xref: /kernel/linux/linux-6.6/net/ipv4/fib_trie.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *
4 *   Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 *     & Swedish University of Agricultural Sciences.
6 *
7 *   Jens Laas <jens.laas@data.slu.se> Swedish University of
8 *     Agricultural Sciences.
9 *
10 *   Hans Liss <hans.liss@its.uu.se>  Uppsala Universitet
11 *
12 * This work is based on the LPC-trie which is originally described in:
13 *
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
17 *
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
20 *
21 * Code from fib_hash has been reused which includes the following header:
22 *
23 * INET		An implementation of the TCP/IP protocol suite for the LINUX
24 *		operating system.  INET is implemented using the  BSD Socket
25 *		interface as the means of communication with the user level.
26 *
27 *		IPv4 FIB: lookup engine and maintenance routines.
28 *
29 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
30 *
31 * Substantial contributions to this work comes from:
32 *
33 *		David S. Miller, <davem@davemloft.net>
34 *		Stephen Hemminger <shemminger@osdl.org>
35 *		Paul E. McKenney <paulmck@us.ibm.com>
36 *		Patrick McHardy <kaber@trash.net>
37 */
38#include <linux/cache.h>
39#include <linux/uaccess.h>
40#include <linux/bitops.h>
41#include <linux/types.h>
42#include <linux/kernel.h>
43#include <linux/mm.h>
44#include <linux/string.h>
45#include <linux/socket.h>
46#include <linux/sockios.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/inet.h>
50#include <linux/inetdevice.h>
51#include <linux/netdevice.h>
52#include <linux/if_arp.h>
53#include <linux/proc_fs.h>
54#include <linux/rcupdate.h>
55#include <linux/skbuff.h>
56#include <linux/netlink.h>
57#include <linux/init.h>
58#include <linux/list.h>
59#include <linux/slab.h>
60#include <linux/export.h>
61#include <linux/vmalloc.h>
62#include <linux/notifier.h>
63#include <net/net_namespace.h>
64#include <net/inet_dscp.h>
65#include <net/ip.h>
66#include <net/protocol.h>
67#include <net/route.h>
68#include <net/tcp.h>
69#include <net/sock.h>
70#include <net/ip_fib.h>
71#include <net/fib_notifier.h>
72#include <trace/events/fib.h>
73#include "fib_lookup.h"
74
75static int call_fib_entry_notifier(struct notifier_block *nb,
76				   enum fib_event_type event_type, u32 dst,
77				   int dst_len, struct fib_alias *fa,
78				   struct netlink_ext_ack *extack)
79{
80	struct fib_entry_notifier_info info = {
81		.info.extack = extack,
82		.dst = dst,
83		.dst_len = dst_len,
84		.fi = fa->fa_info,
85		.dscp = fa->fa_dscp,
86		.type = fa->fa_type,
87		.tb_id = fa->tb_id,
88	};
89	return call_fib4_notifier(nb, event_type, &info.info);
90}
91
92static int call_fib_entry_notifiers(struct net *net,
93				    enum fib_event_type event_type, u32 dst,
94				    int dst_len, struct fib_alias *fa,
95				    struct netlink_ext_ack *extack)
96{
97	struct fib_entry_notifier_info info = {
98		.info.extack = extack,
99		.dst = dst,
100		.dst_len = dst_len,
101		.fi = fa->fa_info,
102		.dscp = fa->fa_dscp,
103		.type = fa->fa_type,
104		.tb_id = fa->tb_id,
105	};
106	return call_fib4_notifiers(net, event_type, &info.info);
107}
108
109#define MAX_STAT_DEPTH 32
110
111#define KEYLENGTH	(8*sizeof(t_key))
112#define KEY_MAX		((t_key)~0)
113
114typedef unsigned int t_key;
115
116#define IS_TRIE(n)	((n)->pos >= KEYLENGTH)
117#define IS_TNODE(n)	((n)->bits)
118#define IS_LEAF(n)	(!(n)->bits)
119
120struct key_vector {
121	t_key key;
122	unsigned char pos;		/* 2log(KEYLENGTH) bits needed */
123	unsigned char bits;		/* 2log(KEYLENGTH) bits needed */
124	unsigned char slen;
125	union {
126		/* This list pointer if valid if (pos | bits) == 0 (LEAF) */
127		struct hlist_head leaf;
128		/* This array is valid if (pos | bits) > 0 (TNODE) */
129		DECLARE_FLEX_ARRAY(struct key_vector __rcu *, tnode);
130	};
131};
132
133struct tnode {
134	struct rcu_head rcu;
135	t_key empty_children;		/* KEYLENGTH bits needed */
136	t_key full_children;		/* KEYLENGTH bits needed */
137	struct key_vector __rcu *parent;
138	struct key_vector kv[1];
139#define tn_bits kv[0].bits
140};
141
142#define TNODE_SIZE(n)	offsetof(struct tnode, kv[0].tnode[n])
143#define LEAF_SIZE	TNODE_SIZE(1)
144
145#ifdef CONFIG_IP_FIB_TRIE_STATS
146struct trie_use_stats {
147	unsigned int gets;
148	unsigned int backtrack;
149	unsigned int semantic_match_passed;
150	unsigned int semantic_match_miss;
151	unsigned int null_node_hit;
152	unsigned int resize_node_skipped;
153};
154#endif
155
156struct trie_stat {
157	unsigned int totdepth;
158	unsigned int maxdepth;
159	unsigned int tnodes;
160	unsigned int leaves;
161	unsigned int nullpointers;
162	unsigned int prefixes;
163	unsigned int nodesizes[MAX_STAT_DEPTH];
164};
165
166struct trie {
167	struct key_vector kv[1];
168#ifdef CONFIG_IP_FIB_TRIE_STATS
169	struct trie_use_stats __percpu *stats;
170#endif
171};
172
173static struct key_vector *resize(struct trie *t, struct key_vector *tn);
174static unsigned int tnode_free_size;
175
176/*
177 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
178 * especially useful before resizing the root node with PREEMPT_NONE configs;
179 * the value was obtained experimentally, aiming to avoid visible slowdown.
180 */
181unsigned int sysctl_fib_sync_mem = 512 * 1024;
182unsigned int sysctl_fib_sync_mem_min = 64 * 1024;
183unsigned int sysctl_fib_sync_mem_max = 64 * 1024 * 1024;
184
185static struct kmem_cache *fn_alias_kmem __ro_after_init;
186static struct kmem_cache *trie_leaf_kmem __ro_after_init;
187
188static inline struct tnode *tn_info(struct key_vector *kv)
189{
190	return container_of(kv, struct tnode, kv[0]);
191}
192
193/* caller must hold RTNL */
194#define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
195#define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
196
197/* caller must hold RCU read lock or RTNL */
198#define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
199#define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
200
201/* wrapper for rcu_assign_pointer */
202static inline void node_set_parent(struct key_vector *n, struct key_vector *tp)
203{
204	if (n)
205		rcu_assign_pointer(tn_info(n)->parent, tp);
206}
207
208#define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
209
210/* This provides us with the number of children in this node, in the case of a
211 * leaf this will return 0 meaning none of the children are accessible.
212 */
213static inline unsigned long child_length(const struct key_vector *tn)
214{
215	return (1ul << tn->bits) & ~(1ul);
216}
217
218#define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
219
220static inline unsigned long get_index(t_key key, struct key_vector *kv)
221{
222	unsigned long index = key ^ kv->key;
223
224	if ((BITS_PER_LONG <= KEYLENGTH) && (KEYLENGTH == kv->pos))
225		return 0;
226
227	return index >> kv->pos;
228}
229
230/* To understand this stuff, an understanding of keys and all their bits is
231 * necessary. Every node in the trie has a key associated with it, but not
232 * all of the bits in that key are significant.
233 *
234 * Consider a node 'n' and its parent 'tp'.
235 *
236 * If n is a leaf, every bit in its key is significant. Its presence is
237 * necessitated by path compression, since during a tree traversal (when
238 * searching for a leaf - unless we are doing an insertion) we will completely
239 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
240 * a potentially successful search, that we have indeed been walking the
241 * correct key path.
242 *
243 * Note that we can never "miss" the correct key in the tree if present by
244 * following the wrong path. Path compression ensures that segments of the key
245 * that are the same for all keys with a given prefix are skipped, but the
246 * skipped part *is* identical for each node in the subtrie below the skipped
247 * bit! trie_insert() in this implementation takes care of that.
248 *
249 * if n is an internal node - a 'tnode' here, the various parts of its key
250 * have many different meanings.
251 *
252 * Example:
253 * _________________________________________________________________
254 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
255 * -----------------------------------------------------------------
256 *  31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16
257 *
258 * _________________________________________________________________
259 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
260 * -----------------------------------------------------------------
261 *  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
262 *
263 * tp->pos = 22
264 * tp->bits = 3
265 * n->pos = 13
266 * n->bits = 4
267 *
268 * First, let's just ignore the bits that come before the parent tp, that is
269 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
270 * point we do not use them for anything.
271 *
272 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
273 * index into the parent's child array. That is, they will be used to find
274 * 'n' among tp's children.
275 *
276 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
277 * for the node n.
278 *
279 * All the bits we have seen so far are significant to the node n. The rest
280 * of the bits are really not needed or indeed known in n->key.
281 *
282 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
283 * n's child array, and will of course be different for each child.
284 *
285 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
286 * at this point.
287 */
288
289static const int halve_threshold = 25;
290static const int inflate_threshold = 50;
291static const int halve_threshold_root = 15;
292static const int inflate_threshold_root = 30;
293
294static void __alias_free_mem(struct rcu_head *head)
295{
296	struct fib_alias *fa = container_of(head, struct fib_alias, rcu);
297	kmem_cache_free(fn_alias_kmem, fa);
298}
299
300static inline void alias_free_mem_rcu(struct fib_alias *fa)
301{
302	call_rcu(&fa->rcu, __alias_free_mem);
303}
304
305#define TNODE_VMALLOC_MAX \
306	ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
307
308static void __node_free_rcu(struct rcu_head *head)
309{
310	struct tnode *n = container_of(head, struct tnode, rcu);
311
312	if (!n->tn_bits)
313		kmem_cache_free(trie_leaf_kmem, n);
314	else
315		kvfree(n);
316}
317
318#define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
319
320static struct tnode *tnode_alloc(int bits)
321{
322	size_t size;
323
324	/* verify bits is within bounds */
325	if (bits > TNODE_VMALLOC_MAX)
326		return NULL;
327
328	/* determine size and verify it is non-zero and didn't overflow */
329	size = TNODE_SIZE(1ul << bits);
330
331	if (size <= PAGE_SIZE)
332		return kzalloc(size, GFP_KERNEL);
333	else
334		return vzalloc(size);
335}
336
337static inline void empty_child_inc(struct key_vector *n)
338{
339	tn_info(n)->empty_children++;
340
341	if (!tn_info(n)->empty_children)
342		tn_info(n)->full_children++;
343}
344
345static inline void empty_child_dec(struct key_vector *n)
346{
347	if (!tn_info(n)->empty_children)
348		tn_info(n)->full_children--;
349
350	tn_info(n)->empty_children--;
351}
352
353static struct key_vector *leaf_new(t_key key, struct fib_alias *fa)
354{
355	struct key_vector *l;
356	struct tnode *kv;
357
358	kv = kmem_cache_alloc(trie_leaf_kmem, GFP_KERNEL);
359	if (!kv)
360		return NULL;
361
362	/* initialize key vector */
363	l = kv->kv;
364	l->key = key;
365	l->pos = 0;
366	l->bits = 0;
367	l->slen = fa->fa_slen;
368
369	/* link leaf to fib alias */
370	INIT_HLIST_HEAD(&l->leaf);
371	hlist_add_head(&fa->fa_list, &l->leaf);
372
373	return l;
374}
375
376static struct key_vector *tnode_new(t_key key, int pos, int bits)
377{
378	unsigned int shift = pos + bits;
379	struct key_vector *tn;
380	struct tnode *tnode;
381
382	/* verify bits and pos their msb bits clear and values are valid */
383	BUG_ON(!bits || (shift > KEYLENGTH));
384
385	tnode = tnode_alloc(bits);
386	if (!tnode)
387		return NULL;
388
389	pr_debug("AT %p s=%zu %zu\n", tnode, TNODE_SIZE(0),
390		 sizeof(struct key_vector *) << bits);
391
392	if (bits == KEYLENGTH)
393		tnode->full_children = 1;
394	else
395		tnode->empty_children = 1ul << bits;
396
397	tn = tnode->kv;
398	tn->key = (shift < KEYLENGTH) ? (key >> shift) << shift : 0;
399	tn->pos = pos;
400	tn->bits = bits;
401	tn->slen = pos;
402
403	return tn;
404}
405
406/* Check whether a tnode 'n' is "full", i.e. it is an internal node
407 * and no bits are skipped. See discussion in dyntree paper p. 6
408 */
409static inline int tnode_full(struct key_vector *tn, struct key_vector *n)
410{
411	return n && ((n->pos + n->bits) == tn->pos) && IS_TNODE(n);
412}
413
414/* Add a child at position i overwriting the old value.
415 * Update the value of full_children and empty_children.
416 */
417static void put_child(struct key_vector *tn, unsigned long i,
418		      struct key_vector *n)
419{
420	struct key_vector *chi = get_child(tn, i);
421	int isfull, wasfull;
422
423	BUG_ON(i >= child_length(tn));
424
425	/* update emptyChildren, overflow into fullChildren */
426	if (!n && chi)
427		empty_child_inc(tn);
428	if (n && !chi)
429		empty_child_dec(tn);
430
431	/* update fullChildren */
432	wasfull = tnode_full(tn, chi);
433	isfull = tnode_full(tn, n);
434
435	if (wasfull && !isfull)
436		tn_info(tn)->full_children--;
437	else if (!wasfull && isfull)
438		tn_info(tn)->full_children++;
439
440	if (n && (tn->slen < n->slen))
441		tn->slen = n->slen;
442
443	rcu_assign_pointer(tn->tnode[i], n);
444}
445
446static void update_children(struct key_vector *tn)
447{
448	unsigned long i;
449
450	/* update all of the child parent pointers */
451	for (i = child_length(tn); i;) {
452		struct key_vector *inode = get_child(tn, --i);
453
454		if (!inode)
455			continue;
456
457		/* Either update the children of a tnode that
458		 * already belongs to us or update the child
459		 * to point to ourselves.
460		 */
461		if (node_parent(inode) == tn)
462			update_children(inode);
463		else
464			node_set_parent(inode, tn);
465	}
466}
467
468static inline void put_child_root(struct key_vector *tp, t_key key,
469				  struct key_vector *n)
470{
471	if (IS_TRIE(tp))
472		rcu_assign_pointer(tp->tnode[0], n);
473	else
474		put_child(tp, get_index(key, tp), n);
475}
476
477static inline void tnode_free_init(struct key_vector *tn)
478{
479	tn_info(tn)->rcu.next = NULL;
480}
481
482static inline void tnode_free_append(struct key_vector *tn,
483				     struct key_vector *n)
484{
485	tn_info(n)->rcu.next = tn_info(tn)->rcu.next;
486	tn_info(tn)->rcu.next = &tn_info(n)->rcu;
487}
488
489static void tnode_free(struct key_vector *tn)
490{
491	struct callback_head *head = &tn_info(tn)->rcu;
492
493	while (head) {
494		head = head->next;
495		tnode_free_size += TNODE_SIZE(1ul << tn->bits);
496		node_free(tn);
497
498		tn = container_of(head, struct tnode, rcu)->kv;
499	}
500
501	if (tnode_free_size >= READ_ONCE(sysctl_fib_sync_mem)) {
502		tnode_free_size = 0;
503		synchronize_rcu();
504	}
505}
506
507static struct key_vector *replace(struct trie *t,
508				  struct key_vector *oldtnode,
509				  struct key_vector *tn)
510{
511	struct key_vector *tp = node_parent(oldtnode);
512	unsigned long i;
513
514	/* setup the parent pointer out of and back into this node */
515	NODE_INIT_PARENT(tn, tp);
516	put_child_root(tp, tn->key, tn);
517
518	/* update all of the child parent pointers */
519	update_children(tn);
520
521	/* all pointers should be clean so we are done */
522	tnode_free(oldtnode);
523
524	/* resize children now that oldtnode is freed */
525	for (i = child_length(tn); i;) {
526		struct key_vector *inode = get_child(tn, --i);
527
528		/* resize child node */
529		if (tnode_full(tn, inode))
530			tn = resize(t, inode);
531	}
532
533	return tp;
534}
535
536static struct key_vector *inflate(struct trie *t,
537				  struct key_vector *oldtnode)
538{
539	struct key_vector *tn;
540	unsigned long i;
541	t_key m;
542
543	pr_debug("In inflate\n");
544
545	tn = tnode_new(oldtnode->key, oldtnode->pos - 1, oldtnode->bits + 1);
546	if (!tn)
547		goto notnode;
548
549	/* prepare oldtnode to be freed */
550	tnode_free_init(oldtnode);
551
552	/* Assemble all of the pointers in our cluster, in this case that
553	 * represents all of the pointers out of our allocated nodes that
554	 * point to existing tnodes and the links between our allocated
555	 * nodes.
556	 */
557	for (i = child_length(oldtnode), m = 1u << tn->pos; i;) {
558		struct key_vector *inode = get_child(oldtnode, --i);
559		struct key_vector *node0, *node1;
560		unsigned long j, k;
561
562		/* An empty child */
563		if (!inode)
564			continue;
565
566		/* A leaf or an internal node with skipped bits */
567		if (!tnode_full(oldtnode, inode)) {
568			put_child(tn, get_index(inode->key, tn), inode);
569			continue;
570		}
571
572		/* drop the node in the old tnode free list */
573		tnode_free_append(oldtnode, inode);
574
575		/* An internal node with two children */
576		if (inode->bits == 1) {
577			put_child(tn, 2 * i + 1, get_child(inode, 1));
578			put_child(tn, 2 * i, get_child(inode, 0));
579			continue;
580		}
581
582		/* We will replace this node 'inode' with two new
583		 * ones, 'node0' and 'node1', each with half of the
584		 * original children. The two new nodes will have
585		 * a position one bit further down the key and this
586		 * means that the "significant" part of their keys
587		 * (see the discussion near the top of this file)
588		 * will differ by one bit, which will be "0" in
589		 * node0's key and "1" in node1's key. Since we are
590		 * moving the key position by one step, the bit that
591		 * we are moving away from - the bit at position
592		 * (tn->pos) - is the one that will differ between
593		 * node0 and node1. So... we synthesize that bit in the
594		 * two new keys.
595		 */
596		node1 = tnode_new(inode->key | m, inode->pos, inode->bits - 1);
597		if (!node1)
598			goto nomem;
599		node0 = tnode_new(inode->key, inode->pos, inode->bits - 1);
600
601		tnode_free_append(tn, node1);
602		if (!node0)
603			goto nomem;
604		tnode_free_append(tn, node0);
605
606		/* populate child pointers in new nodes */
607		for (k = child_length(inode), j = k / 2; j;) {
608			put_child(node1, --j, get_child(inode, --k));
609			put_child(node0, j, get_child(inode, j));
610			put_child(node1, --j, get_child(inode, --k));
611			put_child(node0, j, get_child(inode, j));
612		}
613
614		/* link new nodes to parent */
615		NODE_INIT_PARENT(node1, tn);
616		NODE_INIT_PARENT(node0, tn);
617
618		/* link parent to nodes */
619		put_child(tn, 2 * i + 1, node1);
620		put_child(tn, 2 * i, node0);
621	}
622
623	/* setup the parent pointers into and out of this node */
624	return replace(t, oldtnode, tn);
625nomem:
626	/* all pointers should be clean so we are done */
627	tnode_free(tn);
628notnode:
629	return NULL;
630}
631
632static struct key_vector *halve(struct trie *t,
633				struct key_vector *oldtnode)
634{
635	struct key_vector *tn;
636	unsigned long i;
637
638	pr_debug("In halve\n");
639
640	tn = tnode_new(oldtnode->key, oldtnode->pos + 1, oldtnode->bits - 1);
641	if (!tn)
642		goto notnode;
643
644	/* prepare oldtnode to be freed */
645	tnode_free_init(oldtnode);
646
647	/* Assemble all of the pointers in our cluster, in this case that
648	 * represents all of the pointers out of our allocated nodes that
649	 * point to existing tnodes and the links between our allocated
650	 * nodes.
651	 */
652	for (i = child_length(oldtnode); i;) {
653		struct key_vector *node1 = get_child(oldtnode, --i);
654		struct key_vector *node0 = get_child(oldtnode, --i);
655		struct key_vector *inode;
656
657		/* At least one of the children is empty */
658		if (!node1 || !node0) {
659			put_child(tn, i / 2, node1 ? : node0);
660			continue;
661		}
662
663		/* Two nonempty children */
664		inode = tnode_new(node0->key, oldtnode->pos, 1);
665		if (!inode)
666			goto nomem;
667		tnode_free_append(tn, inode);
668
669		/* initialize pointers out of node */
670		put_child(inode, 1, node1);
671		put_child(inode, 0, node0);
672		NODE_INIT_PARENT(inode, tn);
673
674		/* link parent to node */
675		put_child(tn, i / 2, inode);
676	}
677
678	/* setup the parent pointers into and out of this node */
679	return replace(t, oldtnode, tn);
680nomem:
681	/* all pointers should be clean so we are done */
682	tnode_free(tn);
683notnode:
684	return NULL;
685}
686
687static struct key_vector *collapse(struct trie *t,
688				   struct key_vector *oldtnode)
689{
690	struct key_vector *n, *tp;
691	unsigned long i;
692
693	/* scan the tnode looking for that one child that might still exist */
694	for (n = NULL, i = child_length(oldtnode); !n && i;)
695		n = get_child(oldtnode, --i);
696
697	/* compress one level */
698	tp = node_parent(oldtnode);
699	put_child_root(tp, oldtnode->key, n);
700	node_set_parent(n, tp);
701
702	/* drop dead node */
703	node_free(oldtnode);
704
705	return tp;
706}
707
708static unsigned char update_suffix(struct key_vector *tn)
709{
710	unsigned char slen = tn->pos;
711	unsigned long stride, i;
712	unsigned char slen_max;
713
714	/* only vector 0 can have a suffix length greater than or equal to
715	 * tn->pos + tn->bits, the second highest node will have a suffix
716	 * length at most of tn->pos + tn->bits - 1
717	 */
718	slen_max = min_t(unsigned char, tn->pos + tn->bits - 1, tn->slen);
719
720	/* search though the list of children looking for nodes that might
721	 * have a suffix greater than the one we currently have.  This is
722	 * why we start with a stride of 2 since a stride of 1 would
723	 * represent the nodes with suffix length equal to tn->pos
724	 */
725	for (i = 0, stride = 0x2ul ; i < child_length(tn); i += stride) {
726		struct key_vector *n = get_child(tn, i);
727
728		if (!n || (n->slen <= slen))
729			continue;
730
731		/* update stride and slen based on new value */
732		stride <<= (n->slen - slen);
733		slen = n->slen;
734		i &= ~(stride - 1);
735
736		/* stop searching if we have hit the maximum possible value */
737		if (slen >= slen_max)
738			break;
739	}
740
741	tn->slen = slen;
742
743	return slen;
744}
745
746/* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
747 * the Helsinki University of Technology and Matti Tikkanen of Nokia
748 * Telecommunications, page 6:
749 * "A node is doubled if the ratio of non-empty children to all
750 * children in the *doubled* node is at least 'high'."
751 *
752 * 'high' in this instance is the variable 'inflate_threshold'. It
753 * is expressed as a percentage, so we multiply it with
754 * child_length() and instead of multiplying by 2 (since the
755 * child array will be doubled by inflate()) and multiplying
756 * the left-hand side by 100 (to handle the percentage thing) we
757 * multiply the left-hand side by 50.
758 *
759 * The left-hand side may look a bit weird: child_length(tn)
760 * - tn->empty_children is of course the number of non-null children
761 * in the current node. tn->full_children is the number of "full"
762 * children, that is non-null tnodes with a skip value of 0.
763 * All of those will be doubled in the resulting inflated tnode, so
764 * we just count them one extra time here.
765 *
766 * A clearer way to write this would be:
767 *
768 * to_be_doubled = tn->full_children;
769 * not_to_be_doubled = child_length(tn) - tn->empty_children -
770 *     tn->full_children;
771 *
772 * new_child_length = child_length(tn) * 2;
773 *
774 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
775 *      new_child_length;
776 * if (new_fill_factor >= inflate_threshold)
777 *
778 * ...and so on, tho it would mess up the while () loop.
779 *
780 * anyway,
781 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
782 *      inflate_threshold
783 *
784 * avoid a division:
785 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
786 *      inflate_threshold * new_child_length
787 *
788 * expand not_to_be_doubled and to_be_doubled, and shorten:
789 * 100 * (child_length(tn) - tn->empty_children +
790 *    tn->full_children) >= inflate_threshold * new_child_length
791 *
792 * expand new_child_length:
793 * 100 * (child_length(tn) - tn->empty_children +
794 *    tn->full_children) >=
795 *      inflate_threshold * child_length(tn) * 2
796 *
797 * shorten again:
798 * 50 * (tn->full_children + child_length(tn) -
799 *    tn->empty_children) >= inflate_threshold *
800 *    child_length(tn)
801 *
802 */
803static inline bool should_inflate(struct key_vector *tp, struct key_vector *tn)
804{
805	unsigned long used = child_length(tn);
806	unsigned long threshold = used;
807
808	/* Keep root node larger */
809	threshold *= IS_TRIE(tp) ? inflate_threshold_root : inflate_threshold;
810	used -= tn_info(tn)->empty_children;
811	used += tn_info(tn)->full_children;
812
813	/* if bits == KEYLENGTH then pos = 0, and will fail below */
814
815	return (used > 1) && tn->pos && ((50 * used) >= threshold);
816}
817
818static inline bool should_halve(struct key_vector *tp, struct key_vector *tn)
819{
820	unsigned long used = child_length(tn);
821	unsigned long threshold = used;
822
823	/* Keep root node larger */
824	threshold *= IS_TRIE(tp) ? halve_threshold_root : halve_threshold;
825	used -= tn_info(tn)->empty_children;
826
827	/* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
828
829	return (used > 1) && (tn->bits > 1) && ((100 * used) < threshold);
830}
831
832static inline bool should_collapse(struct key_vector *tn)
833{
834	unsigned long used = child_length(tn);
835
836	used -= tn_info(tn)->empty_children;
837
838	/* account for bits == KEYLENGTH case */
839	if ((tn->bits == KEYLENGTH) && tn_info(tn)->full_children)
840		used -= KEY_MAX;
841
842	/* One child or none, time to drop us from the trie */
843	return used < 2;
844}
845
846#define MAX_WORK 10
847static struct key_vector *resize(struct trie *t, struct key_vector *tn)
848{
849#ifdef CONFIG_IP_FIB_TRIE_STATS
850	struct trie_use_stats __percpu *stats = t->stats;
851#endif
852	struct key_vector *tp = node_parent(tn);
853	unsigned long cindex = get_index(tn->key, tp);
854	int max_work = MAX_WORK;
855
856	pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
857		 tn, inflate_threshold, halve_threshold);
858
859	/* track the tnode via the pointer from the parent instead of
860	 * doing it ourselves.  This way we can let RCU fully do its
861	 * thing without us interfering
862	 */
863	BUG_ON(tn != get_child(tp, cindex));
864
865	/* Double as long as the resulting node has a number of
866	 * nonempty nodes that are above the threshold.
867	 */
868	while (should_inflate(tp, tn) && max_work) {
869		tp = inflate(t, tn);
870		if (!tp) {
871#ifdef CONFIG_IP_FIB_TRIE_STATS
872			this_cpu_inc(stats->resize_node_skipped);
873#endif
874			break;
875		}
876
877		max_work--;
878		tn = get_child(tp, cindex);
879	}
880
881	/* update parent in case inflate failed */
882	tp = node_parent(tn);
883
884	/* Return if at least one inflate is run */
885	if (max_work != MAX_WORK)
886		return tp;
887
888	/* Halve as long as the number of empty children in this
889	 * node is above threshold.
890	 */
891	while (should_halve(tp, tn) && max_work) {
892		tp = halve(t, tn);
893		if (!tp) {
894#ifdef CONFIG_IP_FIB_TRIE_STATS
895			this_cpu_inc(stats->resize_node_skipped);
896#endif
897			break;
898		}
899
900		max_work--;
901		tn = get_child(tp, cindex);
902	}
903
904	/* Only one child remains */
905	if (should_collapse(tn))
906		return collapse(t, tn);
907
908	/* update parent in case halve failed */
909	return node_parent(tn);
910}
911
912static void node_pull_suffix(struct key_vector *tn, unsigned char slen)
913{
914	unsigned char node_slen = tn->slen;
915
916	while ((node_slen > tn->pos) && (node_slen > slen)) {
917		slen = update_suffix(tn);
918		if (node_slen == slen)
919			break;
920
921		tn = node_parent(tn);
922		node_slen = tn->slen;
923	}
924}
925
926static void node_push_suffix(struct key_vector *tn, unsigned char slen)
927{
928	while (tn->slen < slen) {
929		tn->slen = slen;
930		tn = node_parent(tn);
931	}
932}
933
934/* rcu_read_lock needs to be hold by caller from readside */
935static struct key_vector *fib_find_node(struct trie *t,
936					struct key_vector **tp, u32 key)
937{
938	struct key_vector *pn, *n = t->kv;
939	unsigned long index = 0;
940
941	do {
942		pn = n;
943		n = get_child_rcu(n, index);
944
945		if (!n)
946			break;
947
948		index = get_cindex(key, n);
949
950		/* This bit of code is a bit tricky but it combines multiple
951		 * checks into a single check.  The prefix consists of the
952		 * prefix plus zeros for the bits in the cindex. The index
953		 * is the difference between the key and this value.  From
954		 * this we can actually derive several pieces of data.
955		 *   if (index >= (1ul << bits))
956		 *     we have a mismatch in skip bits and failed
957		 *   else
958		 *     we know the value is cindex
959		 *
960		 * This check is safe even if bits == KEYLENGTH due to the
961		 * fact that we can only allocate a node with 32 bits if a
962		 * long is greater than 32 bits.
963		 */
964		if (index >= (1ul << n->bits)) {
965			n = NULL;
966			break;
967		}
968
969		/* keep searching until we find a perfect match leaf or NULL */
970	} while (IS_TNODE(n));
971
972	*tp = pn;
973
974	return n;
975}
976
977/* Return the first fib alias matching DSCP with
978 * priority less than or equal to PRIO.
979 * If 'find_first' is set, return the first matching
980 * fib alias, regardless of DSCP and priority.
981 */
982static struct fib_alias *fib_find_alias(struct hlist_head *fah, u8 slen,
983					dscp_t dscp, u32 prio, u32 tb_id,
984					bool find_first)
985{
986	struct fib_alias *fa;
987
988	if (!fah)
989		return NULL;
990
991	hlist_for_each_entry(fa, fah, fa_list) {
992		/* Avoid Sparse warning when using dscp_t in inequalities */
993		u8 __fa_dscp = inet_dscp_to_dsfield(fa->fa_dscp);
994		u8 __dscp = inet_dscp_to_dsfield(dscp);
995
996		if (fa->fa_slen < slen)
997			continue;
998		if (fa->fa_slen != slen)
999			break;
1000		if (fa->tb_id > tb_id)
1001			continue;
1002		if (fa->tb_id != tb_id)
1003			break;
1004		if (find_first)
1005			return fa;
1006		if (__fa_dscp > __dscp)
1007			continue;
1008		if (fa->fa_info->fib_priority >= prio || __fa_dscp < __dscp)
1009			return fa;
1010	}
1011
1012	return NULL;
1013}
1014
1015static struct fib_alias *
1016fib_find_matching_alias(struct net *net, const struct fib_rt_info *fri)
1017{
1018	u8 slen = KEYLENGTH - fri->dst_len;
1019	struct key_vector *l, *tp;
1020	struct fib_table *tb;
1021	struct fib_alias *fa;
1022	struct trie *t;
1023
1024	tb = fib_get_table(net, fri->tb_id);
1025	if (!tb)
1026		return NULL;
1027
1028	t = (struct trie *)tb->tb_data;
1029	l = fib_find_node(t, &tp, be32_to_cpu(fri->dst));
1030	if (!l)
1031		return NULL;
1032
1033	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
1034		if (fa->fa_slen == slen && fa->tb_id == fri->tb_id &&
1035		    fa->fa_dscp == fri->dscp && fa->fa_info == fri->fi &&
1036		    fa->fa_type == fri->type)
1037			return fa;
1038	}
1039
1040	return NULL;
1041}
1042
1043void fib_alias_hw_flags_set(struct net *net, const struct fib_rt_info *fri)
1044{
1045	u8 fib_notify_on_flag_change;
1046	struct fib_alias *fa_match;
1047	struct sk_buff *skb;
1048	int err;
1049
1050	rcu_read_lock();
1051
1052	fa_match = fib_find_matching_alias(net, fri);
1053	if (!fa_match)
1054		goto out;
1055
1056	/* These are paired with the WRITE_ONCE() happening in this function.
1057	 * The reason is that we are only protected by RCU at this point.
1058	 */
1059	if (READ_ONCE(fa_match->offload) == fri->offload &&
1060	    READ_ONCE(fa_match->trap) == fri->trap &&
1061	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1062		goto out;
1063
1064	WRITE_ONCE(fa_match->offload, fri->offload);
1065	WRITE_ONCE(fa_match->trap, fri->trap);
1066
1067	fib_notify_on_flag_change = READ_ONCE(net->ipv4.sysctl_fib_notify_on_flag_change);
1068
1069	/* 2 means send notifications only if offload_failed was changed. */
1070	if (fib_notify_on_flag_change == 2 &&
1071	    READ_ONCE(fa_match->offload_failed) == fri->offload_failed)
1072		goto out;
1073
1074	WRITE_ONCE(fa_match->offload_failed, fri->offload_failed);
1075
1076	if (!fib_notify_on_flag_change)
1077		goto out;
1078
1079	skb = nlmsg_new(fib_nlmsg_size(fa_match->fa_info), GFP_ATOMIC);
1080	if (!skb) {
1081		err = -ENOBUFS;
1082		goto errout;
1083	}
1084
1085	err = fib_dump_info(skb, 0, 0, RTM_NEWROUTE, fri, 0);
1086	if (err < 0) {
1087		/* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1088		WARN_ON(err == -EMSGSIZE);
1089		kfree_skb(skb);
1090		goto errout;
1091	}
1092
1093	rtnl_notify(skb, net, 0, RTNLGRP_IPV4_ROUTE, NULL, GFP_ATOMIC);
1094	goto out;
1095
1096errout:
1097	rtnl_set_sk_err(net, RTNLGRP_IPV4_ROUTE, err);
1098out:
1099	rcu_read_unlock();
1100}
1101EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set);
1102
1103static void trie_rebalance(struct trie *t, struct key_vector *tn)
1104{
1105	while (!IS_TRIE(tn))
1106		tn = resize(t, tn);
1107}
1108
1109static int fib_insert_node(struct trie *t, struct key_vector *tp,
1110			   struct fib_alias *new, t_key key)
1111{
1112	struct key_vector *n, *l;
1113
1114	l = leaf_new(key, new);
1115	if (!l)
1116		goto noleaf;
1117
1118	/* retrieve child from parent node */
1119	n = get_child(tp, get_index(key, tp));
1120
1121	/* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1122	 *
1123	 *  Add a new tnode here
1124	 *  first tnode need some special handling
1125	 *  leaves us in position for handling as case 3
1126	 */
1127	if (n) {
1128		struct key_vector *tn;
1129
1130		tn = tnode_new(key, __fls(key ^ n->key), 1);
1131		if (!tn)
1132			goto notnode;
1133
1134		/* initialize routes out of node */
1135		NODE_INIT_PARENT(tn, tp);
1136		put_child(tn, get_index(key, tn) ^ 1, n);
1137
1138		/* start adding routes into the node */
1139		put_child_root(tp, key, tn);
1140		node_set_parent(n, tn);
1141
1142		/* parent now has a NULL spot where the leaf can go */
1143		tp = tn;
1144	}
1145
1146	/* Case 3: n is NULL, and will just insert a new leaf */
1147	node_push_suffix(tp, new->fa_slen);
1148	NODE_INIT_PARENT(l, tp);
1149	put_child_root(tp, key, l);
1150	trie_rebalance(t, tp);
1151
1152	return 0;
1153notnode:
1154	node_free(l);
1155noleaf:
1156	return -ENOMEM;
1157}
1158
1159static int fib_insert_alias(struct trie *t, struct key_vector *tp,
1160			    struct key_vector *l, struct fib_alias *new,
1161			    struct fib_alias *fa, t_key key)
1162{
1163	if (!l)
1164		return fib_insert_node(t, tp, new, key);
1165
1166	if (fa) {
1167		hlist_add_before_rcu(&new->fa_list, &fa->fa_list);
1168	} else {
1169		struct fib_alias *last;
1170
1171		hlist_for_each_entry(last, &l->leaf, fa_list) {
1172			if (new->fa_slen < last->fa_slen)
1173				break;
1174			if ((new->fa_slen == last->fa_slen) &&
1175			    (new->tb_id > last->tb_id))
1176				break;
1177			fa = last;
1178		}
1179
1180		if (fa)
1181			hlist_add_behind_rcu(&new->fa_list, &fa->fa_list);
1182		else
1183			hlist_add_head_rcu(&new->fa_list, &l->leaf);
1184	}
1185
1186	/* if we added to the tail node then we need to update slen */
1187	if (l->slen < new->fa_slen) {
1188		l->slen = new->fa_slen;
1189		node_push_suffix(tp, new->fa_slen);
1190	}
1191
1192	return 0;
1193}
1194
1195static bool fib_valid_key_len(u32 key, u8 plen, struct netlink_ext_ack *extack)
1196{
1197	if (plen > KEYLENGTH) {
1198		NL_SET_ERR_MSG(extack, "Invalid prefix length");
1199		return false;
1200	}
1201
1202	if ((plen < KEYLENGTH) && (key << plen)) {
1203		NL_SET_ERR_MSG(extack,
1204			       "Invalid prefix for given prefix length");
1205		return false;
1206	}
1207
1208	return true;
1209}
1210
1211static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1212			     struct key_vector *l, struct fib_alias *old);
1213
1214/* Caller must hold RTNL. */
1215int fib_table_insert(struct net *net, struct fib_table *tb,
1216		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1217{
1218	struct trie *t = (struct trie *)tb->tb_data;
1219	struct fib_alias *fa, *new_fa;
1220	struct key_vector *l, *tp;
1221	u16 nlflags = NLM_F_EXCL;
1222	struct fib_info *fi;
1223	u8 plen = cfg->fc_dst_len;
1224	u8 slen = KEYLENGTH - plen;
1225	dscp_t dscp;
1226	u32 key;
1227	int err;
1228
1229	key = ntohl(cfg->fc_dst);
1230
1231	if (!fib_valid_key_len(key, plen, extack))
1232		return -EINVAL;
1233
1234	pr_debug("Insert table=%u %08x/%d\n", tb->tb_id, key, plen);
1235
1236	fi = fib_create_info(cfg, extack);
1237	if (IS_ERR(fi)) {
1238		err = PTR_ERR(fi);
1239		goto err;
1240	}
1241
1242	dscp = cfg->fc_dscp;
1243	l = fib_find_node(t, &tp, key);
1244	fa = l ? fib_find_alias(&l->leaf, slen, dscp, fi->fib_priority,
1245				tb->tb_id, false) : NULL;
1246
1247	/* Now fa, if non-NULL, points to the first fib alias
1248	 * with the same keys [prefix,dscp,priority], if such key already
1249	 * exists or to the node before which we will insert new one.
1250	 *
1251	 * If fa is NULL, we will need to allocate a new one and
1252	 * insert to the tail of the section matching the suffix length
1253	 * of the new alias.
1254	 */
1255
1256	if (fa && fa->fa_dscp == dscp &&
1257	    fa->fa_info->fib_priority == fi->fib_priority) {
1258		struct fib_alias *fa_first, *fa_match;
1259
1260		err = -EEXIST;
1261		if (cfg->fc_nlflags & NLM_F_EXCL)
1262			goto out;
1263
1264		nlflags &= ~NLM_F_EXCL;
1265
1266		/* We have 2 goals:
1267		 * 1. Find exact match for type, scope, fib_info to avoid
1268		 * duplicate routes
1269		 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1270		 */
1271		fa_match = NULL;
1272		fa_first = fa;
1273		hlist_for_each_entry_from(fa, fa_list) {
1274			if ((fa->fa_slen != slen) ||
1275			    (fa->tb_id != tb->tb_id) ||
1276			    (fa->fa_dscp != dscp))
1277				break;
1278			if (fa->fa_info->fib_priority != fi->fib_priority)
1279				break;
1280			if (fa->fa_type == cfg->fc_type &&
1281			    fa->fa_info == fi) {
1282				fa_match = fa;
1283				break;
1284			}
1285		}
1286
1287		if (cfg->fc_nlflags & NLM_F_REPLACE) {
1288			struct fib_info *fi_drop;
1289			u8 state;
1290
1291			nlflags |= NLM_F_REPLACE;
1292			fa = fa_first;
1293			if (fa_match) {
1294				if (fa == fa_match)
1295					err = 0;
1296				goto out;
1297			}
1298			err = -ENOBUFS;
1299			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1300			if (!new_fa)
1301				goto out;
1302
1303			fi_drop = fa->fa_info;
1304			new_fa->fa_dscp = fa->fa_dscp;
1305			new_fa->fa_info = fi;
1306			new_fa->fa_type = cfg->fc_type;
1307			state = fa->fa_state;
1308			new_fa->fa_state = state & ~FA_S_ACCESSED;
1309			new_fa->fa_slen = fa->fa_slen;
1310			new_fa->tb_id = tb->tb_id;
1311			new_fa->fa_default = -1;
1312			new_fa->offload = 0;
1313			new_fa->trap = 0;
1314			new_fa->offload_failed = 0;
1315
1316			hlist_replace_rcu(&fa->fa_list, &new_fa->fa_list);
1317
1318			if (fib_find_alias(&l->leaf, fa->fa_slen, 0, 0,
1319					   tb->tb_id, true) == new_fa) {
1320				enum fib_event_type fib_event;
1321
1322				fib_event = FIB_EVENT_ENTRY_REPLACE;
1323				err = call_fib_entry_notifiers(net, fib_event,
1324							       key, plen,
1325							       new_fa, extack);
1326				if (err) {
1327					hlist_replace_rcu(&new_fa->fa_list,
1328							  &fa->fa_list);
1329					goto out_free_new_fa;
1330				}
1331			}
1332
1333			rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen,
1334				  tb->tb_id, &cfg->fc_nlinfo, nlflags);
1335
1336			alias_free_mem_rcu(fa);
1337
1338			fib_release_info(fi_drop);
1339			if (state & FA_S_ACCESSED)
1340				rt_cache_flush(cfg->fc_nlinfo.nl_net);
1341
1342			goto succeeded;
1343		}
1344		/* Error if we find a perfect match which
1345		 * uses the same scope, type, and nexthop
1346		 * information.
1347		 */
1348		if (fa_match)
1349			goto out;
1350
1351		if (cfg->fc_nlflags & NLM_F_APPEND)
1352			nlflags |= NLM_F_APPEND;
1353		else
1354			fa = fa_first;
1355	}
1356	err = -ENOENT;
1357	if (!(cfg->fc_nlflags & NLM_F_CREATE))
1358		goto out;
1359
1360	nlflags |= NLM_F_CREATE;
1361	err = -ENOBUFS;
1362	new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1363	if (!new_fa)
1364		goto out;
1365
1366	new_fa->fa_info = fi;
1367	new_fa->fa_dscp = dscp;
1368	new_fa->fa_type = cfg->fc_type;
1369	new_fa->fa_state = 0;
1370	new_fa->fa_slen = slen;
1371	new_fa->tb_id = tb->tb_id;
1372	new_fa->fa_default = -1;
1373	new_fa->offload = 0;
1374	new_fa->trap = 0;
1375	new_fa->offload_failed = 0;
1376
1377	/* Insert new entry to the list. */
1378	err = fib_insert_alias(t, tp, l, new_fa, fa, key);
1379	if (err)
1380		goto out_free_new_fa;
1381
1382	/* The alias was already inserted, so the node must exist. */
1383	l = l ? l : fib_find_node(t, &tp, key);
1384	if (WARN_ON_ONCE(!l)) {
1385		err = -ENOENT;
1386		goto out_free_new_fa;
1387	}
1388
1389	if (fib_find_alias(&l->leaf, new_fa->fa_slen, 0, 0, tb->tb_id, true) ==
1390	    new_fa) {
1391		enum fib_event_type fib_event;
1392
1393		fib_event = FIB_EVENT_ENTRY_REPLACE;
1394		err = call_fib_entry_notifiers(net, fib_event, key, plen,
1395					       new_fa, extack);
1396		if (err)
1397			goto out_remove_new_fa;
1398	}
1399
1400	if (!plen)
1401		tb->tb_num_default++;
1402
1403	rt_cache_flush(cfg->fc_nlinfo.nl_net);
1404	rtmsg_fib(RTM_NEWROUTE, htonl(key), new_fa, plen, new_fa->tb_id,
1405		  &cfg->fc_nlinfo, nlflags);
1406succeeded:
1407	return 0;
1408
1409out_remove_new_fa:
1410	fib_remove_alias(t, tp, l, new_fa);
1411out_free_new_fa:
1412	kmem_cache_free(fn_alias_kmem, new_fa);
1413out:
1414	fib_release_info(fi);
1415err:
1416	return err;
1417}
1418
1419static inline t_key prefix_mismatch(t_key key, struct key_vector *n)
1420{
1421	t_key prefix = n->key;
1422
1423	return (key ^ prefix) & (prefix | -prefix);
1424}
1425
1426bool fib_lookup_good_nhc(const struct fib_nh_common *nhc, int fib_flags,
1427			 const struct flowi4 *flp)
1428{
1429	if (nhc->nhc_flags & RTNH_F_DEAD)
1430		return false;
1431
1432	if (ip_ignore_linkdown(nhc->nhc_dev) &&
1433	    nhc->nhc_flags & RTNH_F_LINKDOWN &&
1434	    !(fib_flags & FIB_LOOKUP_IGNORE_LINKSTATE))
1435		return false;
1436
1437	if (flp->flowi4_oif && flp->flowi4_oif != nhc->nhc_oif)
1438		return false;
1439
1440	return true;
1441}
1442
1443/* should be called with rcu_read_lock */
1444int fib_table_lookup(struct fib_table *tb, const struct flowi4 *flp,
1445		     struct fib_result *res, int fib_flags)
1446{
1447	struct trie *t = (struct trie *) tb->tb_data;
1448#ifdef CONFIG_IP_FIB_TRIE_STATS
1449	struct trie_use_stats __percpu *stats = t->stats;
1450#endif
1451	const t_key key = ntohl(flp->daddr);
1452	struct key_vector *n, *pn;
1453	struct fib_alias *fa;
1454	unsigned long index;
1455	t_key cindex;
1456
1457	pn = t->kv;
1458	cindex = 0;
1459
1460	n = get_child_rcu(pn, cindex);
1461	if (!n) {
1462		trace_fib_table_lookup(tb->tb_id, flp, NULL, -EAGAIN);
1463		return -EAGAIN;
1464	}
1465
1466#ifdef CONFIG_IP_FIB_TRIE_STATS
1467	this_cpu_inc(stats->gets);
1468#endif
1469
1470	/* Step 1: Travel to the longest prefix match in the trie */
1471	for (;;) {
1472		index = get_cindex(key, n);
1473
1474		/* This bit of code is a bit tricky but it combines multiple
1475		 * checks into a single check.  The prefix consists of the
1476		 * prefix plus zeros for the "bits" in the prefix. The index
1477		 * is the difference between the key and this value.  From
1478		 * this we can actually derive several pieces of data.
1479		 *   if (index >= (1ul << bits))
1480		 *     we have a mismatch in skip bits and failed
1481		 *   else
1482		 *     we know the value is cindex
1483		 *
1484		 * This check is safe even if bits == KEYLENGTH due to the
1485		 * fact that we can only allocate a node with 32 bits if a
1486		 * long is greater than 32 bits.
1487		 */
1488		if (index >= (1ul << n->bits))
1489			break;
1490
1491		/* we have found a leaf. Prefixes have already been compared */
1492		if (IS_LEAF(n))
1493			goto found;
1494
1495		/* only record pn and cindex if we are going to be chopping
1496		 * bits later.  Otherwise we are just wasting cycles.
1497		 */
1498		if (n->slen > n->pos) {
1499			pn = n;
1500			cindex = index;
1501		}
1502
1503		n = get_child_rcu(n, index);
1504		if (unlikely(!n))
1505			goto backtrace;
1506	}
1507
1508	/* Step 2: Sort out leaves and begin backtracing for longest prefix */
1509	for (;;) {
1510		/* record the pointer where our next node pointer is stored */
1511		struct key_vector __rcu **cptr = n->tnode;
1512
1513		/* This test verifies that none of the bits that differ
1514		 * between the key and the prefix exist in the region of
1515		 * the lsb and higher in the prefix.
1516		 */
1517		if (unlikely(prefix_mismatch(key, n)) || (n->slen == n->pos))
1518			goto backtrace;
1519
1520		/* exit out and process leaf */
1521		if (unlikely(IS_LEAF(n)))
1522			break;
1523
1524		/* Don't bother recording parent info.  Since we are in
1525		 * prefix match mode we will have to come back to wherever
1526		 * we started this traversal anyway
1527		 */
1528
1529		while ((n = rcu_dereference(*cptr)) == NULL) {
1530backtrace:
1531#ifdef CONFIG_IP_FIB_TRIE_STATS
1532			if (!n)
1533				this_cpu_inc(stats->null_node_hit);
1534#endif
1535			/* If we are at cindex 0 there are no more bits for
1536			 * us to strip at this level so we must ascend back
1537			 * up one level to see if there are any more bits to
1538			 * be stripped there.
1539			 */
1540			while (!cindex) {
1541				t_key pkey = pn->key;
1542
1543				/* If we don't have a parent then there is
1544				 * nothing for us to do as we do not have any
1545				 * further nodes to parse.
1546				 */
1547				if (IS_TRIE(pn)) {
1548					trace_fib_table_lookup(tb->tb_id, flp,
1549							       NULL, -EAGAIN);
1550					return -EAGAIN;
1551				}
1552#ifdef CONFIG_IP_FIB_TRIE_STATS
1553				this_cpu_inc(stats->backtrack);
1554#endif
1555				/* Get Child's index */
1556				pn = node_parent_rcu(pn);
1557				cindex = get_index(pkey, pn);
1558			}
1559
1560			/* strip the least significant bit from the cindex */
1561			cindex &= cindex - 1;
1562
1563			/* grab pointer for next child node */
1564			cptr = &pn->tnode[cindex];
1565		}
1566	}
1567
1568found:
1569	/* this line carries forward the xor from earlier in the function */
1570	index = key ^ n->key;
1571
1572	/* Step 3: Process the leaf, if that fails fall back to backtracing */
1573	hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
1574		struct fib_info *fi = fa->fa_info;
1575		struct fib_nh_common *nhc;
1576		int nhsel, err;
1577
1578		if ((BITS_PER_LONG > KEYLENGTH) || (fa->fa_slen < KEYLENGTH)) {
1579			if (index >= (1ul << fa->fa_slen))
1580				continue;
1581		}
1582		if (fa->fa_dscp &&
1583		    inet_dscp_to_dsfield(fa->fa_dscp) != flp->flowi4_tos)
1584			continue;
1585		/* Paired with WRITE_ONCE() in fib_release_info() */
1586		if (READ_ONCE(fi->fib_dead))
1587			continue;
1588		if (fa->fa_info->fib_scope < flp->flowi4_scope)
1589			continue;
1590		fib_alias_accessed(fa);
1591		err = fib_props[fa->fa_type].error;
1592		if (unlikely(err < 0)) {
1593out_reject:
1594#ifdef CONFIG_IP_FIB_TRIE_STATS
1595			this_cpu_inc(stats->semantic_match_passed);
1596#endif
1597			trace_fib_table_lookup(tb->tb_id, flp, NULL, err);
1598			return err;
1599		}
1600		if (fi->fib_flags & RTNH_F_DEAD)
1601			continue;
1602
1603		if (unlikely(fi->nh)) {
1604			if (nexthop_is_blackhole(fi->nh)) {
1605				err = fib_props[RTN_BLACKHOLE].error;
1606				goto out_reject;
1607			}
1608
1609			nhc = nexthop_get_nhc_lookup(fi->nh, fib_flags, flp,
1610						     &nhsel);
1611			if (nhc)
1612				goto set_result;
1613			goto miss;
1614		}
1615
1616		for (nhsel = 0; nhsel < fib_info_num_path(fi); nhsel++) {
1617			nhc = fib_info_nhc(fi, nhsel);
1618
1619			if (!fib_lookup_good_nhc(nhc, fib_flags, flp))
1620				continue;
1621set_result:
1622			if (!(fib_flags & FIB_LOOKUP_NOREF))
1623				refcount_inc(&fi->fib_clntref);
1624
1625			res->prefix = htonl(n->key);
1626			res->prefixlen = KEYLENGTH - fa->fa_slen;
1627			res->nh_sel = nhsel;
1628			res->nhc = nhc;
1629			res->type = fa->fa_type;
1630			res->scope = fi->fib_scope;
1631			res->fi = fi;
1632			res->table = tb;
1633			res->fa_head = &n->leaf;
1634#ifdef CONFIG_IP_FIB_TRIE_STATS
1635			this_cpu_inc(stats->semantic_match_passed);
1636#endif
1637			trace_fib_table_lookup(tb->tb_id, flp, nhc, err);
1638
1639			return err;
1640		}
1641	}
1642miss:
1643#ifdef CONFIG_IP_FIB_TRIE_STATS
1644	this_cpu_inc(stats->semantic_match_miss);
1645#endif
1646	goto backtrace;
1647}
1648EXPORT_SYMBOL_GPL(fib_table_lookup);
1649
1650static void fib_remove_alias(struct trie *t, struct key_vector *tp,
1651			     struct key_vector *l, struct fib_alias *old)
1652{
1653	/* record the location of the previous list_info entry */
1654	struct hlist_node **pprev = old->fa_list.pprev;
1655	struct fib_alias *fa = hlist_entry(pprev, typeof(*fa), fa_list.next);
1656
1657	/* remove the fib_alias from the list */
1658	hlist_del_rcu(&old->fa_list);
1659
1660	/* if we emptied the list this leaf will be freed and we can sort
1661	 * out parent suffix lengths as a part of trie_rebalance
1662	 */
1663	if (hlist_empty(&l->leaf)) {
1664		if (tp->slen == l->slen)
1665			node_pull_suffix(tp, tp->pos);
1666		put_child_root(tp, l->key, NULL);
1667		node_free(l);
1668		trie_rebalance(t, tp);
1669		return;
1670	}
1671
1672	/* only access fa if it is pointing at the last valid hlist_node */
1673	if (*pprev)
1674		return;
1675
1676	/* update the trie with the latest suffix length */
1677	l->slen = fa->fa_slen;
1678	node_pull_suffix(tp, fa->fa_slen);
1679}
1680
1681static void fib_notify_alias_delete(struct net *net, u32 key,
1682				    struct hlist_head *fah,
1683				    struct fib_alias *fa_to_delete,
1684				    struct netlink_ext_ack *extack)
1685{
1686	struct fib_alias *fa_next, *fa_to_notify;
1687	u32 tb_id = fa_to_delete->tb_id;
1688	u8 slen = fa_to_delete->fa_slen;
1689	enum fib_event_type fib_event;
1690
1691	/* Do not notify if we do not care about the route. */
1692	if (fib_find_alias(fah, slen, 0, 0, tb_id, true) != fa_to_delete)
1693		return;
1694
1695	/* Determine if the route should be replaced by the next route in the
1696	 * list.
1697	 */
1698	fa_next = hlist_entry_safe(fa_to_delete->fa_list.next,
1699				   struct fib_alias, fa_list);
1700	if (fa_next && fa_next->fa_slen == slen && fa_next->tb_id == tb_id) {
1701		fib_event = FIB_EVENT_ENTRY_REPLACE;
1702		fa_to_notify = fa_next;
1703	} else {
1704		fib_event = FIB_EVENT_ENTRY_DEL;
1705		fa_to_notify = fa_to_delete;
1706	}
1707	call_fib_entry_notifiers(net, fib_event, key, KEYLENGTH - slen,
1708				 fa_to_notify, extack);
1709}
1710
1711/* Caller must hold RTNL. */
1712int fib_table_delete(struct net *net, struct fib_table *tb,
1713		     struct fib_config *cfg, struct netlink_ext_ack *extack)
1714{
1715	struct trie *t = (struct trie *) tb->tb_data;
1716	struct fib_alias *fa, *fa_to_delete;
1717	struct key_vector *l, *tp;
1718	u8 plen = cfg->fc_dst_len;
1719	u8 slen = KEYLENGTH - plen;
1720	dscp_t dscp;
1721	u32 key;
1722
1723	key = ntohl(cfg->fc_dst);
1724
1725	if (!fib_valid_key_len(key, plen, extack))
1726		return -EINVAL;
1727
1728	l = fib_find_node(t, &tp, key);
1729	if (!l)
1730		return -ESRCH;
1731
1732	dscp = cfg->fc_dscp;
1733	fa = fib_find_alias(&l->leaf, slen, dscp, 0, tb->tb_id, false);
1734	if (!fa)
1735		return -ESRCH;
1736
1737	pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key, plen,
1738		 inet_dscp_to_dsfield(dscp), t);
1739
1740	fa_to_delete = NULL;
1741	hlist_for_each_entry_from(fa, fa_list) {
1742		struct fib_info *fi = fa->fa_info;
1743
1744		if ((fa->fa_slen != slen) ||
1745		    (fa->tb_id != tb->tb_id) ||
1746		    (fa->fa_dscp != dscp))
1747			break;
1748
1749		if ((!cfg->fc_type || fa->fa_type == cfg->fc_type) &&
1750		    (cfg->fc_scope == RT_SCOPE_NOWHERE ||
1751		     fa->fa_info->fib_scope == cfg->fc_scope) &&
1752		    (!cfg->fc_prefsrc ||
1753		     fi->fib_prefsrc == cfg->fc_prefsrc) &&
1754		    (!cfg->fc_protocol ||
1755		     fi->fib_protocol == cfg->fc_protocol) &&
1756		    fib_nh_match(net, cfg, fi, extack) == 0 &&
1757		    fib_metrics_match(cfg, fi)) {
1758			fa_to_delete = fa;
1759			break;
1760		}
1761	}
1762
1763	if (!fa_to_delete)
1764		return -ESRCH;
1765
1766	fib_notify_alias_delete(net, key, &l->leaf, fa_to_delete, extack);
1767	rtmsg_fib(RTM_DELROUTE, htonl(key), fa_to_delete, plen, tb->tb_id,
1768		  &cfg->fc_nlinfo, 0);
1769
1770	if (!plen)
1771		tb->tb_num_default--;
1772
1773	fib_remove_alias(t, tp, l, fa_to_delete);
1774
1775	if (fa_to_delete->fa_state & FA_S_ACCESSED)
1776		rt_cache_flush(cfg->fc_nlinfo.nl_net);
1777
1778	fib_release_info(fa_to_delete->fa_info);
1779	alias_free_mem_rcu(fa_to_delete);
1780	return 0;
1781}
1782
1783/* Scan for the next leaf starting at the provided key value */
1784static struct key_vector *leaf_walk_rcu(struct key_vector **tn, t_key key)
1785{
1786	struct key_vector *pn, *n = *tn;
1787	unsigned long cindex;
1788
1789	/* this loop is meant to try and find the key in the trie */
1790	do {
1791		/* record parent and next child index */
1792		pn = n;
1793		cindex = (key > pn->key) ? get_index(key, pn) : 0;
1794
1795		if (cindex >> pn->bits)
1796			break;
1797
1798		/* descend into the next child */
1799		n = get_child_rcu(pn, cindex++);
1800		if (!n)
1801			break;
1802
1803		/* guarantee forward progress on the keys */
1804		if (IS_LEAF(n) && (n->key >= key))
1805			goto found;
1806	} while (IS_TNODE(n));
1807
1808	/* this loop will search for the next leaf with a greater key */
1809	while (!IS_TRIE(pn)) {
1810		/* if we exhausted the parent node we will need to climb */
1811		if (cindex >= (1ul << pn->bits)) {
1812			t_key pkey = pn->key;
1813
1814			pn = node_parent_rcu(pn);
1815			cindex = get_index(pkey, pn) + 1;
1816			continue;
1817		}
1818
1819		/* grab the next available node */
1820		n = get_child_rcu(pn, cindex++);
1821		if (!n)
1822			continue;
1823
1824		/* no need to compare keys since we bumped the index */
1825		if (IS_LEAF(n))
1826			goto found;
1827
1828		/* Rescan start scanning in new node */
1829		pn = n;
1830		cindex = 0;
1831	}
1832
1833	*tn = pn;
1834	return NULL; /* Root of trie */
1835found:
1836	/* if we are at the limit for keys just return NULL for the tnode */
1837	*tn = pn;
1838	return n;
1839}
1840
1841static void fib_trie_free(struct fib_table *tb)
1842{
1843	struct trie *t = (struct trie *)tb->tb_data;
1844	struct key_vector *pn = t->kv;
1845	unsigned long cindex = 1;
1846	struct hlist_node *tmp;
1847	struct fib_alias *fa;
1848
1849	/* walk trie in reverse order and free everything */
1850	for (;;) {
1851		struct key_vector *n;
1852
1853		if (!(cindex--)) {
1854			t_key pkey = pn->key;
1855
1856			if (IS_TRIE(pn))
1857				break;
1858
1859			n = pn;
1860			pn = node_parent(pn);
1861
1862			/* drop emptied tnode */
1863			put_child_root(pn, n->key, NULL);
1864			node_free(n);
1865
1866			cindex = get_index(pkey, pn);
1867
1868			continue;
1869		}
1870
1871		/* grab the next available node */
1872		n = get_child(pn, cindex);
1873		if (!n)
1874			continue;
1875
1876		if (IS_TNODE(n)) {
1877			/* record pn and cindex for leaf walking */
1878			pn = n;
1879			cindex = 1ul << n->bits;
1880
1881			continue;
1882		}
1883
1884		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
1885			hlist_del_rcu(&fa->fa_list);
1886			alias_free_mem_rcu(fa);
1887		}
1888
1889		put_child_root(pn, n->key, NULL);
1890		node_free(n);
1891	}
1892
1893#ifdef CONFIG_IP_FIB_TRIE_STATS
1894	free_percpu(t->stats);
1895#endif
1896	kfree(tb);
1897}
1898
1899struct fib_table *fib_trie_unmerge(struct fib_table *oldtb)
1900{
1901	struct trie *ot = (struct trie *)oldtb->tb_data;
1902	struct key_vector *l, *tp = ot->kv;
1903	struct fib_table *local_tb;
1904	struct fib_alias *fa;
1905	struct trie *lt;
1906	t_key key = 0;
1907
1908	if (oldtb->tb_data == oldtb->__data)
1909		return oldtb;
1910
1911	local_tb = fib_trie_table(RT_TABLE_LOCAL, NULL);
1912	if (!local_tb)
1913		return NULL;
1914
1915	lt = (struct trie *)local_tb->tb_data;
1916
1917	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
1918		struct key_vector *local_l = NULL, *local_tp;
1919
1920		hlist_for_each_entry(fa, &l->leaf, fa_list) {
1921			struct fib_alias *new_fa;
1922
1923			if (local_tb->tb_id != fa->tb_id)
1924				continue;
1925
1926			/* clone fa for new local table */
1927			new_fa = kmem_cache_alloc(fn_alias_kmem, GFP_KERNEL);
1928			if (!new_fa)
1929				goto out;
1930
1931			memcpy(new_fa, fa, sizeof(*fa));
1932
1933			/* insert clone into table */
1934			if (!local_l)
1935				local_l = fib_find_node(lt, &local_tp, l->key);
1936
1937			if (fib_insert_alias(lt, local_tp, local_l, new_fa,
1938					     NULL, l->key)) {
1939				kmem_cache_free(fn_alias_kmem, new_fa);
1940				goto out;
1941			}
1942		}
1943
1944		/* stop loop if key wrapped back to 0 */
1945		key = l->key + 1;
1946		if (key < l->key)
1947			break;
1948	}
1949
1950	return local_tb;
1951out:
1952	fib_trie_free(local_tb);
1953
1954	return NULL;
1955}
1956
1957/* Caller must hold RTNL */
1958void fib_table_flush_external(struct fib_table *tb)
1959{
1960	struct trie *t = (struct trie *)tb->tb_data;
1961	struct key_vector *pn = t->kv;
1962	unsigned long cindex = 1;
1963	struct hlist_node *tmp;
1964	struct fib_alias *fa;
1965
1966	/* walk trie in reverse order */
1967	for (;;) {
1968		unsigned char slen = 0;
1969		struct key_vector *n;
1970
1971		if (!(cindex--)) {
1972			t_key pkey = pn->key;
1973
1974			/* cannot resize the trie vector */
1975			if (IS_TRIE(pn))
1976				break;
1977
1978			/* update the suffix to address pulled leaves */
1979			if (pn->slen > pn->pos)
1980				update_suffix(pn);
1981
1982			/* resize completed node */
1983			pn = resize(t, pn);
1984			cindex = get_index(pkey, pn);
1985
1986			continue;
1987		}
1988
1989		/* grab the next available node */
1990		n = get_child(pn, cindex);
1991		if (!n)
1992			continue;
1993
1994		if (IS_TNODE(n)) {
1995			/* record pn and cindex for leaf walking */
1996			pn = n;
1997			cindex = 1ul << n->bits;
1998
1999			continue;
2000		}
2001
2002		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2003			/* if alias was cloned to local then we just
2004			 * need to remove the local copy from main
2005			 */
2006			if (tb->tb_id != fa->tb_id) {
2007				hlist_del_rcu(&fa->fa_list);
2008				alias_free_mem_rcu(fa);
2009				continue;
2010			}
2011
2012			/* record local slen */
2013			slen = fa->fa_slen;
2014		}
2015
2016		/* update leaf slen */
2017		n->slen = slen;
2018
2019		if (hlist_empty(&n->leaf)) {
2020			put_child_root(pn, n->key, NULL);
2021			node_free(n);
2022		}
2023	}
2024}
2025
2026/* Caller must hold RTNL. */
2027int fib_table_flush(struct net *net, struct fib_table *tb, bool flush_all)
2028{
2029	struct trie *t = (struct trie *)tb->tb_data;
2030	struct nl_info info = { .nl_net = net };
2031	struct key_vector *pn = t->kv;
2032	unsigned long cindex = 1;
2033	struct hlist_node *tmp;
2034	struct fib_alias *fa;
2035	int found = 0;
2036
2037	/* walk trie in reverse order */
2038	for (;;) {
2039		unsigned char slen = 0;
2040		struct key_vector *n;
2041
2042		if (!(cindex--)) {
2043			t_key pkey = pn->key;
2044
2045			/* cannot resize the trie vector */
2046			if (IS_TRIE(pn))
2047				break;
2048
2049			/* update the suffix to address pulled leaves */
2050			if (pn->slen > pn->pos)
2051				update_suffix(pn);
2052
2053			/* resize completed node */
2054			pn = resize(t, pn);
2055			cindex = get_index(pkey, pn);
2056
2057			continue;
2058		}
2059
2060		/* grab the next available node */
2061		n = get_child(pn, cindex);
2062		if (!n)
2063			continue;
2064
2065		if (IS_TNODE(n)) {
2066			/* record pn and cindex for leaf walking */
2067			pn = n;
2068			cindex = 1ul << n->bits;
2069
2070			continue;
2071		}
2072
2073		hlist_for_each_entry_safe(fa, tmp, &n->leaf, fa_list) {
2074			struct fib_info *fi = fa->fa_info;
2075
2076			if (!fi || tb->tb_id != fa->tb_id ||
2077			    (!(fi->fib_flags & RTNH_F_DEAD) &&
2078			     !fib_props[fa->fa_type].error)) {
2079				slen = fa->fa_slen;
2080				continue;
2081			}
2082
2083			/* Do not flush error routes if network namespace is
2084			 * not being dismantled
2085			 */
2086			if (!flush_all && fib_props[fa->fa_type].error) {
2087				slen = fa->fa_slen;
2088				continue;
2089			}
2090
2091			fib_notify_alias_delete(net, n->key, &n->leaf, fa,
2092						NULL);
2093			if (fi->pfsrc_removed)
2094				rtmsg_fib(RTM_DELROUTE, htonl(n->key), fa,
2095					  KEYLENGTH - fa->fa_slen, tb->tb_id, &info, 0);
2096			hlist_del_rcu(&fa->fa_list);
2097			fib_release_info(fa->fa_info);
2098			alias_free_mem_rcu(fa);
2099			found++;
2100		}
2101
2102		/* update leaf slen */
2103		n->slen = slen;
2104
2105		if (hlist_empty(&n->leaf)) {
2106			put_child_root(pn, n->key, NULL);
2107			node_free(n);
2108		}
2109	}
2110
2111	pr_debug("trie_flush found=%d\n", found);
2112	return found;
2113}
2114
2115/* derived from fib_trie_free */
2116static void __fib_info_notify_update(struct net *net, struct fib_table *tb,
2117				     struct nl_info *info)
2118{
2119	struct trie *t = (struct trie *)tb->tb_data;
2120	struct key_vector *pn = t->kv;
2121	unsigned long cindex = 1;
2122	struct fib_alias *fa;
2123
2124	for (;;) {
2125		struct key_vector *n;
2126
2127		if (!(cindex--)) {
2128			t_key pkey = pn->key;
2129
2130			if (IS_TRIE(pn))
2131				break;
2132
2133			pn = node_parent(pn);
2134			cindex = get_index(pkey, pn);
2135			continue;
2136		}
2137
2138		/* grab the next available node */
2139		n = get_child(pn, cindex);
2140		if (!n)
2141			continue;
2142
2143		if (IS_TNODE(n)) {
2144			/* record pn and cindex for leaf walking */
2145			pn = n;
2146			cindex = 1ul << n->bits;
2147
2148			continue;
2149		}
2150
2151		hlist_for_each_entry(fa, &n->leaf, fa_list) {
2152			struct fib_info *fi = fa->fa_info;
2153
2154			if (!fi || !fi->nh_updated || fa->tb_id != tb->tb_id)
2155				continue;
2156
2157			rtmsg_fib(RTM_NEWROUTE, htonl(n->key), fa,
2158				  KEYLENGTH - fa->fa_slen, tb->tb_id,
2159				  info, NLM_F_REPLACE);
2160		}
2161	}
2162}
2163
2164void fib_info_notify_update(struct net *net, struct nl_info *info)
2165{
2166	unsigned int h;
2167
2168	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2169		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2170		struct fib_table *tb;
2171
2172		hlist_for_each_entry_rcu(tb, head, tb_hlist,
2173					 lockdep_rtnl_is_held())
2174			__fib_info_notify_update(net, tb, info);
2175	}
2176}
2177
2178static int fib_leaf_notify(struct key_vector *l, struct fib_table *tb,
2179			   struct notifier_block *nb,
2180			   struct netlink_ext_ack *extack)
2181{
2182	struct fib_alias *fa;
2183	int last_slen = -1;
2184	int err;
2185
2186	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2187		struct fib_info *fi = fa->fa_info;
2188
2189		if (!fi)
2190			continue;
2191
2192		/* local and main table can share the same trie,
2193		 * so don't notify twice for the same entry.
2194		 */
2195		if (tb->tb_id != fa->tb_id)
2196			continue;
2197
2198		if (fa->fa_slen == last_slen)
2199			continue;
2200
2201		last_slen = fa->fa_slen;
2202		err = call_fib_entry_notifier(nb, FIB_EVENT_ENTRY_REPLACE,
2203					      l->key, KEYLENGTH - fa->fa_slen,
2204					      fa, extack);
2205		if (err)
2206			return err;
2207	}
2208	return 0;
2209}
2210
2211static int fib_table_notify(struct fib_table *tb, struct notifier_block *nb,
2212			    struct netlink_ext_ack *extack)
2213{
2214	struct trie *t = (struct trie *)tb->tb_data;
2215	struct key_vector *l, *tp = t->kv;
2216	t_key key = 0;
2217	int err;
2218
2219	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2220		err = fib_leaf_notify(l, tb, nb, extack);
2221		if (err)
2222			return err;
2223
2224		key = l->key + 1;
2225		/* stop in case of wrap around */
2226		if (key < l->key)
2227			break;
2228	}
2229	return 0;
2230}
2231
2232int fib_notify(struct net *net, struct notifier_block *nb,
2233	       struct netlink_ext_ack *extack)
2234{
2235	unsigned int h;
2236	int err;
2237
2238	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2239		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2240		struct fib_table *tb;
2241
2242		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2243			err = fib_table_notify(tb, nb, extack);
2244			if (err)
2245				return err;
2246		}
2247	}
2248	return 0;
2249}
2250
2251static void __trie_free_rcu(struct rcu_head *head)
2252{
2253	struct fib_table *tb = container_of(head, struct fib_table, rcu);
2254#ifdef CONFIG_IP_FIB_TRIE_STATS
2255	struct trie *t = (struct trie *)tb->tb_data;
2256
2257	if (tb->tb_data == tb->__data)
2258		free_percpu(t->stats);
2259#endif /* CONFIG_IP_FIB_TRIE_STATS */
2260	kfree(tb);
2261}
2262
2263void fib_free_table(struct fib_table *tb)
2264{
2265	call_rcu(&tb->rcu, __trie_free_rcu);
2266}
2267
2268static int fn_trie_dump_leaf(struct key_vector *l, struct fib_table *tb,
2269			     struct sk_buff *skb, struct netlink_callback *cb,
2270			     struct fib_dump_filter *filter)
2271{
2272	unsigned int flags = NLM_F_MULTI;
2273	__be32 xkey = htonl(l->key);
2274	int i, s_i, i_fa, s_fa, err;
2275	struct fib_alias *fa;
2276
2277	if (filter->filter_set ||
2278	    !filter->dump_exceptions || !filter->dump_routes)
2279		flags |= NLM_F_DUMP_FILTERED;
2280
2281	s_i = cb->args[4];
2282	s_fa = cb->args[5];
2283	i = 0;
2284
2285	/* rcu_read_lock is hold by caller */
2286	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2287		struct fib_info *fi = fa->fa_info;
2288
2289		if (i < s_i)
2290			goto next;
2291
2292		i_fa = 0;
2293
2294		if (tb->tb_id != fa->tb_id)
2295			goto next;
2296
2297		if (filter->filter_set) {
2298			if (filter->rt_type && fa->fa_type != filter->rt_type)
2299				goto next;
2300
2301			if ((filter->protocol &&
2302			     fi->fib_protocol != filter->protocol))
2303				goto next;
2304
2305			if (filter->dev &&
2306			    !fib_info_nh_uses_dev(fi, filter->dev))
2307				goto next;
2308		}
2309
2310		if (filter->dump_routes) {
2311			if (!s_fa) {
2312				struct fib_rt_info fri;
2313
2314				fri.fi = fi;
2315				fri.tb_id = tb->tb_id;
2316				fri.dst = xkey;
2317				fri.dst_len = KEYLENGTH - fa->fa_slen;
2318				fri.dscp = fa->fa_dscp;
2319				fri.type = fa->fa_type;
2320				fri.offload = READ_ONCE(fa->offload);
2321				fri.trap = READ_ONCE(fa->trap);
2322				fri.offload_failed = READ_ONCE(fa->offload_failed);
2323				err = fib_dump_info(skb,
2324						    NETLINK_CB(cb->skb).portid,
2325						    cb->nlh->nlmsg_seq,
2326						    RTM_NEWROUTE, &fri, flags);
2327				if (err < 0)
2328					goto stop;
2329			}
2330
2331			i_fa++;
2332		}
2333
2334		if (filter->dump_exceptions) {
2335			err = fib_dump_info_fnhe(skb, cb, tb->tb_id, fi,
2336						 &i_fa, s_fa, flags);
2337			if (err < 0)
2338				goto stop;
2339		}
2340
2341next:
2342		i++;
2343	}
2344
2345	cb->args[4] = i;
2346	return skb->len;
2347
2348stop:
2349	cb->args[4] = i;
2350	cb->args[5] = i_fa;
2351	return err;
2352}
2353
2354/* rcu_read_lock needs to be hold by caller from readside */
2355int fib_table_dump(struct fib_table *tb, struct sk_buff *skb,
2356		   struct netlink_callback *cb, struct fib_dump_filter *filter)
2357{
2358	struct trie *t = (struct trie *)tb->tb_data;
2359	struct key_vector *l, *tp = t->kv;
2360	/* Dump starting at last key.
2361	 * Note: 0.0.0.0/0 (ie default) is first key.
2362	 */
2363	int count = cb->args[2];
2364	t_key key = cb->args[3];
2365
2366	/* First time here, count and key are both always 0. Count > 0
2367	 * and key == 0 means the dump has wrapped around and we are done.
2368	 */
2369	if (count && !key)
2370		return skb->len;
2371
2372	while ((l = leaf_walk_rcu(&tp, key)) != NULL) {
2373		int err;
2374
2375		err = fn_trie_dump_leaf(l, tb, skb, cb, filter);
2376		if (err < 0) {
2377			cb->args[3] = key;
2378			cb->args[2] = count;
2379			return err;
2380		}
2381
2382		++count;
2383		key = l->key + 1;
2384
2385		memset(&cb->args[4], 0,
2386		       sizeof(cb->args) - 4*sizeof(cb->args[0]));
2387
2388		/* stop loop if key wrapped back to 0 */
2389		if (key < l->key)
2390			break;
2391	}
2392
2393	cb->args[3] = key;
2394	cb->args[2] = count;
2395
2396	return skb->len;
2397}
2398
2399void __init fib_trie_init(void)
2400{
2401	fn_alias_kmem = kmem_cache_create("ip_fib_alias",
2402					  sizeof(struct fib_alias),
2403					  0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2404
2405	trie_leaf_kmem = kmem_cache_create("ip_fib_trie",
2406					   LEAF_SIZE,
2407					   0, SLAB_PANIC | SLAB_ACCOUNT, NULL);
2408}
2409
2410struct fib_table *fib_trie_table(u32 id, struct fib_table *alias)
2411{
2412	struct fib_table *tb;
2413	struct trie *t;
2414	size_t sz = sizeof(*tb);
2415
2416	if (!alias)
2417		sz += sizeof(struct trie);
2418
2419	tb = kzalloc(sz, GFP_KERNEL);
2420	if (!tb)
2421		return NULL;
2422
2423	tb->tb_id = id;
2424	tb->tb_num_default = 0;
2425	tb->tb_data = (alias ? alias->__data : tb->__data);
2426
2427	if (alias)
2428		return tb;
2429
2430	t = (struct trie *) tb->tb_data;
2431	t->kv[0].pos = KEYLENGTH;
2432	t->kv[0].slen = KEYLENGTH;
2433#ifdef CONFIG_IP_FIB_TRIE_STATS
2434	t->stats = alloc_percpu(struct trie_use_stats);
2435	if (!t->stats) {
2436		kfree(tb);
2437		tb = NULL;
2438	}
2439#endif
2440
2441	return tb;
2442}
2443
2444#ifdef CONFIG_PROC_FS
2445/* Depth first Trie walk iterator */
2446struct fib_trie_iter {
2447	struct seq_net_private p;
2448	struct fib_table *tb;
2449	struct key_vector *tnode;
2450	unsigned int index;
2451	unsigned int depth;
2452};
2453
2454static struct key_vector *fib_trie_get_next(struct fib_trie_iter *iter)
2455{
2456	unsigned long cindex = iter->index;
2457	struct key_vector *pn = iter->tnode;
2458	t_key pkey;
2459
2460	pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2461		 iter->tnode, iter->index, iter->depth);
2462
2463	while (!IS_TRIE(pn)) {
2464		while (cindex < child_length(pn)) {
2465			struct key_vector *n = get_child_rcu(pn, cindex++);
2466
2467			if (!n)
2468				continue;
2469
2470			if (IS_LEAF(n)) {
2471				iter->tnode = pn;
2472				iter->index = cindex;
2473			} else {
2474				/* push down one level */
2475				iter->tnode = n;
2476				iter->index = 0;
2477				++iter->depth;
2478			}
2479
2480			return n;
2481		}
2482
2483		/* Current node exhausted, pop back up */
2484		pkey = pn->key;
2485		pn = node_parent_rcu(pn);
2486		cindex = get_index(pkey, pn) + 1;
2487		--iter->depth;
2488	}
2489
2490	/* record root node so further searches know we are done */
2491	iter->tnode = pn;
2492	iter->index = 0;
2493
2494	return NULL;
2495}
2496
2497static struct key_vector *fib_trie_get_first(struct fib_trie_iter *iter,
2498					     struct trie *t)
2499{
2500	struct key_vector *n, *pn;
2501
2502	if (!t)
2503		return NULL;
2504
2505	pn = t->kv;
2506	n = rcu_dereference(pn->tnode[0]);
2507	if (!n)
2508		return NULL;
2509
2510	if (IS_TNODE(n)) {
2511		iter->tnode = n;
2512		iter->index = 0;
2513		iter->depth = 1;
2514	} else {
2515		iter->tnode = pn;
2516		iter->index = 0;
2517		iter->depth = 0;
2518	}
2519
2520	return n;
2521}
2522
2523static void trie_collect_stats(struct trie *t, struct trie_stat *s)
2524{
2525	struct key_vector *n;
2526	struct fib_trie_iter iter;
2527
2528	memset(s, 0, sizeof(*s));
2529
2530	rcu_read_lock();
2531	for (n = fib_trie_get_first(&iter, t); n; n = fib_trie_get_next(&iter)) {
2532		if (IS_LEAF(n)) {
2533			struct fib_alias *fa;
2534
2535			s->leaves++;
2536			s->totdepth += iter.depth;
2537			if (iter.depth > s->maxdepth)
2538				s->maxdepth = iter.depth;
2539
2540			hlist_for_each_entry_rcu(fa, &n->leaf, fa_list)
2541				++s->prefixes;
2542		} else {
2543			s->tnodes++;
2544			if (n->bits < MAX_STAT_DEPTH)
2545				s->nodesizes[n->bits]++;
2546			s->nullpointers += tn_info(n)->empty_children;
2547		}
2548	}
2549	rcu_read_unlock();
2550}
2551
2552/*
2553 *	This outputs /proc/net/fib_triestats
2554 */
2555static void trie_show_stats(struct seq_file *seq, struct trie_stat *stat)
2556{
2557	unsigned int i, max, pointers, bytes, avdepth;
2558
2559	if (stat->leaves)
2560		avdepth = stat->totdepth*100 / stat->leaves;
2561	else
2562		avdepth = 0;
2563
2564	seq_printf(seq, "\tAver depth:     %u.%02d\n",
2565		   avdepth / 100, avdepth % 100);
2566	seq_printf(seq, "\tMax depth:      %u\n", stat->maxdepth);
2567
2568	seq_printf(seq, "\tLeaves:         %u\n", stat->leaves);
2569	bytes = LEAF_SIZE * stat->leaves;
2570
2571	seq_printf(seq, "\tPrefixes:       %u\n", stat->prefixes);
2572	bytes += sizeof(struct fib_alias) * stat->prefixes;
2573
2574	seq_printf(seq, "\tInternal nodes: %u\n\t", stat->tnodes);
2575	bytes += TNODE_SIZE(0) * stat->tnodes;
2576
2577	max = MAX_STAT_DEPTH;
2578	while (max > 0 && stat->nodesizes[max-1] == 0)
2579		max--;
2580
2581	pointers = 0;
2582	for (i = 1; i < max; i++)
2583		if (stat->nodesizes[i] != 0) {
2584			seq_printf(seq, "  %u: %u",  i, stat->nodesizes[i]);
2585			pointers += (1<<i) * stat->nodesizes[i];
2586		}
2587	seq_putc(seq, '\n');
2588	seq_printf(seq, "\tPointers: %u\n", pointers);
2589
2590	bytes += sizeof(struct key_vector *) * pointers;
2591	seq_printf(seq, "Null ptrs: %u\n", stat->nullpointers);
2592	seq_printf(seq, "Total size: %u  kB\n", (bytes + 1023) / 1024);
2593}
2594
2595#ifdef CONFIG_IP_FIB_TRIE_STATS
2596static void trie_show_usage(struct seq_file *seq,
2597			    const struct trie_use_stats __percpu *stats)
2598{
2599	struct trie_use_stats s = { 0 };
2600	int cpu;
2601
2602	/* loop through all of the CPUs and gather up the stats */
2603	for_each_possible_cpu(cpu) {
2604		const struct trie_use_stats *pcpu = per_cpu_ptr(stats, cpu);
2605
2606		s.gets += pcpu->gets;
2607		s.backtrack += pcpu->backtrack;
2608		s.semantic_match_passed += pcpu->semantic_match_passed;
2609		s.semantic_match_miss += pcpu->semantic_match_miss;
2610		s.null_node_hit += pcpu->null_node_hit;
2611		s.resize_node_skipped += pcpu->resize_node_skipped;
2612	}
2613
2614	seq_printf(seq, "\nCounters:\n---------\n");
2615	seq_printf(seq, "gets = %u\n", s.gets);
2616	seq_printf(seq, "backtracks = %u\n", s.backtrack);
2617	seq_printf(seq, "semantic match passed = %u\n",
2618		   s.semantic_match_passed);
2619	seq_printf(seq, "semantic match miss = %u\n", s.semantic_match_miss);
2620	seq_printf(seq, "null node hit= %u\n", s.null_node_hit);
2621	seq_printf(seq, "skipped node resize = %u\n\n", s.resize_node_skipped);
2622}
2623#endif /*  CONFIG_IP_FIB_TRIE_STATS */
2624
2625static void fib_table_print(struct seq_file *seq, struct fib_table *tb)
2626{
2627	if (tb->tb_id == RT_TABLE_LOCAL)
2628		seq_puts(seq, "Local:\n");
2629	else if (tb->tb_id == RT_TABLE_MAIN)
2630		seq_puts(seq, "Main:\n");
2631	else
2632		seq_printf(seq, "Id %d:\n", tb->tb_id);
2633}
2634
2635
2636static int fib_triestat_seq_show(struct seq_file *seq, void *v)
2637{
2638	struct net *net = seq->private;
2639	unsigned int h;
2640
2641	seq_printf(seq,
2642		   "Basic info: size of leaf:"
2643		   " %zd bytes, size of tnode: %zd bytes.\n",
2644		   LEAF_SIZE, TNODE_SIZE(0));
2645
2646	rcu_read_lock();
2647	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2648		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2649		struct fib_table *tb;
2650
2651		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2652			struct trie *t = (struct trie *) tb->tb_data;
2653			struct trie_stat stat;
2654
2655			if (!t)
2656				continue;
2657
2658			fib_table_print(seq, tb);
2659
2660			trie_collect_stats(t, &stat);
2661			trie_show_stats(seq, &stat);
2662#ifdef CONFIG_IP_FIB_TRIE_STATS
2663			trie_show_usage(seq, t->stats);
2664#endif
2665		}
2666		cond_resched_rcu();
2667	}
2668	rcu_read_unlock();
2669
2670	return 0;
2671}
2672
2673static struct key_vector *fib_trie_get_idx(struct seq_file *seq, loff_t pos)
2674{
2675	struct fib_trie_iter *iter = seq->private;
2676	struct net *net = seq_file_net(seq);
2677	loff_t idx = 0;
2678	unsigned int h;
2679
2680	for (h = 0; h < FIB_TABLE_HASHSZ; h++) {
2681		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2682		struct fib_table *tb;
2683
2684		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2685			struct key_vector *n;
2686
2687			for (n = fib_trie_get_first(iter,
2688						    (struct trie *) tb->tb_data);
2689			     n; n = fib_trie_get_next(iter))
2690				if (pos == idx++) {
2691					iter->tb = tb;
2692					return n;
2693				}
2694		}
2695	}
2696
2697	return NULL;
2698}
2699
2700static void *fib_trie_seq_start(struct seq_file *seq, loff_t *pos)
2701	__acquires(RCU)
2702{
2703	rcu_read_lock();
2704	return fib_trie_get_idx(seq, *pos);
2705}
2706
2707static void *fib_trie_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2708{
2709	struct fib_trie_iter *iter = seq->private;
2710	struct net *net = seq_file_net(seq);
2711	struct fib_table *tb = iter->tb;
2712	struct hlist_node *tb_node;
2713	unsigned int h;
2714	struct key_vector *n;
2715
2716	++*pos;
2717	/* next node in same table */
2718	n = fib_trie_get_next(iter);
2719	if (n)
2720		return n;
2721
2722	/* walk rest of this hash chain */
2723	h = tb->tb_id & (FIB_TABLE_HASHSZ - 1);
2724	while ((tb_node = rcu_dereference(hlist_next_rcu(&tb->tb_hlist)))) {
2725		tb = hlist_entry(tb_node, struct fib_table, tb_hlist);
2726		n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2727		if (n)
2728			goto found;
2729	}
2730
2731	/* new hash chain */
2732	while (++h < FIB_TABLE_HASHSZ) {
2733		struct hlist_head *head = &net->ipv4.fib_table_hash[h];
2734		hlist_for_each_entry_rcu(tb, head, tb_hlist) {
2735			n = fib_trie_get_first(iter, (struct trie *) tb->tb_data);
2736			if (n)
2737				goto found;
2738		}
2739	}
2740	return NULL;
2741
2742found:
2743	iter->tb = tb;
2744	return n;
2745}
2746
2747static void fib_trie_seq_stop(struct seq_file *seq, void *v)
2748	__releases(RCU)
2749{
2750	rcu_read_unlock();
2751}
2752
2753static void seq_indent(struct seq_file *seq, int n)
2754{
2755	while (n-- > 0)
2756		seq_puts(seq, "   ");
2757}
2758
2759static inline const char *rtn_scope(char *buf, size_t len, enum rt_scope_t s)
2760{
2761	switch (s) {
2762	case RT_SCOPE_UNIVERSE: return "universe";
2763	case RT_SCOPE_SITE:	return "site";
2764	case RT_SCOPE_LINK:	return "link";
2765	case RT_SCOPE_HOST:	return "host";
2766	case RT_SCOPE_NOWHERE:	return "nowhere";
2767	default:
2768		snprintf(buf, len, "scope=%d", s);
2769		return buf;
2770	}
2771}
2772
2773static const char *const rtn_type_names[__RTN_MAX] = {
2774	[RTN_UNSPEC] = "UNSPEC",
2775	[RTN_UNICAST] = "UNICAST",
2776	[RTN_LOCAL] = "LOCAL",
2777	[RTN_BROADCAST] = "BROADCAST",
2778	[RTN_ANYCAST] = "ANYCAST",
2779	[RTN_MULTICAST] = "MULTICAST",
2780	[RTN_BLACKHOLE] = "BLACKHOLE",
2781	[RTN_UNREACHABLE] = "UNREACHABLE",
2782	[RTN_PROHIBIT] = "PROHIBIT",
2783	[RTN_THROW] = "THROW",
2784	[RTN_NAT] = "NAT",
2785	[RTN_XRESOLVE] = "XRESOLVE",
2786};
2787
2788static inline const char *rtn_type(char *buf, size_t len, unsigned int t)
2789{
2790	if (t < __RTN_MAX && rtn_type_names[t])
2791		return rtn_type_names[t];
2792	snprintf(buf, len, "type %u", t);
2793	return buf;
2794}
2795
2796/* Pretty print the trie */
2797static int fib_trie_seq_show(struct seq_file *seq, void *v)
2798{
2799	const struct fib_trie_iter *iter = seq->private;
2800	struct key_vector *n = v;
2801
2802	if (IS_TRIE(node_parent_rcu(n)))
2803		fib_table_print(seq, iter->tb);
2804
2805	if (IS_TNODE(n)) {
2806		__be32 prf = htonl(n->key);
2807
2808		seq_indent(seq, iter->depth-1);
2809		seq_printf(seq, "  +-- %pI4/%zu %u %u %u\n",
2810			   &prf, KEYLENGTH - n->pos - n->bits, n->bits,
2811			   tn_info(n)->full_children,
2812			   tn_info(n)->empty_children);
2813	} else {
2814		__be32 val = htonl(n->key);
2815		struct fib_alias *fa;
2816
2817		seq_indent(seq, iter->depth);
2818		seq_printf(seq, "  |-- %pI4\n", &val);
2819
2820		hlist_for_each_entry_rcu(fa, &n->leaf, fa_list) {
2821			char buf1[32], buf2[32];
2822
2823			seq_indent(seq, iter->depth + 1);
2824			seq_printf(seq, "  /%zu %s %s",
2825				   KEYLENGTH - fa->fa_slen,
2826				   rtn_scope(buf1, sizeof(buf1),
2827					     fa->fa_info->fib_scope),
2828				   rtn_type(buf2, sizeof(buf2),
2829					    fa->fa_type));
2830			if (fa->fa_dscp)
2831				seq_printf(seq, " tos=%d",
2832					   inet_dscp_to_dsfield(fa->fa_dscp));
2833			seq_putc(seq, '\n');
2834		}
2835	}
2836
2837	return 0;
2838}
2839
2840static const struct seq_operations fib_trie_seq_ops = {
2841	.start  = fib_trie_seq_start,
2842	.next   = fib_trie_seq_next,
2843	.stop   = fib_trie_seq_stop,
2844	.show   = fib_trie_seq_show,
2845};
2846
2847struct fib_route_iter {
2848	struct seq_net_private p;
2849	struct fib_table *main_tb;
2850	struct key_vector *tnode;
2851	loff_t	pos;
2852	t_key	key;
2853};
2854
2855static struct key_vector *fib_route_get_idx(struct fib_route_iter *iter,
2856					    loff_t pos)
2857{
2858	struct key_vector *l, **tp = &iter->tnode;
2859	t_key key;
2860
2861	/* use cached location of previously found key */
2862	if (iter->pos > 0 && pos >= iter->pos) {
2863		key = iter->key;
2864	} else {
2865		iter->pos = 1;
2866		key = 0;
2867	}
2868
2869	pos -= iter->pos;
2870
2871	while ((l = leaf_walk_rcu(tp, key)) && (pos-- > 0)) {
2872		key = l->key + 1;
2873		iter->pos++;
2874		l = NULL;
2875
2876		/* handle unlikely case of a key wrap */
2877		if (!key)
2878			break;
2879	}
2880
2881	if (l)
2882		iter->key = l->key;	/* remember it */
2883	else
2884		iter->pos = 0;		/* forget it */
2885
2886	return l;
2887}
2888
2889static void *fib_route_seq_start(struct seq_file *seq, loff_t *pos)
2890	__acquires(RCU)
2891{
2892	struct fib_route_iter *iter = seq->private;
2893	struct fib_table *tb;
2894	struct trie *t;
2895
2896	rcu_read_lock();
2897
2898	tb = fib_get_table(seq_file_net(seq), RT_TABLE_MAIN);
2899	if (!tb)
2900		return NULL;
2901
2902	iter->main_tb = tb;
2903	t = (struct trie *)tb->tb_data;
2904	iter->tnode = t->kv;
2905
2906	if (*pos != 0)
2907		return fib_route_get_idx(iter, *pos);
2908
2909	iter->pos = 0;
2910	iter->key = KEY_MAX;
2911
2912	return SEQ_START_TOKEN;
2913}
2914
2915static void *fib_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2916{
2917	struct fib_route_iter *iter = seq->private;
2918	struct key_vector *l = NULL;
2919	t_key key = iter->key + 1;
2920
2921	++*pos;
2922
2923	/* only allow key of 0 for start of sequence */
2924	if ((v == SEQ_START_TOKEN) || key)
2925		l = leaf_walk_rcu(&iter->tnode, key);
2926
2927	if (l) {
2928		iter->key = l->key;
2929		iter->pos++;
2930	} else {
2931		iter->pos = 0;
2932	}
2933
2934	return l;
2935}
2936
2937static void fib_route_seq_stop(struct seq_file *seq, void *v)
2938	__releases(RCU)
2939{
2940	rcu_read_unlock();
2941}
2942
2943static unsigned int fib_flag_trans(int type, __be32 mask, struct fib_info *fi)
2944{
2945	unsigned int flags = 0;
2946
2947	if (type == RTN_UNREACHABLE || type == RTN_PROHIBIT)
2948		flags = RTF_REJECT;
2949	if (fi) {
2950		const struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
2951
2952		if (nhc->nhc_gw.ipv4)
2953			flags |= RTF_GATEWAY;
2954	}
2955	if (mask == htonl(0xFFFFFFFF))
2956		flags |= RTF_HOST;
2957	flags |= RTF_UP;
2958	return flags;
2959}
2960
2961/*
2962 *	This outputs /proc/net/route.
2963 *	The format of the file is not supposed to be changed
2964 *	and needs to be same as fib_hash output to avoid breaking
2965 *	legacy utilities
2966 */
2967static int fib_route_seq_show(struct seq_file *seq, void *v)
2968{
2969	struct fib_route_iter *iter = seq->private;
2970	struct fib_table *tb = iter->main_tb;
2971	struct fib_alias *fa;
2972	struct key_vector *l = v;
2973	__be32 prefix;
2974
2975	if (v == SEQ_START_TOKEN) {
2976		seq_printf(seq, "%-127s\n", "Iface\tDestination\tGateway "
2977			   "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2978			   "\tWindow\tIRTT");
2979		return 0;
2980	}
2981
2982	prefix = htonl(l->key);
2983
2984	hlist_for_each_entry_rcu(fa, &l->leaf, fa_list) {
2985		struct fib_info *fi = fa->fa_info;
2986		__be32 mask = inet_make_mask(KEYLENGTH - fa->fa_slen);
2987		unsigned int flags = fib_flag_trans(fa->fa_type, mask, fi);
2988
2989		if ((fa->fa_type == RTN_BROADCAST) ||
2990		    (fa->fa_type == RTN_MULTICAST))
2991			continue;
2992
2993		if (fa->tb_id != tb->tb_id)
2994			continue;
2995
2996		seq_setwidth(seq, 127);
2997
2998		if (fi) {
2999			struct fib_nh_common *nhc = fib_info_nhc(fi, 0);
3000			__be32 gw = 0;
3001
3002			if (nhc->nhc_gw_family == AF_INET)
3003				gw = nhc->nhc_gw.ipv4;
3004
3005			seq_printf(seq,
3006				   "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3007				   "%d\t%08X\t%d\t%u\t%u",
3008				   nhc->nhc_dev ? nhc->nhc_dev->name : "*",
3009				   prefix, gw, flags, 0, 0,
3010				   fi->fib_priority,
3011				   mask,
3012				   (fi->fib_advmss ?
3013				    fi->fib_advmss + 40 : 0),
3014				   fi->fib_window,
3015				   fi->fib_rtt >> 3);
3016		} else {
3017			seq_printf(seq,
3018				   "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3019				   "%d\t%08X\t%d\t%u\t%u",
3020				   prefix, 0, flags, 0, 0, 0,
3021				   mask, 0, 0, 0);
3022		}
3023		seq_pad(seq, '\n');
3024	}
3025
3026	return 0;
3027}
3028
3029static const struct seq_operations fib_route_seq_ops = {
3030	.start  = fib_route_seq_start,
3031	.next   = fib_route_seq_next,
3032	.stop   = fib_route_seq_stop,
3033	.show   = fib_route_seq_show,
3034};
3035
3036int __net_init fib_proc_init(struct net *net)
3037{
3038	if (!proc_create_net("fib_trie", 0444, net->proc_net, &fib_trie_seq_ops,
3039			sizeof(struct fib_trie_iter)))
3040		goto out1;
3041
3042	if (!proc_create_net_single("fib_triestat", 0444, net->proc_net,
3043			fib_triestat_seq_show, NULL))
3044		goto out2;
3045
3046	if (!proc_create_net("route", 0444, net->proc_net, &fib_route_seq_ops,
3047			sizeof(struct fib_route_iter)))
3048		goto out3;
3049
3050	return 0;
3051
3052out3:
3053	remove_proc_entry("fib_triestat", net->proc_net);
3054out2:
3055	remove_proc_entry("fib_trie", net->proc_net);
3056out1:
3057	return -ENOMEM;
3058}
3059
3060void __net_exit fib_proc_exit(struct net *net)
3061{
3062	remove_proc_entry("fib_trie", net->proc_net);
3063	remove_proc_entry("fib_triestat", net->proc_net);
3064	remove_proc_entry("route", net->proc_net);
3065}
3066
3067#endif /* CONFIG_PROC_FS */
3068