xref: /kernel/linux/linux-6.6/net/ipv4/tcp.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors:	Ross Biro
10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13 *		Florian La Roche, <flla@stud.uni-sb.de>
14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 *		Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 *		Alan Cox	:	Numerous verify_area() calls
23 *		Alan Cox	:	Set the ACK bit on a reset
24 *		Alan Cox	:	Stopped it crashing if it closed while
25 *					sk->inuse=1 and was trying to connect
26 *					(tcp_err()).
27 *		Alan Cox	:	All icmp error handling was broken
28 *					pointers passed where wrong and the
29 *					socket was looked up backwards. Nobody
30 *					tested any icmp error code obviously.
31 *		Alan Cox	:	tcp_err() now handled properly. It
32 *					wakes people on errors. poll
33 *					behaves and the icmp error race
34 *					has gone by moving it into sock.c
35 *		Alan Cox	:	tcp_send_reset() fixed to work for
36 *					everything not just packets for
37 *					unknown sockets.
38 *		Alan Cox	:	tcp option processing.
39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
40 *					syn rule wrong]
41 *		Herp Rosmanith  :	More reset fixes
42 *		Alan Cox	:	No longer acks invalid rst frames.
43 *					Acking any kind of RST is right out.
44 *		Alan Cox	:	Sets an ignore me flag on an rst
45 *					receive otherwise odd bits of prattle
46 *					escape still
47 *		Alan Cox	:	Fixed another acking RST frame bug.
48 *					Should stop LAN workplace lockups.
49 *		Alan Cox	: 	Some tidyups using the new skb list
50 *					facilities
51 *		Alan Cox	:	sk->keepopen now seems to work
52 *		Alan Cox	:	Pulls options out correctly on accepts
53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
55 *					bit to skb ops.
56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
57 *					nasty.
58 *		Alan Cox	:	Added some better commenting, as the
59 *					tcp is hard to follow
60 *		Alan Cox	:	Removed incorrect check for 20 * psh
61 *	Michael O'Reilly	:	ack < copied bug fix.
62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
63 *		Alan Cox	:	FIN with no memory -> CRASH
64 *		Alan Cox	:	Added socket option proto entries.
65 *					Also added awareness of them to accept.
66 *		Alan Cox	:	Added TCP options (SOL_TCP)
67 *		Alan Cox	:	Switched wakeup calls to callbacks,
68 *					so the kernel can layer network
69 *					sockets.
70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
72 *		Alan Cox	:	RST frames sent on unsynchronised
73 *					state ack error.
74 *		Alan Cox	:	Put in missing check for SYN bit.
75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
76 *					window non shrink trick.
77 *		Alan Cox	:	Added a couple of small NET2E timer
78 *					fixes
79 *		Charles Hedrick :	TCP fixes
80 *		Toomas Tamm	:	TCP window fixes
81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
82 *		Charles Hedrick	:	Rewrote most of it to actually work
83 *		Linus		:	Rewrote tcp_read() and URG handling
84 *					completely
85 *		Gerhard Koerting:	Fixed some missing timer handling
86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
87 *		Gerhard Koerting:	PC/TCP workarounds
88 *		Adam Caldwell	:	Assorted timer/timing errors
89 *		Matthew Dillon	:	Fixed another RST bug
90 *		Alan Cox	:	Move to kernel side addressing changes.
91 *		Alan Cox	:	Beginning work on TCP fastpathing
92 *					(not yet usable)
93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
94 *		Alan Cox	:	TCP fast path debugging
95 *		Alan Cox	:	Window clamping
96 *		Michael Riepe	:	Bug in tcp_check()
97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
98 *		Matt Dillon	:	Yet more small nasties remove from the
99 *					TCP code (Be very nice to this man if
100 *					tcp finally works 100%) 8)
101 *		Alan Cox	:	BSD accept semantics.
102 *		Alan Cox	:	Reset on closedown bug.
103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
104 *		Michael Pall	:	Handle poll() after URG properly in
105 *					all cases.
106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
107 *					(multi URG PUSH broke rlogin).
108 *		Michael Pall	:	Fix the multi URG PUSH problem in
109 *					tcp_readable(), poll() after URG
110 *					works now.
111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
112 *					BSD api.
113 *		Alan Cox	:	Changed the semantics of sk->socket to
114 *					fix a race and a signal problem with
115 *					accept() and async I/O.
116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
119 *					clients/servers which listen in on
120 *					fixed ports.
121 *		Alan Cox	:	Cleaned the above up and shrank it to
122 *					a sensible code size.
123 *		Alan Cox	:	Self connect lockup fix.
124 *		Alan Cox	:	No connect to multicast.
125 *		Ross Biro	:	Close unaccepted children on master
126 *					socket close.
127 *		Alan Cox	:	Reset tracing code.
128 *		Alan Cox	:	Spurious resets on shutdown.
129 *		Alan Cox	:	Giant 15 minute/60 second timer error
130 *		Alan Cox	:	Small whoops in polling before an
131 *					accept.
132 *		Alan Cox	:	Kept the state trace facility since
133 *					it's handy for debugging.
134 *		Alan Cox	:	More reset handler fixes.
135 *		Alan Cox	:	Started rewriting the code based on
136 *					the RFC's for other useful protocol
137 *					references see: Comer, KA9Q NOS, and
138 *					for a reference on the difference
139 *					between specifications and how BSD
140 *					works see the 4.4lite source.
141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
142 *					close.
143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
145 *		Alan Cox	:	Reimplemented timers as per the RFC
146 *					and using multiple timers for sanity.
147 *		Alan Cox	:	Small bug fixes, and a lot of new
148 *					comments.
149 *		Alan Cox	:	Fixed dual reader crash by locking
150 *					the buffers (much like datagram.c)
151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
152 *					now gets fed up of retrying without
153 *					(even a no space) answer.
154 *		Alan Cox	:	Extracted closing code better
155 *		Alan Cox	:	Fixed the closing state machine to
156 *					resemble the RFC.
157 *		Alan Cox	:	More 'per spec' fixes.
158 *		Jorge Cwik	:	Even faster checksumming.
159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
160 *					only frames. At least one pc tcp stack
161 *					generates them.
162 *		Alan Cox	:	Cache last socket.
163 *		Alan Cox	:	Per route irtt.
164 *		Matt Day	:	poll()->select() match BSD precisely on error
165 *		Alan Cox	:	New buffers
166 *		Marc Tamsky	:	Various sk->prot->retransmits and
167 *					sk->retransmits misupdating fixed.
168 *					Fixed tcp_write_timeout: stuck close,
169 *					and TCP syn retries gets used now.
170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
171 *					ack if state is TCP_CLOSED.
172 *		Alan Cox	:	Look up device on a retransmit - routes may
173 *					change. Doesn't yet cope with MSS shrink right
174 *					but it's a start!
175 *		Marc Tamsky	:	Closing in closing fixes.
176 *		Mike Shaver	:	RFC1122 verifications.
177 *		Alan Cox	:	rcv_saddr errors.
178 *		Alan Cox	:	Block double connect().
179 *		Alan Cox	:	Small hooks for enSKIP.
180 *		Alexey Kuznetsov:	Path MTU discovery.
181 *		Alan Cox	:	Support soft errors.
182 *		Alan Cox	:	Fix MTU discovery pathological case
183 *					when the remote claims no mtu!
184 *		Marc Tamsky	:	TCP_CLOSE fix.
185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
186 *					window but wrong (fixes NT lpd problems)
187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
188 *		Joerg Reuter	:	No modification of locked buffers in
189 *					tcp_do_retransmit()
190 *		Eric Schenk	:	Changed receiver side silly window
191 *					avoidance algorithm to BSD style
192 *					algorithm. This doubles throughput
193 *					against machines running Solaris,
194 *					and seems to result in general
195 *					improvement.
196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
197 *	Willy Konynenberg	:	Transparent proxying support.
198 *	Mike McLagan		:	Routing by source
199 *		Keith Owens	:	Do proper merging with partial SKB's in
200 *					tcp_do_sendmsg to avoid burstiness.
201 *		Eric Schenk	:	Fix fast close down bug with
202 *					shutdown() followed by close().
203 *		Andi Kleen 	:	Make poll agree with SIGIO
204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
205 *					lingertime == 0 (RFC 793 ABORT Call)
206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
207 *					csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
212 *
213 *	TCP_SYN_RECV		received a connection request, sent ack,
214 *				waiting for final ack in three-way handshake.
215 *
216 *	TCP_ESTABLISHED		connection established
217 *
218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
219 *				transmission of remaining buffered data
220 *
221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
222 *				to shutdown
223 *
224 *	TCP_CLOSING		both sides have shutdown but we still have
225 *				data we have to finish sending
226 *
227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
228 *				closed, can only be entered from FIN_WAIT2
229 *				or CLOSING.  Required because the other end
230 *				may not have gotten our last ACK causing it
231 *				to retransmit the data packet (which we ignore)
232 *
233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
234 *				us to finish writing our data and to shutdown
235 *				(we have to close() to move on to LAST_ACK)
236 *
237 *	TCP_LAST_ACK		out side has shutdown after remote has
238 *				shutdown.  There may still be data in our
239 *				buffer that we have to finish sending
240 *
241 *	TCP_CLOSE		socket is finished
242 */
243
244#define pr_fmt(fmt) "TCP: " fmt
245
246#include <crypto/hash.h>
247#include <linux/kernel.h>
248#include <linux/module.h>
249#include <linux/types.h>
250#include <linux/fcntl.h>
251#include <linux/poll.h>
252#include <linux/inet_diag.h>
253#include <linux/init.h>
254#include <linux/fs.h>
255#include <linux/skbuff.h>
256#include <linux/scatterlist.h>
257#include <linux/splice.h>
258#include <linux/net.h>
259#include <linux/socket.h>
260#include <linux/random.h>
261#include <linux/memblock.h>
262#include <linux/highmem.h>
263#include <linux/cache.h>
264#include <linux/err.h>
265#include <linux/time.h>
266#include <linux/slab.h>
267#include <linux/errqueue.h>
268#include <linux/static_key.h>
269#include <linux/btf.h>
270
271#include <net/icmp.h>
272#include <net/inet_common.h>
273#include <net/tcp.h>
274#include <net/mptcp.h>
275#include <net/xfrm.h>
276#include <net/ip.h>
277#include <net/sock.h>
278
279#include <linux/uaccess.h>
280#include <asm/ioctls.h>
281#include <net/busy_poll.h>
282
283/* Track pending CMSGs. */
284enum {
285	TCP_CMSG_INQ = 1,
286	TCP_CMSG_TS = 2
287};
288
289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
291
292long sysctl_tcp_mem[3] __read_mostly;
293EXPORT_SYMBOL(sysctl_tcp_mem);
294
295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
296EXPORT_SYMBOL(tcp_memory_allocated);
297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
299
300#if IS_ENABLED(CONFIG_SMC)
301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
302EXPORT_SYMBOL(tcp_have_smc);
303#endif
304
305/*
306 * Current number of TCP sockets.
307 */
308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
309EXPORT_SYMBOL(tcp_sockets_allocated);
310
311/*
312 * TCP splice context
313 */
314struct tcp_splice_state {
315	struct pipe_inode_info *pipe;
316	size_t len;
317	unsigned int flags;
318};
319
320/*
321 * Pressure flag: try to collapse.
322 * Technical note: it is used by multiple contexts non atomically.
323 * All the __sk_mem_schedule() is of this nature: accounting
324 * is strict, actions are advisory and have some latency.
325 */
326unsigned long tcp_memory_pressure __read_mostly;
327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
328
329void tcp_enter_memory_pressure(struct sock *sk)
330{
331	unsigned long val;
332
333	if (READ_ONCE(tcp_memory_pressure))
334		return;
335	val = jiffies;
336
337	if (!val)
338		val--;
339	if (!cmpxchg(&tcp_memory_pressure, 0, val))
340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341}
342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
344void tcp_leave_memory_pressure(struct sock *sk)
345{
346	unsigned long val;
347
348	if (!READ_ONCE(tcp_memory_pressure))
349		return;
350	val = xchg(&tcp_memory_pressure, 0);
351	if (val)
352		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353			      jiffies_to_msecs(jiffies - val));
354}
355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357/* Convert seconds to retransmits based on initial and max timeout */
358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359{
360	u8 res = 0;
361
362	if (seconds > 0) {
363		int period = timeout;
364
365		res = 1;
366		while (seconds > period && res < 255) {
367			res++;
368			timeout <<= 1;
369			if (timeout > rto_max)
370				timeout = rto_max;
371			period += timeout;
372		}
373	}
374	return res;
375}
376
377/* Convert retransmits to seconds based on initial and max timeout */
378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379{
380	int period = 0;
381
382	if (retrans > 0) {
383		period = timeout;
384		while (--retrans) {
385			timeout <<= 1;
386			if (timeout > rto_max)
387				timeout = rto_max;
388			period += timeout;
389		}
390	}
391	return period;
392}
393
394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395{
396	u32 rate = READ_ONCE(tp->rate_delivered);
397	u32 intv = READ_ONCE(tp->rate_interval_us);
398	u64 rate64 = 0;
399
400	if (rate && intv) {
401		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402		do_div(rate64, intv);
403	}
404	return rate64;
405}
406
407/* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 *       sk_alloc() so need not be done here.
411 */
412void tcp_init_sock(struct sock *sk)
413{
414	struct inet_connection_sock *icsk = inet_csk(sk);
415	struct tcp_sock *tp = tcp_sk(sk);
416
417	tp->out_of_order_queue = RB_ROOT;
418	sk->tcp_rtx_queue = RB_ROOT;
419	tcp_init_xmit_timers(sk);
420	INIT_LIST_HEAD(&tp->tsq_node);
421	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423	icsk->icsk_rto = TCP_TIMEOUT_INIT;
424	icsk->icsk_rto_min = TCP_RTO_MIN;
425	icsk->icsk_delack_max = TCP_DELACK_MAX;
426	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429	/* So many TCP implementations out there (incorrectly) count the
430	 * initial SYN frame in their delayed-ACK and congestion control
431	 * algorithms that we must have the following bandaid to talk
432	 * efficiently to them.  -DaveM
433	 */
434	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
435
436	/* There's a bubble in the pipe until at least the first ACK. */
437	tp->app_limited = ~0U;
438	tp->rate_app_limited = 1;
439
440	/* See draft-stevens-tcpca-spec-01 for discussion of the
441	 * initialization of these values.
442	 */
443	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444	tp->snd_cwnd_clamp = ~0;
445	tp->mss_cache = TCP_MSS_DEFAULT;
446
447	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448	tcp_assign_congestion_control(sk);
449
450	tp->tsoffset = 0;
451	tp->rack.reo_wnd_steps = 1;
452
453	sk->sk_write_space = sk_stream_write_space;
454	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456	icsk->icsk_sync_mss = tcp_sync_mss;
457
458	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460	tcp_scaling_ratio_init(sk);
461
462	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
463	sk_sockets_allocated_inc(sk);
464}
465EXPORT_SYMBOL(tcp_init_sock);
466
467static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
468{
469	struct sk_buff *skb = tcp_write_queue_tail(sk);
470
471	if (tsflags && skb) {
472		struct skb_shared_info *shinfo = skb_shinfo(skb);
473		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
474
475		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
476		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
477			tcb->txstamp_ack = 1;
478		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
479			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
480	}
481}
482
483static bool tcp_stream_is_readable(struct sock *sk, int target)
484{
485	if (tcp_epollin_ready(sk, target))
486		return true;
487	return sk_is_readable(sk);
488}
489
490/*
491 *	Wait for a TCP event.
492 *
493 *	Note that we don't need to lock the socket, as the upper poll layers
494 *	take care of normal races (between the test and the event) and we don't
495 *	go look at any of the socket buffers directly.
496 */
497__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
498{
499	__poll_t mask;
500	struct sock *sk = sock->sk;
501	const struct tcp_sock *tp = tcp_sk(sk);
502	u8 shutdown;
503	int state;
504
505	sock_poll_wait(file, sock, wait);
506
507	state = inet_sk_state_load(sk);
508	if (state == TCP_LISTEN)
509		return inet_csk_listen_poll(sk);
510
511	/* Socket is not locked. We are protected from async events
512	 * by poll logic and correct handling of state changes
513	 * made by other threads is impossible in any case.
514	 */
515
516	mask = 0;
517
518	/*
519	 * EPOLLHUP is certainly not done right. But poll() doesn't
520	 * have a notion of HUP in just one direction, and for a
521	 * socket the read side is more interesting.
522	 *
523	 * Some poll() documentation says that EPOLLHUP is incompatible
524	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
525	 * all. But careful, it tends to be safer to return too many
526	 * bits than too few, and you can easily break real applications
527	 * if you don't tell them that something has hung up!
528	 *
529	 * Check-me.
530	 *
531	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
532	 * our fs/select.c). It means that after we received EOF,
533	 * poll always returns immediately, making impossible poll() on write()
534	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
535	 * if and only if shutdown has been made in both directions.
536	 * Actually, it is interesting to look how Solaris and DUX
537	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
538	 * then we could set it on SND_SHUTDOWN. BTW examples given
539	 * in Stevens' books assume exactly this behaviour, it explains
540	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
541	 *
542	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
543	 * blocking on fresh not-connected or disconnected socket. --ANK
544	 */
545	shutdown = READ_ONCE(sk->sk_shutdown);
546	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
547		mask |= EPOLLHUP;
548	if (shutdown & RCV_SHUTDOWN)
549		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
550
551	/* Connected or passive Fast Open socket? */
552	if (state != TCP_SYN_SENT &&
553	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
554		int target = sock_rcvlowat(sk, 0, INT_MAX);
555		u16 urg_data = READ_ONCE(tp->urg_data);
556
557		if (unlikely(urg_data) &&
558		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
559		    !sock_flag(sk, SOCK_URGINLINE))
560			target++;
561
562		if (tcp_stream_is_readable(sk, target))
563			mask |= EPOLLIN | EPOLLRDNORM;
564
565		if (!(shutdown & SEND_SHUTDOWN)) {
566			if (__sk_stream_is_writeable(sk, 1)) {
567				mask |= EPOLLOUT | EPOLLWRNORM;
568			} else {  /* send SIGIO later */
569				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
570				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
571
572				/* Race breaker. If space is freed after
573				 * wspace test but before the flags are set,
574				 * IO signal will be lost. Memory barrier
575				 * pairs with the input side.
576				 */
577				smp_mb__after_atomic();
578				if (__sk_stream_is_writeable(sk, 1))
579					mask |= EPOLLOUT | EPOLLWRNORM;
580			}
581		} else
582			mask |= EPOLLOUT | EPOLLWRNORM;
583
584		if (urg_data & TCP_URG_VALID)
585			mask |= EPOLLPRI;
586	} else if (state == TCP_SYN_SENT &&
587		   inet_test_bit(DEFER_CONNECT, sk)) {
588		/* Active TCP fastopen socket with defer_connect
589		 * Return EPOLLOUT so application can call write()
590		 * in order for kernel to generate SYN+data
591		 */
592		mask |= EPOLLOUT | EPOLLWRNORM;
593	}
594	/* This barrier is coupled with smp_wmb() in tcp_reset() */
595	smp_rmb();
596	if (READ_ONCE(sk->sk_err) ||
597	    !skb_queue_empty_lockless(&sk->sk_error_queue))
598		mask |= EPOLLERR;
599
600	return mask;
601}
602EXPORT_SYMBOL(tcp_poll);
603
604int tcp_ioctl(struct sock *sk, int cmd, int *karg)
605{
606	struct tcp_sock *tp = tcp_sk(sk);
607	int answ;
608	bool slow;
609
610	switch (cmd) {
611	case SIOCINQ:
612		if (sk->sk_state == TCP_LISTEN)
613			return -EINVAL;
614
615		slow = lock_sock_fast(sk);
616		answ = tcp_inq(sk);
617		unlock_sock_fast(sk, slow);
618		break;
619	case SIOCATMARK:
620		answ = READ_ONCE(tp->urg_data) &&
621		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
622		break;
623	case SIOCOUTQ:
624		if (sk->sk_state == TCP_LISTEN)
625			return -EINVAL;
626
627		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
628			answ = 0;
629		else
630			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
631		break;
632	case SIOCOUTQNSD:
633		if (sk->sk_state == TCP_LISTEN)
634			return -EINVAL;
635
636		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
637			answ = 0;
638		else
639			answ = READ_ONCE(tp->write_seq) -
640			       READ_ONCE(tp->snd_nxt);
641		break;
642	default:
643		return -ENOIOCTLCMD;
644	}
645
646	*karg = answ;
647	return 0;
648}
649EXPORT_SYMBOL(tcp_ioctl);
650
651void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
652{
653	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
654	tp->pushed_seq = tp->write_seq;
655}
656
657static inline bool forced_push(const struct tcp_sock *tp)
658{
659	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
660}
661
662void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
663{
664	struct tcp_sock *tp = tcp_sk(sk);
665	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
666
667	tcb->seq     = tcb->end_seq = tp->write_seq;
668	tcb->tcp_flags = TCPHDR_ACK;
669	__skb_header_release(skb);
670	tcp_add_write_queue_tail(sk, skb);
671	sk_wmem_queued_add(sk, skb->truesize);
672	sk_mem_charge(sk, skb->truesize);
673	if (tp->nonagle & TCP_NAGLE_PUSH)
674		tp->nonagle &= ~TCP_NAGLE_PUSH;
675
676	tcp_slow_start_after_idle_check(sk);
677}
678
679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
680{
681	if (flags & MSG_OOB)
682		tp->snd_up = tp->write_seq;
683}
684
685/* If a not yet filled skb is pushed, do not send it if
686 * we have data packets in Qdisc or NIC queues :
687 * Because TX completion will happen shortly, it gives a chance
688 * to coalesce future sendmsg() payload into this skb, without
689 * need for a timer, and with no latency trade off.
690 * As packets containing data payload have a bigger truesize
691 * than pure acks (dataless) packets, the last checks prevent
692 * autocorking if we only have an ACK in Qdisc/NIC queues,
693 * or if TX completion was delayed after we processed ACK packet.
694 */
695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
696				int size_goal)
697{
698	return skb->len < size_goal &&
699	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
700	       !tcp_rtx_queue_empty(sk) &&
701	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
702	       tcp_skb_can_collapse_to(skb);
703}
704
705void tcp_push(struct sock *sk, int flags, int mss_now,
706	      int nonagle, int size_goal)
707{
708	struct tcp_sock *tp = tcp_sk(sk);
709	struct sk_buff *skb;
710
711	skb = tcp_write_queue_tail(sk);
712	if (!skb)
713		return;
714	if (!(flags & MSG_MORE) || forced_push(tp))
715		tcp_mark_push(tp, skb);
716
717	tcp_mark_urg(tp, flags);
718
719	if (tcp_should_autocork(sk, skb, size_goal)) {
720
721		/* avoid atomic op if TSQ_THROTTLED bit is already set */
722		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
723			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
724			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
725			smp_mb__after_atomic();
726		}
727		/* It is possible TX completion already happened
728		 * before we set TSQ_THROTTLED.
729		 */
730		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
731			return;
732	}
733
734	if (flags & MSG_MORE)
735		nonagle = TCP_NAGLE_CORK;
736
737	__tcp_push_pending_frames(sk, mss_now, nonagle);
738}
739
740static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
741				unsigned int offset, size_t len)
742{
743	struct tcp_splice_state *tss = rd_desc->arg.data;
744	int ret;
745
746	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
747			      min(rd_desc->count, len), tss->flags);
748	if (ret > 0)
749		rd_desc->count -= ret;
750	return ret;
751}
752
753static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
754{
755	/* Store TCP splice context information in read_descriptor_t. */
756	read_descriptor_t rd_desc = {
757		.arg.data = tss,
758		.count	  = tss->len,
759	};
760
761	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
762}
763
764/**
765 *  tcp_splice_read - splice data from TCP socket to a pipe
766 * @sock:	socket to splice from
767 * @ppos:	position (not valid)
768 * @pipe:	pipe to splice to
769 * @len:	number of bytes to splice
770 * @flags:	splice modifier flags
771 *
772 * Description:
773 *    Will read pages from given socket and fill them into a pipe.
774 *
775 **/
776ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
777			struct pipe_inode_info *pipe, size_t len,
778			unsigned int flags)
779{
780	struct sock *sk = sock->sk;
781	struct tcp_splice_state tss = {
782		.pipe = pipe,
783		.len = len,
784		.flags = flags,
785	};
786	long timeo;
787	ssize_t spliced;
788	int ret;
789
790	sock_rps_record_flow(sk);
791	/*
792	 * We can't seek on a socket input
793	 */
794	if (unlikely(*ppos))
795		return -ESPIPE;
796
797	ret = spliced = 0;
798
799	lock_sock(sk);
800
801	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
802	while (tss.len) {
803		ret = __tcp_splice_read(sk, &tss);
804		if (ret < 0)
805			break;
806		else if (!ret) {
807			if (spliced)
808				break;
809			if (sock_flag(sk, SOCK_DONE))
810				break;
811			if (sk->sk_err) {
812				ret = sock_error(sk);
813				break;
814			}
815			if (sk->sk_shutdown & RCV_SHUTDOWN)
816				break;
817			if (sk->sk_state == TCP_CLOSE) {
818				/*
819				 * This occurs when user tries to read
820				 * from never connected socket.
821				 */
822				ret = -ENOTCONN;
823				break;
824			}
825			if (!timeo) {
826				ret = -EAGAIN;
827				break;
828			}
829			/* if __tcp_splice_read() got nothing while we have
830			 * an skb in receive queue, we do not want to loop.
831			 * This might happen with URG data.
832			 */
833			if (!skb_queue_empty(&sk->sk_receive_queue))
834				break;
835			ret = sk_wait_data(sk, &timeo, NULL);
836			if (ret < 0)
837				break;
838			if (signal_pending(current)) {
839				ret = sock_intr_errno(timeo);
840				break;
841			}
842			continue;
843		}
844		tss.len -= ret;
845		spliced += ret;
846
847		if (!tss.len || !timeo)
848			break;
849		release_sock(sk);
850		lock_sock(sk);
851
852		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
853		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
854		    signal_pending(current))
855			break;
856	}
857
858	release_sock(sk);
859
860	if (spliced)
861		return spliced;
862
863	return ret;
864}
865EXPORT_SYMBOL(tcp_splice_read);
866
867struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
868				     bool force_schedule)
869{
870	struct sk_buff *skb;
871
872	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
873	if (likely(skb)) {
874		bool mem_scheduled;
875
876		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
877		if (force_schedule) {
878			mem_scheduled = true;
879			sk_forced_mem_schedule(sk, skb->truesize);
880		} else {
881			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
882		}
883		if (likely(mem_scheduled)) {
884			skb_reserve(skb, MAX_TCP_HEADER);
885			skb->ip_summed = CHECKSUM_PARTIAL;
886			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
887			return skb;
888		}
889		__kfree_skb(skb);
890	} else {
891		sk->sk_prot->enter_memory_pressure(sk);
892		sk_stream_moderate_sndbuf(sk);
893	}
894	return NULL;
895}
896
897static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
898				       int large_allowed)
899{
900	struct tcp_sock *tp = tcp_sk(sk);
901	u32 new_size_goal, size_goal;
902
903	if (!large_allowed)
904		return mss_now;
905
906	/* Note : tcp_tso_autosize() will eventually split this later */
907	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
908
909	/* We try hard to avoid divides here */
910	size_goal = tp->gso_segs * mss_now;
911	if (unlikely(new_size_goal < size_goal ||
912		     new_size_goal >= size_goal + mss_now)) {
913		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
914				     sk->sk_gso_max_segs);
915		size_goal = tp->gso_segs * mss_now;
916	}
917
918	return max(size_goal, mss_now);
919}
920
921int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
922{
923	int mss_now;
924
925	mss_now = tcp_current_mss(sk);
926	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
927
928	return mss_now;
929}
930
931/* In some cases, sendmsg() could have added an skb to the write queue,
932 * but failed adding payload on it. We need to remove it to consume less
933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
934 * epoll() users. Another reason is that tcp_write_xmit() does not like
935 * finding an empty skb in the write queue.
936 */
937void tcp_remove_empty_skb(struct sock *sk)
938{
939	struct sk_buff *skb = tcp_write_queue_tail(sk);
940
941	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
942		tcp_unlink_write_queue(skb, sk);
943		if (tcp_write_queue_empty(sk))
944			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
945		tcp_wmem_free_skb(sk, skb);
946	}
947}
948
949/* skb changing from pure zc to mixed, must charge zc */
950static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
951{
952	if (unlikely(skb_zcopy_pure(skb))) {
953		u32 extra = skb->truesize -
954			    SKB_TRUESIZE(skb_end_offset(skb));
955
956		if (!sk_wmem_schedule(sk, extra))
957			return -ENOMEM;
958
959		sk_mem_charge(sk, extra);
960		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
961	}
962	return 0;
963}
964
965
966int tcp_wmem_schedule(struct sock *sk, int copy)
967{
968	int left;
969
970	if (likely(sk_wmem_schedule(sk, copy)))
971		return copy;
972
973	/* We could be in trouble if we have nothing queued.
974	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
975	 * to guarantee some progress.
976	 */
977	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
978	if (left > 0)
979		sk_forced_mem_schedule(sk, min(left, copy));
980	return min(copy, sk->sk_forward_alloc);
981}
982
983void tcp_free_fastopen_req(struct tcp_sock *tp)
984{
985	if (tp->fastopen_req) {
986		kfree(tp->fastopen_req);
987		tp->fastopen_req = NULL;
988	}
989}
990
991int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
992			 size_t size, struct ubuf_info *uarg)
993{
994	struct tcp_sock *tp = tcp_sk(sk);
995	struct inet_sock *inet = inet_sk(sk);
996	struct sockaddr *uaddr = msg->msg_name;
997	int err, flags;
998
999	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000	      TFO_CLIENT_ENABLE) ||
1001	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002	     uaddr->sa_family == AF_UNSPEC))
1003		return -EOPNOTSUPP;
1004	if (tp->fastopen_req)
1005		return -EALREADY; /* Another Fast Open is in progress */
1006
1007	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008				   sk->sk_allocation);
1009	if (unlikely(!tp->fastopen_req))
1010		return -ENOBUFS;
1011	tp->fastopen_req->data = msg;
1012	tp->fastopen_req->size = size;
1013	tp->fastopen_req->uarg = uarg;
1014
1015	if (inet_test_bit(DEFER_CONNECT, sk)) {
1016		err = tcp_connect(sk);
1017		/* Same failure procedure as in tcp_v4/6_connect */
1018		if (err) {
1019			tcp_set_state(sk, TCP_CLOSE);
1020			inet->inet_dport = 0;
1021			sk->sk_route_caps = 0;
1022		}
1023	}
1024	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025	err = __inet_stream_connect(sk->sk_socket, uaddr,
1026				    msg->msg_namelen, flags, 1);
1027	/* fastopen_req could already be freed in __inet_stream_connect
1028	 * if the connection times out or gets rst
1029	 */
1030	if (tp->fastopen_req) {
1031		*copied = tp->fastopen_req->copied;
1032		tcp_free_fastopen_req(tp);
1033		inet_clear_bit(DEFER_CONNECT, sk);
1034	}
1035	return err;
1036}
1037
1038int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039{
1040	struct tcp_sock *tp = tcp_sk(sk);
1041	struct ubuf_info *uarg = NULL;
1042	struct sk_buff *skb;
1043	struct sockcm_cookie sockc;
1044	int flags, err, copied = 0;
1045	int mss_now = 0, size_goal, copied_syn = 0;
1046	int process_backlog = 0;
1047	int zc = 0;
1048	long timeo;
1049
1050	flags = msg->msg_flags;
1051
1052	if ((flags & MSG_ZEROCOPY) && size) {
1053		if (msg->msg_ubuf) {
1054			uarg = msg->msg_ubuf;
1055			if (sk->sk_route_caps & NETIF_F_SG)
1056				zc = MSG_ZEROCOPY;
1057		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058			skb = tcp_write_queue_tail(sk);
1059			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060			if (!uarg) {
1061				err = -ENOBUFS;
1062				goto out_err;
1063			}
1064			if (sk->sk_route_caps & NETIF_F_SG)
1065				zc = MSG_ZEROCOPY;
1066			else
1067				uarg_to_msgzc(uarg)->zerocopy = 0;
1068		}
1069	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070		if (sk->sk_route_caps & NETIF_F_SG)
1071			zc = MSG_SPLICE_PAGES;
1072	}
1073
1074	if (unlikely(flags & MSG_FASTOPEN ||
1075		     inet_test_bit(DEFER_CONNECT, sk)) &&
1076	    !tp->repair) {
1077		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078		if (err == -EINPROGRESS && copied_syn > 0)
1079			goto out;
1080		else if (err)
1081			goto out_err;
1082	}
1083
1084	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085
1086	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1087
1088	/* Wait for a connection to finish. One exception is TCP Fast Open
1089	 * (passive side) where data is allowed to be sent before a connection
1090	 * is fully established.
1091	 */
1092	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093	    !tcp_passive_fastopen(sk)) {
1094		err = sk_stream_wait_connect(sk, &timeo);
1095		if (err != 0)
1096			goto do_error;
1097	}
1098
1099	if (unlikely(tp->repair)) {
1100		if (tp->repair_queue == TCP_RECV_QUEUE) {
1101			copied = tcp_send_rcvq(sk, msg, size);
1102			goto out_nopush;
1103		}
1104
1105		err = -EINVAL;
1106		if (tp->repair_queue == TCP_NO_QUEUE)
1107			goto out_err;
1108
1109		/* 'common' sending to sendq */
1110	}
1111
1112	sockcm_init(&sockc, sk);
1113	if (msg->msg_controllen) {
1114		err = sock_cmsg_send(sk, msg, &sockc);
1115		if (unlikely(err)) {
1116			err = -EINVAL;
1117			goto out_err;
1118		}
1119	}
1120
1121	/* This should be in poll */
1122	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123
1124	/* Ok commence sending. */
1125	copied = 0;
1126
1127restart:
1128	mss_now = tcp_send_mss(sk, &size_goal, flags);
1129
1130	err = -EPIPE;
1131	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132		goto do_error;
1133
1134	while (msg_data_left(msg)) {
1135		ssize_t copy = 0;
1136
1137		skb = tcp_write_queue_tail(sk);
1138		if (skb)
1139			copy = size_goal - skb->len;
1140
1141		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142			bool first_skb;
1143
1144new_segment:
1145			if (!sk_stream_memory_free(sk))
1146				goto wait_for_space;
1147
1148			if (unlikely(process_backlog >= 16)) {
1149				process_backlog = 0;
1150				if (sk_flush_backlog(sk))
1151					goto restart;
1152			}
1153			first_skb = tcp_rtx_and_write_queues_empty(sk);
1154			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155						   first_skb);
1156			if (!skb)
1157				goto wait_for_space;
1158
1159			process_backlog++;
1160
1161			tcp_skb_entail(sk, skb);
1162			copy = size_goal;
1163
1164			/* All packets are restored as if they have
1165			 * already been sent. skb_mstamp_ns isn't set to
1166			 * avoid wrong rtt estimation.
1167			 */
1168			if (tp->repair)
1169				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1170		}
1171
1172		/* Try to append data to the end of skb. */
1173		if (copy > msg_data_left(msg))
1174			copy = msg_data_left(msg);
1175
1176		if (zc == 0) {
1177			bool merge = true;
1178			int i = skb_shinfo(skb)->nr_frags;
1179			struct page_frag *pfrag = sk_page_frag(sk);
1180
1181			if (!sk_page_frag_refill(sk, pfrag))
1182				goto wait_for_space;
1183
1184			if (!skb_can_coalesce(skb, i, pfrag->page,
1185					      pfrag->offset)) {
1186				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1187					tcp_mark_push(tp, skb);
1188					goto new_segment;
1189				}
1190				merge = false;
1191			}
1192
1193			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1194
1195			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1196				if (tcp_downgrade_zcopy_pure(sk, skb))
1197					goto wait_for_space;
1198				skb_zcopy_downgrade_managed(skb);
1199			}
1200
1201			copy = tcp_wmem_schedule(sk, copy);
1202			if (!copy)
1203				goto wait_for_space;
1204
1205			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1206						       pfrag->page,
1207						       pfrag->offset,
1208						       copy);
1209			if (err)
1210				goto do_error;
1211
1212			/* Update the skb. */
1213			if (merge) {
1214				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1215			} else {
1216				skb_fill_page_desc(skb, i, pfrag->page,
1217						   pfrag->offset, copy);
1218				page_ref_inc(pfrag->page);
1219			}
1220			pfrag->offset += copy;
1221		} else if (zc == MSG_ZEROCOPY)  {
1222			/* First append to a fragless skb builds initial
1223			 * pure zerocopy skb
1224			 */
1225			if (!skb->len)
1226				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1227
1228			if (!skb_zcopy_pure(skb)) {
1229				copy = tcp_wmem_schedule(sk, copy);
1230				if (!copy)
1231					goto wait_for_space;
1232			}
1233
1234			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1235			if (err == -EMSGSIZE || err == -EEXIST) {
1236				tcp_mark_push(tp, skb);
1237				goto new_segment;
1238			}
1239			if (err < 0)
1240				goto do_error;
1241			copy = err;
1242		} else if (zc == MSG_SPLICE_PAGES) {
1243			/* Splice in data if we can; copy if we can't. */
1244			if (tcp_downgrade_zcopy_pure(sk, skb))
1245				goto wait_for_space;
1246			copy = tcp_wmem_schedule(sk, copy);
1247			if (!copy)
1248				goto wait_for_space;
1249
1250			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1251						   sk->sk_allocation);
1252			if (err < 0) {
1253				if (err == -EMSGSIZE) {
1254					tcp_mark_push(tp, skb);
1255					goto new_segment;
1256				}
1257				goto do_error;
1258			}
1259			copy = err;
1260
1261			if (!(flags & MSG_NO_SHARED_FRAGS))
1262				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1263
1264			sk_wmem_queued_add(sk, copy);
1265			sk_mem_charge(sk, copy);
1266		}
1267
1268		if (!copied)
1269			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1270
1271		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1272		TCP_SKB_CB(skb)->end_seq += copy;
1273		tcp_skb_pcount_set(skb, 0);
1274
1275		copied += copy;
1276		if (!msg_data_left(msg)) {
1277			if (unlikely(flags & MSG_EOR))
1278				TCP_SKB_CB(skb)->eor = 1;
1279			goto out;
1280		}
1281
1282		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1283			continue;
1284
1285		if (forced_push(tp)) {
1286			tcp_mark_push(tp, skb);
1287			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1288		} else if (skb == tcp_send_head(sk))
1289			tcp_push_one(sk, mss_now);
1290		continue;
1291
1292wait_for_space:
1293		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1294		tcp_remove_empty_skb(sk);
1295		if (copied)
1296			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1297				 TCP_NAGLE_PUSH, size_goal);
1298
1299		err = sk_stream_wait_memory(sk, &timeo);
1300		if (err != 0)
1301			goto do_error;
1302
1303		mss_now = tcp_send_mss(sk, &size_goal, flags);
1304	}
1305
1306out:
1307	if (copied) {
1308		tcp_tx_timestamp(sk, sockc.tsflags);
1309		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1310	}
1311out_nopush:
1312	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1313	if (uarg && !msg->msg_ubuf)
1314		net_zcopy_put(uarg);
1315	return copied + copied_syn;
1316
1317do_error:
1318	tcp_remove_empty_skb(sk);
1319
1320	if (copied + copied_syn)
1321		goto out;
1322out_err:
1323	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1324	if (uarg && !msg->msg_ubuf)
1325		net_zcopy_put_abort(uarg, true);
1326	err = sk_stream_error(sk, flags, err);
1327	/* make sure we wake any epoll edge trigger waiter */
1328	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1329		sk->sk_write_space(sk);
1330		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1331	}
1332	return err;
1333}
1334EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1335
1336int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1337{
1338	int ret;
1339
1340	lock_sock(sk);
1341	ret = tcp_sendmsg_locked(sk, msg, size);
1342	release_sock(sk);
1343
1344	return ret;
1345}
1346EXPORT_SYMBOL(tcp_sendmsg);
1347
1348void tcp_splice_eof(struct socket *sock)
1349{
1350	struct sock *sk = sock->sk;
1351	struct tcp_sock *tp = tcp_sk(sk);
1352	int mss_now, size_goal;
1353
1354	if (!tcp_write_queue_tail(sk))
1355		return;
1356
1357	lock_sock(sk);
1358	mss_now = tcp_send_mss(sk, &size_goal, 0);
1359	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1360	release_sock(sk);
1361}
1362EXPORT_SYMBOL_GPL(tcp_splice_eof);
1363
1364/*
1365 *	Handle reading urgent data. BSD has very simple semantics for
1366 *	this, no blocking and very strange errors 8)
1367 */
1368
1369static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1370{
1371	struct tcp_sock *tp = tcp_sk(sk);
1372
1373	/* No URG data to read. */
1374	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1375	    tp->urg_data == TCP_URG_READ)
1376		return -EINVAL;	/* Yes this is right ! */
1377
1378	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1379		return -ENOTCONN;
1380
1381	if (tp->urg_data & TCP_URG_VALID) {
1382		int err = 0;
1383		char c = tp->urg_data;
1384
1385		if (!(flags & MSG_PEEK))
1386			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1387
1388		/* Read urgent data. */
1389		msg->msg_flags |= MSG_OOB;
1390
1391		if (len > 0) {
1392			if (!(flags & MSG_TRUNC))
1393				err = memcpy_to_msg(msg, &c, 1);
1394			len = 1;
1395		} else
1396			msg->msg_flags |= MSG_TRUNC;
1397
1398		return err ? -EFAULT : len;
1399	}
1400
1401	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1402		return 0;
1403
1404	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1405	 * the available implementations agree in this case:
1406	 * this call should never block, independent of the
1407	 * blocking state of the socket.
1408	 * Mike <pall@rz.uni-karlsruhe.de>
1409	 */
1410	return -EAGAIN;
1411}
1412
1413static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1414{
1415	struct sk_buff *skb;
1416	int copied = 0, err = 0;
1417
1418	/* XXX -- need to support SO_PEEK_OFF */
1419
1420	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1421		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1422		if (err)
1423			return err;
1424		copied += skb->len;
1425	}
1426
1427	skb_queue_walk(&sk->sk_write_queue, skb) {
1428		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1429		if (err)
1430			break;
1431
1432		copied += skb->len;
1433	}
1434
1435	return err ?: copied;
1436}
1437
1438/* Clean up the receive buffer for full frames taken by the user,
1439 * then send an ACK if necessary.  COPIED is the number of bytes
1440 * tcp_recvmsg has given to the user so far, it speeds up the
1441 * calculation of whether or not we must ACK for the sake of
1442 * a window update.
1443 */
1444void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1445{
1446	struct tcp_sock *tp = tcp_sk(sk);
1447	bool time_to_ack = false;
1448
1449	if (inet_csk_ack_scheduled(sk)) {
1450		const struct inet_connection_sock *icsk = inet_csk(sk);
1451
1452		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1453		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1454		    /*
1455		     * If this read emptied read buffer, we send ACK, if
1456		     * connection is not bidirectional, user drained
1457		     * receive buffer and there was a small segment
1458		     * in queue.
1459		     */
1460		    (copied > 0 &&
1461		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1462		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1463		       !inet_csk_in_pingpong_mode(sk))) &&
1464		      !atomic_read(&sk->sk_rmem_alloc)))
1465			time_to_ack = true;
1466	}
1467
1468	/* We send an ACK if we can now advertise a non-zero window
1469	 * which has been raised "significantly".
1470	 *
1471	 * Even if window raised up to infinity, do not send window open ACK
1472	 * in states, where we will not receive more. It is useless.
1473	 */
1474	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1475		__u32 rcv_window_now = tcp_receive_window(tp);
1476
1477		/* Optimize, __tcp_select_window() is not cheap. */
1478		if (2*rcv_window_now <= tp->window_clamp) {
1479			__u32 new_window = __tcp_select_window(sk);
1480
1481			/* Send ACK now, if this read freed lots of space
1482			 * in our buffer. Certainly, new_window is new window.
1483			 * We can advertise it now, if it is not less than current one.
1484			 * "Lots" means "at least twice" here.
1485			 */
1486			if (new_window && new_window >= 2 * rcv_window_now)
1487				time_to_ack = true;
1488		}
1489	}
1490	if (time_to_ack)
1491		tcp_send_ack(sk);
1492}
1493
1494void tcp_cleanup_rbuf(struct sock *sk, int copied)
1495{
1496	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1497	struct tcp_sock *tp = tcp_sk(sk);
1498
1499	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1500	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1501	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1502	__tcp_cleanup_rbuf(sk, copied);
1503}
1504
1505static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1506{
1507	__skb_unlink(skb, &sk->sk_receive_queue);
1508	if (likely(skb->destructor == sock_rfree)) {
1509		sock_rfree(skb);
1510		skb->destructor = NULL;
1511		skb->sk = NULL;
1512		return skb_attempt_defer_free(skb);
1513	}
1514	__kfree_skb(skb);
1515}
1516
1517struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1518{
1519	struct sk_buff *skb;
1520	u32 offset;
1521
1522	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1523		offset = seq - TCP_SKB_CB(skb)->seq;
1524		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1525			pr_err_once("%s: found a SYN, please report !\n", __func__);
1526			offset--;
1527		}
1528		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1529			*off = offset;
1530			return skb;
1531		}
1532		/* This looks weird, but this can happen if TCP collapsing
1533		 * splitted a fat GRO packet, while we released socket lock
1534		 * in skb_splice_bits()
1535		 */
1536		tcp_eat_recv_skb(sk, skb);
1537	}
1538	return NULL;
1539}
1540EXPORT_SYMBOL(tcp_recv_skb);
1541
1542/*
1543 * This routine provides an alternative to tcp_recvmsg() for routines
1544 * that would like to handle copying from skbuffs directly in 'sendfile'
1545 * fashion.
1546 * Note:
1547 *	- It is assumed that the socket was locked by the caller.
1548 *	- The routine does not block.
1549 *	- At present, there is no support for reading OOB data
1550 *	  or for 'peeking' the socket using this routine
1551 *	  (although both would be easy to implement).
1552 */
1553int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1554		  sk_read_actor_t recv_actor)
1555{
1556	struct sk_buff *skb;
1557	struct tcp_sock *tp = tcp_sk(sk);
1558	u32 seq = tp->copied_seq;
1559	u32 offset;
1560	int copied = 0;
1561
1562	if (sk->sk_state == TCP_LISTEN)
1563		return -ENOTCONN;
1564	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1565		if (offset < skb->len) {
1566			int used;
1567			size_t len;
1568
1569			len = skb->len - offset;
1570			/* Stop reading if we hit a patch of urgent data */
1571			if (unlikely(tp->urg_data)) {
1572				u32 urg_offset = tp->urg_seq - seq;
1573				if (urg_offset < len)
1574					len = urg_offset;
1575				if (!len)
1576					break;
1577			}
1578			used = recv_actor(desc, skb, offset, len);
1579			if (used <= 0) {
1580				if (!copied)
1581					copied = used;
1582				break;
1583			}
1584			if (WARN_ON_ONCE(used > len))
1585				used = len;
1586			seq += used;
1587			copied += used;
1588			offset += used;
1589
1590			/* If recv_actor drops the lock (e.g. TCP splice
1591			 * receive) the skb pointer might be invalid when
1592			 * getting here: tcp_collapse might have deleted it
1593			 * while aggregating skbs from the socket queue.
1594			 */
1595			skb = tcp_recv_skb(sk, seq - 1, &offset);
1596			if (!skb)
1597				break;
1598			/* TCP coalescing might have appended data to the skb.
1599			 * Try to splice more frags
1600			 */
1601			if (offset + 1 != skb->len)
1602				continue;
1603		}
1604		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1605			tcp_eat_recv_skb(sk, skb);
1606			++seq;
1607			break;
1608		}
1609		tcp_eat_recv_skb(sk, skb);
1610		if (!desc->count)
1611			break;
1612		WRITE_ONCE(tp->copied_seq, seq);
1613	}
1614	WRITE_ONCE(tp->copied_seq, seq);
1615
1616	tcp_rcv_space_adjust(sk);
1617
1618	/* Clean up data we have read: This will do ACK frames. */
1619	if (copied > 0) {
1620		tcp_recv_skb(sk, seq, &offset);
1621		tcp_cleanup_rbuf(sk, copied);
1622	}
1623	return copied;
1624}
1625EXPORT_SYMBOL(tcp_read_sock);
1626
1627int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1628{
1629	struct sk_buff *skb;
1630	int copied = 0;
1631
1632	if (sk->sk_state == TCP_LISTEN)
1633		return -ENOTCONN;
1634
1635	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1636		u8 tcp_flags;
1637		int used;
1638
1639		__skb_unlink(skb, &sk->sk_receive_queue);
1640		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1641		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1642		used = recv_actor(sk, skb);
1643		if (used < 0) {
1644			if (!copied)
1645				copied = used;
1646			break;
1647		}
1648		copied += used;
1649
1650		if (tcp_flags & TCPHDR_FIN)
1651			break;
1652	}
1653	return copied;
1654}
1655EXPORT_SYMBOL(tcp_read_skb);
1656
1657void tcp_read_done(struct sock *sk, size_t len)
1658{
1659	struct tcp_sock *tp = tcp_sk(sk);
1660	u32 seq = tp->copied_seq;
1661	struct sk_buff *skb;
1662	size_t left;
1663	u32 offset;
1664
1665	if (sk->sk_state == TCP_LISTEN)
1666		return;
1667
1668	left = len;
1669	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1670		int used;
1671
1672		used = min_t(size_t, skb->len - offset, left);
1673		seq += used;
1674		left -= used;
1675
1676		if (skb->len > offset + used)
1677			break;
1678
1679		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1680			tcp_eat_recv_skb(sk, skb);
1681			++seq;
1682			break;
1683		}
1684		tcp_eat_recv_skb(sk, skb);
1685	}
1686	WRITE_ONCE(tp->copied_seq, seq);
1687
1688	tcp_rcv_space_adjust(sk);
1689
1690	/* Clean up data we have read: This will do ACK frames. */
1691	if (left != len)
1692		tcp_cleanup_rbuf(sk, len - left);
1693}
1694EXPORT_SYMBOL(tcp_read_done);
1695
1696int tcp_peek_len(struct socket *sock)
1697{
1698	return tcp_inq(sock->sk);
1699}
1700EXPORT_SYMBOL(tcp_peek_len);
1701
1702/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1703int tcp_set_rcvlowat(struct sock *sk, int val)
1704{
1705	int space, cap;
1706
1707	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1708		cap = sk->sk_rcvbuf >> 1;
1709	else
1710		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1711	val = min(val, cap);
1712	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1713
1714	/* Check if we need to signal EPOLLIN right now */
1715	tcp_data_ready(sk);
1716
1717	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1718		return 0;
1719
1720	space = tcp_space_from_win(sk, val);
1721	if (space > sk->sk_rcvbuf) {
1722		WRITE_ONCE(sk->sk_rcvbuf, space);
1723		tcp_sk(sk)->window_clamp = val;
1724	}
1725	return 0;
1726}
1727EXPORT_SYMBOL(tcp_set_rcvlowat);
1728
1729void tcp_update_recv_tstamps(struct sk_buff *skb,
1730			     struct scm_timestamping_internal *tss)
1731{
1732	if (skb->tstamp)
1733		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1734	else
1735		tss->ts[0] = (struct timespec64) {0};
1736
1737	if (skb_hwtstamps(skb)->hwtstamp)
1738		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1739	else
1740		tss->ts[2] = (struct timespec64) {0};
1741}
1742
1743#ifdef CONFIG_MMU
1744static const struct vm_operations_struct tcp_vm_ops = {
1745};
1746
1747int tcp_mmap(struct file *file, struct socket *sock,
1748	     struct vm_area_struct *vma)
1749{
1750	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1751		return -EPERM;
1752	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1753
1754	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1755	vm_flags_set(vma, VM_MIXEDMAP);
1756
1757	vma->vm_ops = &tcp_vm_ops;
1758	return 0;
1759}
1760EXPORT_SYMBOL(tcp_mmap);
1761
1762static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1763				       u32 *offset_frag)
1764{
1765	skb_frag_t *frag;
1766
1767	if (unlikely(offset_skb >= skb->len))
1768		return NULL;
1769
1770	offset_skb -= skb_headlen(skb);
1771	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1772		return NULL;
1773
1774	frag = skb_shinfo(skb)->frags;
1775	while (offset_skb) {
1776		if (skb_frag_size(frag) > offset_skb) {
1777			*offset_frag = offset_skb;
1778			return frag;
1779		}
1780		offset_skb -= skb_frag_size(frag);
1781		++frag;
1782	}
1783	*offset_frag = 0;
1784	return frag;
1785}
1786
1787static bool can_map_frag(const skb_frag_t *frag)
1788{
1789	struct page *page;
1790
1791	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1792		return false;
1793
1794	page = skb_frag_page(frag);
1795
1796	if (PageCompound(page) || page->mapping)
1797		return false;
1798
1799	return true;
1800}
1801
1802static int find_next_mappable_frag(const skb_frag_t *frag,
1803				   int remaining_in_skb)
1804{
1805	int offset = 0;
1806
1807	if (likely(can_map_frag(frag)))
1808		return 0;
1809
1810	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1811		offset += skb_frag_size(frag);
1812		++frag;
1813	}
1814	return offset;
1815}
1816
1817static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1818					  struct tcp_zerocopy_receive *zc,
1819					  struct sk_buff *skb, u32 offset)
1820{
1821	u32 frag_offset, partial_frag_remainder = 0;
1822	int mappable_offset;
1823	skb_frag_t *frag;
1824
1825	/* worst case: skip to next skb. try to improve on this case below */
1826	zc->recv_skip_hint = skb->len - offset;
1827
1828	/* Find the frag containing this offset (and how far into that frag) */
1829	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1830	if (!frag)
1831		return;
1832
1833	if (frag_offset) {
1834		struct skb_shared_info *info = skb_shinfo(skb);
1835
1836		/* We read part of the last frag, must recvmsg() rest of skb. */
1837		if (frag == &info->frags[info->nr_frags - 1])
1838			return;
1839
1840		/* Else, we must at least read the remainder in this frag. */
1841		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1842		zc->recv_skip_hint -= partial_frag_remainder;
1843		++frag;
1844	}
1845
1846	/* partial_frag_remainder: If part way through a frag, must read rest.
1847	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1848	 * in partial_frag_remainder.
1849	 */
1850	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1851	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1852}
1853
1854static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1855			      int flags, struct scm_timestamping_internal *tss,
1856			      int *cmsg_flags);
1857static int receive_fallback_to_copy(struct sock *sk,
1858				    struct tcp_zerocopy_receive *zc, int inq,
1859				    struct scm_timestamping_internal *tss)
1860{
1861	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1862	struct msghdr msg = {};
1863	struct iovec iov;
1864	int err;
1865
1866	zc->length = 0;
1867	zc->recv_skip_hint = 0;
1868
1869	if (copy_address != zc->copybuf_address)
1870		return -EINVAL;
1871
1872	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1873				  inq, &iov, &msg.msg_iter);
1874	if (err)
1875		return err;
1876
1877	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1878				 tss, &zc->msg_flags);
1879	if (err < 0)
1880		return err;
1881
1882	zc->copybuf_len = err;
1883	if (likely(zc->copybuf_len)) {
1884		struct sk_buff *skb;
1885		u32 offset;
1886
1887		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1888		if (skb)
1889			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1890	}
1891	return 0;
1892}
1893
1894static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1895				   struct sk_buff *skb, u32 copylen,
1896				   u32 *offset, u32 *seq)
1897{
1898	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1899	struct msghdr msg = {};
1900	struct iovec iov;
1901	int err;
1902
1903	if (copy_address != zc->copybuf_address)
1904		return -EINVAL;
1905
1906	err = import_single_range(ITER_DEST, (void __user *)copy_address,
1907				  copylen, &iov, &msg.msg_iter);
1908	if (err)
1909		return err;
1910	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1911	if (err)
1912		return err;
1913	zc->recv_skip_hint -= copylen;
1914	*offset += copylen;
1915	*seq += copylen;
1916	return (__s32)copylen;
1917}
1918
1919static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1920				  struct sock *sk,
1921				  struct sk_buff *skb,
1922				  u32 *seq,
1923				  s32 copybuf_len,
1924				  struct scm_timestamping_internal *tss)
1925{
1926	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1927
1928	if (!copylen)
1929		return 0;
1930	/* skb is null if inq < PAGE_SIZE. */
1931	if (skb) {
1932		offset = *seq - TCP_SKB_CB(skb)->seq;
1933	} else {
1934		skb = tcp_recv_skb(sk, *seq, &offset);
1935		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1936			tcp_update_recv_tstamps(skb, tss);
1937			zc->msg_flags |= TCP_CMSG_TS;
1938		}
1939	}
1940
1941	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1942						  seq);
1943	return zc->copybuf_len < 0 ? 0 : copylen;
1944}
1945
1946static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1947					      struct page **pending_pages,
1948					      unsigned long pages_remaining,
1949					      unsigned long *address,
1950					      u32 *length,
1951					      u32 *seq,
1952					      struct tcp_zerocopy_receive *zc,
1953					      u32 total_bytes_to_map,
1954					      int err)
1955{
1956	/* At least one page did not map. Try zapping if we skipped earlier. */
1957	if (err == -EBUSY &&
1958	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1959		u32 maybe_zap_len;
1960
1961		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1962				*length + /* Mapped or pending */
1963				(pages_remaining * PAGE_SIZE); /* Failed map. */
1964		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1965		err = 0;
1966	}
1967
1968	if (!err) {
1969		unsigned long leftover_pages = pages_remaining;
1970		int bytes_mapped;
1971
1972		/* We called zap_page_range_single, try to reinsert. */
1973		err = vm_insert_pages(vma, *address,
1974				      pending_pages,
1975				      &pages_remaining);
1976		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1977		*seq += bytes_mapped;
1978		*address += bytes_mapped;
1979	}
1980	if (err) {
1981		/* Either we were unable to zap, OR we zapped, retried an
1982		 * insert, and still had an issue. Either ways, pages_remaining
1983		 * is the number of pages we were unable to map, and we unroll
1984		 * some state we speculatively touched before.
1985		 */
1986		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1987
1988		*length -= bytes_not_mapped;
1989		zc->recv_skip_hint += bytes_not_mapped;
1990	}
1991	return err;
1992}
1993
1994static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1995					struct page **pages,
1996					unsigned int pages_to_map,
1997					unsigned long *address,
1998					u32 *length,
1999					u32 *seq,
2000					struct tcp_zerocopy_receive *zc,
2001					u32 total_bytes_to_map)
2002{
2003	unsigned long pages_remaining = pages_to_map;
2004	unsigned int pages_mapped;
2005	unsigned int bytes_mapped;
2006	int err;
2007
2008	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2009	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2010	bytes_mapped = PAGE_SIZE * pages_mapped;
2011	/* Even if vm_insert_pages fails, it may have partially succeeded in
2012	 * mapping (some but not all of the pages).
2013	 */
2014	*seq += bytes_mapped;
2015	*address += bytes_mapped;
2016
2017	if (likely(!err))
2018		return 0;
2019
2020	/* Error: maybe zap and retry + rollback state for failed inserts. */
2021	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2022		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2023		err);
2024}
2025
2026#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2027static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2028				      struct tcp_zerocopy_receive *zc,
2029				      struct scm_timestamping_internal *tss)
2030{
2031	unsigned long msg_control_addr;
2032	struct msghdr cmsg_dummy;
2033
2034	msg_control_addr = (unsigned long)zc->msg_control;
2035	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2036	cmsg_dummy.msg_controllen =
2037		(__kernel_size_t)zc->msg_controllen;
2038	cmsg_dummy.msg_flags = in_compat_syscall()
2039		? MSG_CMSG_COMPAT : 0;
2040	cmsg_dummy.msg_control_is_user = true;
2041	zc->msg_flags = 0;
2042	if (zc->msg_control == msg_control_addr &&
2043	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2044		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2045		zc->msg_control = (__u64)
2046			((uintptr_t)cmsg_dummy.msg_control_user);
2047		zc->msg_controllen =
2048			(__u64)cmsg_dummy.msg_controllen;
2049		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2050	}
2051}
2052
2053static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2054					   unsigned long address,
2055					   bool *mmap_locked)
2056{
2057	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2058
2059	if (vma) {
2060		if (vma->vm_ops != &tcp_vm_ops) {
2061			vma_end_read(vma);
2062			return NULL;
2063		}
2064		*mmap_locked = false;
2065		return vma;
2066	}
2067
2068	mmap_read_lock(mm);
2069	vma = vma_lookup(mm, address);
2070	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2071		mmap_read_unlock(mm);
2072		return NULL;
2073	}
2074	*mmap_locked = true;
2075	return vma;
2076}
2077
2078#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2079static int tcp_zerocopy_receive(struct sock *sk,
2080				struct tcp_zerocopy_receive *zc,
2081				struct scm_timestamping_internal *tss)
2082{
2083	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2084	unsigned long address = (unsigned long)zc->address;
2085	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2086	s32 copybuf_len = zc->copybuf_len;
2087	struct tcp_sock *tp = tcp_sk(sk);
2088	const skb_frag_t *frags = NULL;
2089	unsigned int pages_to_map = 0;
2090	struct vm_area_struct *vma;
2091	struct sk_buff *skb = NULL;
2092	u32 seq = tp->copied_seq;
2093	u32 total_bytes_to_map;
2094	int inq = tcp_inq(sk);
2095	bool mmap_locked;
2096	int ret;
2097
2098	zc->copybuf_len = 0;
2099	zc->msg_flags = 0;
2100
2101	if (address & (PAGE_SIZE - 1) || address != zc->address)
2102		return -EINVAL;
2103
2104	if (sk->sk_state == TCP_LISTEN)
2105		return -ENOTCONN;
2106
2107	sock_rps_record_flow(sk);
2108
2109	if (inq && inq <= copybuf_len)
2110		return receive_fallback_to_copy(sk, zc, inq, tss);
2111
2112	if (inq < PAGE_SIZE) {
2113		zc->length = 0;
2114		zc->recv_skip_hint = inq;
2115		if (!inq && sock_flag(sk, SOCK_DONE))
2116			return -EIO;
2117		return 0;
2118	}
2119
2120	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2121	if (!vma)
2122		return -EINVAL;
2123
2124	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2125	avail_len = min_t(u32, vma_len, inq);
2126	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2127	if (total_bytes_to_map) {
2128		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2129			zap_page_range_single(vma, address, total_bytes_to_map,
2130					      NULL);
2131		zc->length = total_bytes_to_map;
2132		zc->recv_skip_hint = 0;
2133	} else {
2134		zc->length = avail_len;
2135		zc->recv_skip_hint = avail_len;
2136	}
2137	ret = 0;
2138	while (length + PAGE_SIZE <= zc->length) {
2139		int mappable_offset;
2140		struct page *page;
2141
2142		if (zc->recv_skip_hint < PAGE_SIZE) {
2143			u32 offset_frag;
2144
2145			if (skb) {
2146				if (zc->recv_skip_hint > 0)
2147					break;
2148				skb = skb->next;
2149				offset = seq - TCP_SKB_CB(skb)->seq;
2150			} else {
2151				skb = tcp_recv_skb(sk, seq, &offset);
2152			}
2153
2154			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2155				tcp_update_recv_tstamps(skb, tss);
2156				zc->msg_flags |= TCP_CMSG_TS;
2157			}
2158			zc->recv_skip_hint = skb->len - offset;
2159			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2160			if (!frags || offset_frag)
2161				break;
2162		}
2163
2164		mappable_offset = find_next_mappable_frag(frags,
2165							  zc->recv_skip_hint);
2166		if (mappable_offset) {
2167			zc->recv_skip_hint = mappable_offset;
2168			break;
2169		}
2170		page = skb_frag_page(frags);
2171		prefetchw(page);
2172		pages[pages_to_map++] = page;
2173		length += PAGE_SIZE;
2174		zc->recv_skip_hint -= PAGE_SIZE;
2175		frags++;
2176		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2177		    zc->recv_skip_hint < PAGE_SIZE) {
2178			/* Either full batch, or we're about to go to next skb
2179			 * (and we cannot unroll failed ops across skbs).
2180			 */
2181			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2182							   pages_to_map,
2183							   &address, &length,
2184							   &seq, zc,
2185							   total_bytes_to_map);
2186			if (ret)
2187				goto out;
2188			pages_to_map = 0;
2189		}
2190	}
2191	if (pages_to_map) {
2192		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2193						   &address, &length, &seq,
2194						   zc, total_bytes_to_map);
2195	}
2196out:
2197	if (mmap_locked)
2198		mmap_read_unlock(current->mm);
2199	else
2200		vma_end_read(vma);
2201	/* Try to copy straggler data. */
2202	if (!ret)
2203		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2204
2205	if (length + copylen) {
2206		WRITE_ONCE(tp->copied_seq, seq);
2207		tcp_rcv_space_adjust(sk);
2208
2209		/* Clean up data we have read: This will do ACK frames. */
2210		tcp_recv_skb(sk, seq, &offset);
2211		tcp_cleanup_rbuf(sk, length + copylen);
2212		ret = 0;
2213		if (length == zc->length)
2214			zc->recv_skip_hint = 0;
2215	} else {
2216		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2217			ret = -EIO;
2218	}
2219	zc->length = length;
2220	return ret;
2221}
2222#endif
2223
2224/* Similar to __sock_recv_timestamp, but does not require an skb */
2225void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2226			struct scm_timestamping_internal *tss)
2227{
2228	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2229	bool has_timestamping = false;
2230
2231	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2232		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2233			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2234				if (new_tstamp) {
2235					struct __kernel_timespec kts = {
2236						.tv_sec = tss->ts[0].tv_sec,
2237						.tv_nsec = tss->ts[0].tv_nsec,
2238					};
2239					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2240						 sizeof(kts), &kts);
2241				} else {
2242					struct __kernel_old_timespec ts_old = {
2243						.tv_sec = tss->ts[0].tv_sec,
2244						.tv_nsec = tss->ts[0].tv_nsec,
2245					};
2246					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2247						 sizeof(ts_old), &ts_old);
2248				}
2249			} else {
2250				if (new_tstamp) {
2251					struct __kernel_sock_timeval stv = {
2252						.tv_sec = tss->ts[0].tv_sec,
2253						.tv_usec = tss->ts[0].tv_nsec / 1000,
2254					};
2255					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2256						 sizeof(stv), &stv);
2257				} else {
2258					struct __kernel_old_timeval tv = {
2259						.tv_sec = tss->ts[0].tv_sec,
2260						.tv_usec = tss->ts[0].tv_nsec / 1000,
2261					};
2262					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2263						 sizeof(tv), &tv);
2264				}
2265			}
2266		}
2267
2268		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2269			has_timestamping = true;
2270		else
2271			tss->ts[0] = (struct timespec64) {0};
2272	}
2273
2274	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2275		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2276			has_timestamping = true;
2277		else
2278			tss->ts[2] = (struct timespec64) {0};
2279	}
2280
2281	if (has_timestamping) {
2282		tss->ts[1] = (struct timespec64) {0};
2283		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2284			put_cmsg_scm_timestamping64(msg, tss);
2285		else
2286			put_cmsg_scm_timestamping(msg, tss);
2287	}
2288}
2289
2290static int tcp_inq_hint(struct sock *sk)
2291{
2292	const struct tcp_sock *tp = tcp_sk(sk);
2293	u32 copied_seq = READ_ONCE(tp->copied_seq);
2294	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2295	int inq;
2296
2297	inq = rcv_nxt - copied_seq;
2298	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2299		lock_sock(sk);
2300		inq = tp->rcv_nxt - tp->copied_seq;
2301		release_sock(sk);
2302	}
2303	/* After receiving a FIN, tell the user-space to continue reading
2304	 * by returning a non-zero inq.
2305	 */
2306	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2307		inq = 1;
2308	return inq;
2309}
2310
2311/*
2312 *	This routine copies from a sock struct into the user buffer.
2313 *
2314 *	Technical note: in 2.3 we work on _locked_ socket, so that
2315 *	tricks with *seq access order and skb->users are not required.
2316 *	Probably, code can be easily improved even more.
2317 */
2318
2319static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2320			      int flags, struct scm_timestamping_internal *tss,
2321			      int *cmsg_flags)
2322{
2323	struct tcp_sock *tp = tcp_sk(sk);
2324	int copied = 0;
2325	u32 peek_seq;
2326	u32 *seq;
2327	unsigned long used;
2328	int err;
2329	int target;		/* Read at least this many bytes */
2330	long timeo;
2331	struct sk_buff *skb, *last;
2332	u32 urg_hole = 0;
2333
2334	err = -ENOTCONN;
2335	if (sk->sk_state == TCP_LISTEN)
2336		goto out;
2337
2338	if (tp->recvmsg_inq) {
2339		*cmsg_flags = TCP_CMSG_INQ;
2340		msg->msg_get_inq = 1;
2341	}
2342	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2343
2344	/* Urgent data needs to be handled specially. */
2345	if (flags & MSG_OOB)
2346		goto recv_urg;
2347
2348	if (unlikely(tp->repair)) {
2349		err = -EPERM;
2350		if (!(flags & MSG_PEEK))
2351			goto out;
2352
2353		if (tp->repair_queue == TCP_SEND_QUEUE)
2354			goto recv_sndq;
2355
2356		err = -EINVAL;
2357		if (tp->repair_queue == TCP_NO_QUEUE)
2358			goto out;
2359
2360		/* 'common' recv queue MSG_PEEK-ing */
2361	}
2362
2363	seq = &tp->copied_seq;
2364	if (flags & MSG_PEEK) {
2365		peek_seq = tp->copied_seq;
2366		seq = &peek_seq;
2367	}
2368
2369	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2370
2371	do {
2372		u32 offset;
2373
2374		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2375		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2376			if (copied)
2377				break;
2378			if (signal_pending(current)) {
2379				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2380				break;
2381			}
2382		}
2383
2384		/* Next get a buffer. */
2385
2386		last = skb_peek_tail(&sk->sk_receive_queue);
2387		skb_queue_walk(&sk->sk_receive_queue, skb) {
2388			last = skb;
2389			/* Now that we have two receive queues this
2390			 * shouldn't happen.
2391			 */
2392			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2393				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2394				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2395				 flags))
2396				break;
2397
2398			offset = *seq - TCP_SKB_CB(skb)->seq;
2399			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2400				pr_err_once("%s: found a SYN, please report !\n", __func__);
2401				offset--;
2402			}
2403			if (offset < skb->len)
2404				goto found_ok_skb;
2405			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2406				goto found_fin_ok;
2407			WARN(!(flags & MSG_PEEK),
2408			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2409			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2410		}
2411
2412		/* Well, if we have backlog, try to process it now yet. */
2413
2414		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2415			break;
2416
2417		if (copied) {
2418			if (!timeo ||
2419			    sk->sk_err ||
2420			    sk->sk_state == TCP_CLOSE ||
2421			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2422			    signal_pending(current))
2423				break;
2424		} else {
2425			if (sock_flag(sk, SOCK_DONE))
2426				break;
2427
2428			if (sk->sk_err) {
2429				copied = sock_error(sk);
2430				break;
2431			}
2432
2433			if (sk->sk_shutdown & RCV_SHUTDOWN)
2434				break;
2435
2436			if (sk->sk_state == TCP_CLOSE) {
2437				/* This occurs when user tries to read
2438				 * from never connected socket.
2439				 */
2440				copied = -ENOTCONN;
2441				break;
2442			}
2443
2444			if (!timeo) {
2445				copied = -EAGAIN;
2446				break;
2447			}
2448
2449			if (signal_pending(current)) {
2450				copied = sock_intr_errno(timeo);
2451				break;
2452			}
2453		}
2454
2455		if (copied >= target) {
2456			/* Do not sleep, just process backlog. */
2457			__sk_flush_backlog(sk);
2458		} else {
2459			tcp_cleanup_rbuf(sk, copied);
2460			err = sk_wait_data(sk, &timeo, last);
2461			if (err < 0) {
2462				err = copied ? : err;
2463				goto out;
2464			}
2465		}
2466
2467		if ((flags & MSG_PEEK) &&
2468		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2469			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2470					    current->comm,
2471					    task_pid_nr(current));
2472			peek_seq = tp->copied_seq;
2473		}
2474		continue;
2475
2476found_ok_skb:
2477		/* Ok so how much can we use? */
2478		used = skb->len - offset;
2479		if (len < used)
2480			used = len;
2481
2482		/* Do we have urgent data here? */
2483		if (unlikely(tp->urg_data)) {
2484			u32 urg_offset = tp->urg_seq - *seq;
2485			if (urg_offset < used) {
2486				if (!urg_offset) {
2487					if (!sock_flag(sk, SOCK_URGINLINE)) {
2488						WRITE_ONCE(*seq, *seq + 1);
2489						urg_hole++;
2490						offset++;
2491						used--;
2492						if (!used)
2493							goto skip_copy;
2494					}
2495				} else
2496					used = urg_offset;
2497			}
2498		}
2499
2500		if (!(flags & MSG_TRUNC)) {
2501			err = skb_copy_datagram_msg(skb, offset, msg, used);
2502			if (err) {
2503				/* Exception. Bailout! */
2504				if (!copied)
2505					copied = -EFAULT;
2506				break;
2507			}
2508		}
2509
2510		WRITE_ONCE(*seq, *seq + used);
2511		copied += used;
2512		len -= used;
2513
2514		tcp_rcv_space_adjust(sk);
2515
2516skip_copy:
2517		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2518			WRITE_ONCE(tp->urg_data, 0);
2519			tcp_fast_path_check(sk);
2520		}
2521
2522		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2523			tcp_update_recv_tstamps(skb, tss);
2524			*cmsg_flags |= TCP_CMSG_TS;
2525		}
2526
2527		if (used + offset < skb->len)
2528			continue;
2529
2530		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2531			goto found_fin_ok;
2532		if (!(flags & MSG_PEEK))
2533			tcp_eat_recv_skb(sk, skb);
2534		continue;
2535
2536found_fin_ok:
2537		/* Process the FIN. */
2538		WRITE_ONCE(*seq, *seq + 1);
2539		if (!(flags & MSG_PEEK))
2540			tcp_eat_recv_skb(sk, skb);
2541		break;
2542	} while (len > 0);
2543
2544	/* According to UNIX98, msg_name/msg_namelen are ignored
2545	 * on connected socket. I was just happy when found this 8) --ANK
2546	 */
2547
2548	/* Clean up data we have read: This will do ACK frames. */
2549	tcp_cleanup_rbuf(sk, copied);
2550	return copied;
2551
2552out:
2553	return err;
2554
2555recv_urg:
2556	err = tcp_recv_urg(sk, msg, len, flags);
2557	goto out;
2558
2559recv_sndq:
2560	err = tcp_peek_sndq(sk, msg, len);
2561	goto out;
2562}
2563
2564int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2565		int *addr_len)
2566{
2567	int cmsg_flags = 0, ret;
2568	struct scm_timestamping_internal tss;
2569
2570	if (unlikely(flags & MSG_ERRQUEUE))
2571		return inet_recv_error(sk, msg, len, addr_len);
2572
2573	if (sk_can_busy_loop(sk) &&
2574	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2575	    sk->sk_state == TCP_ESTABLISHED)
2576		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2577
2578	lock_sock(sk);
2579	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2580	release_sock(sk);
2581
2582	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2583		if (cmsg_flags & TCP_CMSG_TS)
2584			tcp_recv_timestamp(msg, sk, &tss);
2585		if (msg->msg_get_inq) {
2586			msg->msg_inq = tcp_inq_hint(sk);
2587			if (cmsg_flags & TCP_CMSG_INQ)
2588				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2589					 sizeof(msg->msg_inq), &msg->msg_inq);
2590		}
2591	}
2592	return ret;
2593}
2594EXPORT_SYMBOL(tcp_recvmsg);
2595
2596void tcp_set_state(struct sock *sk, int state)
2597{
2598	int oldstate = sk->sk_state;
2599
2600	/* We defined a new enum for TCP states that are exported in BPF
2601	 * so as not force the internal TCP states to be frozen. The
2602	 * following checks will detect if an internal state value ever
2603	 * differs from the BPF value. If this ever happens, then we will
2604	 * need to remap the internal value to the BPF value before calling
2605	 * tcp_call_bpf_2arg.
2606	 */
2607	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2608	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2609	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2610	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2611	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2612	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2613	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2614	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2615	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2616	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2617	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2618	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2619	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2620
2621	/* bpf uapi header bpf.h defines an anonymous enum with values
2622	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2623	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2624	 * But clang built vmlinux does not have this enum in DWARF
2625	 * since clang removes the above code before generating IR/debuginfo.
2626	 * Let us explicitly emit the type debuginfo to ensure the
2627	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2628	 * regardless of which compiler is used.
2629	 */
2630	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2631
2632	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2633		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2634
2635	switch (state) {
2636	case TCP_ESTABLISHED:
2637		if (oldstate != TCP_ESTABLISHED)
2638			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2639		break;
2640
2641	case TCP_CLOSE:
2642		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2643			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2644
2645		sk->sk_prot->unhash(sk);
2646		if (inet_csk(sk)->icsk_bind_hash &&
2647		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2648			inet_put_port(sk);
2649		fallthrough;
2650	default:
2651		if (oldstate == TCP_ESTABLISHED)
2652			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2653	}
2654
2655	/* Change state AFTER socket is unhashed to avoid closed
2656	 * socket sitting in hash tables.
2657	 */
2658	inet_sk_state_store(sk, state);
2659}
2660EXPORT_SYMBOL_GPL(tcp_set_state);
2661
2662/*
2663 *	State processing on a close. This implements the state shift for
2664 *	sending our FIN frame. Note that we only send a FIN for some
2665 *	states. A shutdown() may have already sent the FIN, or we may be
2666 *	closed.
2667 */
2668
2669static const unsigned char new_state[16] = {
2670  /* current state:        new state:      action:	*/
2671  [0 /* (Invalid) */]	= TCP_CLOSE,
2672  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2673  [TCP_SYN_SENT]	= TCP_CLOSE,
2674  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2675  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2676  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2677  [TCP_TIME_WAIT]	= TCP_CLOSE,
2678  [TCP_CLOSE]		= TCP_CLOSE,
2679  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2680  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2681  [TCP_LISTEN]		= TCP_CLOSE,
2682  [TCP_CLOSING]		= TCP_CLOSING,
2683  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2684};
2685
2686static int tcp_close_state(struct sock *sk)
2687{
2688	int next = (int)new_state[sk->sk_state];
2689	int ns = next & TCP_STATE_MASK;
2690
2691	tcp_set_state(sk, ns);
2692
2693	return next & TCP_ACTION_FIN;
2694}
2695
2696/*
2697 *	Shutdown the sending side of a connection. Much like close except
2698 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2699 */
2700
2701void tcp_shutdown(struct sock *sk, int how)
2702{
2703	/*	We need to grab some memory, and put together a FIN,
2704	 *	and then put it into the queue to be sent.
2705	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2706	 */
2707	if (!(how & SEND_SHUTDOWN))
2708		return;
2709
2710	/* If we've already sent a FIN, or it's a closed state, skip this. */
2711	if ((1 << sk->sk_state) &
2712	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2713	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2714		/* Clear out any half completed packets.  FIN if needed. */
2715		if (tcp_close_state(sk))
2716			tcp_send_fin(sk);
2717	}
2718}
2719EXPORT_SYMBOL(tcp_shutdown);
2720
2721int tcp_orphan_count_sum(void)
2722{
2723	int i, total = 0;
2724
2725	for_each_possible_cpu(i)
2726		total += per_cpu(tcp_orphan_count, i);
2727
2728	return max(total, 0);
2729}
2730
2731static int tcp_orphan_cache;
2732static struct timer_list tcp_orphan_timer;
2733#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2734
2735static void tcp_orphan_update(struct timer_list *unused)
2736{
2737	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2738	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2739}
2740
2741static bool tcp_too_many_orphans(int shift)
2742{
2743	return READ_ONCE(tcp_orphan_cache) << shift >
2744		READ_ONCE(sysctl_tcp_max_orphans);
2745}
2746
2747bool tcp_check_oom(struct sock *sk, int shift)
2748{
2749	bool too_many_orphans, out_of_socket_memory;
2750
2751	too_many_orphans = tcp_too_many_orphans(shift);
2752	out_of_socket_memory = tcp_out_of_memory(sk);
2753
2754	if (too_many_orphans)
2755		net_info_ratelimited("too many orphaned sockets\n");
2756	if (out_of_socket_memory)
2757		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2758	return too_many_orphans || out_of_socket_memory;
2759}
2760
2761void __tcp_close(struct sock *sk, long timeout)
2762{
2763	struct sk_buff *skb;
2764	int data_was_unread = 0;
2765	int state;
2766
2767	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2768
2769	if (sk->sk_state == TCP_LISTEN) {
2770		tcp_set_state(sk, TCP_CLOSE);
2771
2772		/* Special case. */
2773		inet_csk_listen_stop(sk);
2774
2775		goto adjudge_to_death;
2776	}
2777
2778	/*  We need to flush the recv. buffs.  We do this only on the
2779	 *  descriptor close, not protocol-sourced closes, because the
2780	 *  reader process may not have drained the data yet!
2781	 */
2782	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2783		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2784
2785		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2786			len--;
2787		data_was_unread += len;
2788		__kfree_skb(skb);
2789	}
2790
2791	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2792	if (sk->sk_state == TCP_CLOSE)
2793		goto adjudge_to_death;
2794
2795	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2796	 * data was lost. To witness the awful effects of the old behavior of
2797	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2798	 * GET in an FTP client, suspend the process, wait for the client to
2799	 * advertise a zero window, then kill -9 the FTP client, wheee...
2800	 * Note: timeout is always zero in such a case.
2801	 */
2802	if (unlikely(tcp_sk(sk)->repair)) {
2803		sk->sk_prot->disconnect(sk, 0);
2804	} else if (data_was_unread) {
2805		/* Unread data was tossed, zap the connection. */
2806		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2807		tcp_set_state(sk, TCP_CLOSE);
2808		tcp_send_active_reset(sk, sk->sk_allocation);
2809	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2810		/* Check zero linger _after_ checking for unread data. */
2811		sk->sk_prot->disconnect(sk, 0);
2812		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2813	} else if (tcp_close_state(sk)) {
2814		/* We FIN if the application ate all the data before
2815		 * zapping the connection.
2816		 */
2817
2818		/* RED-PEN. Formally speaking, we have broken TCP state
2819		 * machine. State transitions:
2820		 *
2821		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2822		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2823		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2824		 *
2825		 * are legal only when FIN has been sent (i.e. in window),
2826		 * rather than queued out of window. Purists blame.
2827		 *
2828		 * F.e. "RFC state" is ESTABLISHED,
2829		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2830		 *
2831		 * The visible declinations are that sometimes
2832		 * we enter time-wait state, when it is not required really
2833		 * (harmless), do not send active resets, when they are
2834		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2835		 * they look as CLOSING or LAST_ACK for Linux)
2836		 * Probably, I missed some more holelets.
2837		 * 						--ANK
2838		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2839		 * in a single packet! (May consider it later but will
2840		 * probably need API support or TCP_CORK SYN-ACK until
2841		 * data is written and socket is closed.)
2842		 */
2843		tcp_send_fin(sk);
2844	}
2845
2846	sk_stream_wait_close(sk, timeout);
2847
2848adjudge_to_death:
2849	state = sk->sk_state;
2850	sock_hold(sk);
2851	sock_orphan(sk);
2852
2853	local_bh_disable();
2854	bh_lock_sock(sk);
2855	/* remove backlog if any, without releasing ownership. */
2856	__release_sock(sk);
2857
2858	this_cpu_inc(tcp_orphan_count);
2859
2860	/* Have we already been destroyed by a softirq or backlog? */
2861	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2862		goto out;
2863
2864	/*	This is a (useful) BSD violating of the RFC. There is a
2865	 *	problem with TCP as specified in that the other end could
2866	 *	keep a socket open forever with no application left this end.
2867	 *	We use a 1 minute timeout (about the same as BSD) then kill
2868	 *	our end. If they send after that then tough - BUT: long enough
2869	 *	that we won't make the old 4*rto = almost no time - whoops
2870	 *	reset mistake.
2871	 *
2872	 *	Nope, it was not mistake. It is really desired behaviour
2873	 *	f.e. on http servers, when such sockets are useless, but
2874	 *	consume significant resources. Let's do it with special
2875	 *	linger2	option.					--ANK
2876	 */
2877
2878	if (sk->sk_state == TCP_FIN_WAIT2) {
2879		struct tcp_sock *tp = tcp_sk(sk);
2880		if (READ_ONCE(tp->linger2) < 0) {
2881			tcp_set_state(sk, TCP_CLOSE);
2882			tcp_send_active_reset(sk, GFP_ATOMIC);
2883			__NET_INC_STATS(sock_net(sk),
2884					LINUX_MIB_TCPABORTONLINGER);
2885		} else {
2886			const int tmo = tcp_fin_time(sk);
2887
2888			if (tmo > TCP_TIMEWAIT_LEN) {
2889				inet_csk_reset_keepalive_timer(sk,
2890						tmo - TCP_TIMEWAIT_LEN);
2891			} else {
2892				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2893				goto out;
2894			}
2895		}
2896	}
2897	if (sk->sk_state != TCP_CLOSE) {
2898		if (tcp_check_oom(sk, 0)) {
2899			tcp_set_state(sk, TCP_CLOSE);
2900			tcp_send_active_reset(sk, GFP_ATOMIC);
2901			__NET_INC_STATS(sock_net(sk),
2902					LINUX_MIB_TCPABORTONMEMORY);
2903		} else if (!check_net(sock_net(sk))) {
2904			/* Not possible to send reset; just close */
2905			tcp_set_state(sk, TCP_CLOSE);
2906		}
2907	}
2908
2909	if (sk->sk_state == TCP_CLOSE) {
2910		struct request_sock *req;
2911
2912		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2913						lockdep_sock_is_held(sk));
2914		/* We could get here with a non-NULL req if the socket is
2915		 * aborted (e.g., closed with unread data) before 3WHS
2916		 * finishes.
2917		 */
2918		if (req)
2919			reqsk_fastopen_remove(sk, req, false);
2920		inet_csk_destroy_sock(sk);
2921	}
2922	/* Otherwise, socket is reprieved until protocol close. */
2923
2924out:
2925	bh_unlock_sock(sk);
2926	local_bh_enable();
2927}
2928
2929void tcp_close(struct sock *sk, long timeout)
2930{
2931	lock_sock(sk);
2932	__tcp_close(sk, timeout);
2933	release_sock(sk);
2934	sock_put(sk);
2935}
2936EXPORT_SYMBOL(tcp_close);
2937
2938/* These states need RST on ABORT according to RFC793 */
2939
2940static inline bool tcp_need_reset(int state)
2941{
2942	return (1 << state) &
2943	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2944		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2945}
2946
2947static void tcp_rtx_queue_purge(struct sock *sk)
2948{
2949	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2950
2951	tcp_sk(sk)->highest_sack = NULL;
2952	while (p) {
2953		struct sk_buff *skb = rb_to_skb(p);
2954
2955		p = rb_next(p);
2956		/* Since we are deleting whole queue, no need to
2957		 * list_del(&skb->tcp_tsorted_anchor)
2958		 */
2959		tcp_rtx_queue_unlink(skb, sk);
2960		tcp_wmem_free_skb(sk, skb);
2961	}
2962}
2963
2964void tcp_write_queue_purge(struct sock *sk)
2965{
2966	struct sk_buff *skb;
2967
2968	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2969	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2970		tcp_skb_tsorted_anchor_cleanup(skb);
2971		tcp_wmem_free_skb(sk, skb);
2972	}
2973	tcp_rtx_queue_purge(sk);
2974	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2975	tcp_clear_all_retrans_hints(tcp_sk(sk));
2976	tcp_sk(sk)->packets_out = 0;
2977	inet_csk(sk)->icsk_backoff = 0;
2978}
2979
2980int tcp_disconnect(struct sock *sk, int flags)
2981{
2982	struct inet_sock *inet = inet_sk(sk);
2983	struct inet_connection_sock *icsk = inet_csk(sk);
2984	struct tcp_sock *tp = tcp_sk(sk);
2985	int old_state = sk->sk_state;
2986	u32 seq;
2987
2988	if (old_state != TCP_CLOSE)
2989		tcp_set_state(sk, TCP_CLOSE);
2990
2991	/* ABORT function of RFC793 */
2992	if (old_state == TCP_LISTEN) {
2993		inet_csk_listen_stop(sk);
2994	} else if (unlikely(tp->repair)) {
2995		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2996	} else if (tcp_need_reset(old_state) ||
2997		   (tp->snd_nxt != tp->write_seq &&
2998		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2999		/* The last check adjusts for discrepancy of Linux wrt. RFC
3000		 * states
3001		 */
3002		tcp_send_active_reset(sk, gfp_any());
3003		WRITE_ONCE(sk->sk_err, ECONNRESET);
3004	} else if (old_state == TCP_SYN_SENT)
3005		WRITE_ONCE(sk->sk_err, ECONNRESET);
3006
3007	tcp_clear_xmit_timers(sk);
3008	__skb_queue_purge(&sk->sk_receive_queue);
3009	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3010	WRITE_ONCE(tp->urg_data, 0);
3011	tcp_write_queue_purge(sk);
3012	tcp_fastopen_active_disable_ofo_check(sk);
3013	skb_rbtree_purge(&tp->out_of_order_queue);
3014
3015	inet->inet_dport = 0;
3016
3017	inet_bhash2_reset_saddr(sk);
3018
3019	WRITE_ONCE(sk->sk_shutdown, 0);
3020	sock_reset_flag(sk, SOCK_DONE);
3021	tp->srtt_us = 0;
3022	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3023	tp->rcv_rtt_last_tsecr = 0;
3024
3025	seq = tp->write_seq + tp->max_window + 2;
3026	if (!seq)
3027		seq = 1;
3028	WRITE_ONCE(tp->write_seq, seq);
3029
3030	icsk->icsk_backoff = 0;
3031	icsk->icsk_probes_out = 0;
3032	icsk->icsk_probes_tstamp = 0;
3033	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3034	icsk->icsk_rto_min = TCP_RTO_MIN;
3035	icsk->icsk_delack_max = TCP_DELACK_MAX;
3036	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3037	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3038	tp->snd_cwnd_cnt = 0;
3039	tp->is_cwnd_limited = 0;
3040	tp->max_packets_out = 0;
3041	tp->window_clamp = 0;
3042	tp->delivered = 0;
3043	tp->delivered_ce = 0;
3044	if (icsk->icsk_ca_ops->release)
3045		icsk->icsk_ca_ops->release(sk);
3046	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3047	icsk->icsk_ca_initialized = 0;
3048	tcp_set_ca_state(sk, TCP_CA_Open);
3049	tp->is_sack_reneg = 0;
3050	tcp_clear_retrans(tp);
3051	tp->total_retrans = 0;
3052	inet_csk_delack_init(sk);
3053	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3054	 * issue in __tcp_select_window()
3055	 */
3056	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3057	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3058	__sk_dst_reset(sk);
3059	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
3060	tcp_saved_syn_free(tp);
3061	tp->compressed_ack = 0;
3062	tp->segs_in = 0;
3063	tp->segs_out = 0;
3064	tp->bytes_sent = 0;
3065	tp->bytes_acked = 0;
3066	tp->bytes_received = 0;
3067	tp->bytes_retrans = 0;
3068	tp->data_segs_in = 0;
3069	tp->data_segs_out = 0;
3070	tp->duplicate_sack[0].start_seq = 0;
3071	tp->duplicate_sack[0].end_seq = 0;
3072	tp->dsack_dups = 0;
3073	tp->reord_seen = 0;
3074	tp->retrans_out = 0;
3075	tp->sacked_out = 0;
3076	tp->tlp_high_seq = 0;
3077	tp->last_oow_ack_time = 0;
3078	tp->plb_rehash = 0;
3079	/* There's a bubble in the pipe until at least the first ACK. */
3080	tp->app_limited = ~0U;
3081	tp->rate_app_limited = 1;
3082	tp->rack.mstamp = 0;
3083	tp->rack.advanced = 0;
3084	tp->rack.reo_wnd_steps = 1;
3085	tp->rack.last_delivered = 0;
3086	tp->rack.reo_wnd_persist = 0;
3087	tp->rack.dsack_seen = 0;
3088	tp->syn_data_acked = 0;
3089	tp->rx_opt.saw_tstamp = 0;
3090	tp->rx_opt.dsack = 0;
3091	tp->rx_opt.num_sacks = 0;
3092	tp->rcv_ooopack = 0;
3093
3094
3095	/* Clean up fastopen related fields */
3096	tcp_free_fastopen_req(tp);
3097	inet_clear_bit(DEFER_CONNECT, sk);
3098	tp->fastopen_client_fail = 0;
3099
3100	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3101
3102	if (sk->sk_frag.page) {
3103		put_page(sk->sk_frag.page);
3104		sk->sk_frag.page = NULL;
3105		sk->sk_frag.offset = 0;
3106	}
3107	sk_error_report(sk);
3108	return 0;
3109}
3110EXPORT_SYMBOL(tcp_disconnect);
3111
3112static inline bool tcp_can_repair_sock(const struct sock *sk)
3113{
3114	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3115		(sk->sk_state != TCP_LISTEN);
3116}
3117
3118static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3119{
3120	struct tcp_repair_window opt;
3121
3122	if (!tp->repair)
3123		return -EPERM;
3124
3125	if (len != sizeof(opt))
3126		return -EINVAL;
3127
3128	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3129		return -EFAULT;
3130
3131	if (opt.max_window < opt.snd_wnd)
3132		return -EINVAL;
3133
3134	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3135		return -EINVAL;
3136
3137	if (after(opt.rcv_wup, tp->rcv_nxt))
3138		return -EINVAL;
3139
3140	tp->snd_wl1	= opt.snd_wl1;
3141	tp->snd_wnd	= opt.snd_wnd;
3142	tp->max_window	= opt.max_window;
3143
3144	tp->rcv_wnd	= opt.rcv_wnd;
3145	tp->rcv_wup	= opt.rcv_wup;
3146
3147	return 0;
3148}
3149
3150static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3151		unsigned int len)
3152{
3153	struct tcp_sock *tp = tcp_sk(sk);
3154	struct tcp_repair_opt opt;
3155	size_t offset = 0;
3156
3157	while (len >= sizeof(opt)) {
3158		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3159			return -EFAULT;
3160
3161		offset += sizeof(opt);
3162		len -= sizeof(opt);
3163
3164		switch (opt.opt_code) {
3165		case TCPOPT_MSS:
3166			tp->rx_opt.mss_clamp = opt.opt_val;
3167			tcp_mtup_init(sk);
3168			break;
3169		case TCPOPT_WINDOW:
3170			{
3171				u16 snd_wscale = opt.opt_val & 0xFFFF;
3172				u16 rcv_wscale = opt.opt_val >> 16;
3173
3174				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3175					return -EFBIG;
3176
3177				tp->rx_opt.snd_wscale = snd_wscale;
3178				tp->rx_opt.rcv_wscale = rcv_wscale;
3179				tp->rx_opt.wscale_ok = 1;
3180			}
3181			break;
3182		case TCPOPT_SACK_PERM:
3183			if (opt.opt_val != 0)
3184				return -EINVAL;
3185
3186			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3187			break;
3188		case TCPOPT_TIMESTAMP:
3189			if (opt.opt_val != 0)
3190				return -EINVAL;
3191
3192			tp->rx_opt.tstamp_ok = 1;
3193			break;
3194		}
3195	}
3196
3197	return 0;
3198}
3199
3200DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3201EXPORT_SYMBOL(tcp_tx_delay_enabled);
3202
3203static void tcp_enable_tx_delay(void)
3204{
3205	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3206		static int __tcp_tx_delay_enabled = 0;
3207
3208		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3209			static_branch_enable(&tcp_tx_delay_enabled);
3210			pr_info("TCP_TX_DELAY enabled\n");
3211		}
3212	}
3213}
3214
3215/* When set indicates to always queue non-full frames.  Later the user clears
3216 * this option and we transmit any pending partial frames in the queue.  This is
3217 * meant to be used alongside sendfile() to get properly filled frames when the
3218 * user (for example) must write out headers with a write() call first and then
3219 * use sendfile to send out the data parts.
3220 *
3221 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3222 * TCP_NODELAY.
3223 */
3224void __tcp_sock_set_cork(struct sock *sk, bool on)
3225{
3226	struct tcp_sock *tp = tcp_sk(sk);
3227
3228	if (on) {
3229		tp->nonagle |= TCP_NAGLE_CORK;
3230	} else {
3231		tp->nonagle &= ~TCP_NAGLE_CORK;
3232		if (tp->nonagle & TCP_NAGLE_OFF)
3233			tp->nonagle |= TCP_NAGLE_PUSH;
3234		tcp_push_pending_frames(sk);
3235	}
3236}
3237
3238void tcp_sock_set_cork(struct sock *sk, bool on)
3239{
3240	lock_sock(sk);
3241	__tcp_sock_set_cork(sk, on);
3242	release_sock(sk);
3243}
3244EXPORT_SYMBOL(tcp_sock_set_cork);
3245
3246/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3247 * remembered, but it is not activated until cork is cleared.
3248 *
3249 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3250 * even TCP_CORK for currently queued segments.
3251 */
3252void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3253{
3254	if (on) {
3255		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3256		tcp_push_pending_frames(sk);
3257	} else {
3258		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3259	}
3260}
3261
3262void tcp_sock_set_nodelay(struct sock *sk)
3263{
3264	lock_sock(sk);
3265	__tcp_sock_set_nodelay(sk, true);
3266	release_sock(sk);
3267}
3268EXPORT_SYMBOL(tcp_sock_set_nodelay);
3269
3270static void __tcp_sock_set_quickack(struct sock *sk, int val)
3271{
3272	if (!val) {
3273		inet_csk_enter_pingpong_mode(sk);
3274		return;
3275	}
3276
3277	inet_csk_exit_pingpong_mode(sk);
3278	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3279	    inet_csk_ack_scheduled(sk)) {
3280		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3281		tcp_cleanup_rbuf(sk, 1);
3282		if (!(val & 1))
3283			inet_csk_enter_pingpong_mode(sk);
3284	}
3285}
3286
3287void tcp_sock_set_quickack(struct sock *sk, int val)
3288{
3289	lock_sock(sk);
3290	__tcp_sock_set_quickack(sk, val);
3291	release_sock(sk);
3292}
3293EXPORT_SYMBOL(tcp_sock_set_quickack);
3294
3295int tcp_sock_set_syncnt(struct sock *sk, int val)
3296{
3297	if (val < 1 || val > MAX_TCP_SYNCNT)
3298		return -EINVAL;
3299
3300	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3301	return 0;
3302}
3303EXPORT_SYMBOL(tcp_sock_set_syncnt);
3304
3305int tcp_sock_set_user_timeout(struct sock *sk, int val)
3306{
3307	/* Cap the max time in ms TCP will retry or probe the window
3308	 * before giving up and aborting (ETIMEDOUT) a connection.
3309	 */
3310	if (val < 0)
3311		return -EINVAL;
3312
3313	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3314	return 0;
3315}
3316EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3317
3318int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3319{
3320	struct tcp_sock *tp = tcp_sk(sk);
3321
3322	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3323		return -EINVAL;
3324
3325	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3326	WRITE_ONCE(tp->keepalive_time, val * HZ);
3327	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3328	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3329		u32 elapsed = keepalive_time_elapsed(tp);
3330
3331		if (tp->keepalive_time > elapsed)
3332			elapsed = tp->keepalive_time - elapsed;
3333		else
3334			elapsed = 0;
3335		inet_csk_reset_keepalive_timer(sk, elapsed);
3336	}
3337
3338	return 0;
3339}
3340
3341int tcp_sock_set_keepidle(struct sock *sk, int val)
3342{
3343	int err;
3344
3345	lock_sock(sk);
3346	err = tcp_sock_set_keepidle_locked(sk, val);
3347	release_sock(sk);
3348	return err;
3349}
3350EXPORT_SYMBOL(tcp_sock_set_keepidle);
3351
3352int tcp_sock_set_keepintvl(struct sock *sk, int val)
3353{
3354	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3355		return -EINVAL;
3356
3357	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3358	return 0;
3359}
3360EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3361
3362int tcp_sock_set_keepcnt(struct sock *sk, int val)
3363{
3364	if (val < 1 || val > MAX_TCP_KEEPCNT)
3365		return -EINVAL;
3366
3367	/* Paired with READ_ONCE() in keepalive_probes() */
3368	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3369	return 0;
3370}
3371EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3372
3373int tcp_set_window_clamp(struct sock *sk, int val)
3374{
3375	struct tcp_sock *tp = tcp_sk(sk);
3376
3377	if (!val) {
3378		if (sk->sk_state != TCP_CLOSE)
3379			return -EINVAL;
3380		tp->window_clamp = 0;
3381	} else {
3382		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3383		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3384						SOCK_MIN_RCVBUF / 2 : val;
3385
3386		if (new_window_clamp == old_window_clamp)
3387			return 0;
3388
3389		tp->window_clamp = new_window_clamp;
3390		if (new_window_clamp < old_window_clamp) {
3391			/* need to apply the reserved mem provisioning only
3392			 * when shrinking the window clamp
3393			 */
3394			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3395
3396		} else {
3397			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3398			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3399					       tp->rcv_ssthresh);
3400		}
3401	}
3402	return 0;
3403}
3404
3405/*
3406 *	Socket option code for TCP.
3407 */
3408int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3409		      sockptr_t optval, unsigned int optlen)
3410{
3411	struct tcp_sock *tp = tcp_sk(sk);
3412	struct inet_connection_sock *icsk = inet_csk(sk);
3413	struct net *net = sock_net(sk);
3414	int val;
3415	int err = 0;
3416
3417	/* These are data/string values, all the others are ints */
3418	switch (optname) {
3419	case TCP_CONGESTION: {
3420		char name[TCP_CA_NAME_MAX];
3421
3422		if (optlen < 1)
3423			return -EINVAL;
3424
3425		val = strncpy_from_sockptr(name, optval,
3426					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3427		if (val < 0)
3428			return -EFAULT;
3429		name[val] = 0;
3430
3431		sockopt_lock_sock(sk);
3432		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3433						 sockopt_ns_capable(sock_net(sk)->user_ns,
3434								    CAP_NET_ADMIN));
3435		sockopt_release_sock(sk);
3436		return err;
3437	}
3438	case TCP_ULP: {
3439		char name[TCP_ULP_NAME_MAX];
3440
3441		if (optlen < 1)
3442			return -EINVAL;
3443
3444		val = strncpy_from_sockptr(name, optval,
3445					min_t(long, TCP_ULP_NAME_MAX - 1,
3446					      optlen));
3447		if (val < 0)
3448			return -EFAULT;
3449		name[val] = 0;
3450
3451		sockopt_lock_sock(sk);
3452		err = tcp_set_ulp(sk, name);
3453		sockopt_release_sock(sk);
3454		return err;
3455	}
3456	case TCP_FASTOPEN_KEY: {
3457		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3458		__u8 *backup_key = NULL;
3459
3460		/* Allow a backup key as well to facilitate key rotation
3461		 * First key is the active one.
3462		 */
3463		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3464		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3465			return -EINVAL;
3466
3467		if (copy_from_sockptr(key, optval, optlen))
3468			return -EFAULT;
3469
3470		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3471			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3472
3473		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3474	}
3475	default:
3476		/* fallthru */
3477		break;
3478	}
3479
3480	if (optlen < sizeof(int))
3481		return -EINVAL;
3482
3483	if (copy_from_sockptr(&val, optval, sizeof(val)))
3484		return -EFAULT;
3485
3486	/* Handle options that can be set without locking the socket. */
3487	switch (optname) {
3488	case TCP_SYNCNT:
3489		return tcp_sock_set_syncnt(sk, val);
3490	case TCP_USER_TIMEOUT:
3491		return tcp_sock_set_user_timeout(sk, val);
3492	case TCP_KEEPINTVL:
3493		return tcp_sock_set_keepintvl(sk, val);
3494	case TCP_KEEPCNT:
3495		return tcp_sock_set_keepcnt(sk, val);
3496	case TCP_LINGER2:
3497		if (val < 0)
3498			WRITE_ONCE(tp->linger2, -1);
3499		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3500			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3501		else
3502			WRITE_ONCE(tp->linger2, val * HZ);
3503		return 0;
3504	case TCP_DEFER_ACCEPT:
3505		/* Translate value in seconds to number of retransmits */
3506		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3507			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3508					   TCP_RTO_MAX / HZ));
3509		return 0;
3510	}
3511
3512	sockopt_lock_sock(sk);
3513
3514	switch (optname) {
3515	case TCP_MAXSEG:
3516		/* Values greater than interface MTU won't take effect. However
3517		 * at the point when this call is done we typically don't yet
3518		 * know which interface is going to be used
3519		 */
3520		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3521			err = -EINVAL;
3522			break;
3523		}
3524		tp->rx_opt.user_mss = val;
3525		break;
3526
3527	case TCP_NODELAY:
3528		__tcp_sock_set_nodelay(sk, val);
3529		break;
3530
3531	case TCP_THIN_LINEAR_TIMEOUTS:
3532		if (val < 0 || val > 1)
3533			err = -EINVAL;
3534		else
3535			tp->thin_lto = val;
3536		break;
3537
3538	case TCP_THIN_DUPACK:
3539		if (val < 0 || val > 1)
3540			err = -EINVAL;
3541		break;
3542
3543	case TCP_REPAIR:
3544		if (!tcp_can_repair_sock(sk))
3545			err = -EPERM;
3546		else if (val == TCP_REPAIR_ON) {
3547			tp->repair = 1;
3548			sk->sk_reuse = SK_FORCE_REUSE;
3549			tp->repair_queue = TCP_NO_QUEUE;
3550		} else if (val == TCP_REPAIR_OFF) {
3551			tp->repair = 0;
3552			sk->sk_reuse = SK_NO_REUSE;
3553			tcp_send_window_probe(sk);
3554		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3555			tp->repair = 0;
3556			sk->sk_reuse = SK_NO_REUSE;
3557		} else
3558			err = -EINVAL;
3559
3560		break;
3561
3562	case TCP_REPAIR_QUEUE:
3563		if (!tp->repair)
3564			err = -EPERM;
3565		else if ((unsigned int)val < TCP_QUEUES_NR)
3566			tp->repair_queue = val;
3567		else
3568			err = -EINVAL;
3569		break;
3570
3571	case TCP_QUEUE_SEQ:
3572		if (sk->sk_state != TCP_CLOSE) {
3573			err = -EPERM;
3574		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3575			if (!tcp_rtx_queue_empty(sk))
3576				err = -EPERM;
3577			else
3578				WRITE_ONCE(tp->write_seq, val);
3579		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3580			if (tp->rcv_nxt != tp->copied_seq) {
3581				err = -EPERM;
3582			} else {
3583				WRITE_ONCE(tp->rcv_nxt, val);
3584				WRITE_ONCE(tp->copied_seq, val);
3585			}
3586		} else {
3587			err = -EINVAL;
3588		}
3589		break;
3590
3591	case TCP_REPAIR_OPTIONS:
3592		if (!tp->repair)
3593			err = -EINVAL;
3594		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3595			err = tcp_repair_options_est(sk, optval, optlen);
3596		else
3597			err = -EPERM;
3598		break;
3599
3600	case TCP_CORK:
3601		__tcp_sock_set_cork(sk, val);
3602		break;
3603
3604	case TCP_KEEPIDLE:
3605		err = tcp_sock_set_keepidle_locked(sk, val);
3606		break;
3607	case TCP_SAVE_SYN:
3608		/* 0: disable, 1: enable, 2: start from ether_header */
3609		if (val < 0 || val > 2)
3610			err = -EINVAL;
3611		else
3612			tp->save_syn = val;
3613		break;
3614
3615	case TCP_WINDOW_CLAMP:
3616		err = tcp_set_window_clamp(sk, val);
3617		break;
3618
3619	case TCP_QUICKACK:
3620		__tcp_sock_set_quickack(sk, val);
3621		break;
3622
3623#ifdef CONFIG_TCP_MD5SIG
3624	case TCP_MD5SIG:
3625	case TCP_MD5SIG_EXT:
3626		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3627		break;
3628#endif
3629	case TCP_FASTOPEN:
3630		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3631		    TCPF_LISTEN))) {
3632			tcp_fastopen_init_key_once(net);
3633
3634			fastopen_queue_tune(sk, val);
3635		} else {
3636			err = -EINVAL;
3637		}
3638		break;
3639	case TCP_FASTOPEN_CONNECT:
3640		if (val > 1 || val < 0) {
3641			err = -EINVAL;
3642		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3643			   TFO_CLIENT_ENABLE) {
3644			if (sk->sk_state == TCP_CLOSE)
3645				tp->fastopen_connect = val;
3646			else
3647				err = -EINVAL;
3648		} else {
3649			err = -EOPNOTSUPP;
3650		}
3651		break;
3652	case TCP_FASTOPEN_NO_COOKIE:
3653		if (val > 1 || val < 0)
3654			err = -EINVAL;
3655		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3656			err = -EINVAL;
3657		else
3658			tp->fastopen_no_cookie = val;
3659		break;
3660	case TCP_TIMESTAMP:
3661		if (!tp->repair)
3662			err = -EPERM;
3663		else
3664			WRITE_ONCE(tp->tsoffset, val - tcp_time_stamp_raw());
3665		break;
3666	case TCP_REPAIR_WINDOW:
3667		err = tcp_repair_set_window(tp, optval, optlen);
3668		break;
3669	case TCP_NOTSENT_LOWAT:
3670		WRITE_ONCE(tp->notsent_lowat, val);
3671		sk->sk_write_space(sk);
3672		break;
3673	case TCP_INQ:
3674		if (val > 1 || val < 0)
3675			err = -EINVAL;
3676		else
3677			tp->recvmsg_inq = val;
3678		break;
3679	case TCP_TX_DELAY:
3680		if (val)
3681			tcp_enable_tx_delay();
3682		WRITE_ONCE(tp->tcp_tx_delay, val);
3683		break;
3684	default:
3685		err = -ENOPROTOOPT;
3686		break;
3687	}
3688
3689	sockopt_release_sock(sk);
3690	return err;
3691}
3692
3693int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3694		   unsigned int optlen)
3695{
3696	const struct inet_connection_sock *icsk = inet_csk(sk);
3697
3698	if (level != SOL_TCP)
3699		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3700		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3701								optval, optlen);
3702	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3703}
3704EXPORT_SYMBOL(tcp_setsockopt);
3705
3706static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3707				      struct tcp_info *info)
3708{
3709	u64 stats[__TCP_CHRONO_MAX], total = 0;
3710	enum tcp_chrono i;
3711
3712	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3713		stats[i] = tp->chrono_stat[i - 1];
3714		if (i == tp->chrono_type)
3715			stats[i] += tcp_jiffies32 - tp->chrono_start;
3716		stats[i] *= USEC_PER_SEC / HZ;
3717		total += stats[i];
3718	}
3719
3720	info->tcpi_busy_time = total;
3721	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3722	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3723}
3724
3725/* Return information about state of tcp endpoint in API format. */
3726void tcp_get_info(struct sock *sk, struct tcp_info *info)
3727{
3728	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3729	const struct inet_connection_sock *icsk = inet_csk(sk);
3730	unsigned long rate;
3731	u32 now;
3732	u64 rate64;
3733	bool slow;
3734
3735	memset(info, 0, sizeof(*info));
3736	if (sk->sk_type != SOCK_STREAM)
3737		return;
3738
3739	info->tcpi_state = inet_sk_state_load(sk);
3740
3741	/* Report meaningful fields for all TCP states, including listeners */
3742	rate = READ_ONCE(sk->sk_pacing_rate);
3743	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3744	info->tcpi_pacing_rate = rate64;
3745
3746	rate = READ_ONCE(sk->sk_max_pacing_rate);
3747	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3748	info->tcpi_max_pacing_rate = rate64;
3749
3750	info->tcpi_reordering = tp->reordering;
3751	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3752
3753	if (info->tcpi_state == TCP_LISTEN) {
3754		/* listeners aliased fields :
3755		 * tcpi_unacked -> Number of children ready for accept()
3756		 * tcpi_sacked  -> max backlog
3757		 */
3758		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3759		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3760		return;
3761	}
3762
3763	slow = lock_sock_fast(sk);
3764
3765	info->tcpi_ca_state = icsk->icsk_ca_state;
3766	info->tcpi_retransmits = icsk->icsk_retransmits;
3767	info->tcpi_probes = icsk->icsk_probes_out;
3768	info->tcpi_backoff = icsk->icsk_backoff;
3769
3770	if (tp->rx_opt.tstamp_ok)
3771		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3772	if (tcp_is_sack(tp))
3773		info->tcpi_options |= TCPI_OPT_SACK;
3774	if (tp->rx_opt.wscale_ok) {
3775		info->tcpi_options |= TCPI_OPT_WSCALE;
3776		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3777		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3778	}
3779
3780	if (tp->ecn_flags & TCP_ECN_OK)
3781		info->tcpi_options |= TCPI_OPT_ECN;
3782	if (tp->ecn_flags & TCP_ECN_SEEN)
3783		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3784	if (tp->syn_data_acked)
3785		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3786
3787	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3788	info->tcpi_ato = jiffies_to_usecs(min(icsk->icsk_ack.ato,
3789					      tcp_delack_max(sk)));
3790	info->tcpi_snd_mss = tp->mss_cache;
3791	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3792
3793	info->tcpi_unacked = tp->packets_out;
3794	info->tcpi_sacked = tp->sacked_out;
3795
3796	info->tcpi_lost = tp->lost_out;
3797	info->tcpi_retrans = tp->retrans_out;
3798
3799	now = tcp_jiffies32;
3800	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3801	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3802	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3803
3804	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3805	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3806	info->tcpi_rtt = tp->srtt_us >> 3;
3807	info->tcpi_rttvar = tp->mdev_us >> 2;
3808	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3809	info->tcpi_advmss = tp->advmss;
3810
3811	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3812	info->tcpi_rcv_space = tp->rcvq_space.space;
3813
3814	info->tcpi_total_retrans = tp->total_retrans;
3815
3816	info->tcpi_bytes_acked = tp->bytes_acked;
3817	info->tcpi_bytes_received = tp->bytes_received;
3818	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3819	tcp_get_info_chrono_stats(tp, info);
3820
3821	info->tcpi_segs_out = tp->segs_out;
3822
3823	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3824	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3825	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3826
3827	info->tcpi_min_rtt = tcp_min_rtt(tp);
3828	info->tcpi_data_segs_out = tp->data_segs_out;
3829
3830	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3831	rate64 = tcp_compute_delivery_rate(tp);
3832	if (rate64)
3833		info->tcpi_delivery_rate = rate64;
3834	info->tcpi_delivered = tp->delivered;
3835	info->tcpi_delivered_ce = tp->delivered_ce;
3836	info->tcpi_bytes_sent = tp->bytes_sent;
3837	info->tcpi_bytes_retrans = tp->bytes_retrans;
3838	info->tcpi_dsack_dups = tp->dsack_dups;
3839	info->tcpi_reord_seen = tp->reord_seen;
3840	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3841	info->tcpi_snd_wnd = tp->snd_wnd;
3842	info->tcpi_rcv_wnd = tp->rcv_wnd;
3843	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3844	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3845	unlock_sock_fast(sk, slow);
3846}
3847EXPORT_SYMBOL_GPL(tcp_get_info);
3848
3849static size_t tcp_opt_stats_get_size(void)
3850{
3851	return
3852		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3853		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3854		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3855		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3856		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3857		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3858		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3859		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3860		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3861		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3862		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3863		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3864		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3865		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3866		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3867		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3868		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3869		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3870		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3871		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3872		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3873		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3874		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3875		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3876		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3877		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3878		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3879		0;
3880}
3881
3882/* Returns TTL or hop limit of an incoming packet from skb. */
3883static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3884{
3885	if (skb->protocol == htons(ETH_P_IP))
3886		return ip_hdr(skb)->ttl;
3887	else if (skb->protocol == htons(ETH_P_IPV6))
3888		return ipv6_hdr(skb)->hop_limit;
3889	else
3890		return 0;
3891}
3892
3893struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3894					       const struct sk_buff *orig_skb,
3895					       const struct sk_buff *ack_skb)
3896{
3897	const struct tcp_sock *tp = tcp_sk(sk);
3898	struct sk_buff *stats;
3899	struct tcp_info info;
3900	unsigned long rate;
3901	u64 rate64;
3902
3903	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3904	if (!stats)
3905		return NULL;
3906
3907	tcp_get_info_chrono_stats(tp, &info);
3908	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3909			  info.tcpi_busy_time, TCP_NLA_PAD);
3910	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3911			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3912	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3913			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3914	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3915			  tp->data_segs_out, TCP_NLA_PAD);
3916	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3917			  tp->total_retrans, TCP_NLA_PAD);
3918
3919	rate = READ_ONCE(sk->sk_pacing_rate);
3920	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3921	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3922
3923	rate64 = tcp_compute_delivery_rate(tp);
3924	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3925
3926	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3927	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3928	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3929
3930	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3931	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3932	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3933	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3934	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3935
3936	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3937	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3938
3939	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3940			  TCP_NLA_PAD);
3941	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3942			  TCP_NLA_PAD);
3943	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3944	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3945	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3946	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3947	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3948		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3949	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3950			  TCP_NLA_PAD);
3951	if (ack_skb)
3952		nla_put_u8(stats, TCP_NLA_TTL,
3953			   tcp_skb_ttl_or_hop_limit(ack_skb));
3954
3955	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3956	return stats;
3957}
3958
3959int do_tcp_getsockopt(struct sock *sk, int level,
3960		      int optname, sockptr_t optval, sockptr_t optlen)
3961{
3962	struct inet_connection_sock *icsk = inet_csk(sk);
3963	struct tcp_sock *tp = tcp_sk(sk);
3964	struct net *net = sock_net(sk);
3965	int val, len;
3966
3967	if (copy_from_sockptr(&len, optlen, sizeof(int)))
3968		return -EFAULT;
3969
3970	if (len < 0)
3971		return -EINVAL;
3972
3973	len = min_t(unsigned int, len, sizeof(int));
3974
3975	switch (optname) {
3976	case TCP_MAXSEG:
3977		val = tp->mss_cache;
3978		if (tp->rx_opt.user_mss &&
3979		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3980			val = tp->rx_opt.user_mss;
3981		if (tp->repair)
3982			val = tp->rx_opt.mss_clamp;
3983		break;
3984	case TCP_NODELAY:
3985		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3986		break;
3987	case TCP_CORK:
3988		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3989		break;
3990	case TCP_KEEPIDLE:
3991		val = keepalive_time_when(tp) / HZ;
3992		break;
3993	case TCP_KEEPINTVL:
3994		val = keepalive_intvl_when(tp) / HZ;
3995		break;
3996	case TCP_KEEPCNT:
3997		val = keepalive_probes(tp);
3998		break;
3999	case TCP_SYNCNT:
4000		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4001			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4002		break;
4003	case TCP_LINGER2:
4004		val = READ_ONCE(tp->linger2);
4005		if (val >= 0)
4006			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4007		break;
4008	case TCP_DEFER_ACCEPT:
4009		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4010		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4011				      TCP_RTO_MAX / HZ);
4012		break;
4013	case TCP_WINDOW_CLAMP:
4014		val = tp->window_clamp;
4015		break;
4016	case TCP_INFO: {
4017		struct tcp_info info;
4018
4019		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4020			return -EFAULT;
4021
4022		tcp_get_info(sk, &info);
4023
4024		len = min_t(unsigned int, len, sizeof(info));
4025		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4026			return -EFAULT;
4027		if (copy_to_sockptr(optval, &info, len))
4028			return -EFAULT;
4029		return 0;
4030	}
4031	case TCP_CC_INFO: {
4032		const struct tcp_congestion_ops *ca_ops;
4033		union tcp_cc_info info;
4034		size_t sz = 0;
4035		int attr;
4036
4037		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4038			return -EFAULT;
4039
4040		ca_ops = icsk->icsk_ca_ops;
4041		if (ca_ops && ca_ops->get_info)
4042			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4043
4044		len = min_t(unsigned int, len, sz);
4045		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4046			return -EFAULT;
4047		if (copy_to_sockptr(optval, &info, len))
4048			return -EFAULT;
4049		return 0;
4050	}
4051	case TCP_QUICKACK:
4052		val = !inet_csk_in_pingpong_mode(sk);
4053		break;
4054
4055	case TCP_CONGESTION:
4056		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4057			return -EFAULT;
4058		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4059		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4060			return -EFAULT;
4061		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4062			return -EFAULT;
4063		return 0;
4064
4065	case TCP_ULP:
4066		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4067			return -EFAULT;
4068		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4069		if (!icsk->icsk_ulp_ops) {
4070			len = 0;
4071			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4072				return -EFAULT;
4073			return 0;
4074		}
4075		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4076			return -EFAULT;
4077		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4078			return -EFAULT;
4079		return 0;
4080
4081	case TCP_FASTOPEN_KEY: {
4082		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4083		unsigned int key_len;
4084
4085		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4086			return -EFAULT;
4087
4088		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4089				TCP_FASTOPEN_KEY_LENGTH;
4090		len = min_t(unsigned int, len, key_len);
4091		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4092			return -EFAULT;
4093		if (copy_to_sockptr(optval, key, len))
4094			return -EFAULT;
4095		return 0;
4096	}
4097	case TCP_THIN_LINEAR_TIMEOUTS:
4098		val = tp->thin_lto;
4099		break;
4100
4101	case TCP_THIN_DUPACK:
4102		val = 0;
4103		break;
4104
4105	case TCP_REPAIR:
4106		val = tp->repair;
4107		break;
4108
4109	case TCP_REPAIR_QUEUE:
4110		if (tp->repair)
4111			val = tp->repair_queue;
4112		else
4113			return -EINVAL;
4114		break;
4115
4116	case TCP_REPAIR_WINDOW: {
4117		struct tcp_repair_window opt;
4118
4119		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4120			return -EFAULT;
4121
4122		if (len != sizeof(opt))
4123			return -EINVAL;
4124
4125		if (!tp->repair)
4126			return -EPERM;
4127
4128		opt.snd_wl1	= tp->snd_wl1;
4129		opt.snd_wnd	= tp->snd_wnd;
4130		opt.max_window	= tp->max_window;
4131		opt.rcv_wnd	= tp->rcv_wnd;
4132		opt.rcv_wup	= tp->rcv_wup;
4133
4134		if (copy_to_sockptr(optval, &opt, len))
4135			return -EFAULT;
4136		return 0;
4137	}
4138	case TCP_QUEUE_SEQ:
4139		if (tp->repair_queue == TCP_SEND_QUEUE)
4140			val = tp->write_seq;
4141		else if (tp->repair_queue == TCP_RECV_QUEUE)
4142			val = tp->rcv_nxt;
4143		else
4144			return -EINVAL;
4145		break;
4146
4147	case TCP_USER_TIMEOUT:
4148		val = READ_ONCE(icsk->icsk_user_timeout);
4149		break;
4150
4151	case TCP_FASTOPEN:
4152		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4153		break;
4154
4155	case TCP_FASTOPEN_CONNECT:
4156		val = tp->fastopen_connect;
4157		break;
4158
4159	case TCP_FASTOPEN_NO_COOKIE:
4160		val = tp->fastopen_no_cookie;
4161		break;
4162
4163	case TCP_TX_DELAY:
4164		val = READ_ONCE(tp->tcp_tx_delay);
4165		break;
4166
4167	case TCP_TIMESTAMP:
4168		val = tcp_time_stamp_raw() + READ_ONCE(tp->tsoffset);
4169		break;
4170	case TCP_NOTSENT_LOWAT:
4171		val = READ_ONCE(tp->notsent_lowat);
4172		break;
4173	case TCP_INQ:
4174		val = tp->recvmsg_inq;
4175		break;
4176	case TCP_SAVE_SYN:
4177		val = tp->save_syn;
4178		break;
4179	case TCP_SAVED_SYN: {
4180		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4181			return -EFAULT;
4182
4183		sockopt_lock_sock(sk);
4184		if (tp->saved_syn) {
4185			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4186				len = tcp_saved_syn_len(tp->saved_syn);
4187				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4188					sockopt_release_sock(sk);
4189					return -EFAULT;
4190				}
4191				sockopt_release_sock(sk);
4192				return -EINVAL;
4193			}
4194			len = tcp_saved_syn_len(tp->saved_syn);
4195			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4196				sockopt_release_sock(sk);
4197				return -EFAULT;
4198			}
4199			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4200				sockopt_release_sock(sk);
4201				return -EFAULT;
4202			}
4203			tcp_saved_syn_free(tp);
4204			sockopt_release_sock(sk);
4205		} else {
4206			sockopt_release_sock(sk);
4207			len = 0;
4208			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4209				return -EFAULT;
4210		}
4211		return 0;
4212	}
4213#ifdef CONFIG_MMU
4214	case TCP_ZEROCOPY_RECEIVE: {
4215		struct scm_timestamping_internal tss;
4216		struct tcp_zerocopy_receive zc = {};
4217		int err;
4218
4219		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4220			return -EFAULT;
4221		if (len < 0 ||
4222		    len < offsetofend(struct tcp_zerocopy_receive, length))
4223			return -EINVAL;
4224		if (unlikely(len > sizeof(zc))) {
4225			err = check_zeroed_sockptr(optval, sizeof(zc),
4226						   len - sizeof(zc));
4227			if (err < 1)
4228				return err == 0 ? -EINVAL : err;
4229			len = sizeof(zc);
4230			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4231				return -EFAULT;
4232		}
4233		if (copy_from_sockptr(&zc, optval, len))
4234			return -EFAULT;
4235		if (zc.reserved)
4236			return -EINVAL;
4237		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4238			return -EINVAL;
4239		sockopt_lock_sock(sk);
4240		err = tcp_zerocopy_receive(sk, &zc, &tss);
4241		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4242							  &zc, &len, err);
4243		sockopt_release_sock(sk);
4244		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4245			goto zerocopy_rcv_cmsg;
4246		switch (len) {
4247		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4248			goto zerocopy_rcv_cmsg;
4249		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4250		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4251		case offsetofend(struct tcp_zerocopy_receive, flags):
4252		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4253		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4254		case offsetofend(struct tcp_zerocopy_receive, err):
4255			goto zerocopy_rcv_sk_err;
4256		case offsetofend(struct tcp_zerocopy_receive, inq):
4257			goto zerocopy_rcv_inq;
4258		case offsetofend(struct tcp_zerocopy_receive, length):
4259		default:
4260			goto zerocopy_rcv_out;
4261		}
4262zerocopy_rcv_cmsg:
4263		if (zc.msg_flags & TCP_CMSG_TS)
4264			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4265		else
4266			zc.msg_flags = 0;
4267zerocopy_rcv_sk_err:
4268		if (!err)
4269			zc.err = sock_error(sk);
4270zerocopy_rcv_inq:
4271		zc.inq = tcp_inq_hint(sk);
4272zerocopy_rcv_out:
4273		if (!err && copy_to_sockptr(optval, &zc, len))
4274			err = -EFAULT;
4275		return err;
4276	}
4277#endif
4278	default:
4279		return -ENOPROTOOPT;
4280	}
4281
4282	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4283		return -EFAULT;
4284	if (copy_to_sockptr(optval, &val, len))
4285		return -EFAULT;
4286	return 0;
4287}
4288
4289bool tcp_bpf_bypass_getsockopt(int level, int optname)
4290{
4291	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4292	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4293	 */
4294	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4295		return true;
4296
4297	return false;
4298}
4299EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4300
4301int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4302		   int __user *optlen)
4303{
4304	struct inet_connection_sock *icsk = inet_csk(sk);
4305
4306	if (level != SOL_TCP)
4307		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4308		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4309								optval, optlen);
4310	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4311				 USER_SOCKPTR(optlen));
4312}
4313EXPORT_SYMBOL(tcp_getsockopt);
4314
4315#ifdef CONFIG_TCP_MD5SIG
4316static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4317static DEFINE_MUTEX(tcp_md5sig_mutex);
4318static bool tcp_md5sig_pool_populated = false;
4319
4320static void __tcp_alloc_md5sig_pool(void)
4321{
4322	struct crypto_ahash *hash;
4323	int cpu;
4324
4325	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4326	if (IS_ERR(hash))
4327		return;
4328
4329	for_each_possible_cpu(cpu) {
4330		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4331		struct ahash_request *req;
4332
4333		if (!scratch) {
4334			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4335					       sizeof(struct tcphdr),
4336					       GFP_KERNEL,
4337					       cpu_to_node(cpu));
4338			if (!scratch)
4339				return;
4340			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4341		}
4342		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4343			continue;
4344
4345		req = ahash_request_alloc(hash, GFP_KERNEL);
4346		if (!req)
4347			return;
4348
4349		ahash_request_set_callback(req, 0, NULL, NULL);
4350
4351		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4352	}
4353	/* before setting tcp_md5sig_pool_populated, we must commit all writes
4354	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4355	 */
4356	smp_wmb();
4357	/* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4358	 * and tcp_get_md5sig_pool().
4359	*/
4360	WRITE_ONCE(tcp_md5sig_pool_populated, true);
4361}
4362
4363bool tcp_alloc_md5sig_pool(void)
4364{
4365	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4366	if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4367		mutex_lock(&tcp_md5sig_mutex);
4368
4369		if (!tcp_md5sig_pool_populated)
4370			__tcp_alloc_md5sig_pool();
4371
4372		mutex_unlock(&tcp_md5sig_mutex);
4373	}
4374	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4375	return READ_ONCE(tcp_md5sig_pool_populated);
4376}
4377EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4378
4379
4380/**
4381 *	tcp_get_md5sig_pool - get md5sig_pool for this user
4382 *
4383 *	We use percpu structure, so if we succeed, we exit with preemption
4384 *	and BH disabled, to make sure another thread or softirq handling
4385 *	wont try to get same context.
4386 */
4387struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4388{
4389	local_bh_disable();
4390
4391	/* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4392	if (READ_ONCE(tcp_md5sig_pool_populated)) {
4393		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4394		smp_rmb();
4395		return this_cpu_ptr(&tcp_md5sig_pool);
4396	}
4397	local_bh_enable();
4398	return NULL;
4399}
4400EXPORT_SYMBOL(tcp_get_md5sig_pool);
4401
4402int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4403			  const struct sk_buff *skb, unsigned int header_len)
4404{
4405	struct scatterlist sg;
4406	const struct tcphdr *tp = tcp_hdr(skb);
4407	struct ahash_request *req = hp->md5_req;
4408	unsigned int i;
4409	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4410					   skb_headlen(skb) - header_len : 0;
4411	const struct skb_shared_info *shi = skb_shinfo(skb);
4412	struct sk_buff *frag_iter;
4413
4414	sg_init_table(&sg, 1);
4415
4416	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4417	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4418	if (crypto_ahash_update(req))
4419		return 1;
4420
4421	for (i = 0; i < shi->nr_frags; ++i) {
4422		const skb_frag_t *f = &shi->frags[i];
4423		unsigned int offset = skb_frag_off(f);
4424		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4425
4426		sg_set_page(&sg, page, skb_frag_size(f),
4427			    offset_in_page(offset));
4428		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4429		if (crypto_ahash_update(req))
4430			return 1;
4431	}
4432
4433	skb_walk_frags(skb, frag_iter)
4434		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4435			return 1;
4436
4437	return 0;
4438}
4439EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4440
4441int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4442{
4443	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4444	struct scatterlist sg;
4445
4446	sg_init_one(&sg, key->key, keylen);
4447	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4448
4449	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4450	return data_race(crypto_ahash_update(hp->md5_req));
4451}
4452EXPORT_SYMBOL(tcp_md5_hash_key);
4453
4454/* Called with rcu_read_lock() */
4455enum skb_drop_reason
4456tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4457		     const void *saddr, const void *daddr,
4458		     int family, int dif, int sdif)
4459{
4460	/*
4461	 * This gets called for each TCP segment that arrives
4462	 * so we want to be efficient.
4463	 * We have 3 drop cases:
4464	 * o No MD5 hash and one expected.
4465	 * o MD5 hash and we're not expecting one.
4466	 * o MD5 hash and its wrong.
4467	 */
4468	const __u8 *hash_location = NULL;
4469	struct tcp_md5sig_key *hash_expected;
4470	const struct tcphdr *th = tcp_hdr(skb);
4471	const struct tcp_sock *tp = tcp_sk(sk);
4472	int genhash, l3index;
4473	u8 newhash[16];
4474
4475	/* sdif set, means packet ingressed via a device
4476	 * in an L3 domain and dif is set to the l3mdev
4477	 */
4478	l3index = sdif ? dif : 0;
4479
4480	hash_expected = tcp_md5_do_lookup(sk, l3index, saddr, family);
4481	hash_location = tcp_parse_md5sig_option(th);
4482
4483	/* We've parsed the options - do we have a hash? */
4484	if (!hash_expected && !hash_location)
4485		return SKB_NOT_DROPPED_YET;
4486
4487	if (hash_expected && !hash_location) {
4488		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4489		return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4490	}
4491
4492	if (!hash_expected && hash_location) {
4493		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4494		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4495	}
4496
4497	/* Check the signature.
4498	 * To support dual stack listeners, we need to handle
4499	 * IPv4-mapped case.
4500	 */
4501	if (family == AF_INET)
4502		genhash = tcp_v4_md5_hash_skb(newhash,
4503					      hash_expected,
4504					      NULL, skb);
4505	else
4506		genhash = tp->af_specific->calc_md5_hash(newhash,
4507							 hash_expected,
4508							 NULL, skb);
4509
4510	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4511		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4512		if (family == AF_INET) {
4513			net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n",
4514					saddr, ntohs(th->source),
4515					daddr, ntohs(th->dest),
4516					genhash ? " tcp_v4_calc_md5_hash failed"
4517					: "", l3index);
4518		} else {
4519			net_info_ratelimited("MD5 Hash %s for [%pI6c]:%u->[%pI6c]:%u L3 index %d\n",
4520					genhash ? "failed" : "mismatch",
4521					saddr, ntohs(th->source),
4522					daddr, ntohs(th->dest), l3index);
4523		}
4524		return SKB_DROP_REASON_TCP_MD5FAILURE;
4525	}
4526	return SKB_NOT_DROPPED_YET;
4527}
4528EXPORT_SYMBOL(tcp_inbound_md5_hash);
4529
4530#endif
4531
4532void tcp_done(struct sock *sk)
4533{
4534	struct request_sock *req;
4535
4536	/* We might be called with a new socket, after
4537	 * inet_csk_prepare_forced_close() has been called
4538	 * so we can not use lockdep_sock_is_held(sk)
4539	 */
4540	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4541
4542	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4543		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4544
4545	tcp_set_state(sk, TCP_CLOSE);
4546	tcp_clear_xmit_timers(sk);
4547	if (req)
4548		reqsk_fastopen_remove(sk, req, false);
4549
4550	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4551
4552	if (!sock_flag(sk, SOCK_DEAD))
4553		sk->sk_state_change(sk);
4554	else
4555		inet_csk_destroy_sock(sk);
4556}
4557EXPORT_SYMBOL_GPL(tcp_done);
4558
4559int tcp_abort(struct sock *sk, int err)
4560{
4561	int state = inet_sk_state_load(sk);
4562
4563	if (state == TCP_NEW_SYN_RECV) {
4564		struct request_sock *req = inet_reqsk(sk);
4565
4566		local_bh_disable();
4567		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4568		local_bh_enable();
4569		return 0;
4570	}
4571	if (state == TCP_TIME_WAIT) {
4572		struct inet_timewait_sock *tw = inet_twsk(sk);
4573
4574		refcount_inc(&tw->tw_refcnt);
4575		local_bh_disable();
4576		inet_twsk_deschedule_put(tw);
4577		local_bh_enable();
4578		return 0;
4579	}
4580
4581	/* BPF context ensures sock locking. */
4582	if (!has_current_bpf_ctx())
4583		/* Don't race with userspace socket closes such as tcp_close. */
4584		lock_sock(sk);
4585
4586	if (sk->sk_state == TCP_LISTEN) {
4587		tcp_set_state(sk, TCP_CLOSE);
4588		inet_csk_listen_stop(sk);
4589	}
4590
4591	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4592	local_bh_disable();
4593	bh_lock_sock(sk);
4594
4595	if (!sock_flag(sk, SOCK_DEAD)) {
4596		WRITE_ONCE(sk->sk_err, err);
4597		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4598		smp_wmb();
4599		sk_error_report(sk);
4600		if (tcp_need_reset(sk->sk_state))
4601			tcp_send_active_reset(sk, GFP_ATOMIC);
4602		tcp_done(sk);
4603	}
4604
4605	bh_unlock_sock(sk);
4606	local_bh_enable();
4607	tcp_write_queue_purge(sk);
4608	if (!has_current_bpf_ctx())
4609		release_sock(sk);
4610	return 0;
4611}
4612EXPORT_SYMBOL_GPL(tcp_abort);
4613
4614extern struct tcp_congestion_ops tcp_reno;
4615
4616static __initdata unsigned long thash_entries;
4617static int __init set_thash_entries(char *str)
4618{
4619	ssize_t ret;
4620
4621	if (!str)
4622		return 0;
4623
4624	ret = kstrtoul(str, 0, &thash_entries);
4625	if (ret)
4626		return 0;
4627
4628	return 1;
4629}
4630__setup("thash_entries=", set_thash_entries);
4631
4632static void __init tcp_init_mem(void)
4633{
4634	unsigned long limit = nr_free_buffer_pages() / 16;
4635
4636	limit = max(limit, 128UL);
4637	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4638	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4639	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4640}
4641
4642void __init tcp_init(void)
4643{
4644	int max_rshare, max_wshare, cnt;
4645	unsigned long limit;
4646	unsigned int i;
4647
4648	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4649	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4650		     sizeof_field(struct sk_buff, cb));
4651
4652	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4653
4654	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4655	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4656
4657	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4658			    thash_entries, 21,  /* one slot per 2 MB*/
4659			    0, 64 * 1024);
4660	tcp_hashinfo.bind_bucket_cachep =
4661		kmem_cache_create("tcp_bind_bucket",
4662				  sizeof(struct inet_bind_bucket), 0,
4663				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4664				  SLAB_ACCOUNT,
4665				  NULL);
4666	tcp_hashinfo.bind2_bucket_cachep =
4667		kmem_cache_create("tcp_bind2_bucket",
4668				  sizeof(struct inet_bind2_bucket), 0,
4669				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4670				  SLAB_ACCOUNT,
4671				  NULL);
4672
4673	/* Size and allocate the main established and bind bucket
4674	 * hash tables.
4675	 *
4676	 * The methodology is similar to that of the buffer cache.
4677	 */
4678	tcp_hashinfo.ehash =
4679		alloc_large_system_hash("TCP established",
4680					sizeof(struct inet_ehash_bucket),
4681					thash_entries,
4682					17, /* one slot per 128 KB of memory */
4683					0,
4684					NULL,
4685					&tcp_hashinfo.ehash_mask,
4686					0,
4687					thash_entries ? 0 : 512 * 1024);
4688	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4689		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4690
4691	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4692		panic("TCP: failed to alloc ehash_locks");
4693	tcp_hashinfo.bhash =
4694		alloc_large_system_hash("TCP bind",
4695					2 * sizeof(struct inet_bind_hashbucket),
4696					tcp_hashinfo.ehash_mask + 1,
4697					17, /* one slot per 128 KB of memory */
4698					0,
4699					&tcp_hashinfo.bhash_size,
4700					NULL,
4701					0,
4702					64 * 1024);
4703	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4704	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4705	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4706		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4707		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4708		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4709		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4710	}
4711
4712	tcp_hashinfo.pernet = false;
4713
4714	cnt = tcp_hashinfo.ehash_mask + 1;
4715	sysctl_tcp_max_orphans = cnt / 2;
4716
4717	tcp_init_mem();
4718	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4719	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4720	max_wshare = min(4UL*1024*1024, limit);
4721	max_rshare = min(6UL*1024*1024, limit);
4722
4723	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4724	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4725	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4726
4727	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4728	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4729	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4730
4731	pr_info("Hash tables configured (established %u bind %u)\n",
4732		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4733
4734	tcp_v4_init();
4735	tcp_metrics_init();
4736	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4737	tcp_tasklet_init();
4738	mptcp_init();
4739}
4740