xref: /kernel/linux/linux-6.6/net/can/isotp.c (revision 62306a36)
1// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2/* isotp.c - ISO 15765-2 CAN transport protocol for protocol family CAN
3 *
4 * This implementation does not provide ISO-TP specific return values to the
5 * userspace.
6 *
7 * - RX path timeout of data reception leads to -ETIMEDOUT
8 * - RX path SN mismatch leads to -EILSEQ
9 * - RX path data reception with wrong padding leads to -EBADMSG
10 * - TX path flowcontrol reception timeout leads to -ECOMM
11 * - TX path flowcontrol reception overflow leads to -EMSGSIZE
12 * - TX path flowcontrol reception with wrong layout/padding leads to -EBADMSG
13 * - when a transfer (tx) is on the run the next write() blocks until it's done
14 * - use CAN_ISOTP_WAIT_TX_DONE flag to block the caller until the PDU is sent
15 * - as we have static buffers the check whether the PDU fits into the buffer
16 *   is done at FF reception time (no support for sending 'wait frames')
17 *
18 * Copyright (c) 2020 Volkswagen Group Electronic Research
19 * All rights reserved.
20 *
21 * Redistribution and use in source and binary forms, with or without
22 * modification, are permitted provided that the following conditions
23 * are met:
24 * 1. Redistributions of source code must retain the above copyright
25 *    notice, this list of conditions and the following disclaimer.
26 * 2. Redistributions in binary form must reproduce the above copyright
27 *    notice, this list of conditions and the following disclaimer in the
28 *    documentation and/or other materials provided with the distribution.
29 * 3. Neither the name of Volkswagen nor the names of its contributors
30 *    may be used to endorse or promote products derived from this software
31 *    without specific prior written permission.
32 *
33 * Alternatively, provided that this notice is retained in full, this
34 * software may be distributed under the terms of the GNU General
35 * Public License ("GPL") version 2, in which case the provisions of the
36 * GPL apply INSTEAD OF those given above.
37 *
38 * The provided data structures and external interfaces from this code
39 * are not restricted to be used by modules with a GPL compatible license.
40 *
41 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
42 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
43 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
44 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
45 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
46 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
47 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
48 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
49 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
50 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
51 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
52 * DAMAGE.
53 */
54
55#include <linux/module.h>
56#include <linux/init.h>
57#include <linux/interrupt.h>
58#include <linux/spinlock.h>
59#include <linux/hrtimer.h>
60#include <linux/wait.h>
61#include <linux/uio.h>
62#include <linux/net.h>
63#include <linux/netdevice.h>
64#include <linux/socket.h>
65#include <linux/if_arp.h>
66#include <linux/skbuff.h>
67#include <linux/can.h>
68#include <linux/can/core.h>
69#include <linux/can/skb.h>
70#include <linux/can/isotp.h>
71#include <linux/slab.h>
72#include <net/sock.h>
73#include <net/net_namespace.h>
74
75MODULE_DESCRIPTION("PF_CAN isotp 15765-2:2016 protocol");
76MODULE_LICENSE("Dual BSD/GPL");
77MODULE_AUTHOR("Oliver Hartkopp <socketcan@hartkopp.net>");
78MODULE_ALIAS("can-proto-6");
79
80#define ISOTP_MIN_NAMELEN CAN_REQUIRED_SIZE(struct sockaddr_can, can_addr.tp)
81
82#define SINGLE_MASK(id) (((id) & CAN_EFF_FLAG) ? \
83			 (CAN_EFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG) : \
84			 (CAN_SFF_MASK | CAN_EFF_FLAG | CAN_RTR_FLAG))
85
86/* ISO 15765-2:2016 supports more than 4095 byte per ISO PDU as the FF_DL can
87 * take full 32 bit values (4 Gbyte). We would need some good concept to handle
88 * this between user space and kernel space. For now set the static buffer to
89 * something about 8 kbyte to be able to test this new functionality.
90 */
91#define DEFAULT_MAX_PDU_SIZE 8300
92
93/* maximum PDU size before ISO 15765-2:2016 extension was 4095 */
94#define MAX_12BIT_PDU_SIZE 4095
95
96/* limit the isotp pdu size from the optional module parameter to 1MByte */
97#define MAX_PDU_SIZE (1025 * 1024U)
98
99static unsigned int max_pdu_size __read_mostly = DEFAULT_MAX_PDU_SIZE;
100module_param(max_pdu_size, uint, 0444);
101MODULE_PARM_DESC(max_pdu_size, "maximum isotp pdu size (default "
102		 __stringify(DEFAULT_MAX_PDU_SIZE) ")");
103
104/* N_PCI type values in bits 7-4 of N_PCI bytes */
105#define N_PCI_SF 0x00	/* single frame */
106#define N_PCI_FF 0x10	/* first frame */
107#define N_PCI_CF 0x20	/* consecutive frame */
108#define N_PCI_FC 0x30	/* flow control */
109
110#define N_PCI_SZ 1	/* size of the PCI byte #1 */
111#define SF_PCI_SZ4 1	/* size of SingleFrame PCI including 4 bit SF_DL */
112#define SF_PCI_SZ8 2	/* size of SingleFrame PCI including 8 bit SF_DL */
113#define FF_PCI_SZ12 2	/* size of FirstFrame PCI including 12 bit FF_DL */
114#define FF_PCI_SZ32 6	/* size of FirstFrame PCI including 32 bit FF_DL */
115#define FC_CONTENT_SZ 3	/* flow control content size in byte (FS/BS/STmin) */
116
117#define ISOTP_CHECK_PADDING (CAN_ISOTP_CHK_PAD_LEN | CAN_ISOTP_CHK_PAD_DATA)
118#define ISOTP_ALL_BC_FLAGS (CAN_ISOTP_SF_BROADCAST | CAN_ISOTP_CF_BROADCAST)
119
120/* Flow Status given in FC frame */
121#define ISOTP_FC_CTS 0		/* clear to send */
122#define ISOTP_FC_WT 1		/* wait */
123#define ISOTP_FC_OVFLW 2	/* overflow */
124
125#define ISOTP_FC_TIMEOUT 1	/* 1 sec */
126#define ISOTP_ECHO_TIMEOUT 2	/* 2 secs */
127
128enum {
129	ISOTP_IDLE = 0,
130	ISOTP_WAIT_FIRST_FC,
131	ISOTP_WAIT_FC,
132	ISOTP_WAIT_DATA,
133	ISOTP_SENDING,
134	ISOTP_SHUTDOWN,
135};
136
137struct tpcon {
138	u8 *buf;
139	unsigned int buflen;
140	unsigned int len;
141	unsigned int idx;
142	u32 state;
143	u8 bs;
144	u8 sn;
145	u8 ll_dl;
146	u8 sbuf[DEFAULT_MAX_PDU_SIZE];
147};
148
149struct isotp_sock {
150	struct sock sk;
151	int bound;
152	int ifindex;
153	canid_t txid;
154	canid_t rxid;
155	ktime_t tx_gap;
156	ktime_t lastrxcf_tstamp;
157	struct hrtimer rxtimer, txtimer, txfrtimer;
158	struct can_isotp_options opt;
159	struct can_isotp_fc_options rxfc, txfc;
160	struct can_isotp_ll_options ll;
161	u32 frame_txtime;
162	u32 force_tx_stmin;
163	u32 force_rx_stmin;
164	u32 cfecho; /* consecutive frame echo tag */
165	struct tpcon rx, tx;
166	struct list_head notifier;
167	wait_queue_head_t wait;
168	spinlock_t rx_lock; /* protect single thread state machine */
169};
170
171static LIST_HEAD(isotp_notifier_list);
172static DEFINE_SPINLOCK(isotp_notifier_lock);
173static struct isotp_sock *isotp_busy_notifier;
174
175static inline struct isotp_sock *isotp_sk(const struct sock *sk)
176{
177	return (struct isotp_sock *)sk;
178}
179
180static u32 isotp_bc_flags(struct isotp_sock *so)
181{
182	return so->opt.flags & ISOTP_ALL_BC_FLAGS;
183}
184
185static bool isotp_register_rxid(struct isotp_sock *so)
186{
187	/* no broadcast modes => register rx_id for FC frame reception */
188	return (isotp_bc_flags(so) == 0);
189}
190
191static enum hrtimer_restart isotp_rx_timer_handler(struct hrtimer *hrtimer)
192{
193	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
194					     rxtimer);
195	struct sock *sk = &so->sk;
196
197	if (so->rx.state == ISOTP_WAIT_DATA) {
198		/* we did not get new data frames in time */
199
200		/* report 'connection timed out' */
201		sk->sk_err = ETIMEDOUT;
202		if (!sock_flag(sk, SOCK_DEAD))
203			sk_error_report(sk);
204
205		/* reset rx state */
206		so->rx.state = ISOTP_IDLE;
207	}
208
209	return HRTIMER_NORESTART;
210}
211
212static int isotp_send_fc(struct sock *sk, int ae, u8 flowstatus)
213{
214	struct net_device *dev;
215	struct sk_buff *nskb;
216	struct canfd_frame *ncf;
217	struct isotp_sock *so = isotp_sk(sk);
218	int can_send_ret;
219
220	nskb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), gfp_any());
221	if (!nskb)
222		return 1;
223
224	dev = dev_get_by_index(sock_net(sk), so->ifindex);
225	if (!dev) {
226		kfree_skb(nskb);
227		return 1;
228	}
229
230	can_skb_reserve(nskb);
231	can_skb_prv(nskb)->ifindex = dev->ifindex;
232	can_skb_prv(nskb)->skbcnt = 0;
233
234	nskb->dev = dev;
235	can_skb_set_owner(nskb, sk);
236	ncf = (struct canfd_frame *)nskb->data;
237	skb_put_zero(nskb, so->ll.mtu);
238
239	/* create & send flow control reply */
240	ncf->can_id = so->txid;
241
242	if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
243		memset(ncf->data, so->opt.txpad_content, CAN_MAX_DLEN);
244		ncf->len = CAN_MAX_DLEN;
245	} else {
246		ncf->len = ae + FC_CONTENT_SZ;
247	}
248
249	ncf->data[ae] = N_PCI_FC | flowstatus;
250	ncf->data[ae + 1] = so->rxfc.bs;
251	ncf->data[ae + 2] = so->rxfc.stmin;
252
253	if (ae)
254		ncf->data[0] = so->opt.ext_address;
255
256	ncf->flags = so->ll.tx_flags;
257
258	can_send_ret = can_send(nskb, 1);
259	if (can_send_ret)
260		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
261			       __func__, ERR_PTR(can_send_ret));
262
263	dev_put(dev);
264
265	/* reset blocksize counter */
266	so->rx.bs = 0;
267
268	/* reset last CF frame rx timestamp for rx stmin enforcement */
269	so->lastrxcf_tstamp = ktime_set(0, 0);
270
271	/* start rx timeout watchdog */
272	hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
273		      HRTIMER_MODE_REL_SOFT);
274	return 0;
275}
276
277static void isotp_rcv_skb(struct sk_buff *skb, struct sock *sk)
278{
279	struct sockaddr_can *addr = (struct sockaddr_can *)skb->cb;
280
281	BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
282
283	memset(addr, 0, sizeof(*addr));
284	addr->can_family = AF_CAN;
285	addr->can_ifindex = skb->dev->ifindex;
286
287	if (sock_queue_rcv_skb(sk, skb) < 0)
288		kfree_skb(skb);
289}
290
291static u8 padlen(u8 datalen)
292{
293	static const u8 plen[] = {
294		8, 8, 8, 8, 8, 8, 8, 8, 8,	/* 0 - 8 */
295		12, 12, 12, 12,			/* 9 - 12 */
296		16, 16, 16, 16,			/* 13 - 16 */
297		20, 20, 20, 20,			/* 17 - 20 */
298		24, 24, 24, 24,			/* 21 - 24 */
299		32, 32, 32, 32, 32, 32, 32, 32,	/* 25 - 32 */
300		48, 48, 48, 48, 48, 48, 48, 48,	/* 33 - 40 */
301		48, 48, 48, 48, 48, 48, 48, 48	/* 41 - 48 */
302	};
303
304	if (datalen > 48)
305		return 64;
306
307	return plen[datalen];
308}
309
310/* check for length optimization and return 1/true when the check fails */
311static int check_optimized(struct canfd_frame *cf, int start_index)
312{
313	/* for CAN_DL <= 8 the start_index is equal to the CAN_DL as the
314	 * padding would start at this point. E.g. if the padding would
315	 * start at cf.data[7] cf->len has to be 7 to be optimal.
316	 * Note: The data[] index starts with zero.
317	 */
318	if (cf->len <= CAN_MAX_DLEN)
319		return (cf->len != start_index);
320
321	/* This relation is also valid in the non-linear DLC range, where
322	 * we need to take care of the minimal next possible CAN_DL.
323	 * The correct check would be (padlen(cf->len) != padlen(start_index)).
324	 * But as cf->len can only take discrete values from 12, .., 64 at this
325	 * point the padlen(cf->len) is always equal to cf->len.
326	 */
327	return (cf->len != padlen(start_index));
328}
329
330/* check padding and return 1/true when the check fails */
331static int check_pad(struct isotp_sock *so, struct canfd_frame *cf,
332		     int start_index, u8 content)
333{
334	int i;
335
336	/* no RX_PADDING value => check length of optimized frame length */
337	if (!(so->opt.flags & CAN_ISOTP_RX_PADDING)) {
338		if (so->opt.flags & CAN_ISOTP_CHK_PAD_LEN)
339			return check_optimized(cf, start_index);
340
341		/* no valid test against empty value => ignore frame */
342		return 1;
343	}
344
345	/* check datalength of correctly padded CAN frame */
346	if ((so->opt.flags & CAN_ISOTP_CHK_PAD_LEN) &&
347	    cf->len != padlen(cf->len))
348		return 1;
349
350	/* check padding content */
351	if (so->opt.flags & CAN_ISOTP_CHK_PAD_DATA) {
352		for (i = start_index; i < cf->len; i++)
353			if (cf->data[i] != content)
354				return 1;
355	}
356	return 0;
357}
358
359static void isotp_send_cframe(struct isotp_sock *so);
360
361static int isotp_rcv_fc(struct isotp_sock *so, struct canfd_frame *cf, int ae)
362{
363	struct sock *sk = &so->sk;
364
365	if (so->tx.state != ISOTP_WAIT_FC &&
366	    so->tx.state != ISOTP_WAIT_FIRST_FC)
367		return 0;
368
369	hrtimer_cancel(&so->txtimer);
370
371	if ((cf->len < ae + FC_CONTENT_SZ) ||
372	    ((so->opt.flags & ISOTP_CHECK_PADDING) &&
373	     check_pad(so, cf, ae + FC_CONTENT_SZ, so->opt.rxpad_content))) {
374		/* malformed PDU - report 'not a data message' */
375		sk->sk_err = EBADMSG;
376		if (!sock_flag(sk, SOCK_DEAD))
377			sk_error_report(sk);
378
379		so->tx.state = ISOTP_IDLE;
380		wake_up_interruptible(&so->wait);
381		return 1;
382	}
383
384	/* get communication parameters only from the first FC frame */
385	if (so->tx.state == ISOTP_WAIT_FIRST_FC) {
386		so->txfc.bs = cf->data[ae + 1];
387		so->txfc.stmin = cf->data[ae + 2];
388
389		/* fix wrong STmin values according spec */
390		if (so->txfc.stmin > 0x7F &&
391		    (so->txfc.stmin < 0xF1 || so->txfc.stmin > 0xF9))
392			so->txfc.stmin = 0x7F;
393
394		so->tx_gap = ktime_set(0, 0);
395		/* add transmission time for CAN frame N_As */
396		so->tx_gap = ktime_add_ns(so->tx_gap, so->frame_txtime);
397		/* add waiting time for consecutive frames N_Cs */
398		if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
399			so->tx_gap = ktime_add_ns(so->tx_gap,
400						  so->force_tx_stmin);
401		else if (so->txfc.stmin < 0x80)
402			so->tx_gap = ktime_add_ns(so->tx_gap,
403						  so->txfc.stmin * 1000000);
404		else
405			so->tx_gap = ktime_add_ns(so->tx_gap,
406						  (so->txfc.stmin - 0xF0)
407						  * 100000);
408		so->tx.state = ISOTP_WAIT_FC;
409	}
410
411	switch (cf->data[ae] & 0x0F) {
412	case ISOTP_FC_CTS:
413		so->tx.bs = 0;
414		so->tx.state = ISOTP_SENDING;
415		/* send CF frame and enable echo timeout handling */
416		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
417			      HRTIMER_MODE_REL_SOFT);
418		isotp_send_cframe(so);
419		break;
420
421	case ISOTP_FC_WT:
422		/* start timer to wait for next FC frame */
423		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
424			      HRTIMER_MODE_REL_SOFT);
425		break;
426
427	case ISOTP_FC_OVFLW:
428		/* overflow on receiver side - report 'message too long' */
429		sk->sk_err = EMSGSIZE;
430		if (!sock_flag(sk, SOCK_DEAD))
431			sk_error_report(sk);
432		fallthrough;
433
434	default:
435		/* stop this tx job */
436		so->tx.state = ISOTP_IDLE;
437		wake_up_interruptible(&so->wait);
438	}
439	return 0;
440}
441
442static int isotp_rcv_sf(struct sock *sk, struct canfd_frame *cf, int pcilen,
443			struct sk_buff *skb, int len)
444{
445	struct isotp_sock *so = isotp_sk(sk);
446	struct sk_buff *nskb;
447
448	hrtimer_cancel(&so->rxtimer);
449	so->rx.state = ISOTP_IDLE;
450
451	if (!len || len > cf->len - pcilen)
452		return 1;
453
454	if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
455	    check_pad(so, cf, pcilen + len, so->opt.rxpad_content)) {
456		/* malformed PDU - report 'not a data message' */
457		sk->sk_err = EBADMSG;
458		if (!sock_flag(sk, SOCK_DEAD))
459			sk_error_report(sk);
460		return 1;
461	}
462
463	nskb = alloc_skb(len, gfp_any());
464	if (!nskb)
465		return 1;
466
467	memcpy(skb_put(nskb, len), &cf->data[pcilen], len);
468
469	nskb->tstamp = skb->tstamp;
470	nskb->dev = skb->dev;
471	isotp_rcv_skb(nskb, sk);
472	return 0;
473}
474
475static int isotp_rcv_ff(struct sock *sk, struct canfd_frame *cf, int ae)
476{
477	struct isotp_sock *so = isotp_sk(sk);
478	int i;
479	int off;
480	int ff_pci_sz;
481
482	hrtimer_cancel(&so->rxtimer);
483	so->rx.state = ISOTP_IDLE;
484
485	/* get the used sender LL_DL from the (first) CAN frame data length */
486	so->rx.ll_dl = padlen(cf->len);
487
488	/* the first frame has to use the entire frame up to LL_DL length */
489	if (cf->len != so->rx.ll_dl)
490		return 1;
491
492	/* get the FF_DL */
493	so->rx.len = (cf->data[ae] & 0x0F) << 8;
494	so->rx.len += cf->data[ae + 1];
495
496	/* Check for FF_DL escape sequence supporting 32 bit PDU length */
497	if (so->rx.len) {
498		ff_pci_sz = FF_PCI_SZ12;
499	} else {
500		/* FF_DL = 0 => get real length from next 4 bytes */
501		so->rx.len = cf->data[ae + 2] << 24;
502		so->rx.len += cf->data[ae + 3] << 16;
503		so->rx.len += cf->data[ae + 4] << 8;
504		so->rx.len += cf->data[ae + 5];
505		ff_pci_sz = FF_PCI_SZ32;
506	}
507
508	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
509	off = (so->rx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
510
511	if (so->rx.len + ae + off + ff_pci_sz < so->rx.ll_dl)
512		return 1;
513
514	/* PDU size > default => try max_pdu_size */
515	if (so->rx.len > so->rx.buflen && so->rx.buflen < max_pdu_size) {
516		u8 *newbuf = kmalloc(max_pdu_size, GFP_ATOMIC);
517
518		if (newbuf) {
519			so->rx.buf = newbuf;
520			so->rx.buflen = max_pdu_size;
521		}
522	}
523
524	if (so->rx.len > so->rx.buflen) {
525		/* send FC frame with overflow status */
526		isotp_send_fc(sk, ae, ISOTP_FC_OVFLW);
527		return 1;
528	}
529
530	/* copy the first received data bytes */
531	so->rx.idx = 0;
532	for (i = ae + ff_pci_sz; i < so->rx.ll_dl; i++)
533		so->rx.buf[so->rx.idx++] = cf->data[i];
534
535	/* initial setup for this pdu reception */
536	so->rx.sn = 1;
537	so->rx.state = ISOTP_WAIT_DATA;
538
539	/* no creation of flow control frames */
540	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
541		return 0;
542
543	/* send our first FC frame */
544	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
545	return 0;
546}
547
548static int isotp_rcv_cf(struct sock *sk, struct canfd_frame *cf, int ae,
549			struct sk_buff *skb)
550{
551	struct isotp_sock *so = isotp_sk(sk);
552	struct sk_buff *nskb;
553	int i;
554
555	if (so->rx.state != ISOTP_WAIT_DATA)
556		return 0;
557
558	/* drop if timestamp gap is less than force_rx_stmin nano secs */
559	if (so->opt.flags & CAN_ISOTP_FORCE_RXSTMIN) {
560		if (ktime_to_ns(ktime_sub(skb->tstamp, so->lastrxcf_tstamp)) <
561		    so->force_rx_stmin)
562			return 0;
563
564		so->lastrxcf_tstamp = skb->tstamp;
565	}
566
567	hrtimer_cancel(&so->rxtimer);
568
569	/* CFs are never longer than the FF */
570	if (cf->len > so->rx.ll_dl)
571		return 1;
572
573	/* CFs have usually the LL_DL length */
574	if (cf->len < so->rx.ll_dl) {
575		/* this is only allowed for the last CF */
576		if (so->rx.len - so->rx.idx > so->rx.ll_dl - ae - N_PCI_SZ)
577			return 1;
578	}
579
580	if ((cf->data[ae] & 0x0F) != so->rx.sn) {
581		/* wrong sn detected - report 'illegal byte sequence' */
582		sk->sk_err = EILSEQ;
583		if (!sock_flag(sk, SOCK_DEAD))
584			sk_error_report(sk);
585
586		/* reset rx state */
587		so->rx.state = ISOTP_IDLE;
588		return 1;
589	}
590	so->rx.sn++;
591	so->rx.sn %= 16;
592
593	for (i = ae + N_PCI_SZ; i < cf->len; i++) {
594		so->rx.buf[so->rx.idx++] = cf->data[i];
595		if (so->rx.idx >= so->rx.len)
596			break;
597	}
598
599	if (so->rx.idx >= so->rx.len) {
600		/* we are done */
601		so->rx.state = ISOTP_IDLE;
602
603		if ((so->opt.flags & ISOTP_CHECK_PADDING) &&
604		    check_pad(so, cf, i + 1, so->opt.rxpad_content)) {
605			/* malformed PDU - report 'not a data message' */
606			sk->sk_err = EBADMSG;
607			if (!sock_flag(sk, SOCK_DEAD))
608				sk_error_report(sk);
609			return 1;
610		}
611
612		nskb = alloc_skb(so->rx.len, gfp_any());
613		if (!nskb)
614			return 1;
615
616		memcpy(skb_put(nskb, so->rx.len), so->rx.buf,
617		       so->rx.len);
618
619		nskb->tstamp = skb->tstamp;
620		nskb->dev = skb->dev;
621		isotp_rcv_skb(nskb, sk);
622		return 0;
623	}
624
625	/* perform blocksize handling, if enabled */
626	if (!so->rxfc.bs || ++so->rx.bs < so->rxfc.bs) {
627		/* start rx timeout watchdog */
628		hrtimer_start(&so->rxtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
629			      HRTIMER_MODE_REL_SOFT);
630		return 0;
631	}
632
633	/* no creation of flow control frames */
634	if (so->opt.flags & CAN_ISOTP_LISTEN_MODE)
635		return 0;
636
637	/* we reached the specified blocksize so->rxfc.bs */
638	isotp_send_fc(sk, ae, ISOTP_FC_CTS);
639	return 0;
640}
641
642static void isotp_rcv(struct sk_buff *skb, void *data)
643{
644	struct sock *sk = (struct sock *)data;
645	struct isotp_sock *so = isotp_sk(sk);
646	struct canfd_frame *cf;
647	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
648	u8 n_pci_type, sf_dl;
649
650	/* Strictly receive only frames with the configured MTU size
651	 * => clear separation of CAN2.0 / CAN FD transport channels
652	 */
653	if (skb->len != so->ll.mtu)
654		return;
655
656	cf = (struct canfd_frame *)skb->data;
657
658	/* if enabled: check reception of my configured extended address */
659	if (ae && cf->data[0] != so->opt.rx_ext_address)
660		return;
661
662	n_pci_type = cf->data[ae] & 0xF0;
663
664	/* Make sure the state changes and data structures stay consistent at
665	 * CAN frame reception time. This locking is not needed in real world
666	 * use cases but the inconsistency can be triggered with syzkaller.
667	 */
668	spin_lock(&so->rx_lock);
669
670	if (so->opt.flags & CAN_ISOTP_HALF_DUPLEX) {
671		/* check rx/tx path half duplex expectations */
672		if ((so->tx.state != ISOTP_IDLE && n_pci_type != N_PCI_FC) ||
673		    (so->rx.state != ISOTP_IDLE && n_pci_type == N_PCI_FC))
674			goto out_unlock;
675	}
676
677	switch (n_pci_type) {
678	case N_PCI_FC:
679		/* tx path: flow control frame containing the FC parameters */
680		isotp_rcv_fc(so, cf, ae);
681		break;
682
683	case N_PCI_SF:
684		/* rx path: single frame
685		 *
686		 * As we do not have a rx.ll_dl configuration, we can only test
687		 * if the CAN frames payload length matches the LL_DL == 8
688		 * requirements - no matter if it's CAN 2.0 or CAN FD
689		 */
690
691		/* get the SF_DL from the N_PCI byte */
692		sf_dl = cf->data[ae] & 0x0F;
693
694		if (cf->len <= CAN_MAX_DLEN) {
695			isotp_rcv_sf(sk, cf, SF_PCI_SZ4 + ae, skb, sf_dl);
696		} else {
697			if (can_is_canfd_skb(skb)) {
698				/* We have a CAN FD frame and CAN_DL is greater than 8:
699				 * Only frames with the SF_DL == 0 ESC value are valid.
700				 *
701				 * If so take care of the increased SF PCI size
702				 * (SF_PCI_SZ8) to point to the message content behind
703				 * the extended SF PCI info and get the real SF_DL
704				 * length value from the formerly first data byte.
705				 */
706				if (sf_dl == 0)
707					isotp_rcv_sf(sk, cf, SF_PCI_SZ8 + ae, skb,
708						     cf->data[SF_PCI_SZ4 + ae]);
709			}
710		}
711		break;
712
713	case N_PCI_FF:
714		/* rx path: first frame */
715		isotp_rcv_ff(sk, cf, ae);
716		break;
717
718	case N_PCI_CF:
719		/* rx path: consecutive frame */
720		isotp_rcv_cf(sk, cf, ae, skb);
721		break;
722	}
723
724out_unlock:
725	spin_unlock(&so->rx_lock);
726}
727
728static void isotp_fill_dataframe(struct canfd_frame *cf, struct isotp_sock *so,
729				 int ae, int off)
730{
731	int pcilen = N_PCI_SZ + ae + off;
732	int space = so->tx.ll_dl - pcilen;
733	int num = min_t(int, so->tx.len - so->tx.idx, space);
734	int i;
735
736	cf->can_id = so->txid;
737	cf->len = num + pcilen;
738
739	if (num < space) {
740		if (so->opt.flags & CAN_ISOTP_TX_PADDING) {
741			/* user requested padding */
742			cf->len = padlen(cf->len);
743			memset(cf->data, so->opt.txpad_content, cf->len);
744		} else if (cf->len > CAN_MAX_DLEN) {
745			/* mandatory padding for CAN FD frames */
746			cf->len = padlen(cf->len);
747			memset(cf->data, CAN_ISOTP_DEFAULT_PAD_CONTENT,
748			       cf->len);
749		}
750	}
751
752	for (i = 0; i < num; i++)
753		cf->data[pcilen + i] = so->tx.buf[so->tx.idx++];
754
755	if (ae)
756		cf->data[0] = so->opt.ext_address;
757}
758
759static void isotp_send_cframe(struct isotp_sock *so)
760{
761	struct sock *sk = &so->sk;
762	struct sk_buff *skb;
763	struct net_device *dev;
764	struct canfd_frame *cf;
765	int can_send_ret;
766	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
767
768	dev = dev_get_by_index(sock_net(sk), so->ifindex);
769	if (!dev)
770		return;
771
772	skb = alloc_skb(so->ll.mtu + sizeof(struct can_skb_priv), GFP_ATOMIC);
773	if (!skb) {
774		dev_put(dev);
775		return;
776	}
777
778	can_skb_reserve(skb);
779	can_skb_prv(skb)->ifindex = dev->ifindex;
780	can_skb_prv(skb)->skbcnt = 0;
781
782	cf = (struct canfd_frame *)skb->data;
783	skb_put_zero(skb, so->ll.mtu);
784
785	/* create consecutive frame */
786	isotp_fill_dataframe(cf, so, ae, 0);
787
788	/* place consecutive frame N_PCI in appropriate index */
789	cf->data[ae] = N_PCI_CF | so->tx.sn++;
790	so->tx.sn %= 16;
791	so->tx.bs++;
792
793	cf->flags = so->ll.tx_flags;
794
795	skb->dev = dev;
796	can_skb_set_owner(skb, sk);
797
798	/* cfecho should have been zero'ed by init/isotp_rcv_echo() */
799	if (so->cfecho)
800		pr_notice_once("can-isotp: cfecho is %08X != 0\n", so->cfecho);
801
802	/* set consecutive frame echo tag */
803	so->cfecho = *(u32 *)cf->data;
804
805	/* send frame with local echo enabled */
806	can_send_ret = can_send(skb, 1);
807	if (can_send_ret) {
808		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
809			       __func__, ERR_PTR(can_send_ret));
810		if (can_send_ret == -ENOBUFS)
811			pr_notice_once("can-isotp: tx queue is full\n");
812	}
813	dev_put(dev);
814}
815
816static void isotp_create_fframe(struct canfd_frame *cf, struct isotp_sock *so,
817				int ae)
818{
819	int i;
820	int ff_pci_sz;
821
822	cf->can_id = so->txid;
823	cf->len = so->tx.ll_dl;
824	if (ae)
825		cf->data[0] = so->opt.ext_address;
826
827	/* create N_PCI bytes with 12/32 bit FF_DL data length */
828	if (so->tx.len > MAX_12BIT_PDU_SIZE) {
829		/* use 32 bit FF_DL notation */
830		cf->data[ae] = N_PCI_FF;
831		cf->data[ae + 1] = 0;
832		cf->data[ae + 2] = (u8)(so->tx.len >> 24) & 0xFFU;
833		cf->data[ae + 3] = (u8)(so->tx.len >> 16) & 0xFFU;
834		cf->data[ae + 4] = (u8)(so->tx.len >> 8) & 0xFFU;
835		cf->data[ae + 5] = (u8)so->tx.len & 0xFFU;
836		ff_pci_sz = FF_PCI_SZ32;
837	} else {
838		/* use 12 bit FF_DL notation */
839		cf->data[ae] = (u8)(so->tx.len >> 8) | N_PCI_FF;
840		cf->data[ae + 1] = (u8)so->tx.len & 0xFFU;
841		ff_pci_sz = FF_PCI_SZ12;
842	}
843
844	/* add first data bytes depending on ae */
845	for (i = ae + ff_pci_sz; i < so->tx.ll_dl; i++)
846		cf->data[i] = so->tx.buf[so->tx.idx++];
847
848	so->tx.sn = 1;
849}
850
851static void isotp_rcv_echo(struct sk_buff *skb, void *data)
852{
853	struct sock *sk = (struct sock *)data;
854	struct isotp_sock *so = isotp_sk(sk);
855	struct canfd_frame *cf = (struct canfd_frame *)skb->data;
856
857	/* only handle my own local echo CF/SF skb's (no FF!) */
858	if (skb->sk != sk || so->cfecho != *(u32 *)cf->data)
859		return;
860
861	/* cancel local echo timeout */
862	hrtimer_cancel(&so->txtimer);
863
864	/* local echo skb with consecutive frame has been consumed */
865	so->cfecho = 0;
866
867	if (so->tx.idx >= so->tx.len) {
868		/* we are done */
869		so->tx.state = ISOTP_IDLE;
870		wake_up_interruptible(&so->wait);
871		return;
872	}
873
874	if (so->txfc.bs && so->tx.bs >= so->txfc.bs) {
875		/* stop and wait for FC with timeout */
876		so->tx.state = ISOTP_WAIT_FC;
877		hrtimer_start(&so->txtimer, ktime_set(ISOTP_FC_TIMEOUT, 0),
878			      HRTIMER_MODE_REL_SOFT);
879		return;
880	}
881
882	/* no gap between data frames needed => use burst mode */
883	if (!so->tx_gap) {
884		/* enable echo timeout handling */
885		hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
886			      HRTIMER_MODE_REL_SOFT);
887		isotp_send_cframe(so);
888		return;
889	}
890
891	/* start timer to send next consecutive frame with correct delay */
892	hrtimer_start(&so->txfrtimer, so->tx_gap, HRTIMER_MODE_REL_SOFT);
893}
894
895static enum hrtimer_restart isotp_tx_timer_handler(struct hrtimer *hrtimer)
896{
897	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
898					     txtimer);
899	struct sock *sk = &so->sk;
900
901	/* don't handle timeouts in IDLE or SHUTDOWN state */
902	if (so->tx.state == ISOTP_IDLE || so->tx.state == ISOTP_SHUTDOWN)
903		return HRTIMER_NORESTART;
904
905	/* we did not get any flow control or echo frame in time */
906
907	/* report 'communication error on send' */
908	sk->sk_err = ECOMM;
909	if (!sock_flag(sk, SOCK_DEAD))
910		sk_error_report(sk);
911
912	/* reset tx state */
913	so->tx.state = ISOTP_IDLE;
914	wake_up_interruptible(&so->wait);
915
916	return HRTIMER_NORESTART;
917}
918
919static enum hrtimer_restart isotp_txfr_timer_handler(struct hrtimer *hrtimer)
920{
921	struct isotp_sock *so = container_of(hrtimer, struct isotp_sock,
922					     txfrtimer);
923
924	/* start echo timeout handling and cover below protocol error */
925	hrtimer_start(&so->txtimer, ktime_set(ISOTP_ECHO_TIMEOUT, 0),
926		      HRTIMER_MODE_REL_SOFT);
927
928	/* cfecho should be consumed by isotp_rcv_echo() here */
929	if (so->tx.state == ISOTP_SENDING && !so->cfecho)
930		isotp_send_cframe(so);
931
932	return HRTIMER_NORESTART;
933}
934
935static int isotp_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
936{
937	struct sock *sk = sock->sk;
938	struct isotp_sock *so = isotp_sk(sk);
939	struct sk_buff *skb;
940	struct net_device *dev;
941	struct canfd_frame *cf;
942	int ae = (so->opt.flags & CAN_ISOTP_EXTEND_ADDR) ? 1 : 0;
943	int wait_tx_done = (so->opt.flags & CAN_ISOTP_WAIT_TX_DONE) ? 1 : 0;
944	s64 hrtimer_sec = ISOTP_ECHO_TIMEOUT;
945	int off;
946	int err;
947
948	if (!so->bound || so->tx.state == ISOTP_SHUTDOWN)
949		return -EADDRNOTAVAIL;
950
951	while (cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SENDING) != ISOTP_IDLE) {
952		/* we do not support multiple buffers - for now */
953		if (msg->msg_flags & MSG_DONTWAIT)
954			return -EAGAIN;
955
956		if (so->tx.state == ISOTP_SHUTDOWN)
957			return -EADDRNOTAVAIL;
958
959		/* wait for complete transmission of current pdu */
960		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
961		if (err)
962			goto err_event_drop;
963	}
964
965	/* PDU size > default => try max_pdu_size */
966	if (size > so->tx.buflen && so->tx.buflen < max_pdu_size) {
967		u8 *newbuf = kmalloc(max_pdu_size, GFP_KERNEL);
968
969		if (newbuf) {
970			so->tx.buf = newbuf;
971			so->tx.buflen = max_pdu_size;
972		}
973	}
974
975	if (!size || size > so->tx.buflen) {
976		err = -EINVAL;
977		goto err_out_drop;
978	}
979
980	/* take care of a potential SF_DL ESC offset for TX_DL > 8 */
981	off = (so->tx.ll_dl > CAN_MAX_DLEN) ? 1 : 0;
982
983	/* does the given data fit into a single frame for SF_BROADCAST? */
984	if ((isotp_bc_flags(so) == CAN_ISOTP_SF_BROADCAST) &&
985	    (size > so->tx.ll_dl - SF_PCI_SZ4 - ae - off)) {
986		err = -EINVAL;
987		goto err_out_drop;
988	}
989
990	err = memcpy_from_msg(so->tx.buf, msg, size);
991	if (err < 0)
992		goto err_out_drop;
993
994	dev = dev_get_by_index(sock_net(sk), so->ifindex);
995	if (!dev) {
996		err = -ENXIO;
997		goto err_out_drop;
998	}
999
1000	skb = sock_alloc_send_skb(sk, so->ll.mtu + sizeof(struct can_skb_priv),
1001				  msg->msg_flags & MSG_DONTWAIT, &err);
1002	if (!skb) {
1003		dev_put(dev);
1004		goto err_out_drop;
1005	}
1006
1007	can_skb_reserve(skb);
1008	can_skb_prv(skb)->ifindex = dev->ifindex;
1009	can_skb_prv(skb)->skbcnt = 0;
1010
1011	so->tx.len = size;
1012	so->tx.idx = 0;
1013
1014	cf = (struct canfd_frame *)skb->data;
1015	skb_put_zero(skb, so->ll.mtu);
1016
1017	/* cfecho should have been zero'ed by init / former isotp_rcv_echo() */
1018	if (so->cfecho)
1019		pr_notice_once("can-isotp: uninit cfecho %08X\n", so->cfecho);
1020
1021	/* check for single frame transmission depending on TX_DL */
1022	if (size <= so->tx.ll_dl - SF_PCI_SZ4 - ae - off) {
1023		/* The message size generally fits into a SingleFrame - good.
1024		 *
1025		 * SF_DL ESC offset optimization:
1026		 *
1027		 * When TX_DL is greater 8 but the message would still fit
1028		 * into a 8 byte CAN frame, we can omit the offset.
1029		 * This prevents a protocol caused length extension from
1030		 * CAN_DL = 8 to CAN_DL = 12 due to the SF_SL ESC handling.
1031		 */
1032		if (size <= CAN_MAX_DLEN - SF_PCI_SZ4 - ae)
1033			off = 0;
1034
1035		isotp_fill_dataframe(cf, so, ae, off);
1036
1037		/* place single frame N_PCI w/o length in appropriate index */
1038		cf->data[ae] = N_PCI_SF;
1039
1040		/* place SF_DL size value depending on the SF_DL ESC offset */
1041		if (off)
1042			cf->data[SF_PCI_SZ4 + ae] = size;
1043		else
1044			cf->data[ae] |= size;
1045
1046		/* set CF echo tag for isotp_rcv_echo() (SF-mode) */
1047		so->cfecho = *(u32 *)cf->data;
1048	} else {
1049		/* send first frame */
1050
1051		isotp_create_fframe(cf, so, ae);
1052
1053		if (isotp_bc_flags(so) == CAN_ISOTP_CF_BROADCAST) {
1054			/* set timer for FC-less operation (STmin = 0) */
1055			if (so->opt.flags & CAN_ISOTP_FORCE_TXSTMIN)
1056				so->tx_gap = ktime_set(0, so->force_tx_stmin);
1057			else
1058				so->tx_gap = ktime_set(0, so->frame_txtime);
1059
1060			/* disable wait for FCs due to activated block size */
1061			so->txfc.bs = 0;
1062
1063			/* set CF echo tag for isotp_rcv_echo() (CF-mode) */
1064			so->cfecho = *(u32 *)cf->data;
1065		} else {
1066			/* standard flow control check */
1067			so->tx.state = ISOTP_WAIT_FIRST_FC;
1068
1069			/* start timeout for FC */
1070			hrtimer_sec = ISOTP_FC_TIMEOUT;
1071
1072			/* no CF echo tag for isotp_rcv_echo() (FF-mode) */
1073			so->cfecho = 0;
1074		}
1075	}
1076
1077	hrtimer_start(&so->txtimer, ktime_set(hrtimer_sec, 0),
1078		      HRTIMER_MODE_REL_SOFT);
1079
1080	/* send the first or only CAN frame */
1081	cf->flags = so->ll.tx_flags;
1082
1083	skb->dev = dev;
1084	skb->sk = sk;
1085	err = can_send(skb, 1);
1086	dev_put(dev);
1087	if (err) {
1088		pr_notice_once("can-isotp: %s: can_send_ret %pe\n",
1089			       __func__, ERR_PTR(err));
1090
1091		/* no transmission -> no timeout monitoring */
1092		hrtimer_cancel(&so->txtimer);
1093
1094		/* reset consecutive frame echo tag */
1095		so->cfecho = 0;
1096
1097		goto err_out_drop;
1098	}
1099
1100	if (wait_tx_done) {
1101		/* wait for complete transmission of current pdu */
1102		err = wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE);
1103		if (err)
1104			goto err_event_drop;
1105
1106		err = sock_error(sk);
1107		if (err)
1108			return err;
1109	}
1110
1111	return size;
1112
1113err_event_drop:
1114	/* got signal: force tx state machine to be idle */
1115	so->tx.state = ISOTP_IDLE;
1116	hrtimer_cancel(&so->txfrtimer);
1117	hrtimer_cancel(&so->txtimer);
1118err_out_drop:
1119	/* drop this PDU and unlock a potential wait queue */
1120	so->tx.state = ISOTP_IDLE;
1121	wake_up_interruptible(&so->wait);
1122
1123	return err;
1124}
1125
1126static int isotp_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1127			 int flags)
1128{
1129	struct sock *sk = sock->sk;
1130	struct sk_buff *skb;
1131	struct isotp_sock *so = isotp_sk(sk);
1132	int ret = 0;
1133
1134	if (flags & ~(MSG_DONTWAIT | MSG_TRUNC | MSG_PEEK | MSG_CMSG_COMPAT))
1135		return -EINVAL;
1136
1137	if (!so->bound)
1138		return -EADDRNOTAVAIL;
1139
1140	skb = skb_recv_datagram(sk, flags, &ret);
1141	if (!skb)
1142		return ret;
1143
1144	if (size < skb->len)
1145		msg->msg_flags |= MSG_TRUNC;
1146	else
1147		size = skb->len;
1148
1149	ret = memcpy_to_msg(msg, skb->data, size);
1150	if (ret < 0)
1151		goto out_err;
1152
1153	sock_recv_cmsgs(msg, sk, skb);
1154
1155	if (msg->msg_name) {
1156		__sockaddr_check_size(ISOTP_MIN_NAMELEN);
1157		msg->msg_namelen = ISOTP_MIN_NAMELEN;
1158		memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
1159	}
1160
1161	/* set length of return value */
1162	ret = (flags & MSG_TRUNC) ? skb->len : size;
1163
1164out_err:
1165	skb_free_datagram(sk, skb);
1166
1167	return ret;
1168}
1169
1170static int isotp_release(struct socket *sock)
1171{
1172	struct sock *sk = sock->sk;
1173	struct isotp_sock *so;
1174	struct net *net;
1175
1176	if (!sk)
1177		return 0;
1178
1179	so = isotp_sk(sk);
1180	net = sock_net(sk);
1181
1182	/* wait for complete transmission of current pdu */
1183	while (wait_event_interruptible(so->wait, so->tx.state == ISOTP_IDLE) == 0 &&
1184	       cmpxchg(&so->tx.state, ISOTP_IDLE, ISOTP_SHUTDOWN) != ISOTP_IDLE)
1185		;
1186
1187	/* force state machines to be idle also when a signal occurred */
1188	so->tx.state = ISOTP_SHUTDOWN;
1189	so->rx.state = ISOTP_IDLE;
1190
1191	spin_lock(&isotp_notifier_lock);
1192	while (isotp_busy_notifier == so) {
1193		spin_unlock(&isotp_notifier_lock);
1194		schedule_timeout_uninterruptible(1);
1195		spin_lock(&isotp_notifier_lock);
1196	}
1197	list_del(&so->notifier);
1198	spin_unlock(&isotp_notifier_lock);
1199
1200	lock_sock(sk);
1201
1202	/* remove current filters & unregister */
1203	if (so->bound) {
1204		if (so->ifindex) {
1205			struct net_device *dev;
1206
1207			dev = dev_get_by_index(net, so->ifindex);
1208			if (dev) {
1209				if (isotp_register_rxid(so))
1210					can_rx_unregister(net, dev, so->rxid,
1211							  SINGLE_MASK(so->rxid),
1212							  isotp_rcv, sk);
1213
1214				can_rx_unregister(net, dev, so->txid,
1215						  SINGLE_MASK(so->txid),
1216						  isotp_rcv_echo, sk);
1217				dev_put(dev);
1218				synchronize_rcu();
1219			}
1220		}
1221	}
1222
1223	hrtimer_cancel(&so->txfrtimer);
1224	hrtimer_cancel(&so->txtimer);
1225	hrtimer_cancel(&so->rxtimer);
1226
1227	so->ifindex = 0;
1228	so->bound = 0;
1229
1230	if (so->rx.buf != so->rx.sbuf)
1231		kfree(so->rx.buf);
1232
1233	if (so->tx.buf != so->tx.sbuf)
1234		kfree(so->tx.buf);
1235
1236	sock_orphan(sk);
1237	sock->sk = NULL;
1238
1239	release_sock(sk);
1240	sock_put(sk);
1241
1242	return 0;
1243}
1244
1245static int isotp_bind(struct socket *sock, struct sockaddr *uaddr, int len)
1246{
1247	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1248	struct sock *sk = sock->sk;
1249	struct isotp_sock *so = isotp_sk(sk);
1250	struct net *net = sock_net(sk);
1251	int ifindex;
1252	struct net_device *dev;
1253	canid_t tx_id = addr->can_addr.tp.tx_id;
1254	canid_t rx_id = addr->can_addr.tp.rx_id;
1255	int err = 0;
1256	int notify_enetdown = 0;
1257
1258	if (len < ISOTP_MIN_NAMELEN)
1259		return -EINVAL;
1260
1261	if (addr->can_family != AF_CAN)
1262		return -EINVAL;
1263
1264	/* sanitize tx CAN identifier */
1265	if (tx_id & CAN_EFF_FLAG)
1266		tx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1267	else
1268		tx_id &= CAN_SFF_MASK;
1269
1270	/* give feedback on wrong CAN-ID value */
1271	if (tx_id != addr->can_addr.tp.tx_id)
1272		return -EINVAL;
1273
1274	/* sanitize rx CAN identifier (if needed) */
1275	if (isotp_register_rxid(so)) {
1276		if (rx_id & CAN_EFF_FLAG)
1277			rx_id &= (CAN_EFF_FLAG | CAN_EFF_MASK);
1278		else
1279			rx_id &= CAN_SFF_MASK;
1280
1281		/* give feedback on wrong CAN-ID value */
1282		if (rx_id != addr->can_addr.tp.rx_id)
1283			return -EINVAL;
1284	}
1285
1286	if (!addr->can_ifindex)
1287		return -ENODEV;
1288
1289	lock_sock(sk);
1290
1291	if (so->bound) {
1292		err = -EINVAL;
1293		goto out;
1294	}
1295
1296	/* ensure different CAN IDs when the rx_id is to be registered */
1297	if (isotp_register_rxid(so) && rx_id == tx_id) {
1298		err = -EADDRNOTAVAIL;
1299		goto out;
1300	}
1301
1302	dev = dev_get_by_index(net, addr->can_ifindex);
1303	if (!dev) {
1304		err = -ENODEV;
1305		goto out;
1306	}
1307	if (dev->type != ARPHRD_CAN) {
1308		dev_put(dev);
1309		err = -ENODEV;
1310		goto out;
1311	}
1312	if (dev->mtu < so->ll.mtu) {
1313		dev_put(dev);
1314		err = -EINVAL;
1315		goto out;
1316	}
1317	if (!(dev->flags & IFF_UP))
1318		notify_enetdown = 1;
1319
1320	ifindex = dev->ifindex;
1321
1322	if (isotp_register_rxid(so))
1323		can_rx_register(net, dev, rx_id, SINGLE_MASK(rx_id),
1324				isotp_rcv, sk, "isotp", sk);
1325
1326	/* no consecutive frame echo skb in flight */
1327	so->cfecho = 0;
1328
1329	/* register for echo skb's */
1330	can_rx_register(net, dev, tx_id, SINGLE_MASK(tx_id),
1331			isotp_rcv_echo, sk, "isotpe", sk);
1332
1333	dev_put(dev);
1334
1335	/* switch to new settings */
1336	so->ifindex = ifindex;
1337	so->rxid = rx_id;
1338	so->txid = tx_id;
1339	so->bound = 1;
1340
1341out:
1342	release_sock(sk);
1343
1344	if (notify_enetdown) {
1345		sk->sk_err = ENETDOWN;
1346		if (!sock_flag(sk, SOCK_DEAD))
1347			sk_error_report(sk);
1348	}
1349
1350	return err;
1351}
1352
1353static int isotp_getname(struct socket *sock, struct sockaddr *uaddr, int peer)
1354{
1355	struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
1356	struct sock *sk = sock->sk;
1357	struct isotp_sock *so = isotp_sk(sk);
1358
1359	if (peer)
1360		return -EOPNOTSUPP;
1361
1362	memset(addr, 0, ISOTP_MIN_NAMELEN);
1363	addr->can_family = AF_CAN;
1364	addr->can_ifindex = so->ifindex;
1365	addr->can_addr.tp.rx_id = so->rxid;
1366	addr->can_addr.tp.tx_id = so->txid;
1367
1368	return ISOTP_MIN_NAMELEN;
1369}
1370
1371static int isotp_setsockopt_locked(struct socket *sock, int level, int optname,
1372			    sockptr_t optval, unsigned int optlen)
1373{
1374	struct sock *sk = sock->sk;
1375	struct isotp_sock *so = isotp_sk(sk);
1376	int ret = 0;
1377
1378	if (so->bound)
1379		return -EISCONN;
1380
1381	switch (optname) {
1382	case CAN_ISOTP_OPTS:
1383		if (optlen != sizeof(struct can_isotp_options))
1384			return -EINVAL;
1385
1386		if (copy_from_sockptr(&so->opt, optval, optlen))
1387			return -EFAULT;
1388
1389		/* no separate rx_ext_address is given => use ext_address */
1390		if (!(so->opt.flags & CAN_ISOTP_RX_EXT_ADDR))
1391			so->opt.rx_ext_address = so->opt.ext_address;
1392
1393		/* these broadcast flags are not allowed together */
1394		if (isotp_bc_flags(so) == ISOTP_ALL_BC_FLAGS) {
1395			/* CAN_ISOTP_SF_BROADCAST is prioritized */
1396			so->opt.flags &= ~CAN_ISOTP_CF_BROADCAST;
1397
1398			/* give user feedback on wrong config attempt */
1399			ret = -EINVAL;
1400		}
1401
1402		/* check for frame_txtime changes (0 => no changes) */
1403		if (so->opt.frame_txtime) {
1404			if (so->opt.frame_txtime == CAN_ISOTP_FRAME_TXTIME_ZERO)
1405				so->frame_txtime = 0;
1406			else
1407				so->frame_txtime = so->opt.frame_txtime;
1408		}
1409		break;
1410
1411	case CAN_ISOTP_RECV_FC:
1412		if (optlen != sizeof(struct can_isotp_fc_options))
1413			return -EINVAL;
1414
1415		if (copy_from_sockptr(&so->rxfc, optval, optlen))
1416			return -EFAULT;
1417		break;
1418
1419	case CAN_ISOTP_TX_STMIN:
1420		if (optlen != sizeof(u32))
1421			return -EINVAL;
1422
1423		if (copy_from_sockptr(&so->force_tx_stmin, optval, optlen))
1424			return -EFAULT;
1425		break;
1426
1427	case CAN_ISOTP_RX_STMIN:
1428		if (optlen != sizeof(u32))
1429			return -EINVAL;
1430
1431		if (copy_from_sockptr(&so->force_rx_stmin, optval, optlen))
1432			return -EFAULT;
1433		break;
1434
1435	case CAN_ISOTP_LL_OPTS:
1436		if (optlen == sizeof(struct can_isotp_ll_options)) {
1437			struct can_isotp_ll_options ll;
1438
1439			if (copy_from_sockptr(&ll, optval, optlen))
1440				return -EFAULT;
1441
1442			/* check for correct ISO 11898-1 DLC data length */
1443			if (ll.tx_dl != padlen(ll.tx_dl))
1444				return -EINVAL;
1445
1446			if (ll.mtu != CAN_MTU && ll.mtu != CANFD_MTU)
1447				return -EINVAL;
1448
1449			if (ll.mtu == CAN_MTU &&
1450			    (ll.tx_dl > CAN_MAX_DLEN || ll.tx_flags != 0))
1451				return -EINVAL;
1452
1453			memcpy(&so->ll, &ll, sizeof(ll));
1454
1455			/* set ll_dl for tx path to similar place as for rx */
1456			so->tx.ll_dl = ll.tx_dl;
1457		} else {
1458			return -EINVAL;
1459		}
1460		break;
1461
1462	default:
1463		ret = -ENOPROTOOPT;
1464	}
1465
1466	return ret;
1467}
1468
1469static int isotp_setsockopt(struct socket *sock, int level, int optname,
1470			    sockptr_t optval, unsigned int optlen)
1471
1472{
1473	struct sock *sk = sock->sk;
1474	int ret;
1475
1476	if (level != SOL_CAN_ISOTP)
1477		return -EINVAL;
1478
1479	lock_sock(sk);
1480	ret = isotp_setsockopt_locked(sock, level, optname, optval, optlen);
1481	release_sock(sk);
1482	return ret;
1483}
1484
1485static int isotp_getsockopt(struct socket *sock, int level, int optname,
1486			    char __user *optval, int __user *optlen)
1487{
1488	struct sock *sk = sock->sk;
1489	struct isotp_sock *so = isotp_sk(sk);
1490	int len;
1491	void *val;
1492
1493	if (level != SOL_CAN_ISOTP)
1494		return -EINVAL;
1495	if (get_user(len, optlen))
1496		return -EFAULT;
1497	if (len < 0)
1498		return -EINVAL;
1499
1500	switch (optname) {
1501	case CAN_ISOTP_OPTS:
1502		len = min_t(int, len, sizeof(struct can_isotp_options));
1503		val = &so->opt;
1504		break;
1505
1506	case CAN_ISOTP_RECV_FC:
1507		len = min_t(int, len, sizeof(struct can_isotp_fc_options));
1508		val = &so->rxfc;
1509		break;
1510
1511	case CAN_ISOTP_TX_STMIN:
1512		len = min_t(int, len, sizeof(u32));
1513		val = &so->force_tx_stmin;
1514		break;
1515
1516	case CAN_ISOTP_RX_STMIN:
1517		len = min_t(int, len, sizeof(u32));
1518		val = &so->force_rx_stmin;
1519		break;
1520
1521	case CAN_ISOTP_LL_OPTS:
1522		len = min_t(int, len, sizeof(struct can_isotp_ll_options));
1523		val = &so->ll;
1524		break;
1525
1526	default:
1527		return -ENOPROTOOPT;
1528	}
1529
1530	if (put_user(len, optlen))
1531		return -EFAULT;
1532	if (copy_to_user(optval, val, len))
1533		return -EFAULT;
1534	return 0;
1535}
1536
1537static void isotp_notify(struct isotp_sock *so, unsigned long msg,
1538			 struct net_device *dev)
1539{
1540	struct sock *sk = &so->sk;
1541
1542	if (!net_eq(dev_net(dev), sock_net(sk)))
1543		return;
1544
1545	if (so->ifindex != dev->ifindex)
1546		return;
1547
1548	switch (msg) {
1549	case NETDEV_UNREGISTER:
1550		lock_sock(sk);
1551		/* remove current filters & unregister */
1552		if (so->bound) {
1553			if (isotp_register_rxid(so))
1554				can_rx_unregister(dev_net(dev), dev, so->rxid,
1555						  SINGLE_MASK(so->rxid),
1556						  isotp_rcv, sk);
1557
1558			can_rx_unregister(dev_net(dev), dev, so->txid,
1559					  SINGLE_MASK(so->txid),
1560					  isotp_rcv_echo, sk);
1561		}
1562
1563		so->ifindex = 0;
1564		so->bound  = 0;
1565		release_sock(sk);
1566
1567		sk->sk_err = ENODEV;
1568		if (!sock_flag(sk, SOCK_DEAD))
1569			sk_error_report(sk);
1570		break;
1571
1572	case NETDEV_DOWN:
1573		sk->sk_err = ENETDOWN;
1574		if (!sock_flag(sk, SOCK_DEAD))
1575			sk_error_report(sk);
1576		break;
1577	}
1578}
1579
1580static int isotp_notifier(struct notifier_block *nb, unsigned long msg,
1581			  void *ptr)
1582{
1583	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1584
1585	if (dev->type != ARPHRD_CAN)
1586		return NOTIFY_DONE;
1587	if (msg != NETDEV_UNREGISTER && msg != NETDEV_DOWN)
1588		return NOTIFY_DONE;
1589	if (unlikely(isotp_busy_notifier)) /* Check for reentrant bug. */
1590		return NOTIFY_DONE;
1591
1592	spin_lock(&isotp_notifier_lock);
1593	list_for_each_entry(isotp_busy_notifier, &isotp_notifier_list, notifier) {
1594		spin_unlock(&isotp_notifier_lock);
1595		isotp_notify(isotp_busy_notifier, msg, dev);
1596		spin_lock(&isotp_notifier_lock);
1597	}
1598	isotp_busy_notifier = NULL;
1599	spin_unlock(&isotp_notifier_lock);
1600	return NOTIFY_DONE;
1601}
1602
1603static int isotp_init(struct sock *sk)
1604{
1605	struct isotp_sock *so = isotp_sk(sk);
1606
1607	so->ifindex = 0;
1608	so->bound = 0;
1609
1610	so->opt.flags = CAN_ISOTP_DEFAULT_FLAGS;
1611	so->opt.ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1612	so->opt.rx_ext_address = CAN_ISOTP_DEFAULT_EXT_ADDRESS;
1613	so->opt.rxpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1614	so->opt.txpad_content = CAN_ISOTP_DEFAULT_PAD_CONTENT;
1615	so->opt.frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1616	so->frame_txtime = CAN_ISOTP_DEFAULT_FRAME_TXTIME;
1617	so->rxfc.bs = CAN_ISOTP_DEFAULT_RECV_BS;
1618	so->rxfc.stmin = CAN_ISOTP_DEFAULT_RECV_STMIN;
1619	so->rxfc.wftmax = CAN_ISOTP_DEFAULT_RECV_WFTMAX;
1620	so->ll.mtu = CAN_ISOTP_DEFAULT_LL_MTU;
1621	so->ll.tx_dl = CAN_ISOTP_DEFAULT_LL_TX_DL;
1622	so->ll.tx_flags = CAN_ISOTP_DEFAULT_LL_TX_FLAGS;
1623
1624	/* set ll_dl for tx path to similar place as for rx */
1625	so->tx.ll_dl = so->ll.tx_dl;
1626
1627	so->rx.state = ISOTP_IDLE;
1628	so->tx.state = ISOTP_IDLE;
1629
1630	so->rx.buf = so->rx.sbuf;
1631	so->tx.buf = so->tx.sbuf;
1632	so->rx.buflen = ARRAY_SIZE(so->rx.sbuf);
1633	so->tx.buflen = ARRAY_SIZE(so->tx.sbuf);
1634
1635	hrtimer_init(&so->rxtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1636	so->rxtimer.function = isotp_rx_timer_handler;
1637	hrtimer_init(&so->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1638	so->txtimer.function = isotp_tx_timer_handler;
1639	hrtimer_init(&so->txfrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_SOFT);
1640	so->txfrtimer.function = isotp_txfr_timer_handler;
1641
1642	init_waitqueue_head(&so->wait);
1643	spin_lock_init(&so->rx_lock);
1644
1645	spin_lock(&isotp_notifier_lock);
1646	list_add_tail(&so->notifier, &isotp_notifier_list);
1647	spin_unlock(&isotp_notifier_lock);
1648
1649	return 0;
1650}
1651
1652static __poll_t isotp_poll(struct file *file, struct socket *sock, poll_table *wait)
1653{
1654	struct sock *sk = sock->sk;
1655	struct isotp_sock *so = isotp_sk(sk);
1656
1657	__poll_t mask = datagram_poll(file, sock, wait);
1658	poll_wait(file, &so->wait, wait);
1659
1660	/* Check for false positives due to TX state */
1661	if ((mask & EPOLLWRNORM) && (so->tx.state != ISOTP_IDLE))
1662		mask &= ~(EPOLLOUT | EPOLLWRNORM);
1663
1664	return mask;
1665}
1666
1667static int isotp_sock_no_ioctlcmd(struct socket *sock, unsigned int cmd,
1668				  unsigned long arg)
1669{
1670	/* no ioctls for socket layer -> hand it down to NIC layer */
1671	return -ENOIOCTLCMD;
1672}
1673
1674static const struct proto_ops isotp_ops = {
1675	.family = PF_CAN,
1676	.release = isotp_release,
1677	.bind = isotp_bind,
1678	.connect = sock_no_connect,
1679	.socketpair = sock_no_socketpair,
1680	.accept = sock_no_accept,
1681	.getname = isotp_getname,
1682	.poll = isotp_poll,
1683	.ioctl = isotp_sock_no_ioctlcmd,
1684	.gettstamp = sock_gettstamp,
1685	.listen = sock_no_listen,
1686	.shutdown = sock_no_shutdown,
1687	.setsockopt = isotp_setsockopt,
1688	.getsockopt = isotp_getsockopt,
1689	.sendmsg = isotp_sendmsg,
1690	.recvmsg = isotp_recvmsg,
1691	.mmap = sock_no_mmap,
1692};
1693
1694static struct proto isotp_proto __read_mostly = {
1695	.name = "CAN_ISOTP",
1696	.owner = THIS_MODULE,
1697	.obj_size = sizeof(struct isotp_sock),
1698	.init = isotp_init,
1699};
1700
1701static const struct can_proto isotp_can_proto = {
1702	.type = SOCK_DGRAM,
1703	.protocol = CAN_ISOTP,
1704	.ops = &isotp_ops,
1705	.prot = &isotp_proto,
1706};
1707
1708static struct notifier_block canisotp_notifier = {
1709	.notifier_call = isotp_notifier
1710};
1711
1712static __init int isotp_module_init(void)
1713{
1714	int err;
1715
1716	max_pdu_size = max_t(unsigned int, max_pdu_size, MAX_12BIT_PDU_SIZE);
1717	max_pdu_size = min_t(unsigned int, max_pdu_size, MAX_PDU_SIZE);
1718
1719	pr_info("can: isotp protocol (max_pdu_size %d)\n", max_pdu_size);
1720
1721	err = can_proto_register(&isotp_can_proto);
1722	if (err < 0)
1723		pr_err("can: registration of isotp protocol failed %pe\n", ERR_PTR(err));
1724	else
1725		register_netdevice_notifier(&canisotp_notifier);
1726
1727	return err;
1728}
1729
1730static __exit void isotp_module_exit(void)
1731{
1732	can_proto_unregister(&isotp_can_proto);
1733	unregister_netdevice_notifier(&canisotp_notifier);
1734}
1735
1736module_init(isotp_module_init);
1737module_exit(isotp_module_exit);
1738