xref: /kernel/linux/linux-6.6/net/dsa/dsa.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10#include <linux/device.h>
11#include <linux/err.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/netdevice.h>
15#include <linux/slab.h>
16#include <linux/rtnetlink.h>
17#include <linux/of.h>
18#include <linux/of_mdio.h>
19#include <linux/of_net.h>
20#include <net/dsa_stubs.h>
21#include <net/sch_generic.h>
22
23#include "devlink.h"
24#include "dsa.h"
25#include "master.h"
26#include "netlink.h"
27#include "port.h"
28#include "slave.h"
29#include "switch.h"
30#include "tag.h"
31
32#define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
33
34static DEFINE_MUTEX(dsa2_mutex);
35LIST_HEAD(dsa_tree_list);
36
37static struct workqueue_struct *dsa_owq;
38
39/* Track the bridges with forwarding offload enabled */
40static unsigned long dsa_fwd_offloading_bridges;
41
42bool dsa_schedule_work(struct work_struct *work)
43{
44	return queue_work(dsa_owq, work);
45}
46
47void dsa_flush_workqueue(void)
48{
49	flush_workqueue(dsa_owq);
50}
51EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52
53/**
54 * dsa_lag_map() - Map LAG structure to a linear LAG array
55 * @dst: Tree in which to record the mapping.
56 * @lag: LAG structure that is to be mapped to the tree's array.
57 *
58 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59 * two spaces. The size of the mapping space is determined by the
60 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61 * it unset if it is not needed, in which case these functions become
62 * no-ops.
63 */
64void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65{
66	unsigned int id;
67
68	for (id = 1; id <= dst->lags_len; id++) {
69		if (!dsa_lag_by_id(dst, id)) {
70			dst->lags[id - 1] = lag;
71			lag->id = id;
72			return;
73		}
74	}
75
76	/* No IDs left, which is OK. Some drivers do not need it. The
77	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78	 * returns an error for this device when joining the LAG. The
79	 * driver can then return -EOPNOTSUPP back to DSA, which will
80	 * fall back to a software LAG.
81	 */
82}
83
84/**
85 * dsa_lag_unmap() - Remove a LAG ID mapping
86 * @dst: Tree in which the mapping is recorded.
87 * @lag: LAG structure that was mapped.
88 *
89 * As there may be multiple users of the mapping, it is only removed
90 * if there are no other references to it.
91 */
92void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93{
94	unsigned int id;
95
96	dsa_lags_foreach_id(id, dst) {
97		if (dsa_lag_by_id(dst, id) == lag) {
98			dst->lags[id - 1] = NULL;
99			lag->id = 0;
100			break;
101		}
102	}
103}
104
105struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106				  const struct net_device *lag_dev)
107{
108	struct dsa_port *dp;
109
110	list_for_each_entry(dp, &dst->ports, list)
111		if (dsa_port_lag_dev_get(dp) == lag_dev)
112			return dp->lag;
113
114	return NULL;
115}
116
117struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118					const struct net_device *br)
119{
120	struct dsa_port *dp;
121
122	list_for_each_entry(dp, &dst->ports, list)
123		if (dsa_port_bridge_dev_get(dp) == br)
124			return dp->bridge;
125
126	return NULL;
127}
128
129static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130{
131	struct dsa_switch_tree *dst;
132
133	list_for_each_entry(dst, &dsa_tree_list, list) {
134		struct dsa_bridge *bridge;
135
136		bridge = dsa_tree_bridge_find(dst, bridge_dev);
137		if (bridge)
138			return bridge->num;
139	}
140
141	return 0;
142}
143
144unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145{
146	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147
148	/* Switches without FDB isolation support don't get unique
149	 * bridge numbering
150	 */
151	if (!max)
152		return 0;
153
154	if (!bridge_num) {
155		/* First port that requests FDB isolation or TX forwarding
156		 * offload for this bridge
157		 */
158		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159						DSA_MAX_NUM_OFFLOADING_BRIDGES,
160						1);
161		if (bridge_num >= max)
162			return 0;
163
164		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165	}
166
167	return bridge_num;
168}
169
170void dsa_bridge_num_put(const struct net_device *bridge_dev,
171			unsigned int bridge_num)
172{
173	/* Since we refcount bridges, we know that when we call this function
174	 * it is no longer in use, so we can just go ahead and remove it from
175	 * the bit mask.
176	 */
177	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178}
179
180struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181{
182	struct dsa_switch_tree *dst;
183	struct dsa_port *dp;
184
185	list_for_each_entry(dst, &dsa_tree_list, list) {
186		if (dst->index != tree_index)
187			continue;
188
189		list_for_each_entry(dp, &dst->ports, list) {
190			if (dp->ds->index != sw_index)
191				continue;
192
193			return dp->ds;
194		}
195	}
196
197	return NULL;
198}
199EXPORT_SYMBOL_GPL(dsa_switch_find);
200
201static struct dsa_switch_tree *dsa_tree_find(int index)
202{
203	struct dsa_switch_tree *dst;
204
205	list_for_each_entry(dst, &dsa_tree_list, list)
206		if (dst->index == index)
207			return dst;
208
209	return NULL;
210}
211
212static struct dsa_switch_tree *dsa_tree_alloc(int index)
213{
214	struct dsa_switch_tree *dst;
215
216	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217	if (!dst)
218		return NULL;
219
220	dst->index = index;
221
222	INIT_LIST_HEAD(&dst->rtable);
223
224	INIT_LIST_HEAD(&dst->ports);
225
226	INIT_LIST_HEAD(&dst->list);
227	list_add_tail(&dst->list, &dsa_tree_list);
228
229	kref_init(&dst->refcount);
230
231	return dst;
232}
233
234static void dsa_tree_free(struct dsa_switch_tree *dst)
235{
236	if (dst->tag_ops)
237		dsa_tag_driver_put(dst->tag_ops);
238	list_del(&dst->list);
239	kfree(dst);
240}
241
242static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243{
244	if (dst)
245		kref_get(&dst->refcount);
246
247	return dst;
248}
249
250static struct dsa_switch_tree *dsa_tree_touch(int index)
251{
252	struct dsa_switch_tree *dst;
253
254	dst = dsa_tree_find(index);
255	if (dst)
256		return dsa_tree_get(dst);
257	else
258		return dsa_tree_alloc(index);
259}
260
261static void dsa_tree_release(struct kref *ref)
262{
263	struct dsa_switch_tree *dst;
264
265	dst = container_of(ref, struct dsa_switch_tree, refcount);
266
267	dsa_tree_free(dst);
268}
269
270static void dsa_tree_put(struct dsa_switch_tree *dst)
271{
272	if (dst)
273		kref_put(&dst->refcount, dsa_tree_release);
274}
275
276static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277						   struct device_node *dn)
278{
279	struct dsa_port *dp;
280
281	list_for_each_entry(dp, &dst->ports, list)
282		if (dp->dn == dn)
283			return dp;
284
285	return NULL;
286}
287
288static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289				       struct dsa_port *link_dp)
290{
291	struct dsa_switch *ds = dp->ds;
292	struct dsa_switch_tree *dst;
293	struct dsa_link *dl;
294
295	dst = ds->dst;
296
297	list_for_each_entry(dl, &dst->rtable, list)
298		if (dl->dp == dp && dl->link_dp == link_dp)
299			return dl;
300
301	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302	if (!dl)
303		return NULL;
304
305	dl->dp = dp;
306	dl->link_dp = link_dp;
307
308	INIT_LIST_HEAD(&dl->list);
309	list_add_tail(&dl->list, &dst->rtable);
310
311	return dl;
312}
313
314static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315{
316	struct dsa_switch *ds = dp->ds;
317	struct dsa_switch_tree *dst = ds->dst;
318	struct device_node *dn = dp->dn;
319	struct of_phandle_iterator it;
320	struct dsa_port *link_dp;
321	struct dsa_link *dl;
322	int err;
323
324	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325		link_dp = dsa_tree_find_port_by_node(dst, it.node);
326		if (!link_dp) {
327			of_node_put(it.node);
328			return false;
329		}
330
331		dl = dsa_link_touch(dp, link_dp);
332		if (!dl) {
333			of_node_put(it.node);
334			return false;
335		}
336	}
337
338	return true;
339}
340
341static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342{
343	bool complete = true;
344	struct dsa_port *dp;
345
346	list_for_each_entry(dp, &dst->ports, list) {
347		if (dsa_port_is_dsa(dp)) {
348			complete = dsa_port_setup_routing_table(dp);
349			if (!complete)
350				break;
351		}
352	}
353
354	return complete;
355}
356
357static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358{
359	struct dsa_port *dp;
360
361	list_for_each_entry(dp, &dst->ports, list)
362		if (dsa_port_is_cpu(dp))
363			return dp;
364
365	return NULL;
366}
367
368struct net_device *dsa_tree_find_first_master(struct dsa_switch_tree *dst)
369{
370	struct device_node *ethernet;
371	struct net_device *master;
372	struct dsa_port *cpu_dp;
373
374	cpu_dp = dsa_tree_find_first_cpu(dst);
375	ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0);
376	master = of_find_net_device_by_node(ethernet);
377	of_node_put(ethernet);
378
379	return master;
380}
381
382/* Assign the default CPU port (the first one in the tree) to all ports of the
383 * fabric which don't already have one as part of their own switch.
384 */
385static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
386{
387	struct dsa_port *cpu_dp, *dp;
388
389	cpu_dp = dsa_tree_find_first_cpu(dst);
390	if (!cpu_dp) {
391		pr_err("DSA: tree %d has no CPU port\n", dst->index);
392		return -EINVAL;
393	}
394
395	list_for_each_entry(dp, &dst->ports, list) {
396		if (dp->cpu_dp)
397			continue;
398
399		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
400			dp->cpu_dp = cpu_dp;
401	}
402
403	return 0;
404}
405
406static struct dsa_port *
407dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
408{
409	struct dsa_port *cpu_dp;
410
411	if (!ds->ops->preferred_default_local_cpu_port)
412		return NULL;
413
414	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
415	if (!cpu_dp)
416		return NULL;
417
418	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
419		return NULL;
420
421	return cpu_dp;
422}
423
424/* Perform initial assignment of CPU ports to user ports and DSA links in the
425 * fabric, giving preference to CPU ports local to each switch. Default to
426 * using the first CPU port in the switch tree if the port does not have a CPU
427 * port local to this switch.
428 */
429static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
430{
431	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
432
433	list_for_each_entry(cpu_dp, &dst->ports, list) {
434		if (!dsa_port_is_cpu(cpu_dp))
435			continue;
436
437		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
438		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
439			continue;
440
441		/* Prefer a local CPU port */
442		dsa_switch_for_each_port(dp, cpu_dp->ds) {
443			/* Prefer the first local CPU port found */
444			if (dp->cpu_dp)
445				continue;
446
447			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
448				dp->cpu_dp = cpu_dp;
449		}
450	}
451
452	return dsa_tree_setup_default_cpu(dst);
453}
454
455static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
456{
457	struct dsa_port *dp;
458
459	list_for_each_entry(dp, &dst->ports, list)
460		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
461			dp->cpu_dp = NULL;
462}
463
464static int dsa_port_setup(struct dsa_port *dp)
465{
466	bool dsa_port_link_registered = false;
467	struct dsa_switch *ds = dp->ds;
468	bool dsa_port_enabled = false;
469	int err = 0;
470
471	if (dp->setup)
472		return 0;
473
474	err = dsa_port_devlink_setup(dp);
475	if (err)
476		return err;
477
478	switch (dp->type) {
479	case DSA_PORT_TYPE_UNUSED:
480		dsa_port_disable(dp);
481		break;
482	case DSA_PORT_TYPE_CPU:
483		if (dp->dn) {
484			err = dsa_shared_port_link_register_of(dp);
485			if (err)
486				break;
487			dsa_port_link_registered = true;
488		} else {
489			dev_warn(ds->dev,
490				 "skipping link registration for CPU port %d\n",
491				 dp->index);
492		}
493
494		err = dsa_port_enable(dp, NULL);
495		if (err)
496			break;
497		dsa_port_enabled = true;
498
499		break;
500	case DSA_PORT_TYPE_DSA:
501		if (dp->dn) {
502			err = dsa_shared_port_link_register_of(dp);
503			if (err)
504				break;
505			dsa_port_link_registered = true;
506		} else {
507			dev_warn(ds->dev,
508				 "skipping link registration for DSA port %d\n",
509				 dp->index);
510		}
511
512		err = dsa_port_enable(dp, NULL);
513		if (err)
514			break;
515		dsa_port_enabled = true;
516
517		break;
518	case DSA_PORT_TYPE_USER:
519		of_get_mac_address(dp->dn, dp->mac);
520		err = dsa_slave_create(dp);
521		break;
522	}
523
524	if (err && dsa_port_enabled)
525		dsa_port_disable(dp);
526	if (err && dsa_port_link_registered)
527		dsa_shared_port_link_unregister_of(dp);
528	if (err) {
529		dsa_port_devlink_teardown(dp);
530		return err;
531	}
532
533	dp->setup = true;
534
535	return 0;
536}
537
538static void dsa_port_teardown(struct dsa_port *dp)
539{
540	if (!dp->setup)
541		return;
542
543	switch (dp->type) {
544	case DSA_PORT_TYPE_UNUSED:
545		break;
546	case DSA_PORT_TYPE_CPU:
547		dsa_port_disable(dp);
548		if (dp->dn)
549			dsa_shared_port_link_unregister_of(dp);
550		break;
551	case DSA_PORT_TYPE_DSA:
552		dsa_port_disable(dp);
553		if (dp->dn)
554			dsa_shared_port_link_unregister_of(dp);
555		break;
556	case DSA_PORT_TYPE_USER:
557		if (dp->slave) {
558			dsa_slave_destroy(dp->slave);
559			dp->slave = NULL;
560		}
561		break;
562	}
563
564	dsa_port_devlink_teardown(dp);
565
566	dp->setup = false;
567}
568
569static int dsa_port_setup_as_unused(struct dsa_port *dp)
570{
571	dp->type = DSA_PORT_TYPE_UNUSED;
572	return dsa_port_setup(dp);
573}
574
575static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
576{
577	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
578	struct dsa_switch_tree *dst = ds->dst;
579	int err;
580
581	if (tag_ops->proto == dst->default_proto)
582		goto connect;
583
584	rtnl_lock();
585	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
586	rtnl_unlock();
587	if (err) {
588		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
589			tag_ops->name, ERR_PTR(err));
590		return err;
591	}
592
593connect:
594	if (tag_ops->connect) {
595		err = tag_ops->connect(ds);
596		if (err)
597			return err;
598	}
599
600	if (ds->ops->connect_tag_protocol) {
601		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
602		if (err) {
603			dev_err(ds->dev,
604				"Unable to connect to tag protocol \"%s\": %pe\n",
605				tag_ops->name, ERR_PTR(err));
606			goto disconnect;
607		}
608	}
609
610	return 0;
611
612disconnect:
613	if (tag_ops->disconnect)
614		tag_ops->disconnect(ds);
615
616	return err;
617}
618
619static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
620{
621	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
622
623	if (tag_ops->disconnect)
624		tag_ops->disconnect(ds);
625}
626
627static int dsa_switch_setup(struct dsa_switch *ds)
628{
629	struct device_node *dn;
630	int err;
631
632	if (ds->setup)
633		return 0;
634
635	/* Initialize ds->phys_mii_mask before registering the slave MDIO bus
636	 * driver and before ops->setup() has run, since the switch drivers and
637	 * the slave MDIO bus driver rely on these values for probing PHY
638	 * devices or not
639	 */
640	ds->phys_mii_mask |= dsa_user_ports(ds);
641
642	err = dsa_switch_devlink_alloc(ds);
643	if (err)
644		return err;
645
646	err = dsa_switch_register_notifier(ds);
647	if (err)
648		goto devlink_free;
649
650	ds->configure_vlan_while_not_filtering = true;
651
652	err = ds->ops->setup(ds);
653	if (err < 0)
654		goto unregister_notifier;
655
656	err = dsa_switch_setup_tag_protocol(ds);
657	if (err)
658		goto teardown;
659
660	if (!ds->slave_mii_bus && ds->ops->phy_read) {
661		ds->slave_mii_bus = mdiobus_alloc();
662		if (!ds->slave_mii_bus) {
663			err = -ENOMEM;
664			goto teardown;
665		}
666
667		dsa_slave_mii_bus_init(ds);
668
669		dn = of_get_child_by_name(ds->dev->of_node, "mdio");
670
671		err = of_mdiobus_register(ds->slave_mii_bus, dn);
672		of_node_put(dn);
673		if (err < 0)
674			goto free_slave_mii_bus;
675	}
676
677	dsa_switch_devlink_register(ds);
678
679	ds->setup = true;
680	return 0;
681
682free_slave_mii_bus:
683	if (ds->slave_mii_bus && ds->ops->phy_read)
684		mdiobus_free(ds->slave_mii_bus);
685teardown:
686	if (ds->ops->teardown)
687		ds->ops->teardown(ds);
688unregister_notifier:
689	dsa_switch_unregister_notifier(ds);
690devlink_free:
691	dsa_switch_devlink_free(ds);
692	return err;
693}
694
695static void dsa_switch_teardown(struct dsa_switch *ds)
696{
697	if (!ds->setup)
698		return;
699
700	dsa_switch_devlink_unregister(ds);
701
702	if (ds->slave_mii_bus && ds->ops->phy_read) {
703		mdiobus_unregister(ds->slave_mii_bus);
704		mdiobus_free(ds->slave_mii_bus);
705		ds->slave_mii_bus = NULL;
706	}
707
708	dsa_switch_teardown_tag_protocol(ds);
709
710	if (ds->ops->teardown)
711		ds->ops->teardown(ds);
712
713	dsa_switch_unregister_notifier(ds);
714
715	dsa_switch_devlink_free(ds);
716
717	ds->setup = false;
718}
719
720/* First tear down the non-shared, then the shared ports. This ensures that
721 * all work items scheduled by our switchdev handlers for user ports have
722 * completed before we destroy the refcounting kept on the shared ports.
723 */
724static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
725{
726	struct dsa_port *dp;
727
728	list_for_each_entry(dp, &dst->ports, list)
729		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
730			dsa_port_teardown(dp);
731
732	dsa_flush_workqueue();
733
734	list_for_each_entry(dp, &dst->ports, list)
735		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
736			dsa_port_teardown(dp);
737}
738
739static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
740{
741	struct dsa_port *dp;
742
743	list_for_each_entry(dp, &dst->ports, list)
744		dsa_switch_teardown(dp->ds);
745}
746
747/* Bring shared ports up first, then non-shared ports */
748static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
749{
750	struct dsa_port *dp;
751	int err = 0;
752
753	list_for_each_entry(dp, &dst->ports, list) {
754		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
755			err = dsa_port_setup(dp);
756			if (err)
757				goto teardown;
758		}
759	}
760
761	list_for_each_entry(dp, &dst->ports, list) {
762		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
763			err = dsa_port_setup(dp);
764			if (err) {
765				err = dsa_port_setup_as_unused(dp);
766				if (err)
767					goto teardown;
768			}
769		}
770	}
771
772	return 0;
773
774teardown:
775	dsa_tree_teardown_ports(dst);
776
777	return err;
778}
779
780static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
781{
782	struct dsa_port *dp;
783	int err = 0;
784
785	list_for_each_entry(dp, &dst->ports, list) {
786		err = dsa_switch_setup(dp->ds);
787		if (err) {
788			dsa_tree_teardown_switches(dst);
789			break;
790		}
791	}
792
793	return err;
794}
795
796static int dsa_tree_setup_master(struct dsa_switch_tree *dst)
797{
798	struct dsa_port *cpu_dp;
799	int err = 0;
800
801	rtnl_lock();
802
803	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
804		struct net_device *master = cpu_dp->master;
805		bool admin_up = (master->flags & IFF_UP) &&
806				!qdisc_tx_is_noop(master);
807
808		err = dsa_master_setup(master, cpu_dp);
809		if (err)
810			break;
811
812		/* Replay master state event */
813		dsa_tree_master_admin_state_change(dst, master, admin_up);
814		dsa_tree_master_oper_state_change(dst, master,
815						  netif_oper_up(master));
816	}
817
818	rtnl_unlock();
819
820	return err;
821}
822
823static void dsa_tree_teardown_master(struct dsa_switch_tree *dst)
824{
825	struct dsa_port *cpu_dp;
826
827	rtnl_lock();
828
829	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
830		struct net_device *master = cpu_dp->master;
831
832		/* Synthesizing an "admin down" state is sufficient for
833		 * the switches to get a notification if the master is
834		 * currently up and running.
835		 */
836		dsa_tree_master_admin_state_change(dst, master, false);
837
838		dsa_master_teardown(master);
839	}
840
841	rtnl_unlock();
842}
843
844static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
845{
846	unsigned int len = 0;
847	struct dsa_port *dp;
848
849	list_for_each_entry(dp, &dst->ports, list) {
850		if (dp->ds->num_lag_ids > len)
851			len = dp->ds->num_lag_ids;
852	}
853
854	if (!len)
855		return 0;
856
857	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
858	if (!dst->lags)
859		return -ENOMEM;
860
861	dst->lags_len = len;
862	return 0;
863}
864
865static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
866{
867	kfree(dst->lags);
868}
869
870static int dsa_tree_setup(struct dsa_switch_tree *dst)
871{
872	bool complete;
873	int err;
874
875	if (dst->setup) {
876		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
877		       dst->index);
878		return -EEXIST;
879	}
880
881	complete = dsa_tree_setup_routing_table(dst);
882	if (!complete)
883		return 0;
884
885	err = dsa_tree_setup_cpu_ports(dst);
886	if (err)
887		return err;
888
889	err = dsa_tree_setup_switches(dst);
890	if (err)
891		goto teardown_cpu_ports;
892
893	err = dsa_tree_setup_ports(dst);
894	if (err)
895		goto teardown_switches;
896
897	err = dsa_tree_setup_master(dst);
898	if (err)
899		goto teardown_ports;
900
901	err = dsa_tree_setup_lags(dst);
902	if (err)
903		goto teardown_master;
904
905	dst->setup = true;
906
907	pr_info("DSA: tree %d setup\n", dst->index);
908
909	return 0;
910
911teardown_master:
912	dsa_tree_teardown_master(dst);
913teardown_ports:
914	dsa_tree_teardown_ports(dst);
915teardown_switches:
916	dsa_tree_teardown_switches(dst);
917teardown_cpu_ports:
918	dsa_tree_teardown_cpu_ports(dst);
919
920	return err;
921}
922
923static void dsa_tree_teardown(struct dsa_switch_tree *dst)
924{
925	struct dsa_link *dl, *next;
926
927	if (!dst->setup)
928		return;
929
930	dsa_tree_teardown_lags(dst);
931
932	dsa_tree_teardown_master(dst);
933
934	dsa_tree_teardown_ports(dst);
935
936	dsa_tree_teardown_switches(dst);
937
938	dsa_tree_teardown_cpu_ports(dst);
939
940	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
941		list_del(&dl->list);
942		kfree(dl);
943	}
944
945	pr_info("DSA: tree %d torn down\n", dst->index);
946
947	dst->setup = false;
948}
949
950static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
951				   const struct dsa_device_ops *tag_ops)
952{
953	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
954	struct dsa_notifier_tag_proto_info info;
955	int err;
956
957	dst->tag_ops = tag_ops;
958
959	/* Notify the switches from this tree about the connection
960	 * to the new tagger
961	 */
962	info.tag_ops = tag_ops;
963	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
964	if (err && err != -EOPNOTSUPP)
965		goto out_disconnect;
966
967	/* Notify the old tagger about the disconnection from this tree */
968	info.tag_ops = old_tag_ops;
969	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
970
971	return 0;
972
973out_disconnect:
974	info.tag_ops = tag_ops;
975	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
976	dst->tag_ops = old_tag_ops;
977
978	return err;
979}
980
981/* Since the dsa/tagging sysfs device attribute is per master, the assumption
982 * is that all DSA switches within a tree share the same tagger, otherwise
983 * they would have formed disjoint trees (different "dsa,member" values).
984 */
985int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
986			      const struct dsa_device_ops *tag_ops,
987			      const struct dsa_device_ops *old_tag_ops)
988{
989	struct dsa_notifier_tag_proto_info info;
990	struct dsa_port *dp;
991	int err = -EBUSY;
992
993	if (!rtnl_trylock())
994		return restart_syscall();
995
996	/* At the moment we don't allow changing the tag protocol under
997	 * traffic. The rtnl_mutex also happens to serialize concurrent
998	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
999	 * restriction, there needs to be another mutex which serializes this.
1000	 */
1001	dsa_tree_for_each_user_port(dp, dst) {
1002		if (dsa_port_to_master(dp)->flags & IFF_UP)
1003			goto out_unlock;
1004
1005		if (dp->slave->flags & IFF_UP)
1006			goto out_unlock;
1007	}
1008
1009	/* Notify the tag protocol change */
1010	info.tag_ops = tag_ops;
1011	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1012	if (err)
1013		goto out_unwind_tagger;
1014
1015	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1016	if (err)
1017		goto out_unwind_tagger;
1018
1019	rtnl_unlock();
1020
1021	return 0;
1022
1023out_unwind_tagger:
1024	info.tag_ops = old_tag_ops;
1025	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1026out_unlock:
1027	rtnl_unlock();
1028	return err;
1029}
1030
1031static void dsa_tree_master_state_change(struct dsa_switch_tree *dst,
1032					 struct net_device *master)
1033{
1034	struct dsa_notifier_master_state_info info;
1035	struct dsa_port *cpu_dp = master->dsa_ptr;
1036
1037	info.master = master;
1038	info.operational = dsa_port_master_is_operational(cpu_dp);
1039
1040	dsa_tree_notify(dst, DSA_NOTIFIER_MASTER_STATE_CHANGE, &info);
1041}
1042
1043void dsa_tree_master_admin_state_change(struct dsa_switch_tree *dst,
1044					struct net_device *master,
1045					bool up)
1046{
1047	struct dsa_port *cpu_dp = master->dsa_ptr;
1048	bool notify = false;
1049
1050	/* Don't keep track of admin state on LAG DSA masters,
1051	 * but rather just of physical DSA masters
1052	 */
1053	if (netif_is_lag_master(master))
1054		return;
1055
1056	if ((dsa_port_master_is_operational(cpu_dp)) !=
1057	    (up && cpu_dp->master_oper_up))
1058		notify = true;
1059
1060	cpu_dp->master_admin_up = up;
1061
1062	if (notify)
1063		dsa_tree_master_state_change(dst, master);
1064}
1065
1066void dsa_tree_master_oper_state_change(struct dsa_switch_tree *dst,
1067				       struct net_device *master,
1068				       bool up)
1069{
1070	struct dsa_port *cpu_dp = master->dsa_ptr;
1071	bool notify = false;
1072
1073	/* Don't keep track of oper state on LAG DSA masters,
1074	 * but rather just of physical DSA masters
1075	 */
1076	if (netif_is_lag_master(master))
1077		return;
1078
1079	if ((dsa_port_master_is_operational(cpu_dp)) !=
1080	    (cpu_dp->master_admin_up && up))
1081		notify = true;
1082
1083	cpu_dp->master_oper_up = up;
1084
1085	if (notify)
1086		dsa_tree_master_state_change(dst, master);
1087}
1088
1089static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1090{
1091	struct dsa_switch_tree *dst = ds->dst;
1092	struct dsa_port *dp;
1093
1094	dsa_switch_for_each_port(dp, ds)
1095		if (dp->index == index)
1096			return dp;
1097
1098	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1099	if (!dp)
1100		return NULL;
1101
1102	dp->ds = ds;
1103	dp->index = index;
1104
1105	mutex_init(&dp->addr_lists_lock);
1106	mutex_init(&dp->vlans_lock);
1107	INIT_LIST_HEAD(&dp->fdbs);
1108	INIT_LIST_HEAD(&dp->mdbs);
1109	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1110	INIT_LIST_HEAD(&dp->list);
1111	list_add_tail(&dp->list, &dst->ports);
1112
1113	return dp;
1114}
1115
1116static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1117{
1118	dp->type = DSA_PORT_TYPE_USER;
1119	dp->name = name;
1120
1121	return 0;
1122}
1123
1124static int dsa_port_parse_dsa(struct dsa_port *dp)
1125{
1126	dp->type = DSA_PORT_TYPE_DSA;
1127
1128	return 0;
1129}
1130
1131static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1132						  struct net_device *master)
1133{
1134	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1135	struct dsa_switch *mds, *ds = dp->ds;
1136	unsigned int mdp_upstream;
1137	struct dsa_port *mdp;
1138
1139	/* It is possible to stack DSA switches onto one another when that
1140	 * happens the switch driver may want to know if its tagging protocol
1141	 * is going to work in such a configuration.
1142	 */
1143	if (dsa_slave_dev_check(master)) {
1144		mdp = dsa_slave_to_port(master);
1145		mds = mdp->ds;
1146		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1147		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1148							  DSA_TAG_PROTO_NONE);
1149	}
1150
1151	/* If the master device is not itself a DSA slave in a disjoint DSA
1152	 * tree, then return immediately.
1153	 */
1154	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1155}
1156
1157static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *master,
1158			      const char *user_protocol)
1159{
1160	const struct dsa_device_ops *tag_ops = NULL;
1161	struct dsa_switch *ds = dp->ds;
1162	struct dsa_switch_tree *dst = ds->dst;
1163	enum dsa_tag_protocol default_proto;
1164
1165	/* Find out which protocol the switch would prefer. */
1166	default_proto = dsa_get_tag_protocol(dp, master);
1167	if (dst->default_proto) {
1168		if (dst->default_proto != default_proto) {
1169			dev_err(ds->dev,
1170				"A DSA switch tree can have only one tagging protocol\n");
1171			return -EINVAL;
1172		}
1173	} else {
1174		dst->default_proto = default_proto;
1175	}
1176
1177	/* See if the user wants to override that preference. */
1178	if (user_protocol) {
1179		if (!ds->ops->change_tag_protocol) {
1180			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1181			return -EINVAL;
1182		}
1183
1184		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1185		if (IS_ERR(tag_ops)) {
1186			dev_warn(ds->dev,
1187				 "Failed to find a tagging driver for protocol %s, using default\n",
1188				 user_protocol);
1189			tag_ops = NULL;
1190		}
1191	}
1192
1193	if (!tag_ops)
1194		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1195
1196	if (IS_ERR(tag_ops)) {
1197		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1198			return -EPROBE_DEFER;
1199
1200		dev_warn(ds->dev, "No tagger for this switch\n");
1201		return PTR_ERR(tag_ops);
1202	}
1203
1204	if (dst->tag_ops) {
1205		if (dst->tag_ops != tag_ops) {
1206			dev_err(ds->dev,
1207				"A DSA switch tree can have only one tagging protocol\n");
1208
1209			dsa_tag_driver_put(tag_ops);
1210			return -EINVAL;
1211		}
1212
1213		/* In the case of multiple CPU ports per switch, the tagging
1214		 * protocol is still reference-counted only per switch tree.
1215		 */
1216		dsa_tag_driver_put(tag_ops);
1217	} else {
1218		dst->tag_ops = tag_ops;
1219	}
1220
1221	dp->master = master;
1222	dp->type = DSA_PORT_TYPE_CPU;
1223	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1224	dp->dst = dst;
1225
1226	/* At this point, the tree may be configured to use a different
1227	 * tagger than the one chosen by the switch driver during
1228	 * .setup, in the case when a user selects a custom protocol
1229	 * through the DT.
1230	 *
1231	 * This is resolved by syncing the driver with the tree in
1232	 * dsa_switch_setup_tag_protocol once .setup has run and the
1233	 * driver is ready to accept calls to .change_tag_protocol. If
1234	 * the driver does not support the custom protocol at that
1235	 * point, the tree is wholly rejected, thereby ensuring that the
1236	 * tree and driver are always in agreement on the protocol to
1237	 * use.
1238	 */
1239	return 0;
1240}
1241
1242static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1243{
1244	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1245	const char *name = of_get_property(dn, "label", NULL);
1246	bool link = of_property_read_bool(dn, "link");
1247
1248	dp->dn = dn;
1249
1250	if (ethernet) {
1251		struct net_device *master;
1252		const char *user_protocol;
1253
1254		master = of_find_net_device_by_node(ethernet);
1255		of_node_put(ethernet);
1256		if (!master)
1257			return -EPROBE_DEFER;
1258
1259		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1260		return dsa_port_parse_cpu(dp, master, user_protocol);
1261	}
1262
1263	if (link)
1264		return dsa_port_parse_dsa(dp);
1265
1266	return dsa_port_parse_user(dp, name);
1267}
1268
1269static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1270				     struct device_node *dn)
1271{
1272	struct device_node *ports, *port;
1273	struct dsa_port *dp;
1274	int err = 0;
1275	u32 reg;
1276
1277	ports = of_get_child_by_name(dn, "ports");
1278	if (!ports) {
1279		/* The second possibility is "ethernet-ports" */
1280		ports = of_get_child_by_name(dn, "ethernet-ports");
1281		if (!ports) {
1282			dev_err(ds->dev, "no ports child node found\n");
1283			return -EINVAL;
1284		}
1285	}
1286
1287	for_each_available_child_of_node(ports, port) {
1288		err = of_property_read_u32(port, "reg", &reg);
1289		if (err) {
1290			of_node_put(port);
1291			goto out_put_node;
1292		}
1293
1294		if (reg >= ds->num_ports) {
1295			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1296				port, reg, ds->num_ports);
1297			of_node_put(port);
1298			err = -EINVAL;
1299			goto out_put_node;
1300		}
1301
1302		dp = dsa_to_port(ds, reg);
1303
1304		err = dsa_port_parse_of(dp, port);
1305		if (err) {
1306			of_node_put(port);
1307			goto out_put_node;
1308		}
1309	}
1310
1311out_put_node:
1312	of_node_put(ports);
1313	return err;
1314}
1315
1316static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1317				      struct device_node *dn)
1318{
1319	u32 m[2] = { 0, 0 };
1320	int sz;
1321
1322	/* Don't error out if this optional property isn't found */
1323	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1324	if (sz < 0 && sz != -EINVAL)
1325		return sz;
1326
1327	ds->index = m[1];
1328
1329	ds->dst = dsa_tree_touch(m[0]);
1330	if (!ds->dst)
1331		return -ENOMEM;
1332
1333	if (dsa_switch_find(ds->dst->index, ds->index)) {
1334		dev_err(ds->dev,
1335			"A DSA switch with index %d already exists in tree %d\n",
1336			ds->index, ds->dst->index);
1337		return -EEXIST;
1338	}
1339
1340	if (ds->dst->last_switch < ds->index)
1341		ds->dst->last_switch = ds->index;
1342
1343	return 0;
1344}
1345
1346static int dsa_switch_touch_ports(struct dsa_switch *ds)
1347{
1348	struct dsa_port *dp;
1349	int port;
1350
1351	for (port = 0; port < ds->num_ports; port++) {
1352		dp = dsa_port_touch(ds, port);
1353		if (!dp)
1354			return -ENOMEM;
1355	}
1356
1357	return 0;
1358}
1359
1360static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1361{
1362	int err;
1363
1364	err = dsa_switch_parse_member_of(ds, dn);
1365	if (err)
1366		return err;
1367
1368	err = dsa_switch_touch_ports(ds);
1369	if (err)
1370		return err;
1371
1372	return dsa_switch_parse_ports_of(ds, dn);
1373}
1374
1375static int dev_is_class(struct device *dev, void *class)
1376{
1377	if (dev->class != NULL && !strcmp(dev->class->name, class))
1378		return 1;
1379
1380	return 0;
1381}
1382
1383static struct device *dev_find_class(struct device *parent, char *class)
1384{
1385	if (dev_is_class(parent, class)) {
1386		get_device(parent);
1387		return parent;
1388	}
1389
1390	return device_find_child(parent, class, dev_is_class);
1391}
1392
1393static struct net_device *dsa_dev_to_net_device(struct device *dev)
1394{
1395	struct device *d;
1396
1397	d = dev_find_class(dev, "net");
1398	if (d != NULL) {
1399		struct net_device *nd;
1400
1401		nd = to_net_dev(d);
1402		dev_hold(nd);
1403		put_device(d);
1404
1405		return nd;
1406	}
1407
1408	return NULL;
1409}
1410
1411static int dsa_port_parse(struct dsa_port *dp, const char *name,
1412			  struct device *dev)
1413{
1414	if (!strcmp(name, "cpu")) {
1415		struct net_device *master;
1416
1417		master = dsa_dev_to_net_device(dev);
1418		if (!master)
1419			return -EPROBE_DEFER;
1420
1421		dev_put(master);
1422
1423		return dsa_port_parse_cpu(dp, master, NULL);
1424	}
1425
1426	if (!strcmp(name, "dsa"))
1427		return dsa_port_parse_dsa(dp);
1428
1429	return dsa_port_parse_user(dp, name);
1430}
1431
1432static int dsa_switch_parse_ports(struct dsa_switch *ds,
1433				  struct dsa_chip_data *cd)
1434{
1435	bool valid_name_found = false;
1436	struct dsa_port *dp;
1437	struct device *dev;
1438	const char *name;
1439	unsigned int i;
1440	int err;
1441
1442	for (i = 0; i < DSA_MAX_PORTS; i++) {
1443		name = cd->port_names[i];
1444		dev = cd->netdev[i];
1445		dp = dsa_to_port(ds, i);
1446
1447		if (!name)
1448			continue;
1449
1450		err = dsa_port_parse(dp, name, dev);
1451		if (err)
1452			return err;
1453
1454		valid_name_found = true;
1455	}
1456
1457	if (!valid_name_found && i == DSA_MAX_PORTS)
1458		return -EINVAL;
1459
1460	return 0;
1461}
1462
1463static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1464{
1465	int err;
1466
1467	ds->cd = cd;
1468
1469	/* We don't support interconnected switches nor multiple trees via
1470	 * platform data, so this is the unique switch of the tree.
1471	 */
1472	ds->index = 0;
1473	ds->dst = dsa_tree_touch(0);
1474	if (!ds->dst)
1475		return -ENOMEM;
1476
1477	err = dsa_switch_touch_ports(ds);
1478	if (err)
1479		return err;
1480
1481	return dsa_switch_parse_ports(ds, cd);
1482}
1483
1484static void dsa_switch_release_ports(struct dsa_switch *ds)
1485{
1486	struct dsa_port *dp, *next;
1487
1488	dsa_switch_for_each_port_safe(dp, next, ds) {
1489		WARN_ON(!list_empty(&dp->fdbs));
1490		WARN_ON(!list_empty(&dp->mdbs));
1491		WARN_ON(!list_empty(&dp->vlans));
1492		list_del(&dp->list);
1493		kfree(dp);
1494	}
1495}
1496
1497static int dsa_switch_probe(struct dsa_switch *ds)
1498{
1499	struct dsa_switch_tree *dst;
1500	struct dsa_chip_data *pdata;
1501	struct device_node *np;
1502	int err;
1503
1504	if (!ds->dev)
1505		return -ENODEV;
1506
1507	pdata = ds->dev->platform_data;
1508	np = ds->dev->of_node;
1509
1510	if (!ds->num_ports)
1511		return -EINVAL;
1512
1513	if (np) {
1514		err = dsa_switch_parse_of(ds, np);
1515		if (err)
1516			dsa_switch_release_ports(ds);
1517	} else if (pdata) {
1518		err = dsa_switch_parse(ds, pdata);
1519		if (err)
1520			dsa_switch_release_ports(ds);
1521	} else {
1522		err = -ENODEV;
1523	}
1524
1525	if (err)
1526		return err;
1527
1528	dst = ds->dst;
1529	dsa_tree_get(dst);
1530	err = dsa_tree_setup(dst);
1531	if (err) {
1532		dsa_switch_release_ports(ds);
1533		dsa_tree_put(dst);
1534	}
1535
1536	return err;
1537}
1538
1539int dsa_register_switch(struct dsa_switch *ds)
1540{
1541	int err;
1542
1543	mutex_lock(&dsa2_mutex);
1544	err = dsa_switch_probe(ds);
1545	dsa_tree_put(ds->dst);
1546	mutex_unlock(&dsa2_mutex);
1547
1548	return err;
1549}
1550EXPORT_SYMBOL_GPL(dsa_register_switch);
1551
1552static void dsa_switch_remove(struct dsa_switch *ds)
1553{
1554	struct dsa_switch_tree *dst = ds->dst;
1555
1556	dsa_tree_teardown(dst);
1557	dsa_switch_release_ports(ds);
1558	dsa_tree_put(dst);
1559}
1560
1561void dsa_unregister_switch(struct dsa_switch *ds)
1562{
1563	mutex_lock(&dsa2_mutex);
1564	dsa_switch_remove(ds);
1565	mutex_unlock(&dsa2_mutex);
1566}
1567EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1568
1569/* If the DSA master chooses to unregister its net_device on .shutdown, DSA is
1570 * blocking that operation from completion, due to the dev_hold taken inside
1571 * netdev_upper_dev_link. Unlink the DSA slave interfaces from being uppers of
1572 * the DSA master, so that the system can reboot successfully.
1573 */
1574void dsa_switch_shutdown(struct dsa_switch *ds)
1575{
1576	struct net_device *master, *slave_dev;
1577	struct dsa_port *dp;
1578
1579	mutex_lock(&dsa2_mutex);
1580
1581	if (!ds->setup)
1582		goto out;
1583
1584	rtnl_lock();
1585
1586	dsa_switch_for_each_user_port(dp, ds) {
1587		master = dsa_port_to_master(dp);
1588		slave_dev = dp->slave;
1589
1590		netdev_upper_dev_unlink(master, slave_dev);
1591	}
1592
1593	/* Disconnect from further netdevice notifiers on the master,
1594	 * since netdev_uses_dsa() will now return false.
1595	 */
1596	dsa_switch_for_each_cpu_port(dp, ds)
1597		dp->master->dsa_ptr = NULL;
1598
1599	rtnl_unlock();
1600out:
1601	mutex_unlock(&dsa2_mutex);
1602}
1603EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1604
1605#ifdef CONFIG_PM_SLEEP
1606static bool dsa_port_is_initialized(const struct dsa_port *dp)
1607{
1608	return dp->type == DSA_PORT_TYPE_USER && dp->slave;
1609}
1610
1611int dsa_switch_suspend(struct dsa_switch *ds)
1612{
1613	struct dsa_port *dp;
1614	int ret = 0;
1615
1616	/* Suspend slave network devices */
1617	dsa_switch_for_each_port(dp, ds) {
1618		if (!dsa_port_is_initialized(dp))
1619			continue;
1620
1621		ret = dsa_slave_suspend(dp->slave);
1622		if (ret)
1623			return ret;
1624	}
1625
1626	if (ds->ops->suspend)
1627		ret = ds->ops->suspend(ds);
1628
1629	return ret;
1630}
1631EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1632
1633int dsa_switch_resume(struct dsa_switch *ds)
1634{
1635	struct dsa_port *dp;
1636	int ret = 0;
1637
1638	if (ds->ops->resume)
1639		ret = ds->ops->resume(ds);
1640
1641	if (ret)
1642		return ret;
1643
1644	/* Resume slave network devices */
1645	dsa_switch_for_each_port(dp, ds) {
1646		if (!dsa_port_is_initialized(dp))
1647			continue;
1648
1649		ret = dsa_slave_resume(dp->slave);
1650		if (ret)
1651			return ret;
1652	}
1653
1654	return 0;
1655}
1656EXPORT_SYMBOL_GPL(dsa_switch_resume);
1657#endif
1658
1659struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1660{
1661	if (!netdev || !dsa_slave_dev_check(netdev))
1662		return ERR_PTR(-ENODEV);
1663
1664	return dsa_slave_to_port(netdev);
1665}
1666EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1667
1668bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1669{
1670	if (a->type != b->type)
1671		return false;
1672
1673	switch (a->type) {
1674	case DSA_DB_PORT:
1675		return a->dp == b->dp;
1676	case DSA_DB_LAG:
1677		return a->lag.dev == b->lag.dev;
1678	case DSA_DB_BRIDGE:
1679		return a->bridge.num == b->bridge.num;
1680	default:
1681		WARN_ON(1);
1682		return false;
1683	}
1684}
1685
1686bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1687				 const unsigned char *addr, u16 vid,
1688				 struct dsa_db db)
1689{
1690	struct dsa_port *dp = dsa_to_port(ds, port);
1691	struct dsa_mac_addr *a;
1692
1693	lockdep_assert_held(&dp->addr_lists_lock);
1694
1695	list_for_each_entry(a, &dp->fdbs, list) {
1696		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1697			continue;
1698
1699		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1700			return true;
1701	}
1702
1703	return false;
1704}
1705EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1706
1707bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1708				 const struct switchdev_obj_port_mdb *mdb,
1709				 struct dsa_db db)
1710{
1711	struct dsa_port *dp = dsa_to_port(ds, port);
1712	struct dsa_mac_addr *a;
1713
1714	lockdep_assert_held(&dp->addr_lists_lock);
1715
1716	list_for_each_entry(a, &dp->mdbs, list) {
1717		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1718			continue;
1719
1720		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1721			return true;
1722	}
1723
1724	return false;
1725}
1726EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1727
1728static const struct dsa_stubs __dsa_stubs = {
1729	.master_hwtstamp_validate = __dsa_master_hwtstamp_validate,
1730};
1731
1732static void dsa_register_stubs(void)
1733{
1734	dsa_stubs = &__dsa_stubs;
1735}
1736
1737static void dsa_unregister_stubs(void)
1738{
1739	dsa_stubs = NULL;
1740}
1741
1742static int __init dsa_init_module(void)
1743{
1744	int rc;
1745
1746	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1747					  WQ_MEM_RECLAIM);
1748	if (!dsa_owq)
1749		return -ENOMEM;
1750
1751	rc = dsa_slave_register_notifier();
1752	if (rc)
1753		goto register_notifier_fail;
1754
1755	dev_add_pack(&dsa_pack_type);
1756
1757	rc = rtnl_link_register(&dsa_link_ops);
1758	if (rc)
1759		goto netlink_register_fail;
1760
1761	dsa_register_stubs();
1762
1763	return 0;
1764
1765netlink_register_fail:
1766	dsa_slave_unregister_notifier();
1767	dev_remove_pack(&dsa_pack_type);
1768register_notifier_fail:
1769	destroy_workqueue(dsa_owq);
1770
1771	return rc;
1772}
1773module_init(dsa_init_module);
1774
1775static void __exit dsa_cleanup_module(void)
1776{
1777	dsa_unregister_stubs();
1778
1779	rtnl_link_unregister(&dsa_link_ops);
1780
1781	dsa_slave_unregister_notifier();
1782	dev_remove_pack(&dsa_pack_type);
1783	destroy_workqueue(dsa_owq);
1784}
1785module_exit(dsa_cleanup_module);
1786
1787MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1788MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1789MODULE_LICENSE("GPL");
1790MODULE_ALIAS("platform:dsa");
1791