xref: /kernel/linux/linux-6.6/net/ipv4/syncookies.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  Syncookies implementation for the Linux kernel
4 *
5 *  Copyright (C) 1997 Andi Kleen
6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
7 */
8
9#include <linux/tcp.h>
10#include <linux/siphash.h>
11#include <linux/kernel.h>
12#include <linux/export.h>
13#include <net/secure_seq.h>
14#include <net/tcp.h>
15#include <net/route.h>
16
17static siphash_aligned_key_t syncookie_secret[2];
18
19#define COOKIEBITS 24	/* Upper bits store count */
20#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
21
22/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
23 * stores TCP options:
24 *
25 * MSB                               LSB
26 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
27 * |  Timestamp | ECN | SACK | WScale  |
28 *
29 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
30 * any) to figure out which TCP options we should use for the rebuilt
31 * connection.
32 *
33 * A WScale setting of '0xf' (which is an invalid scaling value)
34 * means that original syn did not include the TCP window scaling option.
35 */
36#define TS_OPT_WSCALE_MASK	0xf
37#define TS_OPT_SACK		BIT(4)
38#define TS_OPT_ECN		BIT(5)
39/* There is no TS_OPT_TIMESTAMP:
40 * if ACK contains timestamp option, we already know it was
41 * requested/supported by the syn/synack exchange.
42 */
43#define TSBITS	6
44
45static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
46		       u32 count, int c)
47{
48	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
49	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
50			    (__force u32)sport << 16 | (__force u32)dport,
51			    count, &syncookie_secret[c]);
52}
53
54
55/*
56 * when syncookies are in effect and tcp timestamps are enabled we encode
57 * tcp options in the lower bits of the timestamp value that will be
58 * sent in the syn-ack.
59 * Since subsequent timestamps use the normal tcp_time_stamp value, we
60 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
61 */
62u64 cookie_init_timestamp(struct request_sock *req, u64 now)
63{
64	const struct inet_request_sock *ireq = inet_rsk(req);
65	u64 ts, ts_now = tcp_ns_to_ts(now);
66	u32 options = 0;
67
68	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
69	if (ireq->sack_ok)
70		options |= TS_OPT_SACK;
71	if (ireq->ecn_ok)
72		options |= TS_OPT_ECN;
73
74	ts = (ts_now >> TSBITS) << TSBITS;
75	ts |= options;
76	if (ts > ts_now)
77		ts -= (1UL << TSBITS);
78
79	return ts * (NSEC_PER_SEC / TCP_TS_HZ);
80}
81
82
83static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
84				   __be16 dport, __u32 sseq, __u32 data)
85{
86	/*
87	 * Compute the secure sequence number.
88	 * The output should be:
89	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
90	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
91	 * Where sseq is their sequence number and count increases every
92	 * minute by 1.
93	 * As an extra hack, we add a small "data" value that encodes the
94	 * MSS into the second hash value.
95	 */
96	u32 count = tcp_cookie_time();
97	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
98		sseq + (count << COOKIEBITS) +
99		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
100		 & COOKIEMASK));
101}
102
103/*
104 * This retrieves the small "data" value from the syncookie.
105 * If the syncookie is bad, the data returned will be out of
106 * range.  This must be checked by the caller.
107 *
108 * The count value used to generate the cookie must be less than
109 * MAX_SYNCOOKIE_AGE minutes in the past.
110 * The return value (__u32)-1 if this test fails.
111 */
112static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
113				  __be16 sport, __be16 dport, __u32 sseq)
114{
115	u32 diff, count = tcp_cookie_time();
116
117	/* Strip away the layers from the cookie */
118	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
119
120	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
121	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
122	if (diff >= MAX_SYNCOOKIE_AGE)
123		return (__u32)-1;
124
125	return (cookie -
126		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
127		& COOKIEMASK;	/* Leaving the data behind */
128}
129
130/*
131 * MSS Values are chosen based on the 2011 paper
132 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
133 * Values ..
134 *  .. lower than 536 are rare (< 0.2%)
135 *  .. between 537 and 1299 account for less than < 1.5% of observed values
136 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
137 *  .. exceeding 1460 are very rare (< 0.04%)
138 *
139 *  1460 is the single most frequently announced mss value (30 to 46% depending
140 *  on monitor location).  Table must be sorted.
141 */
142static __u16 const msstab[] = {
143	536,
144	1300,
145	1440,	/* 1440, 1452: PPPoE */
146	1460,
147};
148
149/*
150 * Generate a syncookie.  mssp points to the mss, which is returned
151 * rounded down to the value encoded in the cookie.
152 */
153u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
154			      u16 *mssp)
155{
156	int mssind;
157	const __u16 mss = *mssp;
158
159	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
160		if (mss >= msstab[mssind])
161			break;
162	*mssp = msstab[mssind];
163
164	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
165				     th->source, th->dest, ntohl(th->seq),
166				     mssind);
167}
168EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
169
170__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
171{
172	const struct iphdr *iph = ip_hdr(skb);
173	const struct tcphdr *th = tcp_hdr(skb);
174
175	return __cookie_v4_init_sequence(iph, th, mssp);
176}
177
178/*
179 * Check if a ack sequence number is a valid syncookie.
180 * Return the decoded mss if it is, or 0 if not.
181 */
182int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
183		      u32 cookie)
184{
185	__u32 seq = ntohl(th->seq) - 1;
186	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
187					    th->source, th->dest, seq);
188
189	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
190}
191EXPORT_SYMBOL_GPL(__cookie_v4_check);
192
193struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
194				 struct request_sock *req,
195				 struct dst_entry *dst, u32 tsoff)
196{
197	struct inet_connection_sock *icsk = inet_csk(sk);
198	struct sock *child;
199	bool own_req;
200
201	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
202						 NULL, &own_req);
203	if (child) {
204		refcount_set(&req->rsk_refcnt, 1);
205		tcp_sk(child)->tsoffset = tsoff;
206		sock_rps_save_rxhash(child, skb);
207
208		if (rsk_drop_req(req)) {
209			reqsk_put(req);
210			return child;
211		}
212
213		if (inet_csk_reqsk_queue_add(sk, req, child))
214			return child;
215
216		bh_unlock_sock(child);
217		sock_put(child);
218	}
219	__reqsk_free(req);
220
221	return NULL;
222}
223EXPORT_SYMBOL(tcp_get_cookie_sock);
224
225/*
226 * when syncookies are in effect and tcp timestamps are enabled we stored
227 * additional tcp options in the timestamp.
228 * This extracts these options from the timestamp echo.
229 *
230 * return false if we decode a tcp option that is disabled
231 * on the host.
232 */
233bool cookie_timestamp_decode(const struct net *net,
234			     struct tcp_options_received *tcp_opt)
235{
236	/* echoed timestamp, lowest bits contain options */
237	u32 options = tcp_opt->rcv_tsecr;
238
239	if (!tcp_opt->saw_tstamp)  {
240		tcp_clear_options(tcp_opt);
241		return true;
242	}
243
244	if (!READ_ONCE(net->ipv4.sysctl_tcp_timestamps))
245		return false;
246
247	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
248
249	if (tcp_opt->sack_ok && !READ_ONCE(net->ipv4.sysctl_tcp_sack))
250		return false;
251
252	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
253		return true; /* no window scaling */
254
255	tcp_opt->wscale_ok = 1;
256	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
257
258	return READ_ONCE(net->ipv4.sysctl_tcp_window_scaling) != 0;
259}
260EXPORT_SYMBOL(cookie_timestamp_decode);
261
262bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
263		   const struct net *net, const struct dst_entry *dst)
264{
265	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
266
267	if (!ecn_ok)
268		return false;
269
270	if (READ_ONCE(net->ipv4.sysctl_tcp_ecn))
271		return true;
272
273	return dst_feature(dst, RTAX_FEATURE_ECN);
274}
275EXPORT_SYMBOL(cookie_ecn_ok);
276
277struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
278					    const struct tcp_request_sock_ops *af_ops,
279					    struct sock *sk,
280					    struct sk_buff *skb)
281{
282	struct tcp_request_sock *treq;
283	struct request_sock *req;
284
285	if (sk_is_mptcp(sk))
286		req = mptcp_subflow_reqsk_alloc(ops, sk, false);
287	else
288		req = inet_reqsk_alloc(ops, sk, false);
289
290	if (!req)
291		return NULL;
292
293	treq = tcp_rsk(req);
294
295	/* treq->af_specific might be used to perform TCP_MD5 lookup */
296	treq->af_specific = af_ops;
297
298	treq->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
299#if IS_ENABLED(CONFIG_MPTCP)
300	treq->is_mptcp = sk_is_mptcp(sk);
301	if (treq->is_mptcp) {
302		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
303
304		if (err) {
305			reqsk_free(req);
306			return NULL;
307		}
308	}
309#endif
310
311	return req;
312}
313EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
314
315/* On input, sk is a listener.
316 * Output is listener if incoming packet would not create a child
317 *           NULL if memory could not be allocated.
318 */
319struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
320{
321	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
322	struct tcp_options_received tcp_opt;
323	struct inet_request_sock *ireq;
324	struct tcp_request_sock *treq;
325	struct tcp_sock *tp = tcp_sk(sk);
326	const struct tcphdr *th = tcp_hdr(skb);
327	__u32 cookie = ntohl(th->ack_seq) - 1;
328	struct sock *ret = sk;
329	struct request_sock *req;
330	int full_space, mss;
331	struct rtable *rt;
332	__u8 rcv_wscale;
333	struct flowi4 fl4;
334	u32 tsoff = 0;
335
336	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) ||
337	    !th->ack || th->rst)
338		goto out;
339
340	if (tcp_synq_no_recent_overflow(sk))
341		goto out;
342
343	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
344	if (mss == 0) {
345		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
346		goto out;
347	}
348
349	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
350
351	/* check for timestamp cookie support */
352	memset(&tcp_opt, 0, sizeof(tcp_opt));
353	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
354
355	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
356		tsoff = secure_tcp_ts_off(sock_net(sk),
357					  ip_hdr(skb)->daddr,
358					  ip_hdr(skb)->saddr);
359		tcp_opt.rcv_tsecr -= tsoff;
360	}
361
362	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
363		goto out;
364
365	ret = NULL;
366	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops,
367				     &tcp_request_sock_ipv4_ops, sk, skb);
368	if (!req)
369		goto out;
370
371	ireq = inet_rsk(req);
372	treq = tcp_rsk(req);
373	treq->rcv_isn		= ntohl(th->seq) - 1;
374	treq->snt_isn		= cookie;
375	treq->ts_off		= 0;
376	treq->txhash		= net_tx_rndhash();
377	req->mss		= mss;
378	ireq->ir_num		= ntohs(th->dest);
379	ireq->ir_rmt_port	= th->source;
380	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
381	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
382	ireq->ir_mark		= inet_request_mark(sk, skb);
383	ireq->snd_wscale	= tcp_opt.snd_wscale;
384	ireq->sack_ok		= tcp_opt.sack_ok;
385	ireq->wscale_ok		= tcp_opt.wscale_ok;
386	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
387	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
388	treq->snt_synack	= 0;
389	treq->tfo_listener	= false;
390
391	if (IS_ENABLED(CONFIG_SMC))
392		ireq->smc_ok = 0;
393
394	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
395
396	/* We throwed the options of the initial SYN away, so we hope
397	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
398	 */
399	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
400
401	if (security_inet_conn_request(sk, skb, req)) {
402		reqsk_free(req);
403		goto out;
404	}
405
406	req->num_retrans = 0;
407
408	/*
409	 * We need to lookup the route here to get at the correct
410	 * window size. We should better make sure that the window size
411	 * hasn't changed since we received the original syn, but I see
412	 * no easy way to do this.
413	 */
414	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
415			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
416			   IPPROTO_TCP, inet_sk_flowi_flags(sk),
417			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
418			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
419	security_req_classify_flow(req, flowi4_to_flowi_common(&fl4));
420	rt = ip_route_output_key(sock_net(sk), &fl4);
421	if (IS_ERR(rt)) {
422		reqsk_free(req);
423		goto out;
424	}
425
426	/* Try to redo what tcp_v4_send_synack did. */
427	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
428	/* limit the window selection if the user enforce a smaller rx buffer */
429	full_space = tcp_full_space(sk);
430	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK &&
431	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
432		req->rsk_window_clamp = full_space;
433
434	tcp_select_initial_window(sk, full_space, req->mss,
435				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
436				  ireq->wscale_ok, &rcv_wscale,
437				  dst_metric(&rt->dst, RTAX_INITRWND));
438
439	ireq->rcv_wscale  = rcv_wscale;
440	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
441
442	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
443	/* ip_queue_xmit() depends on our flow being setup
444	 * Normal sockets get it right from inet_csk_route_child_sock()
445	 */
446	if (ret)
447		inet_sk(ret)->cork.fl.u.ip4 = fl4;
448out:	return ret;
449}
450