162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * linux/mm/slab.c
462306a36Sopenharmony_ci * Written by Mark Hemment, 1996/97.
562306a36Sopenharmony_ci * (markhe@nextd.demon.co.uk)
662306a36Sopenharmony_ci *
762306a36Sopenharmony_ci * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
862306a36Sopenharmony_ci *
962306a36Sopenharmony_ci * Major cleanup, different bufctl logic, per-cpu arrays
1062306a36Sopenharmony_ci *	(c) 2000 Manfred Spraul
1162306a36Sopenharmony_ci *
1262306a36Sopenharmony_ci * Cleanup, make the head arrays unconditional, preparation for NUMA
1362306a36Sopenharmony_ci * 	(c) 2002 Manfred Spraul
1462306a36Sopenharmony_ci *
1562306a36Sopenharmony_ci * An implementation of the Slab Allocator as described in outline in;
1662306a36Sopenharmony_ci *	UNIX Internals: The New Frontiers by Uresh Vahalia
1762306a36Sopenharmony_ci *	Pub: Prentice Hall	ISBN 0-13-101908-2
1862306a36Sopenharmony_ci * or with a little more detail in;
1962306a36Sopenharmony_ci *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
2062306a36Sopenharmony_ci *	Jeff Bonwick (Sun Microsystems).
2162306a36Sopenharmony_ci *	Presented at: USENIX Summer 1994 Technical Conference
2262306a36Sopenharmony_ci *
2362306a36Sopenharmony_ci * The memory is organized in caches, one cache for each object type.
2462306a36Sopenharmony_ci * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
2562306a36Sopenharmony_ci * Each cache consists out of many slabs (they are small (usually one
2662306a36Sopenharmony_ci * page long) and always contiguous), and each slab contains multiple
2762306a36Sopenharmony_ci * initialized objects.
2862306a36Sopenharmony_ci *
2962306a36Sopenharmony_ci * This means, that your constructor is used only for newly allocated
3062306a36Sopenharmony_ci * slabs and you must pass objects with the same initializations to
3162306a36Sopenharmony_ci * kmem_cache_free.
3262306a36Sopenharmony_ci *
3362306a36Sopenharmony_ci * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
3462306a36Sopenharmony_ci * normal). If you need a special memory type, then must create a new
3562306a36Sopenharmony_ci * cache for that memory type.
3662306a36Sopenharmony_ci *
3762306a36Sopenharmony_ci * In order to reduce fragmentation, the slabs are sorted in 3 groups:
3862306a36Sopenharmony_ci *   full slabs with 0 free objects
3962306a36Sopenharmony_ci *   partial slabs
4062306a36Sopenharmony_ci *   empty slabs with no allocated objects
4162306a36Sopenharmony_ci *
4262306a36Sopenharmony_ci * If partial slabs exist, then new allocations come from these slabs,
4362306a36Sopenharmony_ci * otherwise from empty slabs or new slabs are allocated.
4462306a36Sopenharmony_ci *
4562306a36Sopenharmony_ci * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
4662306a36Sopenharmony_ci * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
4762306a36Sopenharmony_ci *
4862306a36Sopenharmony_ci * Each cache has a short per-cpu head array, most allocs
4962306a36Sopenharmony_ci * and frees go into that array, and if that array overflows, then 1/2
5062306a36Sopenharmony_ci * of the entries in the array are given back into the global cache.
5162306a36Sopenharmony_ci * The head array is strictly LIFO and should improve the cache hit rates.
5262306a36Sopenharmony_ci * On SMP, it additionally reduces the spinlock operations.
5362306a36Sopenharmony_ci *
5462306a36Sopenharmony_ci * The c_cpuarray may not be read with enabled local interrupts -
5562306a36Sopenharmony_ci * it's changed with a smp_call_function().
5662306a36Sopenharmony_ci *
5762306a36Sopenharmony_ci * SMP synchronization:
5862306a36Sopenharmony_ci *  constructors and destructors are called without any locking.
5962306a36Sopenharmony_ci *  Several members in struct kmem_cache and struct slab never change, they
6062306a36Sopenharmony_ci *	are accessed without any locking.
6162306a36Sopenharmony_ci *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
6262306a36Sopenharmony_ci *  	and local interrupts are disabled so slab code is preempt-safe.
6362306a36Sopenharmony_ci *  The non-constant members are protected with a per-cache irq spinlock.
6462306a36Sopenharmony_ci *
6562306a36Sopenharmony_ci * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
6662306a36Sopenharmony_ci * in 2000 - many ideas in the current implementation are derived from
6762306a36Sopenharmony_ci * his patch.
6862306a36Sopenharmony_ci *
6962306a36Sopenharmony_ci * Further notes from the original documentation:
7062306a36Sopenharmony_ci *
7162306a36Sopenharmony_ci * 11 April '97.  Started multi-threading - markhe
7262306a36Sopenharmony_ci *	The global cache-chain is protected by the mutex 'slab_mutex'.
7362306a36Sopenharmony_ci *	The sem is only needed when accessing/extending the cache-chain, which
7462306a36Sopenharmony_ci *	can never happen inside an interrupt (kmem_cache_create(),
7562306a36Sopenharmony_ci *	kmem_cache_shrink() and kmem_cache_reap()).
7662306a36Sopenharmony_ci *
7762306a36Sopenharmony_ci *	At present, each engine can be growing a cache.  This should be blocked.
7862306a36Sopenharmony_ci *
7962306a36Sopenharmony_ci * 15 March 2005. NUMA slab allocator.
8062306a36Sopenharmony_ci *	Shai Fultheim <shai@scalex86.org>.
8162306a36Sopenharmony_ci *	Shobhit Dayal <shobhit@calsoftinc.com>
8262306a36Sopenharmony_ci *	Alok N Kataria <alokk@calsoftinc.com>
8362306a36Sopenharmony_ci *	Christoph Lameter <christoph@lameter.com>
8462306a36Sopenharmony_ci *
8562306a36Sopenharmony_ci *	Modified the slab allocator to be node aware on NUMA systems.
8662306a36Sopenharmony_ci *	Each node has its own list of partial, free and full slabs.
8762306a36Sopenharmony_ci *	All object allocations for a node occur from node specific slab lists.
8862306a36Sopenharmony_ci */
8962306a36Sopenharmony_ci
9062306a36Sopenharmony_ci#include	<linux/slab.h>
9162306a36Sopenharmony_ci#include	<linux/mm.h>
9262306a36Sopenharmony_ci#include	<linux/poison.h>
9362306a36Sopenharmony_ci#include	<linux/swap.h>
9462306a36Sopenharmony_ci#include	<linux/cache.h>
9562306a36Sopenharmony_ci#include	<linux/interrupt.h>
9662306a36Sopenharmony_ci#include	<linux/init.h>
9762306a36Sopenharmony_ci#include	<linux/compiler.h>
9862306a36Sopenharmony_ci#include	<linux/cpuset.h>
9962306a36Sopenharmony_ci#include	<linux/proc_fs.h>
10062306a36Sopenharmony_ci#include	<linux/seq_file.h>
10162306a36Sopenharmony_ci#include	<linux/notifier.h>
10262306a36Sopenharmony_ci#include	<linux/kallsyms.h>
10362306a36Sopenharmony_ci#include	<linux/kfence.h>
10462306a36Sopenharmony_ci#include	<linux/cpu.h>
10562306a36Sopenharmony_ci#include	<linux/sysctl.h>
10662306a36Sopenharmony_ci#include	<linux/module.h>
10762306a36Sopenharmony_ci#include	<linux/rcupdate.h>
10862306a36Sopenharmony_ci#include	<linux/string.h>
10962306a36Sopenharmony_ci#include	<linux/uaccess.h>
11062306a36Sopenharmony_ci#include	<linux/nodemask.h>
11162306a36Sopenharmony_ci#include	<linux/kmemleak.h>
11262306a36Sopenharmony_ci#include	<linux/mempolicy.h>
11362306a36Sopenharmony_ci#include	<linux/mutex.h>
11462306a36Sopenharmony_ci#include	<linux/fault-inject.h>
11562306a36Sopenharmony_ci#include	<linux/rtmutex.h>
11662306a36Sopenharmony_ci#include	<linux/reciprocal_div.h>
11762306a36Sopenharmony_ci#include	<linux/debugobjects.h>
11862306a36Sopenharmony_ci#include	<linux/memory.h>
11962306a36Sopenharmony_ci#include	<linux/prefetch.h>
12062306a36Sopenharmony_ci#include	<linux/sched/task_stack.h>
12162306a36Sopenharmony_ci
12262306a36Sopenharmony_ci#include	<net/sock.h>
12362306a36Sopenharmony_ci
12462306a36Sopenharmony_ci#include	<asm/cacheflush.h>
12562306a36Sopenharmony_ci#include	<asm/tlbflush.h>
12662306a36Sopenharmony_ci#include	<asm/page.h>
12762306a36Sopenharmony_ci
12862306a36Sopenharmony_ci#include <trace/events/kmem.h>
12962306a36Sopenharmony_ci
13062306a36Sopenharmony_ci#include	"internal.h"
13162306a36Sopenharmony_ci
13262306a36Sopenharmony_ci#include	"slab.h"
13362306a36Sopenharmony_ci
13462306a36Sopenharmony_ci/*
13562306a36Sopenharmony_ci * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
13662306a36Sopenharmony_ci *		  0 for faster, smaller code (especially in the critical paths).
13762306a36Sopenharmony_ci *
13862306a36Sopenharmony_ci * STATS	- 1 to collect stats for /proc/slabinfo.
13962306a36Sopenharmony_ci *		  0 for faster, smaller code (especially in the critical paths).
14062306a36Sopenharmony_ci *
14162306a36Sopenharmony_ci * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
14262306a36Sopenharmony_ci */
14362306a36Sopenharmony_ci
14462306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_SLAB
14562306a36Sopenharmony_ci#define	DEBUG		1
14662306a36Sopenharmony_ci#define	STATS		1
14762306a36Sopenharmony_ci#define	FORCED_DEBUG	1
14862306a36Sopenharmony_ci#else
14962306a36Sopenharmony_ci#define	DEBUG		0
15062306a36Sopenharmony_ci#define	STATS		0
15162306a36Sopenharmony_ci#define	FORCED_DEBUG	0
15262306a36Sopenharmony_ci#endif
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci/* Shouldn't this be in a header file somewhere? */
15562306a36Sopenharmony_ci#define	BYTES_PER_WORD		sizeof(void *)
15662306a36Sopenharmony_ci#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_ci#ifndef ARCH_KMALLOC_FLAGS
15962306a36Sopenharmony_ci#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
16062306a36Sopenharmony_ci#endif
16162306a36Sopenharmony_ci
16262306a36Sopenharmony_ci#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
16362306a36Sopenharmony_ci				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
16462306a36Sopenharmony_ci
16562306a36Sopenharmony_ci#if FREELIST_BYTE_INDEX
16662306a36Sopenharmony_citypedef unsigned char freelist_idx_t;
16762306a36Sopenharmony_ci#else
16862306a36Sopenharmony_citypedef unsigned short freelist_idx_t;
16962306a36Sopenharmony_ci#endif
17062306a36Sopenharmony_ci
17162306a36Sopenharmony_ci#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
17262306a36Sopenharmony_ci
17362306a36Sopenharmony_ci/*
17462306a36Sopenharmony_ci * struct array_cache
17562306a36Sopenharmony_ci *
17662306a36Sopenharmony_ci * Purpose:
17762306a36Sopenharmony_ci * - LIFO ordering, to hand out cache-warm objects from _alloc
17862306a36Sopenharmony_ci * - reduce the number of linked list operations
17962306a36Sopenharmony_ci * - reduce spinlock operations
18062306a36Sopenharmony_ci *
18162306a36Sopenharmony_ci * The limit is stored in the per-cpu structure to reduce the data cache
18262306a36Sopenharmony_ci * footprint.
18362306a36Sopenharmony_ci *
18462306a36Sopenharmony_ci */
18562306a36Sopenharmony_cistruct array_cache {
18662306a36Sopenharmony_ci	unsigned int avail;
18762306a36Sopenharmony_ci	unsigned int limit;
18862306a36Sopenharmony_ci	unsigned int batchcount;
18962306a36Sopenharmony_ci	unsigned int touched;
19062306a36Sopenharmony_ci	void *entry[];	/*
19162306a36Sopenharmony_ci			 * Must have this definition in here for the proper
19262306a36Sopenharmony_ci			 * alignment of array_cache. Also simplifies accessing
19362306a36Sopenharmony_ci			 * the entries.
19462306a36Sopenharmony_ci			 */
19562306a36Sopenharmony_ci};
19662306a36Sopenharmony_ci
19762306a36Sopenharmony_cistruct alien_cache {
19862306a36Sopenharmony_ci	spinlock_t lock;
19962306a36Sopenharmony_ci	struct array_cache ac;
20062306a36Sopenharmony_ci};
20162306a36Sopenharmony_ci
20262306a36Sopenharmony_ci/*
20362306a36Sopenharmony_ci * Need this for bootstrapping a per node allocator.
20462306a36Sopenharmony_ci */
20562306a36Sopenharmony_ci#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
20662306a36Sopenharmony_cistatic struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
20762306a36Sopenharmony_ci#define	CACHE_CACHE 0
20862306a36Sopenharmony_ci#define	SIZE_NODE (MAX_NUMNODES)
20962306a36Sopenharmony_ci
21062306a36Sopenharmony_cistatic int drain_freelist(struct kmem_cache *cache,
21162306a36Sopenharmony_ci			struct kmem_cache_node *n, int tofree);
21262306a36Sopenharmony_cistatic void free_block(struct kmem_cache *cachep, void **objpp, int len,
21362306a36Sopenharmony_ci			int node, struct list_head *list);
21462306a36Sopenharmony_cistatic void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
21562306a36Sopenharmony_cistatic int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
21662306a36Sopenharmony_cistatic void cache_reap(struct work_struct *unused);
21762306a36Sopenharmony_ci
21862306a36Sopenharmony_cistatic inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
21962306a36Sopenharmony_ci						void **list);
22062306a36Sopenharmony_cistatic inline void fixup_slab_list(struct kmem_cache *cachep,
22162306a36Sopenharmony_ci				struct kmem_cache_node *n, struct slab *slab,
22262306a36Sopenharmony_ci				void **list);
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
22562306a36Sopenharmony_ci
22662306a36Sopenharmony_cistatic void kmem_cache_node_init(struct kmem_cache_node *parent)
22762306a36Sopenharmony_ci{
22862306a36Sopenharmony_ci	INIT_LIST_HEAD(&parent->slabs_full);
22962306a36Sopenharmony_ci	INIT_LIST_HEAD(&parent->slabs_partial);
23062306a36Sopenharmony_ci	INIT_LIST_HEAD(&parent->slabs_free);
23162306a36Sopenharmony_ci	parent->total_slabs = 0;
23262306a36Sopenharmony_ci	parent->free_slabs = 0;
23362306a36Sopenharmony_ci	parent->shared = NULL;
23462306a36Sopenharmony_ci	parent->alien = NULL;
23562306a36Sopenharmony_ci	parent->colour_next = 0;
23662306a36Sopenharmony_ci	raw_spin_lock_init(&parent->list_lock);
23762306a36Sopenharmony_ci	parent->free_objects = 0;
23862306a36Sopenharmony_ci	parent->free_touched = 0;
23962306a36Sopenharmony_ci}
24062306a36Sopenharmony_ci
24162306a36Sopenharmony_ci#define MAKE_LIST(cachep, listp, slab, nodeid)				\
24262306a36Sopenharmony_ci	do {								\
24362306a36Sopenharmony_ci		INIT_LIST_HEAD(listp);					\
24462306a36Sopenharmony_ci		list_splice(&get_node(cachep, nodeid)->slab, listp);	\
24562306a36Sopenharmony_ci	} while (0)
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
24862306a36Sopenharmony_ci	do {								\
24962306a36Sopenharmony_ci	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
25062306a36Sopenharmony_ci	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
25162306a36Sopenharmony_ci	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
25262306a36Sopenharmony_ci	} while (0)
25362306a36Sopenharmony_ci
25462306a36Sopenharmony_ci#define CFLGS_OBJFREELIST_SLAB	((slab_flags_t __force)0x40000000U)
25562306a36Sopenharmony_ci#define CFLGS_OFF_SLAB		((slab_flags_t __force)0x80000000U)
25662306a36Sopenharmony_ci#define	OBJFREELIST_SLAB(x)	((x)->flags & CFLGS_OBJFREELIST_SLAB)
25762306a36Sopenharmony_ci#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)
25862306a36Sopenharmony_ci
25962306a36Sopenharmony_ci#define BATCHREFILL_LIMIT	16
26062306a36Sopenharmony_ci/*
26162306a36Sopenharmony_ci * Optimization question: fewer reaps means less probability for unnecessary
26262306a36Sopenharmony_ci * cpucache drain/refill cycles.
26362306a36Sopenharmony_ci *
26462306a36Sopenharmony_ci * OTOH the cpuarrays can contain lots of objects,
26562306a36Sopenharmony_ci * which could lock up otherwise freeable slabs.
26662306a36Sopenharmony_ci */
26762306a36Sopenharmony_ci#define REAPTIMEOUT_AC		(2*HZ)
26862306a36Sopenharmony_ci#define REAPTIMEOUT_NODE	(4*HZ)
26962306a36Sopenharmony_ci
27062306a36Sopenharmony_ci#if STATS
27162306a36Sopenharmony_ci#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
27262306a36Sopenharmony_ci#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
27362306a36Sopenharmony_ci#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
27462306a36Sopenharmony_ci#define	STATS_INC_GROWN(x)	((x)->grown++)
27562306a36Sopenharmony_ci#define	STATS_ADD_REAPED(x, y)	((x)->reaped += (y))
27662306a36Sopenharmony_ci#define	STATS_SET_HIGH(x)						\
27762306a36Sopenharmony_ci	do {								\
27862306a36Sopenharmony_ci		if ((x)->num_active > (x)->high_mark)			\
27962306a36Sopenharmony_ci			(x)->high_mark = (x)->num_active;		\
28062306a36Sopenharmony_ci	} while (0)
28162306a36Sopenharmony_ci#define	STATS_INC_ERR(x)	((x)->errors++)
28262306a36Sopenharmony_ci#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
28362306a36Sopenharmony_ci#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
28462306a36Sopenharmony_ci#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
28562306a36Sopenharmony_ci#define	STATS_SET_FREEABLE(x, i)					\
28662306a36Sopenharmony_ci	do {								\
28762306a36Sopenharmony_ci		if ((x)->max_freeable < i)				\
28862306a36Sopenharmony_ci			(x)->max_freeable = i;				\
28962306a36Sopenharmony_ci	} while (0)
29062306a36Sopenharmony_ci#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
29162306a36Sopenharmony_ci#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
29262306a36Sopenharmony_ci#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
29362306a36Sopenharmony_ci#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
29462306a36Sopenharmony_ci#else
29562306a36Sopenharmony_ci#define	STATS_INC_ACTIVE(x)	do { } while (0)
29662306a36Sopenharmony_ci#define	STATS_DEC_ACTIVE(x)	do { } while (0)
29762306a36Sopenharmony_ci#define	STATS_INC_ALLOCED(x)	do { } while (0)
29862306a36Sopenharmony_ci#define	STATS_INC_GROWN(x)	do { } while (0)
29962306a36Sopenharmony_ci#define	STATS_ADD_REAPED(x, y)	do { (void)(y); } while (0)
30062306a36Sopenharmony_ci#define	STATS_SET_HIGH(x)	do { } while (0)
30162306a36Sopenharmony_ci#define	STATS_INC_ERR(x)	do { } while (0)
30262306a36Sopenharmony_ci#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
30362306a36Sopenharmony_ci#define	STATS_INC_NODEFREES(x)	do { } while (0)
30462306a36Sopenharmony_ci#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
30562306a36Sopenharmony_ci#define	STATS_SET_FREEABLE(x, i) do { } while (0)
30662306a36Sopenharmony_ci#define STATS_INC_ALLOCHIT(x)	do { } while (0)
30762306a36Sopenharmony_ci#define STATS_INC_ALLOCMISS(x)	do { } while (0)
30862306a36Sopenharmony_ci#define STATS_INC_FREEHIT(x)	do { } while (0)
30962306a36Sopenharmony_ci#define STATS_INC_FREEMISS(x)	do { } while (0)
31062306a36Sopenharmony_ci#endif
31162306a36Sopenharmony_ci
31262306a36Sopenharmony_ci#if DEBUG
31362306a36Sopenharmony_ci
31462306a36Sopenharmony_ci/*
31562306a36Sopenharmony_ci * memory layout of objects:
31662306a36Sopenharmony_ci * 0		: objp
31762306a36Sopenharmony_ci * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
31862306a36Sopenharmony_ci * 		the end of an object is aligned with the end of the real
31962306a36Sopenharmony_ci * 		allocation. Catches writes behind the end of the allocation.
32062306a36Sopenharmony_ci * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
32162306a36Sopenharmony_ci * 		redzone word.
32262306a36Sopenharmony_ci * cachep->obj_offset: The real object.
32362306a36Sopenharmony_ci * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
32462306a36Sopenharmony_ci * cachep->size - 1* BYTES_PER_WORD: last caller address
32562306a36Sopenharmony_ci *					[BYTES_PER_WORD long]
32662306a36Sopenharmony_ci */
32762306a36Sopenharmony_cistatic int obj_offset(struct kmem_cache *cachep)
32862306a36Sopenharmony_ci{
32962306a36Sopenharmony_ci	return cachep->obj_offset;
33062306a36Sopenharmony_ci}
33162306a36Sopenharmony_ci
33262306a36Sopenharmony_cistatic unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
33362306a36Sopenharmony_ci{
33462306a36Sopenharmony_ci	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
33562306a36Sopenharmony_ci	return (unsigned long long *) (objp + obj_offset(cachep) -
33662306a36Sopenharmony_ci				      sizeof(unsigned long long));
33762306a36Sopenharmony_ci}
33862306a36Sopenharmony_ci
33962306a36Sopenharmony_cistatic unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
34062306a36Sopenharmony_ci{
34162306a36Sopenharmony_ci	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
34262306a36Sopenharmony_ci	if (cachep->flags & SLAB_STORE_USER)
34362306a36Sopenharmony_ci		return (unsigned long long *)(objp + cachep->size -
34462306a36Sopenharmony_ci					      sizeof(unsigned long long) -
34562306a36Sopenharmony_ci					      REDZONE_ALIGN);
34662306a36Sopenharmony_ci	return (unsigned long long *) (objp + cachep->size -
34762306a36Sopenharmony_ci				       sizeof(unsigned long long));
34862306a36Sopenharmony_ci}
34962306a36Sopenharmony_ci
35062306a36Sopenharmony_cistatic void **dbg_userword(struct kmem_cache *cachep, void *objp)
35162306a36Sopenharmony_ci{
35262306a36Sopenharmony_ci	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
35362306a36Sopenharmony_ci	return (void **)(objp + cachep->size - BYTES_PER_WORD);
35462306a36Sopenharmony_ci}
35562306a36Sopenharmony_ci
35662306a36Sopenharmony_ci#else
35762306a36Sopenharmony_ci
35862306a36Sopenharmony_ci#define obj_offset(x)			0
35962306a36Sopenharmony_ci#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
36062306a36Sopenharmony_ci#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
36162306a36Sopenharmony_ci#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})
36262306a36Sopenharmony_ci
36362306a36Sopenharmony_ci#endif
36462306a36Sopenharmony_ci
36562306a36Sopenharmony_ci/*
36662306a36Sopenharmony_ci * Do not go above this order unless 0 objects fit into the slab or
36762306a36Sopenharmony_ci * overridden on the command line.
36862306a36Sopenharmony_ci */
36962306a36Sopenharmony_ci#define	SLAB_MAX_ORDER_HI	1
37062306a36Sopenharmony_ci#define	SLAB_MAX_ORDER_LO	0
37162306a36Sopenharmony_cistatic int slab_max_order = SLAB_MAX_ORDER_LO;
37262306a36Sopenharmony_cistatic bool slab_max_order_set __initdata;
37362306a36Sopenharmony_ci
37462306a36Sopenharmony_cistatic inline void *index_to_obj(struct kmem_cache *cache,
37562306a36Sopenharmony_ci				 const struct slab *slab, unsigned int idx)
37662306a36Sopenharmony_ci{
37762306a36Sopenharmony_ci	return slab->s_mem + cache->size * idx;
37862306a36Sopenharmony_ci}
37962306a36Sopenharmony_ci
38062306a36Sopenharmony_ci#define BOOT_CPUCACHE_ENTRIES	1
38162306a36Sopenharmony_ci/* internal cache of cache description objs */
38262306a36Sopenharmony_cistatic struct kmem_cache kmem_cache_boot = {
38362306a36Sopenharmony_ci	.batchcount = 1,
38462306a36Sopenharmony_ci	.limit = BOOT_CPUCACHE_ENTRIES,
38562306a36Sopenharmony_ci	.shared = 1,
38662306a36Sopenharmony_ci	.size = sizeof(struct kmem_cache),
38762306a36Sopenharmony_ci	.name = "kmem_cache",
38862306a36Sopenharmony_ci};
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_cistatic DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
39162306a36Sopenharmony_ci
39262306a36Sopenharmony_cistatic inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
39362306a36Sopenharmony_ci{
39462306a36Sopenharmony_ci	return this_cpu_ptr(cachep->cpu_cache);
39562306a36Sopenharmony_ci}
39662306a36Sopenharmony_ci
39762306a36Sopenharmony_ci/*
39862306a36Sopenharmony_ci * Calculate the number of objects and left-over bytes for a given buffer size.
39962306a36Sopenharmony_ci */
40062306a36Sopenharmony_cistatic unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
40162306a36Sopenharmony_ci		slab_flags_t flags, size_t *left_over)
40262306a36Sopenharmony_ci{
40362306a36Sopenharmony_ci	unsigned int num;
40462306a36Sopenharmony_ci	size_t slab_size = PAGE_SIZE << gfporder;
40562306a36Sopenharmony_ci
40662306a36Sopenharmony_ci	/*
40762306a36Sopenharmony_ci	 * The slab management structure can be either off the slab or
40862306a36Sopenharmony_ci	 * on it. For the latter case, the memory allocated for a
40962306a36Sopenharmony_ci	 * slab is used for:
41062306a36Sopenharmony_ci	 *
41162306a36Sopenharmony_ci	 * - @buffer_size bytes for each object
41262306a36Sopenharmony_ci	 * - One freelist_idx_t for each object
41362306a36Sopenharmony_ci	 *
41462306a36Sopenharmony_ci	 * We don't need to consider alignment of freelist because
41562306a36Sopenharmony_ci	 * freelist will be at the end of slab page. The objects will be
41662306a36Sopenharmony_ci	 * at the correct alignment.
41762306a36Sopenharmony_ci	 *
41862306a36Sopenharmony_ci	 * If the slab management structure is off the slab, then the
41962306a36Sopenharmony_ci	 * alignment will already be calculated into the size. Because
42062306a36Sopenharmony_ci	 * the slabs are all pages aligned, the objects will be at the
42162306a36Sopenharmony_ci	 * correct alignment when allocated.
42262306a36Sopenharmony_ci	 */
42362306a36Sopenharmony_ci	if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
42462306a36Sopenharmony_ci		num = slab_size / buffer_size;
42562306a36Sopenharmony_ci		*left_over = slab_size % buffer_size;
42662306a36Sopenharmony_ci	} else {
42762306a36Sopenharmony_ci		num = slab_size / (buffer_size + sizeof(freelist_idx_t));
42862306a36Sopenharmony_ci		*left_over = slab_size %
42962306a36Sopenharmony_ci			(buffer_size + sizeof(freelist_idx_t));
43062306a36Sopenharmony_ci	}
43162306a36Sopenharmony_ci
43262306a36Sopenharmony_ci	return num;
43362306a36Sopenharmony_ci}
43462306a36Sopenharmony_ci
43562306a36Sopenharmony_ci#if DEBUG
43662306a36Sopenharmony_ci#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
43762306a36Sopenharmony_ci
43862306a36Sopenharmony_cistatic void __slab_error(const char *function, struct kmem_cache *cachep,
43962306a36Sopenharmony_ci			char *msg)
44062306a36Sopenharmony_ci{
44162306a36Sopenharmony_ci	pr_err("slab error in %s(): cache `%s': %s\n",
44262306a36Sopenharmony_ci	       function, cachep->name, msg);
44362306a36Sopenharmony_ci	dump_stack();
44462306a36Sopenharmony_ci	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
44562306a36Sopenharmony_ci}
44662306a36Sopenharmony_ci#endif
44762306a36Sopenharmony_ci
44862306a36Sopenharmony_ci/*
44962306a36Sopenharmony_ci * By default on NUMA we use alien caches to stage the freeing of
45062306a36Sopenharmony_ci * objects allocated from other nodes. This causes massive memory
45162306a36Sopenharmony_ci * inefficiencies when using fake NUMA setup to split memory into a
45262306a36Sopenharmony_ci * large number of small nodes, so it can be disabled on the command
45362306a36Sopenharmony_ci * line
45462306a36Sopenharmony_ci  */
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_cistatic int use_alien_caches __read_mostly = 1;
45762306a36Sopenharmony_cistatic int __init noaliencache_setup(char *s)
45862306a36Sopenharmony_ci{
45962306a36Sopenharmony_ci	use_alien_caches = 0;
46062306a36Sopenharmony_ci	return 1;
46162306a36Sopenharmony_ci}
46262306a36Sopenharmony_ci__setup("noaliencache", noaliencache_setup);
46362306a36Sopenharmony_ci
46462306a36Sopenharmony_cistatic int __init slab_max_order_setup(char *str)
46562306a36Sopenharmony_ci{
46662306a36Sopenharmony_ci	get_option(&str, &slab_max_order);
46762306a36Sopenharmony_ci	slab_max_order = slab_max_order < 0 ? 0 :
46862306a36Sopenharmony_ci				min(slab_max_order, MAX_ORDER);
46962306a36Sopenharmony_ci	slab_max_order_set = true;
47062306a36Sopenharmony_ci
47162306a36Sopenharmony_ci	return 1;
47262306a36Sopenharmony_ci}
47362306a36Sopenharmony_ci__setup("slab_max_order=", slab_max_order_setup);
47462306a36Sopenharmony_ci
47562306a36Sopenharmony_ci#ifdef CONFIG_NUMA
47662306a36Sopenharmony_ci/*
47762306a36Sopenharmony_ci * Special reaping functions for NUMA systems called from cache_reap().
47862306a36Sopenharmony_ci * These take care of doing round robin flushing of alien caches (containing
47962306a36Sopenharmony_ci * objects freed on different nodes from which they were allocated) and the
48062306a36Sopenharmony_ci * flushing of remote pcps by calling drain_node_pages.
48162306a36Sopenharmony_ci */
48262306a36Sopenharmony_cistatic DEFINE_PER_CPU(unsigned long, slab_reap_node);
48362306a36Sopenharmony_ci
48462306a36Sopenharmony_cistatic void init_reap_node(int cpu)
48562306a36Sopenharmony_ci{
48662306a36Sopenharmony_ci	per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
48762306a36Sopenharmony_ci						    node_online_map);
48862306a36Sopenharmony_ci}
48962306a36Sopenharmony_ci
49062306a36Sopenharmony_cistatic void next_reap_node(void)
49162306a36Sopenharmony_ci{
49262306a36Sopenharmony_ci	int node = __this_cpu_read(slab_reap_node);
49362306a36Sopenharmony_ci
49462306a36Sopenharmony_ci	node = next_node_in(node, node_online_map);
49562306a36Sopenharmony_ci	__this_cpu_write(slab_reap_node, node);
49662306a36Sopenharmony_ci}
49762306a36Sopenharmony_ci
49862306a36Sopenharmony_ci#else
49962306a36Sopenharmony_ci#define init_reap_node(cpu) do { } while (0)
50062306a36Sopenharmony_ci#define next_reap_node(void) do { } while (0)
50162306a36Sopenharmony_ci#endif
50262306a36Sopenharmony_ci
50362306a36Sopenharmony_ci/*
50462306a36Sopenharmony_ci * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
50562306a36Sopenharmony_ci * via the workqueue/eventd.
50662306a36Sopenharmony_ci * Add the CPU number into the expiration time to minimize the possibility of
50762306a36Sopenharmony_ci * the CPUs getting into lockstep and contending for the global cache chain
50862306a36Sopenharmony_ci * lock.
50962306a36Sopenharmony_ci */
51062306a36Sopenharmony_cistatic void start_cpu_timer(int cpu)
51162306a36Sopenharmony_ci{
51262306a36Sopenharmony_ci	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
51362306a36Sopenharmony_ci
51462306a36Sopenharmony_ci	if (reap_work->work.func == NULL) {
51562306a36Sopenharmony_ci		init_reap_node(cpu);
51662306a36Sopenharmony_ci		INIT_DEFERRABLE_WORK(reap_work, cache_reap);
51762306a36Sopenharmony_ci		schedule_delayed_work_on(cpu, reap_work,
51862306a36Sopenharmony_ci					__round_jiffies_relative(HZ, cpu));
51962306a36Sopenharmony_ci	}
52062306a36Sopenharmony_ci}
52162306a36Sopenharmony_ci
52262306a36Sopenharmony_cistatic void init_arraycache(struct array_cache *ac, int limit, int batch)
52362306a36Sopenharmony_ci{
52462306a36Sopenharmony_ci	if (ac) {
52562306a36Sopenharmony_ci		ac->avail = 0;
52662306a36Sopenharmony_ci		ac->limit = limit;
52762306a36Sopenharmony_ci		ac->batchcount = batch;
52862306a36Sopenharmony_ci		ac->touched = 0;
52962306a36Sopenharmony_ci	}
53062306a36Sopenharmony_ci}
53162306a36Sopenharmony_ci
53262306a36Sopenharmony_cistatic struct array_cache *alloc_arraycache(int node, int entries,
53362306a36Sopenharmony_ci					    int batchcount, gfp_t gfp)
53462306a36Sopenharmony_ci{
53562306a36Sopenharmony_ci	size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
53662306a36Sopenharmony_ci	struct array_cache *ac = NULL;
53762306a36Sopenharmony_ci
53862306a36Sopenharmony_ci	ac = kmalloc_node(memsize, gfp, node);
53962306a36Sopenharmony_ci	/*
54062306a36Sopenharmony_ci	 * The array_cache structures contain pointers to free object.
54162306a36Sopenharmony_ci	 * However, when such objects are allocated or transferred to another
54262306a36Sopenharmony_ci	 * cache the pointers are not cleared and they could be counted as
54362306a36Sopenharmony_ci	 * valid references during a kmemleak scan. Therefore, kmemleak must
54462306a36Sopenharmony_ci	 * not scan such objects.
54562306a36Sopenharmony_ci	 */
54662306a36Sopenharmony_ci	kmemleak_no_scan(ac);
54762306a36Sopenharmony_ci	init_arraycache(ac, entries, batchcount);
54862306a36Sopenharmony_ci	return ac;
54962306a36Sopenharmony_ci}
55062306a36Sopenharmony_ci
55162306a36Sopenharmony_cistatic noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
55262306a36Sopenharmony_ci					struct slab *slab, void *objp)
55362306a36Sopenharmony_ci{
55462306a36Sopenharmony_ci	struct kmem_cache_node *n;
55562306a36Sopenharmony_ci	int slab_node;
55662306a36Sopenharmony_ci	LIST_HEAD(list);
55762306a36Sopenharmony_ci
55862306a36Sopenharmony_ci	slab_node = slab_nid(slab);
55962306a36Sopenharmony_ci	n = get_node(cachep, slab_node);
56062306a36Sopenharmony_ci
56162306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
56262306a36Sopenharmony_ci	free_block(cachep, &objp, 1, slab_node, &list);
56362306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
56462306a36Sopenharmony_ci
56562306a36Sopenharmony_ci	slabs_destroy(cachep, &list);
56662306a36Sopenharmony_ci}
56762306a36Sopenharmony_ci
56862306a36Sopenharmony_ci/*
56962306a36Sopenharmony_ci * Transfer objects in one arraycache to another.
57062306a36Sopenharmony_ci * Locking must be handled by the caller.
57162306a36Sopenharmony_ci *
57262306a36Sopenharmony_ci * Return the number of entries transferred.
57362306a36Sopenharmony_ci */
57462306a36Sopenharmony_cistatic int transfer_objects(struct array_cache *to,
57562306a36Sopenharmony_ci		struct array_cache *from, unsigned int max)
57662306a36Sopenharmony_ci{
57762306a36Sopenharmony_ci	/* Figure out how many entries to transfer */
57862306a36Sopenharmony_ci	int nr = min3(from->avail, max, to->limit - to->avail);
57962306a36Sopenharmony_ci
58062306a36Sopenharmony_ci	if (!nr)
58162306a36Sopenharmony_ci		return 0;
58262306a36Sopenharmony_ci
58362306a36Sopenharmony_ci	memcpy(to->entry + to->avail, from->entry + from->avail - nr,
58462306a36Sopenharmony_ci			sizeof(void *) *nr);
58562306a36Sopenharmony_ci
58662306a36Sopenharmony_ci	from->avail -= nr;
58762306a36Sopenharmony_ci	to->avail += nr;
58862306a36Sopenharmony_ci	return nr;
58962306a36Sopenharmony_ci}
59062306a36Sopenharmony_ci
59162306a36Sopenharmony_ci/* &alien->lock must be held by alien callers. */
59262306a36Sopenharmony_cistatic __always_inline void __free_one(struct array_cache *ac, void *objp)
59362306a36Sopenharmony_ci{
59462306a36Sopenharmony_ci	/* Avoid trivial double-free. */
59562306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
59662306a36Sopenharmony_ci	    WARN_ON_ONCE(ac->avail > 0 && ac->entry[ac->avail - 1] == objp))
59762306a36Sopenharmony_ci		return;
59862306a36Sopenharmony_ci	ac->entry[ac->avail++] = objp;
59962306a36Sopenharmony_ci}
60062306a36Sopenharmony_ci
60162306a36Sopenharmony_ci#ifndef CONFIG_NUMA
60262306a36Sopenharmony_ci
60362306a36Sopenharmony_ci#define drain_alien_cache(cachep, alien) do { } while (0)
60462306a36Sopenharmony_ci#define reap_alien(cachep, n) do { } while (0)
60562306a36Sopenharmony_ci
60662306a36Sopenharmony_cistatic inline struct alien_cache **alloc_alien_cache(int node,
60762306a36Sopenharmony_ci						int limit, gfp_t gfp)
60862306a36Sopenharmony_ci{
60962306a36Sopenharmony_ci	return NULL;
61062306a36Sopenharmony_ci}
61162306a36Sopenharmony_ci
61262306a36Sopenharmony_cistatic inline void free_alien_cache(struct alien_cache **ac_ptr)
61362306a36Sopenharmony_ci{
61462306a36Sopenharmony_ci}
61562306a36Sopenharmony_ci
61662306a36Sopenharmony_cistatic inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
61762306a36Sopenharmony_ci{
61862306a36Sopenharmony_ci	return 0;
61962306a36Sopenharmony_ci}
62062306a36Sopenharmony_ci
62162306a36Sopenharmony_cistatic inline gfp_t gfp_exact_node(gfp_t flags)
62262306a36Sopenharmony_ci{
62362306a36Sopenharmony_ci	return flags & ~__GFP_NOFAIL;
62462306a36Sopenharmony_ci}
62562306a36Sopenharmony_ci
62662306a36Sopenharmony_ci#else	/* CONFIG_NUMA */
62762306a36Sopenharmony_ci
62862306a36Sopenharmony_cistatic struct alien_cache *__alloc_alien_cache(int node, int entries,
62962306a36Sopenharmony_ci						int batch, gfp_t gfp)
63062306a36Sopenharmony_ci{
63162306a36Sopenharmony_ci	size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
63262306a36Sopenharmony_ci	struct alien_cache *alc = NULL;
63362306a36Sopenharmony_ci
63462306a36Sopenharmony_ci	alc = kmalloc_node(memsize, gfp, node);
63562306a36Sopenharmony_ci	if (alc) {
63662306a36Sopenharmony_ci		kmemleak_no_scan(alc);
63762306a36Sopenharmony_ci		init_arraycache(&alc->ac, entries, batch);
63862306a36Sopenharmony_ci		spin_lock_init(&alc->lock);
63962306a36Sopenharmony_ci	}
64062306a36Sopenharmony_ci	return alc;
64162306a36Sopenharmony_ci}
64262306a36Sopenharmony_ci
64362306a36Sopenharmony_cistatic struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
64462306a36Sopenharmony_ci{
64562306a36Sopenharmony_ci	struct alien_cache **alc_ptr;
64662306a36Sopenharmony_ci	int i;
64762306a36Sopenharmony_ci
64862306a36Sopenharmony_ci	if (limit > 1)
64962306a36Sopenharmony_ci		limit = 12;
65062306a36Sopenharmony_ci	alc_ptr = kcalloc_node(nr_node_ids, sizeof(void *), gfp, node);
65162306a36Sopenharmony_ci	if (!alc_ptr)
65262306a36Sopenharmony_ci		return NULL;
65362306a36Sopenharmony_ci
65462306a36Sopenharmony_ci	for_each_node(i) {
65562306a36Sopenharmony_ci		if (i == node || !node_online(i))
65662306a36Sopenharmony_ci			continue;
65762306a36Sopenharmony_ci		alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
65862306a36Sopenharmony_ci		if (!alc_ptr[i]) {
65962306a36Sopenharmony_ci			for (i--; i >= 0; i--)
66062306a36Sopenharmony_ci				kfree(alc_ptr[i]);
66162306a36Sopenharmony_ci			kfree(alc_ptr);
66262306a36Sopenharmony_ci			return NULL;
66362306a36Sopenharmony_ci		}
66462306a36Sopenharmony_ci	}
66562306a36Sopenharmony_ci	return alc_ptr;
66662306a36Sopenharmony_ci}
66762306a36Sopenharmony_ci
66862306a36Sopenharmony_cistatic void free_alien_cache(struct alien_cache **alc_ptr)
66962306a36Sopenharmony_ci{
67062306a36Sopenharmony_ci	int i;
67162306a36Sopenharmony_ci
67262306a36Sopenharmony_ci	if (!alc_ptr)
67362306a36Sopenharmony_ci		return;
67462306a36Sopenharmony_ci	for_each_node(i)
67562306a36Sopenharmony_ci	    kfree(alc_ptr[i]);
67662306a36Sopenharmony_ci	kfree(alc_ptr);
67762306a36Sopenharmony_ci}
67862306a36Sopenharmony_ci
67962306a36Sopenharmony_cistatic void __drain_alien_cache(struct kmem_cache *cachep,
68062306a36Sopenharmony_ci				struct array_cache *ac, int node,
68162306a36Sopenharmony_ci				struct list_head *list)
68262306a36Sopenharmony_ci{
68362306a36Sopenharmony_ci	struct kmem_cache_node *n = get_node(cachep, node);
68462306a36Sopenharmony_ci
68562306a36Sopenharmony_ci	if (ac->avail) {
68662306a36Sopenharmony_ci		raw_spin_lock(&n->list_lock);
68762306a36Sopenharmony_ci		/*
68862306a36Sopenharmony_ci		 * Stuff objects into the remote nodes shared array first.
68962306a36Sopenharmony_ci		 * That way we could avoid the overhead of putting the objects
69062306a36Sopenharmony_ci		 * into the free lists and getting them back later.
69162306a36Sopenharmony_ci		 */
69262306a36Sopenharmony_ci		if (n->shared)
69362306a36Sopenharmony_ci			transfer_objects(n->shared, ac, ac->limit);
69462306a36Sopenharmony_ci
69562306a36Sopenharmony_ci		free_block(cachep, ac->entry, ac->avail, node, list);
69662306a36Sopenharmony_ci		ac->avail = 0;
69762306a36Sopenharmony_ci		raw_spin_unlock(&n->list_lock);
69862306a36Sopenharmony_ci	}
69962306a36Sopenharmony_ci}
70062306a36Sopenharmony_ci
70162306a36Sopenharmony_ci/*
70262306a36Sopenharmony_ci * Called from cache_reap() to regularly drain alien caches round robin.
70362306a36Sopenharmony_ci */
70462306a36Sopenharmony_cistatic void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
70562306a36Sopenharmony_ci{
70662306a36Sopenharmony_ci	int node = __this_cpu_read(slab_reap_node);
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_ci	if (n->alien) {
70962306a36Sopenharmony_ci		struct alien_cache *alc = n->alien[node];
71062306a36Sopenharmony_ci		struct array_cache *ac;
71162306a36Sopenharmony_ci
71262306a36Sopenharmony_ci		if (alc) {
71362306a36Sopenharmony_ci			ac = &alc->ac;
71462306a36Sopenharmony_ci			if (ac->avail && spin_trylock_irq(&alc->lock)) {
71562306a36Sopenharmony_ci				LIST_HEAD(list);
71662306a36Sopenharmony_ci
71762306a36Sopenharmony_ci				__drain_alien_cache(cachep, ac, node, &list);
71862306a36Sopenharmony_ci				spin_unlock_irq(&alc->lock);
71962306a36Sopenharmony_ci				slabs_destroy(cachep, &list);
72062306a36Sopenharmony_ci			}
72162306a36Sopenharmony_ci		}
72262306a36Sopenharmony_ci	}
72362306a36Sopenharmony_ci}
72462306a36Sopenharmony_ci
72562306a36Sopenharmony_cistatic void drain_alien_cache(struct kmem_cache *cachep,
72662306a36Sopenharmony_ci				struct alien_cache **alien)
72762306a36Sopenharmony_ci{
72862306a36Sopenharmony_ci	int i = 0;
72962306a36Sopenharmony_ci	struct alien_cache *alc;
73062306a36Sopenharmony_ci	struct array_cache *ac;
73162306a36Sopenharmony_ci	unsigned long flags;
73262306a36Sopenharmony_ci
73362306a36Sopenharmony_ci	for_each_online_node(i) {
73462306a36Sopenharmony_ci		alc = alien[i];
73562306a36Sopenharmony_ci		if (alc) {
73662306a36Sopenharmony_ci			LIST_HEAD(list);
73762306a36Sopenharmony_ci
73862306a36Sopenharmony_ci			ac = &alc->ac;
73962306a36Sopenharmony_ci			spin_lock_irqsave(&alc->lock, flags);
74062306a36Sopenharmony_ci			__drain_alien_cache(cachep, ac, i, &list);
74162306a36Sopenharmony_ci			spin_unlock_irqrestore(&alc->lock, flags);
74262306a36Sopenharmony_ci			slabs_destroy(cachep, &list);
74362306a36Sopenharmony_ci		}
74462306a36Sopenharmony_ci	}
74562306a36Sopenharmony_ci}
74662306a36Sopenharmony_ci
74762306a36Sopenharmony_cistatic int __cache_free_alien(struct kmem_cache *cachep, void *objp,
74862306a36Sopenharmony_ci				int node, int slab_node)
74962306a36Sopenharmony_ci{
75062306a36Sopenharmony_ci	struct kmem_cache_node *n;
75162306a36Sopenharmony_ci	struct alien_cache *alien = NULL;
75262306a36Sopenharmony_ci	struct array_cache *ac;
75362306a36Sopenharmony_ci	LIST_HEAD(list);
75462306a36Sopenharmony_ci
75562306a36Sopenharmony_ci	n = get_node(cachep, node);
75662306a36Sopenharmony_ci	STATS_INC_NODEFREES(cachep);
75762306a36Sopenharmony_ci	if (n->alien && n->alien[slab_node]) {
75862306a36Sopenharmony_ci		alien = n->alien[slab_node];
75962306a36Sopenharmony_ci		ac = &alien->ac;
76062306a36Sopenharmony_ci		spin_lock(&alien->lock);
76162306a36Sopenharmony_ci		if (unlikely(ac->avail == ac->limit)) {
76262306a36Sopenharmony_ci			STATS_INC_ACOVERFLOW(cachep);
76362306a36Sopenharmony_ci			__drain_alien_cache(cachep, ac, slab_node, &list);
76462306a36Sopenharmony_ci		}
76562306a36Sopenharmony_ci		__free_one(ac, objp);
76662306a36Sopenharmony_ci		spin_unlock(&alien->lock);
76762306a36Sopenharmony_ci		slabs_destroy(cachep, &list);
76862306a36Sopenharmony_ci	} else {
76962306a36Sopenharmony_ci		n = get_node(cachep, slab_node);
77062306a36Sopenharmony_ci		raw_spin_lock(&n->list_lock);
77162306a36Sopenharmony_ci		free_block(cachep, &objp, 1, slab_node, &list);
77262306a36Sopenharmony_ci		raw_spin_unlock(&n->list_lock);
77362306a36Sopenharmony_ci		slabs_destroy(cachep, &list);
77462306a36Sopenharmony_ci	}
77562306a36Sopenharmony_ci	return 1;
77662306a36Sopenharmony_ci}
77762306a36Sopenharmony_ci
77862306a36Sopenharmony_cistatic inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
77962306a36Sopenharmony_ci{
78062306a36Sopenharmony_ci	int slab_node = slab_nid(virt_to_slab(objp));
78162306a36Sopenharmony_ci	int node = numa_mem_id();
78262306a36Sopenharmony_ci	/*
78362306a36Sopenharmony_ci	 * Make sure we are not freeing an object from another node to the array
78462306a36Sopenharmony_ci	 * cache on this cpu.
78562306a36Sopenharmony_ci	 */
78662306a36Sopenharmony_ci	if (likely(node == slab_node))
78762306a36Sopenharmony_ci		return 0;
78862306a36Sopenharmony_ci
78962306a36Sopenharmony_ci	return __cache_free_alien(cachep, objp, node, slab_node);
79062306a36Sopenharmony_ci}
79162306a36Sopenharmony_ci
79262306a36Sopenharmony_ci/*
79362306a36Sopenharmony_ci * Construct gfp mask to allocate from a specific node but do not reclaim or
79462306a36Sopenharmony_ci * warn about failures.
79562306a36Sopenharmony_ci */
79662306a36Sopenharmony_cistatic inline gfp_t gfp_exact_node(gfp_t flags)
79762306a36Sopenharmony_ci{
79862306a36Sopenharmony_ci	return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
79962306a36Sopenharmony_ci}
80062306a36Sopenharmony_ci#endif
80162306a36Sopenharmony_ci
80262306a36Sopenharmony_cistatic int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
80362306a36Sopenharmony_ci{
80462306a36Sopenharmony_ci	struct kmem_cache_node *n;
80562306a36Sopenharmony_ci
80662306a36Sopenharmony_ci	/*
80762306a36Sopenharmony_ci	 * Set up the kmem_cache_node for cpu before we can
80862306a36Sopenharmony_ci	 * begin anything. Make sure some other cpu on this
80962306a36Sopenharmony_ci	 * node has not already allocated this
81062306a36Sopenharmony_ci	 */
81162306a36Sopenharmony_ci	n = get_node(cachep, node);
81262306a36Sopenharmony_ci	if (n) {
81362306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
81462306a36Sopenharmony_ci		n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
81562306a36Sopenharmony_ci				cachep->num;
81662306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
81762306a36Sopenharmony_ci
81862306a36Sopenharmony_ci		return 0;
81962306a36Sopenharmony_ci	}
82062306a36Sopenharmony_ci
82162306a36Sopenharmony_ci	n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
82262306a36Sopenharmony_ci	if (!n)
82362306a36Sopenharmony_ci		return -ENOMEM;
82462306a36Sopenharmony_ci
82562306a36Sopenharmony_ci	kmem_cache_node_init(n);
82662306a36Sopenharmony_ci	n->next_reap = jiffies + REAPTIMEOUT_NODE +
82762306a36Sopenharmony_ci		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
82862306a36Sopenharmony_ci
82962306a36Sopenharmony_ci	n->free_limit =
83062306a36Sopenharmony_ci		(1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
83162306a36Sopenharmony_ci
83262306a36Sopenharmony_ci	/*
83362306a36Sopenharmony_ci	 * The kmem_cache_nodes don't come and go as CPUs
83462306a36Sopenharmony_ci	 * come and go.  slab_mutex provides sufficient
83562306a36Sopenharmony_ci	 * protection here.
83662306a36Sopenharmony_ci	 */
83762306a36Sopenharmony_ci	cachep->node[node] = n;
83862306a36Sopenharmony_ci
83962306a36Sopenharmony_ci	return 0;
84062306a36Sopenharmony_ci}
84162306a36Sopenharmony_ci
84262306a36Sopenharmony_ci#if defined(CONFIG_NUMA) || defined(CONFIG_SMP)
84362306a36Sopenharmony_ci/*
84462306a36Sopenharmony_ci * Allocates and initializes node for a node on each slab cache, used for
84562306a36Sopenharmony_ci * either memory or cpu hotplug.  If memory is being hot-added, the kmem_cache_node
84662306a36Sopenharmony_ci * will be allocated off-node since memory is not yet online for the new node.
84762306a36Sopenharmony_ci * When hotplugging memory or a cpu, existing nodes are not replaced if
84862306a36Sopenharmony_ci * already in use.
84962306a36Sopenharmony_ci *
85062306a36Sopenharmony_ci * Must hold slab_mutex.
85162306a36Sopenharmony_ci */
85262306a36Sopenharmony_cistatic int init_cache_node_node(int node)
85362306a36Sopenharmony_ci{
85462306a36Sopenharmony_ci	int ret;
85562306a36Sopenharmony_ci	struct kmem_cache *cachep;
85662306a36Sopenharmony_ci
85762306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
85862306a36Sopenharmony_ci		ret = init_cache_node(cachep, node, GFP_KERNEL);
85962306a36Sopenharmony_ci		if (ret)
86062306a36Sopenharmony_ci			return ret;
86162306a36Sopenharmony_ci	}
86262306a36Sopenharmony_ci
86362306a36Sopenharmony_ci	return 0;
86462306a36Sopenharmony_ci}
86562306a36Sopenharmony_ci#endif
86662306a36Sopenharmony_ci
86762306a36Sopenharmony_cistatic int setup_kmem_cache_node(struct kmem_cache *cachep,
86862306a36Sopenharmony_ci				int node, gfp_t gfp, bool force_change)
86962306a36Sopenharmony_ci{
87062306a36Sopenharmony_ci	int ret = -ENOMEM;
87162306a36Sopenharmony_ci	struct kmem_cache_node *n;
87262306a36Sopenharmony_ci	struct array_cache *old_shared = NULL;
87362306a36Sopenharmony_ci	struct array_cache *new_shared = NULL;
87462306a36Sopenharmony_ci	struct alien_cache **new_alien = NULL;
87562306a36Sopenharmony_ci	LIST_HEAD(list);
87662306a36Sopenharmony_ci
87762306a36Sopenharmony_ci	if (use_alien_caches) {
87862306a36Sopenharmony_ci		new_alien = alloc_alien_cache(node, cachep->limit, gfp);
87962306a36Sopenharmony_ci		if (!new_alien)
88062306a36Sopenharmony_ci			goto fail;
88162306a36Sopenharmony_ci	}
88262306a36Sopenharmony_ci
88362306a36Sopenharmony_ci	if (cachep->shared) {
88462306a36Sopenharmony_ci		new_shared = alloc_arraycache(node,
88562306a36Sopenharmony_ci			cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
88662306a36Sopenharmony_ci		if (!new_shared)
88762306a36Sopenharmony_ci			goto fail;
88862306a36Sopenharmony_ci	}
88962306a36Sopenharmony_ci
89062306a36Sopenharmony_ci	ret = init_cache_node(cachep, node, gfp);
89162306a36Sopenharmony_ci	if (ret)
89262306a36Sopenharmony_ci		goto fail;
89362306a36Sopenharmony_ci
89462306a36Sopenharmony_ci	n = get_node(cachep, node);
89562306a36Sopenharmony_ci	raw_spin_lock_irq(&n->list_lock);
89662306a36Sopenharmony_ci	if (n->shared && force_change) {
89762306a36Sopenharmony_ci		free_block(cachep, n->shared->entry,
89862306a36Sopenharmony_ci				n->shared->avail, node, &list);
89962306a36Sopenharmony_ci		n->shared->avail = 0;
90062306a36Sopenharmony_ci	}
90162306a36Sopenharmony_ci
90262306a36Sopenharmony_ci	if (!n->shared || force_change) {
90362306a36Sopenharmony_ci		old_shared = n->shared;
90462306a36Sopenharmony_ci		n->shared = new_shared;
90562306a36Sopenharmony_ci		new_shared = NULL;
90662306a36Sopenharmony_ci	}
90762306a36Sopenharmony_ci
90862306a36Sopenharmony_ci	if (!n->alien) {
90962306a36Sopenharmony_ci		n->alien = new_alien;
91062306a36Sopenharmony_ci		new_alien = NULL;
91162306a36Sopenharmony_ci	}
91262306a36Sopenharmony_ci
91362306a36Sopenharmony_ci	raw_spin_unlock_irq(&n->list_lock);
91462306a36Sopenharmony_ci	slabs_destroy(cachep, &list);
91562306a36Sopenharmony_ci
91662306a36Sopenharmony_ci	/*
91762306a36Sopenharmony_ci	 * To protect lockless access to n->shared during irq disabled context.
91862306a36Sopenharmony_ci	 * If n->shared isn't NULL in irq disabled context, accessing to it is
91962306a36Sopenharmony_ci	 * guaranteed to be valid until irq is re-enabled, because it will be
92062306a36Sopenharmony_ci	 * freed after synchronize_rcu().
92162306a36Sopenharmony_ci	 */
92262306a36Sopenharmony_ci	if (old_shared && force_change)
92362306a36Sopenharmony_ci		synchronize_rcu();
92462306a36Sopenharmony_ci
92562306a36Sopenharmony_cifail:
92662306a36Sopenharmony_ci	kfree(old_shared);
92762306a36Sopenharmony_ci	kfree(new_shared);
92862306a36Sopenharmony_ci	free_alien_cache(new_alien);
92962306a36Sopenharmony_ci
93062306a36Sopenharmony_ci	return ret;
93162306a36Sopenharmony_ci}
93262306a36Sopenharmony_ci
93362306a36Sopenharmony_ci#ifdef CONFIG_SMP
93462306a36Sopenharmony_ci
93562306a36Sopenharmony_cistatic void cpuup_canceled(long cpu)
93662306a36Sopenharmony_ci{
93762306a36Sopenharmony_ci	struct kmem_cache *cachep;
93862306a36Sopenharmony_ci	struct kmem_cache_node *n = NULL;
93962306a36Sopenharmony_ci	int node = cpu_to_mem(cpu);
94062306a36Sopenharmony_ci	const struct cpumask *mask = cpumask_of_node(node);
94162306a36Sopenharmony_ci
94262306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
94362306a36Sopenharmony_ci		struct array_cache *nc;
94462306a36Sopenharmony_ci		struct array_cache *shared;
94562306a36Sopenharmony_ci		struct alien_cache **alien;
94662306a36Sopenharmony_ci		LIST_HEAD(list);
94762306a36Sopenharmony_ci
94862306a36Sopenharmony_ci		n = get_node(cachep, node);
94962306a36Sopenharmony_ci		if (!n)
95062306a36Sopenharmony_ci			continue;
95162306a36Sopenharmony_ci
95262306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
95362306a36Sopenharmony_ci
95462306a36Sopenharmony_ci		/* Free limit for this kmem_cache_node */
95562306a36Sopenharmony_ci		n->free_limit -= cachep->batchcount;
95662306a36Sopenharmony_ci
95762306a36Sopenharmony_ci		/* cpu is dead; no one can alloc from it. */
95862306a36Sopenharmony_ci		nc = per_cpu_ptr(cachep->cpu_cache, cpu);
95962306a36Sopenharmony_ci		free_block(cachep, nc->entry, nc->avail, node, &list);
96062306a36Sopenharmony_ci		nc->avail = 0;
96162306a36Sopenharmony_ci
96262306a36Sopenharmony_ci		if (!cpumask_empty(mask)) {
96362306a36Sopenharmony_ci			raw_spin_unlock_irq(&n->list_lock);
96462306a36Sopenharmony_ci			goto free_slab;
96562306a36Sopenharmony_ci		}
96662306a36Sopenharmony_ci
96762306a36Sopenharmony_ci		shared = n->shared;
96862306a36Sopenharmony_ci		if (shared) {
96962306a36Sopenharmony_ci			free_block(cachep, shared->entry,
97062306a36Sopenharmony_ci				   shared->avail, node, &list);
97162306a36Sopenharmony_ci			n->shared = NULL;
97262306a36Sopenharmony_ci		}
97362306a36Sopenharmony_ci
97462306a36Sopenharmony_ci		alien = n->alien;
97562306a36Sopenharmony_ci		n->alien = NULL;
97662306a36Sopenharmony_ci
97762306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
97862306a36Sopenharmony_ci
97962306a36Sopenharmony_ci		kfree(shared);
98062306a36Sopenharmony_ci		if (alien) {
98162306a36Sopenharmony_ci			drain_alien_cache(cachep, alien);
98262306a36Sopenharmony_ci			free_alien_cache(alien);
98362306a36Sopenharmony_ci		}
98462306a36Sopenharmony_ci
98562306a36Sopenharmony_cifree_slab:
98662306a36Sopenharmony_ci		slabs_destroy(cachep, &list);
98762306a36Sopenharmony_ci	}
98862306a36Sopenharmony_ci	/*
98962306a36Sopenharmony_ci	 * In the previous loop, all the objects were freed to
99062306a36Sopenharmony_ci	 * the respective cache's slabs,  now we can go ahead and
99162306a36Sopenharmony_ci	 * shrink each nodelist to its limit.
99262306a36Sopenharmony_ci	 */
99362306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
99462306a36Sopenharmony_ci		n = get_node(cachep, node);
99562306a36Sopenharmony_ci		if (!n)
99662306a36Sopenharmony_ci			continue;
99762306a36Sopenharmony_ci		drain_freelist(cachep, n, INT_MAX);
99862306a36Sopenharmony_ci	}
99962306a36Sopenharmony_ci}
100062306a36Sopenharmony_ci
100162306a36Sopenharmony_cistatic int cpuup_prepare(long cpu)
100262306a36Sopenharmony_ci{
100362306a36Sopenharmony_ci	struct kmem_cache *cachep;
100462306a36Sopenharmony_ci	int node = cpu_to_mem(cpu);
100562306a36Sopenharmony_ci	int err;
100662306a36Sopenharmony_ci
100762306a36Sopenharmony_ci	/*
100862306a36Sopenharmony_ci	 * We need to do this right in the beginning since
100962306a36Sopenharmony_ci	 * alloc_arraycache's are going to use this list.
101062306a36Sopenharmony_ci	 * kmalloc_node allows us to add the slab to the right
101162306a36Sopenharmony_ci	 * kmem_cache_node and not this cpu's kmem_cache_node
101262306a36Sopenharmony_ci	 */
101362306a36Sopenharmony_ci	err = init_cache_node_node(node);
101462306a36Sopenharmony_ci	if (err < 0)
101562306a36Sopenharmony_ci		goto bad;
101662306a36Sopenharmony_ci
101762306a36Sopenharmony_ci	/*
101862306a36Sopenharmony_ci	 * Now we can go ahead with allocating the shared arrays and
101962306a36Sopenharmony_ci	 * array caches
102062306a36Sopenharmony_ci	 */
102162306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
102262306a36Sopenharmony_ci		err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
102362306a36Sopenharmony_ci		if (err)
102462306a36Sopenharmony_ci			goto bad;
102562306a36Sopenharmony_ci	}
102662306a36Sopenharmony_ci
102762306a36Sopenharmony_ci	return 0;
102862306a36Sopenharmony_cibad:
102962306a36Sopenharmony_ci	cpuup_canceled(cpu);
103062306a36Sopenharmony_ci	return -ENOMEM;
103162306a36Sopenharmony_ci}
103262306a36Sopenharmony_ci
103362306a36Sopenharmony_ciint slab_prepare_cpu(unsigned int cpu)
103462306a36Sopenharmony_ci{
103562306a36Sopenharmony_ci	int err;
103662306a36Sopenharmony_ci
103762306a36Sopenharmony_ci	mutex_lock(&slab_mutex);
103862306a36Sopenharmony_ci	err = cpuup_prepare(cpu);
103962306a36Sopenharmony_ci	mutex_unlock(&slab_mutex);
104062306a36Sopenharmony_ci	return err;
104162306a36Sopenharmony_ci}
104262306a36Sopenharmony_ci
104362306a36Sopenharmony_ci/*
104462306a36Sopenharmony_ci * This is called for a failed online attempt and for a successful
104562306a36Sopenharmony_ci * offline.
104662306a36Sopenharmony_ci *
104762306a36Sopenharmony_ci * Even if all the cpus of a node are down, we don't free the
104862306a36Sopenharmony_ci * kmem_cache_node of any cache. This is to avoid a race between cpu_down, and
104962306a36Sopenharmony_ci * a kmalloc allocation from another cpu for memory from the node of
105062306a36Sopenharmony_ci * the cpu going down.  The kmem_cache_node structure is usually allocated from
105162306a36Sopenharmony_ci * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
105262306a36Sopenharmony_ci */
105362306a36Sopenharmony_ciint slab_dead_cpu(unsigned int cpu)
105462306a36Sopenharmony_ci{
105562306a36Sopenharmony_ci	mutex_lock(&slab_mutex);
105662306a36Sopenharmony_ci	cpuup_canceled(cpu);
105762306a36Sopenharmony_ci	mutex_unlock(&slab_mutex);
105862306a36Sopenharmony_ci	return 0;
105962306a36Sopenharmony_ci}
106062306a36Sopenharmony_ci#endif
106162306a36Sopenharmony_ci
106262306a36Sopenharmony_cistatic int slab_online_cpu(unsigned int cpu)
106362306a36Sopenharmony_ci{
106462306a36Sopenharmony_ci	start_cpu_timer(cpu);
106562306a36Sopenharmony_ci	return 0;
106662306a36Sopenharmony_ci}
106762306a36Sopenharmony_ci
106862306a36Sopenharmony_cistatic int slab_offline_cpu(unsigned int cpu)
106962306a36Sopenharmony_ci{
107062306a36Sopenharmony_ci	/*
107162306a36Sopenharmony_ci	 * Shutdown cache reaper. Note that the slab_mutex is held so
107262306a36Sopenharmony_ci	 * that if cache_reap() is invoked it cannot do anything
107362306a36Sopenharmony_ci	 * expensive but will only modify reap_work and reschedule the
107462306a36Sopenharmony_ci	 * timer.
107562306a36Sopenharmony_ci	 */
107662306a36Sopenharmony_ci	cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
107762306a36Sopenharmony_ci	/* Now the cache_reaper is guaranteed to be not running. */
107862306a36Sopenharmony_ci	per_cpu(slab_reap_work, cpu).work.func = NULL;
107962306a36Sopenharmony_ci	return 0;
108062306a36Sopenharmony_ci}
108162306a36Sopenharmony_ci
108262306a36Sopenharmony_ci#if defined(CONFIG_NUMA)
108362306a36Sopenharmony_ci/*
108462306a36Sopenharmony_ci * Drains freelist for a node on each slab cache, used for memory hot-remove.
108562306a36Sopenharmony_ci * Returns -EBUSY if all objects cannot be drained so that the node is not
108662306a36Sopenharmony_ci * removed.
108762306a36Sopenharmony_ci *
108862306a36Sopenharmony_ci * Must hold slab_mutex.
108962306a36Sopenharmony_ci */
109062306a36Sopenharmony_cistatic int __meminit drain_cache_node_node(int node)
109162306a36Sopenharmony_ci{
109262306a36Sopenharmony_ci	struct kmem_cache *cachep;
109362306a36Sopenharmony_ci	int ret = 0;
109462306a36Sopenharmony_ci
109562306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
109662306a36Sopenharmony_ci		struct kmem_cache_node *n;
109762306a36Sopenharmony_ci
109862306a36Sopenharmony_ci		n = get_node(cachep, node);
109962306a36Sopenharmony_ci		if (!n)
110062306a36Sopenharmony_ci			continue;
110162306a36Sopenharmony_ci
110262306a36Sopenharmony_ci		drain_freelist(cachep, n, INT_MAX);
110362306a36Sopenharmony_ci
110462306a36Sopenharmony_ci		if (!list_empty(&n->slabs_full) ||
110562306a36Sopenharmony_ci		    !list_empty(&n->slabs_partial)) {
110662306a36Sopenharmony_ci			ret = -EBUSY;
110762306a36Sopenharmony_ci			break;
110862306a36Sopenharmony_ci		}
110962306a36Sopenharmony_ci	}
111062306a36Sopenharmony_ci	return ret;
111162306a36Sopenharmony_ci}
111262306a36Sopenharmony_ci
111362306a36Sopenharmony_cistatic int __meminit slab_memory_callback(struct notifier_block *self,
111462306a36Sopenharmony_ci					unsigned long action, void *arg)
111562306a36Sopenharmony_ci{
111662306a36Sopenharmony_ci	struct memory_notify *mnb = arg;
111762306a36Sopenharmony_ci	int ret = 0;
111862306a36Sopenharmony_ci	int nid;
111962306a36Sopenharmony_ci
112062306a36Sopenharmony_ci	nid = mnb->status_change_nid;
112162306a36Sopenharmony_ci	if (nid < 0)
112262306a36Sopenharmony_ci		goto out;
112362306a36Sopenharmony_ci
112462306a36Sopenharmony_ci	switch (action) {
112562306a36Sopenharmony_ci	case MEM_GOING_ONLINE:
112662306a36Sopenharmony_ci		mutex_lock(&slab_mutex);
112762306a36Sopenharmony_ci		ret = init_cache_node_node(nid);
112862306a36Sopenharmony_ci		mutex_unlock(&slab_mutex);
112962306a36Sopenharmony_ci		break;
113062306a36Sopenharmony_ci	case MEM_GOING_OFFLINE:
113162306a36Sopenharmony_ci		mutex_lock(&slab_mutex);
113262306a36Sopenharmony_ci		ret = drain_cache_node_node(nid);
113362306a36Sopenharmony_ci		mutex_unlock(&slab_mutex);
113462306a36Sopenharmony_ci		break;
113562306a36Sopenharmony_ci	case MEM_ONLINE:
113662306a36Sopenharmony_ci	case MEM_OFFLINE:
113762306a36Sopenharmony_ci	case MEM_CANCEL_ONLINE:
113862306a36Sopenharmony_ci	case MEM_CANCEL_OFFLINE:
113962306a36Sopenharmony_ci		break;
114062306a36Sopenharmony_ci	}
114162306a36Sopenharmony_ciout:
114262306a36Sopenharmony_ci	return notifier_from_errno(ret);
114362306a36Sopenharmony_ci}
114462306a36Sopenharmony_ci#endif /* CONFIG_NUMA */
114562306a36Sopenharmony_ci
114662306a36Sopenharmony_ci/*
114762306a36Sopenharmony_ci * swap the static kmem_cache_node with kmalloced memory
114862306a36Sopenharmony_ci */
114962306a36Sopenharmony_cistatic void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
115062306a36Sopenharmony_ci				int nodeid)
115162306a36Sopenharmony_ci{
115262306a36Sopenharmony_ci	struct kmem_cache_node *ptr;
115362306a36Sopenharmony_ci
115462306a36Sopenharmony_ci	ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
115562306a36Sopenharmony_ci	BUG_ON(!ptr);
115662306a36Sopenharmony_ci
115762306a36Sopenharmony_ci	memcpy(ptr, list, sizeof(struct kmem_cache_node));
115862306a36Sopenharmony_ci	/*
115962306a36Sopenharmony_ci	 * Do not assume that spinlocks can be initialized via memcpy:
116062306a36Sopenharmony_ci	 */
116162306a36Sopenharmony_ci	raw_spin_lock_init(&ptr->list_lock);
116262306a36Sopenharmony_ci
116362306a36Sopenharmony_ci	MAKE_ALL_LISTS(cachep, ptr, nodeid);
116462306a36Sopenharmony_ci	cachep->node[nodeid] = ptr;
116562306a36Sopenharmony_ci}
116662306a36Sopenharmony_ci
116762306a36Sopenharmony_ci/*
116862306a36Sopenharmony_ci * For setting up all the kmem_cache_node for cache whose buffer_size is same as
116962306a36Sopenharmony_ci * size of kmem_cache_node.
117062306a36Sopenharmony_ci */
117162306a36Sopenharmony_cistatic void __init set_up_node(struct kmem_cache *cachep, int index)
117262306a36Sopenharmony_ci{
117362306a36Sopenharmony_ci	int node;
117462306a36Sopenharmony_ci
117562306a36Sopenharmony_ci	for_each_online_node(node) {
117662306a36Sopenharmony_ci		cachep->node[node] = &init_kmem_cache_node[index + node];
117762306a36Sopenharmony_ci		cachep->node[node]->next_reap = jiffies +
117862306a36Sopenharmony_ci		    REAPTIMEOUT_NODE +
117962306a36Sopenharmony_ci		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
118062306a36Sopenharmony_ci	}
118162306a36Sopenharmony_ci}
118262306a36Sopenharmony_ci
118362306a36Sopenharmony_ci/*
118462306a36Sopenharmony_ci * Initialisation.  Called after the page allocator have been initialised and
118562306a36Sopenharmony_ci * before smp_init().
118662306a36Sopenharmony_ci */
118762306a36Sopenharmony_civoid __init kmem_cache_init(void)
118862306a36Sopenharmony_ci{
118962306a36Sopenharmony_ci	int i;
119062306a36Sopenharmony_ci
119162306a36Sopenharmony_ci	kmem_cache = &kmem_cache_boot;
119262306a36Sopenharmony_ci
119362306a36Sopenharmony_ci	if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
119462306a36Sopenharmony_ci		use_alien_caches = 0;
119562306a36Sopenharmony_ci
119662306a36Sopenharmony_ci	for (i = 0; i < NUM_INIT_LISTS; i++)
119762306a36Sopenharmony_ci		kmem_cache_node_init(&init_kmem_cache_node[i]);
119862306a36Sopenharmony_ci
119962306a36Sopenharmony_ci	/*
120062306a36Sopenharmony_ci	 * Fragmentation resistance on low memory - only use bigger
120162306a36Sopenharmony_ci	 * page orders on machines with more than 32MB of memory if
120262306a36Sopenharmony_ci	 * not overridden on the command line.
120362306a36Sopenharmony_ci	 */
120462306a36Sopenharmony_ci	if (!slab_max_order_set && totalram_pages() > (32 << 20) >> PAGE_SHIFT)
120562306a36Sopenharmony_ci		slab_max_order = SLAB_MAX_ORDER_HI;
120662306a36Sopenharmony_ci
120762306a36Sopenharmony_ci	/* Bootstrap is tricky, because several objects are allocated
120862306a36Sopenharmony_ci	 * from caches that do not exist yet:
120962306a36Sopenharmony_ci	 * 1) initialize the kmem_cache cache: it contains the struct
121062306a36Sopenharmony_ci	 *    kmem_cache structures of all caches, except kmem_cache itself:
121162306a36Sopenharmony_ci	 *    kmem_cache is statically allocated.
121262306a36Sopenharmony_ci	 *    Initially an __init data area is used for the head array and the
121362306a36Sopenharmony_ci	 *    kmem_cache_node structures, it's replaced with a kmalloc allocated
121462306a36Sopenharmony_ci	 *    array at the end of the bootstrap.
121562306a36Sopenharmony_ci	 * 2) Create the first kmalloc cache.
121662306a36Sopenharmony_ci	 *    The struct kmem_cache for the new cache is allocated normally.
121762306a36Sopenharmony_ci	 *    An __init data area is used for the head array.
121862306a36Sopenharmony_ci	 * 3) Create the remaining kmalloc caches, with minimally sized
121962306a36Sopenharmony_ci	 *    head arrays.
122062306a36Sopenharmony_ci	 * 4) Replace the __init data head arrays for kmem_cache and the first
122162306a36Sopenharmony_ci	 *    kmalloc cache with kmalloc allocated arrays.
122262306a36Sopenharmony_ci	 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
122362306a36Sopenharmony_ci	 *    the other cache's with kmalloc allocated memory.
122462306a36Sopenharmony_ci	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
122562306a36Sopenharmony_ci	 */
122662306a36Sopenharmony_ci
122762306a36Sopenharmony_ci	/* 1) create the kmem_cache */
122862306a36Sopenharmony_ci
122962306a36Sopenharmony_ci	/*
123062306a36Sopenharmony_ci	 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
123162306a36Sopenharmony_ci	 */
123262306a36Sopenharmony_ci	create_boot_cache(kmem_cache, "kmem_cache",
123362306a36Sopenharmony_ci		offsetof(struct kmem_cache, node) +
123462306a36Sopenharmony_ci				  nr_node_ids * sizeof(struct kmem_cache_node *),
123562306a36Sopenharmony_ci				  SLAB_HWCACHE_ALIGN, 0, 0);
123662306a36Sopenharmony_ci	list_add(&kmem_cache->list, &slab_caches);
123762306a36Sopenharmony_ci	slab_state = PARTIAL;
123862306a36Sopenharmony_ci
123962306a36Sopenharmony_ci	/*
124062306a36Sopenharmony_ci	 * Initialize the caches that provide memory for the  kmem_cache_node
124162306a36Sopenharmony_ci	 * structures first.  Without this, further allocations will bug.
124262306a36Sopenharmony_ci	 */
124362306a36Sopenharmony_ci	new_kmalloc_cache(INDEX_NODE, KMALLOC_NORMAL, ARCH_KMALLOC_FLAGS);
124462306a36Sopenharmony_ci	slab_state = PARTIAL_NODE;
124562306a36Sopenharmony_ci	setup_kmalloc_cache_index_table();
124662306a36Sopenharmony_ci
124762306a36Sopenharmony_ci	/* 5) Replace the bootstrap kmem_cache_node */
124862306a36Sopenharmony_ci	{
124962306a36Sopenharmony_ci		int nid;
125062306a36Sopenharmony_ci
125162306a36Sopenharmony_ci		for_each_online_node(nid) {
125262306a36Sopenharmony_ci			init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
125362306a36Sopenharmony_ci
125462306a36Sopenharmony_ci			init_list(kmalloc_caches[KMALLOC_NORMAL][INDEX_NODE],
125562306a36Sopenharmony_ci					  &init_kmem_cache_node[SIZE_NODE + nid], nid);
125662306a36Sopenharmony_ci		}
125762306a36Sopenharmony_ci	}
125862306a36Sopenharmony_ci
125962306a36Sopenharmony_ci	create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
126062306a36Sopenharmony_ci}
126162306a36Sopenharmony_ci
126262306a36Sopenharmony_civoid __init kmem_cache_init_late(void)
126362306a36Sopenharmony_ci{
126462306a36Sopenharmony_ci	struct kmem_cache *cachep;
126562306a36Sopenharmony_ci
126662306a36Sopenharmony_ci	/* 6) resize the head arrays to their final sizes */
126762306a36Sopenharmony_ci	mutex_lock(&slab_mutex);
126862306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list)
126962306a36Sopenharmony_ci		if (enable_cpucache(cachep, GFP_NOWAIT))
127062306a36Sopenharmony_ci			BUG();
127162306a36Sopenharmony_ci	mutex_unlock(&slab_mutex);
127262306a36Sopenharmony_ci
127362306a36Sopenharmony_ci	/* Done! */
127462306a36Sopenharmony_ci	slab_state = FULL;
127562306a36Sopenharmony_ci
127662306a36Sopenharmony_ci#ifdef CONFIG_NUMA
127762306a36Sopenharmony_ci	/*
127862306a36Sopenharmony_ci	 * Register a memory hotplug callback that initializes and frees
127962306a36Sopenharmony_ci	 * node.
128062306a36Sopenharmony_ci	 */
128162306a36Sopenharmony_ci	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
128262306a36Sopenharmony_ci#endif
128362306a36Sopenharmony_ci
128462306a36Sopenharmony_ci	/*
128562306a36Sopenharmony_ci	 * The reap timers are started later, with a module init call: That part
128662306a36Sopenharmony_ci	 * of the kernel is not yet operational.
128762306a36Sopenharmony_ci	 */
128862306a36Sopenharmony_ci}
128962306a36Sopenharmony_ci
129062306a36Sopenharmony_cistatic int __init cpucache_init(void)
129162306a36Sopenharmony_ci{
129262306a36Sopenharmony_ci	int ret;
129362306a36Sopenharmony_ci
129462306a36Sopenharmony_ci	/*
129562306a36Sopenharmony_ci	 * Register the timers that return unneeded pages to the page allocator
129662306a36Sopenharmony_ci	 */
129762306a36Sopenharmony_ci	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
129862306a36Sopenharmony_ci				slab_online_cpu, slab_offline_cpu);
129962306a36Sopenharmony_ci	WARN_ON(ret < 0);
130062306a36Sopenharmony_ci
130162306a36Sopenharmony_ci	return 0;
130262306a36Sopenharmony_ci}
130362306a36Sopenharmony_ci__initcall(cpucache_init);
130462306a36Sopenharmony_ci
130562306a36Sopenharmony_cistatic noinline void
130662306a36Sopenharmony_cislab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
130762306a36Sopenharmony_ci{
130862306a36Sopenharmony_ci#if DEBUG
130962306a36Sopenharmony_ci	struct kmem_cache_node *n;
131062306a36Sopenharmony_ci	unsigned long flags;
131162306a36Sopenharmony_ci	int node;
131262306a36Sopenharmony_ci	static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
131362306a36Sopenharmony_ci				      DEFAULT_RATELIMIT_BURST);
131462306a36Sopenharmony_ci
131562306a36Sopenharmony_ci	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
131662306a36Sopenharmony_ci		return;
131762306a36Sopenharmony_ci
131862306a36Sopenharmony_ci	pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
131962306a36Sopenharmony_ci		nodeid, gfpflags, &gfpflags);
132062306a36Sopenharmony_ci	pr_warn("  cache: %s, object size: %d, order: %d\n",
132162306a36Sopenharmony_ci		cachep->name, cachep->size, cachep->gfporder);
132262306a36Sopenharmony_ci
132362306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, node, n) {
132462306a36Sopenharmony_ci		unsigned long total_slabs, free_slabs, free_objs;
132562306a36Sopenharmony_ci
132662306a36Sopenharmony_ci		raw_spin_lock_irqsave(&n->list_lock, flags);
132762306a36Sopenharmony_ci		total_slabs = n->total_slabs;
132862306a36Sopenharmony_ci		free_slabs = n->free_slabs;
132962306a36Sopenharmony_ci		free_objs = n->free_objects;
133062306a36Sopenharmony_ci		raw_spin_unlock_irqrestore(&n->list_lock, flags);
133162306a36Sopenharmony_ci
133262306a36Sopenharmony_ci		pr_warn("  node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
133362306a36Sopenharmony_ci			node, total_slabs - free_slabs, total_slabs,
133462306a36Sopenharmony_ci			(total_slabs * cachep->num) - free_objs,
133562306a36Sopenharmony_ci			total_slabs * cachep->num);
133662306a36Sopenharmony_ci	}
133762306a36Sopenharmony_ci#endif
133862306a36Sopenharmony_ci}
133962306a36Sopenharmony_ci
134062306a36Sopenharmony_ci/*
134162306a36Sopenharmony_ci * Interface to system's page allocator. No need to hold the
134262306a36Sopenharmony_ci * kmem_cache_node ->list_lock.
134362306a36Sopenharmony_ci *
134462306a36Sopenharmony_ci * If we requested dmaable memory, we will get it. Even if we
134562306a36Sopenharmony_ci * did not request dmaable memory, we might get it, but that
134662306a36Sopenharmony_ci * would be relatively rare and ignorable.
134762306a36Sopenharmony_ci */
134862306a36Sopenharmony_cistatic struct slab *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
134962306a36Sopenharmony_ci								int nodeid)
135062306a36Sopenharmony_ci{
135162306a36Sopenharmony_ci	struct folio *folio;
135262306a36Sopenharmony_ci	struct slab *slab;
135362306a36Sopenharmony_ci
135462306a36Sopenharmony_ci	flags |= cachep->allocflags;
135562306a36Sopenharmony_ci
135662306a36Sopenharmony_ci	folio = (struct folio *) __alloc_pages_node(nodeid, flags, cachep->gfporder);
135762306a36Sopenharmony_ci	if (!folio) {
135862306a36Sopenharmony_ci		slab_out_of_memory(cachep, flags, nodeid);
135962306a36Sopenharmony_ci		return NULL;
136062306a36Sopenharmony_ci	}
136162306a36Sopenharmony_ci
136262306a36Sopenharmony_ci	slab = folio_slab(folio);
136362306a36Sopenharmony_ci
136462306a36Sopenharmony_ci	account_slab(slab, cachep->gfporder, cachep, flags);
136562306a36Sopenharmony_ci	__folio_set_slab(folio);
136662306a36Sopenharmony_ci	/* Make the flag visible before any changes to folio->mapping */
136762306a36Sopenharmony_ci	smp_wmb();
136862306a36Sopenharmony_ci	/* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
136962306a36Sopenharmony_ci	if (sk_memalloc_socks() && folio_is_pfmemalloc(folio))
137062306a36Sopenharmony_ci		slab_set_pfmemalloc(slab);
137162306a36Sopenharmony_ci
137262306a36Sopenharmony_ci	return slab;
137362306a36Sopenharmony_ci}
137462306a36Sopenharmony_ci
137562306a36Sopenharmony_ci/*
137662306a36Sopenharmony_ci * Interface to system's page release.
137762306a36Sopenharmony_ci */
137862306a36Sopenharmony_cistatic void kmem_freepages(struct kmem_cache *cachep, struct slab *slab)
137962306a36Sopenharmony_ci{
138062306a36Sopenharmony_ci	int order = cachep->gfporder;
138162306a36Sopenharmony_ci	struct folio *folio = slab_folio(slab);
138262306a36Sopenharmony_ci
138362306a36Sopenharmony_ci	BUG_ON(!folio_test_slab(folio));
138462306a36Sopenharmony_ci	__slab_clear_pfmemalloc(slab);
138562306a36Sopenharmony_ci	page_mapcount_reset(&folio->page);
138662306a36Sopenharmony_ci	folio->mapping = NULL;
138762306a36Sopenharmony_ci	/* Make the mapping reset visible before clearing the flag */
138862306a36Sopenharmony_ci	smp_wmb();
138962306a36Sopenharmony_ci	__folio_clear_slab(folio);
139062306a36Sopenharmony_ci
139162306a36Sopenharmony_ci	mm_account_reclaimed_pages(1 << order);
139262306a36Sopenharmony_ci	unaccount_slab(slab, order, cachep);
139362306a36Sopenharmony_ci	__free_pages(&folio->page, order);
139462306a36Sopenharmony_ci}
139562306a36Sopenharmony_ci
139662306a36Sopenharmony_cistatic void kmem_rcu_free(struct rcu_head *head)
139762306a36Sopenharmony_ci{
139862306a36Sopenharmony_ci	struct kmem_cache *cachep;
139962306a36Sopenharmony_ci	struct slab *slab;
140062306a36Sopenharmony_ci
140162306a36Sopenharmony_ci	slab = container_of(head, struct slab, rcu_head);
140262306a36Sopenharmony_ci	cachep = slab->slab_cache;
140362306a36Sopenharmony_ci
140462306a36Sopenharmony_ci	kmem_freepages(cachep, slab);
140562306a36Sopenharmony_ci}
140662306a36Sopenharmony_ci
140762306a36Sopenharmony_ci#if DEBUG
140862306a36Sopenharmony_cistatic inline bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
140962306a36Sopenharmony_ci{
141062306a36Sopenharmony_ci	return debug_pagealloc_enabled_static() && OFF_SLAB(cachep) &&
141162306a36Sopenharmony_ci			((cachep->size % PAGE_SIZE) == 0);
141262306a36Sopenharmony_ci}
141362306a36Sopenharmony_ci
141462306a36Sopenharmony_ci#ifdef CONFIG_DEBUG_PAGEALLOC
141562306a36Sopenharmony_cistatic void slab_kernel_map(struct kmem_cache *cachep, void *objp, int map)
141662306a36Sopenharmony_ci{
141762306a36Sopenharmony_ci	if (!is_debug_pagealloc_cache(cachep))
141862306a36Sopenharmony_ci		return;
141962306a36Sopenharmony_ci
142062306a36Sopenharmony_ci	__kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
142162306a36Sopenharmony_ci}
142262306a36Sopenharmony_ci
142362306a36Sopenharmony_ci#else
142462306a36Sopenharmony_cistatic inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
142562306a36Sopenharmony_ci				int map) {}
142662306a36Sopenharmony_ci
142762306a36Sopenharmony_ci#endif
142862306a36Sopenharmony_ci
142962306a36Sopenharmony_cistatic void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
143062306a36Sopenharmony_ci{
143162306a36Sopenharmony_ci	int size = cachep->object_size;
143262306a36Sopenharmony_ci	addr = &((char *)addr)[obj_offset(cachep)];
143362306a36Sopenharmony_ci
143462306a36Sopenharmony_ci	memset(addr, val, size);
143562306a36Sopenharmony_ci	*(unsigned char *)(addr + size - 1) = POISON_END;
143662306a36Sopenharmony_ci}
143762306a36Sopenharmony_ci
143862306a36Sopenharmony_cistatic void dump_line(char *data, int offset, int limit)
143962306a36Sopenharmony_ci{
144062306a36Sopenharmony_ci	int i;
144162306a36Sopenharmony_ci	unsigned char error = 0;
144262306a36Sopenharmony_ci	int bad_count = 0;
144362306a36Sopenharmony_ci
144462306a36Sopenharmony_ci	pr_err("%03x: ", offset);
144562306a36Sopenharmony_ci	for (i = 0; i < limit; i++) {
144662306a36Sopenharmony_ci		if (data[offset + i] != POISON_FREE) {
144762306a36Sopenharmony_ci			error = data[offset + i];
144862306a36Sopenharmony_ci			bad_count++;
144962306a36Sopenharmony_ci		}
145062306a36Sopenharmony_ci	}
145162306a36Sopenharmony_ci	print_hex_dump(KERN_CONT, "", 0, 16, 1,
145262306a36Sopenharmony_ci			&data[offset], limit, 1);
145362306a36Sopenharmony_ci
145462306a36Sopenharmony_ci	if (bad_count == 1) {
145562306a36Sopenharmony_ci		error ^= POISON_FREE;
145662306a36Sopenharmony_ci		if (!(error & (error - 1))) {
145762306a36Sopenharmony_ci			pr_err("Single bit error detected. Probably bad RAM.\n");
145862306a36Sopenharmony_ci#ifdef CONFIG_X86
145962306a36Sopenharmony_ci			pr_err("Run memtest86+ or a similar memory test tool.\n");
146062306a36Sopenharmony_ci#else
146162306a36Sopenharmony_ci			pr_err("Run a memory test tool.\n");
146262306a36Sopenharmony_ci#endif
146362306a36Sopenharmony_ci		}
146462306a36Sopenharmony_ci	}
146562306a36Sopenharmony_ci}
146662306a36Sopenharmony_ci#endif
146762306a36Sopenharmony_ci
146862306a36Sopenharmony_ci#if DEBUG
146962306a36Sopenharmony_ci
147062306a36Sopenharmony_cistatic void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
147162306a36Sopenharmony_ci{
147262306a36Sopenharmony_ci	int i, size;
147362306a36Sopenharmony_ci	char *realobj;
147462306a36Sopenharmony_ci
147562306a36Sopenharmony_ci	if (cachep->flags & SLAB_RED_ZONE) {
147662306a36Sopenharmony_ci		pr_err("Redzone: 0x%llx/0x%llx\n",
147762306a36Sopenharmony_ci		       *dbg_redzone1(cachep, objp),
147862306a36Sopenharmony_ci		       *dbg_redzone2(cachep, objp));
147962306a36Sopenharmony_ci	}
148062306a36Sopenharmony_ci
148162306a36Sopenharmony_ci	if (cachep->flags & SLAB_STORE_USER)
148262306a36Sopenharmony_ci		pr_err("Last user: (%pSR)\n", *dbg_userword(cachep, objp));
148362306a36Sopenharmony_ci	realobj = (char *)objp + obj_offset(cachep);
148462306a36Sopenharmony_ci	size = cachep->object_size;
148562306a36Sopenharmony_ci	for (i = 0; i < size && lines; i += 16, lines--) {
148662306a36Sopenharmony_ci		int limit;
148762306a36Sopenharmony_ci		limit = 16;
148862306a36Sopenharmony_ci		if (i + limit > size)
148962306a36Sopenharmony_ci			limit = size - i;
149062306a36Sopenharmony_ci		dump_line(realobj, i, limit);
149162306a36Sopenharmony_ci	}
149262306a36Sopenharmony_ci}
149362306a36Sopenharmony_ci
149462306a36Sopenharmony_cistatic void check_poison_obj(struct kmem_cache *cachep, void *objp)
149562306a36Sopenharmony_ci{
149662306a36Sopenharmony_ci	char *realobj;
149762306a36Sopenharmony_ci	int size, i;
149862306a36Sopenharmony_ci	int lines = 0;
149962306a36Sopenharmony_ci
150062306a36Sopenharmony_ci	if (is_debug_pagealloc_cache(cachep))
150162306a36Sopenharmony_ci		return;
150262306a36Sopenharmony_ci
150362306a36Sopenharmony_ci	realobj = (char *)objp + obj_offset(cachep);
150462306a36Sopenharmony_ci	size = cachep->object_size;
150562306a36Sopenharmony_ci
150662306a36Sopenharmony_ci	for (i = 0; i < size; i++) {
150762306a36Sopenharmony_ci		char exp = POISON_FREE;
150862306a36Sopenharmony_ci		if (i == size - 1)
150962306a36Sopenharmony_ci			exp = POISON_END;
151062306a36Sopenharmony_ci		if (realobj[i] != exp) {
151162306a36Sopenharmony_ci			int limit;
151262306a36Sopenharmony_ci			/* Mismatch ! */
151362306a36Sopenharmony_ci			/* Print header */
151462306a36Sopenharmony_ci			if (lines == 0) {
151562306a36Sopenharmony_ci				pr_err("Slab corruption (%s): %s start=%px, len=%d\n",
151662306a36Sopenharmony_ci				       print_tainted(), cachep->name,
151762306a36Sopenharmony_ci				       realobj, size);
151862306a36Sopenharmony_ci				print_objinfo(cachep, objp, 0);
151962306a36Sopenharmony_ci			}
152062306a36Sopenharmony_ci			/* Hexdump the affected line */
152162306a36Sopenharmony_ci			i = (i / 16) * 16;
152262306a36Sopenharmony_ci			limit = 16;
152362306a36Sopenharmony_ci			if (i + limit > size)
152462306a36Sopenharmony_ci				limit = size - i;
152562306a36Sopenharmony_ci			dump_line(realobj, i, limit);
152662306a36Sopenharmony_ci			i += 16;
152762306a36Sopenharmony_ci			lines++;
152862306a36Sopenharmony_ci			/* Limit to 5 lines */
152962306a36Sopenharmony_ci			if (lines > 5)
153062306a36Sopenharmony_ci				break;
153162306a36Sopenharmony_ci		}
153262306a36Sopenharmony_ci	}
153362306a36Sopenharmony_ci	if (lines != 0) {
153462306a36Sopenharmony_ci		/* Print some data about the neighboring objects, if they
153562306a36Sopenharmony_ci		 * exist:
153662306a36Sopenharmony_ci		 */
153762306a36Sopenharmony_ci		struct slab *slab = virt_to_slab(objp);
153862306a36Sopenharmony_ci		unsigned int objnr;
153962306a36Sopenharmony_ci
154062306a36Sopenharmony_ci		objnr = obj_to_index(cachep, slab, objp);
154162306a36Sopenharmony_ci		if (objnr) {
154262306a36Sopenharmony_ci			objp = index_to_obj(cachep, slab, objnr - 1);
154362306a36Sopenharmony_ci			realobj = (char *)objp + obj_offset(cachep);
154462306a36Sopenharmony_ci			pr_err("Prev obj: start=%px, len=%d\n", realobj, size);
154562306a36Sopenharmony_ci			print_objinfo(cachep, objp, 2);
154662306a36Sopenharmony_ci		}
154762306a36Sopenharmony_ci		if (objnr + 1 < cachep->num) {
154862306a36Sopenharmony_ci			objp = index_to_obj(cachep, slab, objnr + 1);
154962306a36Sopenharmony_ci			realobj = (char *)objp + obj_offset(cachep);
155062306a36Sopenharmony_ci			pr_err("Next obj: start=%px, len=%d\n", realobj, size);
155162306a36Sopenharmony_ci			print_objinfo(cachep, objp, 2);
155262306a36Sopenharmony_ci		}
155362306a36Sopenharmony_ci	}
155462306a36Sopenharmony_ci}
155562306a36Sopenharmony_ci#endif
155662306a36Sopenharmony_ci
155762306a36Sopenharmony_ci#if DEBUG
155862306a36Sopenharmony_cistatic void slab_destroy_debugcheck(struct kmem_cache *cachep,
155962306a36Sopenharmony_ci						struct slab *slab)
156062306a36Sopenharmony_ci{
156162306a36Sopenharmony_ci	int i;
156262306a36Sopenharmony_ci
156362306a36Sopenharmony_ci	if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
156462306a36Sopenharmony_ci		poison_obj(cachep, slab->freelist - obj_offset(cachep),
156562306a36Sopenharmony_ci			POISON_FREE);
156662306a36Sopenharmony_ci	}
156762306a36Sopenharmony_ci
156862306a36Sopenharmony_ci	for (i = 0; i < cachep->num; i++) {
156962306a36Sopenharmony_ci		void *objp = index_to_obj(cachep, slab, i);
157062306a36Sopenharmony_ci
157162306a36Sopenharmony_ci		if (cachep->flags & SLAB_POISON) {
157262306a36Sopenharmony_ci			check_poison_obj(cachep, objp);
157362306a36Sopenharmony_ci			slab_kernel_map(cachep, objp, 1);
157462306a36Sopenharmony_ci		}
157562306a36Sopenharmony_ci		if (cachep->flags & SLAB_RED_ZONE) {
157662306a36Sopenharmony_ci			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
157762306a36Sopenharmony_ci				slab_error(cachep, "start of a freed object was overwritten");
157862306a36Sopenharmony_ci			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
157962306a36Sopenharmony_ci				slab_error(cachep, "end of a freed object was overwritten");
158062306a36Sopenharmony_ci		}
158162306a36Sopenharmony_ci	}
158262306a36Sopenharmony_ci}
158362306a36Sopenharmony_ci#else
158462306a36Sopenharmony_cistatic void slab_destroy_debugcheck(struct kmem_cache *cachep,
158562306a36Sopenharmony_ci						struct slab *slab)
158662306a36Sopenharmony_ci{
158762306a36Sopenharmony_ci}
158862306a36Sopenharmony_ci#endif
158962306a36Sopenharmony_ci
159062306a36Sopenharmony_ci/**
159162306a36Sopenharmony_ci * slab_destroy - destroy and release all objects in a slab
159262306a36Sopenharmony_ci * @cachep: cache pointer being destroyed
159362306a36Sopenharmony_ci * @slab: slab being destroyed
159462306a36Sopenharmony_ci *
159562306a36Sopenharmony_ci * Destroy all the objs in a slab, and release the mem back to the system.
159662306a36Sopenharmony_ci * Before calling the slab must have been unlinked from the cache. The
159762306a36Sopenharmony_ci * kmem_cache_node ->list_lock is not held/needed.
159862306a36Sopenharmony_ci */
159962306a36Sopenharmony_cistatic void slab_destroy(struct kmem_cache *cachep, struct slab *slab)
160062306a36Sopenharmony_ci{
160162306a36Sopenharmony_ci	void *freelist;
160262306a36Sopenharmony_ci
160362306a36Sopenharmony_ci	freelist = slab->freelist;
160462306a36Sopenharmony_ci	slab_destroy_debugcheck(cachep, slab);
160562306a36Sopenharmony_ci	if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
160662306a36Sopenharmony_ci		call_rcu(&slab->rcu_head, kmem_rcu_free);
160762306a36Sopenharmony_ci	else
160862306a36Sopenharmony_ci		kmem_freepages(cachep, slab);
160962306a36Sopenharmony_ci
161062306a36Sopenharmony_ci	/*
161162306a36Sopenharmony_ci	 * From now on, we don't use freelist
161262306a36Sopenharmony_ci	 * although actual page can be freed in rcu context
161362306a36Sopenharmony_ci	 */
161462306a36Sopenharmony_ci	if (OFF_SLAB(cachep))
161562306a36Sopenharmony_ci		kfree(freelist);
161662306a36Sopenharmony_ci}
161762306a36Sopenharmony_ci
161862306a36Sopenharmony_ci/*
161962306a36Sopenharmony_ci * Update the size of the caches before calling slabs_destroy as it may
162062306a36Sopenharmony_ci * recursively call kfree.
162162306a36Sopenharmony_ci */
162262306a36Sopenharmony_cistatic void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
162362306a36Sopenharmony_ci{
162462306a36Sopenharmony_ci	struct slab *slab, *n;
162562306a36Sopenharmony_ci
162662306a36Sopenharmony_ci	list_for_each_entry_safe(slab, n, list, slab_list) {
162762306a36Sopenharmony_ci		list_del(&slab->slab_list);
162862306a36Sopenharmony_ci		slab_destroy(cachep, slab);
162962306a36Sopenharmony_ci	}
163062306a36Sopenharmony_ci}
163162306a36Sopenharmony_ci
163262306a36Sopenharmony_ci/**
163362306a36Sopenharmony_ci * calculate_slab_order - calculate size (page order) of slabs
163462306a36Sopenharmony_ci * @cachep: pointer to the cache that is being created
163562306a36Sopenharmony_ci * @size: size of objects to be created in this cache.
163662306a36Sopenharmony_ci * @flags: slab allocation flags
163762306a36Sopenharmony_ci *
163862306a36Sopenharmony_ci * Also calculates the number of objects per slab.
163962306a36Sopenharmony_ci *
164062306a36Sopenharmony_ci * This could be made much more intelligent.  For now, try to avoid using
164162306a36Sopenharmony_ci * high order pages for slabs.  When the gfp() functions are more friendly
164262306a36Sopenharmony_ci * towards high-order requests, this should be changed.
164362306a36Sopenharmony_ci *
164462306a36Sopenharmony_ci * Return: number of left-over bytes in a slab
164562306a36Sopenharmony_ci */
164662306a36Sopenharmony_cistatic size_t calculate_slab_order(struct kmem_cache *cachep,
164762306a36Sopenharmony_ci				size_t size, slab_flags_t flags)
164862306a36Sopenharmony_ci{
164962306a36Sopenharmony_ci	size_t left_over = 0;
165062306a36Sopenharmony_ci	int gfporder;
165162306a36Sopenharmony_ci
165262306a36Sopenharmony_ci	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
165362306a36Sopenharmony_ci		unsigned int num;
165462306a36Sopenharmony_ci		size_t remainder;
165562306a36Sopenharmony_ci
165662306a36Sopenharmony_ci		num = cache_estimate(gfporder, size, flags, &remainder);
165762306a36Sopenharmony_ci		if (!num)
165862306a36Sopenharmony_ci			continue;
165962306a36Sopenharmony_ci
166062306a36Sopenharmony_ci		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
166162306a36Sopenharmony_ci		if (num > SLAB_OBJ_MAX_NUM)
166262306a36Sopenharmony_ci			break;
166362306a36Sopenharmony_ci
166462306a36Sopenharmony_ci		if (flags & CFLGS_OFF_SLAB) {
166562306a36Sopenharmony_ci			struct kmem_cache *freelist_cache;
166662306a36Sopenharmony_ci			size_t freelist_size;
166762306a36Sopenharmony_ci			size_t freelist_cache_size;
166862306a36Sopenharmony_ci
166962306a36Sopenharmony_ci			freelist_size = num * sizeof(freelist_idx_t);
167062306a36Sopenharmony_ci			if (freelist_size > KMALLOC_MAX_CACHE_SIZE) {
167162306a36Sopenharmony_ci				freelist_cache_size = PAGE_SIZE << get_order(freelist_size);
167262306a36Sopenharmony_ci			} else {
167362306a36Sopenharmony_ci				freelist_cache = kmalloc_slab(freelist_size, 0u, _RET_IP_);
167462306a36Sopenharmony_ci				if (!freelist_cache)
167562306a36Sopenharmony_ci					continue;
167662306a36Sopenharmony_ci				freelist_cache_size = freelist_cache->size;
167762306a36Sopenharmony_ci
167862306a36Sopenharmony_ci				/*
167962306a36Sopenharmony_ci				 * Needed to avoid possible looping condition
168062306a36Sopenharmony_ci				 * in cache_grow_begin()
168162306a36Sopenharmony_ci				 */
168262306a36Sopenharmony_ci				if (OFF_SLAB(freelist_cache))
168362306a36Sopenharmony_ci					continue;
168462306a36Sopenharmony_ci			}
168562306a36Sopenharmony_ci
168662306a36Sopenharmony_ci			/* check if off slab has enough benefit */
168762306a36Sopenharmony_ci			if (freelist_cache_size > cachep->size / 2)
168862306a36Sopenharmony_ci				continue;
168962306a36Sopenharmony_ci		}
169062306a36Sopenharmony_ci
169162306a36Sopenharmony_ci		/* Found something acceptable - save it away */
169262306a36Sopenharmony_ci		cachep->num = num;
169362306a36Sopenharmony_ci		cachep->gfporder = gfporder;
169462306a36Sopenharmony_ci		left_over = remainder;
169562306a36Sopenharmony_ci
169662306a36Sopenharmony_ci		/*
169762306a36Sopenharmony_ci		 * A VFS-reclaimable slab tends to have most allocations
169862306a36Sopenharmony_ci		 * as GFP_NOFS and we really don't want to have to be allocating
169962306a36Sopenharmony_ci		 * higher-order pages when we are unable to shrink dcache.
170062306a36Sopenharmony_ci		 */
170162306a36Sopenharmony_ci		if (flags & SLAB_RECLAIM_ACCOUNT)
170262306a36Sopenharmony_ci			break;
170362306a36Sopenharmony_ci
170462306a36Sopenharmony_ci		/*
170562306a36Sopenharmony_ci		 * Large number of objects is good, but very large slabs are
170662306a36Sopenharmony_ci		 * currently bad for the gfp()s.
170762306a36Sopenharmony_ci		 */
170862306a36Sopenharmony_ci		if (gfporder >= slab_max_order)
170962306a36Sopenharmony_ci			break;
171062306a36Sopenharmony_ci
171162306a36Sopenharmony_ci		/*
171262306a36Sopenharmony_ci		 * Acceptable internal fragmentation?
171362306a36Sopenharmony_ci		 */
171462306a36Sopenharmony_ci		if (left_over * 8 <= (PAGE_SIZE << gfporder))
171562306a36Sopenharmony_ci			break;
171662306a36Sopenharmony_ci	}
171762306a36Sopenharmony_ci	return left_over;
171862306a36Sopenharmony_ci}
171962306a36Sopenharmony_ci
172062306a36Sopenharmony_cistatic struct array_cache __percpu *alloc_kmem_cache_cpus(
172162306a36Sopenharmony_ci		struct kmem_cache *cachep, int entries, int batchcount)
172262306a36Sopenharmony_ci{
172362306a36Sopenharmony_ci	int cpu;
172462306a36Sopenharmony_ci	size_t size;
172562306a36Sopenharmony_ci	struct array_cache __percpu *cpu_cache;
172662306a36Sopenharmony_ci
172762306a36Sopenharmony_ci	size = sizeof(void *) * entries + sizeof(struct array_cache);
172862306a36Sopenharmony_ci	cpu_cache = __alloc_percpu(size, sizeof(void *));
172962306a36Sopenharmony_ci
173062306a36Sopenharmony_ci	if (!cpu_cache)
173162306a36Sopenharmony_ci		return NULL;
173262306a36Sopenharmony_ci
173362306a36Sopenharmony_ci	for_each_possible_cpu(cpu) {
173462306a36Sopenharmony_ci		init_arraycache(per_cpu_ptr(cpu_cache, cpu),
173562306a36Sopenharmony_ci				entries, batchcount);
173662306a36Sopenharmony_ci	}
173762306a36Sopenharmony_ci
173862306a36Sopenharmony_ci	return cpu_cache;
173962306a36Sopenharmony_ci}
174062306a36Sopenharmony_ci
174162306a36Sopenharmony_cistatic int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
174262306a36Sopenharmony_ci{
174362306a36Sopenharmony_ci	if (slab_state >= FULL)
174462306a36Sopenharmony_ci		return enable_cpucache(cachep, gfp);
174562306a36Sopenharmony_ci
174662306a36Sopenharmony_ci	cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
174762306a36Sopenharmony_ci	if (!cachep->cpu_cache)
174862306a36Sopenharmony_ci		return 1;
174962306a36Sopenharmony_ci
175062306a36Sopenharmony_ci	if (slab_state == DOWN) {
175162306a36Sopenharmony_ci		/* Creation of first cache (kmem_cache). */
175262306a36Sopenharmony_ci		set_up_node(kmem_cache, CACHE_CACHE);
175362306a36Sopenharmony_ci	} else if (slab_state == PARTIAL) {
175462306a36Sopenharmony_ci		/* For kmem_cache_node */
175562306a36Sopenharmony_ci		set_up_node(cachep, SIZE_NODE);
175662306a36Sopenharmony_ci	} else {
175762306a36Sopenharmony_ci		int node;
175862306a36Sopenharmony_ci
175962306a36Sopenharmony_ci		for_each_online_node(node) {
176062306a36Sopenharmony_ci			cachep->node[node] = kmalloc_node(
176162306a36Sopenharmony_ci				sizeof(struct kmem_cache_node), gfp, node);
176262306a36Sopenharmony_ci			BUG_ON(!cachep->node[node]);
176362306a36Sopenharmony_ci			kmem_cache_node_init(cachep->node[node]);
176462306a36Sopenharmony_ci		}
176562306a36Sopenharmony_ci	}
176662306a36Sopenharmony_ci
176762306a36Sopenharmony_ci	cachep->node[numa_mem_id()]->next_reap =
176862306a36Sopenharmony_ci			jiffies + REAPTIMEOUT_NODE +
176962306a36Sopenharmony_ci			((unsigned long)cachep) % REAPTIMEOUT_NODE;
177062306a36Sopenharmony_ci
177162306a36Sopenharmony_ci	cpu_cache_get(cachep)->avail = 0;
177262306a36Sopenharmony_ci	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
177362306a36Sopenharmony_ci	cpu_cache_get(cachep)->batchcount = 1;
177462306a36Sopenharmony_ci	cpu_cache_get(cachep)->touched = 0;
177562306a36Sopenharmony_ci	cachep->batchcount = 1;
177662306a36Sopenharmony_ci	cachep->limit = BOOT_CPUCACHE_ENTRIES;
177762306a36Sopenharmony_ci	return 0;
177862306a36Sopenharmony_ci}
177962306a36Sopenharmony_ci
178062306a36Sopenharmony_cislab_flags_t kmem_cache_flags(unsigned int object_size,
178162306a36Sopenharmony_ci	slab_flags_t flags, const char *name)
178262306a36Sopenharmony_ci{
178362306a36Sopenharmony_ci	return flags;
178462306a36Sopenharmony_ci}
178562306a36Sopenharmony_ci
178662306a36Sopenharmony_cistruct kmem_cache *
178762306a36Sopenharmony_ci__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
178862306a36Sopenharmony_ci		   slab_flags_t flags, void (*ctor)(void *))
178962306a36Sopenharmony_ci{
179062306a36Sopenharmony_ci	struct kmem_cache *cachep;
179162306a36Sopenharmony_ci
179262306a36Sopenharmony_ci	cachep = find_mergeable(size, align, flags, name, ctor);
179362306a36Sopenharmony_ci	if (cachep) {
179462306a36Sopenharmony_ci		cachep->refcount++;
179562306a36Sopenharmony_ci
179662306a36Sopenharmony_ci		/*
179762306a36Sopenharmony_ci		 * Adjust the object sizes so that we clear
179862306a36Sopenharmony_ci		 * the complete object on kzalloc.
179962306a36Sopenharmony_ci		 */
180062306a36Sopenharmony_ci		cachep->object_size = max_t(int, cachep->object_size, size);
180162306a36Sopenharmony_ci	}
180262306a36Sopenharmony_ci	return cachep;
180362306a36Sopenharmony_ci}
180462306a36Sopenharmony_ci
180562306a36Sopenharmony_cistatic bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
180662306a36Sopenharmony_ci			size_t size, slab_flags_t flags)
180762306a36Sopenharmony_ci{
180862306a36Sopenharmony_ci	size_t left;
180962306a36Sopenharmony_ci
181062306a36Sopenharmony_ci	cachep->num = 0;
181162306a36Sopenharmony_ci
181262306a36Sopenharmony_ci	/*
181362306a36Sopenharmony_ci	 * If slab auto-initialization on free is enabled, store the freelist
181462306a36Sopenharmony_ci	 * off-slab, so that its contents don't end up in one of the allocated
181562306a36Sopenharmony_ci	 * objects.
181662306a36Sopenharmony_ci	 */
181762306a36Sopenharmony_ci	if (unlikely(slab_want_init_on_free(cachep)))
181862306a36Sopenharmony_ci		return false;
181962306a36Sopenharmony_ci
182062306a36Sopenharmony_ci	if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
182162306a36Sopenharmony_ci		return false;
182262306a36Sopenharmony_ci
182362306a36Sopenharmony_ci	left = calculate_slab_order(cachep, size,
182462306a36Sopenharmony_ci			flags | CFLGS_OBJFREELIST_SLAB);
182562306a36Sopenharmony_ci	if (!cachep->num)
182662306a36Sopenharmony_ci		return false;
182762306a36Sopenharmony_ci
182862306a36Sopenharmony_ci	if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
182962306a36Sopenharmony_ci		return false;
183062306a36Sopenharmony_ci
183162306a36Sopenharmony_ci	cachep->colour = left / cachep->colour_off;
183262306a36Sopenharmony_ci
183362306a36Sopenharmony_ci	return true;
183462306a36Sopenharmony_ci}
183562306a36Sopenharmony_ci
183662306a36Sopenharmony_cistatic bool set_off_slab_cache(struct kmem_cache *cachep,
183762306a36Sopenharmony_ci			size_t size, slab_flags_t flags)
183862306a36Sopenharmony_ci{
183962306a36Sopenharmony_ci	size_t left;
184062306a36Sopenharmony_ci
184162306a36Sopenharmony_ci	cachep->num = 0;
184262306a36Sopenharmony_ci
184362306a36Sopenharmony_ci	/*
184462306a36Sopenharmony_ci	 * Always use on-slab management when SLAB_NOLEAKTRACE
184562306a36Sopenharmony_ci	 * to avoid recursive calls into kmemleak.
184662306a36Sopenharmony_ci	 */
184762306a36Sopenharmony_ci	if (flags & SLAB_NOLEAKTRACE)
184862306a36Sopenharmony_ci		return false;
184962306a36Sopenharmony_ci
185062306a36Sopenharmony_ci	/*
185162306a36Sopenharmony_ci	 * Size is large, assume best to place the slab management obj
185262306a36Sopenharmony_ci	 * off-slab (should allow better packing of objs).
185362306a36Sopenharmony_ci	 */
185462306a36Sopenharmony_ci	left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
185562306a36Sopenharmony_ci	if (!cachep->num)
185662306a36Sopenharmony_ci		return false;
185762306a36Sopenharmony_ci
185862306a36Sopenharmony_ci	/*
185962306a36Sopenharmony_ci	 * If the slab has been placed off-slab, and we have enough space then
186062306a36Sopenharmony_ci	 * move it on-slab. This is at the expense of any extra colouring.
186162306a36Sopenharmony_ci	 */
186262306a36Sopenharmony_ci	if (left >= cachep->num * sizeof(freelist_idx_t))
186362306a36Sopenharmony_ci		return false;
186462306a36Sopenharmony_ci
186562306a36Sopenharmony_ci	cachep->colour = left / cachep->colour_off;
186662306a36Sopenharmony_ci
186762306a36Sopenharmony_ci	return true;
186862306a36Sopenharmony_ci}
186962306a36Sopenharmony_ci
187062306a36Sopenharmony_cistatic bool set_on_slab_cache(struct kmem_cache *cachep,
187162306a36Sopenharmony_ci			size_t size, slab_flags_t flags)
187262306a36Sopenharmony_ci{
187362306a36Sopenharmony_ci	size_t left;
187462306a36Sopenharmony_ci
187562306a36Sopenharmony_ci	cachep->num = 0;
187662306a36Sopenharmony_ci
187762306a36Sopenharmony_ci	left = calculate_slab_order(cachep, size, flags);
187862306a36Sopenharmony_ci	if (!cachep->num)
187962306a36Sopenharmony_ci		return false;
188062306a36Sopenharmony_ci
188162306a36Sopenharmony_ci	cachep->colour = left / cachep->colour_off;
188262306a36Sopenharmony_ci
188362306a36Sopenharmony_ci	return true;
188462306a36Sopenharmony_ci}
188562306a36Sopenharmony_ci
188662306a36Sopenharmony_ci/*
188762306a36Sopenharmony_ci * __kmem_cache_create - Create a cache.
188862306a36Sopenharmony_ci * @cachep: cache management descriptor
188962306a36Sopenharmony_ci * @flags: SLAB flags
189062306a36Sopenharmony_ci *
189162306a36Sopenharmony_ci * Returns zero on success, nonzero on failure.
189262306a36Sopenharmony_ci *
189362306a36Sopenharmony_ci * The flags are
189462306a36Sopenharmony_ci *
189562306a36Sopenharmony_ci * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
189662306a36Sopenharmony_ci * to catch references to uninitialised memory.
189762306a36Sopenharmony_ci *
189862306a36Sopenharmony_ci * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
189962306a36Sopenharmony_ci * for buffer overruns.
190062306a36Sopenharmony_ci *
190162306a36Sopenharmony_ci * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
190262306a36Sopenharmony_ci * cacheline.  This can be beneficial if you're counting cycles as closely
190362306a36Sopenharmony_ci * as davem.
190462306a36Sopenharmony_ci */
190562306a36Sopenharmony_ciint __kmem_cache_create(struct kmem_cache *cachep, slab_flags_t flags)
190662306a36Sopenharmony_ci{
190762306a36Sopenharmony_ci	size_t ralign = BYTES_PER_WORD;
190862306a36Sopenharmony_ci	gfp_t gfp;
190962306a36Sopenharmony_ci	int err;
191062306a36Sopenharmony_ci	unsigned int size = cachep->size;
191162306a36Sopenharmony_ci
191262306a36Sopenharmony_ci#if DEBUG
191362306a36Sopenharmony_ci#if FORCED_DEBUG
191462306a36Sopenharmony_ci	/*
191562306a36Sopenharmony_ci	 * Enable redzoning and last user accounting, except for caches with
191662306a36Sopenharmony_ci	 * large objects, if the increased size would increase the object size
191762306a36Sopenharmony_ci	 * above the next power of two: caches with object sizes just above a
191862306a36Sopenharmony_ci	 * power of two have a significant amount of internal fragmentation.
191962306a36Sopenharmony_ci	 */
192062306a36Sopenharmony_ci	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
192162306a36Sopenharmony_ci						2 * sizeof(unsigned long long)))
192262306a36Sopenharmony_ci		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
192362306a36Sopenharmony_ci	if (!(flags & SLAB_TYPESAFE_BY_RCU))
192462306a36Sopenharmony_ci		flags |= SLAB_POISON;
192562306a36Sopenharmony_ci#endif
192662306a36Sopenharmony_ci#endif
192762306a36Sopenharmony_ci
192862306a36Sopenharmony_ci	/*
192962306a36Sopenharmony_ci	 * Check that size is in terms of words.  This is needed to avoid
193062306a36Sopenharmony_ci	 * unaligned accesses for some archs when redzoning is used, and makes
193162306a36Sopenharmony_ci	 * sure any on-slab bufctl's are also correctly aligned.
193262306a36Sopenharmony_ci	 */
193362306a36Sopenharmony_ci	size = ALIGN(size, BYTES_PER_WORD);
193462306a36Sopenharmony_ci
193562306a36Sopenharmony_ci	if (flags & SLAB_RED_ZONE) {
193662306a36Sopenharmony_ci		ralign = REDZONE_ALIGN;
193762306a36Sopenharmony_ci		/* If redzoning, ensure that the second redzone is suitably
193862306a36Sopenharmony_ci		 * aligned, by adjusting the object size accordingly. */
193962306a36Sopenharmony_ci		size = ALIGN(size, REDZONE_ALIGN);
194062306a36Sopenharmony_ci	}
194162306a36Sopenharmony_ci
194262306a36Sopenharmony_ci	/* 3) caller mandated alignment */
194362306a36Sopenharmony_ci	if (ralign < cachep->align) {
194462306a36Sopenharmony_ci		ralign = cachep->align;
194562306a36Sopenharmony_ci	}
194662306a36Sopenharmony_ci	/* disable debug if necessary */
194762306a36Sopenharmony_ci	if (ralign > __alignof__(unsigned long long))
194862306a36Sopenharmony_ci		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
194962306a36Sopenharmony_ci	/*
195062306a36Sopenharmony_ci	 * 4) Store it.
195162306a36Sopenharmony_ci	 */
195262306a36Sopenharmony_ci	cachep->align = ralign;
195362306a36Sopenharmony_ci	cachep->colour_off = cache_line_size();
195462306a36Sopenharmony_ci	/* Offset must be a multiple of the alignment. */
195562306a36Sopenharmony_ci	if (cachep->colour_off < cachep->align)
195662306a36Sopenharmony_ci		cachep->colour_off = cachep->align;
195762306a36Sopenharmony_ci
195862306a36Sopenharmony_ci	if (slab_is_available())
195962306a36Sopenharmony_ci		gfp = GFP_KERNEL;
196062306a36Sopenharmony_ci	else
196162306a36Sopenharmony_ci		gfp = GFP_NOWAIT;
196262306a36Sopenharmony_ci
196362306a36Sopenharmony_ci#if DEBUG
196462306a36Sopenharmony_ci
196562306a36Sopenharmony_ci	/*
196662306a36Sopenharmony_ci	 * Both debugging options require word-alignment which is calculated
196762306a36Sopenharmony_ci	 * into align above.
196862306a36Sopenharmony_ci	 */
196962306a36Sopenharmony_ci	if (flags & SLAB_RED_ZONE) {
197062306a36Sopenharmony_ci		/* add space for red zone words */
197162306a36Sopenharmony_ci		cachep->obj_offset += sizeof(unsigned long long);
197262306a36Sopenharmony_ci		size += 2 * sizeof(unsigned long long);
197362306a36Sopenharmony_ci	}
197462306a36Sopenharmony_ci	if (flags & SLAB_STORE_USER) {
197562306a36Sopenharmony_ci		/* user store requires one word storage behind the end of
197662306a36Sopenharmony_ci		 * the real object. But if the second red zone needs to be
197762306a36Sopenharmony_ci		 * aligned to 64 bits, we must allow that much space.
197862306a36Sopenharmony_ci		 */
197962306a36Sopenharmony_ci		if (flags & SLAB_RED_ZONE)
198062306a36Sopenharmony_ci			size += REDZONE_ALIGN;
198162306a36Sopenharmony_ci		else
198262306a36Sopenharmony_ci			size += BYTES_PER_WORD;
198362306a36Sopenharmony_ci	}
198462306a36Sopenharmony_ci#endif
198562306a36Sopenharmony_ci
198662306a36Sopenharmony_ci	kasan_cache_create(cachep, &size, &flags);
198762306a36Sopenharmony_ci
198862306a36Sopenharmony_ci	size = ALIGN(size, cachep->align);
198962306a36Sopenharmony_ci	/*
199062306a36Sopenharmony_ci	 * We should restrict the number of objects in a slab to implement
199162306a36Sopenharmony_ci	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
199262306a36Sopenharmony_ci	 */
199362306a36Sopenharmony_ci	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
199462306a36Sopenharmony_ci		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
199562306a36Sopenharmony_ci
199662306a36Sopenharmony_ci#if DEBUG
199762306a36Sopenharmony_ci	/*
199862306a36Sopenharmony_ci	 * To activate debug pagealloc, off-slab management is necessary
199962306a36Sopenharmony_ci	 * requirement. In early phase of initialization, small sized slab
200062306a36Sopenharmony_ci	 * doesn't get initialized so it would not be possible. So, we need
200162306a36Sopenharmony_ci	 * to check size >= 256. It guarantees that all necessary small
200262306a36Sopenharmony_ci	 * sized slab is initialized in current slab initialization sequence.
200362306a36Sopenharmony_ci	 */
200462306a36Sopenharmony_ci	if (debug_pagealloc_enabled_static() && (flags & SLAB_POISON) &&
200562306a36Sopenharmony_ci		size >= 256 && cachep->object_size > cache_line_size()) {
200662306a36Sopenharmony_ci		if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
200762306a36Sopenharmony_ci			size_t tmp_size = ALIGN(size, PAGE_SIZE);
200862306a36Sopenharmony_ci
200962306a36Sopenharmony_ci			if (set_off_slab_cache(cachep, tmp_size, flags)) {
201062306a36Sopenharmony_ci				flags |= CFLGS_OFF_SLAB;
201162306a36Sopenharmony_ci				cachep->obj_offset += tmp_size - size;
201262306a36Sopenharmony_ci				size = tmp_size;
201362306a36Sopenharmony_ci				goto done;
201462306a36Sopenharmony_ci			}
201562306a36Sopenharmony_ci		}
201662306a36Sopenharmony_ci	}
201762306a36Sopenharmony_ci#endif
201862306a36Sopenharmony_ci
201962306a36Sopenharmony_ci	if (set_objfreelist_slab_cache(cachep, size, flags)) {
202062306a36Sopenharmony_ci		flags |= CFLGS_OBJFREELIST_SLAB;
202162306a36Sopenharmony_ci		goto done;
202262306a36Sopenharmony_ci	}
202362306a36Sopenharmony_ci
202462306a36Sopenharmony_ci	if (set_off_slab_cache(cachep, size, flags)) {
202562306a36Sopenharmony_ci		flags |= CFLGS_OFF_SLAB;
202662306a36Sopenharmony_ci		goto done;
202762306a36Sopenharmony_ci	}
202862306a36Sopenharmony_ci
202962306a36Sopenharmony_ci	if (set_on_slab_cache(cachep, size, flags))
203062306a36Sopenharmony_ci		goto done;
203162306a36Sopenharmony_ci
203262306a36Sopenharmony_ci	return -E2BIG;
203362306a36Sopenharmony_ci
203462306a36Sopenharmony_cidone:
203562306a36Sopenharmony_ci	cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
203662306a36Sopenharmony_ci	cachep->flags = flags;
203762306a36Sopenharmony_ci	cachep->allocflags = __GFP_COMP;
203862306a36Sopenharmony_ci	if (flags & SLAB_CACHE_DMA)
203962306a36Sopenharmony_ci		cachep->allocflags |= GFP_DMA;
204062306a36Sopenharmony_ci	if (flags & SLAB_CACHE_DMA32)
204162306a36Sopenharmony_ci		cachep->allocflags |= GFP_DMA32;
204262306a36Sopenharmony_ci	if (flags & SLAB_RECLAIM_ACCOUNT)
204362306a36Sopenharmony_ci		cachep->allocflags |= __GFP_RECLAIMABLE;
204462306a36Sopenharmony_ci	cachep->size = size;
204562306a36Sopenharmony_ci	cachep->reciprocal_buffer_size = reciprocal_value(size);
204662306a36Sopenharmony_ci
204762306a36Sopenharmony_ci#if DEBUG
204862306a36Sopenharmony_ci	/*
204962306a36Sopenharmony_ci	 * If we're going to use the generic kernel_map_pages()
205062306a36Sopenharmony_ci	 * poisoning, then it's going to smash the contents of
205162306a36Sopenharmony_ci	 * the redzone and userword anyhow, so switch them off.
205262306a36Sopenharmony_ci	 */
205362306a36Sopenharmony_ci	if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
205462306a36Sopenharmony_ci		(cachep->flags & SLAB_POISON) &&
205562306a36Sopenharmony_ci		is_debug_pagealloc_cache(cachep))
205662306a36Sopenharmony_ci		cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
205762306a36Sopenharmony_ci#endif
205862306a36Sopenharmony_ci
205962306a36Sopenharmony_ci	err = setup_cpu_cache(cachep, gfp);
206062306a36Sopenharmony_ci	if (err) {
206162306a36Sopenharmony_ci		__kmem_cache_release(cachep);
206262306a36Sopenharmony_ci		return err;
206362306a36Sopenharmony_ci	}
206462306a36Sopenharmony_ci
206562306a36Sopenharmony_ci	return 0;
206662306a36Sopenharmony_ci}
206762306a36Sopenharmony_ci
206862306a36Sopenharmony_ci#if DEBUG
206962306a36Sopenharmony_cistatic void check_irq_off(void)
207062306a36Sopenharmony_ci{
207162306a36Sopenharmony_ci	BUG_ON(!irqs_disabled());
207262306a36Sopenharmony_ci}
207362306a36Sopenharmony_ci
207462306a36Sopenharmony_cistatic void check_irq_on(void)
207562306a36Sopenharmony_ci{
207662306a36Sopenharmony_ci	BUG_ON(irqs_disabled());
207762306a36Sopenharmony_ci}
207862306a36Sopenharmony_ci
207962306a36Sopenharmony_cistatic void check_mutex_acquired(void)
208062306a36Sopenharmony_ci{
208162306a36Sopenharmony_ci	BUG_ON(!mutex_is_locked(&slab_mutex));
208262306a36Sopenharmony_ci}
208362306a36Sopenharmony_ci
208462306a36Sopenharmony_cistatic void check_spinlock_acquired(struct kmem_cache *cachep)
208562306a36Sopenharmony_ci{
208662306a36Sopenharmony_ci#ifdef CONFIG_SMP
208762306a36Sopenharmony_ci	check_irq_off();
208862306a36Sopenharmony_ci	assert_raw_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
208962306a36Sopenharmony_ci#endif
209062306a36Sopenharmony_ci}
209162306a36Sopenharmony_ci
209262306a36Sopenharmony_cistatic void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
209362306a36Sopenharmony_ci{
209462306a36Sopenharmony_ci#ifdef CONFIG_SMP
209562306a36Sopenharmony_ci	check_irq_off();
209662306a36Sopenharmony_ci	assert_raw_spin_locked(&get_node(cachep, node)->list_lock);
209762306a36Sopenharmony_ci#endif
209862306a36Sopenharmony_ci}
209962306a36Sopenharmony_ci
210062306a36Sopenharmony_ci#else
210162306a36Sopenharmony_ci#define check_irq_off()	do { } while(0)
210262306a36Sopenharmony_ci#define check_irq_on()	do { } while(0)
210362306a36Sopenharmony_ci#define check_mutex_acquired()	do { } while(0)
210462306a36Sopenharmony_ci#define check_spinlock_acquired(x) do { } while(0)
210562306a36Sopenharmony_ci#define check_spinlock_acquired_node(x, y) do { } while(0)
210662306a36Sopenharmony_ci#endif
210762306a36Sopenharmony_ci
210862306a36Sopenharmony_cistatic void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
210962306a36Sopenharmony_ci				int node, bool free_all, struct list_head *list)
211062306a36Sopenharmony_ci{
211162306a36Sopenharmony_ci	int tofree;
211262306a36Sopenharmony_ci
211362306a36Sopenharmony_ci	if (!ac || !ac->avail)
211462306a36Sopenharmony_ci		return;
211562306a36Sopenharmony_ci
211662306a36Sopenharmony_ci	tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
211762306a36Sopenharmony_ci	if (tofree > ac->avail)
211862306a36Sopenharmony_ci		tofree = (ac->avail + 1) / 2;
211962306a36Sopenharmony_ci
212062306a36Sopenharmony_ci	free_block(cachep, ac->entry, tofree, node, list);
212162306a36Sopenharmony_ci	ac->avail -= tofree;
212262306a36Sopenharmony_ci	memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
212362306a36Sopenharmony_ci}
212462306a36Sopenharmony_ci
212562306a36Sopenharmony_cistatic void do_drain(void *arg)
212662306a36Sopenharmony_ci{
212762306a36Sopenharmony_ci	struct kmem_cache *cachep = arg;
212862306a36Sopenharmony_ci	struct array_cache *ac;
212962306a36Sopenharmony_ci	int node = numa_mem_id();
213062306a36Sopenharmony_ci	struct kmem_cache_node *n;
213162306a36Sopenharmony_ci	LIST_HEAD(list);
213262306a36Sopenharmony_ci
213362306a36Sopenharmony_ci	check_irq_off();
213462306a36Sopenharmony_ci	ac = cpu_cache_get(cachep);
213562306a36Sopenharmony_ci	n = get_node(cachep, node);
213662306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
213762306a36Sopenharmony_ci	free_block(cachep, ac->entry, ac->avail, node, &list);
213862306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
213962306a36Sopenharmony_ci	ac->avail = 0;
214062306a36Sopenharmony_ci	slabs_destroy(cachep, &list);
214162306a36Sopenharmony_ci}
214262306a36Sopenharmony_ci
214362306a36Sopenharmony_cistatic void drain_cpu_caches(struct kmem_cache *cachep)
214462306a36Sopenharmony_ci{
214562306a36Sopenharmony_ci	struct kmem_cache_node *n;
214662306a36Sopenharmony_ci	int node;
214762306a36Sopenharmony_ci	LIST_HEAD(list);
214862306a36Sopenharmony_ci
214962306a36Sopenharmony_ci	on_each_cpu(do_drain, cachep, 1);
215062306a36Sopenharmony_ci	check_irq_on();
215162306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, node, n)
215262306a36Sopenharmony_ci		if (n->alien)
215362306a36Sopenharmony_ci			drain_alien_cache(cachep, n->alien);
215462306a36Sopenharmony_ci
215562306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, node, n) {
215662306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
215762306a36Sopenharmony_ci		drain_array_locked(cachep, n->shared, node, true, &list);
215862306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
215962306a36Sopenharmony_ci
216062306a36Sopenharmony_ci		slabs_destroy(cachep, &list);
216162306a36Sopenharmony_ci	}
216262306a36Sopenharmony_ci}
216362306a36Sopenharmony_ci
216462306a36Sopenharmony_ci/*
216562306a36Sopenharmony_ci * Remove slabs from the list of free slabs.
216662306a36Sopenharmony_ci * Specify the number of slabs to drain in tofree.
216762306a36Sopenharmony_ci *
216862306a36Sopenharmony_ci * Returns the actual number of slabs released.
216962306a36Sopenharmony_ci */
217062306a36Sopenharmony_cistatic int drain_freelist(struct kmem_cache *cache,
217162306a36Sopenharmony_ci			struct kmem_cache_node *n, int tofree)
217262306a36Sopenharmony_ci{
217362306a36Sopenharmony_ci	struct list_head *p;
217462306a36Sopenharmony_ci	int nr_freed;
217562306a36Sopenharmony_ci	struct slab *slab;
217662306a36Sopenharmony_ci
217762306a36Sopenharmony_ci	nr_freed = 0;
217862306a36Sopenharmony_ci	while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
217962306a36Sopenharmony_ci
218062306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
218162306a36Sopenharmony_ci		p = n->slabs_free.prev;
218262306a36Sopenharmony_ci		if (p == &n->slabs_free) {
218362306a36Sopenharmony_ci			raw_spin_unlock_irq(&n->list_lock);
218462306a36Sopenharmony_ci			goto out;
218562306a36Sopenharmony_ci		}
218662306a36Sopenharmony_ci
218762306a36Sopenharmony_ci		slab = list_entry(p, struct slab, slab_list);
218862306a36Sopenharmony_ci		list_del(&slab->slab_list);
218962306a36Sopenharmony_ci		n->free_slabs--;
219062306a36Sopenharmony_ci		n->total_slabs--;
219162306a36Sopenharmony_ci		/*
219262306a36Sopenharmony_ci		 * Safe to drop the lock. The slab is no longer linked
219362306a36Sopenharmony_ci		 * to the cache.
219462306a36Sopenharmony_ci		 */
219562306a36Sopenharmony_ci		n->free_objects -= cache->num;
219662306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
219762306a36Sopenharmony_ci		slab_destroy(cache, slab);
219862306a36Sopenharmony_ci		nr_freed++;
219962306a36Sopenharmony_ci
220062306a36Sopenharmony_ci		cond_resched();
220162306a36Sopenharmony_ci	}
220262306a36Sopenharmony_ciout:
220362306a36Sopenharmony_ci	return nr_freed;
220462306a36Sopenharmony_ci}
220562306a36Sopenharmony_ci
220662306a36Sopenharmony_cibool __kmem_cache_empty(struct kmem_cache *s)
220762306a36Sopenharmony_ci{
220862306a36Sopenharmony_ci	int node;
220962306a36Sopenharmony_ci	struct kmem_cache_node *n;
221062306a36Sopenharmony_ci
221162306a36Sopenharmony_ci	for_each_kmem_cache_node(s, node, n)
221262306a36Sopenharmony_ci		if (!list_empty(&n->slabs_full) ||
221362306a36Sopenharmony_ci		    !list_empty(&n->slabs_partial))
221462306a36Sopenharmony_ci			return false;
221562306a36Sopenharmony_ci	return true;
221662306a36Sopenharmony_ci}
221762306a36Sopenharmony_ci
221862306a36Sopenharmony_ciint __kmem_cache_shrink(struct kmem_cache *cachep)
221962306a36Sopenharmony_ci{
222062306a36Sopenharmony_ci	int ret = 0;
222162306a36Sopenharmony_ci	int node;
222262306a36Sopenharmony_ci	struct kmem_cache_node *n;
222362306a36Sopenharmony_ci
222462306a36Sopenharmony_ci	drain_cpu_caches(cachep);
222562306a36Sopenharmony_ci
222662306a36Sopenharmony_ci	check_irq_on();
222762306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, node, n) {
222862306a36Sopenharmony_ci		drain_freelist(cachep, n, INT_MAX);
222962306a36Sopenharmony_ci
223062306a36Sopenharmony_ci		ret += !list_empty(&n->slabs_full) ||
223162306a36Sopenharmony_ci			!list_empty(&n->slabs_partial);
223262306a36Sopenharmony_ci	}
223362306a36Sopenharmony_ci	return (ret ? 1 : 0);
223462306a36Sopenharmony_ci}
223562306a36Sopenharmony_ci
223662306a36Sopenharmony_ciint __kmem_cache_shutdown(struct kmem_cache *cachep)
223762306a36Sopenharmony_ci{
223862306a36Sopenharmony_ci	return __kmem_cache_shrink(cachep);
223962306a36Sopenharmony_ci}
224062306a36Sopenharmony_ci
224162306a36Sopenharmony_civoid __kmem_cache_release(struct kmem_cache *cachep)
224262306a36Sopenharmony_ci{
224362306a36Sopenharmony_ci	int i;
224462306a36Sopenharmony_ci	struct kmem_cache_node *n;
224562306a36Sopenharmony_ci
224662306a36Sopenharmony_ci	cache_random_seq_destroy(cachep);
224762306a36Sopenharmony_ci
224862306a36Sopenharmony_ci	free_percpu(cachep->cpu_cache);
224962306a36Sopenharmony_ci
225062306a36Sopenharmony_ci	/* NUMA: free the node structures */
225162306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, i, n) {
225262306a36Sopenharmony_ci		kfree(n->shared);
225362306a36Sopenharmony_ci		free_alien_cache(n->alien);
225462306a36Sopenharmony_ci		kfree(n);
225562306a36Sopenharmony_ci		cachep->node[i] = NULL;
225662306a36Sopenharmony_ci	}
225762306a36Sopenharmony_ci}
225862306a36Sopenharmony_ci
225962306a36Sopenharmony_ci/*
226062306a36Sopenharmony_ci * Get the memory for a slab management obj.
226162306a36Sopenharmony_ci *
226262306a36Sopenharmony_ci * For a slab cache when the slab descriptor is off-slab, the
226362306a36Sopenharmony_ci * slab descriptor can't come from the same cache which is being created,
226462306a36Sopenharmony_ci * Because if it is the case, that means we defer the creation of
226562306a36Sopenharmony_ci * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
226662306a36Sopenharmony_ci * And we eventually call down to __kmem_cache_create(), which
226762306a36Sopenharmony_ci * in turn looks up in the kmalloc_{dma,}_caches for the desired-size one.
226862306a36Sopenharmony_ci * This is a "chicken-and-egg" problem.
226962306a36Sopenharmony_ci *
227062306a36Sopenharmony_ci * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
227162306a36Sopenharmony_ci * which are all initialized during kmem_cache_init().
227262306a36Sopenharmony_ci */
227362306a36Sopenharmony_cistatic void *alloc_slabmgmt(struct kmem_cache *cachep,
227462306a36Sopenharmony_ci				   struct slab *slab, int colour_off,
227562306a36Sopenharmony_ci				   gfp_t local_flags, int nodeid)
227662306a36Sopenharmony_ci{
227762306a36Sopenharmony_ci	void *freelist;
227862306a36Sopenharmony_ci	void *addr = slab_address(slab);
227962306a36Sopenharmony_ci
228062306a36Sopenharmony_ci	slab->s_mem = addr + colour_off;
228162306a36Sopenharmony_ci	slab->active = 0;
228262306a36Sopenharmony_ci
228362306a36Sopenharmony_ci	if (OBJFREELIST_SLAB(cachep))
228462306a36Sopenharmony_ci		freelist = NULL;
228562306a36Sopenharmony_ci	else if (OFF_SLAB(cachep)) {
228662306a36Sopenharmony_ci		/* Slab management obj is off-slab. */
228762306a36Sopenharmony_ci		freelist = kmalloc_node(cachep->freelist_size,
228862306a36Sopenharmony_ci					      local_flags, nodeid);
228962306a36Sopenharmony_ci	} else {
229062306a36Sopenharmony_ci		/* We will use last bytes at the slab for freelist */
229162306a36Sopenharmony_ci		freelist = addr + (PAGE_SIZE << cachep->gfporder) -
229262306a36Sopenharmony_ci				cachep->freelist_size;
229362306a36Sopenharmony_ci	}
229462306a36Sopenharmony_ci
229562306a36Sopenharmony_ci	return freelist;
229662306a36Sopenharmony_ci}
229762306a36Sopenharmony_ci
229862306a36Sopenharmony_cistatic inline freelist_idx_t get_free_obj(struct slab *slab, unsigned int idx)
229962306a36Sopenharmony_ci{
230062306a36Sopenharmony_ci	return ((freelist_idx_t *) slab->freelist)[idx];
230162306a36Sopenharmony_ci}
230262306a36Sopenharmony_ci
230362306a36Sopenharmony_cistatic inline void set_free_obj(struct slab *slab,
230462306a36Sopenharmony_ci					unsigned int idx, freelist_idx_t val)
230562306a36Sopenharmony_ci{
230662306a36Sopenharmony_ci	((freelist_idx_t *)(slab->freelist))[idx] = val;
230762306a36Sopenharmony_ci}
230862306a36Sopenharmony_ci
230962306a36Sopenharmony_cistatic void cache_init_objs_debug(struct kmem_cache *cachep, struct slab *slab)
231062306a36Sopenharmony_ci{
231162306a36Sopenharmony_ci#if DEBUG
231262306a36Sopenharmony_ci	int i;
231362306a36Sopenharmony_ci
231462306a36Sopenharmony_ci	for (i = 0; i < cachep->num; i++) {
231562306a36Sopenharmony_ci		void *objp = index_to_obj(cachep, slab, i);
231662306a36Sopenharmony_ci
231762306a36Sopenharmony_ci		if (cachep->flags & SLAB_STORE_USER)
231862306a36Sopenharmony_ci			*dbg_userword(cachep, objp) = NULL;
231962306a36Sopenharmony_ci
232062306a36Sopenharmony_ci		if (cachep->flags & SLAB_RED_ZONE) {
232162306a36Sopenharmony_ci			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
232262306a36Sopenharmony_ci			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
232362306a36Sopenharmony_ci		}
232462306a36Sopenharmony_ci		/*
232562306a36Sopenharmony_ci		 * Constructors are not allowed to allocate memory from the same
232662306a36Sopenharmony_ci		 * cache which they are a constructor for.  Otherwise, deadlock.
232762306a36Sopenharmony_ci		 * They must also be threaded.
232862306a36Sopenharmony_ci		 */
232962306a36Sopenharmony_ci		if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
233062306a36Sopenharmony_ci			kasan_unpoison_object_data(cachep,
233162306a36Sopenharmony_ci						   objp + obj_offset(cachep));
233262306a36Sopenharmony_ci			cachep->ctor(objp + obj_offset(cachep));
233362306a36Sopenharmony_ci			kasan_poison_object_data(
233462306a36Sopenharmony_ci				cachep, objp + obj_offset(cachep));
233562306a36Sopenharmony_ci		}
233662306a36Sopenharmony_ci
233762306a36Sopenharmony_ci		if (cachep->flags & SLAB_RED_ZONE) {
233862306a36Sopenharmony_ci			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
233962306a36Sopenharmony_ci				slab_error(cachep, "constructor overwrote the end of an object");
234062306a36Sopenharmony_ci			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
234162306a36Sopenharmony_ci				slab_error(cachep, "constructor overwrote the start of an object");
234262306a36Sopenharmony_ci		}
234362306a36Sopenharmony_ci		/* need to poison the objs? */
234462306a36Sopenharmony_ci		if (cachep->flags & SLAB_POISON) {
234562306a36Sopenharmony_ci			poison_obj(cachep, objp, POISON_FREE);
234662306a36Sopenharmony_ci			slab_kernel_map(cachep, objp, 0);
234762306a36Sopenharmony_ci		}
234862306a36Sopenharmony_ci	}
234962306a36Sopenharmony_ci#endif
235062306a36Sopenharmony_ci}
235162306a36Sopenharmony_ci
235262306a36Sopenharmony_ci#ifdef CONFIG_SLAB_FREELIST_RANDOM
235362306a36Sopenharmony_ci/* Hold information during a freelist initialization */
235462306a36Sopenharmony_cistruct freelist_init_state {
235562306a36Sopenharmony_ci	unsigned int pos;
235662306a36Sopenharmony_ci	unsigned int *list;
235762306a36Sopenharmony_ci	unsigned int count;
235862306a36Sopenharmony_ci};
235962306a36Sopenharmony_ci
236062306a36Sopenharmony_ci/*
236162306a36Sopenharmony_ci * Initialize the state based on the randomization method available.
236262306a36Sopenharmony_ci * return true if the pre-computed list is available, false otherwise.
236362306a36Sopenharmony_ci */
236462306a36Sopenharmony_cistatic bool freelist_state_initialize(struct freelist_init_state *state,
236562306a36Sopenharmony_ci				struct kmem_cache *cachep,
236662306a36Sopenharmony_ci				unsigned int count)
236762306a36Sopenharmony_ci{
236862306a36Sopenharmony_ci	bool ret;
236962306a36Sopenharmony_ci	if (!cachep->random_seq) {
237062306a36Sopenharmony_ci		ret = false;
237162306a36Sopenharmony_ci	} else {
237262306a36Sopenharmony_ci		state->list = cachep->random_seq;
237362306a36Sopenharmony_ci		state->count = count;
237462306a36Sopenharmony_ci		state->pos = get_random_u32_below(count);
237562306a36Sopenharmony_ci		ret = true;
237662306a36Sopenharmony_ci	}
237762306a36Sopenharmony_ci	return ret;
237862306a36Sopenharmony_ci}
237962306a36Sopenharmony_ci
238062306a36Sopenharmony_ci/* Get the next entry on the list and randomize it using a random shift */
238162306a36Sopenharmony_cistatic freelist_idx_t next_random_slot(struct freelist_init_state *state)
238262306a36Sopenharmony_ci{
238362306a36Sopenharmony_ci	if (state->pos >= state->count)
238462306a36Sopenharmony_ci		state->pos = 0;
238562306a36Sopenharmony_ci	return state->list[state->pos++];
238662306a36Sopenharmony_ci}
238762306a36Sopenharmony_ci
238862306a36Sopenharmony_ci/* Swap two freelist entries */
238962306a36Sopenharmony_cistatic void swap_free_obj(struct slab *slab, unsigned int a, unsigned int b)
239062306a36Sopenharmony_ci{
239162306a36Sopenharmony_ci	swap(((freelist_idx_t *) slab->freelist)[a],
239262306a36Sopenharmony_ci		((freelist_idx_t *) slab->freelist)[b]);
239362306a36Sopenharmony_ci}
239462306a36Sopenharmony_ci
239562306a36Sopenharmony_ci/*
239662306a36Sopenharmony_ci * Shuffle the freelist initialization state based on pre-computed lists.
239762306a36Sopenharmony_ci * return true if the list was successfully shuffled, false otherwise.
239862306a36Sopenharmony_ci */
239962306a36Sopenharmony_cistatic bool shuffle_freelist(struct kmem_cache *cachep, struct slab *slab)
240062306a36Sopenharmony_ci{
240162306a36Sopenharmony_ci	unsigned int objfreelist = 0, i, rand, count = cachep->num;
240262306a36Sopenharmony_ci	struct freelist_init_state state;
240362306a36Sopenharmony_ci	bool precomputed;
240462306a36Sopenharmony_ci
240562306a36Sopenharmony_ci	if (count < 2)
240662306a36Sopenharmony_ci		return false;
240762306a36Sopenharmony_ci
240862306a36Sopenharmony_ci	precomputed = freelist_state_initialize(&state, cachep, count);
240962306a36Sopenharmony_ci
241062306a36Sopenharmony_ci	/* Take a random entry as the objfreelist */
241162306a36Sopenharmony_ci	if (OBJFREELIST_SLAB(cachep)) {
241262306a36Sopenharmony_ci		if (!precomputed)
241362306a36Sopenharmony_ci			objfreelist = count - 1;
241462306a36Sopenharmony_ci		else
241562306a36Sopenharmony_ci			objfreelist = next_random_slot(&state);
241662306a36Sopenharmony_ci		slab->freelist = index_to_obj(cachep, slab, objfreelist) +
241762306a36Sopenharmony_ci						obj_offset(cachep);
241862306a36Sopenharmony_ci		count--;
241962306a36Sopenharmony_ci	}
242062306a36Sopenharmony_ci
242162306a36Sopenharmony_ci	/*
242262306a36Sopenharmony_ci	 * On early boot, generate the list dynamically.
242362306a36Sopenharmony_ci	 * Later use a pre-computed list for speed.
242462306a36Sopenharmony_ci	 */
242562306a36Sopenharmony_ci	if (!precomputed) {
242662306a36Sopenharmony_ci		for (i = 0; i < count; i++)
242762306a36Sopenharmony_ci			set_free_obj(slab, i, i);
242862306a36Sopenharmony_ci
242962306a36Sopenharmony_ci		/* Fisher-Yates shuffle */
243062306a36Sopenharmony_ci		for (i = count - 1; i > 0; i--) {
243162306a36Sopenharmony_ci			rand = get_random_u32_below(i + 1);
243262306a36Sopenharmony_ci			swap_free_obj(slab, i, rand);
243362306a36Sopenharmony_ci		}
243462306a36Sopenharmony_ci	} else {
243562306a36Sopenharmony_ci		for (i = 0; i < count; i++)
243662306a36Sopenharmony_ci			set_free_obj(slab, i, next_random_slot(&state));
243762306a36Sopenharmony_ci	}
243862306a36Sopenharmony_ci
243962306a36Sopenharmony_ci	if (OBJFREELIST_SLAB(cachep))
244062306a36Sopenharmony_ci		set_free_obj(slab, cachep->num - 1, objfreelist);
244162306a36Sopenharmony_ci
244262306a36Sopenharmony_ci	return true;
244362306a36Sopenharmony_ci}
244462306a36Sopenharmony_ci#else
244562306a36Sopenharmony_cistatic inline bool shuffle_freelist(struct kmem_cache *cachep,
244662306a36Sopenharmony_ci				struct slab *slab)
244762306a36Sopenharmony_ci{
244862306a36Sopenharmony_ci	return false;
244962306a36Sopenharmony_ci}
245062306a36Sopenharmony_ci#endif /* CONFIG_SLAB_FREELIST_RANDOM */
245162306a36Sopenharmony_ci
245262306a36Sopenharmony_cistatic void cache_init_objs(struct kmem_cache *cachep,
245362306a36Sopenharmony_ci			    struct slab *slab)
245462306a36Sopenharmony_ci{
245562306a36Sopenharmony_ci	int i;
245662306a36Sopenharmony_ci	void *objp;
245762306a36Sopenharmony_ci	bool shuffled;
245862306a36Sopenharmony_ci
245962306a36Sopenharmony_ci	cache_init_objs_debug(cachep, slab);
246062306a36Sopenharmony_ci
246162306a36Sopenharmony_ci	/* Try to randomize the freelist if enabled */
246262306a36Sopenharmony_ci	shuffled = shuffle_freelist(cachep, slab);
246362306a36Sopenharmony_ci
246462306a36Sopenharmony_ci	if (!shuffled && OBJFREELIST_SLAB(cachep)) {
246562306a36Sopenharmony_ci		slab->freelist = index_to_obj(cachep, slab, cachep->num - 1) +
246662306a36Sopenharmony_ci						obj_offset(cachep);
246762306a36Sopenharmony_ci	}
246862306a36Sopenharmony_ci
246962306a36Sopenharmony_ci	for (i = 0; i < cachep->num; i++) {
247062306a36Sopenharmony_ci		objp = index_to_obj(cachep, slab, i);
247162306a36Sopenharmony_ci		objp = kasan_init_slab_obj(cachep, objp);
247262306a36Sopenharmony_ci
247362306a36Sopenharmony_ci		/* constructor could break poison info */
247462306a36Sopenharmony_ci		if (DEBUG == 0 && cachep->ctor) {
247562306a36Sopenharmony_ci			kasan_unpoison_object_data(cachep, objp);
247662306a36Sopenharmony_ci			cachep->ctor(objp);
247762306a36Sopenharmony_ci			kasan_poison_object_data(cachep, objp);
247862306a36Sopenharmony_ci		}
247962306a36Sopenharmony_ci
248062306a36Sopenharmony_ci		if (!shuffled)
248162306a36Sopenharmony_ci			set_free_obj(slab, i, i);
248262306a36Sopenharmony_ci	}
248362306a36Sopenharmony_ci}
248462306a36Sopenharmony_ci
248562306a36Sopenharmony_cistatic void *slab_get_obj(struct kmem_cache *cachep, struct slab *slab)
248662306a36Sopenharmony_ci{
248762306a36Sopenharmony_ci	void *objp;
248862306a36Sopenharmony_ci
248962306a36Sopenharmony_ci	objp = index_to_obj(cachep, slab, get_free_obj(slab, slab->active));
249062306a36Sopenharmony_ci	slab->active++;
249162306a36Sopenharmony_ci
249262306a36Sopenharmony_ci	return objp;
249362306a36Sopenharmony_ci}
249462306a36Sopenharmony_ci
249562306a36Sopenharmony_cistatic void slab_put_obj(struct kmem_cache *cachep,
249662306a36Sopenharmony_ci			struct slab *slab, void *objp)
249762306a36Sopenharmony_ci{
249862306a36Sopenharmony_ci	unsigned int objnr = obj_to_index(cachep, slab, objp);
249962306a36Sopenharmony_ci#if DEBUG
250062306a36Sopenharmony_ci	unsigned int i;
250162306a36Sopenharmony_ci
250262306a36Sopenharmony_ci	/* Verify double free bug */
250362306a36Sopenharmony_ci	for (i = slab->active; i < cachep->num; i++) {
250462306a36Sopenharmony_ci		if (get_free_obj(slab, i) == objnr) {
250562306a36Sopenharmony_ci			pr_err("slab: double free detected in cache '%s', objp %px\n",
250662306a36Sopenharmony_ci			       cachep->name, objp);
250762306a36Sopenharmony_ci			BUG();
250862306a36Sopenharmony_ci		}
250962306a36Sopenharmony_ci	}
251062306a36Sopenharmony_ci#endif
251162306a36Sopenharmony_ci	slab->active--;
251262306a36Sopenharmony_ci	if (!slab->freelist)
251362306a36Sopenharmony_ci		slab->freelist = objp + obj_offset(cachep);
251462306a36Sopenharmony_ci
251562306a36Sopenharmony_ci	set_free_obj(slab, slab->active, objnr);
251662306a36Sopenharmony_ci}
251762306a36Sopenharmony_ci
251862306a36Sopenharmony_ci/*
251962306a36Sopenharmony_ci * Grow (by 1) the number of slabs within a cache.  This is called by
252062306a36Sopenharmony_ci * kmem_cache_alloc() when there are no active objs left in a cache.
252162306a36Sopenharmony_ci */
252262306a36Sopenharmony_cistatic struct slab *cache_grow_begin(struct kmem_cache *cachep,
252362306a36Sopenharmony_ci				gfp_t flags, int nodeid)
252462306a36Sopenharmony_ci{
252562306a36Sopenharmony_ci	void *freelist;
252662306a36Sopenharmony_ci	size_t offset;
252762306a36Sopenharmony_ci	gfp_t local_flags;
252862306a36Sopenharmony_ci	int slab_node;
252962306a36Sopenharmony_ci	struct kmem_cache_node *n;
253062306a36Sopenharmony_ci	struct slab *slab;
253162306a36Sopenharmony_ci
253262306a36Sopenharmony_ci	/*
253362306a36Sopenharmony_ci	 * Be lazy and only check for valid flags here,  keeping it out of the
253462306a36Sopenharmony_ci	 * critical path in kmem_cache_alloc().
253562306a36Sopenharmony_ci	 */
253662306a36Sopenharmony_ci	if (unlikely(flags & GFP_SLAB_BUG_MASK))
253762306a36Sopenharmony_ci		flags = kmalloc_fix_flags(flags);
253862306a36Sopenharmony_ci
253962306a36Sopenharmony_ci	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
254062306a36Sopenharmony_ci	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
254162306a36Sopenharmony_ci
254262306a36Sopenharmony_ci	check_irq_off();
254362306a36Sopenharmony_ci	if (gfpflags_allow_blocking(local_flags))
254462306a36Sopenharmony_ci		local_irq_enable();
254562306a36Sopenharmony_ci
254662306a36Sopenharmony_ci	/*
254762306a36Sopenharmony_ci	 * Get mem for the objs.  Attempt to allocate a physical page from
254862306a36Sopenharmony_ci	 * 'nodeid'.
254962306a36Sopenharmony_ci	 */
255062306a36Sopenharmony_ci	slab = kmem_getpages(cachep, local_flags, nodeid);
255162306a36Sopenharmony_ci	if (!slab)
255262306a36Sopenharmony_ci		goto failed;
255362306a36Sopenharmony_ci
255462306a36Sopenharmony_ci	slab_node = slab_nid(slab);
255562306a36Sopenharmony_ci	n = get_node(cachep, slab_node);
255662306a36Sopenharmony_ci
255762306a36Sopenharmony_ci	/* Get colour for the slab, and cal the next value. */
255862306a36Sopenharmony_ci	n->colour_next++;
255962306a36Sopenharmony_ci	if (n->colour_next >= cachep->colour)
256062306a36Sopenharmony_ci		n->colour_next = 0;
256162306a36Sopenharmony_ci
256262306a36Sopenharmony_ci	offset = n->colour_next;
256362306a36Sopenharmony_ci	if (offset >= cachep->colour)
256462306a36Sopenharmony_ci		offset = 0;
256562306a36Sopenharmony_ci
256662306a36Sopenharmony_ci	offset *= cachep->colour_off;
256762306a36Sopenharmony_ci
256862306a36Sopenharmony_ci	/*
256962306a36Sopenharmony_ci	 * Call kasan_poison_slab() before calling alloc_slabmgmt(), so
257062306a36Sopenharmony_ci	 * page_address() in the latter returns a non-tagged pointer,
257162306a36Sopenharmony_ci	 * as it should be for slab pages.
257262306a36Sopenharmony_ci	 */
257362306a36Sopenharmony_ci	kasan_poison_slab(slab);
257462306a36Sopenharmony_ci
257562306a36Sopenharmony_ci	/* Get slab management. */
257662306a36Sopenharmony_ci	freelist = alloc_slabmgmt(cachep, slab, offset,
257762306a36Sopenharmony_ci			local_flags & ~GFP_CONSTRAINT_MASK, slab_node);
257862306a36Sopenharmony_ci	if (OFF_SLAB(cachep) && !freelist)
257962306a36Sopenharmony_ci		goto opps1;
258062306a36Sopenharmony_ci
258162306a36Sopenharmony_ci	slab->slab_cache = cachep;
258262306a36Sopenharmony_ci	slab->freelist = freelist;
258362306a36Sopenharmony_ci
258462306a36Sopenharmony_ci	cache_init_objs(cachep, slab);
258562306a36Sopenharmony_ci
258662306a36Sopenharmony_ci	if (gfpflags_allow_blocking(local_flags))
258762306a36Sopenharmony_ci		local_irq_disable();
258862306a36Sopenharmony_ci
258962306a36Sopenharmony_ci	return slab;
259062306a36Sopenharmony_ci
259162306a36Sopenharmony_ciopps1:
259262306a36Sopenharmony_ci	kmem_freepages(cachep, slab);
259362306a36Sopenharmony_cifailed:
259462306a36Sopenharmony_ci	if (gfpflags_allow_blocking(local_flags))
259562306a36Sopenharmony_ci		local_irq_disable();
259662306a36Sopenharmony_ci	return NULL;
259762306a36Sopenharmony_ci}
259862306a36Sopenharmony_ci
259962306a36Sopenharmony_cistatic void cache_grow_end(struct kmem_cache *cachep, struct slab *slab)
260062306a36Sopenharmony_ci{
260162306a36Sopenharmony_ci	struct kmem_cache_node *n;
260262306a36Sopenharmony_ci	void *list = NULL;
260362306a36Sopenharmony_ci
260462306a36Sopenharmony_ci	check_irq_off();
260562306a36Sopenharmony_ci
260662306a36Sopenharmony_ci	if (!slab)
260762306a36Sopenharmony_ci		return;
260862306a36Sopenharmony_ci
260962306a36Sopenharmony_ci	INIT_LIST_HEAD(&slab->slab_list);
261062306a36Sopenharmony_ci	n = get_node(cachep, slab_nid(slab));
261162306a36Sopenharmony_ci
261262306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
261362306a36Sopenharmony_ci	n->total_slabs++;
261462306a36Sopenharmony_ci	if (!slab->active) {
261562306a36Sopenharmony_ci		list_add_tail(&slab->slab_list, &n->slabs_free);
261662306a36Sopenharmony_ci		n->free_slabs++;
261762306a36Sopenharmony_ci	} else
261862306a36Sopenharmony_ci		fixup_slab_list(cachep, n, slab, &list);
261962306a36Sopenharmony_ci
262062306a36Sopenharmony_ci	STATS_INC_GROWN(cachep);
262162306a36Sopenharmony_ci	n->free_objects += cachep->num - slab->active;
262262306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
262362306a36Sopenharmony_ci
262462306a36Sopenharmony_ci	fixup_objfreelist_debug(cachep, &list);
262562306a36Sopenharmony_ci}
262662306a36Sopenharmony_ci
262762306a36Sopenharmony_ci#if DEBUG
262862306a36Sopenharmony_ci
262962306a36Sopenharmony_ci/*
263062306a36Sopenharmony_ci * Perform extra freeing checks:
263162306a36Sopenharmony_ci * - detect bad pointers.
263262306a36Sopenharmony_ci * - POISON/RED_ZONE checking
263362306a36Sopenharmony_ci */
263462306a36Sopenharmony_cistatic void kfree_debugcheck(const void *objp)
263562306a36Sopenharmony_ci{
263662306a36Sopenharmony_ci	if (!virt_addr_valid(objp)) {
263762306a36Sopenharmony_ci		pr_err("kfree_debugcheck: out of range ptr %lxh\n",
263862306a36Sopenharmony_ci		       (unsigned long)objp);
263962306a36Sopenharmony_ci		BUG();
264062306a36Sopenharmony_ci	}
264162306a36Sopenharmony_ci}
264262306a36Sopenharmony_ci
264362306a36Sopenharmony_cistatic inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
264462306a36Sopenharmony_ci{
264562306a36Sopenharmony_ci	unsigned long long redzone1, redzone2;
264662306a36Sopenharmony_ci
264762306a36Sopenharmony_ci	redzone1 = *dbg_redzone1(cache, obj);
264862306a36Sopenharmony_ci	redzone2 = *dbg_redzone2(cache, obj);
264962306a36Sopenharmony_ci
265062306a36Sopenharmony_ci	/*
265162306a36Sopenharmony_ci	 * Redzone is ok.
265262306a36Sopenharmony_ci	 */
265362306a36Sopenharmony_ci	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
265462306a36Sopenharmony_ci		return;
265562306a36Sopenharmony_ci
265662306a36Sopenharmony_ci	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
265762306a36Sopenharmony_ci		slab_error(cache, "double free detected");
265862306a36Sopenharmony_ci	else
265962306a36Sopenharmony_ci		slab_error(cache, "memory outside object was overwritten");
266062306a36Sopenharmony_ci
266162306a36Sopenharmony_ci	pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
266262306a36Sopenharmony_ci	       obj, redzone1, redzone2);
266362306a36Sopenharmony_ci}
266462306a36Sopenharmony_ci
266562306a36Sopenharmony_cistatic void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
266662306a36Sopenharmony_ci				   unsigned long caller)
266762306a36Sopenharmony_ci{
266862306a36Sopenharmony_ci	unsigned int objnr;
266962306a36Sopenharmony_ci	struct slab *slab;
267062306a36Sopenharmony_ci
267162306a36Sopenharmony_ci	BUG_ON(virt_to_cache(objp) != cachep);
267262306a36Sopenharmony_ci
267362306a36Sopenharmony_ci	objp -= obj_offset(cachep);
267462306a36Sopenharmony_ci	kfree_debugcheck(objp);
267562306a36Sopenharmony_ci	slab = virt_to_slab(objp);
267662306a36Sopenharmony_ci
267762306a36Sopenharmony_ci	if (cachep->flags & SLAB_RED_ZONE) {
267862306a36Sopenharmony_ci		verify_redzone_free(cachep, objp);
267962306a36Sopenharmony_ci		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
268062306a36Sopenharmony_ci		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
268162306a36Sopenharmony_ci	}
268262306a36Sopenharmony_ci	if (cachep->flags & SLAB_STORE_USER)
268362306a36Sopenharmony_ci		*dbg_userword(cachep, objp) = (void *)caller;
268462306a36Sopenharmony_ci
268562306a36Sopenharmony_ci	objnr = obj_to_index(cachep, slab, objp);
268662306a36Sopenharmony_ci
268762306a36Sopenharmony_ci	BUG_ON(objnr >= cachep->num);
268862306a36Sopenharmony_ci	BUG_ON(objp != index_to_obj(cachep, slab, objnr));
268962306a36Sopenharmony_ci
269062306a36Sopenharmony_ci	if (cachep->flags & SLAB_POISON) {
269162306a36Sopenharmony_ci		poison_obj(cachep, objp, POISON_FREE);
269262306a36Sopenharmony_ci		slab_kernel_map(cachep, objp, 0);
269362306a36Sopenharmony_ci	}
269462306a36Sopenharmony_ci	return objp;
269562306a36Sopenharmony_ci}
269662306a36Sopenharmony_ci
269762306a36Sopenharmony_ci#else
269862306a36Sopenharmony_ci#define kfree_debugcheck(x) do { } while(0)
269962306a36Sopenharmony_ci#define cache_free_debugcheck(x, objp, z) (objp)
270062306a36Sopenharmony_ci#endif
270162306a36Sopenharmony_ci
270262306a36Sopenharmony_cistatic inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
270362306a36Sopenharmony_ci						void **list)
270462306a36Sopenharmony_ci{
270562306a36Sopenharmony_ci#if DEBUG
270662306a36Sopenharmony_ci	void *next = *list;
270762306a36Sopenharmony_ci	void *objp;
270862306a36Sopenharmony_ci
270962306a36Sopenharmony_ci	while (next) {
271062306a36Sopenharmony_ci		objp = next - obj_offset(cachep);
271162306a36Sopenharmony_ci		next = *(void **)next;
271262306a36Sopenharmony_ci		poison_obj(cachep, objp, POISON_FREE);
271362306a36Sopenharmony_ci	}
271462306a36Sopenharmony_ci#endif
271562306a36Sopenharmony_ci}
271662306a36Sopenharmony_ci
271762306a36Sopenharmony_cistatic inline void fixup_slab_list(struct kmem_cache *cachep,
271862306a36Sopenharmony_ci				struct kmem_cache_node *n, struct slab *slab,
271962306a36Sopenharmony_ci				void **list)
272062306a36Sopenharmony_ci{
272162306a36Sopenharmony_ci	/* move slabp to correct slabp list: */
272262306a36Sopenharmony_ci	list_del(&slab->slab_list);
272362306a36Sopenharmony_ci	if (slab->active == cachep->num) {
272462306a36Sopenharmony_ci		list_add(&slab->slab_list, &n->slabs_full);
272562306a36Sopenharmony_ci		if (OBJFREELIST_SLAB(cachep)) {
272662306a36Sopenharmony_ci#if DEBUG
272762306a36Sopenharmony_ci			/* Poisoning will be done without holding the lock */
272862306a36Sopenharmony_ci			if (cachep->flags & SLAB_POISON) {
272962306a36Sopenharmony_ci				void **objp = slab->freelist;
273062306a36Sopenharmony_ci
273162306a36Sopenharmony_ci				*objp = *list;
273262306a36Sopenharmony_ci				*list = objp;
273362306a36Sopenharmony_ci			}
273462306a36Sopenharmony_ci#endif
273562306a36Sopenharmony_ci			slab->freelist = NULL;
273662306a36Sopenharmony_ci		}
273762306a36Sopenharmony_ci	} else
273862306a36Sopenharmony_ci		list_add(&slab->slab_list, &n->slabs_partial);
273962306a36Sopenharmony_ci}
274062306a36Sopenharmony_ci
274162306a36Sopenharmony_ci/* Try to find non-pfmemalloc slab if needed */
274262306a36Sopenharmony_cistatic noinline struct slab *get_valid_first_slab(struct kmem_cache_node *n,
274362306a36Sopenharmony_ci					struct slab *slab, bool pfmemalloc)
274462306a36Sopenharmony_ci{
274562306a36Sopenharmony_ci	if (!slab)
274662306a36Sopenharmony_ci		return NULL;
274762306a36Sopenharmony_ci
274862306a36Sopenharmony_ci	if (pfmemalloc)
274962306a36Sopenharmony_ci		return slab;
275062306a36Sopenharmony_ci
275162306a36Sopenharmony_ci	if (!slab_test_pfmemalloc(slab))
275262306a36Sopenharmony_ci		return slab;
275362306a36Sopenharmony_ci
275462306a36Sopenharmony_ci	/* No need to keep pfmemalloc slab if we have enough free objects */
275562306a36Sopenharmony_ci	if (n->free_objects > n->free_limit) {
275662306a36Sopenharmony_ci		slab_clear_pfmemalloc(slab);
275762306a36Sopenharmony_ci		return slab;
275862306a36Sopenharmony_ci	}
275962306a36Sopenharmony_ci
276062306a36Sopenharmony_ci	/* Move pfmemalloc slab to the end of list to speed up next search */
276162306a36Sopenharmony_ci	list_del(&slab->slab_list);
276262306a36Sopenharmony_ci	if (!slab->active) {
276362306a36Sopenharmony_ci		list_add_tail(&slab->slab_list, &n->slabs_free);
276462306a36Sopenharmony_ci		n->free_slabs++;
276562306a36Sopenharmony_ci	} else
276662306a36Sopenharmony_ci		list_add_tail(&slab->slab_list, &n->slabs_partial);
276762306a36Sopenharmony_ci
276862306a36Sopenharmony_ci	list_for_each_entry(slab, &n->slabs_partial, slab_list) {
276962306a36Sopenharmony_ci		if (!slab_test_pfmemalloc(slab))
277062306a36Sopenharmony_ci			return slab;
277162306a36Sopenharmony_ci	}
277262306a36Sopenharmony_ci
277362306a36Sopenharmony_ci	n->free_touched = 1;
277462306a36Sopenharmony_ci	list_for_each_entry(slab, &n->slabs_free, slab_list) {
277562306a36Sopenharmony_ci		if (!slab_test_pfmemalloc(slab)) {
277662306a36Sopenharmony_ci			n->free_slabs--;
277762306a36Sopenharmony_ci			return slab;
277862306a36Sopenharmony_ci		}
277962306a36Sopenharmony_ci	}
278062306a36Sopenharmony_ci
278162306a36Sopenharmony_ci	return NULL;
278262306a36Sopenharmony_ci}
278362306a36Sopenharmony_ci
278462306a36Sopenharmony_cistatic struct slab *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
278562306a36Sopenharmony_ci{
278662306a36Sopenharmony_ci	struct slab *slab;
278762306a36Sopenharmony_ci
278862306a36Sopenharmony_ci	assert_raw_spin_locked(&n->list_lock);
278962306a36Sopenharmony_ci	slab = list_first_entry_or_null(&n->slabs_partial, struct slab,
279062306a36Sopenharmony_ci					slab_list);
279162306a36Sopenharmony_ci	if (!slab) {
279262306a36Sopenharmony_ci		n->free_touched = 1;
279362306a36Sopenharmony_ci		slab = list_first_entry_or_null(&n->slabs_free, struct slab,
279462306a36Sopenharmony_ci						slab_list);
279562306a36Sopenharmony_ci		if (slab)
279662306a36Sopenharmony_ci			n->free_slabs--;
279762306a36Sopenharmony_ci	}
279862306a36Sopenharmony_ci
279962306a36Sopenharmony_ci	if (sk_memalloc_socks())
280062306a36Sopenharmony_ci		slab = get_valid_first_slab(n, slab, pfmemalloc);
280162306a36Sopenharmony_ci
280262306a36Sopenharmony_ci	return slab;
280362306a36Sopenharmony_ci}
280462306a36Sopenharmony_ci
280562306a36Sopenharmony_cistatic noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
280662306a36Sopenharmony_ci				struct kmem_cache_node *n, gfp_t flags)
280762306a36Sopenharmony_ci{
280862306a36Sopenharmony_ci	struct slab *slab;
280962306a36Sopenharmony_ci	void *obj;
281062306a36Sopenharmony_ci	void *list = NULL;
281162306a36Sopenharmony_ci
281262306a36Sopenharmony_ci	if (!gfp_pfmemalloc_allowed(flags))
281362306a36Sopenharmony_ci		return NULL;
281462306a36Sopenharmony_ci
281562306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
281662306a36Sopenharmony_ci	slab = get_first_slab(n, true);
281762306a36Sopenharmony_ci	if (!slab) {
281862306a36Sopenharmony_ci		raw_spin_unlock(&n->list_lock);
281962306a36Sopenharmony_ci		return NULL;
282062306a36Sopenharmony_ci	}
282162306a36Sopenharmony_ci
282262306a36Sopenharmony_ci	obj = slab_get_obj(cachep, slab);
282362306a36Sopenharmony_ci	n->free_objects--;
282462306a36Sopenharmony_ci
282562306a36Sopenharmony_ci	fixup_slab_list(cachep, n, slab, &list);
282662306a36Sopenharmony_ci
282762306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
282862306a36Sopenharmony_ci	fixup_objfreelist_debug(cachep, &list);
282962306a36Sopenharmony_ci
283062306a36Sopenharmony_ci	return obj;
283162306a36Sopenharmony_ci}
283262306a36Sopenharmony_ci
283362306a36Sopenharmony_ci/*
283462306a36Sopenharmony_ci * Slab list should be fixed up by fixup_slab_list() for existing slab
283562306a36Sopenharmony_ci * or cache_grow_end() for new slab
283662306a36Sopenharmony_ci */
283762306a36Sopenharmony_cistatic __always_inline int alloc_block(struct kmem_cache *cachep,
283862306a36Sopenharmony_ci		struct array_cache *ac, struct slab *slab, int batchcount)
283962306a36Sopenharmony_ci{
284062306a36Sopenharmony_ci	/*
284162306a36Sopenharmony_ci	 * There must be at least one object available for
284262306a36Sopenharmony_ci	 * allocation.
284362306a36Sopenharmony_ci	 */
284462306a36Sopenharmony_ci	BUG_ON(slab->active >= cachep->num);
284562306a36Sopenharmony_ci
284662306a36Sopenharmony_ci	while (slab->active < cachep->num && batchcount--) {
284762306a36Sopenharmony_ci		STATS_INC_ALLOCED(cachep);
284862306a36Sopenharmony_ci		STATS_INC_ACTIVE(cachep);
284962306a36Sopenharmony_ci		STATS_SET_HIGH(cachep);
285062306a36Sopenharmony_ci
285162306a36Sopenharmony_ci		ac->entry[ac->avail++] = slab_get_obj(cachep, slab);
285262306a36Sopenharmony_ci	}
285362306a36Sopenharmony_ci
285462306a36Sopenharmony_ci	return batchcount;
285562306a36Sopenharmony_ci}
285662306a36Sopenharmony_ci
285762306a36Sopenharmony_cistatic void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
285862306a36Sopenharmony_ci{
285962306a36Sopenharmony_ci	int batchcount;
286062306a36Sopenharmony_ci	struct kmem_cache_node *n;
286162306a36Sopenharmony_ci	struct array_cache *ac, *shared;
286262306a36Sopenharmony_ci	int node;
286362306a36Sopenharmony_ci	void *list = NULL;
286462306a36Sopenharmony_ci	struct slab *slab;
286562306a36Sopenharmony_ci
286662306a36Sopenharmony_ci	check_irq_off();
286762306a36Sopenharmony_ci	node = numa_mem_id();
286862306a36Sopenharmony_ci
286962306a36Sopenharmony_ci	ac = cpu_cache_get(cachep);
287062306a36Sopenharmony_ci	batchcount = ac->batchcount;
287162306a36Sopenharmony_ci	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
287262306a36Sopenharmony_ci		/*
287362306a36Sopenharmony_ci		 * If there was little recent activity on this cache, then
287462306a36Sopenharmony_ci		 * perform only a partial refill.  Otherwise we could generate
287562306a36Sopenharmony_ci		 * refill bouncing.
287662306a36Sopenharmony_ci		 */
287762306a36Sopenharmony_ci		batchcount = BATCHREFILL_LIMIT;
287862306a36Sopenharmony_ci	}
287962306a36Sopenharmony_ci	n = get_node(cachep, node);
288062306a36Sopenharmony_ci
288162306a36Sopenharmony_ci	BUG_ON(ac->avail > 0 || !n);
288262306a36Sopenharmony_ci	shared = READ_ONCE(n->shared);
288362306a36Sopenharmony_ci	if (!n->free_objects && (!shared || !shared->avail))
288462306a36Sopenharmony_ci		goto direct_grow;
288562306a36Sopenharmony_ci
288662306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
288762306a36Sopenharmony_ci	shared = READ_ONCE(n->shared);
288862306a36Sopenharmony_ci
288962306a36Sopenharmony_ci	/* See if we can refill from the shared array */
289062306a36Sopenharmony_ci	if (shared && transfer_objects(ac, shared, batchcount)) {
289162306a36Sopenharmony_ci		shared->touched = 1;
289262306a36Sopenharmony_ci		goto alloc_done;
289362306a36Sopenharmony_ci	}
289462306a36Sopenharmony_ci
289562306a36Sopenharmony_ci	while (batchcount > 0) {
289662306a36Sopenharmony_ci		/* Get slab alloc is to come from. */
289762306a36Sopenharmony_ci		slab = get_first_slab(n, false);
289862306a36Sopenharmony_ci		if (!slab)
289962306a36Sopenharmony_ci			goto must_grow;
290062306a36Sopenharmony_ci
290162306a36Sopenharmony_ci		check_spinlock_acquired(cachep);
290262306a36Sopenharmony_ci
290362306a36Sopenharmony_ci		batchcount = alloc_block(cachep, ac, slab, batchcount);
290462306a36Sopenharmony_ci		fixup_slab_list(cachep, n, slab, &list);
290562306a36Sopenharmony_ci	}
290662306a36Sopenharmony_ci
290762306a36Sopenharmony_cimust_grow:
290862306a36Sopenharmony_ci	n->free_objects -= ac->avail;
290962306a36Sopenharmony_cialloc_done:
291062306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
291162306a36Sopenharmony_ci	fixup_objfreelist_debug(cachep, &list);
291262306a36Sopenharmony_ci
291362306a36Sopenharmony_cidirect_grow:
291462306a36Sopenharmony_ci	if (unlikely(!ac->avail)) {
291562306a36Sopenharmony_ci		/* Check if we can use obj in pfmemalloc slab */
291662306a36Sopenharmony_ci		if (sk_memalloc_socks()) {
291762306a36Sopenharmony_ci			void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
291862306a36Sopenharmony_ci
291962306a36Sopenharmony_ci			if (obj)
292062306a36Sopenharmony_ci				return obj;
292162306a36Sopenharmony_ci		}
292262306a36Sopenharmony_ci
292362306a36Sopenharmony_ci		slab = cache_grow_begin(cachep, gfp_exact_node(flags), node);
292462306a36Sopenharmony_ci
292562306a36Sopenharmony_ci		/*
292662306a36Sopenharmony_ci		 * cache_grow_begin() can reenable interrupts,
292762306a36Sopenharmony_ci		 * then ac could change.
292862306a36Sopenharmony_ci		 */
292962306a36Sopenharmony_ci		ac = cpu_cache_get(cachep);
293062306a36Sopenharmony_ci		if (!ac->avail && slab)
293162306a36Sopenharmony_ci			alloc_block(cachep, ac, slab, batchcount);
293262306a36Sopenharmony_ci		cache_grow_end(cachep, slab);
293362306a36Sopenharmony_ci
293462306a36Sopenharmony_ci		if (!ac->avail)
293562306a36Sopenharmony_ci			return NULL;
293662306a36Sopenharmony_ci	}
293762306a36Sopenharmony_ci	ac->touched = 1;
293862306a36Sopenharmony_ci
293962306a36Sopenharmony_ci	return ac->entry[--ac->avail];
294062306a36Sopenharmony_ci}
294162306a36Sopenharmony_ci
294262306a36Sopenharmony_ci#if DEBUG
294362306a36Sopenharmony_cistatic void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
294462306a36Sopenharmony_ci				gfp_t flags, void *objp, unsigned long caller)
294562306a36Sopenharmony_ci{
294662306a36Sopenharmony_ci	WARN_ON_ONCE(cachep->ctor && (flags & __GFP_ZERO));
294762306a36Sopenharmony_ci	if (!objp || is_kfence_address(objp))
294862306a36Sopenharmony_ci		return objp;
294962306a36Sopenharmony_ci	if (cachep->flags & SLAB_POISON) {
295062306a36Sopenharmony_ci		check_poison_obj(cachep, objp);
295162306a36Sopenharmony_ci		slab_kernel_map(cachep, objp, 1);
295262306a36Sopenharmony_ci		poison_obj(cachep, objp, POISON_INUSE);
295362306a36Sopenharmony_ci	}
295462306a36Sopenharmony_ci	if (cachep->flags & SLAB_STORE_USER)
295562306a36Sopenharmony_ci		*dbg_userword(cachep, objp) = (void *)caller;
295662306a36Sopenharmony_ci
295762306a36Sopenharmony_ci	if (cachep->flags & SLAB_RED_ZONE) {
295862306a36Sopenharmony_ci		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
295962306a36Sopenharmony_ci				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
296062306a36Sopenharmony_ci			slab_error(cachep, "double free, or memory outside object was overwritten");
296162306a36Sopenharmony_ci			pr_err("%px: redzone 1:0x%llx, redzone 2:0x%llx\n",
296262306a36Sopenharmony_ci			       objp, *dbg_redzone1(cachep, objp),
296362306a36Sopenharmony_ci			       *dbg_redzone2(cachep, objp));
296462306a36Sopenharmony_ci		}
296562306a36Sopenharmony_ci		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
296662306a36Sopenharmony_ci		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
296762306a36Sopenharmony_ci	}
296862306a36Sopenharmony_ci
296962306a36Sopenharmony_ci	objp += obj_offset(cachep);
297062306a36Sopenharmony_ci	if (cachep->ctor && cachep->flags & SLAB_POISON)
297162306a36Sopenharmony_ci		cachep->ctor(objp);
297262306a36Sopenharmony_ci	if ((unsigned long)objp & (arch_slab_minalign() - 1)) {
297362306a36Sopenharmony_ci		pr_err("0x%px: not aligned to arch_slab_minalign()=%u\n", objp,
297462306a36Sopenharmony_ci		       arch_slab_minalign());
297562306a36Sopenharmony_ci	}
297662306a36Sopenharmony_ci	return objp;
297762306a36Sopenharmony_ci}
297862306a36Sopenharmony_ci#else
297962306a36Sopenharmony_ci#define cache_alloc_debugcheck_after(a, b, objp, d) (objp)
298062306a36Sopenharmony_ci#endif
298162306a36Sopenharmony_ci
298262306a36Sopenharmony_cistatic inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
298362306a36Sopenharmony_ci{
298462306a36Sopenharmony_ci	void *objp;
298562306a36Sopenharmony_ci	struct array_cache *ac;
298662306a36Sopenharmony_ci
298762306a36Sopenharmony_ci	check_irq_off();
298862306a36Sopenharmony_ci
298962306a36Sopenharmony_ci	ac = cpu_cache_get(cachep);
299062306a36Sopenharmony_ci	if (likely(ac->avail)) {
299162306a36Sopenharmony_ci		ac->touched = 1;
299262306a36Sopenharmony_ci		objp = ac->entry[--ac->avail];
299362306a36Sopenharmony_ci
299462306a36Sopenharmony_ci		STATS_INC_ALLOCHIT(cachep);
299562306a36Sopenharmony_ci		goto out;
299662306a36Sopenharmony_ci	}
299762306a36Sopenharmony_ci
299862306a36Sopenharmony_ci	STATS_INC_ALLOCMISS(cachep);
299962306a36Sopenharmony_ci	objp = cache_alloc_refill(cachep, flags);
300062306a36Sopenharmony_ci	/*
300162306a36Sopenharmony_ci	 * the 'ac' may be updated by cache_alloc_refill(),
300262306a36Sopenharmony_ci	 * and kmemleak_erase() requires its correct value.
300362306a36Sopenharmony_ci	 */
300462306a36Sopenharmony_ci	ac = cpu_cache_get(cachep);
300562306a36Sopenharmony_ci
300662306a36Sopenharmony_ciout:
300762306a36Sopenharmony_ci	/*
300862306a36Sopenharmony_ci	 * To avoid a false negative, if an object that is in one of the
300962306a36Sopenharmony_ci	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
301062306a36Sopenharmony_ci	 * treat the array pointers as a reference to the object.
301162306a36Sopenharmony_ci	 */
301262306a36Sopenharmony_ci	if (objp)
301362306a36Sopenharmony_ci		kmemleak_erase(&ac->entry[ac->avail]);
301462306a36Sopenharmony_ci	return objp;
301562306a36Sopenharmony_ci}
301662306a36Sopenharmony_ci
301762306a36Sopenharmony_ci#ifdef CONFIG_NUMA
301862306a36Sopenharmony_cistatic void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
301962306a36Sopenharmony_ci
302062306a36Sopenharmony_ci/*
302162306a36Sopenharmony_ci * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
302262306a36Sopenharmony_ci *
302362306a36Sopenharmony_ci * If we are in_interrupt, then process context, including cpusets and
302462306a36Sopenharmony_ci * mempolicy, may not apply and should not be used for allocation policy.
302562306a36Sopenharmony_ci */
302662306a36Sopenharmony_cistatic void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
302762306a36Sopenharmony_ci{
302862306a36Sopenharmony_ci	int nid_alloc, nid_here;
302962306a36Sopenharmony_ci
303062306a36Sopenharmony_ci	if (in_interrupt() || (flags & __GFP_THISNODE))
303162306a36Sopenharmony_ci		return NULL;
303262306a36Sopenharmony_ci	nid_alloc = nid_here = numa_mem_id();
303362306a36Sopenharmony_ci	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
303462306a36Sopenharmony_ci		nid_alloc = cpuset_slab_spread_node();
303562306a36Sopenharmony_ci	else if (current->mempolicy)
303662306a36Sopenharmony_ci		nid_alloc = mempolicy_slab_node();
303762306a36Sopenharmony_ci	if (nid_alloc != nid_here)
303862306a36Sopenharmony_ci		return ____cache_alloc_node(cachep, flags, nid_alloc);
303962306a36Sopenharmony_ci	return NULL;
304062306a36Sopenharmony_ci}
304162306a36Sopenharmony_ci
304262306a36Sopenharmony_ci/*
304362306a36Sopenharmony_ci * Fallback function if there was no memory available and no objects on a
304462306a36Sopenharmony_ci * certain node and fall back is permitted. First we scan all the
304562306a36Sopenharmony_ci * available node for available objects. If that fails then we
304662306a36Sopenharmony_ci * perform an allocation without specifying a node. This allows the page
304762306a36Sopenharmony_ci * allocator to do its reclaim / fallback magic. We then insert the
304862306a36Sopenharmony_ci * slab into the proper nodelist and then allocate from it.
304962306a36Sopenharmony_ci */
305062306a36Sopenharmony_cistatic void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
305162306a36Sopenharmony_ci{
305262306a36Sopenharmony_ci	struct zonelist *zonelist;
305362306a36Sopenharmony_ci	struct zoneref *z;
305462306a36Sopenharmony_ci	struct zone *zone;
305562306a36Sopenharmony_ci	enum zone_type highest_zoneidx = gfp_zone(flags);
305662306a36Sopenharmony_ci	void *obj = NULL;
305762306a36Sopenharmony_ci	struct slab *slab;
305862306a36Sopenharmony_ci	int nid;
305962306a36Sopenharmony_ci	unsigned int cpuset_mems_cookie;
306062306a36Sopenharmony_ci
306162306a36Sopenharmony_ci	if (flags & __GFP_THISNODE)
306262306a36Sopenharmony_ci		return NULL;
306362306a36Sopenharmony_ci
306462306a36Sopenharmony_ciretry_cpuset:
306562306a36Sopenharmony_ci	cpuset_mems_cookie = read_mems_allowed_begin();
306662306a36Sopenharmony_ci	zonelist = node_zonelist(mempolicy_slab_node(), flags);
306762306a36Sopenharmony_ci
306862306a36Sopenharmony_ciretry:
306962306a36Sopenharmony_ci	/*
307062306a36Sopenharmony_ci	 * Look through allowed nodes for objects available
307162306a36Sopenharmony_ci	 * from existing per node queues.
307262306a36Sopenharmony_ci	 */
307362306a36Sopenharmony_ci	for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
307462306a36Sopenharmony_ci		nid = zone_to_nid(zone);
307562306a36Sopenharmony_ci
307662306a36Sopenharmony_ci		if (cpuset_zone_allowed(zone, flags) &&
307762306a36Sopenharmony_ci			get_node(cache, nid) &&
307862306a36Sopenharmony_ci			get_node(cache, nid)->free_objects) {
307962306a36Sopenharmony_ci				obj = ____cache_alloc_node(cache,
308062306a36Sopenharmony_ci					gfp_exact_node(flags), nid);
308162306a36Sopenharmony_ci				if (obj)
308262306a36Sopenharmony_ci					break;
308362306a36Sopenharmony_ci		}
308462306a36Sopenharmony_ci	}
308562306a36Sopenharmony_ci
308662306a36Sopenharmony_ci	if (!obj) {
308762306a36Sopenharmony_ci		/*
308862306a36Sopenharmony_ci		 * This allocation will be performed within the constraints
308962306a36Sopenharmony_ci		 * of the current cpuset / memory policy requirements.
309062306a36Sopenharmony_ci		 * We may trigger various forms of reclaim on the allowed
309162306a36Sopenharmony_ci		 * set and go into memory reserves if necessary.
309262306a36Sopenharmony_ci		 */
309362306a36Sopenharmony_ci		slab = cache_grow_begin(cache, flags, numa_mem_id());
309462306a36Sopenharmony_ci		cache_grow_end(cache, slab);
309562306a36Sopenharmony_ci		if (slab) {
309662306a36Sopenharmony_ci			nid = slab_nid(slab);
309762306a36Sopenharmony_ci			obj = ____cache_alloc_node(cache,
309862306a36Sopenharmony_ci				gfp_exact_node(flags), nid);
309962306a36Sopenharmony_ci
310062306a36Sopenharmony_ci			/*
310162306a36Sopenharmony_ci			 * Another processor may allocate the objects in
310262306a36Sopenharmony_ci			 * the slab since we are not holding any locks.
310362306a36Sopenharmony_ci			 */
310462306a36Sopenharmony_ci			if (!obj)
310562306a36Sopenharmony_ci				goto retry;
310662306a36Sopenharmony_ci		}
310762306a36Sopenharmony_ci	}
310862306a36Sopenharmony_ci
310962306a36Sopenharmony_ci	if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
311062306a36Sopenharmony_ci		goto retry_cpuset;
311162306a36Sopenharmony_ci	return obj;
311262306a36Sopenharmony_ci}
311362306a36Sopenharmony_ci
311462306a36Sopenharmony_ci/*
311562306a36Sopenharmony_ci * An interface to enable slab creation on nodeid
311662306a36Sopenharmony_ci */
311762306a36Sopenharmony_cistatic void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
311862306a36Sopenharmony_ci				int nodeid)
311962306a36Sopenharmony_ci{
312062306a36Sopenharmony_ci	struct slab *slab;
312162306a36Sopenharmony_ci	struct kmem_cache_node *n;
312262306a36Sopenharmony_ci	void *obj = NULL;
312362306a36Sopenharmony_ci	void *list = NULL;
312462306a36Sopenharmony_ci
312562306a36Sopenharmony_ci	VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
312662306a36Sopenharmony_ci	n = get_node(cachep, nodeid);
312762306a36Sopenharmony_ci	BUG_ON(!n);
312862306a36Sopenharmony_ci
312962306a36Sopenharmony_ci	check_irq_off();
313062306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
313162306a36Sopenharmony_ci	slab = get_first_slab(n, false);
313262306a36Sopenharmony_ci	if (!slab)
313362306a36Sopenharmony_ci		goto must_grow;
313462306a36Sopenharmony_ci
313562306a36Sopenharmony_ci	check_spinlock_acquired_node(cachep, nodeid);
313662306a36Sopenharmony_ci
313762306a36Sopenharmony_ci	STATS_INC_NODEALLOCS(cachep);
313862306a36Sopenharmony_ci	STATS_INC_ACTIVE(cachep);
313962306a36Sopenharmony_ci	STATS_SET_HIGH(cachep);
314062306a36Sopenharmony_ci
314162306a36Sopenharmony_ci	BUG_ON(slab->active == cachep->num);
314262306a36Sopenharmony_ci
314362306a36Sopenharmony_ci	obj = slab_get_obj(cachep, slab);
314462306a36Sopenharmony_ci	n->free_objects--;
314562306a36Sopenharmony_ci
314662306a36Sopenharmony_ci	fixup_slab_list(cachep, n, slab, &list);
314762306a36Sopenharmony_ci
314862306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
314962306a36Sopenharmony_ci	fixup_objfreelist_debug(cachep, &list);
315062306a36Sopenharmony_ci	return obj;
315162306a36Sopenharmony_ci
315262306a36Sopenharmony_cimust_grow:
315362306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
315462306a36Sopenharmony_ci	slab = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
315562306a36Sopenharmony_ci	if (slab) {
315662306a36Sopenharmony_ci		/* This slab isn't counted yet so don't update free_objects */
315762306a36Sopenharmony_ci		obj = slab_get_obj(cachep, slab);
315862306a36Sopenharmony_ci	}
315962306a36Sopenharmony_ci	cache_grow_end(cachep, slab);
316062306a36Sopenharmony_ci
316162306a36Sopenharmony_ci	return obj ? obj : fallback_alloc(cachep, flags);
316262306a36Sopenharmony_ci}
316362306a36Sopenharmony_ci
316462306a36Sopenharmony_cistatic __always_inline void *
316562306a36Sopenharmony_ci__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid)
316662306a36Sopenharmony_ci{
316762306a36Sopenharmony_ci	void *objp = NULL;
316862306a36Sopenharmony_ci	int slab_node = numa_mem_id();
316962306a36Sopenharmony_ci
317062306a36Sopenharmony_ci	if (nodeid == NUMA_NO_NODE) {
317162306a36Sopenharmony_ci		if (current->mempolicy || cpuset_do_slab_mem_spread()) {
317262306a36Sopenharmony_ci			objp = alternate_node_alloc(cachep, flags);
317362306a36Sopenharmony_ci			if (objp)
317462306a36Sopenharmony_ci				goto out;
317562306a36Sopenharmony_ci		}
317662306a36Sopenharmony_ci		/*
317762306a36Sopenharmony_ci		 * Use the locally cached objects if possible.
317862306a36Sopenharmony_ci		 * However ____cache_alloc does not allow fallback
317962306a36Sopenharmony_ci		 * to other nodes. It may fail while we still have
318062306a36Sopenharmony_ci		 * objects on other nodes available.
318162306a36Sopenharmony_ci		 */
318262306a36Sopenharmony_ci		objp = ____cache_alloc(cachep, flags);
318362306a36Sopenharmony_ci		nodeid = slab_node;
318462306a36Sopenharmony_ci	} else if (nodeid == slab_node) {
318562306a36Sopenharmony_ci		objp = ____cache_alloc(cachep, flags);
318662306a36Sopenharmony_ci	} else if (!get_node(cachep, nodeid)) {
318762306a36Sopenharmony_ci		/* Node not bootstrapped yet */
318862306a36Sopenharmony_ci		objp = fallback_alloc(cachep, flags);
318962306a36Sopenharmony_ci		goto out;
319062306a36Sopenharmony_ci	}
319162306a36Sopenharmony_ci
319262306a36Sopenharmony_ci	/*
319362306a36Sopenharmony_ci	 * We may just have run out of memory on the local node.
319462306a36Sopenharmony_ci	 * ____cache_alloc_node() knows how to locate memory on other nodes
319562306a36Sopenharmony_ci	 */
319662306a36Sopenharmony_ci	if (!objp)
319762306a36Sopenharmony_ci		objp = ____cache_alloc_node(cachep, flags, nodeid);
319862306a36Sopenharmony_ciout:
319962306a36Sopenharmony_ci	return objp;
320062306a36Sopenharmony_ci}
320162306a36Sopenharmony_ci#else
320262306a36Sopenharmony_ci
320362306a36Sopenharmony_cistatic __always_inline void *
320462306a36Sopenharmony_ci__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags, int nodeid __maybe_unused)
320562306a36Sopenharmony_ci{
320662306a36Sopenharmony_ci	return ____cache_alloc(cachep, flags);
320762306a36Sopenharmony_ci}
320862306a36Sopenharmony_ci
320962306a36Sopenharmony_ci#endif /* CONFIG_NUMA */
321062306a36Sopenharmony_ci
321162306a36Sopenharmony_cistatic __always_inline void *
321262306a36Sopenharmony_cislab_alloc_node(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
321362306a36Sopenharmony_ci		int nodeid, size_t orig_size, unsigned long caller)
321462306a36Sopenharmony_ci{
321562306a36Sopenharmony_ci	unsigned long save_flags;
321662306a36Sopenharmony_ci	void *objp;
321762306a36Sopenharmony_ci	struct obj_cgroup *objcg = NULL;
321862306a36Sopenharmony_ci	bool init = false;
321962306a36Sopenharmony_ci
322062306a36Sopenharmony_ci	flags &= gfp_allowed_mask;
322162306a36Sopenharmony_ci	cachep = slab_pre_alloc_hook(cachep, lru, &objcg, 1, flags);
322262306a36Sopenharmony_ci	if (unlikely(!cachep))
322362306a36Sopenharmony_ci		return NULL;
322462306a36Sopenharmony_ci
322562306a36Sopenharmony_ci	objp = kfence_alloc(cachep, orig_size, flags);
322662306a36Sopenharmony_ci	if (unlikely(objp))
322762306a36Sopenharmony_ci		goto out;
322862306a36Sopenharmony_ci
322962306a36Sopenharmony_ci	local_irq_save(save_flags);
323062306a36Sopenharmony_ci	objp = __do_cache_alloc(cachep, flags, nodeid);
323162306a36Sopenharmony_ci	local_irq_restore(save_flags);
323262306a36Sopenharmony_ci	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
323362306a36Sopenharmony_ci	prefetchw(objp);
323462306a36Sopenharmony_ci	init = slab_want_init_on_alloc(flags, cachep);
323562306a36Sopenharmony_ci
323662306a36Sopenharmony_ciout:
323762306a36Sopenharmony_ci	slab_post_alloc_hook(cachep, objcg, flags, 1, &objp, init,
323862306a36Sopenharmony_ci				cachep->object_size);
323962306a36Sopenharmony_ci	return objp;
324062306a36Sopenharmony_ci}
324162306a36Sopenharmony_ci
324262306a36Sopenharmony_cistatic __always_inline void *
324362306a36Sopenharmony_cislab_alloc(struct kmem_cache *cachep, struct list_lru *lru, gfp_t flags,
324462306a36Sopenharmony_ci	   size_t orig_size, unsigned long caller)
324562306a36Sopenharmony_ci{
324662306a36Sopenharmony_ci	return slab_alloc_node(cachep, lru, flags, NUMA_NO_NODE, orig_size,
324762306a36Sopenharmony_ci			       caller);
324862306a36Sopenharmony_ci}
324962306a36Sopenharmony_ci
325062306a36Sopenharmony_ci/*
325162306a36Sopenharmony_ci * Caller needs to acquire correct kmem_cache_node's list_lock
325262306a36Sopenharmony_ci * @list: List of detached free slabs should be freed by caller
325362306a36Sopenharmony_ci */
325462306a36Sopenharmony_cistatic void free_block(struct kmem_cache *cachep, void **objpp,
325562306a36Sopenharmony_ci			int nr_objects, int node, struct list_head *list)
325662306a36Sopenharmony_ci{
325762306a36Sopenharmony_ci	int i;
325862306a36Sopenharmony_ci	struct kmem_cache_node *n = get_node(cachep, node);
325962306a36Sopenharmony_ci	struct slab *slab;
326062306a36Sopenharmony_ci
326162306a36Sopenharmony_ci	n->free_objects += nr_objects;
326262306a36Sopenharmony_ci
326362306a36Sopenharmony_ci	for (i = 0; i < nr_objects; i++) {
326462306a36Sopenharmony_ci		void *objp;
326562306a36Sopenharmony_ci		struct slab *slab;
326662306a36Sopenharmony_ci
326762306a36Sopenharmony_ci		objp = objpp[i];
326862306a36Sopenharmony_ci
326962306a36Sopenharmony_ci		slab = virt_to_slab(objp);
327062306a36Sopenharmony_ci		list_del(&slab->slab_list);
327162306a36Sopenharmony_ci		check_spinlock_acquired_node(cachep, node);
327262306a36Sopenharmony_ci		slab_put_obj(cachep, slab, objp);
327362306a36Sopenharmony_ci		STATS_DEC_ACTIVE(cachep);
327462306a36Sopenharmony_ci
327562306a36Sopenharmony_ci		/* fixup slab chains */
327662306a36Sopenharmony_ci		if (slab->active == 0) {
327762306a36Sopenharmony_ci			list_add(&slab->slab_list, &n->slabs_free);
327862306a36Sopenharmony_ci			n->free_slabs++;
327962306a36Sopenharmony_ci		} else {
328062306a36Sopenharmony_ci			/* Unconditionally move a slab to the end of the
328162306a36Sopenharmony_ci			 * partial list on free - maximum time for the
328262306a36Sopenharmony_ci			 * other objects to be freed, too.
328362306a36Sopenharmony_ci			 */
328462306a36Sopenharmony_ci			list_add_tail(&slab->slab_list, &n->slabs_partial);
328562306a36Sopenharmony_ci		}
328662306a36Sopenharmony_ci	}
328762306a36Sopenharmony_ci
328862306a36Sopenharmony_ci	while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
328962306a36Sopenharmony_ci		n->free_objects -= cachep->num;
329062306a36Sopenharmony_ci
329162306a36Sopenharmony_ci		slab = list_last_entry(&n->slabs_free, struct slab, slab_list);
329262306a36Sopenharmony_ci		list_move(&slab->slab_list, list);
329362306a36Sopenharmony_ci		n->free_slabs--;
329462306a36Sopenharmony_ci		n->total_slabs--;
329562306a36Sopenharmony_ci	}
329662306a36Sopenharmony_ci}
329762306a36Sopenharmony_ci
329862306a36Sopenharmony_cistatic void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
329962306a36Sopenharmony_ci{
330062306a36Sopenharmony_ci	int batchcount;
330162306a36Sopenharmony_ci	struct kmem_cache_node *n;
330262306a36Sopenharmony_ci	int node = numa_mem_id();
330362306a36Sopenharmony_ci	LIST_HEAD(list);
330462306a36Sopenharmony_ci
330562306a36Sopenharmony_ci	batchcount = ac->batchcount;
330662306a36Sopenharmony_ci
330762306a36Sopenharmony_ci	check_irq_off();
330862306a36Sopenharmony_ci	n = get_node(cachep, node);
330962306a36Sopenharmony_ci	raw_spin_lock(&n->list_lock);
331062306a36Sopenharmony_ci	if (n->shared) {
331162306a36Sopenharmony_ci		struct array_cache *shared_array = n->shared;
331262306a36Sopenharmony_ci		int max = shared_array->limit - shared_array->avail;
331362306a36Sopenharmony_ci		if (max) {
331462306a36Sopenharmony_ci			if (batchcount > max)
331562306a36Sopenharmony_ci				batchcount = max;
331662306a36Sopenharmony_ci			memcpy(&(shared_array->entry[shared_array->avail]),
331762306a36Sopenharmony_ci			       ac->entry, sizeof(void *) * batchcount);
331862306a36Sopenharmony_ci			shared_array->avail += batchcount;
331962306a36Sopenharmony_ci			goto free_done;
332062306a36Sopenharmony_ci		}
332162306a36Sopenharmony_ci	}
332262306a36Sopenharmony_ci
332362306a36Sopenharmony_ci	free_block(cachep, ac->entry, batchcount, node, &list);
332462306a36Sopenharmony_cifree_done:
332562306a36Sopenharmony_ci#if STATS
332662306a36Sopenharmony_ci	{
332762306a36Sopenharmony_ci		int i = 0;
332862306a36Sopenharmony_ci		struct slab *slab;
332962306a36Sopenharmony_ci
333062306a36Sopenharmony_ci		list_for_each_entry(slab, &n->slabs_free, slab_list) {
333162306a36Sopenharmony_ci			BUG_ON(slab->active);
333262306a36Sopenharmony_ci
333362306a36Sopenharmony_ci			i++;
333462306a36Sopenharmony_ci		}
333562306a36Sopenharmony_ci		STATS_SET_FREEABLE(cachep, i);
333662306a36Sopenharmony_ci	}
333762306a36Sopenharmony_ci#endif
333862306a36Sopenharmony_ci	raw_spin_unlock(&n->list_lock);
333962306a36Sopenharmony_ci	ac->avail -= batchcount;
334062306a36Sopenharmony_ci	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
334162306a36Sopenharmony_ci	slabs_destroy(cachep, &list);
334262306a36Sopenharmony_ci}
334362306a36Sopenharmony_ci
334462306a36Sopenharmony_ci/*
334562306a36Sopenharmony_ci * Release an obj back to its cache. If the obj has a constructed state, it must
334662306a36Sopenharmony_ci * be in this state _before_ it is released.  Called with disabled ints.
334762306a36Sopenharmony_ci */
334862306a36Sopenharmony_cistatic __always_inline void __cache_free(struct kmem_cache *cachep, void *objp,
334962306a36Sopenharmony_ci					 unsigned long caller)
335062306a36Sopenharmony_ci{
335162306a36Sopenharmony_ci	bool init;
335262306a36Sopenharmony_ci
335362306a36Sopenharmony_ci	memcg_slab_free_hook(cachep, virt_to_slab(objp), &objp, 1);
335462306a36Sopenharmony_ci
335562306a36Sopenharmony_ci	if (is_kfence_address(objp)) {
335662306a36Sopenharmony_ci		kmemleak_free_recursive(objp, cachep->flags);
335762306a36Sopenharmony_ci		__kfence_free(objp);
335862306a36Sopenharmony_ci		return;
335962306a36Sopenharmony_ci	}
336062306a36Sopenharmony_ci
336162306a36Sopenharmony_ci	/*
336262306a36Sopenharmony_ci	 * As memory initialization might be integrated into KASAN,
336362306a36Sopenharmony_ci	 * kasan_slab_free and initialization memset must be
336462306a36Sopenharmony_ci	 * kept together to avoid discrepancies in behavior.
336562306a36Sopenharmony_ci	 */
336662306a36Sopenharmony_ci	init = slab_want_init_on_free(cachep);
336762306a36Sopenharmony_ci	if (init && !kasan_has_integrated_init())
336862306a36Sopenharmony_ci		memset(objp, 0, cachep->object_size);
336962306a36Sopenharmony_ci	/* KASAN might put objp into memory quarantine, delaying its reuse. */
337062306a36Sopenharmony_ci	if (kasan_slab_free(cachep, objp, init))
337162306a36Sopenharmony_ci		return;
337262306a36Sopenharmony_ci
337362306a36Sopenharmony_ci	/* Use KCSAN to help debug racy use-after-free. */
337462306a36Sopenharmony_ci	if (!(cachep->flags & SLAB_TYPESAFE_BY_RCU))
337562306a36Sopenharmony_ci		__kcsan_check_access(objp, cachep->object_size,
337662306a36Sopenharmony_ci				     KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
337762306a36Sopenharmony_ci
337862306a36Sopenharmony_ci	___cache_free(cachep, objp, caller);
337962306a36Sopenharmony_ci}
338062306a36Sopenharmony_ci
338162306a36Sopenharmony_civoid ___cache_free(struct kmem_cache *cachep, void *objp,
338262306a36Sopenharmony_ci		unsigned long caller)
338362306a36Sopenharmony_ci{
338462306a36Sopenharmony_ci	struct array_cache *ac = cpu_cache_get(cachep);
338562306a36Sopenharmony_ci
338662306a36Sopenharmony_ci	check_irq_off();
338762306a36Sopenharmony_ci	kmemleak_free_recursive(objp, cachep->flags);
338862306a36Sopenharmony_ci	objp = cache_free_debugcheck(cachep, objp, caller);
338962306a36Sopenharmony_ci
339062306a36Sopenharmony_ci	/*
339162306a36Sopenharmony_ci	 * Skip calling cache_free_alien() when the platform is not numa.
339262306a36Sopenharmony_ci	 * This will avoid cache misses that happen while accessing slabp (which
339362306a36Sopenharmony_ci	 * is per page memory  reference) to get nodeid. Instead use a global
339462306a36Sopenharmony_ci	 * variable to skip the call, which is mostly likely to be present in
339562306a36Sopenharmony_ci	 * the cache.
339662306a36Sopenharmony_ci	 */
339762306a36Sopenharmony_ci	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
339862306a36Sopenharmony_ci		return;
339962306a36Sopenharmony_ci
340062306a36Sopenharmony_ci	if (ac->avail < ac->limit) {
340162306a36Sopenharmony_ci		STATS_INC_FREEHIT(cachep);
340262306a36Sopenharmony_ci	} else {
340362306a36Sopenharmony_ci		STATS_INC_FREEMISS(cachep);
340462306a36Sopenharmony_ci		cache_flusharray(cachep, ac);
340562306a36Sopenharmony_ci	}
340662306a36Sopenharmony_ci
340762306a36Sopenharmony_ci	if (sk_memalloc_socks()) {
340862306a36Sopenharmony_ci		struct slab *slab = virt_to_slab(objp);
340962306a36Sopenharmony_ci
341062306a36Sopenharmony_ci		if (unlikely(slab_test_pfmemalloc(slab))) {
341162306a36Sopenharmony_ci			cache_free_pfmemalloc(cachep, slab, objp);
341262306a36Sopenharmony_ci			return;
341362306a36Sopenharmony_ci		}
341462306a36Sopenharmony_ci	}
341562306a36Sopenharmony_ci
341662306a36Sopenharmony_ci	__free_one(ac, objp);
341762306a36Sopenharmony_ci}
341862306a36Sopenharmony_ci
341962306a36Sopenharmony_cistatic __always_inline
342062306a36Sopenharmony_civoid *__kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
342162306a36Sopenharmony_ci			     gfp_t flags)
342262306a36Sopenharmony_ci{
342362306a36Sopenharmony_ci	void *ret = slab_alloc(cachep, lru, flags, cachep->object_size, _RET_IP_);
342462306a36Sopenharmony_ci
342562306a36Sopenharmony_ci	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, NUMA_NO_NODE);
342662306a36Sopenharmony_ci
342762306a36Sopenharmony_ci	return ret;
342862306a36Sopenharmony_ci}
342962306a36Sopenharmony_ci
343062306a36Sopenharmony_civoid *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
343162306a36Sopenharmony_ci{
343262306a36Sopenharmony_ci	return __kmem_cache_alloc_lru(cachep, NULL, flags);
343362306a36Sopenharmony_ci}
343462306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_alloc);
343562306a36Sopenharmony_ci
343662306a36Sopenharmony_civoid *kmem_cache_alloc_lru(struct kmem_cache *cachep, struct list_lru *lru,
343762306a36Sopenharmony_ci			   gfp_t flags)
343862306a36Sopenharmony_ci{
343962306a36Sopenharmony_ci	return __kmem_cache_alloc_lru(cachep, lru, flags);
344062306a36Sopenharmony_ci}
344162306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_alloc_lru);
344262306a36Sopenharmony_ci
344362306a36Sopenharmony_cistatic __always_inline void
344462306a36Sopenharmony_cicache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
344562306a36Sopenharmony_ci				  size_t size, void **p, unsigned long caller)
344662306a36Sopenharmony_ci{
344762306a36Sopenharmony_ci	size_t i;
344862306a36Sopenharmony_ci
344962306a36Sopenharmony_ci	for (i = 0; i < size; i++)
345062306a36Sopenharmony_ci		p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
345162306a36Sopenharmony_ci}
345262306a36Sopenharmony_ci
345362306a36Sopenharmony_ciint kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
345462306a36Sopenharmony_ci			  void **p)
345562306a36Sopenharmony_ci{
345662306a36Sopenharmony_ci	struct obj_cgroup *objcg = NULL;
345762306a36Sopenharmony_ci	unsigned long irqflags;
345862306a36Sopenharmony_ci	size_t i;
345962306a36Sopenharmony_ci
346062306a36Sopenharmony_ci	s = slab_pre_alloc_hook(s, NULL, &objcg, size, flags);
346162306a36Sopenharmony_ci	if (!s)
346262306a36Sopenharmony_ci		return 0;
346362306a36Sopenharmony_ci
346462306a36Sopenharmony_ci	local_irq_save(irqflags);
346562306a36Sopenharmony_ci	for (i = 0; i < size; i++) {
346662306a36Sopenharmony_ci		void *objp = kfence_alloc(s, s->object_size, flags) ?:
346762306a36Sopenharmony_ci			     __do_cache_alloc(s, flags, NUMA_NO_NODE);
346862306a36Sopenharmony_ci
346962306a36Sopenharmony_ci		if (unlikely(!objp))
347062306a36Sopenharmony_ci			goto error;
347162306a36Sopenharmony_ci		p[i] = objp;
347262306a36Sopenharmony_ci	}
347362306a36Sopenharmony_ci	local_irq_restore(irqflags);
347462306a36Sopenharmony_ci
347562306a36Sopenharmony_ci	cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
347662306a36Sopenharmony_ci
347762306a36Sopenharmony_ci	/*
347862306a36Sopenharmony_ci	 * memcg and kmem_cache debug support and memory initialization.
347962306a36Sopenharmony_ci	 * Done outside of the IRQ disabled section.
348062306a36Sopenharmony_ci	 */
348162306a36Sopenharmony_ci	slab_post_alloc_hook(s, objcg, flags, size, p,
348262306a36Sopenharmony_ci			slab_want_init_on_alloc(flags, s), s->object_size);
348362306a36Sopenharmony_ci	/* FIXME: Trace call missing. Christoph would like a bulk variant */
348462306a36Sopenharmony_ci	return size;
348562306a36Sopenharmony_cierror:
348662306a36Sopenharmony_ci	local_irq_restore(irqflags);
348762306a36Sopenharmony_ci	cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
348862306a36Sopenharmony_ci	slab_post_alloc_hook(s, objcg, flags, i, p, false, s->object_size);
348962306a36Sopenharmony_ci	kmem_cache_free_bulk(s, i, p);
349062306a36Sopenharmony_ci	return 0;
349162306a36Sopenharmony_ci}
349262306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_alloc_bulk);
349362306a36Sopenharmony_ci
349462306a36Sopenharmony_ci/**
349562306a36Sopenharmony_ci * kmem_cache_alloc_node - Allocate an object on the specified node
349662306a36Sopenharmony_ci * @cachep: The cache to allocate from.
349762306a36Sopenharmony_ci * @flags: See kmalloc().
349862306a36Sopenharmony_ci * @nodeid: node number of the target node.
349962306a36Sopenharmony_ci *
350062306a36Sopenharmony_ci * Identical to kmem_cache_alloc but it will allocate memory on the given
350162306a36Sopenharmony_ci * node, which can improve the performance for cpu bound structures.
350262306a36Sopenharmony_ci *
350362306a36Sopenharmony_ci * Fallback to other node is possible if __GFP_THISNODE is not set.
350462306a36Sopenharmony_ci *
350562306a36Sopenharmony_ci * Return: pointer to the new object or %NULL in case of error
350662306a36Sopenharmony_ci */
350762306a36Sopenharmony_civoid *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
350862306a36Sopenharmony_ci{
350962306a36Sopenharmony_ci	void *ret = slab_alloc_node(cachep, NULL, flags, nodeid, cachep->object_size, _RET_IP_);
351062306a36Sopenharmony_ci
351162306a36Sopenharmony_ci	trace_kmem_cache_alloc(_RET_IP_, ret, cachep, flags, nodeid);
351262306a36Sopenharmony_ci
351362306a36Sopenharmony_ci	return ret;
351462306a36Sopenharmony_ci}
351562306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_alloc_node);
351662306a36Sopenharmony_ci
351762306a36Sopenharmony_civoid *__kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
351862306a36Sopenharmony_ci			     int nodeid, size_t orig_size,
351962306a36Sopenharmony_ci			     unsigned long caller)
352062306a36Sopenharmony_ci{
352162306a36Sopenharmony_ci	return slab_alloc_node(cachep, NULL, flags, nodeid,
352262306a36Sopenharmony_ci			       orig_size, caller);
352362306a36Sopenharmony_ci}
352462306a36Sopenharmony_ci
352562306a36Sopenharmony_ci#ifdef CONFIG_PRINTK
352662306a36Sopenharmony_civoid __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
352762306a36Sopenharmony_ci{
352862306a36Sopenharmony_ci	struct kmem_cache *cachep;
352962306a36Sopenharmony_ci	unsigned int objnr;
353062306a36Sopenharmony_ci	void *objp;
353162306a36Sopenharmony_ci
353262306a36Sopenharmony_ci	kpp->kp_ptr = object;
353362306a36Sopenharmony_ci	kpp->kp_slab = slab;
353462306a36Sopenharmony_ci	cachep = slab->slab_cache;
353562306a36Sopenharmony_ci	kpp->kp_slab_cache = cachep;
353662306a36Sopenharmony_ci	objp = object - obj_offset(cachep);
353762306a36Sopenharmony_ci	kpp->kp_data_offset = obj_offset(cachep);
353862306a36Sopenharmony_ci	slab = virt_to_slab(objp);
353962306a36Sopenharmony_ci	objnr = obj_to_index(cachep, slab, objp);
354062306a36Sopenharmony_ci	objp = index_to_obj(cachep, slab, objnr);
354162306a36Sopenharmony_ci	kpp->kp_objp = objp;
354262306a36Sopenharmony_ci	if (DEBUG && cachep->flags & SLAB_STORE_USER)
354362306a36Sopenharmony_ci		kpp->kp_ret = *dbg_userword(cachep, objp);
354462306a36Sopenharmony_ci}
354562306a36Sopenharmony_ci#endif
354662306a36Sopenharmony_ci
354762306a36Sopenharmony_cistatic __always_inline
354862306a36Sopenharmony_civoid __do_kmem_cache_free(struct kmem_cache *cachep, void *objp,
354962306a36Sopenharmony_ci			  unsigned long caller)
355062306a36Sopenharmony_ci{
355162306a36Sopenharmony_ci	unsigned long flags;
355262306a36Sopenharmony_ci
355362306a36Sopenharmony_ci	local_irq_save(flags);
355462306a36Sopenharmony_ci	debug_check_no_locks_freed(objp, cachep->object_size);
355562306a36Sopenharmony_ci	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
355662306a36Sopenharmony_ci		debug_check_no_obj_freed(objp, cachep->object_size);
355762306a36Sopenharmony_ci	__cache_free(cachep, objp, caller);
355862306a36Sopenharmony_ci	local_irq_restore(flags);
355962306a36Sopenharmony_ci}
356062306a36Sopenharmony_ci
356162306a36Sopenharmony_civoid __kmem_cache_free(struct kmem_cache *cachep, void *objp,
356262306a36Sopenharmony_ci		       unsigned long caller)
356362306a36Sopenharmony_ci{
356462306a36Sopenharmony_ci	__do_kmem_cache_free(cachep, objp, caller);
356562306a36Sopenharmony_ci}
356662306a36Sopenharmony_ci
356762306a36Sopenharmony_ci/**
356862306a36Sopenharmony_ci * kmem_cache_free - Deallocate an object
356962306a36Sopenharmony_ci * @cachep: The cache the allocation was from.
357062306a36Sopenharmony_ci * @objp: The previously allocated object.
357162306a36Sopenharmony_ci *
357262306a36Sopenharmony_ci * Free an object which was previously allocated from this
357362306a36Sopenharmony_ci * cache.
357462306a36Sopenharmony_ci */
357562306a36Sopenharmony_civoid kmem_cache_free(struct kmem_cache *cachep, void *objp)
357662306a36Sopenharmony_ci{
357762306a36Sopenharmony_ci	cachep = cache_from_obj(cachep, objp);
357862306a36Sopenharmony_ci	if (!cachep)
357962306a36Sopenharmony_ci		return;
358062306a36Sopenharmony_ci
358162306a36Sopenharmony_ci	trace_kmem_cache_free(_RET_IP_, objp, cachep);
358262306a36Sopenharmony_ci	__do_kmem_cache_free(cachep, objp, _RET_IP_);
358362306a36Sopenharmony_ci}
358462306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_free);
358562306a36Sopenharmony_ci
358662306a36Sopenharmony_civoid kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
358762306a36Sopenharmony_ci{
358862306a36Sopenharmony_ci	unsigned long flags;
358962306a36Sopenharmony_ci
359062306a36Sopenharmony_ci	local_irq_save(flags);
359162306a36Sopenharmony_ci	for (int i = 0; i < size; i++) {
359262306a36Sopenharmony_ci		void *objp = p[i];
359362306a36Sopenharmony_ci		struct kmem_cache *s;
359462306a36Sopenharmony_ci
359562306a36Sopenharmony_ci		if (!orig_s) {
359662306a36Sopenharmony_ci			struct folio *folio = virt_to_folio(objp);
359762306a36Sopenharmony_ci
359862306a36Sopenharmony_ci			/* called via kfree_bulk */
359962306a36Sopenharmony_ci			if (!folio_test_slab(folio)) {
360062306a36Sopenharmony_ci				local_irq_restore(flags);
360162306a36Sopenharmony_ci				free_large_kmalloc(folio, objp);
360262306a36Sopenharmony_ci				local_irq_save(flags);
360362306a36Sopenharmony_ci				continue;
360462306a36Sopenharmony_ci			}
360562306a36Sopenharmony_ci			s = folio_slab(folio)->slab_cache;
360662306a36Sopenharmony_ci		} else {
360762306a36Sopenharmony_ci			s = cache_from_obj(orig_s, objp);
360862306a36Sopenharmony_ci		}
360962306a36Sopenharmony_ci
361062306a36Sopenharmony_ci		if (!s)
361162306a36Sopenharmony_ci			continue;
361262306a36Sopenharmony_ci
361362306a36Sopenharmony_ci		debug_check_no_locks_freed(objp, s->object_size);
361462306a36Sopenharmony_ci		if (!(s->flags & SLAB_DEBUG_OBJECTS))
361562306a36Sopenharmony_ci			debug_check_no_obj_freed(objp, s->object_size);
361662306a36Sopenharmony_ci
361762306a36Sopenharmony_ci		__cache_free(s, objp, _RET_IP_);
361862306a36Sopenharmony_ci	}
361962306a36Sopenharmony_ci	local_irq_restore(flags);
362062306a36Sopenharmony_ci
362162306a36Sopenharmony_ci	/* FIXME: add tracing */
362262306a36Sopenharmony_ci}
362362306a36Sopenharmony_ciEXPORT_SYMBOL(kmem_cache_free_bulk);
362462306a36Sopenharmony_ci
362562306a36Sopenharmony_ci/*
362662306a36Sopenharmony_ci * This initializes kmem_cache_node or resizes various caches for all nodes.
362762306a36Sopenharmony_ci */
362862306a36Sopenharmony_cistatic int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
362962306a36Sopenharmony_ci{
363062306a36Sopenharmony_ci	int ret;
363162306a36Sopenharmony_ci	int node;
363262306a36Sopenharmony_ci	struct kmem_cache_node *n;
363362306a36Sopenharmony_ci
363462306a36Sopenharmony_ci	for_each_online_node(node) {
363562306a36Sopenharmony_ci		ret = setup_kmem_cache_node(cachep, node, gfp, true);
363662306a36Sopenharmony_ci		if (ret)
363762306a36Sopenharmony_ci			goto fail;
363862306a36Sopenharmony_ci
363962306a36Sopenharmony_ci	}
364062306a36Sopenharmony_ci
364162306a36Sopenharmony_ci	return 0;
364262306a36Sopenharmony_ci
364362306a36Sopenharmony_cifail:
364462306a36Sopenharmony_ci	if (!cachep->list.next) {
364562306a36Sopenharmony_ci		/* Cache is not active yet. Roll back what we did */
364662306a36Sopenharmony_ci		node--;
364762306a36Sopenharmony_ci		while (node >= 0) {
364862306a36Sopenharmony_ci			n = get_node(cachep, node);
364962306a36Sopenharmony_ci			if (n) {
365062306a36Sopenharmony_ci				kfree(n->shared);
365162306a36Sopenharmony_ci				free_alien_cache(n->alien);
365262306a36Sopenharmony_ci				kfree(n);
365362306a36Sopenharmony_ci				cachep->node[node] = NULL;
365462306a36Sopenharmony_ci			}
365562306a36Sopenharmony_ci			node--;
365662306a36Sopenharmony_ci		}
365762306a36Sopenharmony_ci	}
365862306a36Sopenharmony_ci	return -ENOMEM;
365962306a36Sopenharmony_ci}
366062306a36Sopenharmony_ci
366162306a36Sopenharmony_ci/* Always called with the slab_mutex held */
366262306a36Sopenharmony_cistatic int do_tune_cpucache(struct kmem_cache *cachep, int limit,
366362306a36Sopenharmony_ci			    int batchcount, int shared, gfp_t gfp)
366462306a36Sopenharmony_ci{
366562306a36Sopenharmony_ci	struct array_cache __percpu *cpu_cache, *prev;
366662306a36Sopenharmony_ci	int cpu;
366762306a36Sopenharmony_ci
366862306a36Sopenharmony_ci	cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
366962306a36Sopenharmony_ci	if (!cpu_cache)
367062306a36Sopenharmony_ci		return -ENOMEM;
367162306a36Sopenharmony_ci
367262306a36Sopenharmony_ci	prev = cachep->cpu_cache;
367362306a36Sopenharmony_ci	cachep->cpu_cache = cpu_cache;
367462306a36Sopenharmony_ci	/*
367562306a36Sopenharmony_ci	 * Without a previous cpu_cache there's no need to synchronize remote
367662306a36Sopenharmony_ci	 * cpus, so skip the IPIs.
367762306a36Sopenharmony_ci	 */
367862306a36Sopenharmony_ci	if (prev)
367962306a36Sopenharmony_ci		kick_all_cpus_sync();
368062306a36Sopenharmony_ci
368162306a36Sopenharmony_ci	check_irq_on();
368262306a36Sopenharmony_ci	cachep->batchcount = batchcount;
368362306a36Sopenharmony_ci	cachep->limit = limit;
368462306a36Sopenharmony_ci	cachep->shared = shared;
368562306a36Sopenharmony_ci
368662306a36Sopenharmony_ci	if (!prev)
368762306a36Sopenharmony_ci		goto setup_node;
368862306a36Sopenharmony_ci
368962306a36Sopenharmony_ci	for_each_online_cpu(cpu) {
369062306a36Sopenharmony_ci		LIST_HEAD(list);
369162306a36Sopenharmony_ci		int node;
369262306a36Sopenharmony_ci		struct kmem_cache_node *n;
369362306a36Sopenharmony_ci		struct array_cache *ac = per_cpu_ptr(prev, cpu);
369462306a36Sopenharmony_ci
369562306a36Sopenharmony_ci		node = cpu_to_mem(cpu);
369662306a36Sopenharmony_ci		n = get_node(cachep, node);
369762306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
369862306a36Sopenharmony_ci		free_block(cachep, ac->entry, ac->avail, node, &list);
369962306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
370062306a36Sopenharmony_ci		slabs_destroy(cachep, &list);
370162306a36Sopenharmony_ci	}
370262306a36Sopenharmony_ci	free_percpu(prev);
370362306a36Sopenharmony_ci
370462306a36Sopenharmony_cisetup_node:
370562306a36Sopenharmony_ci	return setup_kmem_cache_nodes(cachep, gfp);
370662306a36Sopenharmony_ci}
370762306a36Sopenharmony_ci
370862306a36Sopenharmony_ci/* Called with slab_mutex held always */
370962306a36Sopenharmony_cistatic int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
371062306a36Sopenharmony_ci{
371162306a36Sopenharmony_ci	int err;
371262306a36Sopenharmony_ci	int limit = 0;
371362306a36Sopenharmony_ci	int shared = 0;
371462306a36Sopenharmony_ci	int batchcount = 0;
371562306a36Sopenharmony_ci
371662306a36Sopenharmony_ci	err = cache_random_seq_create(cachep, cachep->num, gfp);
371762306a36Sopenharmony_ci	if (err)
371862306a36Sopenharmony_ci		goto end;
371962306a36Sopenharmony_ci
372062306a36Sopenharmony_ci	/*
372162306a36Sopenharmony_ci	 * The head array serves three purposes:
372262306a36Sopenharmony_ci	 * - create a LIFO ordering, i.e. return objects that are cache-warm
372362306a36Sopenharmony_ci	 * - reduce the number of spinlock operations.
372462306a36Sopenharmony_ci	 * - reduce the number of linked list operations on the slab and
372562306a36Sopenharmony_ci	 *   bufctl chains: array operations are cheaper.
372662306a36Sopenharmony_ci	 * The numbers are guessed, we should auto-tune as described by
372762306a36Sopenharmony_ci	 * Bonwick.
372862306a36Sopenharmony_ci	 */
372962306a36Sopenharmony_ci	if (cachep->size > 131072)
373062306a36Sopenharmony_ci		limit = 1;
373162306a36Sopenharmony_ci	else if (cachep->size > PAGE_SIZE)
373262306a36Sopenharmony_ci		limit = 8;
373362306a36Sopenharmony_ci	else if (cachep->size > 1024)
373462306a36Sopenharmony_ci		limit = 24;
373562306a36Sopenharmony_ci	else if (cachep->size > 256)
373662306a36Sopenharmony_ci		limit = 54;
373762306a36Sopenharmony_ci	else
373862306a36Sopenharmony_ci		limit = 120;
373962306a36Sopenharmony_ci
374062306a36Sopenharmony_ci	/*
374162306a36Sopenharmony_ci	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
374262306a36Sopenharmony_ci	 * allocation behaviour: Most allocs on one cpu, most free operations
374362306a36Sopenharmony_ci	 * on another cpu. For these cases, an efficient object passing between
374462306a36Sopenharmony_ci	 * cpus is necessary. This is provided by a shared array. The array
374562306a36Sopenharmony_ci	 * replaces Bonwick's magazine layer.
374662306a36Sopenharmony_ci	 * On uniprocessor, it's functionally equivalent (but less efficient)
374762306a36Sopenharmony_ci	 * to a larger limit. Thus disabled by default.
374862306a36Sopenharmony_ci	 */
374962306a36Sopenharmony_ci	shared = 0;
375062306a36Sopenharmony_ci	if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
375162306a36Sopenharmony_ci		shared = 8;
375262306a36Sopenharmony_ci
375362306a36Sopenharmony_ci#if DEBUG
375462306a36Sopenharmony_ci	/*
375562306a36Sopenharmony_ci	 * With debugging enabled, large batchcount lead to excessively long
375662306a36Sopenharmony_ci	 * periods with disabled local interrupts. Limit the batchcount
375762306a36Sopenharmony_ci	 */
375862306a36Sopenharmony_ci	if (limit > 32)
375962306a36Sopenharmony_ci		limit = 32;
376062306a36Sopenharmony_ci#endif
376162306a36Sopenharmony_ci	batchcount = (limit + 1) / 2;
376262306a36Sopenharmony_ci	err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
376362306a36Sopenharmony_ciend:
376462306a36Sopenharmony_ci	if (err)
376562306a36Sopenharmony_ci		pr_err("enable_cpucache failed for %s, error %d\n",
376662306a36Sopenharmony_ci		       cachep->name, -err);
376762306a36Sopenharmony_ci	return err;
376862306a36Sopenharmony_ci}
376962306a36Sopenharmony_ci
377062306a36Sopenharmony_ci/*
377162306a36Sopenharmony_ci * Drain an array if it contains any elements taking the node lock only if
377262306a36Sopenharmony_ci * necessary. Note that the node listlock also protects the array_cache
377362306a36Sopenharmony_ci * if drain_array() is used on the shared array.
377462306a36Sopenharmony_ci */
377562306a36Sopenharmony_cistatic void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
377662306a36Sopenharmony_ci			 struct array_cache *ac, int node)
377762306a36Sopenharmony_ci{
377862306a36Sopenharmony_ci	LIST_HEAD(list);
377962306a36Sopenharmony_ci
378062306a36Sopenharmony_ci	/* ac from n->shared can be freed if we don't hold the slab_mutex. */
378162306a36Sopenharmony_ci	check_mutex_acquired();
378262306a36Sopenharmony_ci
378362306a36Sopenharmony_ci	if (!ac || !ac->avail)
378462306a36Sopenharmony_ci		return;
378562306a36Sopenharmony_ci
378662306a36Sopenharmony_ci	if (ac->touched) {
378762306a36Sopenharmony_ci		ac->touched = 0;
378862306a36Sopenharmony_ci		return;
378962306a36Sopenharmony_ci	}
379062306a36Sopenharmony_ci
379162306a36Sopenharmony_ci	raw_spin_lock_irq(&n->list_lock);
379262306a36Sopenharmony_ci	drain_array_locked(cachep, ac, node, false, &list);
379362306a36Sopenharmony_ci	raw_spin_unlock_irq(&n->list_lock);
379462306a36Sopenharmony_ci
379562306a36Sopenharmony_ci	slabs_destroy(cachep, &list);
379662306a36Sopenharmony_ci}
379762306a36Sopenharmony_ci
379862306a36Sopenharmony_ci/**
379962306a36Sopenharmony_ci * cache_reap - Reclaim memory from caches.
380062306a36Sopenharmony_ci * @w: work descriptor
380162306a36Sopenharmony_ci *
380262306a36Sopenharmony_ci * Called from workqueue/eventd every few seconds.
380362306a36Sopenharmony_ci * Purpose:
380462306a36Sopenharmony_ci * - clear the per-cpu caches for this CPU.
380562306a36Sopenharmony_ci * - return freeable pages to the main free memory pool.
380662306a36Sopenharmony_ci *
380762306a36Sopenharmony_ci * If we cannot acquire the cache chain mutex then just give up - we'll try
380862306a36Sopenharmony_ci * again on the next iteration.
380962306a36Sopenharmony_ci */
381062306a36Sopenharmony_cistatic void cache_reap(struct work_struct *w)
381162306a36Sopenharmony_ci{
381262306a36Sopenharmony_ci	struct kmem_cache *searchp;
381362306a36Sopenharmony_ci	struct kmem_cache_node *n;
381462306a36Sopenharmony_ci	int node = numa_mem_id();
381562306a36Sopenharmony_ci	struct delayed_work *work = to_delayed_work(w);
381662306a36Sopenharmony_ci
381762306a36Sopenharmony_ci	if (!mutex_trylock(&slab_mutex))
381862306a36Sopenharmony_ci		/* Give up. Setup the next iteration. */
381962306a36Sopenharmony_ci		goto out;
382062306a36Sopenharmony_ci
382162306a36Sopenharmony_ci	list_for_each_entry(searchp, &slab_caches, list) {
382262306a36Sopenharmony_ci		check_irq_on();
382362306a36Sopenharmony_ci
382462306a36Sopenharmony_ci		/*
382562306a36Sopenharmony_ci		 * We only take the node lock if absolutely necessary and we
382662306a36Sopenharmony_ci		 * have established with reasonable certainty that
382762306a36Sopenharmony_ci		 * we can do some work if the lock was obtained.
382862306a36Sopenharmony_ci		 */
382962306a36Sopenharmony_ci		n = get_node(searchp, node);
383062306a36Sopenharmony_ci
383162306a36Sopenharmony_ci		reap_alien(searchp, n);
383262306a36Sopenharmony_ci
383362306a36Sopenharmony_ci		drain_array(searchp, n, cpu_cache_get(searchp), node);
383462306a36Sopenharmony_ci
383562306a36Sopenharmony_ci		/*
383662306a36Sopenharmony_ci		 * These are racy checks but it does not matter
383762306a36Sopenharmony_ci		 * if we skip one check or scan twice.
383862306a36Sopenharmony_ci		 */
383962306a36Sopenharmony_ci		if (time_after(n->next_reap, jiffies))
384062306a36Sopenharmony_ci			goto next;
384162306a36Sopenharmony_ci
384262306a36Sopenharmony_ci		n->next_reap = jiffies + REAPTIMEOUT_NODE;
384362306a36Sopenharmony_ci
384462306a36Sopenharmony_ci		drain_array(searchp, n, n->shared, node);
384562306a36Sopenharmony_ci
384662306a36Sopenharmony_ci		if (n->free_touched)
384762306a36Sopenharmony_ci			n->free_touched = 0;
384862306a36Sopenharmony_ci		else {
384962306a36Sopenharmony_ci			int freed;
385062306a36Sopenharmony_ci
385162306a36Sopenharmony_ci			freed = drain_freelist(searchp, n, (n->free_limit +
385262306a36Sopenharmony_ci				5 * searchp->num - 1) / (5 * searchp->num));
385362306a36Sopenharmony_ci			STATS_ADD_REAPED(searchp, freed);
385462306a36Sopenharmony_ci		}
385562306a36Sopenharmony_cinext:
385662306a36Sopenharmony_ci		cond_resched();
385762306a36Sopenharmony_ci	}
385862306a36Sopenharmony_ci	check_irq_on();
385962306a36Sopenharmony_ci	mutex_unlock(&slab_mutex);
386062306a36Sopenharmony_ci	next_reap_node();
386162306a36Sopenharmony_ciout:
386262306a36Sopenharmony_ci	/* Set up the next iteration */
386362306a36Sopenharmony_ci	schedule_delayed_work_on(smp_processor_id(), work,
386462306a36Sopenharmony_ci				round_jiffies_relative(REAPTIMEOUT_AC));
386562306a36Sopenharmony_ci}
386662306a36Sopenharmony_ci
386762306a36Sopenharmony_civoid get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
386862306a36Sopenharmony_ci{
386962306a36Sopenharmony_ci	unsigned long active_objs, num_objs, active_slabs;
387062306a36Sopenharmony_ci	unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
387162306a36Sopenharmony_ci	unsigned long free_slabs = 0;
387262306a36Sopenharmony_ci	int node;
387362306a36Sopenharmony_ci	struct kmem_cache_node *n;
387462306a36Sopenharmony_ci
387562306a36Sopenharmony_ci	for_each_kmem_cache_node(cachep, node, n) {
387662306a36Sopenharmony_ci		check_irq_on();
387762306a36Sopenharmony_ci		raw_spin_lock_irq(&n->list_lock);
387862306a36Sopenharmony_ci
387962306a36Sopenharmony_ci		total_slabs += n->total_slabs;
388062306a36Sopenharmony_ci		free_slabs += n->free_slabs;
388162306a36Sopenharmony_ci		free_objs += n->free_objects;
388262306a36Sopenharmony_ci
388362306a36Sopenharmony_ci		if (n->shared)
388462306a36Sopenharmony_ci			shared_avail += n->shared->avail;
388562306a36Sopenharmony_ci
388662306a36Sopenharmony_ci		raw_spin_unlock_irq(&n->list_lock);
388762306a36Sopenharmony_ci	}
388862306a36Sopenharmony_ci	num_objs = total_slabs * cachep->num;
388962306a36Sopenharmony_ci	active_slabs = total_slabs - free_slabs;
389062306a36Sopenharmony_ci	active_objs = num_objs - free_objs;
389162306a36Sopenharmony_ci
389262306a36Sopenharmony_ci	sinfo->active_objs = active_objs;
389362306a36Sopenharmony_ci	sinfo->num_objs = num_objs;
389462306a36Sopenharmony_ci	sinfo->active_slabs = active_slabs;
389562306a36Sopenharmony_ci	sinfo->num_slabs = total_slabs;
389662306a36Sopenharmony_ci	sinfo->shared_avail = shared_avail;
389762306a36Sopenharmony_ci	sinfo->limit = cachep->limit;
389862306a36Sopenharmony_ci	sinfo->batchcount = cachep->batchcount;
389962306a36Sopenharmony_ci	sinfo->shared = cachep->shared;
390062306a36Sopenharmony_ci	sinfo->objects_per_slab = cachep->num;
390162306a36Sopenharmony_ci	sinfo->cache_order = cachep->gfporder;
390262306a36Sopenharmony_ci}
390362306a36Sopenharmony_ci
390462306a36Sopenharmony_civoid slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
390562306a36Sopenharmony_ci{
390662306a36Sopenharmony_ci#if STATS
390762306a36Sopenharmony_ci	{			/* node stats */
390862306a36Sopenharmony_ci		unsigned long high = cachep->high_mark;
390962306a36Sopenharmony_ci		unsigned long allocs = cachep->num_allocations;
391062306a36Sopenharmony_ci		unsigned long grown = cachep->grown;
391162306a36Sopenharmony_ci		unsigned long reaped = cachep->reaped;
391262306a36Sopenharmony_ci		unsigned long errors = cachep->errors;
391362306a36Sopenharmony_ci		unsigned long max_freeable = cachep->max_freeable;
391462306a36Sopenharmony_ci		unsigned long node_allocs = cachep->node_allocs;
391562306a36Sopenharmony_ci		unsigned long node_frees = cachep->node_frees;
391662306a36Sopenharmony_ci		unsigned long overflows = cachep->node_overflow;
391762306a36Sopenharmony_ci
391862306a36Sopenharmony_ci		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
391962306a36Sopenharmony_ci			   allocs, high, grown,
392062306a36Sopenharmony_ci			   reaped, errors, max_freeable, node_allocs,
392162306a36Sopenharmony_ci			   node_frees, overflows);
392262306a36Sopenharmony_ci	}
392362306a36Sopenharmony_ci	/* cpu stats */
392462306a36Sopenharmony_ci	{
392562306a36Sopenharmony_ci		unsigned long allochit = atomic_read(&cachep->allochit);
392662306a36Sopenharmony_ci		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
392762306a36Sopenharmony_ci		unsigned long freehit = atomic_read(&cachep->freehit);
392862306a36Sopenharmony_ci		unsigned long freemiss = atomic_read(&cachep->freemiss);
392962306a36Sopenharmony_ci
393062306a36Sopenharmony_ci		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
393162306a36Sopenharmony_ci			   allochit, allocmiss, freehit, freemiss);
393262306a36Sopenharmony_ci	}
393362306a36Sopenharmony_ci#endif
393462306a36Sopenharmony_ci}
393562306a36Sopenharmony_ci
393662306a36Sopenharmony_ci#define MAX_SLABINFO_WRITE 128
393762306a36Sopenharmony_ci/**
393862306a36Sopenharmony_ci * slabinfo_write - Tuning for the slab allocator
393962306a36Sopenharmony_ci * @file: unused
394062306a36Sopenharmony_ci * @buffer: user buffer
394162306a36Sopenharmony_ci * @count: data length
394262306a36Sopenharmony_ci * @ppos: unused
394362306a36Sopenharmony_ci *
394462306a36Sopenharmony_ci * Return: %0 on success, negative error code otherwise.
394562306a36Sopenharmony_ci */
394662306a36Sopenharmony_cissize_t slabinfo_write(struct file *file, const char __user *buffer,
394762306a36Sopenharmony_ci		       size_t count, loff_t *ppos)
394862306a36Sopenharmony_ci{
394962306a36Sopenharmony_ci	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
395062306a36Sopenharmony_ci	int limit, batchcount, shared, res;
395162306a36Sopenharmony_ci	struct kmem_cache *cachep;
395262306a36Sopenharmony_ci
395362306a36Sopenharmony_ci	if (count > MAX_SLABINFO_WRITE)
395462306a36Sopenharmony_ci		return -EINVAL;
395562306a36Sopenharmony_ci	if (copy_from_user(&kbuf, buffer, count))
395662306a36Sopenharmony_ci		return -EFAULT;
395762306a36Sopenharmony_ci	kbuf[MAX_SLABINFO_WRITE] = '\0';
395862306a36Sopenharmony_ci
395962306a36Sopenharmony_ci	tmp = strchr(kbuf, ' ');
396062306a36Sopenharmony_ci	if (!tmp)
396162306a36Sopenharmony_ci		return -EINVAL;
396262306a36Sopenharmony_ci	*tmp = '\0';
396362306a36Sopenharmony_ci	tmp++;
396462306a36Sopenharmony_ci	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
396562306a36Sopenharmony_ci		return -EINVAL;
396662306a36Sopenharmony_ci
396762306a36Sopenharmony_ci	/* Find the cache in the chain of caches. */
396862306a36Sopenharmony_ci	mutex_lock(&slab_mutex);
396962306a36Sopenharmony_ci	res = -EINVAL;
397062306a36Sopenharmony_ci	list_for_each_entry(cachep, &slab_caches, list) {
397162306a36Sopenharmony_ci		if (!strcmp(cachep->name, kbuf)) {
397262306a36Sopenharmony_ci			if (limit < 1 || batchcount < 1 ||
397362306a36Sopenharmony_ci					batchcount > limit || shared < 0) {
397462306a36Sopenharmony_ci				res = 0;
397562306a36Sopenharmony_ci			} else {
397662306a36Sopenharmony_ci				res = do_tune_cpucache(cachep, limit,
397762306a36Sopenharmony_ci						       batchcount, shared,
397862306a36Sopenharmony_ci						       GFP_KERNEL);
397962306a36Sopenharmony_ci			}
398062306a36Sopenharmony_ci			break;
398162306a36Sopenharmony_ci		}
398262306a36Sopenharmony_ci	}
398362306a36Sopenharmony_ci	mutex_unlock(&slab_mutex);
398462306a36Sopenharmony_ci	if (res >= 0)
398562306a36Sopenharmony_ci		res = count;
398662306a36Sopenharmony_ci	return res;
398762306a36Sopenharmony_ci}
398862306a36Sopenharmony_ci
398962306a36Sopenharmony_ci#ifdef CONFIG_HARDENED_USERCOPY
399062306a36Sopenharmony_ci/*
399162306a36Sopenharmony_ci * Rejects incorrectly sized objects and objects that are to be copied
399262306a36Sopenharmony_ci * to/from userspace but do not fall entirely within the containing slab
399362306a36Sopenharmony_ci * cache's usercopy region.
399462306a36Sopenharmony_ci *
399562306a36Sopenharmony_ci * Returns NULL if check passes, otherwise const char * to name of cache
399662306a36Sopenharmony_ci * to indicate an error.
399762306a36Sopenharmony_ci */
399862306a36Sopenharmony_civoid __check_heap_object(const void *ptr, unsigned long n,
399962306a36Sopenharmony_ci			 const struct slab *slab, bool to_user)
400062306a36Sopenharmony_ci{
400162306a36Sopenharmony_ci	struct kmem_cache *cachep;
400262306a36Sopenharmony_ci	unsigned int objnr;
400362306a36Sopenharmony_ci	unsigned long offset;
400462306a36Sopenharmony_ci
400562306a36Sopenharmony_ci	ptr = kasan_reset_tag(ptr);
400662306a36Sopenharmony_ci
400762306a36Sopenharmony_ci	/* Find and validate object. */
400862306a36Sopenharmony_ci	cachep = slab->slab_cache;
400962306a36Sopenharmony_ci	objnr = obj_to_index(cachep, slab, (void *)ptr);
401062306a36Sopenharmony_ci	BUG_ON(objnr >= cachep->num);
401162306a36Sopenharmony_ci
401262306a36Sopenharmony_ci	/* Find offset within object. */
401362306a36Sopenharmony_ci	if (is_kfence_address(ptr))
401462306a36Sopenharmony_ci		offset = ptr - kfence_object_start(ptr);
401562306a36Sopenharmony_ci	else
401662306a36Sopenharmony_ci		offset = ptr - index_to_obj(cachep, slab, objnr) - obj_offset(cachep);
401762306a36Sopenharmony_ci
401862306a36Sopenharmony_ci	/* Allow address range falling entirely within usercopy region. */
401962306a36Sopenharmony_ci	if (offset >= cachep->useroffset &&
402062306a36Sopenharmony_ci	    offset - cachep->useroffset <= cachep->usersize &&
402162306a36Sopenharmony_ci	    n <= cachep->useroffset - offset + cachep->usersize)
402262306a36Sopenharmony_ci		return;
402362306a36Sopenharmony_ci
402462306a36Sopenharmony_ci	usercopy_abort("SLAB object", cachep->name, to_user, offset, n);
402562306a36Sopenharmony_ci}
402662306a36Sopenharmony_ci#endif /* CONFIG_HARDENED_USERCOPY */
4027