162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Slab allocator functions that are independent of the allocator strategy 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * (C) 2012 Christoph Lameter <cl@linux.com> 662306a36Sopenharmony_ci */ 762306a36Sopenharmony_ci#include <linux/slab.h> 862306a36Sopenharmony_ci 962306a36Sopenharmony_ci#include <linux/mm.h> 1062306a36Sopenharmony_ci#include <linux/poison.h> 1162306a36Sopenharmony_ci#include <linux/interrupt.h> 1262306a36Sopenharmony_ci#include <linux/memory.h> 1362306a36Sopenharmony_ci#include <linux/cache.h> 1462306a36Sopenharmony_ci#include <linux/compiler.h> 1562306a36Sopenharmony_ci#include <linux/kfence.h> 1662306a36Sopenharmony_ci#include <linux/module.h> 1762306a36Sopenharmony_ci#include <linux/cpu.h> 1862306a36Sopenharmony_ci#include <linux/uaccess.h> 1962306a36Sopenharmony_ci#include <linux/seq_file.h> 2062306a36Sopenharmony_ci#include <linux/dma-mapping.h> 2162306a36Sopenharmony_ci#include <linux/swiotlb.h> 2262306a36Sopenharmony_ci#include <linux/proc_fs.h> 2362306a36Sopenharmony_ci#include <linux/debugfs.h> 2462306a36Sopenharmony_ci#include <linux/kasan.h> 2562306a36Sopenharmony_ci#include <asm/cacheflush.h> 2662306a36Sopenharmony_ci#include <asm/tlbflush.h> 2762306a36Sopenharmony_ci#include <asm/page.h> 2862306a36Sopenharmony_ci#include <linux/memcontrol.h> 2962306a36Sopenharmony_ci#include <linux/stackdepot.h> 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci#include "internal.h" 3262306a36Sopenharmony_ci#include "slab.h" 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ci#define CREATE_TRACE_POINTS 3562306a36Sopenharmony_ci#include <trace/events/kmem.h> 3662306a36Sopenharmony_ci 3762306a36Sopenharmony_cienum slab_state slab_state; 3862306a36Sopenharmony_ciLIST_HEAD(slab_caches); 3962306a36Sopenharmony_ciDEFINE_MUTEX(slab_mutex); 4062306a36Sopenharmony_cistruct kmem_cache *kmem_cache; 4162306a36Sopenharmony_ci 4262306a36Sopenharmony_cistatic LIST_HEAD(slab_caches_to_rcu_destroy); 4362306a36Sopenharmony_cistatic void slab_caches_to_rcu_destroy_workfn(struct work_struct *work); 4462306a36Sopenharmony_cistatic DECLARE_WORK(slab_caches_to_rcu_destroy_work, 4562306a36Sopenharmony_ci slab_caches_to_rcu_destroy_workfn); 4662306a36Sopenharmony_ci 4762306a36Sopenharmony_ci/* 4862306a36Sopenharmony_ci * Set of flags that will prevent slab merging 4962306a36Sopenharmony_ci */ 5062306a36Sopenharmony_ci#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \ 5162306a36Sopenharmony_ci SLAB_TRACE | SLAB_TYPESAFE_BY_RCU | SLAB_NOLEAKTRACE | \ 5262306a36Sopenharmony_ci SLAB_FAILSLAB | SLAB_NO_MERGE | kasan_never_merge()) 5362306a36Sopenharmony_ci 5462306a36Sopenharmony_ci#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \ 5562306a36Sopenharmony_ci SLAB_CACHE_DMA32 | SLAB_ACCOUNT) 5662306a36Sopenharmony_ci 5762306a36Sopenharmony_ci/* 5862306a36Sopenharmony_ci * Merge control. If this is set then no merging of slab caches will occur. 5962306a36Sopenharmony_ci */ 6062306a36Sopenharmony_cistatic bool slab_nomerge = !IS_ENABLED(CONFIG_SLAB_MERGE_DEFAULT); 6162306a36Sopenharmony_ci 6262306a36Sopenharmony_cistatic int __init setup_slab_nomerge(char *str) 6362306a36Sopenharmony_ci{ 6462306a36Sopenharmony_ci slab_nomerge = true; 6562306a36Sopenharmony_ci return 1; 6662306a36Sopenharmony_ci} 6762306a36Sopenharmony_ci 6862306a36Sopenharmony_cistatic int __init setup_slab_merge(char *str) 6962306a36Sopenharmony_ci{ 7062306a36Sopenharmony_ci slab_nomerge = false; 7162306a36Sopenharmony_ci return 1; 7262306a36Sopenharmony_ci} 7362306a36Sopenharmony_ci 7462306a36Sopenharmony_ci#ifdef CONFIG_SLUB 7562306a36Sopenharmony_ci__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0); 7662306a36Sopenharmony_ci__setup_param("slub_merge", slub_merge, setup_slab_merge, 0); 7762306a36Sopenharmony_ci#endif 7862306a36Sopenharmony_ci 7962306a36Sopenharmony_ci__setup("slab_nomerge", setup_slab_nomerge); 8062306a36Sopenharmony_ci__setup("slab_merge", setup_slab_merge); 8162306a36Sopenharmony_ci 8262306a36Sopenharmony_ci/* 8362306a36Sopenharmony_ci * Determine the size of a slab object 8462306a36Sopenharmony_ci */ 8562306a36Sopenharmony_ciunsigned int kmem_cache_size(struct kmem_cache *s) 8662306a36Sopenharmony_ci{ 8762306a36Sopenharmony_ci return s->object_size; 8862306a36Sopenharmony_ci} 8962306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_size); 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_VM 9262306a36Sopenharmony_cistatic int kmem_cache_sanity_check(const char *name, unsigned int size) 9362306a36Sopenharmony_ci{ 9462306a36Sopenharmony_ci if (!name || in_interrupt() || size > KMALLOC_MAX_SIZE) { 9562306a36Sopenharmony_ci pr_err("kmem_cache_create(%s) integrity check failed\n", name); 9662306a36Sopenharmony_ci return -EINVAL; 9762306a36Sopenharmony_ci } 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci WARN_ON(strchr(name, ' ')); /* It confuses parsers */ 10062306a36Sopenharmony_ci return 0; 10162306a36Sopenharmony_ci} 10262306a36Sopenharmony_ci#else 10362306a36Sopenharmony_cistatic inline int kmem_cache_sanity_check(const char *name, unsigned int size) 10462306a36Sopenharmony_ci{ 10562306a36Sopenharmony_ci return 0; 10662306a36Sopenharmony_ci} 10762306a36Sopenharmony_ci#endif 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci/* 11062306a36Sopenharmony_ci * Figure out what the alignment of the objects will be given a set of 11162306a36Sopenharmony_ci * flags, a user specified alignment and the size of the objects. 11262306a36Sopenharmony_ci */ 11362306a36Sopenharmony_cistatic unsigned int calculate_alignment(slab_flags_t flags, 11462306a36Sopenharmony_ci unsigned int align, unsigned int size) 11562306a36Sopenharmony_ci{ 11662306a36Sopenharmony_ci /* 11762306a36Sopenharmony_ci * If the user wants hardware cache aligned objects then follow that 11862306a36Sopenharmony_ci * suggestion if the object is sufficiently large. 11962306a36Sopenharmony_ci * 12062306a36Sopenharmony_ci * The hardware cache alignment cannot override the specified 12162306a36Sopenharmony_ci * alignment though. If that is greater then use it. 12262306a36Sopenharmony_ci */ 12362306a36Sopenharmony_ci if (flags & SLAB_HWCACHE_ALIGN) { 12462306a36Sopenharmony_ci unsigned int ralign; 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci ralign = cache_line_size(); 12762306a36Sopenharmony_ci while (size <= ralign / 2) 12862306a36Sopenharmony_ci ralign /= 2; 12962306a36Sopenharmony_ci align = max(align, ralign); 13062306a36Sopenharmony_ci } 13162306a36Sopenharmony_ci 13262306a36Sopenharmony_ci align = max(align, arch_slab_minalign()); 13362306a36Sopenharmony_ci 13462306a36Sopenharmony_ci return ALIGN(align, sizeof(void *)); 13562306a36Sopenharmony_ci} 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci/* 13862306a36Sopenharmony_ci * Find a mergeable slab cache 13962306a36Sopenharmony_ci */ 14062306a36Sopenharmony_ciint slab_unmergeable(struct kmem_cache *s) 14162306a36Sopenharmony_ci{ 14262306a36Sopenharmony_ci if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE)) 14362306a36Sopenharmony_ci return 1; 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci if (s->ctor) 14662306a36Sopenharmony_ci return 1; 14762306a36Sopenharmony_ci 14862306a36Sopenharmony_ci#ifdef CONFIG_HARDENED_USERCOPY 14962306a36Sopenharmony_ci if (s->usersize) 15062306a36Sopenharmony_ci return 1; 15162306a36Sopenharmony_ci#endif 15262306a36Sopenharmony_ci 15362306a36Sopenharmony_ci /* 15462306a36Sopenharmony_ci * We may have set a slab to be unmergeable during bootstrap. 15562306a36Sopenharmony_ci */ 15662306a36Sopenharmony_ci if (s->refcount < 0) 15762306a36Sopenharmony_ci return 1; 15862306a36Sopenharmony_ci 15962306a36Sopenharmony_ci return 0; 16062306a36Sopenharmony_ci} 16162306a36Sopenharmony_ci 16262306a36Sopenharmony_cistruct kmem_cache *find_mergeable(unsigned int size, unsigned int align, 16362306a36Sopenharmony_ci slab_flags_t flags, const char *name, void (*ctor)(void *)) 16462306a36Sopenharmony_ci{ 16562306a36Sopenharmony_ci struct kmem_cache *s; 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci if (slab_nomerge) 16862306a36Sopenharmony_ci return NULL; 16962306a36Sopenharmony_ci 17062306a36Sopenharmony_ci if (ctor) 17162306a36Sopenharmony_ci return NULL; 17262306a36Sopenharmony_ci 17362306a36Sopenharmony_ci size = ALIGN(size, sizeof(void *)); 17462306a36Sopenharmony_ci align = calculate_alignment(flags, align, size); 17562306a36Sopenharmony_ci size = ALIGN(size, align); 17662306a36Sopenharmony_ci flags = kmem_cache_flags(size, flags, name); 17762306a36Sopenharmony_ci 17862306a36Sopenharmony_ci if (flags & SLAB_NEVER_MERGE) 17962306a36Sopenharmony_ci return NULL; 18062306a36Sopenharmony_ci 18162306a36Sopenharmony_ci list_for_each_entry_reverse(s, &slab_caches, list) { 18262306a36Sopenharmony_ci if (slab_unmergeable(s)) 18362306a36Sopenharmony_ci continue; 18462306a36Sopenharmony_ci 18562306a36Sopenharmony_ci if (size > s->size) 18662306a36Sopenharmony_ci continue; 18762306a36Sopenharmony_ci 18862306a36Sopenharmony_ci if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME)) 18962306a36Sopenharmony_ci continue; 19062306a36Sopenharmony_ci /* 19162306a36Sopenharmony_ci * Check if alignment is compatible. 19262306a36Sopenharmony_ci * Courtesy of Adrian Drzewiecki 19362306a36Sopenharmony_ci */ 19462306a36Sopenharmony_ci if ((s->size & ~(align - 1)) != s->size) 19562306a36Sopenharmony_ci continue; 19662306a36Sopenharmony_ci 19762306a36Sopenharmony_ci if (s->size - size >= sizeof(void *)) 19862306a36Sopenharmony_ci continue; 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_SLAB) && align && 20162306a36Sopenharmony_ci (align > s->align || s->align % align)) 20262306a36Sopenharmony_ci continue; 20362306a36Sopenharmony_ci 20462306a36Sopenharmony_ci return s; 20562306a36Sopenharmony_ci } 20662306a36Sopenharmony_ci return NULL; 20762306a36Sopenharmony_ci} 20862306a36Sopenharmony_ci 20962306a36Sopenharmony_cistatic struct kmem_cache *create_cache(const char *name, 21062306a36Sopenharmony_ci unsigned int object_size, unsigned int align, 21162306a36Sopenharmony_ci slab_flags_t flags, unsigned int useroffset, 21262306a36Sopenharmony_ci unsigned int usersize, void (*ctor)(void *), 21362306a36Sopenharmony_ci struct kmem_cache *root_cache) 21462306a36Sopenharmony_ci{ 21562306a36Sopenharmony_ci struct kmem_cache *s; 21662306a36Sopenharmony_ci int err; 21762306a36Sopenharmony_ci 21862306a36Sopenharmony_ci if (WARN_ON(useroffset + usersize > object_size)) 21962306a36Sopenharmony_ci useroffset = usersize = 0; 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci err = -ENOMEM; 22262306a36Sopenharmony_ci s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL); 22362306a36Sopenharmony_ci if (!s) 22462306a36Sopenharmony_ci goto out; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_ci s->name = name; 22762306a36Sopenharmony_ci s->size = s->object_size = object_size; 22862306a36Sopenharmony_ci s->align = align; 22962306a36Sopenharmony_ci s->ctor = ctor; 23062306a36Sopenharmony_ci#ifdef CONFIG_HARDENED_USERCOPY 23162306a36Sopenharmony_ci s->useroffset = useroffset; 23262306a36Sopenharmony_ci s->usersize = usersize; 23362306a36Sopenharmony_ci#endif 23462306a36Sopenharmony_ci 23562306a36Sopenharmony_ci err = __kmem_cache_create(s, flags); 23662306a36Sopenharmony_ci if (err) 23762306a36Sopenharmony_ci goto out_free_cache; 23862306a36Sopenharmony_ci 23962306a36Sopenharmony_ci s->refcount = 1; 24062306a36Sopenharmony_ci list_add(&s->list, &slab_caches); 24162306a36Sopenharmony_ci return s; 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ciout_free_cache: 24462306a36Sopenharmony_ci kmem_cache_free(kmem_cache, s); 24562306a36Sopenharmony_ciout: 24662306a36Sopenharmony_ci return ERR_PTR(err); 24762306a36Sopenharmony_ci} 24862306a36Sopenharmony_ci 24962306a36Sopenharmony_ci/** 25062306a36Sopenharmony_ci * kmem_cache_create_usercopy - Create a cache with a region suitable 25162306a36Sopenharmony_ci * for copying to userspace 25262306a36Sopenharmony_ci * @name: A string which is used in /proc/slabinfo to identify this cache. 25362306a36Sopenharmony_ci * @size: The size of objects to be created in this cache. 25462306a36Sopenharmony_ci * @align: The required alignment for the objects. 25562306a36Sopenharmony_ci * @flags: SLAB flags 25662306a36Sopenharmony_ci * @useroffset: Usercopy region offset 25762306a36Sopenharmony_ci * @usersize: Usercopy region size 25862306a36Sopenharmony_ci * @ctor: A constructor for the objects. 25962306a36Sopenharmony_ci * 26062306a36Sopenharmony_ci * Cannot be called within a interrupt, but can be interrupted. 26162306a36Sopenharmony_ci * The @ctor is run when new pages are allocated by the cache. 26262306a36Sopenharmony_ci * 26362306a36Sopenharmony_ci * The flags are 26462306a36Sopenharmony_ci * 26562306a36Sopenharmony_ci * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 26662306a36Sopenharmony_ci * to catch references to uninitialised memory. 26762306a36Sopenharmony_ci * 26862306a36Sopenharmony_ci * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 26962306a36Sopenharmony_ci * for buffer overruns. 27062306a36Sopenharmony_ci * 27162306a36Sopenharmony_ci * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 27262306a36Sopenharmony_ci * cacheline. This can be beneficial if you're counting cycles as closely 27362306a36Sopenharmony_ci * as davem. 27462306a36Sopenharmony_ci * 27562306a36Sopenharmony_ci * Return: a pointer to the cache on success, NULL on failure. 27662306a36Sopenharmony_ci */ 27762306a36Sopenharmony_cistruct kmem_cache * 27862306a36Sopenharmony_cikmem_cache_create_usercopy(const char *name, 27962306a36Sopenharmony_ci unsigned int size, unsigned int align, 28062306a36Sopenharmony_ci slab_flags_t flags, 28162306a36Sopenharmony_ci unsigned int useroffset, unsigned int usersize, 28262306a36Sopenharmony_ci void (*ctor)(void *)) 28362306a36Sopenharmony_ci{ 28462306a36Sopenharmony_ci struct kmem_cache *s = NULL; 28562306a36Sopenharmony_ci const char *cache_name; 28662306a36Sopenharmony_ci int err; 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_ci#ifdef CONFIG_SLUB_DEBUG 28962306a36Sopenharmony_ci /* 29062306a36Sopenharmony_ci * If no slub_debug was enabled globally, the static key is not yet 29162306a36Sopenharmony_ci * enabled by setup_slub_debug(). Enable it if the cache is being 29262306a36Sopenharmony_ci * created with any of the debugging flags passed explicitly. 29362306a36Sopenharmony_ci * It's also possible that this is the first cache created with 29462306a36Sopenharmony_ci * SLAB_STORE_USER and we should init stack_depot for it. 29562306a36Sopenharmony_ci */ 29662306a36Sopenharmony_ci if (flags & SLAB_DEBUG_FLAGS) 29762306a36Sopenharmony_ci static_branch_enable(&slub_debug_enabled); 29862306a36Sopenharmony_ci if (flags & SLAB_STORE_USER) 29962306a36Sopenharmony_ci stack_depot_init(); 30062306a36Sopenharmony_ci#endif 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_ci mutex_lock(&slab_mutex); 30362306a36Sopenharmony_ci 30462306a36Sopenharmony_ci err = kmem_cache_sanity_check(name, size); 30562306a36Sopenharmony_ci if (err) { 30662306a36Sopenharmony_ci goto out_unlock; 30762306a36Sopenharmony_ci } 30862306a36Sopenharmony_ci 30962306a36Sopenharmony_ci /* Refuse requests with allocator specific flags */ 31062306a36Sopenharmony_ci if (flags & ~SLAB_FLAGS_PERMITTED) { 31162306a36Sopenharmony_ci err = -EINVAL; 31262306a36Sopenharmony_ci goto out_unlock; 31362306a36Sopenharmony_ci } 31462306a36Sopenharmony_ci 31562306a36Sopenharmony_ci /* 31662306a36Sopenharmony_ci * Some allocators will constraint the set of valid flags to a subset 31762306a36Sopenharmony_ci * of all flags. We expect them to define CACHE_CREATE_MASK in this 31862306a36Sopenharmony_ci * case, and we'll just provide them with a sanitized version of the 31962306a36Sopenharmony_ci * passed flags. 32062306a36Sopenharmony_ci */ 32162306a36Sopenharmony_ci flags &= CACHE_CREATE_MASK; 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci /* Fail closed on bad usersize of useroffset values. */ 32462306a36Sopenharmony_ci if (!IS_ENABLED(CONFIG_HARDENED_USERCOPY) || 32562306a36Sopenharmony_ci WARN_ON(!usersize && useroffset) || 32662306a36Sopenharmony_ci WARN_ON(size < usersize || size - usersize < useroffset)) 32762306a36Sopenharmony_ci usersize = useroffset = 0; 32862306a36Sopenharmony_ci 32962306a36Sopenharmony_ci if (!usersize) 33062306a36Sopenharmony_ci s = __kmem_cache_alias(name, size, align, flags, ctor); 33162306a36Sopenharmony_ci if (s) 33262306a36Sopenharmony_ci goto out_unlock; 33362306a36Sopenharmony_ci 33462306a36Sopenharmony_ci cache_name = kstrdup_const(name, GFP_KERNEL); 33562306a36Sopenharmony_ci if (!cache_name) { 33662306a36Sopenharmony_ci err = -ENOMEM; 33762306a36Sopenharmony_ci goto out_unlock; 33862306a36Sopenharmony_ci } 33962306a36Sopenharmony_ci 34062306a36Sopenharmony_ci s = create_cache(cache_name, size, 34162306a36Sopenharmony_ci calculate_alignment(flags, align, size), 34262306a36Sopenharmony_ci flags, useroffset, usersize, ctor, NULL); 34362306a36Sopenharmony_ci if (IS_ERR(s)) { 34462306a36Sopenharmony_ci err = PTR_ERR(s); 34562306a36Sopenharmony_ci kfree_const(cache_name); 34662306a36Sopenharmony_ci } 34762306a36Sopenharmony_ci 34862306a36Sopenharmony_ciout_unlock: 34962306a36Sopenharmony_ci mutex_unlock(&slab_mutex); 35062306a36Sopenharmony_ci 35162306a36Sopenharmony_ci if (err) { 35262306a36Sopenharmony_ci if (flags & SLAB_PANIC) 35362306a36Sopenharmony_ci panic("%s: Failed to create slab '%s'. Error %d\n", 35462306a36Sopenharmony_ci __func__, name, err); 35562306a36Sopenharmony_ci else { 35662306a36Sopenharmony_ci pr_warn("%s(%s) failed with error %d\n", 35762306a36Sopenharmony_ci __func__, name, err); 35862306a36Sopenharmony_ci dump_stack(); 35962306a36Sopenharmony_ci } 36062306a36Sopenharmony_ci return NULL; 36162306a36Sopenharmony_ci } 36262306a36Sopenharmony_ci return s; 36362306a36Sopenharmony_ci} 36462306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_create_usercopy); 36562306a36Sopenharmony_ci 36662306a36Sopenharmony_ci/** 36762306a36Sopenharmony_ci * kmem_cache_create - Create a cache. 36862306a36Sopenharmony_ci * @name: A string which is used in /proc/slabinfo to identify this cache. 36962306a36Sopenharmony_ci * @size: The size of objects to be created in this cache. 37062306a36Sopenharmony_ci * @align: The required alignment for the objects. 37162306a36Sopenharmony_ci * @flags: SLAB flags 37262306a36Sopenharmony_ci * @ctor: A constructor for the objects. 37362306a36Sopenharmony_ci * 37462306a36Sopenharmony_ci * Cannot be called within a interrupt, but can be interrupted. 37562306a36Sopenharmony_ci * The @ctor is run when new pages are allocated by the cache. 37662306a36Sopenharmony_ci * 37762306a36Sopenharmony_ci * The flags are 37862306a36Sopenharmony_ci * 37962306a36Sopenharmony_ci * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5) 38062306a36Sopenharmony_ci * to catch references to uninitialised memory. 38162306a36Sopenharmony_ci * 38262306a36Sopenharmony_ci * %SLAB_RED_ZONE - Insert `Red` zones around the allocated memory to check 38362306a36Sopenharmony_ci * for buffer overruns. 38462306a36Sopenharmony_ci * 38562306a36Sopenharmony_ci * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware 38662306a36Sopenharmony_ci * cacheline. This can be beneficial if you're counting cycles as closely 38762306a36Sopenharmony_ci * as davem. 38862306a36Sopenharmony_ci * 38962306a36Sopenharmony_ci * Return: a pointer to the cache on success, NULL on failure. 39062306a36Sopenharmony_ci */ 39162306a36Sopenharmony_cistruct kmem_cache * 39262306a36Sopenharmony_cikmem_cache_create(const char *name, unsigned int size, unsigned int align, 39362306a36Sopenharmony_ci slab_flags_t flags, void (*ctor)(void *)) 39462306a36Sopenharmony_ci{ 39562306a36Sopenharmony_ci return kmem_cache_create_usercopy(name, size, align, flags, 0, 0, 39662306a36Sopenharmony_ci ctor); 39762306a36Sopenharmony_ci} 39862306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_create); 39962306a36Sopenharmony_ci 40062306a36Sopenharmony_ci#ifdef SLAB_SUPPORTS_SYSFS 40162306a36Sopenharmony_ci/* 40262306a36Sopenharmony_ci * For a given kmem_cache, kmem_cache_destroy() should only be called 40362306a36Sopenharmony_ci * once or there will be a use-after-free problem. The actual deletion 40462306a36Sopenharmony_ci * and release of the kobject does not need slab_mutex or cpu_hotplug_lock 40562306a36Sopenharmony_ci * protection. So they are now done without holding those locks. 40662306a36Sopenharmony_ci * 40762306a36Sopenharmony_ci * Note that there will be a slight delay in the deletion of sysfs files 40862306a36Sopenharmony_ci * if kmem_cache_release() is called indrectly from a work function. 40962306a36Sopenharmony_ci */ 41062306a36Sopenharmony_cistatic void kmem_cache_release(struct kmem_cache *s) 41162306a36Sopenharmony_ci{ 41262306a36Sopenharmony_ci sysfs_slab_unlink(s); 41362306a36Sopenharmony_ci sysfs_slab_release(s); 41462306a36Sopenharmony_ci} 41562306a36Sopenharmony_ci#else 41662306a36Sopenharmony_cistatic void kmem_cache_release(struct kmem_cache *s) 41762306a36Sopenharmony_ci{ 41862306a36Sopenharmony_ci slab_kmem_cache_release(s); 41962306a36Sopenharmony_ci} 42062306a36Sopenharmony_ci#endif 42162306a36Sopenharmony_ci 42262306a36Sopenharmony_cistatic void slab_caches_to_rcu_destroy_workfn(struct work_struct *work) 42362306a36Sopenharmony_ci{ 42462306a36Sopenharmony_ci LIST_HEAD(to_destroy); 42562306a36Sopenharmony_ci struct kmem_cache *s, *s2; 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_ci /* 42862306a36Sopenharmony_ci * On destruction, SLAB_TYPESAFE_BY_RCU kmem_caches are put on the 42962306a36Sopenharmony_ci * @slab_caches_to_rcu_destroy list. The slab pages are freed 43062306a36Sopenharmony_ci * through RCU and the associated kmem_cache are dereferenced 43162306a36Sopenharmony_ci * while freeing the pages, so the kmem_caches should be freed only 43262306a36Sopenharmony_ci * after the pending RCU operations are finished. As rcu_barrier() 43362306a36Sopenharmony_ci * is a pretty slow operation, we batch all pending destructions 43462306a36Sopenharmony_ci * asynchronously. 43562306a36Sopenharmony_ci */ 43662306a36Sopenharmony_ci mutex_lock(&slab_mutex); 43762306a36Sopenharmony_ci list_splice_init(&slab_caches_to_rcu_destroy, &to_destroy); 43862306a36Sopenharmony_ci mutex_unlock(&slab_mutex); 43962306a36Sopenharmony_ci 44062306a36Sopenharmony_ci if (list_empty(&to_destroy)) 44162306a36Sopenharmony_ci return; 44262306a36Sopenharmony_ci 44362306a36Sopenharmony_ci rcu_barrier(); 44462306a36Sopenharmony_ci 44562306a36Sopenharmony_ci list_for_each_entry_safe(s, s2, &to_destroy, list) { 44662306a36Sopenharmony_ci debugfs_slab_release(s); 44762306a36Sopenharmony_ci kfence_shutdown_cache(s); 44862306a36Sopenharmony_ci kmem_cache_release(s); 44962306a36Sopenharmony_ci } 45062306a36Sopenharmony_ci} 45162306a36Sopenharmony_ci 45262306a36Sopenharmony_cistatic int shutdown_cache(struct kmem_cache *s) 45362306a36Sopenharmony_ci{ 45462306a36Sopenharmony_ci /* free asan quarantined objects */ 45562306a36Sopenharmony_ci kasan_cache_shutdown(s); 45662306a36Sopenharmony_ci 45762306a36Sopenharmony_ci if (__kmem_cache_shutdown(s) != 0) 45862306a36Sopenharmony_ci return -EBUSY; 45962306a36Sopenharmony_ci 46062306a36Sopenharmony_ci list_del(&s->list); 46162306a36Sopenharmony_ci 46262306a36Sopenharmony_ci if (s->flags & SLAB_TYPESAFE_BY_RCU) { 46362306a36Sopenharmony_ci list_add_tail(&s->list, &slab_caches_to_rcu_destroy); 46462306a36Sopenharmony_ci schedule_work(&slab_caches_to_rcu_destroy_work); 46562306a36Sopenharmony_ci } else { 46662306a36Sopenharmony_ci kfence_shutdown_cache(s); 46762306a36Sopenharmony_ci debugfs_slab_release(s); 46862306a36Sopenharmony_ci } 46962306a36Sopenharmony_ci 47062306a36Sopenharmony_ci return 0; 47162306a36Sopenharmony_ci} 47262306a36Sopenharmony_ci 47362306a36Sopenharmony_civoid slab_kmem_cache_release(struct kmem_cache *s) 47462306a36Sopenharmony_ci{ 47562306a36Sopenharmony_ci __kmem_cache_release(s); 47662306a36Sopenharmony_ci kfree_const(s->name); 47762306a36Sopenharmony_ci kmem_cache_free(kmem_cache, s); 47862306a36Sopenharmony_ci} 47962306a36Sopenharmony_ci 48062306a36Sopenharmony_civoid kmem_cache_destroy(struct kmem_cache *s) 48162306a36Sopenharmony_ci{ 48262306a36Sopenharmony_ci int err = -EBUSY; 48362306a36Sopenharmony_ci bool rcu_set; 48462306a36Sopenharmony_ci 48562306a36Sopenharmony_ci if (unlikely(!s) || !kasan_check_byte(s)) 48662306a36Sopenharmony_ci return; 48762306a36Sopenharmony_ci 48862306a36Sopenharmony_ci cpus_read_lock(); 48962306a36Sopenharmony_ci mutex_lock(&slab_mutex); 49062306a36Sopenharmony_ci 49162306a36Sopenharmony_ci rcu_set = s->flags & SLAB_TYPESAFE_BY_RCU; 49262306a36Sopenharmony_ci 49362306a36Sopenharmony_ci s->refcount--; 49462306a36Sopenharmony_ci if (s->refcount) 49562306a36Sopenharmony_ci goto out_unlock; 49662306a36Sopenharmony_ci 49762306a36Sopenharmony_ci err = shutdown_cache(s); 49862306a36Sopenharmony_ci WARN(err, "%s %s: Slab cache still has objects when called from %pS", 49962306a36Sopenharmony_ci __func__, s->name, (void *)_RET_IP_); 50062306a36Sopenharmony_ciout_unlock: 50162306a36Sopenharmony_ci mutex_unlock(&slab_mutex); 50262306a36Sopenharmony_ci cpus_read_unlock(); 50362306a36Sopenharmony_ci if (!err && !rcu_set) 50462306a36Sopenharmony_ci kmem_cache_release(s); 50562306a36Sopenharmony_ci} 50662306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_destroy); 50762306a36Sopenharmony_ci 50862306a36Sopenharmony_ci/** 50962306a36Sopenharmony_ci * kmem_cache_shrink - Shrink a cache. 51062306a36Sopenharmony_ci * @cachep: The cache to shrink. 51162306a36Sopenharmony_ci * 51262306a36Sopenharmony_ci * Releases as many slabs as possible for a cache. 51362306a36Sopenharmony_ci * To help debugging, a zero exit status indicates all slabs were released. 51462306a36Sopenharmony_ci * 51562306a36Sopenharmony_ci * Return: %0 if all slabs were released, non-zero otherwise 51662306a36Sopenharmony_ci */ 51762306a36Sopenharmony_ciint kmem_cache_shrink(struct kmem_cache *cachep) 51862306a36Sopenharmony_ci{ 51962306a36Sopenharmony_ci kasan_cache_shrink(cachep); 52062306a36Sopenharmony_ci 52162306a36Sopenharmony_ci return __kmem_cache_shrink(cachep); 52262306a36Sopenharmony_ci} 52362306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_shrink); 52462306a36Sopenharmony_ci 52562306a36Sopenharmony_cibool slab_is_available(void) 52662306a36Sopenharmony_ci{ 52762306a36Sopenharmony_ci return slab_state >= UP; 52862306a36Sopenharmony_ci} 52962306a36Sopenharmony_ci 53062306a36Sopenharmony_ci#ifdef CONFIG_PRINTK 53162306a36Sopenharmony_ci/** 53262306a36Sopenharmony_ci * kmem_valid_obj - does the pointer reference a valid slab object? 53362306a36Sopenharmony_ci * @object: pointer to query. 53462306a36Sopenharmony_ci * 53562306a36Sopenharmony_ci * Return: %true if the pointer is to a not-yet-freed object from 53662306a36Sopenharmony_ci * kmalloc() or kmem_cache_alloc(), either %true or %false if the pointer 53762306a36Sopenharmony_ci * is to an already-freed object, and %false otherwise. 53862306a36Sopenharmony_ci */ 53962306a36Sopenharmony_cibool kmem_valid_obj(void *object) 54062306a36Sopenharmony_ci{ 54162306a36Sopenharmony_ci struct folio *folio; 54262306a36Sopenharmony_ci 54362306a36Sopenharmony_ci /* Some arches consider ZERO_SIZE_PTR to be a valid address. */ 54462306a36Sopenharmony_ci if (object < (void *)PAGE_SIZE || !virt_addr_valid(object)) 54562306a36Sopenharmony_ci return false; 54662306a36Sopenharmony_ci folio = virt_to_folio(object); 54762306a36Sopenharmony_ci return folio_test_slab(folio); 54862306a36Sopenharmony_ci} 54962306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(kmem_valid_obj); 55062306a36Sopenharmony_ci 55162306a36Sopenharmony_cistatic void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab) 55262306a36Sopenharmony_ci{ 55362306a36Sopenharmony_ci if (__kfence_obj_info(kpp, object, slab)) 55462306a36Sopenharmony_ci return; 55562306a36Sopenharmony_ci __kmem_obj_info(kpp, object, slab); 55662306a36Sopenharmony_ci} 55762306a36Sopenharmony_ci 55862306a36Sopenharmony_ci/** 55962306a36Sopenharmony_ci * kmem_dump_obj - Print available slab provenance information 56062306a36Sopenharmony_ci * @object: slab object for which to find provenance information. 56162306a36Sopenharmony_ci * 56262306a36Sopenharmony_ci * This function uses pr_cont(), so that the caller is expected to have 56362306a36Sopenharmony_ci * printed out whatever preamble is appropriate. The provenance information 56462306a36Sopenharmony_ci * depends on the type of object and on how much debugging is enabled. 56562306a36Sopenharmony_ci * For a slab-cache object, the fact that it is a slab object is printed, 56662306a36Sopenharmony_ci * and, if available, the slab name, return address, and stack trace from 56762306a36Sopenharmony_ci * the allocation and last free path of that object. 56862306a36Sopenharmony_ci * 56962306a36Sopenharmony_ci * This function will splat if passed a pointer to a non-slab object. 57062306a36Sopenharmony_ci * If you are not sure what type of object you have, you should instead 57162306a36Sopenharmony_ci * use mem_dump_obj(). 57262306a36Sopenharmony_ci */ 57362306a36Sopenharmony_civoid kmem_dump_obj(void *object) 57462306a36Sopenharmony_ci{ 57562306a36Sopenharmony_ci char *cp = IS_ENABLED(CONFIG_MMU) ? "" : "/vmalloc"; 57662306a36Sopenharmony_ci int i; 57762306a36Sopenharmony_ci struct slab *slab; 57862306a36Sopenharmony_ci unsigned long ptroffset; 57962306a36Sopenharmony_ci struct kmem_obj_info kp = { }; 58062306a36Sopenharmony_ci 58162306a36Sopenharmony_ci if (WARN_ON_ONCE(!virt_addr_valid(object))) 58262306a36Sopenharmony_ci return; 58362306a36Sopenharmony_ci slab = virt_to_slab(object); 58462306a36Sopenharmony_ci if (WARN_ON_ONCE(!slab)) { 58562306a36Sopenharmony_ci pr_cont(" non-slab memory.\n"); 58662306a36Sopenharmony_ci return; 58762306a36Sopenharmony_ci } 58862306a36Sopenharmony_ci kmem_obj_info(&kp, object, slab); 58962306a36Sopenharmony_ci if (kp.kp_slab_cache) 59062306a36Sopenharmony_ci pr_cont(" slab%s %s", cp, kp.kp_slab_cache->name); 59162306a36Sopenharmony_ci else 59262306a36Sopenharmony_ci pr_cont(" slab%s", cp); 59362306a36Sopenharmony_ci if (is_kfence_address(object)) 59462306a36Sopenharmony_ci pr_cont(" (kfence)"); 59562306a36Sopenharmony_ci if (kp.kp_objp) 59662306a36Sopenharmony_ci pr_cont(" start %px", kp.kp_objp); 59762306a36Sopenharmony_ci if (kp.kp_data_offset) 59862306a36Sopenharmony_ci pr_cont(" data offset %lu", kp.kp_data_offset); 59962306a36Sopenharmony_ci if (kp.kp_objp) { 60062306a36Sopenharmony_ci ptroffset = ((char *)object - (char *)kp.kp_objp) - kp.kp_data_offset; 60162306a36Sopenharmony_ci pr_cont(" pointer offset %lu", ptroffset); 60262306a36Sopenharmony_ci } 60362306a36Sopenharmony_ci if (kp.kp_slab_cache && kp.kp_slab_cache->object_size) 60462306a36Sopenharmony_ci pr_cont(" size %u", kp.kp_slab_cache->object_size); 60562306a36Sopenharmony_ci if (kp.kp_ret) 60662306a36Sopenharmony_ci pr_cont(" allocated at %pS\n", kp.kp_ret); 60762306a36Sopenharmony_ci else 60862306a36Sopenharmony_ci pr_cont("\n"); 60962306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(kp.kp_stack); i++) { 61062306a36Sopenharmony_ci if (!kp.kp_stack[i]) 61162306a36Sopenharmony_ci break; 61262306a36Sopenharmony_ci pr_info(" %pS\n", kp.kp_stack[i]); 61362306a36Sopenharmony_ci } 61462306a36Sopenharmony_ci 61562306a36Sopenharmony_ci if (kp.kp_free_stack[0]) 61662306a36Sopenharmony_ci pr_cont(" Free path:\n"); 61762306a36Sopenharmony_ci 61862306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(kp.kp_free_stack); i++) { 61962306a36Sopenharmony_ci if (!kp.kp_free_stack[i]) 62062306a36Sopenharmony_ci break; 62162306a36Sopenharmony_ci pr_info(" %pS\n", kp.kp_free_stack[i]); 62262306a36Sopenharmony_ci } 62362306a36Sopenharmony_ci 62462306a36Sopenharmony_ci} 62562306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(kmem_dump_obj); 62662306a36Sopenharmony_ci#endif 62762306a36Sopenharmony_ci 62862306a36Sopenharmony_ci/* Create a cache during boot when no slab services are available yet */ 62962306a36Sopenharmony_civoid __init create_boot_cache(struct kmem_cache *s, const char *name, 63062306a36Sopenharmony_ci unsigned int size, slab_flags_t flags, 63162306a36Sopenharmony_ci unsigned int useroffset, unsigned int usersize) 63262306a36Sopenharmony_ci{ 63362306a36Sopenharmony_ci int err; 63462306a36Sopenharmony_ci unsigned int align = ARCH_KMALLOC_MINALIGN; 63562306a36Sopenharmony_ci 63662306a36Sopenharmony_ci s->name = name; 63762306a36Sopenharmony_ci s->size = s->object_size = size; 63862306a36Sopenharmony_ci 63962306a36Sopenharmony_ci /* 64062306a36Sopenharmony_ci * For power of two sizes, guarantee natural alignment for kmalloc 64162306a36Sopenharmony_ci * caches, regardless of SL*B debugging options. 64262306a36Sopenharmony_ci */ 64362306a36Sopenharmony_ci if (is_power_of_2(size)) 64462306a36Sopenharmony_ci align = max(align, size); 64562306a36Sopenharmony_ci s->align = calculate_alignment(flags, align, size); 64662306a36Sopenharmony_ci 64762306a36Sopenharmony_ci#ifdef CONFIG_HARDENED_USERCOPY 64862306a36Sopenharmony_ci s->useroffset = useroffset; 64962306a36Sopenharmony_ci s->usersize = usersize; 65062306a36Sopenharmony_ci#endif 65162306a36Sopenharmony_ci 65262306a36Sopenharmony_ci err = __kmem_cache_create(s, flags); 65362306a36Sopenharmony_ci 65462306a36Sopenharmony_ci if (err) 65562306a36Sopenharmony_ci panic("Creation of kmalloc slab %s size=%u failed. Reason %d\n", 65662306a36Sopenharmony_ci name, size, err); 65762306a36Sopenharmony_ci 65862306a36Sopenharmony_ci s->refcount = -1; /* Exempt from merging for now */ 65962306a36Sopenharmony_ci} 66062306a36Sopenharmony_ci 66162306a36Sopenharmony_cistatic struct kmem_cache *__init create_kmalloc_cache(const char *name, 66262306a36Sopenharmony_ci unsigned int size, 66362306a36Sopenharmony_ci slab_flags_t flags) 66462306a36Sopenharmony_ci{ 66562306a36Sopenharmony_ci struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); 66662306a36Sopenharmony_ci 66762306a36Sopenharmony_ci if (!s) 66862306a36Sopenharmony_ci panic("Out of memory when creating slab %s\n", name); 66962306a36Sopenharmony_ci 67062306a36Sopenharmony_ci create_boot_cache(s, name, size, flags | SLAB_KMALLOC, 0, size); 67162306a36Sopenharmony_ci list_add(&s->list, &slab_caches); 67262306a36Sopenharmony_ci s->refcount = 1; 67362306a36Sopenharmony_ci return s; 67462306a36Sopenharmony_ci} 67562306a36Sopenharmony_ci 67662306a36Sopenharmony_cistruct kmem_cache * 67762306a36Sopenharmony_cikmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1] __ro_after_init = 67862306a36Sopenharmony_ci{ /* initialization for https://bugs.llvm.org/show_bug.cgi?id=42570 */ }; 67962306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_caches); 68062306a36Sopenharmony_ci 68162306a36Sopenharmony_ci#ifdef CONFIG_RANDOM_KMALLOC_CACHES 68262306a36Sopenharmony_ciunsigned long random_kmalloc_seed __ro_after_init; 68362306a36Sopenharmony_ciEXPORT_SYMBOL(random_kmalloc_seed); 68462306a36Sopenharmony_ci#endif 68562306a36Sopenharmony_ci 68662306a36Sopenharmony_ci/* 68762306a36Sopenharmony_ci * Conversion table for small slabs sizes / 8 to the index in the 68862306a36Sopenharmony_ci * kmalloc array. This is necessary for slabs < 192 since we have non power 68962306a36Sopenharmony_ci * of two cache sizes there. The size of larger slabs can be determined using 69062306a36Sopenharmony_ci * fls. 69162306a36Sopenharmony_ci */ 69262306a36Sopenharmony_cistatic u8 size_index[24] __ro_after_init = { 69362306a36Sopenharmony_ci 3, /* 8 */ 69462306a36Sopenharmony_ci 4, /* 16 */ 69562306a36Sopenharmony_ci 5, /* 24 */ 69662306a36Sopenharmony_ci 5, /* 32 */ 69762306a36Sopenharmony_ci 6, /* 40 */ 69862306a36Sopenharmony_ci 6, /* 48 */ 69962306a36Sopenharmony_ci 6, /* 56 */ 70062306a36Sopenharmony_ci 6, /* 64 */ 70162306a36Sopenharmony_ci 1, /* 72 */ 70262306a36Sopenharmony_ci 1, /* 80 */ 70362306a36Sopenharmony_ci 1, /* 88 */ 70462306a36Sopenharmony_ci 1, /* 96 */ 70562306a36Sopenharmony_ci 7, /* 104 */ 70662306a36Sopenharmony_ci 7, /* 112 */ 70762306a36Sopenharmony_ci 7, /* 120 */ 70862306a36Sopenharmony_ci 7, /* 128 */ 70962306a36Sopenharmony_ci 2, /* 136 */ 71062306a36Sopenharmony_ci 2, /* 144 */ 71162306a36Sopenharmony_ci 2, /* 152 */ 71262306a36Sopenharmony_ci 2, /* 160 */ 71362306a36Sopenharmony_ci 2, /* 168 */ 71462306a36Sopenharmony_ci 2, /* 176 */ 71562306a36Sopenharmony_ci 2, /* 184 */ 71662306a36Sopenharmony_ci 2 /* 192 */ 71762306a36Sopenharmony_ci}; 71862306a36Sopenharmony_ci 71962306a36Sopenharmony_cistatic inline unsigned int size_index_elem(unsigned int bytes) 72062306a36Sopenharmony_ci{ 72162306a36Sopenharmony_ci return (bytes - 1) / 8; 72262306a36Sopenharmony_ci} 72362306a36Sopenharmony_ci 72462306a36Sopenharmony_ci/* 72562306a36Sopenharmony_ci * Find the kmem_cache structure that serves a given size of 72662306a36Sopenharmony_ci * allocation 72762306a36Sopenharmony_ci */ 72862306a36Sopenharmony_cistruct kmem_cache *kmalloc_slab(size_t size, gfp_t flags, unsigned long caller) 72962306a36Sopenharmony_ci{ 73062306a36Sopenharmony_ci unsigned int index; 73162306a36Sopenharmony_ci 73262306a36Sopenharmony_ci if (size <= 192) { 73362306a36Sopenharmony_ci if (!size) 73462306a36Sopenharmony_ci return ZERO_SIZE_PTR; 73562306a36Sopenharmony_ci 73662306a36Sopenharmony_ci index = size_index[size_index_elem(size)]; 73762306a36Sopenharmony_ci } else { 73862306a36Sopenharmony_ci if (WARN_ON_ONCE(size > KMALLOC_MAX_CACHE_SIZE)) 73962306a36Sopenharmony_ci return NULL; 74062306a36Sopenharmony_ci index = fls(size - 1); 74162306a36Sopenharmony_ci } 74262306a36Sopenharmony_ci 74362306a36Sopenharmony_ci return kmalloc_caches[kmalloc_type(flags, caller)][index]; 74462306a36Sopenharmony_ci} 74562306a36Sopenharmony_ci 74662306a36Sopenharmony_cisize_t kmalloc_size_roundup(size_t size) 74762306a36Sopenharmony_ci{ 74862306a36Sopenharmony_ci if (size && size <= KMALLOC_MAX_CACHE_SIZE) { 74962306a36Sopenharmony_ci /* 75062306a36Sopenharmony_ci * The flags don't matter since size_index is common to all. 75162306a36Sopenharmony_ci * Neither does the caller for just getting ->object_size. 75262306a36Sopenharmony_ci */ 75362306a36Sopenharmony_ci return kmalloc_slab(size, GFP_KERNEL, 0)->object_size; 75462306a36Sopenharmony_ci } 75562306a36Sopenharmony_ci 75662306a36Sopenharmony_ci /* Above the smaller buckets, size is a multiple of page size. */ 75762306a36Sopenharmony_ci if (size && size <= KMALLOC_MAX_SIZE) 75862306a36Sopenharmony_ci return PAGE_SIZE << get_order(size); 75962306a36Sopenharmony_ci 76062306a36Sopenharmony_ci /* 76162306a36Sopenharmony_ci * Return 'size' for 0 - kmalloc() returns ZERO_SIZE_PTR 76262306a36Sopenharmony_ci * and very large size - kmalloc() may fail. 76362306a36Sopenharmony_ci */ 76462306a36Sopenharmony_ci return size; 76562306a36Sopenharmony_ci 76662306a36Sopenharmony_ci} 76762306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_size_roundup); 76862306a36Sopenharmony_ci 76962306a36Sopenharmony_ci#ifdef CONFIG_ZONE_DMA 77062306a36Sopenharmony_ci#define KMALLOC_DMA_NAME(sz) .name[KMALLOC_DMA] = "dma-kmalloc-" #sz, 77162306a36Sopenharmony_ci#else 77262306a36Sopenharmony_ci#define KMALLOC_DMA_NAME(sz) 77362306a36Sopenharmony_ci#endif 77462306a36Sopenharmony_ci 77562306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 77662306a36Sopenharmony_ci#define KMALLOC_CGROUP_NAME(sz) .name[KMALLOC_CGROUP] = "kmalloc-cg-" #sz, 77762306a36Sopenharmony_ci#else 77862306a36Sopenharmony_ci#define KMALLOC_CGROUP_NAME(sz) 77962306a36Sopenharmony_ci#endif 78062306a36Sopenharmony_ci 78162306a36Sopenharmony_ci#ifndef CONFIG_SLUB_TINY 78262306a36Sopenharmony_ci#define KMALLOC_RCL_NAME(sz) .name[KMALLOC_RECLAIM] = "kmalloc-rcl-" #sz, 78362306a36Sopenharmony_ci#else 78462306a36Sopenharmony_ci#define KMALLOC_RCL_NAME(sz) 78562306a36Sopenharmony_ci#endif 78662306a36Sopenharmony_ci 78762306a36Sopenharmony_ci#ifdef CONFIG_RANDOM_KMALLOC_CACHES 78862306a36Sopenharmony_ci#define __KMALLOC_RANDOM_CONCAT(a, b) a ## b 78962306a36Sopenharmony_ci#define KMALLOC_RANDOM_NAME(N, sz) __KMALLOC_RANDOM_CONCAT(KMA_RAND_, N)(sz) 79062306a36Sopenharmony_ci#define KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 1] = "kmalloc-rnd-01-" #sz, 79162306a36Sopenharmony_ci#define KMA_RAND_2(sz) KMA_RAND_1(sz) .name[KMALLOC_RANDOM_START + 2] = "kmalloc-rnd-02-" #sz, 79262306a36Sopenharmony_ci#define KMA_RAND_3(sz) KMA_RAND_2(sz) .name[KMALLOC_RANDOM_START + 3] = "kmalloc-rnd-03-" #sz, 79362306a36Sopenharmony_ci#define KMA_RAND_4(sz) KMA_RAND_3(sz) .name[KMALLOC_RANDOM_START + 4] = "kmalloc-rnd-04-" #sz, 79462306a36Sopenharmony_ci#define KMA_RAND_5(sz) KMA_RAND_4(sz) .name[KMALLOC_RANDOM_START + 5] = "kmalloc-rnd-05-" #sz, 79562306a36Sopenharmony_ci#define KMA_RAND_6(sz) KMA_RAND_5(sz) .name[KMALLOC_RANDOM_START + 6] = "kmalloc-rnd-06-" #sz, 79662306a36Sopenharmony_ci#define KMA_RAND_7(sz) KMA_RAND_6(sz) .name[KMALLOC_RANDOM_START + 7] = "kmalloc-rnd-07-" #sz, 79762306a36Sopenharmony_ci#define KMA_RAND_8(sz) KMA_RAND_7(sz) .name[KMALLOC_RANDOM_START + 8] = "kmalloc-rnd-08-" #sz, 79862306a36Sopenharmony_ci#define KMA_RAND_9(sz) KMA_RAND_8(sz) .name[KMALLOC_RANDOM_START + 9] = "kmalloc-rnd-09-" #sz, 79962306a36Sopenharmony_ci#define KMA_RAND_10(sz) KMA_RAND_9(sz) .name[KMALLOC_RANDOM_START + 10] = "kmalloc-rnd-10-" #sz, 80062306a36Sopenharmony_ci#define KMA_RAND_11(sz) KMA_RAND_10(sz) .name[KMALLOC_RANDOM_START + 11] = "kmalloc-rnd-11-" #sz, 80162306a36Sopenharmony_ci#define KMA_RAND_12(sz) KMA_RAND_11(sz) .name[KMALLOC_RANDOM_START + 12] = "kmalloc-rnd-12-" #sz, 80262306a36Sopenharmony_ci#define KMA_RAND_13(sz) KMA_RAND_12(sz) .name[KMALLOC_RANDOM_START + 13] = "kmalloc-rnd-13-" #sz, 80362306a36Sopenharmony_ci#define KMA_RAND_14(sz) KMA_RAND_13(sz) .name[KMALLOC_RANDOM_START + 14] = "kmalloc-rnd-14-" #sz, 80462306a36Sopenharmony_ci#define KMA_RAND_15(sz) KMA_RAND_14(sz) .name[KMALLOC_RANDOM_START + 15] = "kmalloc-rnd-15-" #sz, 80562306a36Sopenharmony_ci#else // CONFIG_RANDOM_KMALLOC_CACHES 80662306a36Sopenharmony_ci#define KMALLOC_RANDOM_NAME(N, sz) 80762306a36Sopenharmony_ci#endif 80862306a36Sopenharmony_ci 80962306a36Sopenharmony_ci#define INIT_KMALLOC_INFO(__size, __short_size) \ 81062306a36Sopenharmony_ci{ \ 81162306a36Sopenharmony_ci .name[KMALLOC_NORMAL] = "kmalloc-" #__short_size, \ 81262306a36Sopenharmony_ci KMALLOC_RCL_NAME(__short_size) \ 81362306a36Sopenharmony_ci KMALLOC_CGROUP_NAME(__short_size) \ 81462306a36Sopenharmony_ci KMALLOC_DMA_NAME(__short_size) \ 81562306a36Sopenharmony_ci KMALLOC_RANDOM_NAME(RANDOM_KMALLOC_CACHES_NR, __short_size) \ 81662306a36Sopenharmony_ci .size = __size, \ 81762306a36Sopenharmony_ci} 81862306a36Sopenharmony_ci 81962306a36Sopenharmony_ci/* 82062306a36Sopenharmony_ci * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time. 82162306a36Sopenharmony_ci * kmalloc_index() supports up to 2^21=2MB, so the final entry of the table is 82262306a36Sopenharmony_ci * kmalloc-2M. 82362306a36Sopenharmony_ci */ 82462306a36Sopenharmony_ciconst struct kmalloc_info_struct kmalloc_info[] __initconst = { 82562306a36Sopenharmony_ci INIT_KMALLOC_INFO(0, 0), 82662306a36Sopenharmony_ci INIT_KMALLOC_INFO(96, 96), 82762306a36Sopenharmony_ci INIT_KMALLOC_INFO(192, 192), 82862306a36Sopenharmony_ci INIT_KMALLOC_INFO(8, 8), 82962306a36Sopenharmony_ci INIT_KMALLOC_INFO(16, 16), 83062306a36Sopenharmony_ci INIT_KMALLOC_INFO(32, 32), 83162306a36Sopenharmony_ci INIT_KMALLOC_INFO(64, 64), 83262306a36Sopenharmony_ci INIT_KMALLOC_INFO(128, 128), 83362306a36Sopenharmony_ci INIT_KMALLOC_INFO(256, 256), 83462306a36Sopenharmony_ci INIT_KMALLOC_INFO(512, 512), 83562306a36Sopenharmony_ci INIT_KMALLOC_INFO(1024, 1k), 83662306a36Sopenharmony_ci INIT_KMALLOC_INFO(2048, 2k), 83762306a36Sopenharmony_ci INIT_KMALLOC_INFO(4096, 4k), 83862306a36Sopenharmony_ci INIT_KMALLOC_INFO(8192, 8k), 83962306a36Sopenharmony_ci INIT_KMALLOC_INFO(16384, 16k), 84062306a36Sopenharmony_ci INIT_KMALLOC_INFO(32768, 32k), 84162306a36Sopenharmony_ci INIT_KMALLOC_INFO(65536, 64k), 84262306a36Sopenharmony_ci INIT_KMALLOC_INFO(131072, 128k), 84362306a36Sopenharmony_ci INIT_KMALLOC_INFO(262144, 256k), 84462306a36Sopenharmony_ci INIT_KMALLOC_INFO(524288, 512k), 84562306a36Sopenharmony_ci INIT_KMALLOC_INFO(1048576, 1M), 84662306a36Sopenharmony_ci INIT_KMALLOC_INFO(2097152, 2M) 84762306a36Sopenharmony_ci}; 84862306a36Sopenharmony_ci 84962306a36Sopenharmony_ci/* 85062306a36Sopenharmony_ci * Patch up the size_index table if we have strange large alignment 85162306a36Sopenharmony_ci * requirements for the kmalloc array. This is only the case for 85262306a36Sopenharmony_ci * MIPS it seems. The standard arches will not generate any code here. 85362306a36Sopenharmony_ci * 85462306a36Sopenharmony_ci * Largest permitted alignment is 256 bytes due to the way we 85562306a36Sopenharmony_ci * handle the index determination for the smaller caches. 85662306a36Sopenharmony_ci * 85762306a36Sopenharmony_ci * Make sure that nothing crazy happens if someone starts tinkering 85862306a36Sopenharmony_ci * around with ARCH_KMALLOC_MINALIGN 85962306a36Sopenharmony_ci */ 86062306a36Sopenharmony_civoid __init setup_kmalloc_cache_index_table(void) 86162306a36Sopenharmony_ci{ 86262306a36Sopenharmony_ci unsigned int i; 86362306a36Sopenharmony_ci 86462306a36Sopenharmony_ci BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 || 86562306a36Sopenharmony_ci !is_power_of_2(KMALLOC_MIN_SIZE)); 86662306a36Sopenharmony_ci 86762306a36Sopenharmony_ci for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) { 86862306a36Sopenharmony_ci unsigned int elem = size_index_elem(i); 86962306a36Sopenharmony_ci 87062306a36Sopenharmony_ci if (elem >= ARRAY_SIZE(size_index)) 87162306a36Sopenharmony_ci break; 87262306a36Sopenharmony_ci size_index[elem] = KMALLOC_SHIFT_LOW; 87362306a36Sopenharmony_ci } 87462306a36Sopenharmony_ci 87562306a36Sopenharmony_ci if (KMALLOC_MIN_SIZE >= 64) { 87662306a36Sopenharmony_ci /* 87762306a36Sopenharmony_ci * The 96 byte sized cache is not used if the alignment 87862306a36Sopenharmony_ci * is 64 byte. 87962306a36Sopenharmony_ci */ 88062306a36Sopenharmony_ci for (i = 64 + 8; i <= 96; i += 8) 88162306a36Sopenharmony_ci size_index[size_index_elem(i)] = 7; 88262306a36Sopenharmony_ci 88362306a36Sopenharmony_ci } 88462306a36Sopenharmony_ci 88562306a36Sopenharmony_ci if (KMALLOC_MIN_SIZE >= 128) { 88662306a36Sopenharmony_ci /* 88762306a36Sopenharmony_ci * The 192 byte sized cache is not used if the alignment 88862306a36Sopenharmony_ci * is 128 byte. Redirect kmalloc to use the 256 byte cache 88962306a36Sopenharmony_ci * instead. 89062306a36Sopenharmony_ci */ 89162306a36Sopenharmony_ci for (i = 128 + 8; i <= 192; i += 8) 89262306a36Sopenharmony_ci size_index[size_index_elem(i)] = 8; 89362306a36Sopenharmony_ci } 89462306a36Sopenharmony_ci} 89562306a36Sopenharmony_ci 89662306a36Sopenharmony_cistatic unsigned int __kmalloc_minalign(void) 89762306a36Sopenharmony_ci{ 89862306a36Sopenharmony_ci unsigned int minalign = dma_get_cache_alignment(); 89962306a36Sopenharmony_ci 90062306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && 90162306a36Sopenharmony_ci is_swiotlb_allocated()) 90262306a36Sopenharmony_ci minalign = ARCH_KMALLOC_MINALIGN; 90362306a36Sopenharmony_ci 90462306a36Sopenharmony_ci return max(minalign, arch_slab_minalign()); 90562306a36Sopenharmony_ci} 90662306a36Sopenharmony_ci 90762306a36Sopenharmony_civoid __init 90862306a36Sopenharmony_cinew_kmalloc_cache(int idx, enum kmalloc_cache_type type, slab_flags_t flags) 90962306a36Sopenharmony_ci{ 91062306a36Sopenharmony_ci unsigned int minalign = __kmalloc_minalign(); 91162306a36Sopenharmony_ci unsigned int aligned_size = kmalloc_info[idx].size; 91262306a36Sopenharmony_ci int aligned_idx = idx; 91362306a36Sopenharmony_ci 91462306a36Sopenharmony_ci if ((KMALLOC_RECLAIM != KMALLOC_NORMAL) && (type == KMALLOC_RECLAIM)) { 91562306a36Sopenharmony_ci flags |= SLAB_RECLAIM_ACCOUNT; 91662306a36Sopenharmony_ci } else if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_CGROUP)) { 91762306a36Sopenharmony_ci if (mem_cgroup_kmem_disabled()) { 91862306a36Sopenharmony_ci kmalloc_caches[type][idx] = kmalloc_caches[KMALLOC_NORMAL][idx]; 91962306a36Sopenharmony_ci return; 92062306a36Sopenharmony_ci } 92162306a36Sopenharmony_ci flags |= SLAB_ACCOUNT; 92262306a36Sopenharmony_ci } else if (IS_ENABLED(CONFIG_ZONE_DMA) && (type == KMALLOC_DMA)) { 92362306a36Sopenharmony_ci flags |= SLAB_CACHE_DMA; 92462306a36Sopenharmony_ci } 92562306a36Sopenharmony_ci 92662306a36Sopenharmony_ci#ifdef CONFIG_RANDOM_KMALLOC_CACHES 92762306a36Sopenharmony_ci if (type >= KMALLOC_RANDOM_START && type <= KMALLOC_RANDOM_END) 92862306a36Sopenharmony_ci flags |= SLAB_NO_MERGE; 92962306a36Sopenharmony_ci#endif 93062306a36Sopenharmony_ci 93162306a36Sopenharmony_ci /* 93262306a36Sopenharmony_ci * If CONFIG_MEMCG_KMEM is enabled, disable cache merging for 93362306a36Sopenharmony_ci * KMALLOC_NORMAL caches. 93462306a36Sopenharmony_ci */ 93562306a36Sopenharmony_ci if (IS_ENABLED(CONFIG_MEMCG_KMEM) && (type == KMALLOC_NORMAL)) 93662306a36Sopenharmony_ci flags |= SLAB_NO_MERGE; 93762306a36Sopenharmony_ci 93862306a36Sopenharmony_ci if (minalign > ARCH_KMALLOC_MINALIGN) { 93962306a36Sopenharmony_ci aligned_size = ALIGN(aligned_size, minalign); 94062306a36Sopenharmony_ci aligned_idx = __kmalloc_index(aligned_size, false); 94162306a36Sopenharmony_ci } 94262306a36Sopenharmony_ci 94362306a36Sopenharmony_ci if (!kmalloc_caches[type][aligned_idx]) 94462306a36Sopenharmony_ci kmalloc_caches[type][aligned_idx] = create_kmalloc_cache( 94562306a36Sopenharmony_ci kmalloc_info[aligned_idx].name[type], 94662306a36Sopenharmony_ci aligned_size, flags); 94762306a36Sopenharmony_ci if (idx != aligned_idx) 94862306a36Sopenharmony_ci kmalloc_caches[type][idx] = kmalloc_caches[type][aligned_idx]; 94962306a36Sopenharmony_ci} 95062306a36Sopenharmony_ci 95162306a36Sopenharmony_ci/* 95262306a36Sopenharmony_ci * Create the kmalloc array. Some of the regular kmalloc arrays 95362306a36Sopenharmony_ci * may already have been created because they were needed to 95462306a36Sopenharmony_ci * enable allocations for slab creation. 95562306a36Sopenharmony_ci */ 95662306a36Sopenharmony_civoid __init create_kmalloc_caches(slab_flags_t flags) 95762306a36Sopenharmony_ci{ 95862306a36Sopenharmony_ci int i; 95962306a36Sopenharmony_ci enum kmalloc_cache_type type; 96062306a36Sopenharmony_ci 96162306a36Sopenharmony_ci /* 96262306a36Sopenharmony_ci * Including KMALLOC_CGROUP if CONFIG_MEMCG_KMEM defined 96362306a36Sopenharmony_ci */ 96462306a36Sopenharmony_ci for (type = KMALLOC_NORMAL; type < NR_KMALLOC_TYPES; type++) { 96562306a36Sopenharmony_ci for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) { 96662306a36Sopenharmony_ci if (!kmalloc_caches[type][i]) 96762306a36Sopenharmony_ci new_kmalloc_cache(i, type, flags); 96862306a36Sopenharmony_ci 96962306a36Sopenharmony_ci /* 97062306a36Sopenharmony_ci * Caches that are not of the two-to-the-power-of size. 97162306a36Sopenharmony_ci * These have to be created immediately after the 97262306a36Sopenharmony_ci * earlier power of two caches 97362306a36Sopenharmony_ci */ 97462306a36Sopenharmony_ci if (KMALLOC_MIN_SIZE <= 32 && i == 6 && 97562306a36Sopenharmony_ci !kmalloc_caches[type][1]) 97662306a36Sopenharmony_ci new_kmalloc_cache(1, type, flags); 97762306a36Sopenharmony_ci if (KMALLOC_MIN_SIZE <= 64 && i == 7 && 97862306a36Sopenharmony_ci !kmalloc_caches[type][2]) 97962306a36Sopenharmony_ci new_kmalloc_cache(2, type, flags); 98062306a36Sopenharmony_ci } 98162306a36Sopenharmony_ci } 98262306a36Sopenharmony_ci#ifdef CONFIG_RANDOM_KMALLOC_CACHES 98362306a36Sopenharmony_ci random_kmalloc_seed = get_random_u64(); 98462306a36Sopenharmony_ci#endif 98562306a36Sopenharmony_ci 98662306a36Sopenharmony_ci /* Kmalloc array is now usable */ 98762306a36Sopenharmony_ci slab_state = UP; 98862306a36Sopenharmony_ci} 98962306a36Sopenharmony_ci 99062306a36Sopenharmony_civoid free_large_kmalloc(struct folio *folio, void *object) 99162306a36Sopenharmony_ci{ 99262306a36Sopenharmony_ci unsigned int order = folio_order(folio); 99362306a36Sopenharmony_ci 99462306a36Sopenharmony_ci if (WARN_ON_ONCE(order == 0)) 99562306a36Sopenharmony_ci pr_warn_once("object pointer: 0x%p\n", object); 99662306a36Sopenharmony_ci 99762306a36Sopenharmony_ci kmemleak_free(object); 99862306a36Sopenharmony_ci kasan_kfree_large(object); 99962306a36Sopenharmony_ci kmsan_kfree_large(object); 100062306a36Sopenharmony_ci 100162306a36Sopenharmony_ci mod_lruvec_page_state(folio_page(folio, 0), NR_SLAB_UNRECLAIMABLE_B, 100262306a36Sopenharmony_ci -(PAGE_SIZE << order)); 100362306a36Sopenharmony_ci __free_pages(folio_page(folio, 0), order); 100462306a36Sopenharmony_ci} 100562306a36Sopenharmony_ci 100662306a36Sopenharmony_cistatic void *__kmalloc_large_node(size_t size, gfp_t flags, int node); 100762306a36Sopenharmony_cistatic __always_inline 100862306a36Sopenharmony_civoid *__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller) 100962306a36Sopenharmony_ci{ 101062306a36Sopenharmony_ci struct kmem_cache *s; 101162306a36Sopenharmony_ci void *ret; 101262306a36Sopenharmony_ci 101362306a36Sopenharmony_ci if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { 101462306a36Sopenharmony_ci ret = __kmalloc_large_node(size, flags, node); 101562306a36Sopenharmony_ci trace_kmalloc(caller, ret, size, 101662306a36Sopenharmony_ci PAGE_SIZE << get_order(size), flags, node); 101762306a36Sopenharmony_ci return ret; 101862306a36Sopenharmony_ci } 101962306a36Sopenharmony_ci 102062306a36Sopenharmony_ci s = kmalloc_slab(size, flags, caller); 102162306a36Sopenharmony_ci 102262306a36Sopenharmony_ci if (unlikely(ZERO_OR_NULL_PTR(s))) 102362306a36Sopenharmony_ci return s; 102462306a36Sopenharmony_ci 102562306a36Sopenharmony_ci ret = __kmem_cache_alloc_node(s, flags, node, size, caller); 102662306a36Sopenharmony_ci ret = kasan_kmalloc(s, ret, size, flags); 102762306a36Sopenharmony_ci trace_kmalloc(caller, ret, size, s->size, flags, node); 102862306a36Sopenharmony_ci return ret; 102962306a36Sopenharmony_ci} 103062306a36Sopenharmony_ci 103162306a36Sopenharmony_civoid *__kmalloc_node(size_t size, gfp_t flags, int node) 103262306a36Sopenharmony_ci{ 103362306a36Sopenharmony_ci return __do_kmalloc_node(size, flags, node, _RET_IP_); 103462306a36Sopenharmony_ci} 103562306a36Sopenharmony_ciEXPORT_SYMBOL(__kmalloc_node); 103662306a36Sopenharmony_ci 103762306a36Sopenharmony_civoid *__kmalloc(size_t size, gfp_t flags) 103862306a36Sopenharmony_ci{ 103962306a36Sopenharmony_ci return __do_kmalloc_node(size, flags, NUMA_NO_NODE, _RET_IP_); 104062306a36Sopenharmony_ci} 104162306a36Sopenharmony_ciEXPORT_SYMBOL(__kmalloc); 104262306a36Sopenharmony_ci 104362306a36Sopenharmony_civoid *__kmalloc_node_track_caller(size_t size, gfp_t flags, 104462306a36Sopenharmony_ci int node, unsigned long caller) 104562306a36Sopenharmony_ci{ 104662306a36Sopenharmony_ci return __do_kmalloc_node(size, flags, node, caller); 104762306a36Sopenharmony_ci} 104862306a36Sopenharmony_ciEXPORT_SYMBOL(__kmalloc_node_track_caller); 104962306a36Sopenharmony_ci 105062306a36Sopenharmony_ci/** 105162306a36Sopenharmony_ci * kfree - free previously allocated memory 105262306a36Sopenharmony_ci * @object: pointer returned by kmalloc() or kmem_cache_alloc() 105362306a36Sopenharmony_ci * 105462306a36Sopenharmony_ci * If @object is NULL, no operation is performed. 105562306a36Sopenharmony_ci */ 105662306a36Sopenharmony_civoid kfree(const void *object) 105762306a36Sopenharmony_ci{ 105862306a36Sopenharmony_ci struct folio *folio; 105962306a36Sopenharmony_ci struct slab *slab; 106062306a36Sopenharmony_ci struct kmem_cache *s; 106162306a36Sopenharmony_ci 106262306a36Sopenharmony_ci trace_kfree(_RET_IP_, object); 106362306a36Sopenharmony_ci 106462306a36Sopenharmony_ci if (unlikely(ZERO_OR_NULL_PTR(object))) 106562306a36Sopenharmony_ci return; 106662306a36Sopenharmony_ci 106762306a36Sopenharmony_ci folio = virt_to_folio(object); 106862306a36Sopenharmony_ci if (unlikely(!folio_test_slab(folio))) { 106962306a36Sopenharmony_ci free_large_kmalloc(folio, (void *)object); 107062306a36Sopenharmony_ci return; 107162306a36Sopenharmony_ci } 107262306a36Sopenharmony_ci 107362306a36Sopenharmony_ci slab = folio_slab(folio); 107462306a36Sopenharmony_ci s = slab->slab_cache; 107562306a36Sopenharmony_ci __kmem_cache_free(s, (void *)object, _RET_IP_); 107662306a36Sopenharmony_ci} 107762306a36Sopenharmony_ciEXPORT_SYMBOL(kfree); 107862306a36Sopenharmony_ci 107962306a36Sopenharmony_ci/** 108062306a36Sopenharmony_ci * __ksize -- Report full size of underlying allocation 108162306a36Sopenharmony_ci * @object: pointer to the object 108262306a36Sopenharmony_ci * 108362306a36Sopenharmony_ci * This should only be used internally to query the true size of allocations. 108462306a36Sopenharmony_ci * It is not meant to be a way to discover the usable size of an allocation 108562306a36Sopenharmony_ci * after the fact. Instead, use kmalloc_size_roundup(). Using memory beyond 108662306a36Sopenharmony_ci * the originally requested allocation size may trigger KASAN, UBSAN_BOUNDS, 108762306a36Sopenharmony_ci * and/or FORTIFY_SOURCE. 108862306a36Sopenharmony_ci * 108962306a36Sopenharmony_ci * Return: size of the actual memory used by @object in bytes 109062306a36Sopenharmony_ci */ 109162306a36Sopenharmony_cisize_t __ksize(const void *object) 109262306a36Sopenharmony_ci{ 109362306a36Sopenharmony_ci struct folio *folio; 109462306a36Sopenharmony_ci 109562306a36Sopenharmony_ci if (unlikely(object == ZERO_SIZE_PTR)) 109662306a36Sopenharmony_ci return 0; 109762306a36Sopenharmony_ci 109862306a36Sopenharmony_ci folio = virt_to_folio(object); 109962306a36Sopenharmony_ci 110062306a36Sopenharmony_ci if (unlikely(!folio_test_slab(folio))) { 110162306a36Sopenharmony_ci if (WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE)) 110262306a36Sopenharmony_ci return 0; 110362306a36Sopenharmony_ci if (WARN_ON(object != folio_address(folio))) 110462306a36Sopenharmony_ci return 0; 110562306a36Sopenharmony_ci return folio_size(folio); 110662306a36Sopenharmony_ci } 110762306a36Sopenharmony_ci 110862306a36Sopenharmony_ci#ifdef CONFIG_SLUB_DEBUG 110962306a36Sopenharmony_ci skip_orig_size_check(folio_slab(folio)->slab_cache, object); 111062306a36Sopenharmony_ci#endif 111162306a36Sopenharmony_ci 111262306a36Sopenharmony_ci return slab_ksize(folio_slab(folio)->slab_cache); 111362306a36Sopenharmony_ci} 111462306a36Sopenharmony_ci 111562306a36Sopenharmony_civoid *kmalloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) 111662306a36Sopenharmony_ci{ 111762306a36Sopenharmony_ci void *ret = __kmem_cache_alloc_node(s, gfpflags, NUMA_NO_NODE, 111862306a36Sopenharmony_ci size, _RET_IP_); 111962306a36Sopenharmony_ci 112062306a36Sopenharmony_ci trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE); 112162306a36Sopenharmony_ci 112262306a36Sopenharmony_ci ret = kasan_kmalloc(s, ret, size, gfpflags); 112362306a36Sopenharmony_ci return ret; 112462306a36Sopenharmony_ci} 112562306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_trace); 112662306a36Sopenharmony_ci 112762306a36Sopenharmony_civoid *kmalloc_node_trace(struct kmem_cache *s, gfp_t gfpflags, 112862306a36Sopenharmony_ci int node, size_t size) 112962306a36Sopenharmony_ci{ 113062306a36Sopenharmony_ci void *ret = __kmem_cache_alloc_node(s, gfpflags, node, size, _RET_IP_); 113162306a36Sopenharmony_ci 113262306a36Sopenharmony_ci trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node); 113362306a36Sopenharmony_ci 113462306a36Sopenharmony_ci ret = kasan_kmalloc(s, ret, size, gfpflags); 113562306a36Sopenharmony_ci return ret; 113662306a36Sopenharmony_ci} 113762306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_node_trace); 113862306a36Sopenharmony_ci 113962306a36Sopenharmony_cigfp_t kmalloc_fix_flags(gfp_t flags) 114062306a36Sopenharmony_ci{ 114162306a36Sopenharmony_ci gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; 114262306a36Sopenharmony_ci 114362306a36Sopenharmony_ci flags &= ~GFP_SLAB_BUG_MASK; 114462306a36Sopenharmony_ci pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", 114562306a36Sopenharmony_ci invalid_mask, &invalid_mask, flags, &flags); 114662306a36Sopenharmony_ci dump_stack(); 114762306a36Sopenharmony_ci 114862306a36Sopenharmony_ci return flags; 114962306a36Sopenharmony_ci} 115062306a36Sopenharmony_ci 115162306a36Sopenharmony_ci/* 115262306a36Sopenharmony_ci * To avoid unnecessary overhead, we pass through large allocation requests 115362306a36Sopenharmony_ci * directly to the page allocator. We use __GFP_COMP, because we will need to 115462306a36Sopenharmony_ci * know the allocation order to free the pages properly in kfree. 115562306a36Sopenharmony_ci */ 115662306a36Sopenharmony_ci 115762306a36Sopenharmony_cistatic void *__kmalloc_large_node(size_t size, gfp_t flags, int node) 115862306a36Sopenharmony_ci{ 115962306a36Sopenharmony_ci struct page *page; 116062306a36Sopenharmony_ci void *ptr = NULL; 116162306a36Sopenharmony_ci unsigned int order = get_order(size); 116262306a36Sopenharmony_ci 116362306a36Sopenharmony_ci if (unlikely(flags & GFP_SLAB_BUG_MASK)) 116462306a36Sopenharmony_ci flags = kmalloc_fix_flags(flags); 116562306a36Sopenharmony_ci 116662306a36Sopenharmony_ci flags |= __GFP_COMP; 116762306a36Sopenharmony_ci page = alloc_pages_node(node, flags, order); 116862306a36Sopenharmony_ci if (page) { 116962306a36Sopenharmony_ci ptr = page_address(page); 117062306a36Sopenharmony_ci mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE_B, 117162306a36Sopenharmony_ci PAGE_SIZE << order); 117262306a36Sopenharmony_ci } 117362306a36Sopenharmony_ci 117462306a36Sopenharmony_ci ptr = kasan_kmalloc_large(ptr, size, flags); 117562306a36Sopenharmony_ci /* As ptr might get tagged, call kmemleak hook after KASAN. */ 117662306a36Sopenharmony_ci kmemleak_alloc(ptr, size, 1, flags); 117762306a36Sopenharmony_ci kmsan_kmalloc_large(ptr, size, flags); 117862306a36Sopenharmony_ci 117962306a36Sopenharmony_ci return ptr; 118062306a36Sopenharmony_ci} 118162306a36Sopenharmony_ci 118262306a36Sopenharmony_civoid *kmalloc_large(size_t size, gfp_t flags) 118362306a36Sopenharmony_ci{ 118462306a36Sopenharmony_ci void *ret = __kmalloc_large_node(size, flags, NUMA_NO_NODE); 118562306a36Sopenharmony_ci 118662306a36Sopenharmony_ci trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 118762306a36Sopenharmony_ci flags, NUMA_NO_NODE); 118862306a36Sopenharmony_ci return ret; 118962306a36Sopenharmony_ci} 119062306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_large); 119162306a36Sopenharmony_ci 119262306a36Sopenharmony_civoid *kmalloc_large_node(size_t size, gfp_t flags, int node) 119362306a36Sopenharmony_ci{ 119462306a36Sopenharmony_ci void *ret = __kmalloc_large_node(size, flags, node); 119562306a36Sopenharmony_ci 119662306a36Sopenharmony_ci trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size), 119762306a36Sopenharmony_ci flags, node); 119862306a36Sopenharmony_ci return ret; 119962306a36Sopenharmony_ci} 120062306a36Sopenharmony_ciEXPORT_SYMBOL(kmalloc_large_node); 120162306a36Sopenharmony_ci 120262306a36Sopenharmony_ci#ifdef CONFIG_SLAB_FREELIST_RANDOM 120362306a36Sopenharmony_ci/* Randomize a generic freelist */ 120462306a36Sopenharmony_cistatic void freelist_randomize(unsigned int *list, 120562306a36Sopenharmony_ci unsigned int count) 120662306a36Sopenharmony_ci{ 120762306a36Sopenharmony_ci unsigned int rand; 120862306a36Sopenharmony_ci unsigned int i; 120962306a36Sopenharmony_ci 121062306a36Sopenharmony_ci for (i = 0; i < count; i++) 121162306a36Sopenharmony_ci list[i] = i; 121262306a36Sopenharmony_ci 121362306a36Sopenharmony_ci /* Fisher-Yates shuffle */ 121462306a36Sopenharmony_ci for (i = count - 1; i > 0; i--) { 121562306a36Sopenharmony_ci rand = get_random_u32_below(i + 1); 121662306a36Sopenharmony_ci swap(list[i], list[rand]); 121762306a36Sopenharmony_ci } 121862306a36Sopenharmony_ci} 121962306a36Sopenharmony_ci 122062306a36Sopenharmony_ci/* Create a random sequence per cache */ 122162306a36Sopenharmony_ciint cache_random_seq_create(struct kmem_cache *cachep, unsigned int count, 122262306a36Sopenharmony_ci gfp_t gfp) 122362306a36Sopenharmony_ci{ 122462306a36Sopenharmony_ci 122562306a36Sopenharmony_ci if (count < 2 || cachep->random_seq) 122662306a36Sopenharmony_ci return 0; 122762306a36Sopenharmony_ci 122862306a36Sopenharmony_ci cachep->random_seq = kcalloc(count, sizeof(unsigned int), gfp); 122962306a36Sopenharmony_ci if (!cachep->random_seq) 123062306a36Sopenharmony_ci return -ENOMEM; 123162306a36Sopenharmony_ci 123262306a36Sopenharmony_ci freelist_randomize(cachep->random_seq, count); 123362306a36Sopenharmony_ci return 0; 123462306a36Sopenharmony_ci} 123562306a36Sopenharmony_ci 123662306a36Sopenharmony_ci/* Destroy the per-cache random freelist sequence */ 123762306a36Sopenharmony_civoid cache_random_seq_destroy(struct kmem_cache *cachep) 123862306a36Sopenharmony_ci{ 123962306a36Sopenharmony_ci kfree(cachep->random_seq); 124062306a36Sopenharmony_ci cachep->random_seq = NULL; 124162306a36Sopenharmony_ci} 124262306a36Sopenharmony_ci#endif /* CONFIG_SLAB_FREELIST_RANDOM */ 124362306a36Sopenharmony_ci 124462306a36Sopenharmony_ci#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG) 124562306a36Sopenharmony_ci#ifdef CONFIG_SLAB 124662306a36Sopenharmony_ci#define SLABINFO_RIGHTS (0600) 124762306a36Sopenharmony_ci#else 124862306a36Sopenharmony_ci#define SLABINFO_RIGHTS (0400) 124962306a36Sopenharmony_ci#endif 125062306a36Sopenharmony_ci 125162306a36Sopenharmony_cistatic void print_slabinfo_header(struct seq_file *m) 125262306a36Sopenharmony_ci{ 125362306a36Sopenharmony_ci /* 125462306a36Sopenharmony_ci * Output format version, so at least we can change it 125562306a36Sopenharmony_ci * without _too_ many complaints. 125662306a36Sopenharmony_ci */ 125762306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_SLAB 125862306a36Sopenharmony_ci seq_puts(m, "slabinfo - version: 2.1 (statistics)\n"); 125962306a36Sopenharmony_ci#else 126062306a36Sopenharmony_ci seq_puts(m, "slabinfo - version: 2.1\n"); 126162306a36Sopenharmony_ci#endif 126262306a36Sopenharmony_ci seq_puts(m, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>"); 126362306a36Sopenharmony_ci seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>"); 126462306a36Sopenharmony_ci seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>"); 126562306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_SLAB 126662306a36Sopenharmony_ci seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>"); 126762306a36Sopenharmony_ci seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>"); 126862306a36Sopenharmony_ci#endif 126962306a36Sopenharmony_ci seq_putc(m, '\n'); 127062306a36Sopenharmony_ci} 127162306a36Sopenharmony_ci 127262306a36Sopenharmony_cistatic void *slab_start(struct seq_file *m, loff_t *pos) 127362306a36Sopenharmony_ci{ 127462306a36Sopenharmony_ci mutex_lock(&slab_mutex); 127562306a36Sopenharmony_ci return seq_list_start(&slab_caches, *pos); 127662306a36Sopenharmony_ci} 127762306a36Sopenharmony_ci 127862306a36Sopenharmony_cistatic void *slab_next(struct seq_file *m, void *p, loff_t *pos) 127962306a36Sopenharmony_ci{ 128062306a36Sopenharmony_ci return seq_list_next(p, &slab_caches, pos); 128162306a36Sopenharmony_ci} 128262306a36Sopenharmony_ci 128362306a36Sopenharmony_cistatic void slab_stop(struct seq_file *m, void *p) 128462306a36Sopenharmony_ci{ 128562306a36Sopenharmony_ci mutex_unlock(&slab_mutex); 128662306a36Sopenharmony_ci} 128762306a36Sopenharmony_ci 128862306a36Sopenharmony_cistatic void cache_show(struct kmem_cache *s, struct seq_file *m) 128962306a36Sopenharmony_ci{ 129062306a36Sopenharmony_ci struct slabinfo sinfo; 129162306a36Sopenharmony_ci 129262306a36Sopenharmony_ci memset(&sinfo, 0, sizeof(sinfo)); 129362306a36Sopenharmony_ci get_slabinfo(s, &sinfo); 129462306a36Sopenharmony_ci 129562306a36Sopenharmony_ci seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", 129662306a36Sopenharmony_ci s->name, sinfo.active_objs, sinfo.num_objs, s->size, 129762306a36Sopenharmony_ci sinfo.objects_per_slab, (1 << sinfo.cache_order)); 129862306a36Sopenharmony_ci 129962306a36Sopenharmony_ci seq_printf(m, " : tunables %4u %4u %4u", 130062306a36Sopenharmony_ci sinfo.limit, sinfo.batchcount, sinfo.shared); 130162306a36Sopenharmony_ci seq_printf(m, " : slabdata %6lu %6lu %6lu", 130262306a36Sopenharmony_ci sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail); 130362306a36Sopenharmony_ci slabinfo_show_stats(m, s); 130462306a36Sopenharmony_ci seq_putc(m, '\n'); 130562306a36Sopenharmony_ci} 130662306a36Sopenharmony_ci 130762306a36Sopenharmony_cistatic int slab_show(struct seq_file *m, void *p) 130862306a36Sopenharmony_ci{ 130962306a36Sopenharmony_ci struct kmem_cache *s = list_entry(p, struct kmem_cache, list); 131062306a36Sopenharmony_ci 131162306a36Sopenharmony_ci if (p == slab_caches.next) 131262306a36Sopenharmony_ci print_slabinfo_header(m); 131362306a36Sopenharmony_ci cache_show(s, m); 131462306a36Sopenharmony_ci return 0; 131562306a36Sopenharmony_ci} 131662306a36Sopenharmony_ci 131762306a36Sopenharmony_civoid dump_unreclaimable_slab(void) 131862306a36Sopenharmony_ci{ 131962306a36Sopenharmony_ci struct kmem_cache *s; 132062306a36Sopenharmony_ci struct slabinfo sinfo; 132162306a36Sopenharmony_ci 132262306a36Sopenharmony_ci /* 132362306a36Sopenharmony_ci * Here acquiring slab_mutex is risky since we don't prefer to get 132462306a36Sopenharmony_ci * sleep in oom path. But, without mutex hold, it may introduce a 132562306a36Sopenharmony_ci * risk of crash. 132662306a36Sopenharmony_ci * Use mutex_trylock to protect the list traverse, dump nothing 132762306a36Sopenharmony_ci * without acquiring the mutex. 132862306a36Sopenharmony_ci */ 132962306a36Sopenharmony_ci if (!mutex_trylock(&slab_mutex)) { 133062306a36Sopenharmony_ci pr_warn("excessive unreclaimable slab but cannot dump stats\n"); 133162306a36Sopenharmony_ci return; 133262306a36Sopenharmony_ci } 133362306a36Sopenharmony_ci 133462306a36Sopenharmony_ci pr_info("Unreclaimable slab info:\n"); 133562306a36Sopenharmony_ci pr_info("Name Used Total\n"); 133662306a36Sopenharmony_ci 133762306a36Sopenharmony_ci list_for_each_entry(s, &slab_caches, list) { 133862306a36Sopenharmony_ci if (s->flags & SLAB_RECLAIM_ACCOUNT) 133962306a36Sopenharmony_ci continue; 134062306a36Sopenharmony_ci 134162306a36Sopenharmony_ci get_slabinfo(s, &sinfo); 134262306a36Sopenharmony_ci 134362306a36Sopenharmony_ci if (sinfo.num_objs > 0) 134462306a36Sopenharmony_ci pr_info("%-17s %10luKB %10luKB\n", s->name, 134562306a36Sopenharmony_ci (sinfo.active_objs * s->size) / 1024, 134662306a36Sopenharmony_ci (sinfo.num_objs * s->size) / 1024); 134762306a36Sopenharmony_ci } 134862306a36Sopenharmony_ci mutex_unlock(&slab_mutex); 134962306a36Sopenharmony_ci} 135062306a36Sopenharmony_ci 135162306a36Sopenharmony_ci/* 135262306a36Sopenharmony_ci * slabinfo_op - iterator that generates /proc/slabinfo 135362306a36Sopenharmony_ci * 135462306a36Sopenharmony_ci * Output layout: 135562306a36Sopenharmony_ci * cache-name 135662306a36Sopenharmony_ci * num-active-objs 135762306a36Sopenharmony_ci * total-objs 135862306a36Sopenharmony_ci * object size 135962306a36Sopenharmony_ci * num-active-slabs 136062306a36Sopenharmony_ci * total-slabs 136162306a36Sopenharmony_ci * num-pages-per-slab 136262306a36Sopenharmony_ci * + further values on SMP and with statistics enabled 136362306a36Sopenharmony_ci */ 136462306a36Sopenharmony_cistatic const struct seq_operations slabinfo_op = { 136562306a36Sopenharmony_ci .start = slab_start, 136662306a36Sopenharmony_ci .next = slab_next, 136762306a36Sopenharmony_ci .stop = slab_stop, 136862306a36Sopenharmony_ci .show = slab_show, 136962306a36Sopenharmony_ci}; 137062306a36Sopenharmony_ci 137162306a36Sopenharmony_cistatic int slabinfo_open(struct inode *inode, struct file *file) 137262306a36Sopenharmony_ci{ 137362306a36Sopenharmony_ci return seq_open(file, &slabinfo_op); 137462306a36Sopenharmony_ci} 137562306a36Sopenharmony_ci 137662306a36Sopenharmony_cistatic const struct proc_ops slabinfo_proc_ops = { 137762306a36Sopenharmony_ci .proc_flags = PROC_ENTRY_PERMANENT, 137862306a36Sopenharmony_ci .proc_open = slabinfo_open, 137962306a36Sopenharmony_ci .proc_read = seq_read, 138062306a36Sopenharmony_ci .proc_write = slabinfo_write, 138162306a36Sopenharmony_ci .proc_lseek = seq_lseek, 138262306a36Sopenharmony_ci .proc_release = seq_release, 138362306a36Sopenharmony_ci}; 138462306a36Sopenharmony_ci 138562306a36Sopenharmony_cistatic int __init slab_proc_init(void) 138662306a36Sopenharmony_ci{ 138762306a36Sopenharmony_ci proc_create("slabinfo", SLABINFO_RIGHTS, NULL, &slabinfo_proc_ops); 138862306a36Sopenharmony_ci return 0; 138962306a36Sopenharmony_ci} 139062306a36Sopenharmony_cimodule_init(slab_proc_init); 139162306a36Sopenharmony_ci 139262306a36Sopenharmony_ci#endif /* CONFIG_SLAB || CONFIG_SLUB_DEBUG */ 139362306a36Sopenharmony_ci 139462306a36Sopenharmony_cistatic __always_inline __realloc_size(2) void * 139562306a36Sopenharmony_ci__do_krealloc(const void *p, size_t new_size, gfp_t flags) 139662306a36Sopenharmony_ci{ 139762306a36Sopenharmony_ci void *ret; 139862306a36Sopenharmony_ci size_t ks; 139962306a36Sopenharmony_ci 140062306a36Sopenharmony_ci /* Check for double-free before calling ksize. */ 140162306a36Sopenharmony_ci if (likely(!ZERO_OR_NULL_PTR(p))) { 140262306a36Sopenharmony_ci if (!kasan_check_byte(p)) 140362306a36Sopenharmony_ci return NULL; 140462306a36Sopenharmony_ci ks = ksize(p); 140562306a36Sopenharmony_ci } else 140662306a36Sopenharmony_ci ks = 0; 140762306a36Sopenharmony_ci 140862306a36Sopenharmony_ci /* If the object still fits, repoison it precisely. */ 140962306a36Sopenharmony_ci if (ks >= new_size) { 141062306a36Sopenharmony_ci p = kasan_krealloc((void *)p, new_size, flags); 141162306a36Sopenharmony_ci return (void *)p; 141262306a36Sopenharmony_ci } 141362306a36Sopenharmony_ci 141462306a36Sopenharmony_ci ret = kmalloc_track_caller(new_size, flags); 141562306a36Sopenharmony_ci if (ret && p) { 141662306a36Sopenharmony_ci /* Disable KASAN checks as the object's redzone is accessed. */ 141762306a36Sopenharmony_ci kasan_disable_current(); 141862306a36Sopenharmony_ci memcpy(ret, kasan_reset_tag(p), ks); 141962306a36Sopenharmony_ci kasan_enable_current(); 142062306a36Sopenharmony_ci } 142162306a36Sopenharmony_ci 142262306a36Sopenharmony_ci return ret; 142362306a36Sopenharmony_ci} 142462306a36Sopenharmony_ci 142562306a36Sopenharmony_ci/** 142662306a36Sopenharmony_ci * krealloc - reallocate memory. The contents will remain unchanged. 142762306a36Sopenharmony_ci * @p: object to reallocate memory for. 142862306a36Sopenharmony_ci * @new_size: how many bytes of memory are required. 142962306a36Sopenharmony_ci * @flags: the type of memory to allocate. 143062306a36Sopenharmony_ci * 143162306a36Sopenharmony_ci * The contents of the object pointed to are preserved up to the 143262306a36Sopenharmony_ci * lesser of the new and old sizes (__GFP_ZERO flag is effectively ignored). 143362306a36Sopenharmony_ci * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size 143462306a36Sopenharmony_ci * is 0 and @p is not a %NULL pointer, the object pointed to is freed. 143562306a36Sopenharmony_ci * 143662306a36Sopenharmony_ci * Return: pointer to the allocated memory or %NULL in case of error 143762306a36Sopenharmony_ci */ 143862306a36Sopenharmony_civoid *krealloc(const void *p, size_t new_size, gfp_t flags) 143962306a36Sopenharmony_ci{ 144062306a36Sopenharmony_ci void *ret; 144162306a36Sopenharmony_ci 144262306a36Sopenharmony_ci if (unlikely(!new_size)) { 144362306a36Sopenharmony_ci kfree(p); 144462306a36Sopenharmony_ci return ZERO_SIZE_PTR; 144562306a36Sopenharmony_ci } 144662306a36Sopenharmony_ci 144762306a36Sopenharmony_ci ret = __do_krealloc(p, new_size, flags); 144862306a36Sopenharmony_ci if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret)) 144962306a36Sopenharmony_ci kfree(p); 145062306a36Sopenharmony_ci 145162306a36Sopenharmony_ci return ret; 145262306a36Sopenharmony_ci} 145362306a36Sopenharmony_ciEXPORT_SYMBOL(krealloc); 145462306a36Sopenharmony_ci 145562306a36Sopenharmony_ci/** 145662306a36Sopenharmony_ci * kfree_sensitive - Clear sensitive information in memory before freeing 145762306a36Sopenharmony_ci * @p: object to free memory of 145862306a36Sopenharmony_ci * 145962306a36Sopenharmony_ci * The memory of the object @p points to is zeroed before freed. 146062306a36Sopenharmony_ci * If @p is %NULL, kfree_sensitive() does nothing. 146162306a36Sopenharmony_ci * 146262306a36Sopenharmony_ci * Note: this function zeroes the whole allocated buffer which can be a good 146362306a36Sopenharmony_ci * deal bigger than the requested buffer size passed to kmalloc(). So be 146462306a36Sopenharmony_ci * careful when using this function in performance sensitive code. 146562306a36Sopenharmony_ci */ 146662306a36Sopenharmony_civoid kfree_sensitive(const void *p) 146762306a36Sopenharmony_ci{ 146862306a36Sopenharmony_ci size_t ks; 146962306a36Sopenharmony_ci void *mem = (void *)p; 147062306a36Sopenharmony_ci 147162306a36Sopenharmony_ci ks = ksize(mem); 147262306a36Sopenharmony_ci if (ks) { 147362306a36Sopenharmony_ci kasan_unpoison_range(mem, ks); 147462306a36Sopenharmony_ci memzero_explicit(mem, ks); 147562306a36Sopenharmony_ci } 147662306a36Sopenharmony_ci kfree(mem); 147762306a36Sopenharmony_ci} 147862306a36Sopenharmony_ciEXPORT_SYMBOL(kfree_sensitive); 147962306a36Sopenharmony_ci 148062306a36Sopenharmony_cisize_t ksize(const void *objp) 148162306a36Sopenharmony_ci{ 148262306a36Sopenharmony_ci /* 148362306a36Sopenharmony_ci * We need to first check that the pointer to the object is valid. 148462306a36Sopenharmony_ci * The KASAN report printed from ksize() is more useful, then when 148562306a36Sopenharmony_ci * it's printed later when the behaviour could be undefined due to 148662306a36Sopenharmony_ci * a potential use-after-free or double-free. 148762306a36Sopenharmony_ci * 148862306a36Sopenharmony_ci * We use kasan_check_byte(), which is supported for the hardware 148962306a36Sopenharmony_ci * tag-based KASAN mode, unlike kasan_check_read/write(). 149062306a36Sopenharmony_ci * 149162306a36Sopenharmony_ci * If the pointed to memory is invalid, we return 0 to avoid users of 149262306a36Sopenharmony_ci * ksize() writing to and potentially corrupting the memory region. 149362306a36Sopenharmony_ci * 149462306a36Sopenharmony_ci * We want to perform the check before __ksize(), to avoid potentially 149562306a36Sopenharmony_ci * crashing in __ksize() due to accessing invalid metadata. 149662306a36Sopenharmony_ci */ 149762306a36Sopenharmony_ci if (unlikely(ZERO_OR_NULL_PTR(objp)) || !kasan_check_byte(objp)) 149862306a36Sopenharmony_ci return 0; 149962306a36Sopenharmony_ci 150062306a36Sopenharmony_ci return kfence_ksize(objp) ?: __ksize(objp); 150162306a36Sopenharmony_ci} 150262306a36Sopenharmony_ciEXPORT_SYMBOL(ksize); 150362306a36Sopenharmony_ci 150462306a36Sopenharmony_ci/* Tracepoints definitions. */ 150562306a36Sopenharmony_ciEXPORT_TRACEPOINT_SYMBOL(kmalloc); 150662306a36Sopenharmony_ciEXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc); 150762306a36Sopenharmony_ciEXPORT_TRACEPOINT_SYMBOL(kfree); 150862306a36Sopenharmony_ciEXPORT_TRACEPOINT_SYMBOL(kmem_cache_free); 150962306a36Sopenharmony_ci 151062306a36Sopenharmony_ciint should_failslab(struct kmem_cache *s, gfp_t gfpflags) 151162306a36Sopenharmony_ci{ 151262306a36Sopenharmony_ci if (__should_failslab(s, gfpflags)) 151362306a36Sopenharmony_ci return -ENOMEM; 151462306a36Sopenharmony_ci return 0; 151562306a36Sopenharmony_ci} 151662306a36Sopenharmony_ciALLOW_ERROR_INJECTION(should_failslab, ERRNO); 1517