1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Support for INET connection oriented protocols.
8 *
9 * Authors:	See the TCP sources
10 */
11
12#include <linux/module.h>
13#include <linux/jhash.h>
14
15#include <net/inet_connection_sock.h>
16#include <net/inet_hashtables.h>
17#include <net/inet_timewait_sock.h>
18#include <net/ip.h>
19#include <net/route.h>
20#include <net/tcp_states.h>
21#include <net/xfrm.h>
22#include <net/tcp.h>
23#include <net/sock_reuseport.h>
24#include <net/addrconf.h>
25
26#if IS_ENABLED(CONFIG_IPV6)
27/* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28 *				if IPv6 only, and any IPv4 addresses
29 *				if not IPv6 only
30 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31 *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32 *				and 0.0.0.0 equals to 0.0.0.0 only
33 */
34static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35				 const struct in6_addr *sk2_rcv_saddr6,
36				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37				 bool sk1_ipv6only, bool sk2_ipv6only,
38				 bool match_sk1_wildcard,
39				 bool match_sk2_wildcard)
40{
41	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43
44	/* if both are mapped, treat as IPv4 */
45	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46		if (!sk2_ipv6only) {
47			if (sk1_rcv_saddr == sk2_rcv_saddr)
48				return true;
49			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50				(match_sk2_wildcard && !sk2_rcv_saddr);
51		}
52		return false;
53	}
54
55	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56		return true;
57
58	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60		return true;
61
62	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64		return true;
65
66	if (sk2_rcv_saddr6 &&
67	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68		return true;
69
70	return false;
71}
72#endif
73
74/* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75 * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76 *				0.0.0.0 only equals to 0.0.0.0
77 */
78static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79				 bool sk2_ipv6only, bool match_sk1_wildcard,
80				 bool match_sk2_wildcard)
81{
82	if (!sk2_ipv6only) {
83		if (sk1_rcv_saddr == sk2_rcv_saddr)
84			return true;
85		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86			(match_sk2_wildcard && !sk2_rcv_saddr);
87	}
88	return false;
89}
90
91bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92			  bool match_wildcard)
93{
94#if IS_ENABLED(CONFIG_IPV6)
95	if (sk->sk_family == AF_INET6)
96		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97					    inet6_rcv_saddr(sk2),
98					    sk->sk_rcv_saddr,
99					    sk2->sk_rcv_saddr,
100					    ipv6_only_sock(sk),
101					    ipv6_only_sock(sk2),
102					    match_wildcard,
103					    match_wildcard);
104#endif
105	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106				    ipv6_only_sock(sk2), match_wildcard,
107				    match_wildcard);
108}
109EXPORT_SYMBOL(inet_rcv_saddr_equal);
110
111bool inet_rcv_saddr_any(const struct sock *sk)
112{
113#if IS_ENABLED(CONFIG_IPV6)
114	if (sk->sk_family == AF_INET6)
115		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116#endif
117	return !sk->sk_rcv_saddr;
118}
119
120void inet_get_local_port_range(const struct net *net, int *low, int *high)
121{
122	unsigned int seq;
123
124	do {
125		seq = read_seqbegin(&net->ipv4.ip_local_ports.lock);
126
127		*low = net->ipv4.ip_local_ports.range[0];
128		*high = net->ipv4.ip_local_ports.range[1];
129	} while (read_seqretry(&net->ipv4.ip_local_ports.lock, seq));
130}
131EXPORT_SYMBOL(inet_get_local_port_range);
132
133void inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
134{
135	const struct inet_sock *inet = inet_sk(sk);
136	const struct net *net = sock_net(sk);
137	int lo, hi, sk_lo, sk_hi;
138
139	inet_get_local_port_range(net, &lo, &hi);
140
141	sk_lo = inet->local_port_range.lo;
142	sk_hi = inet->local_port_range.hi;
143
144	if (unlikely(lo <= sk_lo && sk_lo <= hi))
145		lo = sk_lo;
146	if (unlikely(lo <= sk_hi && sk_hi <= hi))
147		hi = sk_hi;
148
149	*low = lo;
150	*high = hi;
151}
152EXPORT_SYMBOL(inet_sk_get_local_port_range);
153
154static bool inet_use_bhash2_on_bind(const struct sock *sk)
155{
156#if IS_ENABLED(CONFIG_IPV6)
157	if (sk->sk_family == AF_INET6) {
158		int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
159
160		return addr_type != IPV6_ADDR_ANY &&
161			addr_type != IPV6_ADDR_MAPPED;
162	}
163#endif
164	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
165}
166
167static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
168			       kuid_t sk_uid, bool relax,
169			       bool reuseport_cb_ok, bool reuseport_ok)
170{
171	int bound_dev_if2;
172
173	if (sk == sk2)
174		return false;
175
176	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
177
178	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
179	    sk->sk_bound_dev_if == bound_dev_if2) {
180		if (sk->sk_reuse && sk2->sk_reuse &&
181		    sk2->sk_state != TCP_LISTEN) {
182			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
183				       sk2->sk_reuseport && reuseport_cb_ok &&
184				       (sk2->sk_state == TCP_TIME_WAIT ||
185					uid_eq(sk_uid, sock_i_uid(sk2)))))
186				return true;
187		} else if (!reuseport_ok || !sk->sk_reuseport ||
188			   !sk2->sk_reuseport || !reuseport_cb_ok ||
189			   (sk2->sk_state != TCP_TIME_WAIT &&
190			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
191			return true;
192		}
193	}
194	return false;
195}
196
197static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
198				   kuid_t sk_uid, bool relax,
199				   bool reuseport_cb_ok, bool reuseport_ok)
200{
201	if (sk->sk_family == AF_INET && ipv6_only_sock(sk2))
202		return false;
203
204	return inet_bind_conflict(sk, sk2, sk_uid, relax,
205				  reuseport_cb_ok, reuseport_ok);
206}
207
208static bool inet_bhash2_conflict(const struct sock *sk,
209				 const struct inet_bind2_bucket *tb2,
210				 kuid_t sk_uid,
211				 bool relax, bool reuseport_cb_ok,
212				 bool reuseport_ok)
213{
214	struct inet_timewait_sock *tw2;
215	struct sock *sk2;
216
217	sk_for_each_bound_bhash2(sk2, &tb2->owners) {
218		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
219					   reuseport_cb_ok, reuseport_ok))
220			return true;
221	}
222
223	twsk_for_each_bound_bhash2(tw2, &tb2->deathrow) {
224		sk2 = (struct sock *)tw2;
225
226		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
227					   reuseport_cb_ok, reuseport_ok))
228			return true;
229	}
230
231	return false;
232}
233
234/* This should be called only when the tb and tb2 hashbuckets' locks are held */
235static int inet_csk_bind_conflict(const struct sock *sk,
236				  const struct inet_bind_bucket *tb,
237				  const struct inet_bind2_bucket *tb2, /* may be null */
238				  bool relax, bool reuseport_ok)
239{
240	bool reuseport_cb_ok;
241	struct sock_reuseport *reuseport_cb;
242	kuid_t uid = sock_i_uid((struct sock *)sk);
243
244	rcu_read_lock();
245	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
246	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
247	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
248	rcu_read_unlock();
249
250	/*
251	 * Unlike other sk lookup places we do not check
252	 * for sk_net here, since _all_ the socks listed
253	 * in tb->owners and tb2->owners list belong
254	 * to the same net - the one this bucket belongs to.
255	 */
256
257	if (!inet_use_bhash2_on_bind(sk)) {
258		struct sock *sk2;
259
260		sk_for_each_bound(sk2, &tb->owners)
261			if (inet_bind_conflict(sk, sk2, uid, relax,
262					       reuseport_cb_ok, reuseport_ok) &&
263			    inet_rcv_saddr_equal(sk, sk2, true))
264				return true;
265
266		return false;
267	}
268
269	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
270	 * ipv4) should have been checked already. We need to do these two
271	 * checks separately because their spinlocks have to be acquired/released
272	 * independently of each other, to prevent possible deadlocks
273	 */
274	return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
275					   reuseport_ok);
276}
277
278/* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
279 * INADDR_ANY (if ipv4) socket.
280 *
281 * Caller must hold bhash hashbucket lock with local bh disabled, to protect
282 * against concurrent binds on the port for addr any
283 */
284static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
285					  bool relax, bool reuseport_ok)
286{
287	kuid_t uid = sock_i_uid((struct sock *)sk);
288	const struct net *net = sock_net(sk);
289	struct sock_reuseport *reuseport_cb;
290	struct inet_bind_hashbucket *head2;
291	struct inet_bind2_bucket *tb2;
292	bool reuseport_cb_ok;
293
294	rcu_read_lock();
295	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
296	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
297	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
298	rcu_read_unlock();
299
300	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
301
302	spin_lock(&head2->lock);
303
304	inet_bind_bucket_for_each(tb2, &head2->chain)
305		if (inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
306			break;
307
308	if (tb2 && inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,
309					reuseport_ok)) {
310		spin_unlock(&head2->lock);
311		return true;
312	}
313
314	spin_unlock(&head2->lock);
315	return false;
316}
317
318/*
319 * Find an open port number for the socket.  Returns with the
320 * inet_bind_hashbucket locks held if successful.
321 */
322static struct inet_bind_hashbucket *
323inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
324			struct inet_bind2_bucket **tb2_ret,
325			struct inet_bind_hashbucket **head2_ret, int *port_ret)
326{
327	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
328	int i, low, high, attempt_half, port, l3mdev;
329	struct inet_bind_hashbucket *head, *head2;
330	struct net *net = sock_net(sk);
331	struct inet_bind2_bucket *tb2;
332	struct inet_bind_bucket *tb;
333	u32 remaining, offset;
334	bool relax = false;
335
336	l3mdev = inet_sk_bound_l3mdev(sk);
337ports_exhausted:
338	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
339other_half_scan:
340	inet_sk_get_local_port_range(sk, &low, &high);
341	high++; /* [32768, 60999] -> [32768, 61000[ */
342	if (high - low < 4)
343		attempt_half = 0;
344	if (attempt_half) {
345		int half = low + (((high - low) >> 2) << 1);
346
347		if (attempt_half == 1)
348			high = half;
349		else
350			low = half;
351	}
352	remaining = high - low;
353	if (likely(remaining > 1))
354		remaining &= ~1U;
355
356	offset = get_random_u32_below(remaining);
357	/* __inet_hash_connect() favors ports having @low parity
358	 * We do the opposite to not pollute connect() users.
359	 */
360	offset |= 1U;
361
362other_parity_scan:
363	port = low + offset;
364	for (i = 0; i < remaining; i += 2, port += 2) {
365		if (unlikely(port >= high))
366			port -= remaining;
367		if (inet_is_local_reserved_port(net, port))
368			continue;
369		head = &hinfo->bhash[inet_bhashfn(net, port,
370						  hinfo->bhash_size)];
371		spin_lock_bh(&head->lock);
372		if (inet_use_bhash2_on_bind(sk)) {
373			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
374				goto next_port;
375		}
376
377		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
378		spin_lock(&head2->lock);
379		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
380		inet_bind_bucket_for_each(tb, &head->chain)
381			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
382				if (!inet_csk_bind_conflict(sk, tb, tb2,
383							    relax, false))
384					goto success;
385				spin_unlock(&head2->lock);
386				goto next_port;
387			}
388		tb = NULL;
389		goto success;
390next_port:
391		spin_unlock_bh(&head->lock);
392		cond_resched();
393	}
394
395	offset--;
396	if (!(offset & 1))
397		goto other_parity_scan;
398
399	if (attempt_half == 1) {
400		/* OK we now try the upper half of the range */
401		attempt_half = 2;
402		goto other_half_scan;
403	}
404
405	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
406		/* We still have a chance to connect to different destinations */
407		relax = true;
408		goto ports_exhausted;
409	}
410	return NULL;
411success:
412	*port_ret = port;
413	*tb_ret = tb;
414	*tb2_ret = tb2;
415	*head2_ret = head2;
416	return head;
417}
418
419static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
420				     struct sock *sk)
421{
422	kuid_t uid = sock_i_uid(sk);
423
424	if (tb->fastreuseport <= 0)
425		return 0;
426	if (!sk->sk_reuseport)
427		return 0;
428	if (rcu_access_pointer(sk->sk_reuseport_cb))
429		return 0;
430	if (!uid_eq(tb->fastuid, uid))
431		return 0;
432	/* We only need to check the rcv_saddr if this tb was once marked
433	 * without fastreuseport and then was reset, as we can only know that
434	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
435	 * owners list.
436	 */
437	if (tb->fastreuseport == FASTREUSEPORT_ANY)
438		return 1;
439#if IS_ENABLED(CONFIG_IPV6)
440	if (tb->fast_sk_family == AF_INET6)
441		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
442					    inet6_rcv_saddr(sk),
443					    tb->fast_rcv_saddr,
444					    sk->sk_rcv_saddr,
445					    tb->fast_ipv6_only,
446					    ipv6_only_sock(sk), true, false);
447#endif
448	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
449				    ipv6_only_sock(sk), true, false);
450}
451
452void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
453			       struct sock *sk)
454{
455	kuid_t uid = sock_i_uid(sk);
456	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
457
458	if (hlist_empty(&tb->owners)) {
459		tb->fastreuse = reuse;
460		if (sk->sk_reuseport) {
461			tb->fastreuseport = FASTREUSEPORT_ANY;
462			tb->fastuid = uid;
463			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
464			tb->fast_ipv6_only = ipv6_only_sock(sk);
465			tb->fast_sk_family = sk->sk_family;
466#if IS_ENABLED(CONFIG_IPV6)
467			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
468#endif
469		} else {
470			tb->fastreuseport = 0;
471		}
472	} else {
473		if (!reuse)
474			tb->fastreuse = 0;
475		if (sk->sk_reuseport) {
476			/* We didn't match or we don't have fastreuseport set on
477			 * the tb, but we have sk_reuseport set on this socket
478			 * and we know that there are no bind conflicts with
479			 * this socket in this tb, so reset our tb's reuseport
480			 * settings so that any subsequent sockets that match
481			 * our current socket will be put on the fast path.
482			 *
483			 * If we reset we need to set FASTREUSEPORT_STRICT so we
484			 * do extra checking for all subsequent sk_reuseport
485			 * socks.
486			 */
487			if (!sk_reuseport_match(tb, sk)) {
488				tb->fastreuseport = FASTREUSEPORT_STRICT;
489				tb->fastuid = uid;
490				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
491				tb->fast_ipv6_only = ipv6_only_sock(sk);
492				tb->fast_sk_family = sk->sk_family;
493#if IS_ENABLED(CONFIG_IPV6)
494				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
495#endif
496			}
497		} else {
498			tb->fastreuseport = 0;
499		}
500	}
501}
502
503/* Obtain a reference to a local port for the given sock,
504 * if snum is zero it means select any available local port.
505 * We try to allocate an odd port (and leave even ports for connect())
506 */
507int inet_csk_get_port(struct sock *sk, unsigned short snum)
508{
509	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
510	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
511	bool found_port = false, check_bind_conflict = true;
512	bool bhash_created = false, bhash2_created = false;
513	int ret = -EADDRINUSE, port = snum, l3mdev;
514	struct inet_bind_hashbucket *head, *head2;
515	struct inet_bind2_bucket *tb2 = NULL;
516	struct inet_bind_bucket *tb = NULL;
517	bool head2_lock_acquired = false;
518	struct net *net = sock_net(sk);
519
520	l3mdev = inet_sk_bound_l3mdev(sk);
521
522	if (!port) {
523		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
524		if (!head)
525			return ret;
526
527		head2_lock_acquired = true;
528
529		if (tb && tb2)
530			goto success;
531		found_port = true;
532	} else {
533		head = &hinfo->bhash[inet_bhashfn(net, port,
534						  hinfo->bhash_size)];
535		spin_lock_bh(&head->lock);
536		inet_bind_bucket_for_each(tb, &head->chain)
537			if (inet_bind_bucket_match(tb, net, port, l3mdev))
538				break;
539	}
540
541	if (!tb) {
542		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
543					     head, port, l3mdev);
544		if (!tb)
545			goto fail_unlock;
546		bhash_created = true;
547	}
548
549	if (!found_port) {
550		if (!hlist_empty(&tb->owners)) {
551			if (sk->sk_reuse == SK_FORCE_REUSE ||
552			    (tb->fastreuse > 0 && reuse) ||
553			    sk_reuseport_match(tb, sk))
554				check_bind_conflict = false;
555		}
556
557		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
558			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
559				goto fail_unlock;
560		}
561
562		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
563		spin_lock(&head2->lock);
564		head2_lock_acquired = true;
565		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
566	}
567
568	if (!tb2) {
569		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
570					       net, head2, port, l3mdev, sk);
571		if (!tb2)
572			goto fail_unlock;
573		bhash2_created = true;
574	}
575
576	if (!found_port && check_bind_conflict) {
577		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
578			goto fail_unlock;
579	}
580
581success:
582	inet_csk_update_fastreuse(tb, sk);
583
584	if (!inet_csk(sk)->icsk_bind_hash)
585		inet_bind_hash(sk, tb, tb2, port);
586	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
587	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
588	ret = 0;
589
590fail_unlock:
591	if (ret) {
592		if (bhash_created)
593			inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
594		if (bhash2_created)
595			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep,
596						  tb2);
597	}
598	if (head2_lock_acquired)
599		spin_unlock(&head2->lock);
600	spin_unlock_bh(&head->lock);
601	return ret;
602}
603EXPORT_SYMBOL_GPL(inet_csk_get_port);
604
605/*
606 * Wait for an incoming connection, avoid race conditions. This must be called
607 * with the socket locked.
608 */
609static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
610{
611	struct inet_connection_sock *icsk = inet_csk(sk);
612	DEFINE_WAIT(wait);
613	int err;
614
615	/*
616	 * True wake-one mechanism for incoming connections: only
617	 * one process gets woken up, not the 'whole herd'.
618	 * Since we do not 'race & poll' for established sockets
619	 * anymore, the common case will execute the loop only once.
620	 *
621	 * Subtle issue: "add_wait_queue_exclusive()" will be added
622	 * after any current non-exclusive waiters, and we know that
623	 * it will always _stay_ after any new non-exclusive waiters
624	 * because all non-exclusive waiters are added at the
625	 * beginning of the wait-queue. As such, it's ok to "drop"
626	 * our exclusiveness temporarily when we get woken up without
627	 * having to remove and re-insert us on the wait queue.
628	 */
629	for (;;) {
630		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
631					  TASK_INTERRUPTIBLE);
632		release_sock(sk);
633		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
634			timeo = schedule_timeout(timeo);
635		sched_annotate_sleep();
636		lock_sock(sk);
637		err = 0;
638		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
639			break;
640		err = -EINVAL;
641		if (sk->sk_state != TCP_LISTEN)
642			break;
643		err = sock_intr_errno(timeo);
644		if (signal_pending(current))
645			break;
646		err = -EAGAIN;
647		if (!timeo)
648			break;
649	}
650	finish_wait(sk_sleep(sk), &wait);
651	return err;
652}
653
654/*
655 * This will accept the next outstanding connection.
656 */
657struct sock *inet_csk_accept(struct sock *sk, int flags, int *err, bool kern)
658{
659	struct inet_connection_sock *icsk = inet_csk(sk);
660	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
661	struct request_sock *req;
662	struct sock *newsk;
663	int error;
664
665	lock_sock(sk);
666
667	/* We need to make sure that this socket is listening,
668	 * and that it has something pending.
669	 */
670	error = -EINVAL;
671	if (sk->sk_state != TCP_LISTEN)
672		goto out_err;
673
674	/* Find already established connection */
675	if (reqsk_queue_empty(queue)) {
676		long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
677
678		/* If this is a non blocking socket don't sleep */
679		error = -EAGAIN;
680		if (!timeo)
681			goto out_err;
682
683		error = inet_csk_wait_for_connect(sk, timeo);
684		if (error)
685			goto out_err;
686	}
687	req = reqsk_queue_remove(queue, sk);
688	newsk = req->sk;
689
690	if (sk->sk_protocol == IPPROTO_TCP &&
691	    tcp_rsk(req)->tfo_listener) {
692		spin_lock_bh(&queue->fastopenq.lock);
693		if (tcp_rsk(req)->tfo_listener) {
694			/* We are still waiting for the final ACK from 3WHS
695			 * so can't free req now. Instead, we set req->sk to
696			 * NULL to signify that the child socket is taken
697			 * so reqsk_fastopen_remove() will free the req
698			 * when 3WHS finishes (or is aborted).
699			 */
700			req->sk = NULL;
701			req = NULL;
702		}
703		spin_unlock_bh(&queue->fastopenq.lock);
704	}
705
706out:
707	release_sock(sk);
708	if (newsk && mem_cgroup_sockets_enabled) {
709		int amt = 0;
710
711		/* atomically get the memory usage, set and charge the
712		 * newsk->sk_memcg.
713		 */
714		lock_sock(newsk);
715
716		mem_cgroup_sk_alloc(newsk);
717		if (newsk->sk_memcg) {
718			/* The socket has not been accepted yet, no need
719			 * to look at newsk->sk_wmem_queued.
720			 */
721			amt = sk_mem_pages(newsk->sk_forward_alloc +
722					   atomic_read(&newsk->sk_rmem_alloc));
723		}
724
725		if (amt)
726			mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
727						GFP_KERNEL | __GFP_NOFAIL);
728
729		release_sock(newsk);
730	}
731	if (req)
732		reqsk_put(req);
733
734	if (newsk)
735		inet_init_csk_locks(newsk);
736
737	return newsk;
738out_err:
739	newsk = NULL;
740	req = NULL;
741	*err = error;
742	goto out;
743}
744EXPORT_SYMBOL(inet_csk_accept);
745
746/*
747 * Using different timers for retransmit, delayed acks and probes
748 * We may wish use just one timer maintaining a list of expire jiffies
749 * to optimize.
750 */
751void inet_csk_init_xmit_timers(struct sock *sk,
752			       void (*retransmit_handler)(struct timer_list *t),
753			       void (*delack_handler)(struct timer_list *t),
754			       void (*keepalive_handler)(struct timer_list *t))
755{
756	struct inet_connection_sock *icsk = inet_csk(sk);
757
758	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
759	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
760	timer_setup(&sk->sk_timer, keepalive_handler, 0);
761	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
762}
763EXPORT_SYMBOL(inet_csk_init_xmit_timers);
764
765void inet_csk_clear_xmit_timers(struct sock *sk)
766{
767	struct inet_connection_sock *icsk = inet_csk(sk);
768
769	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
770
771	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
772	sk_stop_timer(sk, &icsk->icsk_delack_timer);
773	sk_stop_timer(sk, &sk->sk_timer);
774}
775EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
776
777void inet_csk_delete_keepalive_timer(struct sock *sk)
778{
779	sk_stop_timer(sk, &sk->sk_timer);
780}
781EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
782
783void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
784{
785	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
786}
787EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
788
789struct dst_entry *inet_csk_route_req(const struct sock *sk,
790				     struct flowi4 *fl4,
791				     const struct request_sock *req)
792{
793	const struct inet_request_sock *ireq = inet_rsk(req);
794	struct net *net = read_pnet(&ireq->ireq_net);
795	struct ip_options_rcu *opt;
796	struct rtable *rt;
797
798	rcu_read_lock();
799	opt = rcu_dereference(ireq->ireq_opt);
800
801	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
802			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
803			   sk->sk_protocol, inet_sk_flowi_flags(sk),
804			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
805			   ireq->ir_loc_addr, ireq->ir_rmt_port,
806			   htons(ireq->ir_num), sk->sk_uid);
807	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
808	rt = ip_route_output_flow(net, fl4, sk);
809	if (IS_ERR(rt))
810		goto no_route;
811	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
812		goto route_err;
813	rcu_read_unlock();
814	return &rt->dst;
815
816route_err:
817	ip_rt_put(rt);
818no_route:
819	rcu_read_unlock();
820	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
821	return NULL;
822}
823EXPORT_SYMBOL_GPL(inet_csk_route_req);
824
825struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
826					    struct sock *newsk,
827					    const struct request_sock *req)
828{
829	const struct inet_request_sock *ireq = inet_rsk(req);
830	struct net *net = read_pnet(&ireq->ireq_net);
831	struct inet_sock *newinet = inet_sk(newsk);
832	struct ip_options_rcu *opt;
833	struct flowi4 *fl4;
834	struct rtable *rt;
835
836	opt = rcu_dereference(ireq->ireq_opt);
837	fl4 = &newinet->cork.fl.u.ip4;
838
839	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
840			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
841			   sk->sk_protocol, inet_sk_flowi_flags(sk),
842			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
843			   ireq->ir_loc_addr, ireq->ir_rmt_port,
844			   htons(ireq->ir_num), sk->sk_uid);
845	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
846	rt = ip_route_output_flow(net, fl4, sk);
847	if (IS_ERR(rt))
848		goto no_route;
849	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
850		goto route_err;
851	return &rt->dst;
852
853route_err:
854	ip_rt_put(rt);
855no_route:
856	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
857	return NULL;
858}
859EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
860
861/* Decide when to expire the request and when to resend SYN-ACK */
862static void syn_ack_recalc(struct request_sock *req,
863			   const int max_syn_ack_retries,
864			   const u8 rskq_defer_accept,
865			   int *expire, int *resend)
866{
867	if (!rskq_defer_accept) {
868		*expire = req->num_timeout >= max_syn_ack_retries;
869		*resend = 1;
870		return;
871	}
872	*expire = req->num_timeout >= max_syn_ack_retries &&
873		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
874	/* Do not resend while waiting for data after ACK,
875	 * start to resend on end of deferring period to give
876	 * last chance for data or ACK to create established socket.
877	 */
878	*resend = !inet_rsk(req)->acked ||
879		  req->num_timeout >= rskq_defer_accept - 1;
880}
881
882int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
883{
884	int err = req->rsk_ops->rtx_syn_ack(parent, req);
885
886	if (!err)
887		req->num_retrans++;
888	return err;
889}
890EXPORT_SYMBOL(inet_rtx_syn_ack);
891
892static struct request_sock *inet_reqsk_clone(struct request_sock *req,
893					     struct sock *sk)
894{
895	struct sock *req_sk, *nreq_sk;
896	struct request_sock *nreq;
897
898	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
899	if (!nreq) {
900		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
901
902		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
903		sock_put(sk);
904		return NULL;
905	}
906
907	req_sk = req_to_sk(req);
908	nreq_sk = req_to_sk(nreq);
909
910	memcpy(nreq_sk, req_sk,
911	       offsetof(struct sock, sk_dontcopy_begin));
912	memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
913	       req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end));
914
915	sk_node_init(&nreq_sk->sk_node);
916	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
917#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
918	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
919#endif
920	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
921
922	nreq->rsk_listener = sk;
923
924	/* We need not acquire fastopenq->lock
925	 * because the child socket is locked in inet_csk_listen_stop().
926	 */
927	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
928		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
929
930	return nreq;
931}
932
933static void reqsk_queue_migrated(struct request_sock_queue *queue,
934				 const struct request_sock *req)
935{
936	if (req->num_timeout == 0)
937		atomic_inc(&queue->young);
938	atomic_inc(&queue->qlen);
939}
940
941static void reqsk_migrate_reset(struct request_sock *req)
942{
943	req->saved_syn = NULL;
944#if IS_ENABLED(CONFIG_IPV6)
945	inet_rsk(req)->ipv6_opt = NULL;
946	inet_rsk(req)->pktopts = NULL;
947#else
948	inet_rsk(req)->ireq_opt = NULL;
949#endif
950}
951
952/* return true if req was found in the ehash table */
953static bool reqsk_queue_unlink(struct request_sock *req)
954{
955	struct sock *sk = req_to_sk(req);
956	bool found = false;
957
958	if (sk_hashed(sk)) {
959		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
960		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
961
962		spin_lock(lock);
963		found = __sk_nulls_del_node_init_rcu(sk);
964		spin_unlock(lock);
965	}
966	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
967		reqsk_put(req);
968	return found;
969}
970
971bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
972{
973	bool unlinked = reqsk_queue_unlink(req);
974
975	if (unlinked) {
976		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
977		reqsk_put(req);
978	}
979	return unlinked;
980}
981EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
982
983void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
984{
985	inet_csk_reqsk_queue_drop(sk, req);
986	reqsk_put(req);
987}
988EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
989
990static void reqsk_timer_handler(struct timer_list *t)
991{
992	struct request_sock *req = from_timer(req, t, rsk_timer);
993	struct request_sock *nreq = NULL, *oreq = req;
994	struct sock *sk_listener = req->rsk_listener;
995	struct inet_connection_sock *icsk;
996	struct request_sock_queue *queue;
997	struct net *net;
998	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
999
1000	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1001		struct sock *nsk;
1002
1003		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1004		if (!nsk)
1005			goto drop;
1006
1007		nreq = inet_reqsk_clone(req, nsk);
1008		if (!nreq)
1009			goto drop;
1010
1011		/* The new timer for the cloned req can decrease the 2
1012		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1013		 * hold another count to prevent use-after-free and
1014		 * call reqsk_put() just before return.
1015		 */
1016		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1017		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1018		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1019
1020		req = nreq;
1021		sk_listener = nsk;
1022	}
1023
1024	icsk = inet_csk(sk_listener);
1025	net = sock_net(sk_listener);
1026	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1027		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1028	/* Normally all the openreqs are young and become mature
1029	 * (i.e. converted to established socket) for first timeout.
1030	 * If synack was not acknowledged for 1 second, it means
1031	 * one of the following things: synack was lost, ack was lost,
1032	 * rtt is high or nobody planned to ack (i.e. synflood).
1033	 * When server is a bit loaded, queue is populated with old
1034	 * open requests, reducing effective size of queue.
1035	 * When server is well loaded, queue size reduces to zero
1036	 * after several minutes of work. It is not synflood,
1037	 * it is normal operation. The solution is pruning
1038	 * too old entries overriding normal timeout, when
1039	 * situation becomes dangerous.
1040	 *
1041	 * Essentially, we reserve half of room for young
1042	 * embrions; and abort old ones without pity, if old
1043	 * ones are about to clog our table.
1044	 */
1045	queue = &icsk->icsk_accept_queue;
1046	qlen = reqsk_queue_len(queue);
1047	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1048		int young = reqsk_queue_len_young(queue) << 1;
1049
1050		while (max_syn_ack_retries > 2) {
1051			if (qlen < young)
1052				break;
1053			max_syn_ack_retries--;
1054			young <<= 1;
1055		}
1056	}
1057	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1058		       &expire, &resend);
1059	req->rsk_ops->syn_ack_timeout(req);
1060	if (!expire &&
1061	    (!resend ||
1062	     !inet_rtx_syn_ack(sk_listener, req) ||
1063	     inet_rsk(req)->acked)) {
1064		if (req->num_timeout++ == 0)
1065			atomic_dec(&queue->young);
1066		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1067
1068		if (!nreq)
1069			return;
1070
1071		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1072			/* delete timer */
1073			inet_csk_reqsk_queue_drop(sk_listener, nreq);
1074			goto no_ownership;
1075		}
1076
1077		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1078		reqsk_migrate_reset(oreq);
1079		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1080		reqsk_put(oreq);
1081
1082		reqsk_put(nreq);
1083		return;
1084	}
1085
1086	/* Even if we can clone the req, we may need not retransmit any more
1087	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1088	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1089	 */
1090	if (nreq) {
1091		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1092no_ownership:
1093		reqsk_migrate_reset(nreq);
1094		reqsk_queue_removed(queue, nreq);
1095		__reqsk_free(nreq);
1096	}
1097
1098drop:
1099	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1100}
1101
1102static void reqsk_queue_hash_req(struct request_sock *req,
1103				 unsigned long timeout)
1104{
1105	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1106	mod_timer(&req->rsk_timer, jiffies + timeout);
1107
1108	inet_ehash_insert(req_to_sk(req), NULL, NULL);
1109	/* before letting lookups find us, make sure all req fields
1110	 * are committed to memory and refcnt initialized.
1111	 */
1112	smp_wmb();
1113	refcount_set(&req->rsk_refcnt, 2 + 1);
1114}
1115
1116void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1117				   unsigned long timeout)
1118{
1119	reqsk_queue_hash_req(req, timeout);
1120	inet_csk_reqsk_queue_added(sk);
1121}
1122EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1123
1124static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1125			   const gfp_t priority)
1126{
1127	struct inet_connection_sock *icsk = inet_csk(newsk);
1128
1129	if (!icsk->icsk_ulp_ops)
1130		return;
1131
1132	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1133}
1134
1135/**
1136 *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1137 *	@sk: the socket to clone
1138 *	@req: request_sock
1139 *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1140 *
1141 *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1142 */
1143struct sock *inet_csk_clone_lock(const struct sock *sk,
1144				 const struct request_sock *req,
1145				 const gfp_t priority)
1146{
1147	struct sock *newsk = sk_clone_lock(sk, priority);
1148
1149	if (newsk) {
1150		struct inet_connection_sock *newicsk = inet_csk(newsk);
1151
1152		inet_sk_set_state(newsk, TCP_SYN_RECV);
1153		newicsk->icsk_bind_hash = NULL;
1154		newicsk->icsk_bind2_hash = NULL;
1155
1156		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1157		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1158		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1159
1160		/* listeners have SOCK_RCU_FREE, not the children */
1161		sock_reset_flag(newsk, SOCK_RCU_FREE);
1162
1163		inet_sk(newsk)->mc_list = NULL;
1164
1165		newsk->sk_mark = inet_rsk(req)->ir_mark;
1166		atomic64_set(&newsk->sk_cookie,
1167			     atomic64_read(&inet_rsk(req)->ir_cookie));
1168
1169		newicsk->icsk_retransmits = 0;
1170		newicsk->icsk_backoff	  = 0;
1171		newicsk->icsk_probes_out  = 0;
1172		newicsk->icsk_probes_tstamp = 0;
1173
1174		/* Deinitialize accept_queue to trap illegal accesses. */
1175		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1176
1177		inet_clone_ulp(req, newsk, priority);
1178
1179		security_inet_csk_clone(newsk, req);
1180	}
1181	return newsk;
1182}
1183EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1184
1185/*
1186 * At this point, there should be no process reference to this
1187 * socket, and thus no user references at all.  Therefore we
1188 * can assume the socket waitqueue is inactive and nobody will
1189 * try to jump onto it.
1190 */
1191void inet_csk_destroy_sock(struct sock *sk)
1192{
1193	WARN_ON(sk->sk_state != TCP_CLOSE);
1194	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1195
1196	/* It cannot be in hash table! */
1197	WARN_ON(!sk_unhashed(sk));
1198
1199	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1200	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1201
1202	sk->sk_prot->destroy(sk);
1203
1204	sk_stream_kill_queues(sk);
1205
1206	xfrm_sk_free_policy(sk);
1207
1208	this_cpu_dec(*sk->sk_prot->orphan_count);
1209
1210	sock_put(sk);
1211}
1212EXPORT_SYMBOL(inet_csk_destroy_sock);
1213
1214/* This function allows to force a closure of a socket after the call to
1215 * tcp/dccp_create_openreq_child().
1216 */
1217void inet_csk_prepare_forced_close(struct sock *sk)
1218	__releases(&sk->sk_lock.slock)
1219{
1220	/* sk_clone_lock locked the socket and set refcnt to 2 */
1221	bh_unlock_sock(sk);
1222	sock_put(sk);
1223	inet_csk_prepare_for_destroy_sock(sk);
1224	inet_sk(sk)->inet_num = 0;
1225}
1226EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1227
1228static int inet_ulp_can_listen(const struct sock *sk)
1229{
1230	const struct inet_connection_sock *icsk = inet_csk(sk);
1231
1232	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1233		return -EINVAL;
1234
1235	return 0;
1236}
1237
1238int inet_csk_listen_start(struct sock *sk)
1239{
1240	struct inet_connection_sock *icsk = inet_csk(sk);
1241	struct inet_sock *inet = inet_sk(sk);
1242	int err;
1243
1244	err = inet_ulp_can_listen(sk);
1245	if (unlikely(err))
1246		return err;
1247
1248	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1249
1250	sk->sk_ack_backlog = 0;
1251	inet_csk_delack_init(sk);
1252
1253	/* There is race window here: we announce ourselves listening,
1254	 * but this transition is still not validated by get_port().
1255	 * It is OK, because this socket enters to hash table only
1256	 * after validation is complete.
1257	 */
1258	inet_sk_state_store(sk, TCP_LISTEN);
1259	err = sk->sk_prot->get_port(sk, inet->inet_num);
1260	if (!err) {
1261		inet->inet_sport = htons(inet->inet_num);
1262
1263		sk_dst_reset(sk);
1264		err = sk->sk_prot->hash(sk);
1265
1266		if (likely(!err))
1267			return 0;
1268	}
1269
1270	inet_sk_set_state(sk, TCP_CLOSE);
1271	return err;
1272}
1273EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1274
1275static void inet_child_forget(struct sock *sk, struct request_sock *req,
1276			      struct sock *child)
1277{
1278	sk->sk_prot->disconnect(child, O_NONBLOCK);
1279
1280	sock_orphan(child);
1281
1282	this_cpu_inc(*sk->sk_prot->orphan_count);
1283
1284	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1285		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1286		BUG_ON(sk != req->rsk_listener);
1287
1288		/* Paranoid, to prevent race condition if
1289		 * an inbound pkt destined for child is
1290		 * blocked by sock lock in tcp_v4_rcv().
1291		 * Also to satisfy an assertion in
1292		 * tcp_v4_destroy_sock().
1293		 */
1294		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1295	}
1296	inet_csk_destroy_sock(child);
1297}
1298
1299struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1300				      struct request_sock *req,
1301				      struct sock *child)
1302{
1303	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1304
1305	spin_lock(&queue->rskq_lock);
1306	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1307		inet_child_forget(sk, req, child);
1308		child = NULL;
1309	} else {
1310		req->sk = child;
1311		req->dl_next = NULL;
1312		if (queue->rskq_accept_head == NULL)
1313			WRITE_ONCE(queue->rskq_accept_head, req);
1314		else
1315			queue->rskq_accept_tail->dl_next = req;
1316		queue->rskq_accept_tail = req;
1317		sk_acceptq_added(sk);
1318	}
1319	spin_unlock(&queue->rskq_lock);
1320	return child;
1321}
1322EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1323
1324struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1325					 struct request_sock *req, bool own_req)
1326{
1327	if (own_req) {
1328		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1329		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1330
1331		if (sk != req->rsk_listener) {
1332			/* another listening sk has been selected,
1333			 * migrate the req to it.
1334			 */
1335			struct request_sock *nreq;
1336
1337			/* hold a refcnt for the nreq->rsk_listener
1338			 * which is assigned in inet_reqsk_clone()
1339			 */
1340			sock_hold(sk);
1341			nreq = inet_reqsk_clone(req, sk);
1342			if (!nreq) {
1343				inet_child_forget(sk, req, child);
1344				goto child_put;
1345			}
1346
1347			refcount_set(&nreq->rsk_refcnt, 1);
1348			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1349				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1350				reqsk_migrate_reset(req);
1351				reqsk_put(req);
1352				return child;
1353			}
1354
1355			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1356			reqsk_migrate_reset(nreq);
1357			__reqsk_free(nreq);
1358		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1359			return child;
1360		}
1361	}
1362	/* Too bad, another child took ownership of the request, undo. */
1363child_put:
1364	bh_unlock_sock(child);
1365	sock_put(child);
1366	return NULL;
1367}
1368EXPORT_SYMBOL(inet_csk_complete_hashdance);
1369
1370/*
1371 *	This routine closes sockets which have been at least partially
1372 *	opened, but not yet accepted.
1373 */
1374void inet_csk_listen_stop(struct sock *sk)
1375{
1376	struct inet_connection_sock *icsk = inet_csk(sk);
1377	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1378	struct request_sock *next, *req;
1379
1380	/* Following specs, it would be better either to send FIN
1381	 * (and enter FIN-WAIT-1, it is normal close)
1382	 * or to send active reset (abort).
1383	 * Certainly, it is pretty dangerous while synflood, but it is
1384	 * bad justification for our negligence 8)
1385	 * To be honest, we are not able to make either
1386	 * of the variants now.			--ANK
1387	 */
1388	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1389		struct sock *child = req->sk, *nsk;
1390		struct request_sock *nreq;
1391
1392		local_bh_disable();
1393		bh_lock_sock(child);
1394		WARN_ON(sock_owned_by_user(child));
1395		sock_hold(child);
1396
1397		nsk = reuseport_migrate_sock(sk, child, NULL);
1398		if (nsk) {
1399			nreq = inet_reqsk_clone(req, nsk);
1400			if (nreq) {
1401				refcount_set(&nreq->rsk_refcnt, 1);
1402
1403				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1404					__NET_INC_STATS(sock_net(nsk),
1405							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1406					reqsk_migrate_reset(req);
1407				} else {
1408					__NET_INC_STATS(sock_net(nsk),
1409							LINUX_MIB_TCPMIGRATEREQFAILURE);
1410					reqsk_migrate_reset(nreq);
1411					__reqsk_free(nreq);
1412				}
1413
1414				/* inet_csk_reqsk_queue_add() has already
1415				 * called inet_child_forget() on failure case.
1416				 */
1417				goto skip_child_forget;
1418			}
1419		}
1420
1421		inet_child_forget(sk, req, child);
1422skip_child_forget:
1423		reqsk_put(req);
1424		bh_unlock_sock(child);
1425		local_bh_enable();
1426		sock_put(child);
1427
1428		cond_resched();
1429	}
1430	if (queue->fastopenq.rskq_rst_head) {
1431		/* Free all the reqs queued in rskq_rst_head. */
1432		spin_lock_bh(&queue->fastopenq.lock);
1433		req = queue->fastopenq.rskq_rst_head;
1434		queue->fastopenq.rskq_rst_head = NULL;
1435		spin_unlock_bh(&queue->fastopenq.lock);
1436		while (req != NULL) {
1437			next = req->dl_next;
1438			reqsk_put(req);
1439			req = next;
1440		}
1441	}
1442	WARN_ON_ONCE(sk->sk_ack_backlog);
1443}
1444EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1445
1446void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1447{
1448	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1449	const struct inet_sock *inet = inet_sk(sk);
1450
1451	sin->sin_family		= AF_INET;
1452	sin->sin_addr.s_addr	= inet->inet_daddr;
1453	sin->sin_port		= inet->inet_dport;
1454}
1455EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1456
1457static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1458{
1459	const struct inet_sock *inet = inet_sk(sk);
1460	const struct ip_options_rcu *inet_opt;
1461	__be32 daddr = inet->inet_daddr;
1462	struct flowi4 *fl4;
1463	struct rtable *rt;
1464
1465	rcu_read_lock();
1466	inet_opt = rcu_dereference(inet->inet_opt);
1467	if (inet_opt && inet_opt->opt.srr)
1468		daddr = inet_opt->opt.faddr;
1469	fl4 = &fl->u.ip4;
1470	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1471				   inet->inet_saddr, inet->inet_dport,
1472				   inet->inet_sport, sk->sk_protocol,
1473				   RT_CONN_FLAGS(sk), sk->sk_bound_dev_if);
1474	if (IS_ERR(rt))
1475		rt = NULL;
1476	if (rt)
1477		sk_setup_caps(sk, &rt->dst);
1478	rcu_read_unlock();
1479
1480	return &rt->dst;
1481}
1482
1483struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1484{
1485	struct dst_entry *dst = __sk_dst_check(sk, 0);
1486	struct inet_sock *inet = inet_sk(sk);
1487
1488	if (!dst) {
1489		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1490		if (!dst)
1491			goto out;
1492	}
1493	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1494
1495	dst = __sk_dst_check(sk, 0);
1496	if (!dst)
1497		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1498out:
1499	return dst;
1500}
1501EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1502