xref: /kernel/linux/linux-6.6/net/core/skbuff.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *	Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 *	Authors:	Alan Cox <alan@lxorguk.ukuu.org.uk>
6 *			Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 *	Fixes:
9 *		Alan Cox	:	Fixed the worst of the load
10 *					balancer bugs.
11 *		Dave Platt	:	Interrupt stacking fix.
12 *	Richard Kooijman	:	Timestamp fixes.
13 *		Alan Cox	:	Changed buffer format.
14 *		Alan Cox	:	destructor hook for AF_UNIX etc.
15 *		Linus Torvalds	:	Better skb_clone.
16 *		Alan Cox	:	Added skb_copy.
17 *		Alan Cox	:	Added all the changed routines Linus
18 *					only put in the headers
19 *		Ray VanTassle	:	Fixed --skb->lock in free
20 *		Alan Cox	:	skb_copy copy arp field
21 *		Andi Kleen	:	slabified it.
22 *		Robert Olsson	:	Removed skb_head_pool
23 *
24 *	NOTE:
25 *		The __skb_ routines should be called with interrupts
26 *	disabled, or you better be *real* sure that the operation is atomic
27 *	with respect to whatever list is being frobbed (e.g. via lock_sock()
28 *	or via disabling bottom half handlers, etc).
29 */
30
31/*
32 *	The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65
66#include <net/protocol.h>
67#include <net/dst.h>
68#include <net/sock.h>
69#include <net/checksum.h>
70#include <net/gso.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73#include <net/mpls.h>
74#include <net/mptcp.h>
75#include <net/mctp.h>
76#include <net/page_pool/helpers.h>
77#include <net/dropreason.h>
78
79#include <linux/uaccess.h>
80#include <trace/events/skb.h>
81#include <linux/highmem.h>
82#include <linux/capability.h>
83#include <linux/user_namespace.h>
84#include <linux/indirect_call_wrapper.h>
85#include <linux/textsearch.h>
86
87#include "dev.h"
88#include "sock_destructor.h"
89
90struct kmem_cache *skbuff_cache __ro_after_init;
91static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92#ifdef CONFIG_SKB_EXTENSIONS
93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94#endif
95
96
97static struct kmem_cache *skb_small_head_cache __ro_after_init;
98
99#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
100
101/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103 * size, and we can differentiate heads from skb_small_head_cache
104 * vs system slabs by looking at their size (skb_end_offset()).
105 */
106#define SKB_SMALL_HEAD_CACHE_SIZE					\
107	(is_power_of_2(SKB_SMALL_HEAD_SIZE) ?			\
108		(SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) :	\
109		SKB_SMALL_HEAD_SIZE)
110
111#define SKB_SMALL_HEAD_HEADROOM						\
112	SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
113
114int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115EXPORT_SYMBOL(sysctl_max_skb_frags);
116
117#undef FN
118#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119static const char * const drop_reasons[] = {
120	[SKB_CONSUMED] = "CONSUMED",
121	DEFINE_DROP_REASON(FN, FN)
122};
123
124static const struct drop_reason_list drop_reasons_core = {
125	.reasons = drop_reasons,
126	.n_reasons = ARRAY_SIZE(drop_reasons),
127};
128
129const struct drop_reason_list __rcu *
130drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131	[SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
132};
133EXPORT_SYMBOL(drop_reasons_by_subsys);
134
135/**
136 * drop_reasons_register_subsys - register another drop reason subsystem
137 * @subsys: the subsystem to register, must not be the core
138 * @list: the list of drop reasons within the subsystem, must point to
139 *	a statically initialized list
140 */
141void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142				  const struct drop_reason_list *list)
143{
144	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146		 "invalid subsystem %d\n", subsys))
147		return;
148
149	/* must point to statically allocated memory, so INIT is OK */
150	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
151}
152EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
153
154/**
155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156 * @subsys: the subsystem to remove, must not be the core
157 *
158 * Note: This will synchronize_rcu() to ensure no users when it returns.
159 */
160void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
161{
162	if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163		 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164		 "invalid subsystem %d\n", subsys))
165		return;
166
167	RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
168
169	synchronize_rcu();
170}
171EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
172
173/**
174 *	skb_panic - private function for out-of-line support
175 *	@skb:	buffer
176 *	@sz:	size
177 *	@addr:	address
178 *	@msg:	skb_over_panic or skb_under_panic
179 *
180 *	Out-of-line support for skb_put() and skb_push().
181 *	Called via the wrapper skb_over_panic() or skb_under_panic().
182 *	Keep out of line to prevent kernel bloat.
183 *	__builtin_return_address is not used because it is not always reliable.
184 */
185static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
186		      const char msg[])
187{
188	pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189		 msg, addr, skb->len, sz, skb->head, skb->data,
190		 (unsigned long)skb->tail, (unsigned long)skb->end,
191		 skb->dev ? skb->dev->name : "<NULL>");
192	BUG();
193}
194
195static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
196{
197	skb_panic(skb, sz, addr, __func__);
198}
199
200static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
201{
202	skb_panic(skb, sz, addr, __func__);
203}
204
205#define NAPI_SKB_CACHE_SIZE	64
206#define NAPI_SKB_CACHE_BULK	16
207#define NAPI_SKB_CACHE_HALF	(NAPI_SKB_CACHE_SIZE / 2)
208
209#if PAGE_SIZE == SZ_4K
210
211#define NAPI_HAS_SMALL_PAGE_FRAG	1
212#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	((nc).pfmemalloc)
213
214/* specialized page frag allocator using a single order 0 page
215 * and slicing it into 1K sized fragment. Constrained to systems
216 * with a very limited amount of 1K fragments fitting a single
217 * page - to avoid excessive truesize underestimation
218 */
219
220struct page_frag_1k {
221	void *va;
222	u16 offset;
223	bool pfmemalloc;
224};
225
226static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
227{
228	struct page *page;
229	int offset;
230
231	offset = nc->offset - SZ_1K;
232	if (likely(offset >= 0))
233		goto use_frag;
234
235	page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
236	if (!page)
237		return NULL;
238
239	nc->va = page_address(page);
240	nc->pfmemalloc = page_is_pfmemalloc(page);
241	offset = PAGE_SIZE - SZ_1K;
242	page_ref_add(page, offset / SZ_1K);
243
244use_frag:
245	nc->offset = offset;
246	return nc->va + offset;
247}
248#else
249
250/* the small page is actually unused in this build; add dummy helpers
251 * to please the compiler and avoid later preprocessor's conditionals
252 */
253#define NAPI_HAS_SMALL_PAGE_FRAG	0
254#define NAPI_SMALL_PAGE_PFMEMALLOC(nc)	false
255
256struct page_frag_1k {
257};
258
259static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
260{
261	return NULL;
262}
263
264#endif
265
266struct napi_alloc_cache {
267	struct page_frag_cache page;
268	struct page_frag_1k page_small;
269	unsigned int skb_count;
270	void *skb_cache[NAPI_SKB_CACHE_SIZE];
271};
272
273static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
275
276/* Double check that napi_get_frags() allocates skbs with
277 * skb->head being backed by slab, not a page fragment.
278 * This is to make sure bug fixed in 3226b158e67c
279 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280 * does not accidentally come back.
281 */
282void napi_get_frags_check(struct napi_struct *napi)
283{
284	struct sk_buff *skb;
285
286	local_bh_disable();
287	skb = napi_get_frags(napi);
288	WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289	napi_free_frags(napi);
290	local_bh_enable();
291}
292
293void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
294{
295	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
296
297	fragsz = SKB_DATA_ALIGN(fragsz);
298
299	return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
300}
301EXPORT_SYMBOL(__napi_alloc_frag_align);
302
303void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
304{
305	void *data;
306
307	fragsz = SKB_DATA_ALIGN(fragsz);
308	if (in_hardirq() || irqs_disabled()) {
309		struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
310
311		data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
312	} else {
313		struct napi_alloc_cache *nc;
314
315		local_bh_disable();
316		nc = this_cpu_ptr(&napi_alloc_cache);
317		data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
318		local_bh_enable();
319	}
320	return data;
321}
322EXPORT_SYMBOL(__netdev_alloc_frag_align);
323
324static struct sk_buff *napi_skb_cache_get(void)
325{
326	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
327	struct sk_buff *skb;
328
329	if (unlikely(!nc->skb_count)) {
330		nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
331						      GFP_ATOMIC,
332						      NAPI_SKB_CACHE_BULK,
333						      nc->skb_cache);
334		if (unlikely(!nc->skb_count))
335			return NULL;
336	}
337
338	skb = nc->skb_cache[--nc->skb_count];
339	kasan_unpoison_object_data(skbuff_cache, skb);
340
341	return skb;
342}
343
344static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
345					 unsigned int size)
346{
347	struct skb_shared_info *shinfo;
348
349	size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
350
351	/* Assumes caller memset cleared SKB */
352	skb->truesize = SKB_TRUESIZE(size);
353	refcount_set(&skb->users, 1);
354	skb->head = data;
355	skb->data = data;
356	skb_reset_tail_pointer(skb);
357	skb_set_end_offset(skb, size);
358	skb->mac_header = (typeof(skb->mac_header))~0U;
359	skb->transport_header = (typeof(skb->transport_header))~0U;
360	skb->alloc_cpu = raw_smp_processor_id();
361	/* make sure we initialize shinfo sequentially */
362	shinfo = skb_shinfo(skb);
363	memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364	atomic_set(&shinfo->dataref, 1);
365
366	skb_set_kcov_handle(skb, kcov_common_handle());
367}
368
369static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
370				     unsigned int *size)
371{
372	void *resized;
373
374	/* Must find the allocation size (and grow it to match). */
375	*size = ksize(data);
376	/* krealloc() will immediately return "data" when
377	 * "ksize(data)" is requested: it is the existing upper
378	 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379	 * that this "new" pointer needs to be passed back to the
380	 * caller for use so the __alloc_size hinting will be
381	 * tracked correctly.
382	 */
383	resized = krealloc(data, *size, GFP_ATOMIC);
384	WARN_ON_ONCE(resized != data);
385	return resized;
386}
387
388/* build_skb() variant which can operate on slab buffers.
389 * Note that this should be used sparingly as slab buffers
390 * cannot be combined efficiently by GRO!
391 */
392struct sk_buff *slab_build_skb(void *data)
393{
394	struct sk_buff *skb;
395	unsigned int size;
396
397	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
398	if (unlikely(!skb))
399		return NULL;
400
401	memset(skb, 0, offsetof(struct sk_buff, tail));
402	data = __slab_build_skb(skb, data, &size);
403	__finalize_skb_around(skb, data, size);
404
405	return skb;
406}
407EXPORT_SYMBOL(slab_build_skb);
408
409/* Caller must provide SKB that is memset cleared */
410static void __build_skb_around(struct sk_buff *skb, void *data,
411			       unsigned int frag_size)
412{
413	unsigned int size = frag_size;
414
415	/* frag_size == 0 is considered deprecated now. Callers
416	 * using slab buffer should use slab_build_skb() instead.
417	 */
418	if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419		data = __slab_build_skb(skb, data, &size);
420
421	__finalize_skb_around(skb, data, size);
422}
423
424/**
425 * __build_skb - build a network buffer
426 * @data: data buffer provided by caller
427 * @frag_size: size of data (must not be 0)
428 *
429 * Allocate a new &sk_buff. Caller provides space holding head and
430 * skb_shared_info. @data must have been allocated from the page
431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432 * allocation is deprecated, and callers should use slab_build_skb()
433 * instead.)
434 * The return is the new skb buffer.
435 * On a failure the return is %NULL, and @data is not freed.
436 * Notes :
437 *  Before IO, driver allocates only data buffer where NIC put incoming frame
438 *  Driver should add room at head (NET_SKB_PAD) and
439 *  MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440 *  After IO, driver calls build_skb(), to allocate sk_buff and populate it
441 *  before giving packet to stack.
442 *  RX rings only contains data buffers, not full skbs.
443 */
444struct sk_buff *__build_skb(void *data, unsigned int frag_size)
445{
446	struct sk_buff *skb;
447
448	skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
449	if (unlikely(!skb))
450		return NULL;
451
452	memset(skb, 0, offsetof(struct sk_buff, tail));
453	__build_skb_around(skb, data, frag_size);
454
455	return skb;
456}
457
458/* build_skb() is wrapper over __build_skb(), that specifically
459 * takes care of skb->head and skb->pfmemalloc
460 */
461struct sk_buff *build_skb(void *data, unsigned int frag_size)
462{
463	struct sk_buff *skb = __build_skb(data, frag_size);
464
465	if (likely(skb && frag_size)) {
466		skb->head_frag = 1;
467		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
468	}
469	return skb;
470}
471EXPORT_SYMBOL(build_skb);
472
473/**
474 * build_skb_around - build a network buffer around provided skb
475 * @skb: sk_buff provide by caller, must be memset cleared
476 * @data: data buffer provided by caller
477 * @frag_size: size of data
478 */
479struct sk_buff *build_skb_around(struct sk_buff *skb,
480				 void *data, unsigned int frag_size)
481{
482	if (unlikely(!skb))
483		return NULL;
484
485	__build_skb_around(skb, data, frag_size);
486
487	if (frag_size) {
488		skb->head_frag = 1;
489		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
490	}
491	return skb;
492}
493EXPORT_SYMBOL(build_skb_around);
494
495/**
496 * __napi_build_skb - build a network buffer
497 * @data: data buffer provided by caller
498 * @frag_size: size of data
499 *
500 * Version of __build_skb() that uses NAPI percpu caches to obtain
501 * skbuff_head instead of inplace allocation.
502 *
503 * Returns a new &sk_buff on success, %NULL on allocation failure.
504 */
505static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
506{
507	struct sk_buff *skb;
508
509	skb = napi_skb_cache_get();
510	if (unlikely(!skb))
511		return NULL;
512
513	memset(skb, 0, offsetof(struct sk_buff, tail));
514	__build_skb_around(skb, data, frag_size);
515
516	return skb;
517}
518
519/**
520 * napi_build_skb - build a network buffer
521 * @data: data buffer provided by caller
522 * @frag_size: size of data
523 *
524 * Version of __napi_build_skb() that takes care of skb->head_frag
525 * and skb->pfmemalloc when the data is a page or page fragment.
526 *
527 * Returns a new &sk_buff on success, %NULL on allocation failure.
528 */
529struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
530{
531	struct sk_buff *skb = __napi_build_skb(data, frag_size);
532
533	if (likely(skb) && frag_size) {
534		skb->head_frag = 1;
535		skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
536	}
537
538	return skb;
539}
540EXPORT_SYMBOL(napi_build_skb);
541
542/*
543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544 * the caller if emergency pfmemalloc reserves are being used. If it is and
545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546 * may be used. Otherwise, the packet data may be discarded until enough
547 * memory is free
548 */
549static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
550			     bool *pfmemalloc)
551{
552	bool ret_pfmemalloc = false;
553	size_t obj_size;
554	void *obj;
555
556	obj_size = SKB_HEAD_ALIGN(*size);
557	if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558	    !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559		obj = kmem_cache_alloc_node(skb_small_head_cache,
560				flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
561				node);
562		*size = SKB_SMALL_HEAD_CACHE_SIZE;
563		if (obj || !(gfp_pfmemalloc_allowed(flags)))
564			goto out;
565		/* Try again but now we are using pfmemalloc reserves */
566		ret_pfmemalloc = true;
567		obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
568		goto out;
569	}
570
571	obj_size = kmalloc_size_roundup(obj_size);
572	/* The following cast might truncate high-order bits of obj_size, this
573	 * is harmless because kmalloc(obj_size >= 2^32) will fail anyway.
574	 */
575	*size = (unsigned int)obj_size;
576
577	/*
578	 * Try a regular allocation, when that fails and we're not entitled
579	 * to the reserves, fail.
580	 */
581	obj = kmalloc_node_track_caller(obj_size,
582					flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
583					node);
584	if (obj || !(gfp_pfmemalloc_allowed(flags)))
585		goto out;
586
587	/* Try again but now we are using pfmemalloc reserves */
588	ret_pfmemalloc = true;
589	obj = kmalloc_node_track_caller(obj_size, flags, node);
590
591out:
592	if (pfmemalloc)
593		*pfmemalloc = ret_pfmemalloc;
594
595	return obj;
596}
597
598/* 	Allocate a new skbuff. We do this ourselves so we can fill in a few
599 *	'private' fields and also do memory statistics to find all the
600 *	[BEEP] leaks.
601 *
602 */
603
604/**
605 *	__alloc_skb	-	allocate a network buffer
606 *	@size: size to allocate
607 *	@gfp_mask: allocation mask
608 *	@flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
609 *		instead of head cache and allocate a cloned (child) skb.
610 *		If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
611 *		allocations in case the data is required for writeback
612 *	@node: numa node to allocate memory on
613 *
614 *	Allocate a new &sk_buff. The returned buffer has no headroom and a
615 *	tail room of at least size bytes. The object has a reference count
616 *	of one. The return is the buffer. On a failure the return is %NULL.
617 *
618 *	Buffers may only be allocated from interrupts using a @gfp_mask of
619 *	%GFP_ATOMIC.
620 */
621struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
622			    int flags, int node)
623{
624	struct kmem_cache *cache;
625	struct sk_buff *skb;
626	bool pfmemalloc;
627	u8 *data;
628
629	cache = (flags & SKB_ALLOC_FCLONE)
630		? skbuff_fclone_cache : skbuff_cache;
631
632	if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
633		gfp_mask |= __GFP_MEMALLOC;
634
635	/* Get the HEAD */
636	if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
637	    likely(node == NUMA_NO_NODE || node == numa_mem_id()))
638		skb = napi_skb_cache_get();
639	else
640		skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
641	if (unlikely(!skb))
642		return NULL;
643	prefetchw(skb);
644
645	/* We do our best to align skb_shared_info on a separate cache
646	 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
647	 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
648	 * Both skb->head and skb_shared_info are cache line aligned.
649	 */
650	data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
651	if (unlikely(!data))
652		goto nodata;
653	/* kmalloc_size_roundup() might give us more room than requested.
654	 * Put skb_shared_info exactly at the end of allocated zone,
655	 * to allow max possible filling before reallocation.
656	 */
657	prefetchw(data + SKB_WITH_OVERHEAD(size));
658
659	/*
660	 * Only clear those fields we need to clear, not those that we will
661	 * actually initialise below. Hence, don't put any more fields after
662	 * the tail pointer in struct sk_buff!
663	 */
664	memset(skb, 0, offsetof(struct sk_buff, tail));
665	__build_skb_around(skb, data, size);
666	skb->pfmemalloc = pfmemalloc;
667
668	if (flags & SKB_ALLOC_FCLONE) {
669		struct sk_buff_fclones *fclones;
670
671		fclones = container_of(skb, struct sk_buff_fclones, skb1);
672
673		skb->fclone = SKB_FCLONE_ORIG;
674		refcount_set(&fclones->fclone_ref, 1);
675	}
676
677	return skb;
678
679nodata:
680	kmem_cache_free(cache, skb);
681	return NULL;
682}
683EXPORT_SYMBOL(__alloc_skb);
684
685/**
686 *	__netdev_alloc_skb - allocate an skbuff for rx on a specific device
687 *	@dev: network device to receive on
688 *	@len: length to allocate
689 *	@gfp_mask: get_free_pages mask, passed to alloc_skb
690 *
691 *	Allocate a new &sk_buff and assign it a usage count of one. The
692 *	buffer has NET_SKB_PAD headroom built in. Users should allocate
693 *	the headroom they think they need without accounting for the
694 *	built in space. The built in space is used for optimisations.
695 *
696 *	%NULL is returned if there is no free memory.
697 */
698struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
699				   gfp_t gfp_mask)
700{
701	struct page_frag_cache *nc;
702	struct sk_buff *skb;
703	bool pfmemalloc;
704	void *data;
705
706	len += NET_SKB_PAD;
707
708	/* If requested length is either too small or too big,
709	 * we use kmalloc() for skb->head allocation.
710	 */
711	if (len <= SKB_WITH_OVERHEAD(1024) ||
712	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
713	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
714		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
715		if (!skb)
716			goto skb_fail;
717		goto skb_success;
718	}
719
720	len = SKB_HEAD_ALIGN(len);
721
722	if (sk_memalloc_socks())
723		gfp_mask |= __GFP_MEMALLOC;
724
725	if (in_hardirq() || irqs_disabled()) {
726		nc = this_cpu_ptr(&netdev_alloc_cache);
727		data = page_frag_alloc(nc, len, gfp_mask);
728		pfmemalloc = nc->pfmemalloc;
729	} else {
730		local_bh_disable();
731		nc = this_cpu_ptr(&napi_alloc_cache.page);
732		data = page_frag_alloc(nc, len, gfp_mask);
733		pfmemalloc = nc->pfmemalloc;
734		local_bh_enable();
735	}
736
737	if (unlikely(!data))
738		return NULL;
739
740	skb = __build_skb(data, len);
741	if (unlikely(!skb)) {
742		skb_free_frag(data);
743		return NULL;
744	}
745
746	if (pfmemalloc)
747		skb->pfmemalloc = 1;
748	skb->head_frag = 1;
749
750skb_success:
751	skb_reserve(skb, NET_SKB_PAD);
752	skb->dev = dev;
753
754skb_fail:
755	return skb;
756}
757EXPORT_SYMBOL(__netdev_alloc_skb);
758
759/**
760 *	__napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
761 *	@napi: napi instance this buffer was allocated for
762 *	@len: length to allocate
763 *	@gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
764 *
765 *	Allocate a new sk_buff for use in NAPI receive.  This buffer will
766 *	attempt to allocate the head from a special reserved region used
767 *	only for NAPI Rx allocation.  By doing this we can save several
768 *	CPU cycles by avoiding having to disable and re-enable IRQs.
769 *
770 *	%NULL is returned if there is no free memory.
771 */
772struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
773				 gfp_t gfp_mask)
774{
775	struct napi_alloc_cache *nc;
776	struct sk_buff *skb;
777	bool pfmemalloc;
778	void *data;
779
780	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
781	len += NET_SKB_PAD + NET_IP_ALIGN;
782
783	/* If requested length is either too small or too big,
784	 * we use kmalloc() for skb->head allocation.
785	 * When the small frag allocator is available, prefer it over kmalloc
786	 * for small fragments
787	 */
788	if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
789	    len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
790	    (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
791		skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
792				  NUMA_NO_NODE);
793		if (!skb)
794			goto skb_fail;
795		goto skb_success;
796	}
797
798	nc = this_cpu_ptr(&napi_alloc_cache);
799
800	if (sk_memalloc_socks())
801		gfp_mask |= __GFP_MEMALLOC;
802
803	if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
804		/* we are artificially inflating the allocation size, but
805		 * that is not as bad as it may look like, as:
806		 * - 'len' less than GRO_MAX_HEAD makes little sense
807		 * - On most systems, larger 'len' values lead to fragment
808		 *   size above 512 bytes
809		 * - kmalloc would use the kmalloc-1k slab for such values
810		 * - Builds with smaller GRO_MAX_HEAD will very likely do
811		 *   little networking, as that implies no WiFi and no
812		 *   tunnels support, and 32 bits arches.
813		 */
814		len = SZ_1K;
815
816		data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
817		pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
818	} else {
819		len = SKB_HEAD_ALIGN(len);
820
821		data = page_frag_alloc(&nc->page, len, gfp_mask);
822		pfmemalloc = nc->page.pfmemalloc;
823	}
824
825	if (unlikely(!data))
826		return NULL;
827
828	skb = __napi_build_skb(data, len);
829	if (unlikely(!skb)) {
830		skb_free_frag(data);
831		return NULL;
832	}
833
834	if (pfmemalloc)
835		skb->pfmemalloc = 1;
836	skb->head_frag = 1;
837
838skb_success:
839	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
840	skb->dev = napi->dev;
841
842skb_fail:
843	return skb;
844}
845EXPORT_SYMBOL(__napi_alloc_skb);
846
847void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
848		     int size, unsigned int truesize)
849{
850	skb_fill_page_desc(skb, i, page, off, size);
851	skb->len += size;
852	skb->data_len += size;
853	skb->truesize += truesize;
854}
855EXPORT_SYMBOL(skb_add_rx_frag);
856
857void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
858			  unsigned int truesize)
859{
860	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
861
862	skb_frag_size_add(frag, size);
863	skb->len += size;
864	skb->data_len += size;
865	skb->truesize += truesize;
866}
867EXPORT_SYMBOL(skb_coalesce_rx_frag);
868
869static void skb_drop_list(struct sk_buff **listp)
870{
871	kfree_skb_list(*listp);
872	*listp = NULL;
873}
874
875static inline void skb_drop_fraglist(struct sk_buff *skb)
876{
877	skb_drop_list(&skb_shinfo(skb)->frag_list);
878}
879
880static void skb_clone_fraglist(struct sk_buff *skb)
881{
882	struct sk_buff *list;
883
884	skb_walk_frags(skb, list)
885		skb_get(list);
886}
887
888#if IS_ENABLED(CONFIG_PAGE_POOL)
889bool napi_pp_put_page(struct page *page, bool napi_safe)
890{
891	bool allow_direct = false;
892	struct page_pool *pp;
893
894	page = compound_head(page);
895
896	/* page->pp_magic is OR'ed with PP_SIGNATURE after the allocation
897	 * in order to preserve any existing bits, such as bit 0 for the
898	 * head page of compound page and bit 1 for pfmemalloc page, so
899	 * mask those bits for freeing side when doing below checking,
900	 * and page_is_pfmemalloc() is checked in __page_pool_put_page()
901	 * to avoid recycling the pfmemalloc page.
902	 */
903	if (unlikely((page->pp_magic & ~0x3UL) != PP_SIGNATURE))
904		return false;
905
906	pp = page->pp;
907
908	/* Allow direct recycle if we have reasons to believe that we are
909	 * in the same context as the consumer would run, so there's
910	 * no possible race.
911	 * __page_pool_put_page() makes sure we're not in hardirq context
912	 * and interrupts are enabled prior to accessing the cache.
913	 */
914	if (napi_safe || in_softirq()) {
915		const struct napi_struct *napi = READ_ONCE(pp->p.napi);
916
917		allow_direct = napi &&
918			READ_ONCE(napi->list_owner) == smp_processor_id();
919	}
920
921	/* Driver set this to memory recycling info. Reset it on recycle.
922	 * This will *not* work for NIC using a split-page memory model.
923	 * The page will be returned to the pool here regardless of the
924	 * 'flipped' fragment being in use or not.
925	 */
926	page_pool_put_full_page(pp, page, allow_direct);
927
928	return true;
929}
930EXPORT_SYMBOL(napi_pp_put_page);
931#endif
932
933static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
934{
935	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
936		return false;
937	return napi_pp_put_page(virt_to_page(data), napi_safe);
938}
939
940static void skb_kfree_head(void *head, unsigned int end_offset)
941{
942	if (end_offset == SKB_SMALL_HEAD_HEADROOM)
943		kmem_cache_free(skb_small_head_cache, head);
944	else
945		kfree(head);
946}
947
948static void skb_free_head(struct sk_buff *skb, bool napi_safe)
949{
950	unsigned char *head = skb->head;
951
952	if (skb->head_frag) {
953		if (skb_pp_recycle(skb, head, napi_safe))
954			return;
955		skb_free_frag(head);
956	} else {
957		skb_kfree_head(head, skb_end_offset(skb));
958	}
959}
960
961static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
962			     bool napi_safe)
963{
964	struct skb_shared_info *shinfo = skb_shinfo(skb);
965	int i;
966
967	if (skb->cloned &&
968	    atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
969			      &shinfo->dataref))
970		goto exit;
971
972	if (skb_zcopy(skb)) {
973		bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
974
975		skb_zcopy_clear(skb, true);
976		if (skip_unref)
977			goto free_head;
978	}
979
980	for (i = 0; i < shinfo->nr_frags; i++)
981		napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
982
983free_head:
984	if (shinfo->frag_list)
985		kfree_skb_list_reason(shinfo->frag_list, reason);
986
987	skb_free_head(skb, napi_safe);
988exit:
989	/* When we clone an SKB we copy the reycling bit. The pp_recycle
990	 * bit is only set on the head though, so in order to avoid races
991	 * while trying to recycle fragments on __skb_frag_unref() we need
992	 * to make one SKB responsible for triggering the recycle path.
993	 * So disable the recycling bit if an SKB is cloned and we have
994	 * additional references to the fragmented part of the SKB.
995	 * Eventually the last SKB will have the recycling bit set and it's
996	 * dataref set to 0, which will trigger the recycling
997	 */
998	skb->pp_recycle = 0;
999}
1000
1001/*
1002 *	Free an skbuff by memory without cleaning the state.
1003 */
1004static void kfree_skbmem(struct sk_buff *skb)
1005{
1006	struct sk_buff_fclones *fclones;
1007
1008	switch (skb->fclone) {
1009	case SKB_FCLONE_UNAVAILABLE:
1010		kmem_cache_free(skbuff_cache, skb);
1011		return;
1012
1013	case SKB_FCLONE_ORIG:
1014		fclones = container_of(skb, struct sk_buff_fclones, skb1);
1015
1016		/* We usually free the clone (TX completion) before original skb
1017		 * This test would have no chance to be true for the clone,
1018		 * while here, branch prediction will be good.
1019		 */
1020		if (refcount_read(&fclones->fclone_ref) == 1)
1021			goto fastpath;
1022		break;
1023
1024	default: /* SKB_FCLONE_CLONE */
1025		fclones = container_of(skb, struct sk_buff_fclones, skb2);
1026		break;
1027	}
1028	if (!refcount_dec_and_test(&fclones->fclone_ref))
1029		return;
1030fastpath:
1031	kmem_cache_free(skbuff_fclone_cache, fclones);
1032}
1033
1034void skb_release_head_state(struct sk_buff *skb)
1035{
1036	skb_dst_drop(skb);
1037	if (skb->destructor) {
1038		DEBUG_NET_WARN_ON_ONCE(in_hardirq());
1039		skb->destructor(skb);
1040	}
1041#if IS_ENABLED(CONFIG_NF_CONNTRACK)
1042	nf_conntrack_put(skb_nfct(skb));
1043#endif
1044	skb_ext_put(skb);
1045}
1046
1047/* Free everything but the sk_buff shell. */
1048static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
1049			    bool napi_safe)
1050{
1051	skb_release_head_state(skb);
1052	if (likely(skb->head))
1053		skb_release_data(skb, reason, napi_safe);
1054}
1055
1056/**
1057 *	__kfree_skb - private function
1058 *	@skb: buffer
1059 *
1060 *	Free an sk_buff. Release anything attached to the buffer.
1061 *	Clean the state. This is an internal helper function. Users should
1062 *	always call kfree_skb
1063 */
1064
1065void __kfree_skb(struct sk_buff *skb)
1066{
1067	skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1068	kfree_skbmem(skb);
1069}
1070EXPORT_SYMBOL(__kfree_skb);
1071
1072static __always_inline
1073bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1074{
1075	if (unlikely(!skb_unref(skb)))
1076		return false;
1077
1078	DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1079			       u32_get_bits(reason,
1080					    SKB_DROP_REASON_SUBSYS_MASK) >=
1081				SKB_DROP_REASON_SUBSYS_NUM);
1082
1083	if (reason == SKB_CONSUMED)
1084		trace_consume_skb(skb, __builtin_return_address(0));
1085	else
1086		trace_kfree_skb(skb, __builtin_return_address(0), reason);
1087	return true;
1088}
1089
1090/**
1091 *	kfree_skb_reason - free an sk_buff with special reason
1092 *	@skb: buffer to free
1093 *	@reason: reason why this skb is dropped
1094 *
1095 *	Drop a reference to the buffer and free it if the usage count has
1096 *	hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1097 *	tracepoint.
1098 */
1099void __fix_address
1100kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1101{
1102	if (__kfree_skb_reason(skb, reason))
1103		__kfree_skb(skb);
1104}
1105EXPORT_SYMBOL(kfree_skb_reason);
1106
1107#define KFREE_SKB_BULK_SIZE	16
1108
1109struct skb_free_array {
1110	unsigned int skb_count;
1111	void *skb_array[KFREE_SKB_BULK_SIZE];
1112};
1113
1114static void kfree_skb_add_bulk(struct sk_buff *skb,
1115			       struct skb_free_array *sa,
1116			       enum skb_drop_reason reason)
1117{
1118	/* if SKB is a clone, don't handle this case */
1119	if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1120		__kfree_skb(skb);
1121		return;
1122	}
1123
1124	skb_release_all(skb, reason, false);
1125	sa->skb_array[sa->skb_count++] = skb;
1126
1127	if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1128		kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1129				     sa->skb_array);
1130		sa->skb_count = 0;
1131	}
1132}
1133
1134void __fix_address
1135kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1136{
1137	struct skb_free_array sa;
1138
1139	sa.skb_count = 0;
1140
1141	while (segs) {
1142		struct sk_buff *next = segs->next;
1143
1144		if (__kfree_skb_reason(segs, reason)) {
1145			skb_poison_list(segs);
1146			kfree_skb_add_bulk(segs, &sa, reason);
1147		}
1148
1149		segs = next;
1150	}
1151
1152	if (sa.skb_count)
1153		kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1154}
1155EXPORT_SYMBOL(kfree_skb_list_reason);
1156
1157/* Dump skb information and contents.
1158 *
1159 * Must only be called from net_ratelimit()-ed paths.
1160 *
1161 * Dumps whole packets if full_pkt, only headers otherwise.
1162 */
1163void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1164{
1165	struct skb_shared_info *sh = skb_shinfo(skb);
1166	struct net_device *dev = skb->dev;
1167	struct sock *sk = skb->sk;
1168	struct sk_buff *list_skb;
1169	bool has_mac, has_trans;
1170	int headroom, tailroom;
1171	int i, len, seg_len;
1172
1173	if (full_pkt)
1174		len = skb->len;
1175	else
1176		len = min_t(int, skb->len, MAX_HEADER + 128);
1177
1178	headroom = skb_headroom(skb);
1179	tailroom = skb_tailroom(skb);
1180
1181	has_mac = skb_mac_header_was_set(skb);
1182	has_trans = skb_transport_header_was_set(skb);
1183
1184	printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1185	       "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1186	       "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1187	       "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1188	       "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1189	       level, skb->len, headroom, skb_headlen(skb), tailroom,
1190	       has_mac ? skb->mac_header : -1,
1191	       has_mac ? skb_mac_header_len(skb) : -1,
1192	       skb->network_header,
1193	       has_trans ? skb_network_header_len(skb) : -1,
1194	       has_trans ? skb->transport_header : -1,
1195	       sh->tx_flags, sh->nr_frags,
1196	       sh->gso_size, sh->gso_type, sh->gso_segs,
1197	       skb->csum, skb->ip_summed, skb->csum_complete_sw,
1198	       skb->csum_valid, skb->csum_level,
1199	       skb->hash, skb->sw_hash, skb->l4_hash,
1200	       ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1201
1202	if (dev)
1203		printk("%sdev name=%s feat=%pNF\n",
1204		       level, dev->name, &dev->features);
1205	if (sk)
1206		printk("%ssk family=%hu type=%u proto=%u\n",
1207		       level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1208
1209	if (full_pkt && headroom)
1210		print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1211			       16, 1, skb->head, headroom, false);
1212
1213	seg_len = min_t(int, skb_headlen(skb), len);
1214	if (seg_len)
1215		print_hex_dump(level, "skb linear:   ", DUMP_PREFIX_OFFSET,
1216			       16, 1, skb->data, seg_len, false);
1217	len -= seg_len;
1218
1219	if (full_pkt && tailroom)
1220		print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1221			       16, 1, skb_tail_pointer(skb), tailroom, false);
1222
1223	for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1224		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1225		u32 p_off, p_len, copied;
1226		struct page *p;
1227		u8 *vaddr;
1228
1229		skb_frag_foreach_page(frag, skb_frag_off(frag),
1230				      skb_frag_size(frag), p, p_off, p_len,
1231				      copied) {
1232			seg_len = min_t(int, p_len, len);
1233			vaddr = kmap_atomic(p);
1234			print_hex_dump(level, "skb frag:     ",
1235				       DUMP_PREFIX_OFFSET,
1236				       16, 1, vaddr + p_off, seg_len, false);
1237			kunmap_atomic(vaddr);
1238			len -= seg_len;
1239			if (!len)
1240				break;
1241		}
1242	}
1243
1244	if (full_pkt && skb_has_frag_list(skb)) {
1245		printk("skb fraglist:\n");
1246		skb_walk_frags(skb, list_skb)
1247			skb_dump(level, list_skb, true);
1248	}
1249}
1250EXPORT_SYMBOL(skb_dump);
1251
1252/**
1253 *	skb_tx_error - report an sk_buff xmit error
1254 *	@skb: buffer that triggered an error
1255 *
1256 *	Report xmit error if a device callback is tracking this skb.
1257 *	skb must be freed afterwards.
1258 */
1259void skb_tx_error(struct sk_buff *skb)
1260{
1261	if (skb) {
1262		skb_zcopy_downgrade_managed(skb);
1263		skb_zcopy_clear(skb, true);
1264	}
1265}
1266EXPORT_SYMBOL(skb_tx_error);
1267
1268#ifdef CONFIG_TRACEPOINTS
1269/**
1270 *	consume_skb - free an skbuff
1271 *	@skb: buffer to free
1272 *
1273 *	Drop a ref to the buffer and free it if the usage count has hit zero
1274 *	Functions identically to kfree_skb, but kfree_skb assumes that the frame
1275 *	is being dropped after a failure and notes that
1276 */
1277void consume_skb(struct sk_buff *skb)
1278{
1279	if (!skb_unref(skb))
1280		return;
1281
1282	trace_consume_skb(skb, __builtin_return_address(0));
1283	__kfree_skb(skb);
1284}
1285EXPORT_SYMBOL(consume_skb);
1286#endif
1287
1288/**
1289 *	__consume_stateless_skb - free an skbuff, assuming it is stateless
1290 *	@skb: buffer to free
1291 *
1292 *	Alike consume_skb(), but this variant assumes that this is the last
1293 *	skb reference and all the head states have been already dropped
1294 */
1295void __consume_stateless_skb(struct sk_buff *skb)
1296{
1297	trace_consume_skb(skb, __builtin_return_address(0));
1298	skb_release_data(skb, SKB_CONSUMED, false);
1299	kfree_skbmem(skb);
1300}
1301
1302static void napi_skb_cache_put(struct sk_buff *skb)
1303{
1304	struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1305	u32 i;
1306
1307	kasan_poison_object_data(skbuff_cache, skb);
1308	nc->skb_cache[nc->skb_count++] = skb;
1309
1310	if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1311		for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1312			kasan_unpoison_object_data(skbuff_cache,
1313						   nc->skb_cache[i]);
1314
1315		kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1316				     nc->skb_cache + NAPI_SKB_CACHE_HALF);
1317		nc->skb_count = NAPI_SKB_CACHE_HALF;
1318	}
1319}
1320
1321void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1322{
1323	skb_release_all(skb, reason, true);
1324	napi_skb_cache_put(skb);
1325}
1326
1327void napi_skb_free_stolen_head(struct sk_buff *skb)
1328{
1329	if (unlikely(skb->slow_gro)) {
1330		nf_reset_ct(skb);
1331		skb_dst_drop(skb);
1332		skb_ext_put(skb);
1333		skb_orphan(skb);
1334		skb->slow_gro = 0;
1335	}
1336	napi_skb_cache_put(skb);
1337}
1338
1339void napi_consume_skb(struct sk_buff *skb, int budget)
1340{
1341	/* Zero budget indicate non-NAPI context called us, like netpoll */
1342	if (unlikely(!budget)) {
1343		dev_consume_skb_any(skb);
1344		return;
1345	}
1346
1347	DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1348
1349	if (!skb_unref(skb))
1350		return;
1351
1352	/* if reaching here SKB is ready to free */
1353	trace_consume_skb(skb, __builtin_return_address(0));
1354
1355	/* if SKB is a clone, don't handle this case */
1356	if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1357		__kfree_skb(skb);
1358		return;
1359	}
1360
1361	skb_release_all(skb, SKB_CONSUMED, !!budget);
1362	napi_skb_cache_put(skb);
1363}
1364EXPORT_SYMBOL(napi_consume_skb);
1365
1366/* Make sure a field is contained by headers group */
1367#define CHECK_SKB_FIELD(field) \
1368	BUILD_BUG_ON(offsetof(struct sk_buff, field) !=		\
1369		     offsetof(struct sk_buff, headers.field));	\
1370
1371static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1372{
1373	new->tstamp		= old->tstamp;
1374	/* We do not copy old->sk */
1375	new->dev		= old->dev;
1376	memcpy(new->cb, old->cb, sizeof(old->cb));
1377	skb_dst_copy(new, old);
1378	__skb_ext_copy(new, old);
1379	__nf_copy(new, old, false);
1380
1381	/* Note : this field could be in the headers group.
1382	 * It is not yet because we do not want to have a 16 bit hole
1383	 */
1384	new->queue_mapping = old->queue_mapping;
1385
1386	memcpy(&new->headers, &old->headers, sizeof(new->headers));
1387	CHECK_SKB_FIELD(protocol);
1388	CHECK_SKB_FIELD(csum);
1389	CHECK_SKB_FIELD(hash);
1390	CHECK_SKB_FIELD(priority);
1391	CHECK_SKB_FIELD(skb_iif);
1392	CHECK_SKB_FIELD(vlan_proto);
1393	CHECK_SKB_FIELD(vlan_tci);
1394	CHECK_SKB_FIELD(transport_header);
1395	CHECK_SKB_FIELD(network_header);
1396	CHECK_SKB_FIELD(mac_header);
1397	CHECK_SKB_FIELD(inner_protocol);
1398	CHECK_SKB_FIELD(inner_transport_header);
1399	CHECK_SKB_FIELD(inner_network_header);
1400	CHECK_SKB_FIELD(inner_mac_header);
1401	CHECK_SKB_FIELD(mark);
1402#ifdef CONFIG_NETWORK_SECMARK
1403	CHECK_SKB_FIELD(secmark);
1404#endif
1405#ifdef CONFIG_NET_RX_BUSY_POLL
1406	CHECK_SKB_FIELD(napi_id);
1407#endif
1408	CHECK_SKB_FIELD(alloc_cpu);
1409#ifdef CONFIG_XPS
1410	CHECK_SKB_FIELD(sender_cpu);
1411#endif
1412#ifdef CONFIG_NET_SCHED
1413	CHECK_SKB_FIELD(tc_index);
1414#endif
1415
1416}
1417
1418/*
1419 * You should not add any new code to this function.  Add it to
1420 * __copy_skb_header above instead.
1421 */
1422static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1423{
1424#define C(x) n->x = skb->x
1425
1426	n->next = n->prev = NULL;
1427	n->sk = NULL;
1428	__copy_skb_header(n, skb);
1429
1430	C(len);
1431	C(data_len);
1432	C(mac_len);
1433	n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1434	n->cloned = 1;
1435	n->nohdr = 0;
1436	n->peeked = 0;
1437	C(pfmemalloc);
1438	C(pp_recycle);
1439	n->destructor = NULL;
1440	C(tail);
1441	C(end);
1442	C(head);
1443	C(head_frag);
1444	C(data);
1445	C(truesize);
1446	refcount_set(&n->users, 1);
1447
1448	atomic_inc(&(skb_shinfo(skb)->dataref));
1449	skb->cloned = 1;
1450
1451	return n;
1452#undef C
1453}
1454
1455/**
1456 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1457 * @first: first sk_buff of the msg
1458 */
1459struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1460{
1461	struct sk_buff *n;
1462
1463	n = alloc_skb(0, GFP_ATOMIC);
1464	if (!n)
1465		return NULL;
1466
1467	n->len = first->len;
1468	n->data_len = first->len;
1469	n->truesize = first->truesize;
1470
1471	skb_shinfo(n)->frag_list = first;
1472
1473	__copy_skb_header(n, first);
1474	n->destructor = NULL;
1475
1476	return n;
1477}
1478EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1479
1480/**
1481 *	skb_morph	-	morph one skb into another
1482 *	@dst: the skb to receive the contents
1483 *	@src: the skb to supply the contents
1484 *
1485 *	This is identical to skb_clone except that the target skb is
1486 *	supplied by the user.
1487 *
1488 *	The target skb is returned upon exit.
1489 */
1490struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1491{
1492	skb_release_all(dst, SKB_CONSUMED, false);
1493	return __skb_clone(dst, src);
1494}
1495EXPORT_SYMBOL_GPL(skb_morph);
1496
1497int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1498{
1499	unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1500	struct user_struct *user;
1501
1502	if (capable(CAP_IPC_LOCK) || !size)
1503		return 0;
1504
1505	rlim = rlimit(RLIMIT_MEMLOCK);
1506	if (rlim == RLIM_INFINITY)
1507		return 0;
1508
1509	num_pg = (size >> PAGE_SHIFT) + 2;	/* worst case */
1510	max_pg = rlim >> PAGE_SHIFT;
1511	user = mmp->user ? : current_user();
1512
1513	old_pg = atomic_long_read(&user->locked_vm);
1514	do {
1515		new_pg = old_pg + num_pg;
1516		if (new_pg > max_pg)
1517			return -ENOBUFS;
1518	} while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1519
1520	if (!mmp->user) {
1521		mmp->user = get_uid(user);
1522		mmp->num_pg = num_pg;
1523	} else {
1524		mmp->num_pg += num_pg;
1525	}
1526
1527	return 0;
1528}
1529EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1530
1531void mm_unaccount_pinned_pages(struct mmpin *mmp)
1532{
1533	if (mmp->user) {
1534		atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1535		free_uid(mmp->user);
1536	}
1537}
1538EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1539
1540static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1541{
1542	struct ubuf_info_msgzc *uarg;
1543	struct sk_buff *skb;
1544
1545	WARN_ON_ONCE(!in_task());
1546
1547	skb = sock_omalloc(sk, 0, GFP_KERNEL);
1548	if (!skb)
1549		return NULL;
1550
1551	BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1552	uarg = (void *)skb->cb;
1553	uarg->mmp.user = NULL;
1554
1555	if (mm_account_pinned_pages(&uarg->mmp, size)) {
1556		kfree_skb(skb);
1557		return NULL;
1558	}
1559
1560	uarg->ubuf.callback = msg_zerocopy_callback;
1561	uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1562	uarg->len = 1;
1563	uarg->bytelen = size;
1564	uarg->zerocopy = 1;
1565	uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1566	refcount_set(&uarg->ubuf.refcnt, 1);
1567	sock_hold(sk);
1568
1569	return &uarg->ubuf;
1570}
1571
1572static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1573{
1574	return container_of((void *)uarg, struct sk_buff, cb);
1575}
1576
1577struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1578				       struct ubuf_info *uarg)
1579{
1580	if (uarg) {
1581		struct ubuf_info_msgzc *uarg_zc;
1582		const u32 byte_limit = 1 << 19;		/* limit to a few TSO */
1583		u32 bytelen, next;
1584
1585		/* there might be non MSG_ZEROCOPY users */
1586		if (uarg->callback != msg_zerocopy_callback)
1587			return NULL;
1588
1589		/* realloc only when socket is locked (TCP, UDP cork),
1590		 * so uarg->len and sk_zckey access is serialized
1591		 */
1592		if (!sock_owned_by_user(sk)) {
1593			WARN_ON_ONCE(1);
1594			return NULL;
1595		}
1596
1597		uarg_zc = uarg_to_msgzc(uarg);
1598		bytelen = uarg_zc->bytelen + size;
1599		if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1600			/* TCP can create new skb to attach new uarg */
1601			if (sk->sk_type == SOCK_STREAM)
1602				goto new_alloc;
1603			return NULL;
1604		}
1605
1606		next = (u32)atomic_read(&sk->sk_zckey);
1607		if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1608			if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1609				return NULL;
1610			uarg_zc->len++;
1611			uarg_zc->bytelen = bytelen;
1612			atomic_set(&sk->sk_zckey, ++next);
1613
1614			/* no extra ref when appending to datagram (MSG_MORE) */
1615			if (sk->sk_type == SOCK_STREAM)
1616				net_zcopy_get(uarg);
1617
1618			return uarg;
1619		}
1620	}
1621
1622new_alloc:
1623	return msg_zerocopy_alloc(sk, size);
1624}
1625EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1626
1627static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1628{
1629	struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1630	u32 old_lo, old_hi;
1631	u64 sum_len;
1632
1633	old_lo = serr->ee.ee_info;
1634	old_hi = serr->ee.ee_data;
1635	sum_len = old_hi - old_lo + 1ULL + len;
1636
1637	if (sum_len >= (1ULL << 32))
1638		return false;
1639
1640	if (lo != old_hi + 1)
1641		return false;
1642
1643	serr->ee.ee_data += len;
1644	return true;
1645}
1646
1647static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1648{
1649	struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1650	struct sock_exterr_skb *serr;
1651	struct sock *sk = skb->sk;
1652	struct sk_buff_head *q;
1653	unsigned long flags;
1654	bool is_zerocopy;
1655	u32 lo, hi;
1656	u16 len;
1657
1658	mm_unaccount_pinned_pages(&uarg->mmp);
1659
1660	/* if !len, there was only 1 call, and it was aborted
1661	 * so do not queue a completion notification
1662	 */
1663	if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1664		goto release;
1665
1666	len = uarg->len;
1667	lo = uarg->id;
1668	hi = uarg->id + len - 1;
1669	is_zerocopy = uarg->zerocopy;
1670
1671	serr = SKB_EXT_ERR(skb);
1672	memset(serr, 0, sizeof(*serr));
1673	serr->ee.ee_errno = 0;
1674	serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1675	serr->ee.ee_data = hi;
1676	serr->ee.ee_info = lo;
1677	if (!is_zerocopy)
1678		serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1679
1680	q = &sk->sk_error_queue;
1681	spin_lock_irqsave(&q->lock, flags);
1682	tail = skb_peek_tail(q);
1683	if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1684	    !skb_zerocopy_notify_extend(tail, lo, len)) {
1685		__skb_queue_tail(q, skb);
1686		skb = NULL;
1687	}
1688	spin_unlock_irqrestore(&q->lock, flags);
1689
1690	sk_error_report(sk);
1691
1692release:
1693	consume_skb(skb);
1694	sock_put(sk);
1695}
1696
1697void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1698			   bool success)
1699{
1700	struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1701
1702	uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1703
1704	if (refcount_dec_and_test(&uarg->refcnt))
1705		__msg_zerocopy_callback(uarg_zc);
1706}
1707EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1708
1709void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1710{
1711	struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1712
1713	atomic_dec(&sk->sk_zckey);
1714	uarg_to_msgzc(uarg)->len--;
1715
1716	if (have_uref)
1717		msg_zerocopy_callback(NULL, uarg, true);
1718}
1719EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1720
1721int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1722			     struct msghdr *msg, int len,
1723			     struct ubuf_info *uarg)
1724{
1725	struct ubuf_info *orig_uarg = skb_zcopy(skb);
1726	int err, orig_len = skb->len;
1727
1728	/* An skb can only point to one uarg. This edge case happens when
1729	 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1730	 */
1731	if (orig_uarg && uarg != orig_uarg)
1732		return -EEXIST;
1733
1734	err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1735	if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1736		struct sock *save_sk = skb->sk;
1737
1738		/* Streams do not free skb on error. Reset to prev state. */
1739		iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1740		skb->sk = sk;
1741		___pskb_trim(skb, orig_len);
1742		skb->sk = save_sk;
1743		return err;
1744	}
1745
1746	skb_zcopy_set(skb, uarg, NULL);
1747	return skb->len - orig_len;
1748}
1749EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1750
1751void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1752{
1753	int i;
1754
1755	skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1756	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1757		skb_frag_ref(skb, i);
1758}
1759EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1760
1761static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1762			      gfp_t gfp_mask)
1763{
1764	if (skb_zcopy(orig)) {
1765		if (skb_zcopy(nskb)) {
1766			/* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1767			if (!gfp_mask) {
1768				WARN_ON_ONCE(1);
1769				return -ENOMEM;
1770			}
1771			if (skb_uarg(nskb) == skb_uarg(orig))
1772				return 0;
1773			if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1774				return -EIO;
1775		}
1776		skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1777	}
1778	return 0;
1779}
1780
1781/**
1782 *	skb_copy_ubufs	-	copy userspace skb frags buffers to kernel
1783 *	@skb: the skb to modify
1784 *	@gfp_mask: allocation priority
1785 *
1786 *	This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1787 *	It will copy all frags into kernel and drop the reference
1788 *	to userspace pages.
1789 *
1790 *	If this function is called from an interrupt gfp_mask() must be
1791 *	%GFP_ATOMIC.
1792 *
1793 *	Returns 0 on success or a negative error code on failure
1794 *	to allocate kernel memory to copy to.
1795 */
1796int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1797{
1798	int num_frags = skb_shinfo(skb)->nr_frags;
1799	struct page *page, *head = NULL;
1800	int i, order, psize, new_frags;
1801	u32 d_off;
1802
1803	if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1804		return -EINVAL;
1805
1806	if (!num_frags)
1807		goto release;
1808
1809	/* We might have to allocate high order pages, so compute what minimum
1810	 * page order is needed.
1811	 */
1812	order = 0;
1813	while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1814		order++;
1815	psize = (PAGE_SIZE << order);
1816
1817	new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1818	for (i = 0; i < new_frags; i++) {
1819		page = alloc_pages(gfp_mask | __GFP_COMP, order);
1820		if (!page) {
1821			while (head) {
1822				struct page *next = (struct page *)page_private(head);
1823				put_page(head);
1824				head = next;
1825			}
1826			return -ENOMEM;
1827		}
1828		set_page_private(page, (unsigned long)head);
1829		head = page;
1830	}
1831
1832	page = head;
1833	d_off = 0;
1834	for (i = 0; i < num_frags; i++) {
1835		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1836		u32 p_off, p_len, copied;
1837		struct page *p;
1838		u8 *vaddr;
1839
1840		skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1841				      p, p_off, p_len, copied) {
1842			u32 copy, done = 0;
1843			vaddr = kmap_atomic(p);
1844
1845			while (done < p_len) {
1846				if (d_off == psize) {
1847					d_off = 0;
1848					page = (struct page *)page_private(page);
1849				}
1850				copy = min_t(u32, psize - d_off, p_len - done);
1851				memcpy(page_address(page) + d_off,
1852				       vaddr + p_off + done, copy);
1853				done += copy;
1854				d_off += copy;
1855			}
1856			kunmap_atomic(vaddr);
1857		}
1858	}
1859
1860	/* skb frags release userspace buffers */
1861	for (i = 0; i < num_frags; i++)
1862		skb_frag_unref(skb, i);
1863
1864	/* skb frags point to kernel buffers */
1865	for (i = 0; i < new_frags - 1; i++) {
1866		__skb_fill_page_desc(skb, i, head, 0, psize);
1867		head = (struct page *)page_private(head);
1868	}
1869	__skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1870	skb_shinfo(skb)->nr_frags = new_frags;
1871
1872release:
1873	skb_zcopy_clear(skb, false);
1874	return 0;
1875}
1876EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1877
1878/**
1879 *	skb_clone	-	duplicate an sk_buff
1880 *	@skb: buffer to clone
1881 *	@gfp_mask: allocation priority
1882 *
1883 *	Duplicate an &sk_buff. The new one is not owned by a socket. Both
1884 *	copies share the same packet data but not structure. The new
1885 *	buffer has a reference count of 1. If the allocation fails the
1886 *	function returns %NULL otherwise the new buffer is returned.
1887 *
1888 *	If this function is called from an interrupt gfp_mask() must be
1889 *	%GFP_ATOMIC.
1890 */
1891
1892struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1893{
1894	struct sk_buff_fclones *fclones = container_of(skb,
1895						       struct sk_buff_fclones,
1896						       skb1);
1897	struct sk_buff *n;
1898
1899	if (skb_orphan_frags(skb, gfp_mask))
1900		return NULL;
1901
1902	if (skb->fclone == SKB_FCLONE_ORIG &&
1903	    refcount_read(&fclones->fclone_ref) == 1) {
1904		n = &fclones->skb2;
1905		refcount_set(&fclones->fclone_ref, 2);
1906		n->fclone = SKB_FCLONE_CLONE;
1907	} else {
1908		if (skb_pfmemalloc(skb))
1909			gfp_mask |= __GFP_MEMALLOC;
1910
1911		n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1912		if (!n)
1913			return NULL;
1914
1915		n->fclone = SKB_FCLONE_UNAVAILABLE;
1916	}
1917
1918	return __skb_clone(n, skb);
1919}
1920EXPORT_SYMBOL(skb_clone);
1921
1922void skb_headers_offset_update(struct sk_buff *skb, int off)
1923{
1924	/* Only adjust this if it actually is csum_start rather than csum */
1925	if (skb->ip_summed == CHECKSUM_PARTIAL)
1926		skb->csum_start += off;
1927	/* {transport,network,mac}_header and tail are relative to skb->head */
1928	skb->transport_header += off;
1929	skb->network_header   += off;
1930	if (skb_mac_header_was_set(skb))
1931		skb->mac_header += off;
1932	skb->inner_transport_header += off;
1933	skb->inner_network_header += off;
1934	skb->inner_mac_header += off;
1935}
1936EXPORT_SYMBOL(skb_headers_offset_update);
1937
1938void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1939{
1940	__copy_skb_header(new, old);
1941
1942	skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1943	skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1944	skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1945}
1946EXPORT_SYMBOL(skb_copy_header);
1947
1948static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1949{
1950	if (skb_pfmemalloc(skb))
1951		return SKB_ALLOC_RX;
1952	return 0;
1953}
1954
1955/**
1956 *	skb_copy	-	create private copy of an sk_buff
1957 *	@skb: buffer to copy
1958 *	@gfp_mask: allocation priority
1959 *
1960 *	Make a copy of both an &sk_buff and its data. This is used when the
1961 *	caller wishes to modify the data and needs a private copy of the
1962 *	data to alter. Returns %NULL on failure or the pointer to the buffer
1963 *	on success. The returned buffer has a reference count of 1.
1964 *
1965 *	As by-product this function converts non-linear &sk_buff to linear
1966 *	one, so that &sk_buff becomes completely private and caller is allowed
1967 *	to modify all the data of returned buffer. This means that this
1968 *	function is not recommended for use in circumstances when only
1969 *	header is going to be modified. Use pskb_copy() instead.
1970 */
1971
1972struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1973{
1974	int headerlen = skb_headroom(skb);
1975	unsigned int size = skb_end_offset(skb) + skb->data_len;
1976	struct sk_buff *n = __alloc_skb(size, gfp_mask,
1977					skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1978
1979	if (!n)
1980		return NULL;
1981
1982	/* Set the data pointer */
1983	skb_reserve(n, headerlen);
1984	/* Set the tail pointer and length */
1985	skb_put(n, skb->len);
1986
1987	BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1988
1989	skb_copy_header(n, skb);
1990	return n;
1991}
1992EXPORT_SYMBOL(skb_copy);
1993
1994/**
1995 *	__pskb_copy_fclone	-  create copy of an sk_buff with private head.
1996 *	@skb: buffer to copy
1997 *	@headroom: headroom of new skb
1998 *	@gfp_mask: allocation priority
1999 *	@fclone: if true allocate the copy of the skb from the fclone
2000 *	cache instead of the head cache; it is recommended to set this
2001 *	to true for the cases where the copy will likely be cloned
2002 *
2003 *	Make a copy of both an &sk_buff and part of its data, located
2004 *	in header. Fragmented data remain shared. This is used when
2005 *	the caller wishes to modify only header of &sk_buff and needs
2006 *	private copy of the header to alter. Returns %NULL on failure
2007 *	or the pointer to the buffer on success.
2008 *	The returned buffer has a reference count of 1.
2009 */
2010
2011struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
2012				   gfp_t gfp_mask, bool fclone)
2013{
2014	unsigned int size = skb_headlen(skb) + headroom;
2015	int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
2016	struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
2017
2018	if (!n)
2019		goto out;
2020
2021	/* Set the data pointer */
2022	skb_reserve(n, headroom);
2023	/* Set the tail pointer and length */
2024	skb_put(n, skb_headlen(skb));
2025	/* Copy the bytes */
2026	skb_copy_from_linear_data(skb, n->data, n->len);
2027
2028	n->truesize += skb->data_len;
2029	n->data_len  = skb->data_len;
2030	n->len	     = skb->len;
2031
2032	if (skb_shinfo(skb)->nr_frags) {
2033		int i;
2034
2035		if (skb_orphan_frags(skb, gfp_mask) ||
2036		    skb_zerocopy_clone(n, skb, gfp_mask)) {
2037			kfree_skb(n);
2038			n = NULL;
2039			goto out;
2040		}
2041		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2042			skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
2043			skb_frag_ref(skb, i);
2044		}
2045		skb_shinfo(n)->nr_frags = i;
2046	}
2047
2048	if (skb_has_frag_list(skb)) {
2049		skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
2050		skb_clone_fraglist(n);
2051	}
2052
2053	skb_copy_header(n, skb);
2054out:
2055	return n;
2056}
2057EXPORT_SYMBOL(__pskb_copy_fclone);
2058
2059/**
2060 *	pskb_expand_head - reallocate header of &sk_buff
2061 *	@skb: buffer to reallocate
2062 *	@nhead: room to add at head
2063 *	@ntail: room to add at tail
2064 *	@gfp_mask: allocation priority
2065 *
2066 *	Expands (or creates identical copy, if @nhead and @ntail are zero)
2067 *	header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2068 *	reference count of 1. Returns zero in the case of success or error,
2069 *	if expansion failed. In the last case, &sk_buff is not changed.
2070 *
2071 *	All the pointers pointing into skb header may change and must be
2072 *	reloaded after call to this function.
2073 */
2074
2075int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2076		     gfp_t gfp_mask)
2077{
2078	unsigned int osize = skb_end_offset(skb);
2079	unsigned int size = osize + nhead + ntail;
2080	long off;
2081	u8 *data;
2082	int i;
2083
2084	BUG_ON(nhead < 0);
2085
2086	BUG_ON(skb_shared(skb));
2087
2088	skb_zcopy_downgrade_managed(skb);
2089
2090	if (skb_pfmemalloc(skb))
2091		gfp_mask |= __GFP_MEMALLOC;
2092
2093	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2094	if (!data)
2095		goto nodata;
2096	size = SKB_WITH_OVERHEAD(size);
2097
2098	/* Copy only real data... and, alas, header. This should be
2099	 * optimized for the cases when header is void.
2100	 */
2101	memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2102
2103	memcpy((struct skb_shared_info *)(data + size),
2104	       skb_shinfo(skb),
2105	       offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2106
2107	/*
2108	 * if shinfo is shared we must drop the old head gracefully, but if it
2109	 * is not we can just drop the old head and let the existing refcount
2110	 * be since all we did is relocate the values
2111	 */
2112	if (skb_cloned(skb)) {
2113		if (skb_orphan_frags(skb, gfp_mask))
2114			goto nofrags;
2115		if (skb_zcopy(skb))
2116			refcount_inc(&skb_uarg(skb)->refcnt);
2117		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2118			skb_frag_ref(skb, i);
2119
2120		if (skb_has_frag_list(skb))
2121			skb_clone_fraglist(skb);
2122
2123		skb_release_data(skb, SKB_CONSUMED, false);
2124	} else {
2125		skb_free_head(skb, false);
2126	}
2127	off = (data + nhead) - skb->head;
2128
2129	skb->head     = data;
2130	skb->head_frag = 0;
2131	skb->data    += off;
2132
2133	skb_set_end_offset(skb, size);
2134#ifdef NET_SKBUFF_DATA_USES_OFFSET
2135	off           = nhead;
2136#endif
2137	skb->tail	      += off;
2138	skb_headers_offset_update(skb, nhead);
2139	skb->cloned   = 0;
2140	skb->hdr_len  = 0;
2141	skb->nohdr    = 0;
2142	atomic_set(&skb_shinfo(skb)->dataref, 1);
2143
2144	skb_metadata_clear(skb);
2145
2146	/* It is not generally safe to change skb->truesize.
2147	 * For the moment, we really care of rx path, or
2148	 * when skb is orphaned (not attached to a socket).
2149	 */
2150	if (!skb->sk || skb->destructor == sock_edemux)
2151		skb->truesize += size - osize;
2152
2153	return 0;
2154
2155nofrags:
2156	skb_kfree_head(data, size);
2157nodata:
2158	return -ENOMEM;
2159}
2160EXPORT_SYMBOL(pskb_expand_head);
2161
2162/* Make private copy of skb with writable head and some headroom */
2163
2164struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2165{
2166	struct sk_buff *skb2;
2167	int delta = headroom - skb_headroom(skb);
2168
2169	if (delta <= 0)
2170		skb2 = pskb_copy(skb, GFP_ATOMIC);
2171	else {
2172		skb2 = skb_clone(skb, GFP_ATOMIC);
2173		if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2174					     GFP_ATOMIC)) {
2175			kfree_skb(skb2);
2176			skb2 = NULL;
2177		}
2178	}
2179	return skb2;
2180}
2181EXPORT_SYMBOL(skb_realloc_headroom);
2182
2183/* Note: We plan to rework this in linux-6.4 */
2184int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2185{
2186	unsigned int saved_end_offset, saved_truesize;
2187	struct skb_shared_info *shinfo;
2188	int res;
2189
2190	saved_end_offset = skb_end_offset(skb);
2191	saved_truesize = skb->truesize;
2192
2193	res = pskb_expand_head(skb, 0, 0, pri);
2194	if (res)
2195		return res;
2196
2197	skb->truesize = saved_truesize;
2198
2199	if (likely(skb_end_offset(skb) == saved_end_offset))
2200		return 0;
2201
2202	/* We can not change skb->end if the original or new value
2203	 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2204	 */
2205	if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2206	    skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2207		/* We think this path should not be taken.
2208		 * Add a temporary trace to warn us just in case.
2209		 */
2210		pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2211			    saved_end_offset, skb_end_offset(skb));
2212		WARN_ON_ONCE(1);
2213		return 0;
2214	}
2215
2216	shinfo = skb_shinfo(skb);
2217
2218	/* We are about to change back skb->end,
2219	 * we need to move skb_shinfo() to its new location.
2220	 */
2221	memmove(skb->head + saved_end_offset,
2222		shinfo,
2223		offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2224
2225	skb_set_end_offset(skb, saved_end_offset);
2226
2227	return 0;
2228}
2229
2230/**
2231 *	skb_expand_head - reallocate header of &sk_buff
2232 *	@skb: buffer to reallocate
2233 *	@headroom: needed headroom
2234 *
2235 *	Unlike skb_realloc_headroom, this one does not allocate a new skb
2236 *	if possible; copies skb->sk to new skb as needed
2237 *	and frees original skb in case of failures.
2238 *
2239 *	It expect increased headroom and generates warning otherwise.
2240 */
2241
2242struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2243{
2244	int delta = headroom - skb_headroom(skb);
2245	int osize = skb_end_offset(skb);
2246	struct sock *sk = skb->sk;
2247
2248	if (WARN_ONCE(delta <= 0,
2249		      "%s is expecting an increase in the headroom", __func__))
2250		return skb;
2251
2252	delta = SKB_DATA_ALIGN(delta);
2253	/* pskb_expand_head() might crash, if skb is shared. */
2254	if (skb_shared(skb) || !is_skb_wmem(skb)) {
2255		struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2256
2257		if (unlikely(!nskb))
2258			goto fail;
2259
2260		if (sk)
2261			skb_set_owner_w(nskb, sk);
2262		consume_skb(skb);
2263		skb = nskb;
2264	}
2265	if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2266		goto fail;
2267
2268	if (sk && is_skb_wmem(skb)) {
2269		delta = skb_end_offset(skb) - osize;
2270		refcount_add(delta, &sk->sk_wmem_alloc);
2271		skb->truesize += delta;
2272	}
2273	return skb;
2274
2275fail:
2276	kfree_skb(skb);
2277	return NULL;
2278}
2279EXPORT_SYMBOL(skb_expand_head);
2280
2281/**
2282 *	skb_copy_expand	-	copy and expand sk_buff
2283 *	@skb: buffer to copy
2284 *	@newheadroom: new free bytes at head
2285 *	@newtailroom: new free bytes at tail
2286 *	@gfp_mask: allocation priority
2287 *
2288 *	Make a copy of both an &sk_buff and its data and while doing so
2289 *	allocate additional space.
2290 *
2291 *	This is used when the caller wishes to modify the data and needs a
2292 *	private copy of the data to alter as well as more space for new fields.
2293 *	Returns %NULL on failure or the pointer to the buffer
2294 *	on success. The returned buffer has a reference count of 1.
2295 *
2296 *	You must pass %GFP_ATOMIC as the allocation priority if this function
2297 *	is called from an interrupt.
2298 */
2299struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2300				int newheadroom, int newtailroom,
2301				gfp_t gfp_mask)
2302{
2303	/*
2304	 *	Allocate the copy buffer
2305	 */
2306	struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2307					gfp_mask, skb_alloc_rx_flag(skb),
2308					NUMA_NO_NODE);
2309	int oldheadroom = skb_headroom(skb);
2310	int head_copy_len, head_copy_off;
2311
2312	if (!n)
2313		return NULL;
2314
2315	skb_reserve(n, newheadroom);
2316
2317	/* Set the tail pointer and length */
2318	skb_put(n, skb->len);
2319
2320	head_copy_len = oldheadroom;
2321	head_copy_off = 0;
2322	if (newheadroom <= head_copy_len)
2323		head_copy_len = newheadroom;
2324	else
2325		head_copy_off = newheadroom - head_copy_len;
2326
2327	/* Copy the linear header and data. */
2328	BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2329			     skb->len + head_copy_len));
2330
2331	skb_copy_header(n, skb);
2332
2333	skb_headers_offset_update(n, newheadroom - oldheadroom);
2334
2335	return n;
2336}
2337EXPORT_SYMBOL(skb_copy_expand);
2338
2339/**
2340 *	__skb_pad		-	zero pad the tail of an skb
2341 *	@skb: buffer to pad
2342 *	@pad: space to pad
2343 *	@free_on_error: free buffer on error
2344 *
2345 *	Ensure that a buffer is followed by a padding area that is zero
2346 *	filled. Used by network drivers which may DMA or transfer data
2347 *	beyond the buffer end onto the wire.
2348 *
2349 *	May return error in out of memory cases. The skb is freed on error
2350 *	if @free_on_error is true.
2351 */
2352
2353int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2354{
2355	int err;
2356	int ntail;
2357
2358	/* If the skbuff is non linear tailroom is always zero.. */
2359	if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2360		memset(skb->data+skb->len, 0, pad);
2361		return 0;
2362	}
2363
2364	ntail = skb->data_len + pad - (skb->end - skb->tail);
2365	if (likely(skb_cloned(skb) || ntail > 0)) {
2366		err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2367		if (unlikely(err))
2368			goto free_skb;
2369	}
2370
2371	/* FIXME: The use of this function with non-linear skb's really needs
2372	 * to be audited.
2373	 */
2374	err = skb_linearize(skb);
2375	if (unlikely(err))
2376		goto free_skb;
2377
2378	memset(skb->data + skb->len, 0, pad);
2379	return 0;
2380
2381free_skb:
2382	if (free_on_error)
2383		kfree_skb(skb);
2384	return err;
2385}
2386EXPORT_SYMBOL(__skb_pad);
2387
2388/**
2389 *	pskb_put - add data to the tail of a potentially fragmented buffer
2390 *	@skb: start of the buffer to use
2391 *	@tail: tail fragment of the buffer to use
2392 *	@len: amount of data to add
2393 *
2394 *	This function extends the used data area of the potentially
2395 *	fragmented buffer. @tail must be the last fragment of @skb -- or
2396 *	@skb itself. If this would exceed the total buffer size the kernel
2397 *	will panic. A pointer to the first byte of the extra data is
2398 *	returned.
2399 */
2400
2401void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2402{
2403	if (tail != skb) {
2404		skb->data_len += len;
2405		skb->len += len;
2406	}
2407	return skb_put(tail, len);
2408}
2409EXPORT_SYMBOL_GPL(pskb_put);
2410
2411/**
2412 *	skb_put - add data to a buffer
2413 *	@skb: buffer to use
2414 *	@len: amount of data to add
2415 *
2416 *	This function extends the used data area of the buffer. If this would
2417 *	exceed the total buffer size the kernel will panic. A pointer to the
2418 *	first byte of the extra data is returned.
2419 */
2420void *skb_put(struct sk_buff *skb, unsigned int len)
2421{
2422	void *tmp = skb_tail_pointer(skb);
2423	SKB_LINEAR_ASSERT(skb);
2424	skb->tail += len;
2425	skb->len  += len;
2426	if (unlikely(skb->tail > skb->end))
2427		skb_over_panic(skb, len, __builtin_return_address(0));
2428	return tmp;
2429}
2430EXPORT_SYMBOL(skb_put);
2431
2432/**
2433 *	skb_push - add data to the start of a buffer
2434 *	@skb: buffer to use
2435 *	@len: amount of data to add
2436 *
2437 *	This function extends the used data area of the buffer at the buffer
2438 *	start. If this would exceed the total buffer headroom the kernel will
2439 *	panic. A pointer to the first byte of the extra data is returned.
2440 */
2441void *skb_push(struct sk_buff *skb, unsigned int len)
2442{
2443	skb->data -= len;
2444	skb->len  += len;
2445	if (unlikely(skb->data < skb->head))
2446		skb_under_panic(skb, len, __builtin_return_address(0));
2447	return skb->data;
2448}
2449EXPORT_SYMBOL(skb_push);
2450
2451/**
2452 *	skb_pull - remove data from the start of a buffer
2453 *	@skb: buffer to use
2454 *	@len: amount of data to remove
2455 *
2456 *	This function removes data from the start of a buffer, returning
2457 *	the memory to the headroom. A pointer to the next data in the buffer
2458 *	is returned. Once the data has been pulled future pushes will overwrite
2459 *	the old data.
2460 */
2461void *skb_pull(struct sk_buff *skb, unsigned int len)
2462{
2463	return skb_pull_inline(skb, len);
2464}
2465EXPORT_SYMBOL(skb_pull);
2466
2467/**
2468 *	skb_pull_data - remove data from the start of a buffer returning its
2469 *	original position.
2470 *	@skb: buffer to use
2471 *	@len: amount of data to remove
2472 *
2473 *	This function removes data from the start of a buffer, returning
2474 *	the memory to the headroom. A pointer to the original data in the buffer
2475 *	is returned after checking if there is enough data to pull. Once the
2476 *	data has been pulled future pushes will overwrite the old data.
2477 */
2478void *skb_pull_data(struct sk_buff *skb, size_t len)
2479{
2480	void *data = skb->data;
2481
2482	if (skb->len < len)
2483		return NULL;
2484
2485	skb_pull(skb, len);
2486
2487	return data;
2488}
2489EXPORT_SYMBOL(skb_pull_data);
2490
2491/**
2492 *	skb_trim - remove end from a buffer
2493 *	@skb: buffer to alter
2494 *	@len: new length
2495 *
2496 *	Cut the length of a buffer down by removing data from the tail. If
2497 *	the buffer is already under the length specified it is not modified.
2498 *	The skb must be linear.
2499 */
2500void skb_trim(struct sk_buff *skb, unsigned int len)
2501{
2502	if (skb->len > len)
2503		__skb_trim(skb, len);
2504}
2505EXPORT_SYMBOL(skb_trim);
2506
2507/* Trims skb to length len. It can change skb pointers.
2508 */
2509
2510int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2511{
2512	struct sk_buff **fragp;
2513	struct sk_buff *frag;
2514	int offset = skb_headlen(skb);
2515	int nfrags = skb_shinfo(skb)->nr_frags;
2516	int i;
2517	int err;
2518
2519	if (skb_cloned(skb) &&
2520	    unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2521		return err;
2522
2523	i = 0;
2524	if (offset >= len)
2525		goto drop_pages;
2526
2527	for (; i < nfrags; i++) {
2528		int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2529
2530		if (end < len) {
2531			offset = end;
2532			continue;
2533		}
2534
2535		skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2536
2537drop_pages:
2538		skb_shinfo(skb)->nr_frags = i;
2539
2540		for (; i < nfrags; i++)
2541			skb_frag_unref(skb, i);
2542
2543		if (skb_has_frag_list(skb))
2544			skb_drop_fraglist(skb);
2545		goto done;
2546	}
2547
2548	for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2549	     fragp = &frag->next) {
2550		int end = offset + frag->len;
2551
2552		if (skb_shared(frag)) {
2553			struct sk_buff *nfrag;
2554
2555			nfrag = skb_clone(frag, GFP_ATOMIC);
2556			if (unlikely(!nfrag))
2557				return -ENOMEM;
2558
2559			nfrag->next = frag->next;
2560			consume_skb(frag);
2561			frag = nfrag;
2562			*fragp = frag;
2563		}
2564
2565		if (end < len) {
2566			offset = end;
2567			continue;
2568		}
2569
2570		if (end > len &&
2571		    unlikely((err = pskb_trim(frag, len - offset))))
2572			return err;
2573
2574		if (frag->next)
2575			skb_drop_list(&frag->next);
2576		break;
2577	}
2578
2579done:
2580	if (len > skb_headlen(skb)) {
2581		skb->data_len -= skb->len - len;
2582		skb->len       = len;
2583	} else {
2584		skb->len       = len;
2585		skb->data_len  = 0;
2586		skb_set_tail_pointer(skb, len);
2587	}
2588
2589	if (!skb->sk || skb->destructor == sock_edemux)
2590		skb_condense(skb);
2591	return 0;
2592}
2593EXPORT_SYMBOL(___pskb_trim);
2594
2595/* Note : use pskb_trim_rcsum() instead of calling this directly
2596 */
2597int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2598{
2599	if (skb->ip_summed == CHECKSUM_COMPLETE) {
2600		int delta = skb->len - len;
2601
2602		skb->csum = csum_block_sub(skb->csum,
2603					   skb_checksum(skb, len, delta, 0),
2604					   len);
2605	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2606		int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2607		int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2608
2609		if (offset + sizeof(__sum16) > hdlen)
2610			return -EINVAL;
2611	}
2612	return __pskb_trim(skb, len);
2613}
2614EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2615
2616/**
2617 *	__pskb_pull_tail - advance tail of skb header
2618 *	@skb: buffer to reallocate
2619 *	@delta: number of bytes to advance tail
2620 *
2621 *	The function makes a sense only on a fragmented &sk_buff,
2622 *	it expands header moving its tail forward and copying necessary
2623 *	data from fragmented part.
2624 *
2625 *	&sk_buff MUST have reference count of 1.
2626 *
2627 *	Returns %NULL (and &sk_buff does not change) if pull failed
2628 *	or value of new tail of skb in the case of success.
2629 *
2630 *	All the pointers pointing into skb header may change and must be
2631 *	reloaded after call to this function.
2632 */
2633
2634/* Moves tail of skb head forward, copying data from fragmented part,
2635 * when it is necessary.
2636 * 1. It may fail due to malloc failure.
2637 * 2. It may change skb pointers.
2638 *
2639 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2640 */
2641void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2642{
2643	/* If skb has not enough free space at tail, get new one
2644	 * plus 128 bytes for future expansions. If we have enough
2645	 * room at tail, reallocate without expansion only if skb is cloned.
2646	 */
2647	int i, k, eat = (skb->tail + delta) - skb->end;
2648
2649	if (eat > 0 || skb_cloned(skb)) {
2650		if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2651				     GFP_ATOMIC))
2652			return NULL;
2653	}
2654
2655	BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2656			     skb_tail_pointer(skb), delta));
2657
2658	/* Optimization: no fragments, no reasons to preestimate
2659	 * size of pulled pages. Superb.
2660	 */
2661	if (!skb_has_frag_list(skb))
2662		goto pull_pages;
2663
2664	/* Estimate size of pulled pages. */
2665	eat = delta;
2666	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2667		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2668
2669		if (size >= eat)
2670			goto pull_pages;
2671		eat -= size;
2672	}
2673
2674	/* If we need update frag list, we are in troubles.
2675	 * Certainly, it is possible to add an offset to skb data,
2676	 * but taking into account that pulling is expected to
2677	 * be very rare operation, it is worth to fight against
2678	 * further bloating skb head and crucify ourselves here instead.
2679	 * Pure masohism, indeed. 8)8)
2680	 */
2681	if (eat) {
2682		struct sk_buff *list = skb_shinfo(skb)->frag_list;
2683		struct sk_buff *clone = NULL;
2684		struct sk_buff *insp = NULL;
2685
2686		do {
2687			if (list->len <= eat) {
2688				/* Eaten as whole. */
2689				eat -= list->len;
2690				list = list->next;
2691				insp = list;
2692			} else {
2693				/* Eaten partially. */
2694				if (skb_is_gso(skb) && !list->head_frag &&
2695				    skb_headlen(list))
2696					skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2697
2698				if (skb_shared(list)) {
2699					/* Sucks! We need to fork list. :-( */
2700					clone = skb_clone(list, GFP_ATOMIC);
2701					if (!clone)
2702						return NULL;
2703					insp = list->next;
2704					list = clone;
2705				} else {
2706					/* This may be pulled without
2707					 * problems. */
2708					insp = list;
2709				}
2710				if (!pskb_pull(list, eat)) {
2711					kfree_skb(clone);
2712					return NULL;
2713				}
2714				break;
2715			}
2716		} while (eat);
2717
2718		/* Free pulled out fragments. */
2719		while ((list = skb_shinfo(skb)->frag_list) != insp) {
2720			skb_shinfo(skb)->frag_list = list->next;
2721			consume_skb(list);
2722		}
2723		/* And insert new clone at head. */
2724		if (clone) {
2725			clone->next = list;
2726			skb_shinfo(skb)->frag_list = clone;
2727		}
2728	}
2729	/* Success! Now we may commit changes to skb data. */
2730
2731pull_pages:
2732	eat = delta;
2733	k = 0;
2734	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2735		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2736
2737		if (size <= eat) {
2738			skb_frag_unref(skb, i);
2739			eat -= size;
2740		} else {
2741			skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2742
2743			*frag = skb_shinfo(skb)->frags[i];
2744			if (eat) {
2745				skb_frag_off_add(frag, eat);
2746				skb_frag_size_sub(frag, eat);
2747				if (!i)
2748					goto end;
2749				eat = 0;
2750			}
2751			k++;
2752		}
2753	}
2754	skb_shinfo(skb)->nr_frags = k;
2755
2756end:
2757	skb->tail     += delta;
2758	skb->data_len -= delta;
2759
2760	if (!skb->data_len)
2761		skb_zcopy_clear(skb, false);
2762
2763	return skb_tail_pointer(skb);
2764}
2765EXPORT_SYMBOL(__pskb_pull_tail);
2766
2767/**
2768 *	skb_copy_bits - copy bits from skb to kernel buffer
2769 *	@skb: source skb
2770 *	@offset: offset in source
2771 *	@to: destination buffer
2772 *	@len: number of bytes to copy
2773 *
2774 *	Copy the specified number of bytes from the source skb to the
2775 *	destination buffer.
2776 *
2777 *	CAUTION ! :
2778 *		If its prototype is ever changed,
2779 *		check arch/{*}/net/{*}.S files,
2780 *		since it is called from BPF assembly code.
2781 */
2782int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2783{
2784	int start = skb_headlen(skb);
2785	struct sk_buff *frag_iter;
2786	int i, copy;
2787
2788	if (offset > (int)skb->len - len)
2789		goto fault;
2790
2791	/* Copy header. */
2792	if ((copy = start - offset) > 0) {
2793		if (copy > len)
2794			copy = len;
2795		skb_copy_from_linear_data_offset(skb, offset, to, copy);
2796		if ((len -= copy) == 0)
2797			return 0;
2798		offset += copy;
2799		to     += copy;
2800	}
2801
2802	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2803		int end;
2804		skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2805
2806		WARN_ON(start > offset + len);
2807
2808		end = start + skb_frag_size(f);
2809		if ((copy = end - offset) > 0) {
2810			u32 p_off, p_len, copied;
2811			struct page *p;
2812			u8 *vaddr;
2813
2814			if (copy > len)
2815				copy = len;
2816
2817			skb_frag_foreach_page(f,
2818					      skb_frag_off(f) + offset - start,
2819					      copy, p, p_off, p_len, copied) {
2820				vaddr = kmap_atomic(p);
2821				memcpy(to + copied, vaddr + p_off, p_len);
2822				kunmap_atomic(vaddr);
2823			}
2824
2825			if ((len -= copy) == 0)
2826				return 0;
2827			offset += copy;
2828			to     += copy;
2829		}
2830		start = end;
2831	}
2832
2833	skb_walk_frags(skb, frag_iter) {
2834		int end;
2835
2836		WARN_ON(start > offset + len);
2837
2838		end = start + frag_iter->len;
2839		if ((copy = end - offset) > 0) {
2840			if (copy > len)
2841				copy = len;
2842			if (skb_copy_bits(frag_iter, offset - start, to, copy))
2843				goto fault;
2844			if ((len -= copy) == 0)
2845				return 0;
2846			offset += copy;
2847			to     += copy;
2848		}
2849		start = end;
2850	}
2851
2852	if (!len)
2853		return 0;
2854
2855fault:
2856	return -EFAULT;
2857}
2858EXPORT_SYMBOL(skb_copy_bits);
2859
2860/*
2861 * Callback from splice_to_pipe(), if we need to release some pages
2862 * at the end of the spd in case we error'ed out in filling the pipe.
2863 */
2864static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2865{
2866	put_page(spd->pages[i]);
2867}
2868
2869static struct page *linear_to_page(struct page *page, unsigned int *len,
2870				   unsigned int *offset,
2871				   struct sock *sk)
2872{
2873	struct page_frag *pfrag = sk_page_frag(sk);
2874
2875	if (!sk_page_frag_refill(sk, pfrag))
2876		return NULL;
2877
2878	*len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2879
2880	memcpy(page_address(pfrag->page) + pfrag->offset,
2881	       page_address(page) + *offset, *len);
2882	*offset = pfrag->offset;
2883	pfrag->offset += *len;
2884
2885	return pfrag->page;
2886}
2887
2888static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2889			     struct page *page,
2890			     unsigned int offset)
2891{
2892	return	spd->nr_pages &&
2893		spd->pages[spd->nr_pages - 1] == page &&
2894		(spd->partial[spd->nr_pages - 1].offset +
2895		 spd->partial[spd->nr_pages - 1].len == offset);
2896}
2897
2898/*
2899 * Fill page/offset/length into spd, if it can hold more pages.
2900 */
2901static bool spd_fill_page(struct splice_pipe_desc *spd,
2902			  struct pipe_inode_info *pipe, struct page *page,
2903			  unsigned int *len, unsigned int offset,
2904			  bool linear,
2905			  struct sock *sk)
2906{
2907	if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2908		return true;
2909
2910	if (linear) {
2911		page = linear_to_page(page, len, &offset, sk);
2912		if (!page)
2913			return true;
2914	}
2915	if (spd_can_coalesce(spd, page, offset)) {
2916		spd->partial[spd->nr_pages - 1].len += *len;
2917		return false;
2918	}
2919	get_page(page);
2920	spd->pages[spd->nr_pages] = page;
2921	spd->partial[spd->nr_pages].len = *len;
2922	spd->partial[spd->nr_pages].offset = offset;
2923	spd->nr_pages++;
2924
2925	return false;
2926}
2927
2928static bool __splice_segment(struct page *page, unsigned int poff,
2929			     unsigned int plen, unsigned int *off,
2930			     unsigned int *len,
2931			     struct splice_pipe_desc *spd, bool linear,
2932			     struct sock *sk,
2933			     struct pipe_inode_info *pipe)
2934{
2935	if (!*len)
2936		return true;
2937
2938	/* skip this segment if already processed */
2939	if (*off >= plen) {
2940		*off -= plen;
2941		return false;
2942	}
2943
2944	/* ignore any bits we already processed */
2945	poff += *off;
2946	plen -= *off;
2947	*off = 0;
2948
2949	do {
2950		unsigned int flen = min(*len, plen);
2951
2952		if (spd_fill_page(spd, pipe, page, &flen, poff,
2953				  linear, sk))
2954			return true;
2955		poff += flen;
2956		plen -= flen;
2957		*len -= flen;
2958	} while (*len && plen);
2959
2960	return false;
2961}
2962
2963/*
2964 * Map linear and fragment data from the skb to spd. It reports true if the
2965 * pipe is full or if we already spliced the requested length.
2966 */
2967static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2968			      unsigned int *offset, unsigned int *len,
2969			      struct splice_pipe_desc *spd, struct sock *sk)
2970{
2971	int seg;
2972	struct sk_buff *iter;
2973
2974	/* map the linear part :
2975	 * If skb->head_frag is set, this 'linear' part is backed by a
2976	 * fragment, and if the head is not shared with any clones then
2977	 * we can avoid a copy since we own the head portion of this page.
2978	 */
2979	if (__splice_segment(virt_to_page(skb->data),
2980			     (unsigned long) skb->data & (PAGE_SIZE - 1),
2981			     skb_headlen(skb),
2982			     offset, len, spd,
2983			     skb_head_is_locked(skb),
2984			     sk, pipe))
2985		return true;
2986
2987	/*
2988	 * then map the fragments
2989	 */
2990	for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2991		const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2992
2993		if (__splice_segment(skb_frag_page(f),
2994				     skb_frag_off(f), skb_frag_size(f),
2995				     offset, len, spd, false, sk, pipe))
2996			return true;
2997	}
2998
2999	skb_walk_frags(skb, iter) {
3000		if (*offset >= iter->len) {
3001			*offset -= iter->len;
3002			continue;
3003		}
3004		/* __skb_splice_bits() only fails if the output has no room
3005		 * left, so no point in going over the frag_list for the error
3006		 * case.
3007		 */
3008		if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
3009			return true;
3010	}
3011
3012	return false;
3013}
3014
3015/*
3016 * Map data from the skb to a pipe. Should handle both the linear part,
3017 * the fragments, and the frag list.
3018 */
3019int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3020		    struct pipe_inode_info *pipe, unsigned int tlen,
3021		    unsigned int flags)
3022{
3023	struct partial_page partial[MAX_SKB_FRAGS];
3024	struct page *pages[MAX_SKB_FRAGS];
3025	struct splice_pipe_desc spd = {
3026		.pages = pages,
3027		.partial = partial,
3028		.nr_pages_max = MAX_SKB_FRAGS,
3029		.ops = &nosteal_pipe_buf_ops,
3030		.spd_release = sock_spd_release,
3031	};
3032	int ret = 0;
3033
3034	__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
3035
3036	if (spd.nr_pages)
3037		ret = splice_to_pipe(pipe, &spd);
3038
3039	return ret;
3040}
3041EXPORT_SYMBOL_GPL(skb_splice_bits);
3042
3043static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
3044{
3045	struct socket *sock = sk->sk_socket;
3046	size_t size = msg_data_left(msg);
3047
3048	if (!sock)
3049		return -EINVAL;
3050
3051	if (!sock->ops->sendmsg_locked)
3052		return sock_no_sendmsg_locked(sk, msg, size);
3053
3054	return sock->ops->sendmsg_locked(sk, msg, size);
3055}
3056
3057static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3058{
3059	struct socket *sock = sk->sk_socket;
3060
3061	if (!sock)
3062		return -EINVAL;
3063	return sock_sendmsg(sock, msg);
3064}
3065
3066typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3067static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3068			   int len, sendmsg_func sendmsg)
3069{
3070	unsigned int orig_len = len;
3071	struct sk_buff *head = skb;
3072	unsigned short fragidx;
3073	int slen, ret;
3074
3075do_frag_list:
3076
3077	/* Deal with head data */
3078	while (offset < skb_headlen(skb) && len) {
3079		struct kvec kv;
3080		struct msghdr msg;
3081
3082		slen = min_t(int, len, skb_headlen(skb) - offset);
3083		kv.iov_base = skb->data + offset;
3084		kv.iov_len = slen;
3085		memset(&msg, 0, sizeof(msg));
3086		msg.msg_flags = MSG_DONTWAIT;
3087
3088		iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3089		ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3090				      sendmsg_unlocked, sk, &msg);
3091		if (ret <= 0)
3092			goto error;
3093
3094		offset += ret;
3095		len -= ret;
3096	}
3097
3098	/* All the data was skb head? */
3099	if (!len)
3100		goto out;
3101
3102	/* Make offset relative to start of frags */
3103	offset -= skb_headlen(skb);
3104
3105	/* Find where we are in frag list */
3106	for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3107		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3108
3109		if (offset < skb_frag_size(frag))
3110			break;
3111
3112		offset -= skb_frag_size(frag);
3113	}
3114
3115	for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3116		skb_frag_t *frag  = &skb_shinfo(skb)->frags[fragidx];
3117
3118		slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3119
3120		while (slen) {
3121			struct bio_vec bvec;
3122			struct msghdr msg = {
3123				.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3124			};
3125
3126			bvec_set_page(&bvec, skb_frag_page(frag), slen,
3127				      skb_frag_off(frag) + offset);
3128			iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3129				      slen);
3130
3131			ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3132					      sendmsg_unlocked, sk, &msg);
3133			if (ret <= 0)
3134				goto error;
3135
3136			len -= ret;
3137			offset += ret;
3138			slen -= ret;
3139		}
3140
3141		offset = 0;
3142	}
3143
3144	if (len) {
3145		/* Process any frag lists */
3146
3147		if (skb == head) {
3148			if (skb_has_frag_list(skb)) {
3149				skb = skb_shinfo(skb)->frag_list;
3150				goto do_frag_list;
3151			}
3152		} else if (skb->next) {
3153			skb = skb->next;
3154			goto do_frag_list;
3155		}
3156	}
3157
3158out:
3159	return orig_len - len;
3160
3161error:
3162	return orig_len == len ? ret : orig_len - len;
3163}
3164
3165/* Send skb data on a socket. Socket must be locked. */
3166int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3167			 int len)
3168{
3169	return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3170}
3171EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3172
3173/* Send skb data on a socket. Socket must be unlocked. */
3174int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3175{
3176	return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3177}
3178
3179/**
3180 *	skb_store_bits - store bits from kernel buffer to skb
3181 *	@skb: destination buffer
3182 *	@offset: offset in destination
3183 *	@from: source buffer
3184 *	@len: number of bytes to copy
3185 *
3186 *	Copy the specified number of bytes from the source buffer to the
3187 *	destination skb.  This function handles all the messy bits of
3188 *	traversing fragment lists and such.
3189 */
3190
3191int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3192{
3193	int start = skb_headlen(skb);
3194	struct sk_buff *frag_iter;
3195	int i, copy;
3196
3197	if (offset > (int)skb->len - len)
3198		goto fault;
3199
3200	if ((copy = start - offset) > 0) {
3201		if (copy > len)
3202			copy = len;
3203		skb_copy_to_linear_data_offset(skb, offset, from, copy);
3204		if ((len -= copy) == 0)
3205			return 0;
3206		offset += copy;
3207		from += copy;
3208	}
3209
3210	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3211		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3212		int end;
3213
3214		WARN_ON(start > offset + len);
3215
3216		end = start + skb_frag_size(frag);
3217		if ((copy = end - offset) > 0) {
3218			u32 p_off, p_len, copied;
3219			struct page *p;
3220			u8 *vaddr;
3221
3222			if (copy > len)
3223				copy = len;
3224
3225			skb_frag_foreach_page(frag,
3226					      skb_frag_off(frag) + offset - start,
3227					      copy, p, p_off, p_len, copied) {
3228				vaddr = kmap_atomic(p);
3229				memcpy(vaddr + p_off, from + copied, p_len);
3230				kunmap_atomic(vaddr);
3231			}
3232
3233			if ((len -= copy) == 0)
3234				return 0;
3235			offset += copy;
3236			from += copy;
3237		}
3238		start = end;
3239	}
3240
3241	skb_walk_frags(skb, frag_iter) {
3242		int end;
3243
3244		WARN_ON(start > offset + len);
3245
3246		end = start + frag_iter->len;
3247		if ((copy = end - offset) > 0) {
3248			if (copy > len)
3249				copy = len;
3250			if (skb_store_bits(frag_iter, offset - start,
3251					   from, copy))
3252				goto fault;
3253			if ((len -= copy) == 0)
3254				return 0;
3255			offset += copy;
3256			from += copy;
3257		}
3258		start = end;
3259	}
3260	if (!len)
3261		return 0;
3262
3263fault:
3264	return -EFAULT;
3265}
3266EXPORT_SYMBOL(skb_store_bits);
3267
3268/* Checksum skb data. */
3269__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3270		      __wsum csum, const struct skb_checksum_ops *ops)
3271{
3272	int start = skb_headlen(skb);
3273	int i, copy = start - offset;
3274	struct sk_buff *frag_iter;
3275	int pos = 0;
3276
3277	/* Checksum header. */
3278	if (copy > 0) {
3279		if (copy > len)
3280			copy = len;
3281		csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3282				       skb->data + offset, copy, csum);
3283		if ((len -= copy) == 0)
3284			return csum;
3285		offset += copy;
3286		pos	= copy;
3287	}
3288
3289	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3290		int end;
3291		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3292
3293		WARN_ON(start > offset + len);
3294
3295		end = start + skb_frag_size(frag);
3296		if ((copy = end - offset) > 0) {
3297			u32 p_off, p_len, copied;
3298			struct page *p;
3299			__wsum csum2;
3300			u8 *vaddr;
3301
3302			if (copy > len)
3303				copy = len;
3304
3305			skb_frag_foreach_page(frag,
3306					      skb_frag_off(frag) + offset - start,
3307					      copy, p, p_off, p_len, copied) {
3308				vaddr = kmap_atomic(p);
3309				csum2 = INDIRECT_CALL_1(ops->update,
3310							csum_partial_ext,
3311							vaddr + p_off, p_len, 0);
3312				kunmap_atomic(vaddr);
3313				csum = INDIRECT_CALL_1(ops->combine,
3314						       csum_block_add_ext, csum,
3315						       csum2, pos, p_len);
3316				pos += p_len;
3317			}
3318
3319			if (!(len -= copy))
3320				return csum;
3321			offset += copy;
3322		}
3323		start = end;
3324	}
3325
3326	skb_walk_frags(skb, frag_iter) {
3327		int end;
3328
3329		WARN_ON(start > offset + len);
3330
3331		end = start + frag_iter->len;
3332		if ((copy = end - offset) > 0) {
3333			__wsum csum2;
3334			if (copy > len)
3335				copy = len;
3336			csum2 = __skb_checksum(frag_iter, offset - start,
3337					       copy, 0, ops);
3338			csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3339					       csum, csum2, pos, copy);
3340			if ((len -= copy) == 0)
3341				return csum;
3342			offset += copy;
3343			pos    += copy;
3344		}
3345		start = end;
3346	}
3347	BUG_ON(len);
3348
3349	return csum;
3350}
3351EXPORT_SYMBOL(__skb_checksum);
3352
3353__wsum skb_checksum(const struct sk_buff *skb, int offset,
3354		    int len, __wsum csum)
3355{
3356	const struct skb_checksum_ops ops = {
3357		.update  = csum_partial_ext,
3358		.combine = csum_block_add_ext,
3359	};
3360
3361	return __skb_checksum(skb, offset, len, csum, &ops);
3362}
3363EXPORT_SYMBOL(skb_checksum);
3364
3365/* Both of above in one bottle. */
3366
3367__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3368				    u8 *to, int len)
3369{
3370	int start = skb_headlen(skb);
3371	int i, copy = start - offset;
3372	struct sk_buff *frag_iter;
3373	int pos = 0;
3374	__wsum csum = 0;
3375
3376	/* Copy header. */
3377	if (copy > 0) {
3378		if (copy > len)
3379			copy = len;
3380		csum = csum_partial_copy_nocheck(skb->data + offset, to,
3381						 copy);
3382		if ((len -= copy) == 0)
3383			return csum;
3384		offset += copy;
3385		to     += copy;
3386		pos	= copy;
3387	}
3388
3389	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3390		int end;
3391
3392		WARN_ON(start > offset + len);
3393
3394		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3395		if ((copy = end - offset) > 0) {
3396			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3397			u32 p_off, p_len, copied;
3398			struct page *p;
3399			__wsum csum2;
3400			u8 *vaddr;
3401
3402			if (copy > len)
3403				copy = len;
3404
3405			skb_frag_foreach_page(frag,
3406					      skb_frag_off(frag) + offset - start,
3407					      copy, p, p_off, p_len, copied) {
3408				vaddr = kmap_atomic(p);
3409				csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3410								  to + copied,
3411								  p_len);
3412				kunmap_atomic(vaddr);
3413				csum = csum_block_add(csum, csum2, pos);
3414				pos += p_len;
3415			}
3416
3417			if (!(len -= copy))
3418				return csum;
3419			offset += copy;
3420			to     += copy;
3421		}
3422		start = end;
3423	}
3424
3425	skb_walk_frags(skb, frag_iter) {
3426		__wsum csum2;
3427		int end;
3428
3429		WARN_ON(start > offset + len);
3430
3431		end = start + frag_iter->len;
3432		if ((copy = end - offset) > 0) {
3433			if (copy > len)
3434				copy = len;
3435			csum2 = skb_copy_and_csum_bits(frag_iter,
3436						       offset - start,
3437						       to, copy);
3438			csum = csum_block_add(csum, csum2, pos);
3439			if ((len -= copy) == 0)
3440				return csum;
3441			offset += copy;
3442			to     += copy;
3443			pos    += copy;
3444		}
3445		start = end;
3446	}
3447	BUG_ON(len);
3448	return csum;
3449}
3450EXPORT_SYMBOL(skb_copy_and_csum_bits);
3451
3452__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3453{
3454	__sum16 sum;
3455
3456	sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3457	/* See comments in __skb_checksum_complete(). */
3458	if (likely(!sum)) {
3459		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3460		    !skb->csum_complete_sw)
3461			netdev_rx_csum_fault(skb->dev, skb);
3462	}
3463	if (!skb_shared(skb))
3464		skb->csum_valid = !sum;
3465	return sum;
3466}
3467EXPORT_SYMBOL(__skb_checksum_complete_head);
3468
3469/* This function assumes skb->csum already holds pseudo header's checksum,
3470 * which has been changed from the hardware checksum, for example, by
3471 * __skb_checksum_validate_complete(). And, the original skb->csum must
3472 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3473 *
3474 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3475 * zero. The new checksum is stored back into skb->csum unless the skb is
3476 * shared.
3477 */
3478__sum16 __skb_checksum_complete(struct sk_buff *skb)
3479{
3480	__wsum csum;
3481	__sum16 sum;
3482
3483	csum = skb_checksum(skb, 0, skb->len, 0);
3484
3485	sum = csum_fold(csum_add(skb->csum, csum));
3486	/* This check is inverted, because we already knew the hardware
3487	 * checksum is invalid before calling this function. So, if the
3488	 * re-computed checksum is valid instead, then we have a mismatch
3489	 * between the original skb->csum and skb_checksum(). This means either
3490	 * the original hardware checksum is incorrect or we screw up skb->csum
3491	 * when moving skb->data around.
3492	 */
3493	if (likely(!sum)) {
3494		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3495		    !skb->csum_complete_sw)
3496			netdev_rx_csum_fault(skb->dev, skb);
3497	}
3498
3499	if (!skb_shared(skb)) {
3500		/* Save full packet checksum */
3501		skb->csum = csum;
3502		skb->ip_summed = CHECKSUM_COMPLETE;
3503		skb->csum_complete_sw = 1;
3504		skb->csum_valid = !sum;
3505	}
3506
3507	return sum;
3508}
3509EXPORT_SYMBOL(__skb_checksum_complete);
3510
3511static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3512{
3513	net_warn_ratelimited(
3514		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3515		__func__);
3516	return 0;
3517}
3518
3519static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3520				       int offset, int len)
3521{
3522	net_warn_ratelimited(
3523		"%s: attempt to compute crc32c without libcrc32c.ko\n",
3524		__func__);
3525	return 0;
3526}
3527
3528static const struct skb_checksum_ops default_crc32c_ops = {
3529	.update  = warn_crc32c_csum_update,
3530	.combine = warn_crc32c_csum_combine,
3531};
3532
3533const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3534	&default_crc32c_ops;
3535EXPORT_SYMBOL(crc32c_csum_stub);
3536
3537 /**
3538 *	skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3539 *	@from: source buffer
3540 *
3541 *	Calculates the amount of linear headroom needed in the 'to' skb passed
3542 *	into skb_zerocopy().
3543 */
3544unsigned int
3545skb_zerocopy_headlen(const struct sk_buff *from)
3546{
3547	unsigned int hlen = 0;
3548
3549	if (!from->head_frag ||
3550	    skb_headlen(from) < L1_CACHE_BYTES ||
3551	    skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3552		hlen = skb_headlen(from);
3553		if (!hlen)
3554			hlen = from->len;
3555	}
3556
3557	if (skb_has_frag_list(from))
3558		hlen = from->len;
3559
3560	return hlen;
3561}
3562EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3563
3564/**
3565 *	skb_zerocopy - Zero copy skb to skb
3566 *	@to: destination buffer
3567 *	@from: source buffer
3568 *	@len: number of bytes to copy from source buffer
3569 *	@hlen: size of linear headroom in destination buffer
3570 *
3571 *	Copies up to `len` bytes from `from` to `to` by creating references
3572 *	to the frags in the source buffer.
3573 *
3574 *	The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3575 *	headroom in the `to` buffer.
3576 *
3577 *	Return value:
3578 *	0: everything is OK
3579 *	-ENOMEM: couldn't orphan frags of @from due to lack of memory
3580 *	-EFAULT: skb_copy_bits() found some problem with skb geometry
3581 */
3582int
3583skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3584{
3585	int i, j = 0;
3586	int plen = 0; /* length of skb->head fragment */
3587	int ret;
3588	struct page *page;
3589	unsigned int offset;
3590
3591	BUG_ON(!from->head_frag && !hlen);
3592
3593	/* dont bother with small payloads */
3594	if (len <= skb_tailroom(to))
3595		return skb_copy_bits(from, 0, skb_put(to, len), len);
3596
3597	if (hlen) {
3598		ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3599		if (unlikely(ret))
3600			return ret;
3601		len -= hlen;
3602	} else {
3603		plen = min_t(int, skb_headlen(from), len);
3604		if (plen) {
3605			page = virt_to_head_page(from->head);
3606			offset = from->data - (unsigned char *)page_address(page);
3607			__skb_fill_page_desc(to, 0, page, offset, plen);
3608			get_page(page);
3609			j = 1;
3610			len -= plen;
3611		}
3612	}
3613
3614	skb_len_add(to, len + plen);
3615
3616	if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3617		skb_tx_error(from);
3618		return -ENOMEM;
3619	}
3620	skb_zerocopy_clone(to, from, GFP_ATOMIC);
3621
3622	for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3623		int size;
3624
3625		if (!len)
3626			break;
3627		skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3628		size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3629					len);
3630		skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3631		len -= size;
3632		skb_frag_ref(to, j);
3633		j++;
3634	}
3635	skb_shinfo(to)->nr_frags = j;
3636
3637	return 0;
3638}
3639EXPORT_SYMBOL_GPL(skb_zerocopy);
3640
3641void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3642{
3643	__wsum csum;
3644	long csstart;
3645
3646	if (skb->ip_summed == CHECKSUM_PARTIAL)
3647		csstart = skb_checksum_start_offset(skb);
3648	else
3649		csstart = skb_headlen(skb);
3650
3651	BUG_ON(csstart > skb_headlen(skb));
3652
3653	skb_copy_from_linear_data(skb, to, csstart);
3654
3655	csum = 0;
3656	if (csstart != skb->len)
3657		csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3658					      skb->len - csstart);
3659
3660	if (skb->ip_summed == CHECKSUM_PARTIAL) {
3661		long csstuff = csstart + skb->csum_offset;
3662
3663		*((__sum16 *)(to + csstuff)) = csum_fold(csum);
3664	}
3665}
3666EXPORT_SYMBOL(skb_copy_and_csum_dev);
3667
3668/**
3669 *	skb_dequeue - remove from the head of the queue
3670 *	@list: list to dequeue from
3671 *
3672 *	Remove the head of the list. The list lock is taken so the function
3673 *	may be used safely with other locking list functions. The head item is
3674 *	returned or %NULL if the list is empty.
3675 */
3676
3677struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3678{
3679	unsigned long flags;
3680	struct sk_buff *result;
3681
3682	spin_lock_irqsave(&list->lock, flags);
3683	result = __skb_dequeue(list);
3684	spin_unlock_irqrestore(&list->lock, flags);
3685	return result;
3686}
3687EXPORT_SYMBOL(skb_dequeue);
3688
3689/**
3690 *	skb_dequeue_tail - remove from the tail of the queue
3691 *	@list: list to dequeue from
3692 *
3693 *	Remove the tail of the list. The list lock is taken so the function
3694 *	may be used safely with other locking list functions. The tail item is
3695 *	returned or %NULL if the list is empty.
3696 */
3697struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3698{
3699	unsigned long flags;
3700	struct sk_buff *result;
3701
3702	spin_lock_irqsave(&list->lock, flags);
3703	result = __skb_dequeue_tail(list);
3704	spin_unlock_irqrestore(&list->lock, flags);
3705	return result;
3706}
3707EXPORT_SYMBOL(skb_dequeue_tail);
3708
3709/**
3710 *	skb_queue_purge_reason - empty a list
3711 *	@list: list to empty
3712 *	@reason: drop reason
3713 *
3714 *	Delete all buffers on an &sk_buff list. Each buffer is removed from
3715 *	the list and one reference dropped. This function takes the list
3716 *	lock and is atomic with respect to other list locking functions.
3717 */
3718void skb_queue_purge_reason(struct sk_buff_head *list,
3719			    enum skb_drop_reason reason)
3720{
3721	struct sk_buff *skb;
3722
3723	while ((skb = skb_dequeue(list)) != NULL)
3724		kfree_skb_reason(skb, reason);
3725}
3726EXPORT_SYMBOL(skb_queue_purge_reason);
3727
3728/**
3729 *	skb_rbtree_purge - empty a skb rbtree
3730 *	@root: root of the rbtree to empty
3731 *	Return value: the sum of truesizes of all purged skbs.
3732 *
3733 *	Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3734 *	the list and one reference dropped. This function does not take
3735 *	any lock. Synchronization should be handled by the caller (e.g., TCP
3736 *	out-of-order queue is protected by the socket lock).
3737 */
3738unsigned int skb_rbtree_purge(struct rb_root *root)
3739{
3740	struct rb_node *p = rb_first(root);
3741	unsigned int sum = 0;
3742
3743	while (p) {
3744		struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3745
3746		p = rb_next(p);
3747		rb_erase(&skb->rbnode, root);
3748		sum += skb->truesize;
3749		kfree_skb(skb);
3750	}
3751	return sum;
3752}
3753
3754void skb_errqueue_purge(struct sk_buff_head *list)
3755{
3756	struct sk_buff *skb, *next;
3757	struct sk_buff_head kill;
3758	unsigned long flags;
3759
3760	__skb_queue_head_init(&kill);
3761
3762	spin_lock_irqsave(&list->lock, flags);
3763	skb_queue_walk_safe(list, skb, next) {
3764		if (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ZEROCOPY ||
3765		    SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_TIMESTAMPING)
3766			continue;
3767		__skb_unlink(skb, list);
3768		__skb_queue_tail(&kill, skb);
3769	}
3770	spin_unlock_irqrestore(&list->lock, flags);
3771	__skb_queue_purge(&kill);
3772}
3773EXPORT_SYMBOL(skb_errqueue_purge);
3774
3775/**
3776 *	skb_queue_head - queue a buffer at the list head
3777 *	@list: list to use
3778 *	@newsk: buffer to queue
3779 *
3780 *	Queue a buffer at the start of the list. This function takes the
3781 *	list lock and can be used safely with other locking &sk_buff functions
3782 *	safely.
3783 *
3784 *	A buffer cannot be placed on two lists at the same time.
3785 */
3786void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3787{
3788	unsigned long flags;
3789
3790	spin_lock_irqsave(&list->lock, flags);
3791	__skb_queue_head(list, newsk);
3792	spin_unlock_irqrestore(&list->lock, flags);
3793}
3794EXPORT_SYMBOL(skb_queue_head);
3795
3796/**
3797 *	skb_queue_tail - queue a buffer at the list tail
3798 *	@list: list to use
3799 *	@newsk: buffer to queue
3800 *
3801 *	Queue a buffer at the tail of the list. This function takes the
3802 *	list lock and can be used safely with other locking &sk_buff functions
3803 *	safely.
3804 *
3805 *	A buffer cannot be placed on two lists at the same time.
3806 */
3807void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3808{
3809	unsigned long flags;
3810
3811	spin_lock_irqsave(&list->lock, flags);
3812	__skb_queue_tail(list, newsk);
3813	spin_unlock_irqrestore(&list->lock, flags);
3814}
3815EXPORT_SYMBOL(skb_queue_tail);
3816
3817/**
3818 *	skb_unlink	-	remove a buffer from a list
3819 *	@skb: buffer to remove
3820 *	@list: list to use
3821 *
3822 *	Remove a packet from a list. The list locks are taken and this
3823 *	function is atomic with respect to other list locked calls
3824 *
3825 *	You must know what list the SKB is on.
3826 */
3827void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3828{
3829	unsigned long flags;
3830
3831	spin_lock_irqsave(&list->lock, flags);
3832	__skb_unlink(skb, list);
3833	spin_unlock_irqrestore(&list->lock, flags);
3834}
3835EXPORT_SYMBOL(skb_unlink);
3836
3837/**
3838 *	skb_append	-	append a buffer
3839 *	@old: buffer to insert after
3840 *	@newsk: buffer to insert
3841 *	@list: list to use
3842 *
3843 *	Place a packet after a given packet in a list. The list locks are taken
3844 *	and this function is atomic with respect to other list locked calls.
3845 *	A buffer cannot be placed on two lists at the same time.
3846 */
3847void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3848{
3849	unsigned long flags;
3850
3851	spin_lock_irqsave(&list->lock, flags);
3852	__skb_queue_after(list, old, newsk);
3853	spin_unlock_irqrestore(&list->lock, flags);
3854}
3855EXPORT_SYMBOL(skb_append);
3856
3857static inline void skb_split_inside_header(struct sk_buff *skb,
3858					   struct sk_buff* skb1,
3859					   const u32 len, const int pos)
3860{
3861	int i;
3862
3863	skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3864					 pos - len);
3865	/* And move data appendix as is. */
3866	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3867		skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3868
3869	skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3870	skb_shinfo(skb)->nr_frags  = 0;
3871	skb1->data_len		   = skb->data_len;
3872	skb1->len		   += skb1->data_len;
3873	skb->data_len		   = 0;
3874	skb->len		   = len;
3875	skb_set_tail_pointer(skb, len);
3876}
3877
3878static inline void skb_split_no_header(struct sk_buff *skb,
3879				       struct sk_buff* skb1,
3880				       const u32 len, int pos)
3881{
3882	int i, k = 0;
3883	const int nfrags = skb_shinfo(skb)->nr_frags;
3884
3885	skb_shinfo(skb)->nr_frags = 0;
3886	skb1->len		  = skb1->data_len = skb->len - len;
3887	skb->len		  = len;
3888	skb->data_len		  = len - pos;
3889
3890	for (i = 0; i < nfrags; i++) {
3891		int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3892
3893		if (pos + size > len) {
3894			skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3895
3896			if (pos < len) {
3897				/* Split frag.
3898				 * We have two variants in this case:
3899				 * 1. Move all the frag to the second
3900				 *    part, if it is possible. F.e.
3901				 *    this approach is mandatory for TUX,
3902				 *    where splitting is expensive.
3903				 * 2. Split is accurately. We make this.
3904				 */
3905				skb_frag_ref(skb, i);
3906				skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3907				skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3908				skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3909				skb_shinfo(skb)->nr_frags++;
3910			}
3911			k++;
3912		} else
3913			skb_shinfo(skb)->nr_frags++;
3914		pos += size;
3915	}
3916	skb_shinfo(skb1)->nr_frags = k;
3917}
3918
3919/**
3920 * skb_split - Split fragmented skb to two parts at length len.
3921 * @skb: the buffer to split
3922 * @skb1: the buffer to receive the second part
3923 * @len: new length for skb
3924 */
3925void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3926{
3927	int pos = skb_headlen(skb);
3928	const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3929
3930	skb_zcopy_downgrade_managed(skb);
3931
3932	skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3933	skb_zerocopy_clone(skb1, skb, 0);
3934	if (len < pos)	/* Split line is inside header. */
3935		skb_split_inside_header(skb, skb1, len, pos);
3936	else		/* Second chunk has no header, nothing to copy. */
3937		skb_split_no_header(skb, skb1, len, pos);
3938}
3939EXPORT_SYMBOL(skb_split);
3940
3941/* Shifting from/to a cloned skb is a no-go.
3942 *
3943 * Caller cannot keep skb_shinfo related pointers past calling here!
3944 */
3945static int skb_prepare_for_shift(struct sk_buff *skb)
3946{
3947	return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3948}
3949
3950/**
3951 * skb_shift - Shifts paged data partially from skb to another
3952 * @tgt: buffer into which tail data gets added
3953 * @skb: buffer from which the paged data comes from
3954 * @shiftlen: shift up to this many bytes
3955 *
3956 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3957 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3958 * It's up to caller to free skb if everything was shifted.
3959 *
3960 * If @tgt runs out of frags, the whole operation is aborted.
3961 *
3962 * Skb cannot include anything else but paged data while tgt is allowed
3963 * to have non-paged data as well.
3964 *
3965 * TODO: full sized shift could be optimized but that would need
3966 * specialized skb free'er to handle frags without up-to-date nr_frags.
3967 */
3968int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3969{
3970	int from, to, merge, todo;
3971	skb_frag_t *fragfrom, *fragto;
3972
3973	BUG_ON(shiftlen > skb->len);
3974
3975	if (skb_headlen(skb))
3976		return 0;
3977	if (skb_zcopy(tgt) || skb_zcopy(skb))
3978		return 0;
3979
3980	todo = shiftlen;
3981	from = 0;
3982	to = skb_shinfo(tgt)->nr_frags;
3983	fragfrom = &skb_shinfo(skb)->frags[from];
3984
3985	/* Actual merge is delayed until the point when we know we can
3986	 * commit all, so that we don't have to undo partial changes
3987	 */
3988	if (!to ||
3989	    !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3990			      skb_frag_off(fragfrom))) {
3991		merge = -1;
3992	} else {
3993		merge = to - 1;
3994
3995		todo -= skb_frag_size(fragfrom);
3996		if (todo < 0) {
3997			if (skb_prepare_for_shift(skb) ||
3998			    skb_prepare_for_shift(tgt))
3999				return 0;
4000
4001			/* All previous frag pointers might be stale! */
4002			fragfrom = &skb_shinfo(skb)->frags[from];
4003			fragto = &skb_shinfo(tgt)->frags[merge];
4004
4005			skb_frag_size_add(fragto, shiftlen);
4006			skb_frag_size_sub(fragfrom, shiftlen);
4007			skb_frag_off_add(fragfrom, shiftlen);
4008
4009			goto onlymerged;
4010		}
4011
4012		from++;
4013	}
4014
4015	/* Skip full, not-fitting skb to avoid expensive operations */
4016	if ((shiftlen == skb->len) &&
4017	    (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
4018		return 0;
4019
4020	if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
4021		return 0;
4022
4023	while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
4024		if (to == MAX_SKB_FRAGS)
4025			return 0;
4026
4027		fragfrom = &skb_shinfo(skb)->frags[from];
4028		fragto = &skb_shinfo(tgt)->frags[to];
4029
4030		if (todo >= skb_frag_size(fragfrom)) {
4031			*fragto = *fragfrom;
4032			todo -= skb_frag_size(fragfrom);
4033			from++;
4034			to++;
4035
4036		} else {
4037			__skb_frag_ref(fragfrom);
4038			skb_frag_page_copy(fragto, fragfrom);
4039			skb_frag_off_copy(fragto, fragfrom);
4040			skb_frag_size_set(fragto, todo);
4041
4042			skb_frag_off_add(fragfrom, todo);
4043			skb_frag_size_sub(fragfrom, todo);
4044			todo = 0;
4045
4046			to++;
4047			break;
4048		}
4049	}
4050
4051	/* Ready to "commit" this state change to tgt */
4052	skb_shinfo(tgt)->nr_frags = to;
4053
4054	if (merge >= 0) {
4055		fragfrom = &skb_shinfo(skb)->frags[0];
4056		fragto = &skb_shinfo(tgt)->frags[merge];
4057
4058		skb_frag_size_add(fragto, skb_frag_size(fragfrom));
4059		__skb_frag_unref(fragfrom, skb->pp_recycle);
4060	}
4061
4062	/* Reposition in the original skb */
4063	to = 0;
4064	while (from < skb_shinfo(skb)->nr_frags)
4065		skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
4066	skb_shinfo(skb)->nr_frags = to;
4067
4068	BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
4069
4070onlymerged:
4071	/* Most likely the tgt won't ever need its checksum anymore, skb on
4072	 * the other hand might need it if it needs to be resent
4073	 */
4074	tgt->ip_summed = CHECKSUM_PARTIAL;
4075	skb->ip_summed = CHECKSUM_PARTIAL;
4076
4077	skb_len_add(skb, -shiftlen);
4078	skb_len_add(tgt, shiftlen);
4079
4080	return shiftlen;
4081}
4082
4083/**
4084 * skb_prepare_seq_read - Prepare a sequential read of skb data
4085 * @skb: the buffer to read
4086 * @from: lower offset of data to be read
4087 * @to: upper offset of data to be read
4088 * @st: state variable
4089 *
4090 * Initializes the specified state variable. Must be called before
4091 * invoking skb_seq_read() for the first time.
4092 */
4093void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4094			  unsigned int to, struct skb_seq_state *st)
4095{
4096	st->lower_offset = from;
4097	st->upper_offset = to;
4098	st->root_skb = st->cur_skb = skb;
4099	st->frag_idx = st->stepped_offset = 0;
4100	st->frag_data = NULL;
4101	st->frag_off = 0;
4102}
4103EXPORT_SYMBOL(skb_prepare_seq_read);
4104
4105/**
4106 * skb_seq_read - Sequentially read skb data
4107 * @consumed: number of bytes consumed by the caller so far
4108 * @data: destination pointer for data to be returned
4109 * @st: state variable
4110 *
4111 * Reads a block of skb data at @consumed relative to the
4112 * lower offset specified to skb_prepare_seq_read(). Assigns
4113 * the head of the data block to @data and returns the length
4114 * of the block or 0 if the end of the skb data or the upper
4115 * offset has been reached.
4116 *
4117 * The caller is not required to consume all of the data
4118 * returned, i.e. @consumed is typically set to the number
4119 * of bytes already consumed and the next call to
4120 * skb_seq_read() will return the remaining part of the block.
4121 *
4122 * Note 1: The size of each block of data returned can be arbitrary,
4123 *       this limitation is the cost for zerocopy sequential
4124 *       reads of potentially non linear data.
4125 *
4126 * Note 2: Fragment lists within fragments are not implemented
4127 *       at the moment, state->root_skb could be replaced with
4128 *       a stack for this purpose.
4129 */
4130unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4131			  struct skb_seq_state *st)
4132{
4133	unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4134	skb_frag_t *frag;
4135
4136	if (unlikely(abs_offset >= st->upper_offset)) {
4137		if (st->frag_data) {
4138			kunmap_atomic(st->frag_data);
4139			st->frag_data = NULL;
4140		}
4141		return 0;
4142	}
4143
4144next_skb:
4145	block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4146
4147	if (abs_offset < block_limit && !st->frag_data) {
4148		*data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4149		return block_limit - abs_offset;
4150	}
4151
4152	if (st->frag_idx == 0 && !st->frag_data)
4153		st->stepped_offset += skb_headlen(st->cur_skb);
4154
4155	while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4156		unsigned int pg_idx, pg_off, pg_sz;
4157
4158		frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4159
4160		pg_idx = 0;
4161		pg_off = skb_frag_off(frag);
4162		pg_sz = skb_frag_size(frag);
4163
4164		if (skb_frag_must_loop(skb_frag_page(frag))) {
4165			pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4166			pg_off = offset_in_page(pg_off + st->frag_off);
4167			pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4168						    PAGE_SIZE - pg_off);
4169		}
4170
4171		block_limit = pg_sz + st->stepped_offset;
4172		if (abs_offset < block_limit) {
4173			if (!st->frag_data)
4174				st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4175
4176			*data = (u8 *)st->frag_data + pg_off +
4177				(abs_offset - st->stepped_offset);
4178
4179			return block_limit - abs_offset;
4180		}
4181
4182		if (st->frag_data) {
4183			kunmap_atomic(st->frag_data);
4184			st->frag_data = NULL;
4185		}
4186
4187		st->stepped_offset += pg_sz;
4188		st->frag_off += pg_sz;
4189		if (st->frag_off == skb_frag_size(frag)) {
4190			st->frag_off = 0;
4191			st->frag_idx++;
4192		}
4193	}
4194
4195	if (st->frag_data) {
4196		kunmap_atomic(st->frag_data);
4197		st->frag_data = NULL;
4198	}
4199
4200	if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4201		st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4202		st->frag_idx = 0;
4203		goto next_skb;
4204	} else if (st->cur_skb->next) {
4205		st->cur_skb = st->cur_skb->next;
4206		st->frag_idx = 0;
4207		goto next_skb;
4208	}
4209
4210	return 0;
4211}
4212EXPORT_SYMBOL(skb_seq_read);
4213
4214/**
4215 * skb_abort_seq_read - Abort a sequential read of skb data
4216 * @st: state variable
4217 *
4218 * Must be called if skb_seq_read() was not called until it
4219 * returned 0.
4220 */
4221void skb_abort_seq_read(struct skb_seq_state *st)
4222{
4223	if (st->frag_data)
4224		kunmap_atomic(st->frag_data);
4225}
4226EXPORT_SYMBOL(skb_abort_seq_read);
4227
4228#define TS_SKB_CB(state)	((struct skb_seq_state *) &((state)->cb))
4229
4230static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4231					  struct ts_config *conf,
4232					  struct ts_state *state)
4233{
4234	return skb_seq_read(offset, text, TS_SKB_CB(state));
4235}
4236
4237static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4238{
4239	skb_abort_seq_read(TS_SKB_CB(state));
4240}
4241
4242/**
4243 * skb_find_text - Find a text pattern in skb data
4244 * @skb: the buffer to look in
4245 * @from: search offset
4246 * @to: search limit
4247 * @config: textsearch configuration
4248 *
4249 * Finds a pattern in the skb data according to the specified
4250 * textsearch configuration. Use textsearch_next() to retrieve
4251 * subsequent occurrences of the pattern. Returns the offset
4252 * to the first occurrence or UINT_MAX if no match was found.
4253 */
4254unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4255			   unsigned int to, struct ts_config *config)
4256{
4257	unsigned int patlen = config->ops->get_pattern_len(config);
4258	struct ts_state state;
4259	unsigned int ret;
4260
4261	BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4262
4263	config->get_next_block = skb_ts_get_next_block;
4264	config->finish = skb_ts_finish;
4265
4266	skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4267
4268	ret = textsearch_find(config, &state);
4269	return (ret + patlen <= to - from ? ret : UINT_MAX);
4270}
4271EXPORT_SYMBOL(skb_find_text);
4272
4273int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4274			 int offset, size_t size, size_t max_frags)
4275{
4276	int i = skb_shinfo(skb)->nr_frags;
4277
4278	if (skb_can_coalesce(skb, i, page, offset)) {
4279		skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4280	} else if (i < max_frags) {
4281		skb_zcopy_downgrade_managed(skb);
4282		get_page(page);
4283		skb_fill_page_desc_noacc(skb, i, page, offset, size);
4284	} else {
4285		return -EMSGSIZE;
4286	}
4287
4288	return 0;
4289}
4290EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4291
4292/**
4293 *	skb_pull_rcsum - pull skb and update receive checksum
4294 *	@skb: buffer to update
4295 *	@len: length of data pulled
4296 *
4297 *	This function performs an skb_pull on the packet and updates
4298 *	the CHECKSUM_COMPLETE checksum.  It should be used on
4299 *	receive path processing instead of skb_pull unless you know
4300 *	that the checksum difference is zero (e.g., a valid IP header)
4301 *	or you are setting ip_summed to CHECKSUM_NONE.
4302 */
4303void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4304{
4305	unsigned char *data = skb->data;
4306
4307	BUG_ON(len > skb->len);
4308	__skb_pull(skb, len);
4309	skb_postpull_rcsum(skb, data, len);
4310	return skb->data;
4311}
4312EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4313
4314static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4315{
4316	skb_frag_t head_frag;
4317	struct page *page;
4318
4319	page = virt_to_head_page(frag_skb->head);
4320	skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4321				(unsigned char *)page_address(page),
4322				skb_headlen(frag_skb));
4323	return head_frag;
4324}
4325
4326struct sk_buff *skb_segment_list(struct sk_buff *skb,
4327				 netdev_features_t features,
4328				 unsigned int offset)
4329{
4330	struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4331	unsigned int tnl_hlen = skb_tnl_header_len(skb);
4332	unsigned int delta_truesize = 0;
4333	unsigned int delta_len = 0;
4334	struct sk_buff *tail = NULL;
4335	struct sk_buff *nskb, *tmp;
4336	int len_diff, err;
4337
4338	skb_push(skb, -skb_network_offset(skb) + offset);
4339
4340	/* Ensure the head is writeable before touching the shared info */
4341	err = skb_unclone(skb, GFP_ATOMIC);
4342	if (err)
4343		goto err_linearize;
4344
4345	skb_shinfo(skb)->frag_list = NULL;
4346
4347	while (list_skb) {
4348		nskb = list_skb;
4349		list_skb = list_skb->next;
4350
4351		err = 0;
4352		delta_truesize += nskb->truesize;
4353		if (skb_shared(nskb)) {
4354			tmp = skb_clone(nskb, GFP_ATOMIC);
4355			if (tmp) {
4356				consume_skb(nskb);
4357				nskb = tmp;
4358				err = skb_unclone(nskb, GFP_ATOMIC);
4359			} else {
4360				err = -ENOMEM;
4361			}
4362		}
4363
4364		if (!tail)
4365			skb->next = nskb;
4366		else
4367			tail->next = nskb;
4368
4369		if (unlikely(err)) {
4370			nskb->next = list_skb;
4371			goto err_linearize;
4372		}
4373
4374		tail = nskb;
4375
4376		delta_len += nskb->len;
4377
4378		skb_push(nskb, -skb_network_offset(nskb) + offset);
4379
4380		skb_release_head_state(nskb);
4381		len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4382		__copy_skb_header(nskb, skb);
4383
4384		skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4385		nskb->transport_header += len_diff;
4386		skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4387						 nskb->data - tnl_hlen,
4388						 offset + tnl_hlen);
4389
4390		if (skb_needs_linearize(nskb, features) &&
4391		    __skb_linearize(nskb))
4392			goto err_linearize;
4393	}
4394
4395	skb->truesize = skb->truesize - delta_truesize;
4396	skb->data_len = skb->data_len - delta_len;
4397	skb->len = skb->len - delta_len;
4398
4399	skb_gso_reset(skb);
4400
4401	skb->prev = tail;
4402
4403	if (skb_needs_linearize(skb, features) &&
4404	    __skb_linearize(skb))
4405		goto err_linearize;
4406
4407	skb_get(skb);
4408
4409	return skb;
4410
4411err_linearize:
4412	kfree_skb_list(skb->next);
4413	skb->next = NULL;
4414	return ERR_PTR(-ENOMEM);
4415}
4416EXPORT_SYMBOL_GPL(skb_segment_list);
4417
4418/**
4419 *	skb_segment - Perform protocol segmentation on skb.
4420 *	@head_skb: buffer to segment
4421 *	@features: features for the output path (see dev->features)
4422 *
4423 *	This function performs segmentation on the given skb.  It returns
4424 *	a pointer to the first in a list of new skbs for the segments.
4425 *	In case of error it returns ERR_PTR(err).
4426 */
4427struct sk_buff *skb_segment(struct sk_buff *head_skb,
4428			    netdev_features_t features)
4429{
4430	struct sk_buff *segs = NULL;
4431	struct sk_buff *tail = NULL;
4432	struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4433	unsigned int mss = skb_shinfo(head_skb)->gso_size;
4434	unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4435	unsigned int offset = doffset;
4436	unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4437	unsigned int partial_segs = 0;
4438	unsigned int headroom;
4439	unsigned int len = head_skb->len;
4440	struct sk_buff *frag_skb;
4441	skb_frag_t *frag;
4442	__be16 proto;
4443	bool csum, sg;
4444	int err = -ENOMEM;
4445	int i = 0;
4446	int nfrags, pos;
4447
4448	if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4449	    mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4450		struct sk_buff *check_skb;
4451
4452		for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4453			if (skb_headlen(check_skb) && !check_skb->head_frag) {
4454				/* gso_size is untrusted, and we have a frag_list with
4455				 * a linear non head_frag item.
4456				 *
4457				 * If head_skb's headlen does not fit requested gso_size,
4458				 * it means that the frag_list members do NOT terminate
4459				 * on exact gso_size boundaries. Hence we cannot perform
4460				 * skb_frag_t page sharing. Therefore we must fallback to
4461				 * copying the frag_list skbs; we do so by disabling SG.
4462				 */
4463				features &= ~NETIF_F_SG;
4464				break;
4465			}
4466		}
4467	}
4468
4469	__skb_push(head_skb, doffset);
4470	proto = skb_network_protocol(head_skb, NULL);
4471	if (unlikely(!proto))
4472		return ERR_PTR(-EINVAL);
4473
4474	sg = !!(features & NETIF_F_SG);
4475	csum = !!can_checksum_protocol(features, proto);
4476
4477	if (sg && csum && (mss != GSO_BY_FRAGS))  {
4478		if (!(features & NETIF_F_GSO_PARTIAL)) {
4479			struct sk_buff *iter;
4480			unsigned int frag_len;
4481
4482			if (!list_skb ||
4483			    !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4484				goto normal;
4485
4486			/* If we get here then all the required
4487			 * GSO features except frag_list are supported.
4488			 * Try to split the SKB to multiple GSO SKBs
4489			 * with no frag_list.
4490			 * Currently we can do that only when the buffers don't
4491			 * have a linear part and all the buffers except
4492			 * the last are of the same length.
4493			 */
4494			frag_len = list_skb->len;
4495			skb_walk_frags(head_skb, iter) {
4496				if (frag_len != iter->len && iter->next)
4497					goto normal;
4498				if (skb_headlen(iter) && !iter->head_frag)
4499					goto normal;
4500
4501				len -= iter->len;
4502			}
4503
4504			if (len != frag_len)
4505				goto normal;
4506		}
4507
4508		/* GSO partial only requires that we trim off any excess that
4509		 * doesn't fit into an MSS sized block, so take care of that
4510		 * now.
4511		 * Cap len to not accidentally hit GSO_BY_FRAGS.
4512		 */
4513		partial_segs = min(len, GSO_BY_FRAGS - 1U) / mss;
4514		if (partial_segs > 1)
4515			mss *= partial_segs;
4516		else
4517			partial_segs = 0;
4518	}
4519
4520normal:
4521	headroom = skb_headroom(head_skb);
4522	pos = skb_headlen(head_skb);
4523
4524	if (skb_orphan_frags(head_skb, GFP_ATOMIC))
4525		return ERR_PTR(-ENOMEM);
4526
4527	nfrags = skb_shinfo(head_skb)->nr_frags;
4528	frag = skb_shinfo(head_skb)->frags;
4529	frag_skb = head_skb;
4530
4531	do {
4532		struct sk_buff *nskb;
4533		skb_frag_t *nskb_frag;
4534		int hsize;
4535		int size;
4536
4537		if (unlikely(mss == GSO_BY_FRAGS)) {
4538			len = list_skb->len;
4539		} else {
4540			len = head_skb->len - offset;
4541			if (len > mss)
4542				len = mss;
4543		}
4544
4545		hsize = skb_headlen(head_skb) - offset;
4546
4547		if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4548		    (skb_headlen(list_skb) == len || sg)) {
4549			BUG_ON(skb_headlen(list_skb) > len);
4550
4551			nskb = skb_clone(list_skb, GFP_ATOMIC);
4552			if (unlikely(!nskb))
4553				goto err;
4554
4555			i = 0;
4556			nfrags = skb_shinfo(list_skb)->nr_frags;
4557			frag = skb_shinfo(list_skb)->frags;
4558			frag_skb = list_skb;
4559			pos += skb_headlen(list_skb);
4560
4561			while (pos < offset + len) {
4562				BUG_ON(i >= nfrags);
4563
4564				size = skb_frag_size(frag);
4565				if (pos + size > offset + len)
4566					break;
4567
4568				i++;
4569				pos += size;
4570				frag++;
4571			}
4572
4573			list_skb = list_skb->next;
4574
4575			if (unlikely(pskb_trim(nskb, len))) {
4576				kfree_skb(nskb);
4577				goto err;
4578			}
4579
4580			hsize = skb_end_offset(nskb);
4581			if (skb_cow_head(nskb, doffset + headroom)) {
4582				kfree_skb(nskb);
4583				goto err;
4584			}
4585
4586			nskb->truesize += skb_end_offset(nskb) - hsize;
4587			skb_release_head_state(nskb);
4588			__skb_push(nskb, doffset);
4589		} else {
4590			if (hsize < 0)
4591				hsize = 0;
4592			if (hsize > len || !sg)
4593				hsize = len;
4594
4595			nskb = __alloc_skb(hsize + doffset + headroom,
4596					   GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4597					   NUMA_NO_NODE);
4598
4599			if (unlikely(!nskb))
4600				goto err;
4601
4602			skb_reserve(nskb, headroom);
4603			__skb_put(nskb, doffset);
4604		}
4605
4606		if (segs)
4607			tail->next = nskb;
4608		else
4609			segs = nskb;
4610		tail = nskb;
4611
4612		__copy_skb_header(nskb, head_skb);
4613
4614		skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4615		skb_reset_mac_len(nskb);
4616
4617		skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4618						 nskb->data - tnl_hlen,
4619						 doffset + tnl_hlen);
4620
4621		if (nskb->len == len + doffset)
4622			goto perform_csum_check;
4623
4624		if (!sg) {
4625			if (!csum) {
4626				if (!nskb->remcsum_offload)
4627					nskb->ip_summed = CHECKSUM_NONE;
4628				SKB_GSO_CB(nskb)->csum =
4629					skb_copy_and_csum_bits(head_skb, offset,
4630							       skb_put(nskb,
4631								       len),
4632							       len);
4633				SKB_GSO_CB(nskb)->csum_start =
4634					skb_headroom(nskb) + doffset;
4635			} else {
4636				if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4637					goto err;
4638			}
4639			continue;
4640		}
4641
4642		nskb_frag = skb_shinfo(nskb)->frags;
4643
4644		skb_copy_from_linear_data_offset(head_skb, offset,
4645						 skb_put(nskb, hsize), hsize);
4646
4647		skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4648					   SKBFL_SHARED_FRAG;
4649
4650		if (skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4651			goto err;
4652
4653		while (pos < offset + len) {
4654			if (i >= nfrags) {
4655				if (skb_orphan_frags(list_skb, GFP_ATOMIC) ||
4656				    skb_zerocopy_clone(nskb, list_skb,
4657						       GFP_ATOMIC))
4658					goto err;
4659
4660				i = 0;
4661				nfrags = skb_shinfo(list_skb)->nr_frags;
4662				frag = skb_shinfo(list_skb)->frags;
4663				frag_skb = list_skb;
4664				if (!skb_headlen(list_skb)) {
4665					BUG_ON(!nfrags);
4666				} else {
4667					BUG_ON(!list_skb->head_frag);
4668
4669					/* to make room for head_frag. */
4670					i--;
4671					frag--;
4672				}
4673
4674				list_skb = list_skb->next;
4675			}
4676
4677			if (unlikely(skb_shinfo(nskb)->nr_frags >=
4678				     MAX_SKB_FRAGS)) {
4679				net_warn_ratelimited(
4680					"skb_segment: too many frags: %u %u\n",
4681					pos, mss);
4682				err = -EINVAL;
4683				goto err;
4684			}
4685
4686			*nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4687			__skb_frag_ref(nskb_frag);
4688			size = skb_frag_size(nskb_frag);
4689
4690			if (pos < offset) {
4691				skb_frag_off_add(nskb_frag, offset - pos);
4692				skb_frag_size_sub(nskb_frag, offset - pos);
4693			}
4694
4695			skb_shinfo(nskb)->nr_frags++;
4696
4697			if (pos + size <= offset + len) {
4698				i++;
4699				frag++;
4700				pos += size;
4701			} else {
4702				skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4703				goto skip_fraglist;
4704			}
4705
4706			nskb_frag++;
4707		}
4708
4709skip_fraglist:
4710		nskb->data_len = len - hsize;
4711		nskb->len += nskb->data_len;
4712		nskb->truesize += nskb->data_len;
4713
4714perform_csum_check:
4715		if (!csum) {
4716			if (skb_has_shared_frag(nskb) &&
4717			    __skb_linearize(nskb))
4718				goto err;
4719
4720			if (!nskb->remcsum_offload)
4721				nskb->ip_summed = CHECKSUM_NONE;
4722			SKB_GSO_CB(nskb)->csum =
4723				skb_checksum(nskb, doffset,
4724					     nskb->len - doffset, 0);
4725			SKB_GSO_CB(nskb)->csum_start =
4726				skb_headroom(nskb) + doffset;
4727		}
4728	} while ((offset += len) < head_skb->len);
4729
4730	/* Some callers want to get the end of the list.
4731	 * Put it in segs->prev to avoid walking the list.
4732	 * (see validate_xmit_skb_list() for example)
4733	 */
4734	segs->prev = tail;
4735
4736	if (partial_segs) {
4737		struct sk_buff *iter;
4738		int type = skb_shinfo(head_skb)->gso_type;
4739		unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4740
4741		/* Update type to add partial and then remove dodgy if set */
4742		type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4743		type &= ~SKB_GSO_DODGY;
4744
4745		/* Update GSO info and prepare to start updating headers on
4746		 * our way back down the stack of protocols.
4747		 */
4748		for (iter = segs; iter; iter = iter->next) {
4749			skb_shinfo(iter)->gso_size = gso_size;
4750			skb_shinfo(iter)->gso_segs = partial_segs;
4751			skb_shinfo(iter)->gso_type = type;
4752			SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4753		}
4754
4755		if (tail->len - doffset <= gso_size)
4756			skb_shinfo(tail)->gso_size = 0;
4757		else if (tail != segs)
4758			skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4759	}
4760
4761	/* Following permits correct backpressure, for protocols
4762	 * using skb_set_owner_w().
4763	 * Idea is to tranfert ownership from head_skb to last segment.
4764	 */
4765	if (head_skb->destructor == sock_wfree) {
4766		swap(tail->truesize, head_skb->truesize);
4767		swap(tail->destructor, head_skb->destructor);
4768		swap(tail->sk, head_skb->sk);
4769	}
4770	return segs;
4771
4772err:
4773	kfree_skb_list(segs);
4774	return ERR_PTR(err);
4775}
4776EXPORT_SYMBOL_GPL(skb_segment);
4777
4778#ifdef CONFIG_SKB_EXTENSIONS
4779#define SKB_EXT_ALIGN_VALUE	8
4780#define SKB_EXT_CHUNKSIZEOF(x)	(ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4781
4782static const u8 skb_ext_type_len[] = {
4783#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4784	[SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4785#endif
4786#ifdef CONFIG_XFRM
4787	[SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4788#endif
4789#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4790	[TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4791#endif
4792#if IS_ENABLED(CONFIG_MPTCP)
4793	[SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4794#endif
4795#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4796	[SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4797#endif
4798};
4799
4800static __always_inline unsigned int skb_ext_total_length(void)
4801{
4802	unsigned int l = SKB_EXT_CHUNKSIZEOF(struct skb_ext);
4803	int i;
4804
4805	for (i = 0; i < ARRAY_SIZE(skb_ext_type_len); i++)
4806		l += skb_ext_type_len[i];
4807
4808	return l;
4809}
4810
4811static void skb_extensions_init(void)
4812{
4813	BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4814#if !IS_ENABLED(CONFIG_KCOV_INSTRUMENT_ALL)
4815	BUILD_BUG_ON(skb_ext_total_length() > 255);
4816#endif
4817
4818	skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4819					     SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4820					     0,
4821					     SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4822					     NULL);
4823}
4824#else
4825static void skb_extensions_init(void) {}
4826#endif
4827
4828/* The SKB kmem_cache slab is critical for network performance.  Never
4829 * merge/alias the slab with similar sized objects.  This avoids fragmentation
4830 * that hurts performance of kmem_cache_{alloc,free}_bulk APIs.
4831 */
4832#ifndef CONFIG_SLUB_TINY
4833#define FLAG_SKB_NO_MERGE	SLAB_NO_MERGE
4834#else /* CONFIG_SLUB_TINY - simple loop in kmem_cache_alloc_bulk */
4835#define FLAG_SKB_NO_MERGE	0
4836#endif
4837
4838void __init skb_init(void)
4839{
4840	skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4841					      sizeof(struct sk_buff),
4842					      0,
4843					      SLAB_HWCACHE_ALIGN|SLAB_PANIC|
4844						FLAG_SKB_NO_MERGE,
4845					      offsetof(struct sk_buff, cb),
4846					      sizeof_field(struct sk_buff, cb),
4847					      NULL);
4848	skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4849						sizeof(struct sk_buff_fclones),
4850						0,
4851						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4852						NULL);
4853	/* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4854	 * struct skb_shared_info is located at the end of skb->head,
4855	 * and should not be copied to/from user.
4856	 */
4857	skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4858						SKB_SMALL_HEAD_CACHE_SIZE,
4859						0,
4860						SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4861						0,
4862						SKB_SMALL_HEAD_HEADROOM,
4863						NULL);
4864	skb_extensions_init();
4865}
4866
4867static int
4868__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4869	       unsigned int recursion_level)
4870{
4871	int start = skb_headlen(skb);
4872	int i, copy = start - offset;
4873	struct sk_buff *frag_iter;
4874	int elt = 0;
4875
4876	if (unlikely(recursion_level >= 24))
4877		return -EMSGSIZE;
4878
4879	if (copy > 0) {
4880		if (copy > len)
4881			copy = len;
4882		sg_set_buf(sg, skb->data + offset, copy);
4883		elt++;
4884		if ((len -= copy) == 0)
4885			return elt;
4886		offset += copy;
4887	}
4888
4889	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4890		int end;
4891
4892		WARN_ON(start > offset + len);
4893
4894		end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4895		if ((copy = end - offset) > 0) {
4896			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4897			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4898				return -EMSGSIZE;
4899
4900			if (copy > len)
4901				copy = len;
4902			sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4903				    skb_frag_off(frag) + offset - start);
4904			elt++;
4905			if (!(len -= copy))
4906				return elt;
4907			offset += copy;
4908		}
4909		start = end;
4910	}
4911
4912	skb_walk_frags(skb, frag_iter) {
4913		int end, ret;
4914
4915		WARN_ON(start > offset + len);
4916
4917		end = start + frag_iter->len;
4918		if ((copy = end - offset) > 0) {
4919			if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4920				return -EMSGSIZE;
4921
4922			if (copy > len)
4923				copy = len;
4924			ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4925					      copy, recursion_level + 1);
4926			if (unlikely(ret < 0))
4927				return ret;
4928			elt += ret;
4929			if ((len -= copy) == 0)
4930				return elt;
4931			offset += copy;
4932		}
4933		start = end;
4934	}
4935	BUG_ON(len);
4936	return elt;
4937}
4938
4939/**
4940 *	skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4941 *	@skb: Socket buffer containing the buffers to be mapped
4942 *	@sg: The scatter-gather list to map into
4943 *	@offset: The offset into the buffer's contents to start mapping
4944 *	@len: Length of buffer space to be mapped
4945 *
4946 *	Fill the specified scatter-gather list with mappings/pointers into a
4947 *	region of the buffer space attached to a socket buffer. Returns either
4948 *	the number of scatterlist items used, or -EMSGSIZE if the contents
4949 *	could not fit.
4950 */
4951int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4952{
4953	int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4954
4955	if (nsg <= 0)
4956		return nsg;
4957
4958	sg_mark_end(&sg[nsg - 1]);
4959
4960	return nsg;
4961}
4962EXPORT_SYMBOL_GPL(skb_to_sgvec);
4963
4964/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4965 * sglist without mark the sg which contain last skb data as the end.
4966 * So the caller can mannipulate sg list as will when padding new data after
4967 * the first call without calling sg_unmark_end to expend sg list.
4968 *
4969 * Scenario to use skb_to_sgvec_nomark:
4970 * 1. sg_init_table
4971 * 2. skb_to_sgvec_nomark(payload1)
4972 * 3. skb_to_sgvec_nomark(payload2)
4973 *
4974 * This is equivalent to:
4975 * 1. sg_init_table
4976 * 2. skb_to_sgvec(payload1)
4977 * 3. sg_unmark_end
4978 * 4. skb_to_sgvec(payload2)
4979 *
4980 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4981 * is more preferable.
4982 */
4983int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4984			int offset, int len)
4985{
4986	return __skb_to_sgvec(skb, sg, offset, len, 0);
4987}
4988EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4989
4990
4991
4992/**
4993 *	skb_cow_data - Check that a socket buffer's data buffers are writable
4994 *	@skb: The socket buffer to check.
4995 *	@tailbits: Amount of trailing space to be added
4996 *	@trailer: Returned pointer to the skb where the @tailbits space begins
4997 *
4998 *	Make sure that the data buffers attached to a socket buffer are
4999 *	writable. If they are not, private copies are made of the data buffers
5000 *	and the socket buffer is set to use these instead.
5001 *
5002 *	If @tailbits is given, make sure that there is space to write @tailbits
5003 *	bytes of data beyond current end of socket buffer.  @trailer will be
5004 *	set to point to the skb in which this space begins.
5005 *
5006 *	The number of scatterlist elements required to completely map the
5007 *	COW'd and extended socket buffer will be returned.
5008 */
5009int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
5010{
5011	int copyflag;
5012	int elt;
5013	struct sk_buff *skb1, **skb_p;
5014
5015	/* If skb is cloned or its head is paged, reallocate
5016	 * head pulling out all the pages (pages are considered not writable
5017	 * at the moment even if they are anonymous).
5018	 */
5019	if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
5020	    !__pskb_pull_tail(skb, __skb_pagelen(skb)))
5021		return -ENOMEM;
5022
5023	/* Easy case. Most of packets will go this way. */
5024	if (!skb_has_frag_list(skb)) {
5025		/* A little of trouble, not enough of space for trailer.
5026		 * This should not happen, when stack is tuned to generate
5027		 * good frames. OK, on miss we reallocate and reserve even more
5028		 * space, 128 bytes is fair. */
5029
5030		if (skb_tailroom(skb) < tailbits &&
5031		    pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
5032			return -ENOMEM;
5033
5034		/* Voila! */
5035		*trailer = skb;
5036		return 1;
5037	}
5038
5039	/* Misery. We are in troubles, going to mincer fragments... */
5040
5041	elt = 1;
5042	skb_p = &skb_shinfo(skb)->frag_list;
5043	copyflag = 0;
5044
5045	while ((skb1 = *skb_p) != NULL) {
5046		int ntail = 0;
5047
5048		/* The fragment is partially pulled by someone,
5049		 * this can happen on input. Copy it and everything
5050		 * after it. */
5051
5052		if (skb_shared(skb1))
5053			copyflag = 1;
5054
5055		/* If the skb is the last, worry about trailer. */
5056
5057		if (skb1->next == NULL && tailbits) {
5058			if (skb_shinfo(skb1)->nr_frags ||
5059			    skb_has_frag_list(skb1) ||
5060			    skb_tailroom(skb1) < tailbits)
5061				ntail = tailbits + 128;
5062		}
5063
5064		if (copyflag ||
5065		    skb_cloned(skb1) ||
5066		    ntail ||
5067		    skb_shinfo(skb1)->nr_frags ||
5068		    skb_has_frag_list(skb1)) {
5069			struct sk_buff *skb2;
5070
5071			/* Fuck, we are miserable poor guys... */
5072			if (ntail == 0)
5073				skb2 = skb_copy(skb1, GFP_ATOMIC);
5074			else
5075				skb2 = skb_copy_expand(skb1,
5076						       skb_headroom(skb1),
5077						       ntail,
5078						       GFP_ATOMIC);
5079			if (unlikely(skb2 == NULL))
5080				return -ENOMEM;
5081
5082			if (skb1->sk)
5083				skb_set_owner_w(skb2, skb1->sk);
5084
5085			/* Looking around. Are we still alive?
5086			 * OK, link new skb, drop old one */
5087
5088			skb2->next = skb1->next;
5089			*skb_p = skb2;
5090			kfree_skb(skb1);
5091			skb1 = skb2;
5092		}
5093		elt++;
5094		*trailer = skb1;
5095		skb_p = &skb1->next;
5096	}
5097
5098	return elt;
5099}
5100EXPORT_SYMBOL_GPL(skb_cow_data);
5101
5102static void sock_rmem_free(struct sk_buff *skb)
5103{
5104	struct sock *sk = skb->sk;
5105
5106	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5107}
5108
5109static void skb_set_err_queue(struct sk_buff *skb)
5110{
5111	/* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5112	 * So, it is safe to (mis)use it to mark skbs on the error queue.
5113	 */
5114	skb->pkt_type = PACKET_OUTGOING;
5115	BUILD_BUG_ON(PACKET_OUTGOING == 0);
5116}
5117
5118/*
5119 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5120 */
5121int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5122{
5123	if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5124	    (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5125		return -ENOMEM;
5126
5127	skb_orphan(skb);
5128	skb->sk = sk;
5129	skb->destructor = sock_rmem_free;
5130	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5131	skb_set_err_queue(skb);
5132
5133	/* before exiting rcu section, make sure dst is refcounted */
5134	skb_dst_force(skb);
5135
5136	skb_queue_tail(&sk->sk_error_queue, skb);
5137	if (!sock_flag(sk, SOCK_DEAD))
5138		sk_error_report(sk);
5139	return 0;
5140}
5141EXPORT_SYMBOL(sock_queue_err_skb);
5142
5143static bool is_icmp_err_skb(const struct sk_buff *skb)
5144{
5145	return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5146		       SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5147}
5148
5149struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5150{
5151	struct sk_buff_head *q = &sk->sk_error_queue;
5152	struct sk_buff *skb, *skb_next = NULL;
5153	bool icmp_next = false;
5154	unsigned long flags;
5155
5156	spin_lock_irqsave(&q->lock, flags);
5157	skb = __skb_dequeue(q);
5158	if (skb && (skb_next = skb_peek(q))) {
5159		icmp_next = is_icmp_err_skb(skb_next);
5160		if (icmp_next)
5161			sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5162	}
5163	spin_unlock_irqrestore(&q->lock, flags);
5164
5165	if (is_icmp_err_skb(skb) && !icmp_next)
5166		sk->sk_err = 0;
5167
5168	if (skb_next)
5169		sk_error_report(sk);
5170
5171	return skb;
5172}
5173EXPORT_SYMBOL(sock_dequeue_err_skb);
5174
5175/**
5176 * skb_clone_sk - create clone of skb, and take reference to socket
5177 * @skb: the skb to clone
5178 *
5179 * This function creates a clone of a buffer that holds a reference on
5180 * sk_refcnt.  Buffers created via this function are meant to be
5181 * returned using sock_queue_err_skb, or free via kfree_skb.
5182 *
5183 * When passing buffers allocated with this function to sock_queue_err_skb
5184 * it is necessary to wrap the call with sock_hold/sock_put in order to
5185 * prevent the socket from being released prior to being enqueued on
5186 * the sk_error_queue.
5187 */
5188struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5189{
5190	struct sock *sk = skb->sk;
5191	struct sk_buff *clone;
5192
5193	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5194		return NULL;
5195
5196	clone = skb_clone(skb, GFP_ATOMIC);
5197	if (!clone) {
5198		sock_put(sk);
5199		return NULL;
5200	}
5201
5202	clone->sk = sk;
5203	clone->destructor = sock_efree;
5204
5205	return clone;
5206}
5207EXPORT_SYMBOL(skb_clone_sk);
5208
5209static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5210					struct sock *sk,
5211					int tstype,
5212					bool opt_stats)
5213{
5214	struct sock_exterr_skb *serr;
5215	int err;
5216
5217	BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5218
5219	serr = SKB_EXT_ERR(skb);
5220	memset(serr, 0, sizeof(*serr));
5221	serr->ee.ee_errno = ENOMSG;
5222	serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5223	serr->ee.ee_info = tstype;
5224	serr->opt_stats = opt_stats;
5225	serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5226	if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_OPT_ID) {
5227		serr->ee.ee_data = skb_shinfo(skb)->tskey;
5228		if (sk_is_tcp(sk))
5229			serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5230	}
5231
5232	err = sock_queue_err_skb(sk, skb);
5233
5234	if (err)
5235		kfree_skb(skb);
5236}
5237
5238static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5239{
5240	bool ret;
5241
5242	if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5243		return true;
5244
5245	read_lock_bh(&sk->sk_callback_lock);
5246	ret = sk->sk_socket && sk->sk_socket->file &&
5247	      file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5248	read_unlock_bh(&sk->sk_callback_lock);
5249	return ret;
5250}
5251
5252void skb_complete_tx_timestamp(struct sk_buff *skb,
5253			       struct skb_shared_hwtstamps *hwtstamps)
5254{
5255	struct sock *sk = skb->sk;
5256
5257	if (!skb_may_tx_timestamp(sk, false))
5258		goto err;
5259
5260	/* Take a reference to prevent skb_orphan() from freeing the socket,
5261	 * but only if the socket refcount is not zero.
5262	 */
5263	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5264		*skb_hwtstamps(skb) = *hwtstamps;
5265		__skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5266		sock_put(sk);
5267		return;
5268	}
5269
5270err:
5271	kfree_skb(skb);
5272}
5273EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5274
5275void __skb_tstamp_tx(struct sk_buff *orig_skb,
5276		     const struct sk_buff *ack_skb,
5277		     struct skb_shared_hwtstamps *hwtstamps,
5278		     struct sock *sk, int tstype)
5279{
5280	struct sk_buff *skb;
5281	bool tsonly, opt_stats = false;
5282	u32 tsflags;
5283
5284	if (!sk)
5285		return;
5286
5287	tsflags = READ_ONCE(sk->sk_tsflags);
5288	if (!hwtstamps && !(tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5289	    skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5290		return;
5291
5292	tsonly = tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5293	if (!skb_may_tx_timestamp(sk, tsonly))
5294		return;
5295
5296	if (tsonly) {
5297#ifdef CONFIG_INET
5298		if ((tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5299		    sk_is_tcp(sk)) {
5300			skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5301							     ack_skb);
5302			opt_stats = true;
5303		} else
5304#endif
5305			skb = alloc_skb(0, GFP_ATOMIC);
5306	} else {
5307		skb = skb_clone(orig_skb, GFP_ATOMIC);
5308
5309		if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5310			kfree_skb(skb);
5311			return;
5312		}
5313	}
5314	if (!skb)
5315		return;
5316
5317	if (tsonly) {
5318		skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5319					     SKBTX_ANY_TSTAMP;
5320		skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5321	}
5322
5323	if (hwtstamps)
5324		*skb_hwtstamps(skb) = *hwtstamps;
5325	else
5326		__net_timestamp(skb);
5327
5328	__skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5329}
5330EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5331
5332void skb_tstamp_tx(struct sk_buff *orig_skb,
5333		   struct skb_shared_hwtstamps *hwtstamps)
5334{
5335	return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5336			       SCM_TSTAMP_SND);
5337}
5338EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5339
5340#ifdef CONFIG_WIRELESS
5341void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5342{
5343	struct sock *sk = skb->sk;
5344	struct sock_exterr_skb *serr;
5345	int err = 1;
5346
5347	skb->wifi_acked_valid = 1;
5348	skb->wifi_acked = acked;
5349
5350	serr = SKB_EXT_ERR(skb);
5351	memset(serr, 0, sizeof(*serr));
5352	serr->ee.ee_errno = ENOMSG;
5353	serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5354
5355	/* Take a reference to prevent skb_orphan() from freeing the socket,
5356	 * but only if the socket refcount is not zero.
5357	 */
5358	if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5359		err = sock_queue_err_skb(sk, skb);
5360		sock_put(sk);
5361	}
5362	if (err)
5363		kfree_skb(skb);
5364}
5365EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5366#endif /* CONFIG_WIRELESS */
5367
5368/**
5369 * skb_partial_csum_set - set up and verify partial csum values for packet
5370 * @skb: the skb to set
5371 * @start: the number of bytes after skb->data to start checksumming.
5372 * @off: the offset from start to place the checksum.
5373 *
5374 * For untrusted partially-checksummed packets, we need to make sure the values
5375 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5376 *
5377 * This function checks and sets those values and skb->ip_summed: if this
5378 * returns false you should drop the packet.
5379 */
5380bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5381{
5382	u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5383	u32 csum_start = skb_headroom(skb) + (u32)start;
5384
5385	if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5386		net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5387				     start, off, skb_headroom(skb), skb_headlen(skb));
5388		return false;
5389	}
5390	skb->ip_summed = CHECKSUM_PARTIAL;
5391	skb->csum_start = csum_start;
5392	skb->csum_offset = off;
5393	skb->transport_header = csum_start;
5394	return true;
5395}
5396EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5397
5398static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5399			       unsigned int max)
5400{
5401	if (skb_headlen(skb) >= len)
5402		return 0;
5403
5404	/* If we need to pullup then pullup to the max, so we
5405	 * won't need to do it again.
5406	 */
5407	if (max > skb->len)
5408		max = skb->len;
5409
5410	if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5411		return -ENOMEM;
5412
5413	if (skb_headlen(skb) < len)
5414		return -EPROTO;
5415
5416	return 0;
5417}
5418
5419#define MAX_TCP_HDR_LEN (15 * 4)
5420
5421static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5422				      typeof(IPPROTO_IP) proto,
5423				      unsigned int off)
5424{
5425	int err;
5426
5427	switch (proto) {
5428	case IPPROTO_TCP:
5429		err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5430					  off + MAX_TCP_HDR_LEN);
5431		if (!err && !skb_partial_csum_set(skb, off,
5432						  offsetof(struct tcphdr,
5433							   check)))
5434			err = -EPROTO;
5435		return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5436
5437	case IPPROTO_UDP:
5438		err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5439					  off + sizeof(struct udphdr));
5440		if (!err && !skb_partial_csum_set(skb, off,
5441						  offsetof(struct udphdr,
5442							   check)))
5443			err = -EPROTO;
5444		return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5445	}
5446
5447	return ERR_PTR(-EPROTO);
5448}
5449
5450/* This value should be large enough to cover a tagged ethernet header plus
5451 * maximally sized IP and TCP or UDP headers.
5452 */
5453#define MAX_IP_HDR_LEN 128
5454
5455static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5456{
5457	unsigned int off;
5458	bool fragment;
5459	__sum16 *csum;
5460	int err;
5461
5462	fragment = false;
5463
5464	err = skb_maybe_pull_tail(skb,
5465				  sizeof(struct iphdr),
5466				  MAX_IP_HDR_LEN);
5467	if (err < 0)
5468		goto out;
5469
5470	if (ip_is_fragment(ip_hdr(skb)))
5471		fragment = true;
5472
5473	off = ip_hdrlen(skb);
5474
5475	err = -EPROTO;
5476
5477	if (fragment)
5478		goto out;
5479
5480	csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5481	if (IS_ERR(csum))
5482		return PTR_ERR(csum);
5483
5484	if (recalculate)
5485		*csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5486					   ip_hdr(skb)->daddr,
5487					   skb->len - off,
5488					   ip_hdr(skb)->protocol, 0);
5489	err = 0;
5490
5491out:
5492	return err;
5493}
5494
5495/* This value should be large enough to cover a tagged ethernet header plus
5496 * an IPv6 header, all options, and a maximal TCP or UDP header.
5497 */
5498#define MAX_IPV6_HDR_LEN 256
5499
5500#define OPT_HDR(type, skb, off) \
5501	(type *)(skb_network_header(skb) + (off))
5502
5503static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5504{
5505	int err;
5506	u8 nexthdr;
5507	unsigned int off;
5508	unsigned int len;
5509	bool fragment;
5510	bool done;
5511	__sum16 *csum;
5512
5513	fragment = false;
5514	done = false;
5515
5516	off = sizeof(struct ipv6hdr);
5517
5518	err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5519	if (err < 0)
5520		goto out;
5521
5522	nexthdr = ipv6_hdr(skb)->nexthdr;
5523
5524	len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5525	while (off <= len && !done) {
5526		switch (nexthdr) {
5527		case IPPROTO_DSTOPTS:
5528		case IPPROTO_HOPOPTS:
5529		case IPPROTO_ROUTING: {
5530			struct ipv6_opt_hdr *hp;
5531
5532			err = skb_maybe_pull_tail(skb,
5533						  off +
5534						  sizeof(struct ipv6_opt_hdr),
5535						  MAX_IPV6_HDR_LEN);
5536			if (err < 0)
5537				goto out;
5538
5539			hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5540			nexthdr = hp->nexthdr;
5541			off += ipv6_optlen(hp);
5542			break;
5543		}
5544		case IPPROTO_AH: {
5545			struct ip_auth_hdr *hp;
5546
5547			err = skb_maybe_pull_tail(skb,
5548						  off +
5549						  sizeof(struct ip_auth_hdr),
5550						  MAX_IPV6_HDR_LEN);
5551			if (err < 0)
5552				goto out;
5553
5554			hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5555			nexthdr = hp->nexthdr;
5556			off += ipv6_authlen(hp);
5557			break;
5558		}
5559		case IPPROTO_FRAGMENT: {
5560			struct frag_hdr *hp;
5561
5562			err = skb_maybe_pull_tail(skb,
5563						  off +
5564						  sizeof(struct frag_hdr),
5565						  MAX_IPV6_HDR_LEN);
5566			if (err < 0)
5567				goto out;
5568
5569			hp = OPT_HDR(struct frag_hdr, skb, off);
5570
5571			if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5572				fragment = true;
5573
5574			nexthdr = hp->nexthdr;
5575			off += sizeof(struct frag_hdr);
5576			break;
5577		}
5578		default:
5579			done = true;
5580			break;
5581		}
5582	}
5583
5584	err = -EPROTO;
5585
5586	if (!done || fragment)
5587		goto out;
5588
5589	csum = skb_checksum_setup_ip(skb, nexthdr, off);
5590	if (IS_ERR(csum))
5591		return PTR_ERR(csum);
5592
5593	if (recalculate)
5594		*csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5595					 &ipv6_hdr(skb)->daddr,
5596					 skb->len - off, nexthdr, 0);
5597	err = 0;
5598
5599out:
5600	return err;
5601}
5602
5603/**
5604 * skb_checksum_setup - set up partial checksum offset
5605 * @skb: the skb to set up
5606 * @recalculate: if true the pseudo-header checksum will be recalculated
5607 */
5608int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5609{
5610	int err;
5611
5612	switch (skb->protocol) {
5613	case htons(ETH_P_IP):
5614		err = skb_checksum_setup_ipv4(skb, recalculate);
5615		break;
5616
5617	case htons(ETH_P_IPV6):
5618		err = skb_checksum_setup_ipv6(skb, recalculate);
5619		break;
5620
5621	default:
5622		err = -EPROTO;
5623		break;
5624	}
5625
5626	return err;
5627}
5628EXPORT_SYMBOL(skb_checksum_setup);
5629
5630/**
5631 * skb_checksum_maybe_trim - maybe trims the given skb
5632 * @skb: the skb to check
5633 * @transport_len: the data length beyond the network header
5634 *
5635 * Checks whether the given skb has data beyond the given transport length.
5636 * If so, returns a cloned skb trimmed to this transport length.
5637 * Otherwise returns the provided skb. Returns NULL in error cases
5638 * (e.g. transport_len exceeds skb length or out-of-memory).
5639 *
5640 * Caller needs to set the skb transport header and free any returned skb if it
5641 * differs from the provided skb.
5642 */
5643static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5644					       unsigned int transport_len)
5645{
5646	struct sk_buff *skb_chk;
5647	unsigned int len = skb_transport_offset(skb) + transport_len;
5648	int ret;
5649
5650	if (skb->len < len)
5651		return NULL;
5652	else if (skb->len == len)
5653		return skb;
5654
5655	skb_chk = skb_clone(skb, GFP_ATOMIC);
5656	if (!skb_chk)
5657		return NULL;
5658
5659	ret = pskb_trim_rcsum(skb_chk, len);
5660	if (ret) {
5661		kfree_skb(skb_chk);
5662		return NULL;
5663	}
5664
5665	return skb_chk;
5666}
5667
5668/**
5669 * skb_checksum_trimmed - validate checksum of an skb
5670 * @skb: the skb to check
5671 * @transport_len: the data length beyond the network header
5672 * @skb_chkf: checksum function to use
5673 *
5674 * Applies the given checksum function skb_chkf to the provided skb.
5675 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5676 *
5677 * If the skb has data beyond the given transport length, then a
5678 * trimmed & cloned skb is checked and returned.
5679 *
5680 * Caller needs to set the skb transport header and free any returned skb if it
5681 * differs from the provided skb.
5682 */
5683struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5684				     unsigned int transport_len,
5685				     __sum16(*skb_chkf)(struct sk_buff *skb))
5686{
5687	struct sk_buff *skb_chk;
5688	unsigned int offset = skb_transport_offset(skb);
5689	__sum16 ret;
5690
5691	skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5692	if (!skb_chk)
5693		goto err;
5694
5695	if (!pskb_may_pull(skb_chk, offset))
5696		goto err;
5697
5698	skb_pull_rcsum(skb_chk, offset);
5699	ret = skb_chkf(skb_chk);
5700	skb_push_rcsum(skb_chk, offset);
5701
5702	if (ret)
5703		goto err;
5704
5705	return skb_chk;
5706
5707err:
5708	if (skb_chk && skb_chk != skb)
5709		kfree_skb(skb_chk);
5710
5711	return NULL;
5712
5713}
5714EXPORT_SYMBOL(skb_checksum_trimmed);
5715
5716void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5717{
5718	net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5719			     skb->dev->name);
5720}
5721EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5722
5723void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5724{
5725	if (head_stolen) {
5726		skb_release_head_state(skb);
5727		kmem_cache_free(skbuff_cache, skb);
5728	} else {
5729		__kfree_skb(skb);
5730	}
5731}
5732EXPORT_SYMBOL(kfree_skb_partial);
5733
5734/**
5735 * skb_try_coalesce - try to merge skb to prior one
5736 * @to: prior buffer
5737 * @from: buffer to add
5738 * @fragstolen: pointer to boolean
5739 * @delta_truesize: how much more was allocated than was requested
5740 */
5741bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5742		      bool *fragstolen, int *delta_truesize)
5743{
5744	struct skb_shared_info *to_shinfo, *from_shinfo;
5745	int i, delta, len = from->len;
5746
5747	*fragstolen = false;
5748
5749	if (skb_cloned(to))
5750		return false;
5751
5752	/* In general, avoid mixing page_pool and non-page_pool allocated
5753	 * pages within the same SKB. Additionally avoid dealing with clones
5754	 * with page_pool pages, in case the SKB is using page_pool fragment
5755	 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5756	 * references for cloned SKBs at the moment that would result in
5757	 * inconsistent reference counts.
5758	 * In theory we could take full references if @from is cloned and
5759	 * !@to->pp_recycle but its tricky (due to potential race with
5760	 * the clone disappearing) and rare, so not worth dealing with.
5761	 */
5762	if (to->pp_recycle != from->pp_recycle ||
5763	    (from->pp_recycle && skb_cloned(from)))
5764		return false;
5765
5766	if (len <= skb_tailroom(to)) {
5767		if (len)
5768			BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5769		*delta_truesize = 0;
5770		return true;
5771	}
5772
5773	to_shinfo = skb_shinfo(to);
5774	from_shinfo = skb_shinfo(from);
5775	if (to_shinfo->frag_list || from_shinfo->frag_list)
5776		return false;
5777	if (skb_zcopy(to) || skb_zcopy(from))
5778		return false;
5779
5780	if (skb_headlen(from) != 0) {
5781		struct page *page;
5782		unsigned int offset;
5783
5784		if (to_shinfo->nr_frags +
5785		    from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5786			return false;
5787
5788		if (skb_head_is_locked(from))
5789			return false;
5790
5791		delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5792
5793		page = virt_to_head_page(from->head);
5794		offset = from->data - (unsigned char *)page_address(page);
5795
5796		skb_fill_page_desc(to, to_shinfo->nr_frags,
5797				   page, offset, skb_headlen(from));
5798		*fragstolen = true;
5799	} else {
5800		if (to_shinfo->nr_frags +
5801		    from_shinfo->nr_frags > MAX_SKB_FRAGS)
5802			return false;
5803
5804		delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5805	}
5806
5807	WARN_ON_ONCE(delta < len);
5808
5809	memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5810	       from_shinfo->frags,
5811	       from_shinfo->nr_frags * sizeof(skb_frag_t));
5812	to_shinfo->nr_frags += from_shinfo->nr_frags;
5813
5814	if (!skb_cloned(from))
5815		from_shinfo->nr_frags = 0;
5816
5817	/* if the skb is not cloned this does nothing
5818	 * since we set nr_frags to 0.
5819	 */
5820	for (i = 0; i < from_shinfo->nr_frags; i++)
5821		__skb_frag_ref(&from_shinfo->frags[i]);
5822
5823	to->truesize += delta;
5824	to->len += len;
5825	to->data_len += len;
5826
5827	*delta_truesize = delta;
5828	return true;
5829}
5830EXPORT_SYMBOL(skb_try_coalesce);
5831
5832/**
5833 * skb_scrub_packet - scrub an skb
5834 *
5835 * @skb: buffer to clean
5836 * @xnet: packet is crossing netns
5837 *
5838 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5839 * into/from a tunnel. Some information have to be cleared during these
5840 * operations.
5841 * skb_scrub_packet can also be used to clean a skb before injecting it in
5842 * another namespace (@xnet == true). We have to clear all information in the
5843 * skb that could impact namespace isolation.
5844 */
5845void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5846{
5847	skb->pkt_type = PACKET_HOST;
5848	skb->skb_iif = 0;
5849	skb->ignore_df = 0;
5850	skb_dst_drop(skb);
5851	skb_ext_reset(skb);
5852	nf_reset_ct(skb);
5853	nf_reset_trace(skb);
5854
5855#ifdef CONFIG_NET_SWITCHDEV
5856	skb->offload_fwd_mark = 0;
5857	skb->offload_l3_fwd_mark = 0;
5858#endif
5859
5860	if (!xnet)
5861		return;
5862
5863	ipvs_reset(skb);
5864	skb->mark = 0;
5865	skb_clear_tstamp(skb);
5866}
5867EXPORT_SYMBOL_GPL(skb_scrub_packet);
5868
5869static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5870{
5871	int mac_len, meta_len;
5872	void *meta;
5873
5874	if (skb_cow(skb, skb_headroom(skb)) < 0) {
5875		kfree_skb(skb);
5876		return NULL;
5877	}
5878
5879	mac_len = skb->data - skb_mac_header(skb);
5880	if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5881		memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5882			mac_len - VLAN_HLEN - ETH_TLEN);
5883	}
5884
5885	meta_len = skb_metadata_len(skb);
5886	if (meta_len) {
5887		meta = skb_metadata_end(skb) - meta_len;
5888		memmove(meta + VLAN_HLEN, meta, meta_len);
5889	}
5890
5891	skb->mac_header += VLAN_HLEN;
5892	return skb;
5893}
5894
5895struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5896{
5897	struct vlan_hdr *vhdr;
5898	u16 vlan_tci;
5899
5900	if (unlikely(skb_vlan_tag_present(skb))) {
5901		/* vlan_tci is already set-up so leave this for another time */
5902		return skb;
5903	}
5904
5905	skb = skb_share_check(skb, GFP_ATOMIC);
5906	if (unlikely(!skb))
5907		goto err_free;
5908	/* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5909	if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5910		goto err_free;
5911
5912	vhdr = (struct vlan_hdr *)skb->data;
5913	vlan_tci = ntohs(vhdr->h_vlan_TCI);
5914	__vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5915
5916	skb_pull_rcsum(skb, VLAN_HLEN);
5917	vlan_set_encap_proto(skb, vhdr);
5918
5919	skb = skb_reorder_vlan_header(skb);
5920	if (unlikely(!skb))
5921		goto err_free;
5922
5923	skb_reset_network_header(skb);
5924	if (!skb_transport_header_was_set(skb))
5925		skb_reset_transport_header(skb);
5926	skb_reset_mac_len(skb);
5927
5928	return skb;
5929
5930err_free:
5931	kfree_skb(skb);
5932	return NULL;
5933}
5934EXPORT_SYMBOL(skb_vlan_untag);
5935
5936int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5937{
5938	if (!pskb_may_pull(skb, write_len))
5939		return -ENOMEM;
5940
5941	if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5942		return 0;
5943
5944	return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5945}
5946EXPORT_SYMBOL(skb_ensure_writable);
5947
5948/* remove VLAN header from packet and update csum accordingly.
5949 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5950 */
5951int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5952{
5953	int offset = skb->data - skb_mac_header(skb);
5954	int err;
5955
5956	if (WARN_ONCE(offset,
5957		      "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5958		      offset)) {
5959		return -EINVAL;
5960	}
5961
5962	err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5963	if (unlikely(err))
5964		return err;
5965
5966	skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5967
5968	vlan_remove_tag(skb, vlan_tci);
5969
5970	skb->mac_header += VLAN_HLEN;
5971
5972	if (skb_network_offset(skb) < ETH_HLEN)
5973		skb_set_network_header(skb, ETH_HLEN);
5974
5975	skb_reset_mac_len(skb);
5976
5977	return err;
5978}
5979EXPORT_SYMBOL(__skb_vlan_pop);
5980
5981/* Pop a vlan tag either from hwaccel or from payload.
5982 * Expects skb->data at mac header.
5983 */
5984int skb_vlan_pop(struct sk_buff *skb)
5985{
5986	u16 vlan_tci;
5987	__be16 vlan_proto;
5988	int err;
5989
5990	if (likely(skb_vlan_tag_present(skb))) {
5991		__vlan_hwaccel_clear_tag(skb);
5992	} else {
5993		if (unlikely(!eth_type_vlan(skb->protocol)))
5994			return 0;
5995
5996		err = __skb_vlan_pop(skb, &vlan_tci);
5997		if (err)
5998			return err;
5999	}
6000	/* move next vlan tag to hw accel tag */
6001	if (likely(!eth_type_vlan(skb->protocol)))
6002		return 0;
6003
6004	vlan_proto = skb->protocol;
6005	err = __skb_vlan_pop(skb, &vlan_tci);
6006	if (unlikely(err))
6007		return err;
6008
6009	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6010	return 0;
6011}
6012EXPORT_SYMBOL(skb_vlan_pop);
6013
6014/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
6015 * Expects skb->data at mac header.
6016 */
6017int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
6018{
6019	if (skb_vlan_tag_present(skb)) {
6020		int offset = skb->data - skb_mac_header(skb);
6021		int err;
6022
6023		if (WARN_ONCE(offset,
6024			      "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
6025			      offset)) {
6026			return -EINVAL;
6027		}
6028
6029		err = __vlan_insert_tag(skb, skb->vlan_proto,
6030					skb_vlan_tag_get(skb));
6031		if (err)
6032			return err;
6033
6034		skb->protocol = skb->vlan_proto;
6035		skb->mac_len += VLAN_HLEN;
6036
6037		skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
6038	}
6039	__vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
6040	return 0;
6041}
6042EXPORT_SYMBOL(skb_vlan_push);
6043
6044/**
6045 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
6046 *
6047 * @skb: Socket buffer to modify
6048 *
6049 * Drop the Ethernet header of @skb.
6050 *
6051 * Expects that skb->data points to the mac header and that no VLAN tags are
6052 * present.
6053 *
6054 * Returns 0 on success, -errno otherwise.
6055 */
6056int skb_eth_pop(struct sk_buff *skb)
6057{
6058	if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
6059	    skb_network_offset(skb) < ETH_HLEN)
6060		return -EPROTO;
6061
6062	skb_pull_rcsum(skb, ETH_HLEN);
6063	skb_reset_mac_header(skb);
6064	skb_reset_mac_len(skb);
6065
6066	return 0;
6067}
6068EXPORT_SYMBOL(skb_eth_pop);
6069
6070/**
6071 * skb_eth_push() - Add a new Ethernet header at the head of a packet
6072 *
6073 * @skb: Socket buffer to modify
6074 * @dst: Destination MAC address of the new header
6075 * @src: Source MAC address of the new header
6076 *
6077 * Prepend @skb with a new Ethernet header.
6078 *
6079 * Expects that skb->data points to the mac header, which must be empty.
6080 *
6081 * Returns 0 on success, -errno otherwise.
6082 */
6083int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
6084		 const unsigned char *src)
6085{
6086	struct ethhdr *eth;
6087	int err;
6088
6089	if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6090		return -EPROTO;
6091
6092	err = skb_cow_head(skb, sizeof(*eth));
6093	if (err < 0)
6094		return err;
6095
6096	skb_push(skb, sizeof(*eth));
6097	skb_reset_mac_header(skb);
6098	skb_reset_mac_len(skb);
6099
6100	eth = eth_hdr(skb);
6101	ether_addr_copy(eth->h_dest, dst);
6102	ether_addr_copy(eth->h_source, src);
6103	eth->h_proto = skb->protocol;
6104
6105	skb_postpush_rcsum(skb, eth, sizeof(*eth));
6106
6107	return 0;
6108}
6109EXPORT_SYMBOL(skb_eth_push);
6110
6111/* Update the ethertype of hdr and the skb csum value if required. */
6112static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6113			     __be16 ethertype)
6114{
6115	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6116		__be16 diff[] = { ~hdr->h_proto, ethertype };
6117
6118		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6119	}
6120
6121	hdr->h_proto = ethertype;
6122}
6123
6124/**
6125 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6126 *                   the packet
6127 *
6128 * @skb: buffer
6129 * @mpls_lse: MPLS label stack entry to push
6130 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6131 * @mac_len: length of the MAC header
6132 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6133 *            ethernet
6134 *
6135 * Expects skb->data at mac header.
6136 *
6137 * Returns 0 on success, -errno otherwise.
6138 */
6139int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6140		  int mac_len, bool ethernet)
6141{
6142	struct mpls_shim_hdr *lse;
6143	int err;
6144
6145	if (unlikely(!eth_p_mpls(mpls_proto)))
6146		return -EINVAL;
6147
6148	/* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6149	if (skb->encapsulation)
6150		return -EINVAL;
6151
6152	err = skb_cow_head(skb, MPLS_HLEN);
6153	if (unlikely(err))
6154		return err;
6155
6156	if (!skb->inner_protocol) {
6157		skb_set_inner_network_header(skb, skb_network_offset(skb));
6158		skb_set_inner_protocol(skb, skb->protocol);
6159	}
6160
6161	skb_push(skb, MPLS_HLEN);
6162	memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6163		mac_len);
6164	skb_reset_mac_header(skb);
6165	skb_set_network_header(skb, mac_len);
6166	skb_reset_mac_len(skb);
6167
6168	lse = mpls_hdr(skb);
6169	lse->label_stack_entry = mpls_lse;
6170	skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6171
6172	if (ethernet && mac_len >= ETH_HLEN)
6173		skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6174	skb->protocol = mpls_proto;
6175
6176	return 0;
6177}
6178EXPORT_SYMBOL_GPL(skb_mpls_push);
6179
6180/**
6181 * skb_mpls_pop() - pop the outermost MPLS header
6182 *
6183 * @skb: buffer
6184 * @next_proto: ethertype of header after popped MPLS header
6185 * @mac_len: length of the MAC header
6186 * @ethernet: flag to indicate if the packet is ethernet
6187 *
6188 * Expects skb->data at mac header.
6189 *
6190 * Returns 0 on success, -errno otherwise.
6191 */
6192int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6193		 bool ethernet)
6194{
6195	int err;
6196
6197	if (unlikely(!eth_p_mpls(skb->protocol)))
6198		return 0;
6199
6200	err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6201	if (unlikely(err))
6202		return err;
6203
6204	skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6205	memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6206		mac_len);
6207
6208	__skb_pull(skb, MPLS_HLEN);
6209	skb_reset_mac_header(skb);
6210	skb_set_network_header(skb, mac_len);
6211
6212	if (ethernet && mac_len >= ETH_HLEN) {
6213		struct ethhdr *hdr;
6214
6215		/* use mpls_hdr() to get ethertype to account for VLANs. */
6216		hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6217		skb_mod_eth_type(skb, hdr, next_proto);
6218	}
6219	skb->protocol = next_proto;
6220
6221	return 0;
6222}
6223EXPORT_SYMBOL_GPL(skb_mpls_pop);
6224
6225/**
6226 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6227 *
6228 * @skb: buffer
6229 * @mpls_lse: new MPLS label stack entry to update to
6230 *
6231 * Expects skb->data at mac header.
6232 *
6233 * Returns 0 on success, -errno otherwise.
6234 */
6235int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6236{
6237	int err;
6238
6239	if (unlikely(!eth_p_mpls(skb->protocol)))
6240		return -EINVAL;
6241
6242	err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6243	if (unlikely(err))
6244		return err;
6245
6246	if (skb->ip_summed == CHECKSUM_COMPLETE) {
6247		__be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6248
6249		skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6250	}
6251
6252	mpls_hdr(skb)->label_stack_entry = mpls_lse;
6253
6254	return 0;
6255}
6256EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6257
6258/**
6259 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6260 *
6261 * @skb: buffer
6262 *
6263 * Expects skb->data at mac header.
6264 *
6265 * Returns 0 on success, -errno otherwise.
6266 */
6267int skb_mpls_dec_ttl(struct sk_buff *skb)
6268{
6269	u32 lse;
6270	u8 ttl;
6271
6272	if (unlikely(!eth_p_mpls(skb->protocol)))
6273		return -EINVAL;
6274
6275	if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6276		return -ENOMEM;
6277
6278	lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6279	ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6280	if (!--ttl)
6281		return -EINVAL;
6282
6283	lse &= ~MPLS_LS_TTL_MASK;
6284	lse |= ttl << MPLS_LS_TTL_SHIFT;
6285
6286	return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6287}
6288EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6289
6290/**
6291 * alloc_skb_with_frags - allocate skb with page frags
6292 *
6293 * @header_len: size of linear part
6294 * @data_len: needed length in frags
6295 * @order: max page order desired.
6296 * @errcode: pointer to error code if any
6297 * @gfp_mask: allocation mask
6298 *
6299 * This can be used to allocate a paged skb, given a maximal order for frags.
6300 */
6301struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6302				     unsigned long data_len,
6303				     int order,
6304				     int *errcode,
6305				     gfp_t gfp_mask)
6306{
6307	unsigned long chunk;
6308	struct sk_buff *skb;
6309	struct page *page;
6310	int nr_frags = 0;
6311
6312	*errcode = -EMSGSIZE;
6313	if (unlikely(data_len > MAX_SKB_FRAGS * (PAGE_SIZE << order)))
6314		return NULL;
6315
6316	*errcode = -ENOBUFS;
6317	skb = alloc_skb(header_len, gfp_mask);
6318	if (!skb)
6319		return NULL;
6320
6321	while (data_len) {
6322		if (nr_frags == MAX_SKB_FRAGS - 1)
6323			goto failure;
6324		while (order && PAGE_ALIGN(data_len) < (PAGE_SIZE << order))
6325			order--;
6326
6327		if (order) {
6328			page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6329					   __GFP_COMP |
6330					   __GFP_NOWARN,
6331					   order);
6332			if (!page) {
6333				order--;
6334				continue;
6335			}
6336		} else {
6337			page = alloc_page(gfp_mask);
6338			if (!page)
6339				goto failure;
6340		}
6341		chunk = min_t(unsigned long, data_len,
6342			      PAGE_SIZE << order);
6343		skb_fill_page_desc(skb, nr_frags, page, 0, chunk);
6344		nr_frags++;
6345		skb->truesize += (PAGE_SIZE << order);
6346		data_len -= chunk;
6347	}
6348	return skb;
6349
6350failure:
6351	kfree_skb(skb);
6352	return NULL;
6353}
6354EXPORT_SYMBOL(alloc_skb_with_frags);
6355
6356/* carve out the first off bytes from skb when off < headlen */
6357static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6358				    const int headlen, gfp_t gfp_mask)
6359{
6360	int i;
6361	unsigned int size = skb_end_offset(skb);
6362	int new_hlen = headlen - off;
6363	u8 *data;
6364
6365	if (skb_pfmemalloc(skb))
6366		gfp_mask |= __GFP_MEMALLOC;
6367
6368	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6369	if (!data)
6370		return -ENOMEM;
6371	size = SKB_WITH_OVERHEAD(size);
6372
6373	/* Copy real data, and all frags */
6374	skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6375	skb->len -= off;
6376
6377	memcpy((struct skb_shared_info *)(data + size),
6378	       skb_shinfo(skb),
6379	       offsetof(struct skb_shared_info,
6380			frags[skb_shinfo(skb)->nr_frags]));
6381	if (skb_cloned(skb)) {
6382		/* drop the old head gracefully */
6383		if (skb_orphan_frags(skb, gfp_mask)) {
6384			skb_kfree_head(data, size);
6385			return -ENOMEM;
6386		}
6387		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6388			skb_frag_ref(skb, i);
6389		if (skb_has_frag_list(skb))
6390			skb_clone_fraglist(skb);
6391		skb_release_data(skb, SKB_CONSUMED, false);
6392	} else {
6393		/* we can reuse existing recount- all we did was
6394		 * relocate values
6395		 */
6396		skb_free_head(skb, false);
6397	}
6398
6399	skb->head = data;
6400	skb->data = data;
6401	skb->head_frag = 0;
6402	skb_set_end_offset(skb, size);
6403	skb_set_tail_pointer(skb, skb_headlen(skb));
6404	skb_headers_offset_update(skb, 0);
6405	skb->cloned = 0;
6406	skb->hdr_len = 0;
6407	skb->nohdr = 0;
6408	atomic_set(&skb_shinfo(skb)->dataref, 1);
6409
6410	return 0;
6411}
6412
6413static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6414
6415/* carve out the first eat bytes from skb's frag_list. May recurse into
6416 * pskb_carve()
6417 */
6418static int pskb_carve_frag_list(struct sk_buff *skb,
6419				struct skb_shared_info *shinfo, int eat,
6420				gfp_t gfp_mask)
6421{
6422	struct sk_buff *list = shinfo->frag_list;
6423	struct sk_buff *clone = NULL;
6424	struct sk_buff *insp = NULL;
6425
6426	do {
6427		if (!list) {
6428			pr_err("Not enough bytes to eat. Want %d\n", eat);
6429			return -EFAULT;
6430		}
6431		if (list->len <= eat) {
6432			/* Eaten as whole. */
6433			eat -= list->len;
6434			list = list->next;
6435			insp = list;
6436		} else {
6437			/* Eaten partially. */
6438			if (skb_shared(list)) {
6439				clone = skb_clone(list, gfp_mask);
6440				if (!clone)
6441					return -ENOMEM;
6442				insp = list->next;
6443				list = clone;
6444			} else {
6445				/* This may be pulled without problems. */
6446				insp = list;
6447			}
6448			if (pskb_carve(list, eat, gfp_mask) < 0) {
6449				kfree_skb(clone);
6450				return -ENOMEM;
6451			}
6452			break;
6453		}
6454	} while (eat);
6455
6456	/* Free pulled out fragments. */
6457	while ((list = shinfo->frag_list) != insp) {
6458		shinfo->frag_list = list->next;
6459		consume_skb(list);
6460	}
6461	/* And insert new clone at head. */
6462	if (clone) {
6463		clone->next = list;
6464		shinfo->frag_list = clone;
6465	}
6466	return 0;
6467}
6468
6469/* carve off first len bytes from skb. Split line (off) is in the
6470 * non-linear part of skb
6471 */
6472static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6473				       int pos, gfp_t gfp_mask)
6474{
6475	int i, k = 0;
6476	unsigned int size = skb_end_offset(skb);
6477	u8 *data;
6478	const int nfrags = skb_shinfo(skb)->nr_frags;
6479	struct skb_shared_info *shinfo;
6480
6481	if (skb_pfmemalloc(skb))
6482		gfp_mask |= __GFP_MEMALLOC;
6483
6484	data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6485	if (!data)
6486		return -ENOMEM;
6487	size = SKB_WITH_OVERHEAD(size);
6488
6489	memcpy((struct skb_shared_info *)(data + size),
6490	       skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6491	if (skb_orphan_frags(skb, gfp_mask)) {
6492		skb_kfree_head(data, size);
6493		return -ENOMEM;
6494	}
6495	shinfo = (struct skb_shared_info *)(data + size);
6496	for (i = 0; i < nfrags; i++) {
6497		int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6498
6499		if (pos + fsize > off) {
6500			shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6501
6502			if (pos < off) {
6503				/* Split frag.
6504				 * We have two variants in this case:
6505				 * 1. Move all the frag to the second
6506				 *    part, if it is possible. F.e.
6507				 *    this approach is mandatory for TUX,
6508				 *    where splitting is expensive.
6509				 * 2. Split is accurately. We make this.
6510				 */
6511				skb_frag_off_add(&shinfo->frags[0], off - pos);
6512				skb_frag_size_sub(&shinfo->frags[0], off - pos);
6513			}
6514			skb_frag_ref(skb, i);
6515			k++;
6516		}
6517		pos += fsize;
6518	}
6519	shinfo->nr_frags = k;
6520	if (skb_has_frag_list(skb))
6521		skb_clone_fraglist(skb);
6522
6523	/* split line is in frag list */
6524	if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6525		/* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6526		if (skb_has_frag_list(skb))
6527			kfree_skb_list(skb_shinfo(skb)->frag_list);
6528		skb_kfree_head(data, size);
6529		return -ENOMEM;
6530	}
6531	skb_release_data(skb, SKB_CONSUMED, false);
6532
6533	skb->head = data;
6534	skb->head_frag = 0;
6535	skb->data = data;
6536	skb_set_end_offset(skb, size);
6537	skb_reset_tail_pointer(skb);
6538	skb_headers_offset_update(skb, 0);
6539	skb->cloned   = 0;
6540	skb->hdr_len  = 0;
6541	skb->nohdr    = 0;
6542	skb->len -= off;
6543	skb->data_len = skb->len;
6544	atomic_set(&skb_shinfo(skb)->dataref, 1);
6545	return 0;
6546}
6547
6548/* remove len bytes from the beginning of the skb */
6549static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6550{
6551	int headlen = skb_headlen(skb);
6552
6553	if (len < headlen)
6554		return pskb_carve_inside_header(skb, len, headlen, gfp);
6555	else
6556		return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6557}
6558
6559/* Extract to_copy bytes starting at off from skb, and return this in
6560 * a new skb
6561 */
6562struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6563			     int to_copy, gfp_t gfp)
6564{
6565	struct sk_buff  *clone = skb_clone(skb, gfp);
6566
6567	if (!clone)
6568		return NULL;
6569
6570	if (pskb_carve(clone, off, gfp) < 0 ||
6571	    pskb_trim(clone, to_copy)) {
6572		kfree_skb(clone);
6573		return NULL;
6574	}
6575	return clone;
6576}
6577EXPORT_SYMBOL(pskb_extract);
6578
6579/**
6580 * skb_condense - try to get rid of fragments/frag_list if possible
6581 * @skb: buffer
6582 *
6583 * Can be used to save memory before skb is added to a busy queue.
6584 * If packet has bytes in frags and enough tail room in skb->head,
6585 * pull all of them, so that we can free the frags right now and adjust
6586 * truesize.
6587 * Notes:
6588 *	We do not reallocate skb->head thus can not fail.
6589 *	Caller must re-evaluate skb->truesize if needed.
6590 */
6591void skb_condense(struct sk_buff *skb)
6592{
6593	if (skb->data_len) {
6594		if (skb->data_len > skb->end - skb->tail ||
6595		    skb_cloned(skb))
6596			return;
6597
6598		/* Nice, we can free page frag(s) right now */
6599		__pskb_pull_tail(skb, skb->data_len);
6600	}
6601	/* At this point, skb->truesize might be over estimated,
6602	 * because skb had a fragment, and fragments do not tell
6603	 * their truesize.
6604	 * When we pulled its content into skb->head, fragment
6605	 * was freed, but __pskb_pull_tail() could not possibly
6606	 * adjust skb->truesize, not knowing the frag truesize.
6607	 */
6608	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6609}
6610EXPORT_SYMBOL(skb_condense);
6611
6612#ifdef CONFIG_SKB_EXTENSIONS
6613static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6614{
6615	return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6616}
6617
6618/**
6619 * __skb_ext_alloc - allocate a new skb extensions storage
6620 *
6621 * @flags: See kmalloc().
6622 *
6623 * Returns the newly allocated pointer. The pointer can later attached to a
6624 * skb via __skb_ext_set().
6625 * Note: caller must handle the skb_ext as an opaque data.
6626 */
6627struct skb_ext *__skb_ext_alloc(gfp_t flags)
6628{
6629	struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6630
6631	if (new) {
6632		memset(new->offset, 0, sizeof(new->offset));
6633		refcount_set(&new->refcnt, 1);
6634	}
6635
6636	return new;
6637}
6638
6639static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6640					 unsigned int old_active)
6641{
6642	struct skb_ext *new;
6643
6644	if (refcount_read(&old->refcnt) == 1)
6645		return old;
6646
6647	new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6648	if (!new)
6649		return NULL;
6650
6651	memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6652	refcount_set(&new->refcnt, 1);
6653
6654#ifdef CONFIG_XFRM
6655	if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6656		struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6657		unsigned int i;
6658
6659		for (i = 0; i < sp->len; i++)
6660			xfrm_state_hold(sp->xvec[i]);
6661	}
6662#endif
6663#ifdef CONFIG_MCTP_FLOWS
6664	if (old_active & (1 << SKB_EXT_MCTP)) {
6665		struct mctp_flow *flow = skb_ext_get_ptr(old, SKB_EXT_MCTP);
6666
6667		if (flow->key)
6668			refcount_inc(&flow->key->refs);
6669	}
6670#endif
6671	__skb_ext_put(old);
6672	return new;
6673}
6674
6675/**
6676 * __skb_ext_set - attach the specified extension storage to this skb
6677 * @skb: buffer
6678 * @id: extension id
6679 * @ext: extension storage previously allocated via __skb_ext_alloc()
6680 *
6681 * Existing extensions, if any, are cleared.
6682 *
6683 * Returns the pointer to the extension.
6684 */
6685void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6686		    struct skb_ext *ext)
6687{
6688	unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6689
6690	skb_ext_put(skb);
6691	newlen = newoff + skb_ext_type_len[id];
6692	ext->chunks = newlen;
6693	ext->offset[id] = newoff;
6694	skb->extensions = ext;
6695	skb->active_extensions = 1 << id;
6696	return skb_ext_get_ptr(ext, id);
6697}
6698
6699/**
6700 * skb_ext_add - allocate space for given extension, COW if needed
6701 * @skb: buffer
6702 * @id: extension to allocate space for
6703 *
6704 * Allocates enough space for the given extension.
6705 * If the extension is already present, a pointer to that extension
6706 * is returned.
6707 *
6708 * If the skb was cloned, COW applies and the returned memory can be
6709 * modified without changing the extension space of clones buffers.
6710 *
6711 * Returns pointer to the extension or NULL on allocation failure.
6712 */
6713void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6714{
6715	struct skb_ext *new, *old = NULL;
6716	unsigned int newlen, newoff;
6717
6718	if (skb->active_extensions) {
6719		old = skb->extensions;
6720
6721		new = skb_ext_maybe_cow(old, skb->active_extensions);
6722		if (!new)
6723			return NULL;
6724
6725		if (__skb_ext_exist(new, id))
6726			goto set_active;
6727
6728		newoff = new->chunks;
6729	} else {
6730		newoff = SKB_EXT_CHUNKSIZEOF(*new);
6731
6732		new = __skb_ext_alloc(GFP_ATOMIC);
6733		if (!new)
6734			return NULL;
6735	}
6736
6737	newlen = newoff + skb_ext_type_len[id];
6738	new->chunks = newlen;
6739	new->offset[id] = newoff;
6740set_active:
6741	skb->slow_gro = 1;
6742	skb->extensions = new;
6743	skb->active_extensions |= 1 << id;
6744	return skb_ext_get_ptr(new, id);
6745}
6746EXPORT_SYMBOL(skb_ext_add);
6747
6748#ifdef CONFIG_XFRM
6749static void skb_ext_put_sp(struct sec_path *sp)
6750{
6751	unsigned int i;
6752
6753	for (i = 0; i < sp->len; i++)
6754		xfrm_state_put(sp->xvec[i]);
6755}
6756#endif
6757
6758#ifdef CONFIG_MCTP_FLOWS
6759static void skb_ext_put_mctp(struct mctp_flow *flow)
6760{
6761	if (flow->key)
6762		mctp_key_unref(flow->key);
6763}
6764#endif
6765
6766void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6767{
6768	struct skb_ext *ext = skb->extensions;
6769
6770	skb->active_extensions &= ~(1 << id);
6771	if (skb->active_extensions == 0) {
6772		skb->extensions = NULL;
6773		__skb_ext_put(ext);
6774#ifdef CONFIG_XFRM
6775	} else if (id == SKB_EXT_SEC_PATH &&
6776		   refcount_read(&ext->refcnt) == 1) {
6777		struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6778
6779		skb_ext_put_sp(sp);
6780		sp->len = 0;
6781#endif
6782	}
6783}
6784EXPORT_SYMBOL(__skb_ext_del);
6785
6786void __skb_ext_put(struct skb_ext *ext)
6787{
6788	/* If this is last clone, nothing can increment
6789	 * it after check passes.  Avoids one atomic op.
6790	 */
6791	if (refcount_read(&ext->refcnt) == 1)
6792		goto free_now;
6793
6794	if (!refcount_dec_and_test(&ext->refcnt))
6795		return;
6796free_now:
6797#ifdef CONFIG_XFRM
6798	if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6799		skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6800#endif
6801#ifdef CONFIG_MCTP_FLOWS
6802	if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6803		skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6804#endif
6805
6806	kmem_cache_free(skbuff_ext_cache, ext);
6807}
6808EXPORT_SYMBOL(__skb_ext_put);
6809#endif /* CONFIG_SKB_EXTENSIONS */
6810
6811/**
6812 * skb_attempt_defer_free - queue skb for remote freeing
6813 * @skb: buffer
6814 *
6815 * Put @skb in a per-cpu list, using the cpu which
6816 * allocated the skb/pages to reduce false sharing
6817 * and memory zone spinlock contention.
6818 */
6819void skb_attempt_defer_free(struct sk_buff *skb)
6820{
6821	int cpu = skb->alloc_cpu;
6822	struct softnet_data *sd;
6823	unsigned int defer_max;
6824	bool kick;
6825
6826	if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6827	    !cpu_online(cpu) ||
6828	    cpu == raw_smp_processor_id()) {
6829nodefer:	__kfree_skb(skb);
6830		return;
6831	}
6832
6833	DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6834	DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6835
6836	sd = &per_cpu(softnet_data, cpu);
6837	defer_max = READ_ONCE(sysctl_skb_defer_max);
6838	if (READ_ONCE(sd->defer_count) >= defer_max)
6839		goto nodefer;
6840
6841	spin_lock_bh(&sd->defer_lock);
6842	/* Send an IPI every time queue reaches half capacity. */
6843	kick = sd->defer_count == (defer_max >> 1);
6844	/* Paired with the READ_ONCE() few lines above */
6845	WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6846
6847	skb->next = sd->defer_list;
6848	/* Paired with READ_ONCE() in skb_defer_free_flush() */
6849	WRITE_ONCE(sd->defer_list, skb);
6850	spin_unlock_bh(&sd->defer_lock);
6851
6852	/* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6853	 * if we are unlucky enough (this seems very unlikely).
6854	 */
6855	if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6856		smp_call_function_single_async(cpu, &sd->defer_csd);
6857}
6858
6859static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6860				 size_t offset, size_t len)
6861{
6862	const char *kaddr;
6863	__wsum csum;
6864
6865	kaddr = kmap_local_page(page);
6866	csum = csum_partial(kaddr + offset, len, 0);
6867	kunmap_local(kaddr);
6868	skb->csum = csum_block_add(skb->csum, csum, skb->len);
6869}
6870
6871/**
6872 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6873 * @skb: The buffer to add pages to
6874 * @iter: Iterator representing the pages to be added
6875 * @maxsize: Maximum amount of pages to be added
6876 * @gfp: Allocation flags
6877 *
6878 * This is a common helper function for supporting MSG_SPLICE_PAGES.  It
6879 * extracts pages from an iterator and adds them to the socket buffer if
6880 * possible, copying them to fragments if not possible (such as if they're slab
6881 * pages).
6882 *
6883 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6884 * insufficient space in the buffer to transfer anything.
6885 */
6886ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6887			     ssize_t maxsize, gfp_t gfp)
6888{
6889	size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6890	struct page *pages[8], **ppages = pages;
6891	ssize_t spliced = 0, ret = 0;
6892	unsigned int i;
6893
6894	while (iter->count > 0) {
6895		ssize_t space, nr, len;
6896		size_t off;
6897
6898		ret = -EMSGSIZE;
6899		space = frag_limit - skb_shinfo(skb)->nr_frags;
6900		if (space < 0)
6901			break;
6902
6903		/* We might be able to coalesce without increasing nr_frags */
6904		nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6905
6906		len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6907		if (len <= 0) {
6908			ret = len ?: -EIO;
6909			break;
6910		}
6911
6912		i = 0;
6913		do {
6914			struct page *page = pages[i++];
6915			size_t part = min_t(size_t, PAGE_SIZE - off, len);
6916
6917			ret = -EIO;
6918			if (WARN_ON_ONCE(!sendpage_ok(page)))
6919				goto out;
6920
6921			ret = skb_append_pagefrags(skb, page, off, part,
6922						   frag_limit);
6923			if (ret < 0) {
6924				iov_iter_revert(iter, len);
6925				goto out;
6926			}
6927
6928			if (skb->ip_summed == CHECKSUM_NONE)
6929				skb_splice_csum_page(skb, page, off, part);
6930
6931			off = 0;
6932			spliced += part;
6933			maxsize -= part;
6934			len -= part;
6935		} while (len > 0);
6936
6937		if (maxsize <= 0)
6938			break;
6939	}
6940
6941out:
6942	skb_len_add(skb, spliced);
6943	return spliced ?: ret;
6944}
6945EXPORT_SYMBOL(skb_splice_from_iter);
6946