020	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
7021	tcp_openreq_init(req, &tmp_opt, skb, sk);
7022	inet_rsk(req)->no_srccheck = inet_test_bit(TRANSPARENT, sk);
7023
7024	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
7025	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
7026
7027	dst = af_ops->route_req(sk, skb, &fl, req);
7028	if (!dst)
7029		goto drop_and_free;
7030
7031	if (tmp_opt.tstamp_ok)
7032		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
7033
7034	if (!want_cookie && !isn) {
7035		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
7036
7037		/* Kill the following clause, if you dislike this way. */
7038		if (!syncookies &&
7039		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
7040		     (max_syn_backlog >> 2)) &&
7041		    !tcp_peer_is_proven(req, dst)) {
7042			/* Without syncookies last quarter of
7043			 * backlog is filled with destinations,
7044			 * proven to be alive.
7045			 * It means that we continue to communicate
7046			 * to destinations, already remembered
7047			 * to the moment of synflood.
7048			 */
7049			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
7050				    rsk_ops->family);
7051			goto drop_and_release;
7052		}
7053
7054		isn = af_ops->init_seq(skb);
7055	}
7056
7057	tcp_ecn_create_request(req, skb, sk, dst);
7058
7059	if (want_cookie) {
7060		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
7061		if (!tmp_opt.tstamp_ok)
7062			inet_rsk(req)->ecn_ok = 0;
7063	}
7064
7065	tcp_rsk(req)->snt_isn = isn;
7066	tcp_rsk(req)->txhash = net_tx_rndhash();
7067	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
7068	tcp_openreq_init_rwin(req, sk, dst);
7069	sk_rx_queue_set(req_to_sk(req), skb);
7070	if (!want_cookie) {
7071		tcp_reqsk_record_syn(sk, req, skb);
7072		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
7073	}
7074	if (fastopen_sk) {
7075		af_ops->send_synack(fastopen_sk, dst, &fl, req,
7076				    &foc, TCP_SYNACK_FASTOPEN, skb);
7077		/* Add the child socket directly into the accept queue */
7078		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
7079			reqsk_fastopen_remove(fastopen_sk, req, false);
7080			bh_unlock_sock(fastopen_sk);
7081			sock_put(fastopen_sk);
7082			goto drop_and_free;
7083		}
7084		sk->sk_data_ready(sk);
7085		bh_unlock_sock(fastopen_sk);
7086		sock_put(fastopen_sk);
7087	} else {
7088		tcp_rsk(req)->tfo_listener = false;
7089		if (!want_cookie) {
7090			req->timeout = tcp_timeout_init((struct sock *)req);
7091			inet_csk_reqsk_queue_hash_add(sk, req, req->timeout);
7092		}
7093		af_ops->send_synack(sk, dst, &fl, req, &foc,
7094				    !want_cookie ? TCP_SYNACK_NORMAL :
7095						   TCP_SYNACK_COOKIE,
7096				    skb);
7097		if (want_cookie) {
7098			reqsk_free(req);
7099			return 0;
7100		}
7101	}
7102	reqsk_put(req);
7103	return 0;
7104
7105drop_and_release:
7106	dst_release(dst);
7107drop_and_free:
7108	__reqsk_free(req);
7109drop:
7110	tcp_listendrop(sk);
7111	return 0;
7112}
7113EXPORT_SYMBOL(tcp_conn_request);
7114