162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * mm/percpu.c - percpu memory allocator 462306a36Sopenharmony_ci * 562306a36Sopenharmony_ci * Copyright (C) 2009 SUSE Linux Products GmbH 662306a36Sopenharmony_ci * Copyright (C) 2009 Tejun Heo <tj@kernel.org> 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * Copyright (C) 2017 Facebook Inc. 962306a36Sopenharmony_ci * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org> 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * The percpu allocator handles both static and dynamic areas. Percpu 1262306a36Sopenharmony_ci * areas are allocated in chunks which are divided into units. There is 1362306a36Sopenharmony_ci * a 1-to-1 mapping for units to possible cpus. These units are grouped 1462306a36Sopenharmony_ci * based on NUMA properties of the machine. 1562306a36Sopenharmony_ci * 1662306a36Sopenharmony_ci * c0 c1 c2 1762306a36Sopenharmony_ci * ------------------- ------------------- ------------ 1862306a36Sopenharmony_ci * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u 1962306a36Sopenharmony_ci * ------------------- ...... ------------------- .... ------------ 2062306a36Sopenharmony_ci * 2162306a36Sopenharmony_ci * Allocation is done by offsets into a unit's address space. Ie., an 2262306a36Sopenharmony_ci * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0, 2362306a36Sopenharmony_ci * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear 2462306a36Sopenharmony_ci * and even sparse. Access is handled by configuring percpu base 2562306a36Sopenharmony_ci * registers according to the cpu to unit mappings and offsetting the 2662306a36Sopenharmony_ci * base address using pcpu_unit_size. 2762306a36Sopenharmony_ci * 2862306a36Sopenharmony_ci * There is special consideration for the first chunk which must handle 2962306a36Sopenharmony_ci * the static percpu variables in the kernel image as allocation services 3062306a36Sopenharmony_ci * are not online yet. In short, the first chunk is structured like so: 3162306a36Sopenharmony_ci * 3262306a36Sopenharmony_ci * <Static | [Reserved] | Dynamic> 3362306a36Sopenharmony_ci * 3462306a36Sopenharmony_ci * The static data is copied from the original section managed by the 3562306a36Sopenharmony_ci * linker. The reserved section, if non-zero, primarily manages static 3662306a36Sopenharmony_ci * percpu variables from kernel modules. Finally, the dynamic section 3762306a36Sopenharmony_ci * takes care of normal allocations. 3862306a36Sopenharmony_ci * 3962306a36Sopenharmony_ci * The allocator organizes chunks into lists according to free size and 4062306a36Sopenharmony_ci * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT 4162306a36Sopenharmony_ci * flag should be passed. All memcg-aware allocations are sharing one set 4262306a36Sopenharmony_ci * of chunks and all unaccounted allocations and allocations performed 4362306a36Sopenharmony_ci * by processes belonging to the root memory cgroup are using the second set. 4462306a36Sopenharmony_ci * 4562306a36Sopenharmony_ci * The allocator tries to allocate from the fullest chunk first. Each chunk 4662306a36Sopenharmony_ci * is managed by a bitmap with metadata blocks. The allocation map is updated 4762306a36Sopenharmony_ci * on every allocation and free to reflect the current state while the boundary 4862306a36Sopenharmony_ci * map is only updated on allocation. Each metadata block contains 4962306a36Sopenharmony_ci * information to help mitigate the need to iterate over large portions 5062306a36Sopenharmony_ci * of the bitmap. The reverse mapping from page to chunk is stored in 5162306a36Sopenharmony_ci * the page's index. Lastly, units are lazily backed and grow in unison. 5262306a36Sopenharmony_ci * 5362306a36Sopenharmony_ci * There is a unique conversion that goes on here between bytes and bits. 5462306a36Sopenharmony_ci * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk 5562306a36Sopenharmony_ci * tracks the number of pages it is responsible for in nr_pages. Helper 5662306a36Sopenharmony_ci * functions are used to convert from between the bytes, bits, and blocks. 5762306a36Sopenharmony_ci * All hints are managed in bits unless explicitly stated. 5862306a36Sopenharmony_ci * 5962306a36Sopenharmony_ci * To use this allocator, arch code should do the following: 6062306a36Sopenharmony_ci * 6162306a36Sopenharmony_ci * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate 6262306a36Sopenharmony_ci * regular address to percpu pointer and back if they need to be 6362306a36Sopenharmony_ci * different from the default 6462306a36Sopenharmony_ci * 6562306a36Sopenharmony_ci * - use pcpu_setup_first_chunk() during percpu area initialization to 6662306a36Sopenharmony_ci * setup the first chunk containing the kernel static percpu area 6762306a36Sopenharmony_ci */ 6862306a36Sopenharmony_ci 6962306a36Sopenharmony_ci#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7062306a36Sopenharmony_ci 7162306a36Sopenharmony_ci#include <linux/bitmap.h> 7262306a36Sopenharmony_ci#include <linux/cpumask.h> 7362306a36Sopenharmony_ci#include <linux/memblock.h> 7462306a36Sopenharmony_ci#include <linux/err.h> 7562306a36Sopenharmony_ci#include <linux/list.h> 7662306a36Sopenharmony_ci#include <linux/log2.h> 7762306a36Sopenharmony_ci#include <linux/mm.h> 7862306a36Sopenharmony_ci#include <linux/module.h> 7962306a36Sopenharmony_ci#include <linux/mutex.h> 8062306a36Sopenharmony_ci#include <linux/percpu.h> 8162306a36Sopenharmony_ci#include <linux/pfn.h> 8262306a36Sopenharmony_ci#include <linux/slab.h> 8362306a36Sopenharmony_ci#include <linux/spinlock.h> 8462306a36Sopenharmony_ci#include <linux/vmalloc.h> 8562306a36Sopenharmony_ci#include <linux/workqueue.h> 8662306a36Sopenharmony_ci#include <linux/kmemleak.h> 8762306a36Sopenharmony_ci#include <linux/sched.h> 8862306a36Sopenharmony_ci#include <linux/sched/mm.h> 8962306a36Sopenharmony_ci#include <linux/memcontrol.h> 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_ci#include <asm/cacheflush.h> 9262306a36Sopenharmony_ci#include <asm/sections.h> 9362306a36Sopenharmony_ci#include <asm/tlbflush.h> 9462306a36Sopenharmony_ci#include <asm/io.h> 9562306a36Sopenharmony_ci 9662306a36Sopenharmony_ci#define CREATE_TRACE_POINTS 9762306a36Sopenharmony_ci#include <trace/events/percpu.h> 9862306a36Sopenharmony_ci 9962306a36Sopenharmony_ci#include "percpu-internal.h" 10062306a36Sopenharmony_ci 10162306a36Sopenharmony_ci/* 10262306a36Sopenharmony_ci * The slots are sorted by the size of the biggest continuous free area. 10362306a36Sopenharmony_ci * 1-31 bytes share the same slot. 10462306a36Sopenharmony_ci */ 10562306a36Sopenharmony_ci#define PCPU_SLOT_BASE_SHIFT 5 10662306a36Sopenharmony_ci/* chunks in slots below this are subject to being sidelined on failed alloc */ 10762306a36Sopenharmony_ci#define PCPU_SLOT_FAIL_THRESHOLD 3 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci#define PCPU_EMPTY_POP_PAGES_LOW 2 11062306a36Sopenharmony_ci#define PCPU_EMPTY_POP_PAGES_HIGH 4 11162306a36Sopenharmony_ci 11262306a36Sopenharmony_ci#ifdef CONFIG_SMP 11362306a36Sopenharmony_ci/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ 11462306a36Sopenharmony_ci#ifndef __addr_to_pcpu_ptr 11562306a36Sopenharmony_ci#define __addr_to_pcpu_ptr(addr) \ 11662306a36Sopenharmony_ci (void __percpu *)((unsigned long)(addr) - \ 11762306a36Sopenharmony_ci (unsigned long)pcpu_base_addr + \ 11862306a36Sopenharmony_ci (unsigned long)__per_cpu_start) 11962306a36Sopenharmony_ci#endif 12062306a36Sopenharmony_ci#ifndef __pcpu_ptr_to_addr 12162306a36Sopenharmony_ci#define __pcpu_ptr_to_addr(ptr) \ 12262306a36Sopenharmony_ci (void __force *)((unsigned long)(ptr) + \ 12362306a36Sopenharmony_ci (unsigned long)pcpu_base_addr - \ 12462306a36Sopenharmony_ci (unsigned long)__per_cpu_start) 12562306a36Sopenharmony_ci#endif 12662306a36Sopenharmony_ci#else /* CONFIG_SMP */ 12762306a36Sopenharmony_ci/* on UP, it's always identity mapped */ 12862306a36Sopenharmony_ci#define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) 12962306a36Sopenharmony_ci#define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) 13062306a36Sopenharmony_ci#endif /* CONFIG_SMP */ 13162306a36Sopenharmony_ci 13262306a36Sopenharmony_cistatic int pcpu_unit_pages __ro_after_init; 13362306a36Sopenharmony_cistatic int pcpu_unit_size __ro_after_init; 13462306a36Sopenharmony_cistatic int pcpu_nr_units __ro_after_init; 13562306a36Sopenharmony_cistatic int pcpu_atom_size __ro_after_init; 13662306a36Sopenharmony_ciint pcpu_nr_slots __ro_after_init; 13762306a36Sopenharmony_cistatic int pcpu_free_slot __ro_after_init; 13862306a36Sopenharmony_ciint pcpu_sidelined_slot __ro_after_init; 13962306a36Sopenharmony_ciint pcpu_to_depopulate_slot __ro_after_init; 14062306a36Sopenharmony_cistatic size_t pcpu_chunk_struct_size __ro_after_init; 14162306a36Sopenharmony_ci 14262306a36Sopenharmony_ci/* cpus with the lowest and highest unit addresses */ 14362306a36Sopenharmony_cistatic unsigned int pcpu_low_unit_cpu __ro_after_init; 14462306a36Sopenharmony_cistatic unsigned int pcpu_high_unit_cpu __ro_after_init; 14562306a36Sopenharmony_ci 14662306a36Sopenharmony_ci/* the address of the first chunk which starts with the kernel static area */ 14762306a36Sopenharmony_civoid *pcpu_base_addr __ro_after_init; 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_cistatic const int *pcpu_unit_map __ro_after_init; /* cpu -> unit */ 15062306a36Sopenharmony_ciconst unsigned long *pcpu_unit_offsets __ro_after_init; /* cpu -> unit offset */ 15162306a36Sopenharmony_ci 15262306a36Sopenharmony_ci/* group information, used for vm allocation */ 15362306a36Sopenharmony_cistatic int pcpu_nr_groups __ro_after_init; 15462306a36Sopenharmony_cistatic const unsigned long *pcpu_group_offsets __ro_after_init; 15562306a36Sopenharmony_cistatic const size_t *pcpu_group_sizes __ro_after_init; 15662306a36Sopenharmony_ci 15762306a36Sopenharmony_ci/* 15862306a36Sopenharmony_ci * The first chunk which always exists. Note that unlike other 15962306a36Sopenharmony_ci * chunks, this one can be allocated and mapped in several different 16062306a36Sopenharmony_ci * ways and thus often doesn't live in the vmalloc area. 16162306a36Sopenharmony_ci */ 16262306a36Sopenharmony_cistruct pcpu_chunk *pcpu_first_chunk __ro_after_init; 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci/* 16562306a36Sopenharmony_ci * Optional reserved chunk. This chunk reserves part of the first 16662306a36Sopenharmony_ci * chunk and serves it for reserved allocations. When the reserved 16762306a36Sopenharmony_ci * region doesn't exist, the following variable is NULL. 16862306a36Sopenharmony_ci */ 16962306a36Sopenharmony_cistruct pcpu_chunk *pcpu_reserved_chunk __ro_after_init; 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ciDEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ 17262306a36Sopenharmony_cistatic DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop, map ext */ 17362306a36Sopenharmony_ci 17462306a36Sopenharmony_cistruct list_head *pcpu_chunk_lists __ro_after_init; /* chunk list slots */ 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_ci/* 17762306a36Sopenharmony_ci * The number of empty populated pages, protected by pcpu_lock. 17862306a36Sopenharmony_ci * The reserved chunk doesn't contribute to the count. 17962306a36Sopenharmony_ci */ 18062306a36Sopenharmony_ciint pcpu_nr_empty_pop_pages; 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_ci/* 18362306a36Sopenharmony_ci * The number of populated pages in use by the allocator, protected by 18462306a36Sopenharmony_ci * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets 18562306a36Sopenharmony_ci * allocated/deallocated, it is allocated/deallocated in all units of a chunk 18662306a36Sopenharmony_ci * and increments/decrements this count by 1). 18762306a36Sopenharmony_ci */ 18862306a36Sopenharmony_cistatic unsigned long pcpu_nr_populated; 18962306a36Sopenharmony_ci 19062306a36Sopenharmony_ci/* 19162306a36Sopenharmony_ci * Balance work is used to populate or destroy chunks asynchronously. We 19262306a36Sopenharmony_ci * try to keep the number of populated free pages between 19362306a36Sopenharmony_ci * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one 19462306a36Sopenharmony_ci * empty chunk. 19562306a36Sopenharmony_ci */ 19662306a36Sopenharmony_cistatic void pcpu_balance_workfn(struct work_struct *work); 19762306a36Sopenharmony_cistatic DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); 19862306a36Sopenharmony_cistatic bool pcpu_async_enabled __read_mostly; 19962306a36Sopenharmony_cistatic bool pcpu_atomic_alloc_failed; 20062306a36Sopenharmony_ci 20162306a36Sopenharmony_cistatic void pcpu_schedule_balance_work(void) 20262306a36Sopenharmony_ci{ 20362306a36Sopenharmony_ci if (pcpu_async_enabled) 20462306a36Sopenharmony_ci schedule_work(&pcpu_balance_work); 20562306a36Sopenharmony_ci} 20662306a36Sopenharmony_ci 20762306a36Sopenharmony_ci/** 20862306a36Sopenharmony_ci * pcpu_addr_in_chunk - check if the address is served from this chunk 20962306a36Sopenharmony_ci * @chunk: chunk of interest 21062306a36Sopenharmony_ci * @addr: percpu address 21162306a36Sopenharmony_ci * 21262306a36Sopenharmony_ci * RETURNS: 21362306a36Sopenharmony_ci * True if the address is served from this chunk. 21462306a36Sopenharmony_ci */ 21562306a36Sopenharmony_cistatic bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr) 21662306a36Sopenharmony_ci{ 21762306a36Sopenharmony_ci void *start_addr, *end_addr; 21862306a36Sopenharmony_ci 21962306a36Sopenharmony_ci if (!chunk) 22062306a36Sopenharmony_ci return false; 22162306a36Sopenharmony_ci 22262306a36Sopenharmony_ci start_addr = chunk->base_addr + chunk->start_offset; 22362306a36Sopenharmony_ci end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE - 22462306a36Sopenharmony_ci chunk->end_offset; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_ci return addr >= start_addr && addr < end_addr; 22762306a36Sopenharmony_ci} 22862306a36Sopenharmony_ci 22962306a36Sopenharmony_cistatic int __pcpu_size_to_slot(int size) 23062306a36Sopenharmony_ci{ 23162306a36Sopenharmony_ci int highbit = fls(size); /* size is in bytes */ 23262306a36Sopenharmony_ci return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); 23362306a36Sopenharmony_ci} 23462306a36Sopenharmony_ci 23562306a36Sopenharmony_cistatic int pcpu_size_to_slot(int size) 23662306a36Sopenharmony_ci{ 23762306a36Sopenharmony_ci if (size == pcpu_unit_size) 23862306a36Sopenharmony_ci return pcpu_free_slot; 23962306a36Sopenharmony_ci return __pcpu_size_to_slot(size); 24062306a36Sopenharmony_ci} 24162306a36Sopenharmony_ci 24262306a36Sopenharmony_cistatic int pcpu_chunk_slot(const struct pcpu_chunk *chunk) 24362306a36Sopenharmony_ci{ 24462306a36Sopenharmony_ci const struct pcpu_block_md *chunk_md = &chunk->chunk_md; 24562306a36Sopenharmony_ci 24662306a36Sopenharmony_ci if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || 24762306a36Sopenharmony_ci chunk_md->contig_hint == 0) 24862306a36Sopenharmony_ci return 0; 24962306a36Sopenharmony_ci 25062306a36Sopenharmony_ci return pcpu_size_to_slot(chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE); 25162306a36Sopenharmony_ci} 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci/* set the pointer to a chunk in a page struct */ 25462306a36Sopenharmony_cistatic void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) 25562306a36Sopenharmony_ci{ 25662306a36Sopenharmony_ci page->index = (unsigned long)pcpu; 25762306a36Sopenharmony_ci} 25862306a36Sopenharmony_ci 25962306a36Sopenharmony_ci/* obtain pointer to a chunk from a page struct */ 26062306a36Sopenharmony_cistatic struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) 26162306a36Sopenharmony_ci{ 26262306a36Sopenharmony_ci return (struct pcpu_chunk *)page->index; 26362306a36Sopenharmony_ci} 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_cistatic int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) 26662306a36Sopenharmony_ci{ 26762306a36Sopenharmony_ci return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; 26862306a36Sopenharmony_ci} 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_cistatic unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx) 27162306a36Sopenharmony_ci{ 27262306a36Sopenharmony_ci return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); 27362306a36Sopenharmony_ci} 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_cistatic unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, 27662306a36Sopenharmony_ci unsigned int cpu, int page_idx) 27762306a36Sopenharmony_ci{ 27862306a36Sopenharmony_ci return (unsigned long)chunk->base_addr + 27962306a36Sopenharmony_ci pcpu_unit_page_offset(cpu, page_idx); 28062306a36Sopenharmony_ci} 28162306a36Sopenharmony_ci 28262306a36Sopenharmony_ci/* 28362306a36Sopenharmony_ci * The following are helper functions to help access bitmaps and convert 28462306a36Sopenharmony_ci * between bitmap offsets to address offsets. 28562306a36Sopenharmony_ci */ 28662306a36Sopenharmony_cistatic unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index) 28762306a36Sopenharmony_ci{ 28862306a36Sopenharmony_ci return chunk->alloc_map + 28962306a36Sopenharmony_ci (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG); 29062306a36Sopenharmony_ci} 29162306a36Sopenharmony_ci 29262306a36Sopenharmony_cistatic unsigned long pcpu_off_to_block_index(int off) 29362306a36Sopenharmony_ci{ 29462306a36Sopenharmony_ci return off / PCPU_BITMAP_BLOCK_BITS; 29562306a36Sopenharmony_ci} 29662306a36Sopenharmony_ci 29762306a36Sopenharmony_cistatic unsigned long pcpu_off_to_block_off(int off) 29862306a36Sopenharmony_ci{ 29962306a36Sopenharmony_ci return off & (PCPU_BITMAP_BLOCK_BITS - 1); 30062306a36Sopenharmony_ci} 30162306a36Sopenharmony_ci 30262306a36Sopenharmony_cistatic unsigned long pcpu_block_off_to_off(int index, int off) 30362306a36Sopenharmony_ci{ 30462306a36Sopenharmony_ci return index * PCPU_BITMAP_BLOCK_BITS + off; 30562306a36Sopenharmony_ci} 30662306a36Sopenharmony_ci 30762306a36Sopenharmony_ci/** 30862306a36Sopenharmony_ci * pcpu_check_block_hint - check against the contig hint 30962306a36Sopenharmony_ci * @block: block of interest 31062306a36Sopenharmony_ci * @bits: size of allocation 31162306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 31262306a36Sopenharmony_ci * 31362306a36Sopenharmony_ci * Check to see if the allocation can fit in the block's contig hint. 31462306a36Sopenharmony_ci * Note, a chunk uses the same hints as a block so this can also check against 31562306a36Sopenharmony_ci * the chunk's contig hint. 31662306a36Sopenharmony_ci */ 31762306a36Sopenharmony_cistatic bool pcpu_check_block_hint(struct pcpu_block_md *block, int bits, 31862306a36Sopenharmony_ci size_t align) 31962306a36Sopenharmony_ci{ 32062306a36Sopenharmony_ci int bit_off = ALIGN(block->contig_hint_start, align) - 32162306a36Sopenharmony_ci block->contig_hint_start; 32262306a36Sopenharmony_ci 32362306a36Sopenharmony_ci return bit_off + bits <= block->contig_hint; 32462306a36Sopenharmony_ci} 32562306a36Sopenharmony_ci 32662306a36Sopenharmony_ci/* 32762306a36Sopenharmony_ci * pcpu_next_hint - determine which hint to use 32862306a36Sopenharmony_ci * @block: block of interest 32962306a36Sopenharmony_ci * @alloc_bits: size of allocation 33062306a36Sopenharmony_ci * 33162306a36Sopenharmony_ci * This determines if we should scan based on the scan_hint or first_free. 33262306a36Sopenharmony_ci * In general, we want to scan from first_free to fulfill allocations by 33362306a36Sopenharmony_ci * first fit. However, if we know a scan_hint at position scan_hint_start 33462306a36Sopenharmony_ci * cannot fulfill an allocation, we can begin scanning from there knowing 33562306a36Sopenharmony_ci * the contig_hint will be our fallback. 33662306a36Sopenharmony_ci */ 33762306a36Sopenharmony_cistatic int pcpu_next_hint(struct pcpu_block_md *block, int alloc_bits) 33862306a36Sopenharmony_ci{ 33962306a36Sopenharmony_ci /* 34062306a36Sopenharmony_ci * The three conditions below determine if we can skip past the 34162306a36Sopenharmony_ci * scan_hint. First, does the scan hint exist. Second, is the 34262306a36Sopenharmony_ci * contig_hint after the scan_hint (possibly not true iff 34362306a36Sopenharmony_ci * contig_hint == scan_hint). Third, is the allocation request 34462306a36Sopenharmony_ci * larger than the scan_hint. 34562306a36Sopenharmony_ci */ 34662306a36Sopenharmony_ci if (block->scan_hint && 34762306a36Sopenharmony_ci block->contig_hint_start > block->scan_hint_start && 34862306a36Sopenharmony_ci alloc_bits > block->scan_hint) 34962306a36Sopenharmony_ci return block->scan_hint_start + block->scan_hint; 35062306a36Sopenharmony_ci 35162306a36Sopenharmony_ci return block->first_free; 35262306a36Sopenharmony_ci} 35362306a36Sopenharmony_ci 35462306a36Sopenharmony_ci/** 35562306a36Sopenharmony_ci * pcpu_next_md_free_region - finds the next hint free area 35662306a36Sopenharmony_ci * @chunk: chunk of interest 35762306a36Sopenharmony_ci * @bit_off: chunk offset 35862306a36Sopenharmony_ci * @bits: size of free area 35962306a36Sopenharmony_ci * 36062306a36Sopenharmony_ci * Helper function for pcpu_for_each_md_free_region. It checks 36162306a36Sopenharmony_ci * block->contig_hint and performs aggregation across blocks to find the 36262306a36Sopenharmony_ci * next hint. It modifies bit_off and bits in-place to be consumed in the 36362306a36Sopenharmony_ci * loop. 36462306a36Sopenharmony_ci */ 36562306a36Sopenharmony_cistatic void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off, 36662306a36Sopenharmony_ci int *bits) 36762306a36Sopenharmony_ci{ 36862306a36Sopenharmony_ci int i = pcpu_off_to_block_index(*bit_off); 36962306a36Sopenharmony_ci int block_off = pcpu_off_to_block_off(*bit_off); 37062306a36Sopenharmony_ci struct pcpu_block_md *block; 37162306a36Sopenharmony_ci 37262306a36Sopenharmony_ci *bits = 0; 37362306a36Sopenharmony_ci for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 37462306a36Sopenharmony_ci block++, i++) { 37562306a36Sopenharmony_ci /* handles contig area across blocks */ 37662306a36Sopenharmony_ci if (*bits) { 37762306a36Sopenharmony_ci *bits += block->left_free; 37862306a36Sopenharmony_ci if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 37962306a36Sopenharmony_ci continue; 38062306a36Sopenharmony_ci return; 38162306a36Sopenharmony_ci } 38262306a36Sopenharmony_ci 38362306a36Sopenharmony_ci /* 38462306a36Sopenharmony_ci * This checks three things. First is there a contig_hint to 38562306a36Sopenharmony_ci * check. Second, have we checked this hint before by 38662306a36Sopenharmony_ci * comparing the block_off. Third, is this the same as the 38762306a36Sopenharmony_ci * right contig hint. In the last case, it spills over into 38862306a36Sopenharmony_ci * the next block and should be handled by the contig area 38962306a36Sopenharmony_ci * across blocks code. 39062306a36Sopenharmony_ci */ 39162306a36Sopenharmony_ci *bits = block->contig_hint; 39262306a36Sopenharmony_ci if (*bits && block->contig_hint_start >= block_off && 39362306a36Sopenharmony_ci *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) { 39462306a36Sopenharmony_ci *bit_off = pcpu_block_off_to_off(i, 39562306a36Sopenharmony_ci block->contig_hint_start); 39662306a36Sopenharmony_ci return; 39762306a36Sopenharmony_ci } 39862306a36Sopenharmony_ci /* reset to satisfy the second predicate above */ 39962306a36Sopenharmony_ci block_off = 0; 40062306a36Sopenharmony_ci 40162306a36Sopenharmony_ci *bits = block->right_free; 40262306a36Sopenharmony_ci *bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free; 40362306a36Sopenharmony_ci } 40462306a36Sopenharmony_ci} 40562306a36Sopenharmony_ci 40662306a36Sopenharmony_ci/** 40762306a36Sopenharmony_ci * pcpu_next_fit_region - finds fit areas for a given allocation request 40862306a36Sopenharmony_ci * @chunk: chunk of interest 40962306a36Sopenharmony_ci * @alloc_bits: size of allocation 41062306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 41162306a36Sopenharmony_ci * @bit_off: chunk offset 41262306a36Sopenharmony_ci * @bits: size of free area 41362306a36Sopenharmony_ci * 41462306a36Sopenharmony_ci * Finds the next free region that is viable for use with a given size and 41562306a36Sopenharmony_ci * alignment. This only returns if there is a valid area to be used for this 41662306a36Sopenharmony_ci * allocation. block->first_free is returned if the allocation request fits 41762306a36Sopenharmony_ci * within the block to see if the request can be fulfilled prior to the contig 41862306a36Sopenharmony_ci * hint. 41962306a36Sopenharmony_ci */ 42062306a36Sopenharmony_cistatic void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits, 42162306a36Sopenharmony_ci int align, int *bit_off, int *bits) 42262306a36Sopenharmony_ci{ 42362306a36Sopenharmony_ci int i = pcpu_off_to_block_index(*bit_off); 42462306a36Sopenharmony_ci int block_off = pcpu_off_to_block_off(*bit_off); 42562306a36Sopenharmony_ci struct pcpu_block_md *block; 42662306a36Sopenharmony_ci 42762306a36Sopenharmony_ci *bits = 0; 42862306a36Sopenharmony_ci for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk); 42962306a36Sopenharmony_ci block++, i++) { 43062306a36Sopenharmony_ci /* handles contig area across blocks */ 43162306a36Sopenharmony_ci if (*bits) { 43262306a36Sopenharmony_ci *bits += block->left_free; 43362306a36Sopenharmony_ci if (*bits >= alloc_bits) 43462306a36Sopenharmony_ci return; 43562306a36Sopenharmony_ci if (block->left_free == PCPU_BITMAP_BLOCK_BITS) 43662306a36Sopenharmony_ci continue; 43762306a36Sopenharmony_ci } 43862306a36Sopenharmony_ci 43962306a36Sopenharmony_ci /* check block->contig_hint */ 44062306a36Sopenharmony_ci *bits = ALIGN(block->contig_hint_start, align) - 44162306a36Sopenharmony_ci block->contig_hint_start; 44262306a36Sopenharmony_ci /* 44362306a36Sopenharmony_ci * This uses the block offset to determine if this has been 44462306a36Sopenharmony_ci * checked in the prior iteration. 44562306a36Sopenharmony_ci */ 44662306a36Sopenharmony_ci if (block->contig_hint && 44762306a36Sopenharmony_ci block->contig_hint_start >= block_off && 44862306a36Sopenharmony_ci block->contig_hint >= *bits + alloc_bits) { 44962306a36Sopenharmony_ci int start = pcpu_next_hint(block, alloc_bits); 45062306a36Sopenharmony_ci 45162306a36Sopenharmony_ci *bits += alloc_bits + block->contig_hint_start - 45262306a36Sopenharmony_ci start; 45362306a36Sopenharmony_ci *bit_off = pcpu_block_off_to_off(i, start); 45462306a36Sopenharmony_ci return; 45562306a36Sopenharmony_ci } 45662306a36Sopenharmony_ci /* reset to satisfy the second predicate above */ 45762306a36Sopenharmony_ci block_off = 0; 45862306a36Sopenharmony_ci 45962306a36Sopenharmony_ci *bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free, 46062306a36Sopenharmony_ci align); 46162306a36Sopenharmony_ci *bits = PCPU_BITMAP_BLOCK_BITS - *bit_off; 46262306a36Sopenharmony_ci *bit_off = pcpu_block_off_to_off(i, *bit_off); 46362306a36Sopenharmony_ci if (*bits >= alloc_bits) 46462306a36Sopenharmony_ci return; 46562306a36Sopenharmony_ci } 46662306a36Sopenharmony_ci 46762306a36Sopenharmony_ci /* no valid offsets were found - fail condition */ 46862306a36Sopenharmony_ci *bit_off = pcpu_chunk_map_bits(chunk); 46962306a36Sopenharmony_ci} 47062306a36Sopenharmony_ci 47162306a36Sopenharmony_ci/* 47262306a36Sopenharmony_ci * Metadata free area iterators. These perform aggregation of free areas 47362306a36Sopenharmony_ci * based on the metadata blocks and return the offset @bit_off and size in 47462306a36Sopenharmony_ci * bits of the free area @bits. pcpu_for_each_fit_region only returns when 47562306a36Sopenharmony_ci * a fit is found for the allocation request. 47662306a36Sopenharmony_ci */ 47762306a36Sopenharmony_ci#define pcpu_for_each_md_free_region(chunk, bit_off, bits) \ 47862306a36Sopenharmony_ci for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \ 47962306a36Sopenharmony_ci (bit_off) < pcpu_chunk_map_bits((chunk)); \ 48062306a36Sopenharmony_ci (bit_off) += (bits) + 1, \ 48162306a36Sopenharmony_ci pcpu_next_md_free_region((chunk), &(bit_off), &(bits))) 48262306a36Sopenharmony_ci 48362306a36Sopenharmony_ci#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \ 48462306a36Sopenharmony_ci for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 48562306a36Sopenharmony_ci &(bits)); \ 48662306a36Sopenharmony_ci (bit_off) < pcpu_chunk_map_bits((chunk)); \ 48762306a36Sopenharmony_ci (bit_off) += (bits), \ 48862306a36Sopenharmony_ci pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \ 48962306a36Sopenharmony_ci &(bits))) 49062306a36Sopenharmony_ci 49162306a36Sopenharmony_ci/** 49262306a36Sopenharmony_ci * pcpu_mem_zalloc - allocate memory 49362306a36Sopenharmony_ci * @size: bytes to allocate 49462306a36Sopenharmony_ci * @gfp: allocation flags 49562306a36Sopenharmony_ci * 49662306a36Sopenharmony_ci * Allocate @size bytes. If @size is smaller than PAGE_SIZE, 49762306a36Sopenharmony_ci * kzalloc() is used; otherwise, the equivalent of vzalloc() is used. 49862306a36Sopenharmony_ci * This is to facilitate passing through whitelisted flags. The 49962306a36Sopenharmony_ci * returned memory is always zeroed. 50062306a36Sopenharmony_ci * 50162306a36Sopenharmony_ci * RETURNS: 50262306a36Sopenharmony_ci * Pointer to the allocated area on success, NULL on failure. 50362306a36Sopenharmony_ci */ 50462306a36Sopenharmony_cistatic void *pcpu_mem_zalloc(size_t size, gfp_t gfp) 50562306a36Sopenharmony_ci{ 50662306a36Sopenharmony_ci if (WARN_ON_ONCE(!slab_is_available())) 50762306a36Sopenharmony_ci return NULL; 50862306a36Sopenharmony_ci 50962306a36Sopenharmony_ci if (size <= PAGE_SIZE) 51062306a36Sopenharmony_ci return kzalloc(size, gfp); 51162306a36Sopenharmony_ci else 51262306a36Sopenharmony_ci return __vmalloc(size, gfp | __GFP_ZERO); 51362306a36Sopenharmony_ci} 51462306a36Sopenharmony_ci 51562306a36Sopenharmony_ci/** 51662306a36Sopenharmony_ci * pcpu_mem_free - free memory 51762306a36Sopenharmony_ci * @ptr: memory to free 51862306a36Sopenharmony_ci * 51962306a36Sopenharmony_ci * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). 52062306a36Sopenharmony_ci */ 52162306a36Sopenharmony_cistatic void pcpu_mem_free(void *ptr) 52262306a36Sopenharmony_ci{ 52362306a36Sopenharmony_ci kvfree(ptr); 52462306a36Sopenharmony_ci} 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_cistatic void __pcpu_chunk_move(struct pcpu_chunk *chunk, int slot, 52762306a36Sopenharmony_ci bool move_front) 52862306a36Sopenharmony_ci{ 52962306a36Sopenharmony_ci if (chunk != pcpu_reserved_chunk) { 53062306a36Sopenharmony_ci if (move_front) 53162306a36Sopenharmony_ci list_move(&chunk->list, &pcpu_chunk_lists[slot]); 53262306a36Sopenharmony_ci else 53362306a36Sopenharmony_ci list_move_tail(&chunk->list, &pcpu_chunk_lists[slot]); 53462306a36Sopenharmony_ci } 53562306a36Sopenharmony_ci} 53662306a36Sopenharmony_ci 53762306a36Sopenharmony_cistatic void pcpu_chunk_move(struct pcpu_chunk *chunk, int slot) 53862306a36Sopenharmony_ci{ 53962306a36Sopenharmony_ci __pcpu_chunk_move(chunk, slot, true); 54062306a36Sopenharmony_ci} 54162306a36Sopenharmony_ci 54262306a36Sopenharmony_ci/** 54362306a36Sopenharmony_ci * pcpu_chunk_relocate - put chunk in the appropriate chunk slot 54462306a36Sopenharmony_ci * @chunk: chunk of interest 54562306a36Sopenharmony_ci * @oslot: the previous slot it was on 54662306a36Sopenharmony_ci * 54762306a36Sopenharmony_ci * This function is called after an allocation or free changed @chunk. 54862306a36Sopenharmony_ci * New slot according to the changed state is determined and @chunk is 54962306a36Sopenharmony_ci * moved to the slot. Note that the reserved chunk is never put on 55062306a36Sopenharmony_ci * chunk slots. 55162306a36Sopenharmony_ci * 55262306a36Sopenharmony_ci * CONTEXT: 55362306a36Sopenharmony_ci * pcpu_lock. 55462306a36Sopenharmony_ci */ 55562306a36Sopenharmony_cistatic void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) 55662306a36Sopenharmony_ci{ 55762306a36Sopenharmony_ci int nslot = pcpu_chunk_slot(chunk); 55862306a36Sopenharmony_ci 55962306a36Sopenharmony_ci /* leave isolated chunks in-place */ 56062306a36Sopenharmony_ci if (chunk->isolated) 56162306a36Sopenharmony_ci return; 56262306a36Sopenharmony_ci 56362306a36Sopenharmony_ci if (oslot != nslot) 56462306a36Sopenharmony_ci __pcpu_chunk_move(chunk, nslot, oslot < nslot); 56562306a36Sopenharmony_ci} 56662306a36Sopenharmony_ci 56762306a36Sopenharmony_cistatic void pcpu_isolate_chunk(struct pcpu_chunk *chunk) 56862306a36Sopenharmony_ci{ 56962306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 57062306a36Sopenharmony_ci 57162306a36Sopenharmony_ci if (!chunk->isolated) { 57262306a36Sopenharmony_ci chunk->isolated = true; 57362306a36Sopenharmony_ci pcpu_nr_empty_pop_pages -= chunk->nr_empty_pop_pages; 57462306a36Sopenharmony_ci } 57562306a36Sopenharmony_ci list_move(&chunk->list, &pcpu_chunk_lists[pcpu_to_depopulate_slot]); 57662306a36Sopenharmony_ci} 57762306a36Sopenharmony_ci 57862306a36Sopenharmony_cistatic void pcpu_reintegrate_chunk(struct pcpu_chunk *chunk) 57962306a36Sopenharmony_ci{ 58062306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 58162306a36Sopenharmony_ci 58262306a36Sopenharmony_ci if (chunk->isolated) { 58362306a36Sopenharmony_ci chunk->isolated = false; 58462306a36Sopenharmony_ci pcpu_nr_empty_pop_pages += chunk->nr_empty_pop_pages; 58562306a36Sopenharmony_ci pcpu_chunk_relocate(chunk, -1); 58662306a36Sopenharmony_ci } 58762306a36Sopenharmony_ci} 58862306a36Sopenharmony_ci 58962306a36Sopenharmony_ci/* 59062306a36Sopenharmony_ci * pcpu_update_empty_pages - update empty page counters 59162306a36Sopenharmony_ci * @chunk: chunk of interest 59262306a36Sopenharmony_ci * @nr: nr of empty pages 59362306a36Sopenharmony_ci * 59462306a36Sopenharmony_ci * This is used to keep track of the empty pages now based on the premise 59562306a36Sopenharmony_ci * a md_block covers a page. The hint update functions recognize if a block 59662306a36Sopenharmony_ci * is made full or broken to calculate deltas for keeping track of free pages. 59762306a36Sopenharmony_ci */ 59862306a36Sopenharmony_cistatic inline void pcpu_update_empty_pages(struct pcpu_chunk *chunk, int nr) 59962306a36Sopenharmony_ci{ 60062306a36Sopenharmony_ci chunk->nr_empty_pop_pages += nr; 60162306a36Sopenharmony_ci if (chunk != pcpu_reserved_chunk && !chunk->isolated) 60262306a36Sopenharmony_ci pcpu_nr_empty_pop_pages += nr; 60362306a36Sopenharmony_ci} 60462306a36Sopenharmony_ci 60562306a36Sopenharmony_ci/* 60662306a36Sopenharmony_ci * pcpu_region_overlap - determines if two regions overlap 60762306a36Sopenharmony_ci * @a: start of first region, inclusive 60862306a36Sopenharmony_ci * @b: end of first region, exclusive 60962306a36Sopenharmony_ci * @x: start of second region, inclusive 61062306a36Sopenharmony_ci * @y: end of second region, exclusive 61162306a36Sopenharmony_ci * 61262306a36Sopenharmony_ci * This is used to determine if the hint region [a, b) overlaps with the 61362306a36Sopenharmony_ci * allocated region [x, y). 61462306a36Sopenharmony_ci */ 61562306a36Sopenharmony_cistatic inline bool pcpu_region_overlap(int a, int b, int x, int y) 61662306a36Sopenharmony_ci{ 61762306a36Sopenharmony_ci return (a < y) && (x < b); 61862306a36Sopenharmony_ci} 61962306a36Sopenharmony_ci 62062306a36Sopenharmony_ci/** 62162306a36Sopenharmony_ci * pcpu_block_update - updates a block given a free area 62262306a36Sopenharmony_ci * @block: block of interest 62362306a36Sopenharmony_ci * @start: start offset in block 62462306a36Sopenharmony_ci * @end: end offset in block 62562306a36Sopenharmony_ci * 62662306a36Sopenharmony_ci * Updates a block given a known free area. The region [start, end) is 62762306a36Sopenharmony_ci * expected to be the entirety of the free area within a block. Chooses 62862306a36Sopenharmony_ci * the best starting offset if the contig hints are equal. 62962306a36Sopenharmony_ci */ 63062306a36Sopenharmony_cistatic void pcpu_block_update(struct pcpu_block_md *block, int start, int end) 63162306a36Sopenharmony_ci{ 63262306a36Sopenharmony_ci int contig = end - start; 63362306a36Sopenharmony_ci 63462306a36Sopenharmony_ci block->first_free = min(block->first_free, start); 63562306a36Sopenharmony_ci if (start == 0) 63662306a36Sopenharmony_ci block->left_free = contig; 63762306a36Sopenharmony_ci 63862306a36Sopenharmony_ci if (end == block->nr_bits) 63962306a36Sopenharmony_ci block->right_free = contig; 64062306a36Sopenharmony_ci 64162306a36Sopenharmony_ci if (contig > block->contig_hint) { 64262306a36Sopenharmony_ci /* promote the old contig_hint to be the new scan_hint */ 64362306a36Sopenharmony_ci if (start > block->contig_hint_start) { 64462306a36Sopenharmony_ci if (block->contig_hint > block->scan_hint) { 64562306a36Sopenharmony_ci block->scan_hint_start = 64662306a36Sopenharmony_ci block->contig_hint_start; 64762306a36Sopenharmony_ci block->scan_hint = block->contig_hint; 64862306a36Sopenharmony_ci } else if (start < block->scan_hint_start) { 64962306a36Sopenharmony_ci /* 65062306a36Sopenharmony_ci * The old contig_hint == scan_hint. But, the 65162306a36Sopenharmony_ci * new contig is larger so hold the invariant 65262306a36Sopenharmony_ci * scan_hint_start < contig_hint_start. 65362306a36Sopenharmony_ci */ 65462306a36Sopenharmony_ci block->scan_hint = 0; 65562306a36Sopenharmony_ci } 65662306a36Sopenharmony_ci } else { 65762306a36Sopenharmony_ci block->scan_hint = 0; 65862306a36Sopenharmony_ci } 65962306a36Sopenharmony_ci block->contig_hint_start = start; 66062306a36Sopenharmony_ci block->contig_hint = contig; 66162306a36Sopenharmony_ci } else if (contig == block->contig_hint) { 66262306a36Sopenharmony_ci if (block->contig_hint_start && 66362306a36Sopenharmony_ci (!start || 66462306a36Sopenharmony_ci __ffs(start) > __ffs(block->contig_hint_start))) { 66562306a36Sopenharmony_ci /* start has a better alignment so use it */ 66662306a36Sopenharmony_ci block->contig_hint_start = start; 66762306a36Sopenharmony_ci if (start < block->scan_hint_start && 66862306a36Sopenharmony_ci block->contig_hint > block->scan_hint) 66962306a36Sopenharmony_ci block->scan_hint = 0; 67062306a36Sopenharmony_ci } else if (start > block->scan_hint_start || 67162306a36Sopenharmony_ci block->contig_hint > block->scan_hint) { 67262306a36Sopenharmony_ci /* 67362306a36Sopenharmony_ci * Knowing contig == contig_hint, update the scan_hint 67462306a36Sopenharmony_ci * if it is farther than or larger than the current 67562306a36Sopenharmony_ci * scan_hint. 67662306a36Sopenharmony_ci */ 67762306a36Sopenharmony_ci block->scan_hint_start = start; 67862306a36Sopenharmony_ci block->scan_hint = contig; 67962306a36Sopenharmony_ci } 68062306a36Sopenharmony_ci } else { 68162306a36Sopenharmony_ci /* 68262306a36Sopenharmony_ci * The region is smaller than the contig_hint. So only update 68362306a36Sopenharmony_ci * the scan_hint if it is larger than or equal and farther than 68462306a36Sopenharmony_ci * the current scan_hint. 68562306a36Sopenharmony_ci */ 68662306a36Sopenharmony_ci if ((start < block->contig_hint_start && 68762306a36Sopenharmony_ci (contig > block->scan_hint || 68862306a36Sopenharmony_ci (contig == block->scan_hint && 68962306a36Sopenharmony_ci start > block->scan_hint_start)))) { 69062306a36Sopenharmony_ci block->scan_hint_start = start; 69162306a36Sopenharmony_ci block->scan_hint = contig; 69262306a36Sopenharmony_ci } 69362306a36Sopenharmony_ci } 69462306a36Sopenharmony_ci} 69562306a36Sopenharmony_ci 69662306a36Sopenharmony_ci/* 69762306a36Sopenharmony_ci * pcpu_block_update_scan - update a block given a free area from a scan 69862306a36Sopenharmony_ci * @chunk: chunk of interest 69962306a36Sopenharmony_ci * @bit_off: chunk offset 70062306a36Sopenharmony_ci * @bits: size of free area 70162306a36Sopenharmony_ci * 70262306a36Sopenharmony_ci * Finding the final allocation spot first goes through pcpu_find_block_fit() 70362306a36Sopenharmony_ci * to find a block that can hold the allocation and then pcpu_alloc_area() 70462306a36Sopenharmony_ci * where a scan is used. When allocations require specific alignments, 70562306a36Sopenharmony_ci * we can inadvertently create holes which will not be seen in the alloc 70662306a36Sopenharmony_ci * or free paths. 70762306a36Sopenharmony_ci * 70862306a36Sopenharmony_ci * This takes a given free area hole and updates a block as it may change the 70962306a36Sopenharmony_ci * scan_hint. We need to scan backwards to ensure we don't miss free bits 71062306a36Sopenharmony_ci * from alignment. 71162306a36Sopenharmony_ci */ 71262306a36Sopenharmony_cistatic void pcpu_block_update_scan(struct pcpu_chunk *chunk, int bit_off, 71362306a36Sopenharmony_ci int bits) 71462306a36Sopenharmony_ci{ 71562306a36Sopenharmony_ci int s_off = pcpu_off_to_block_off(bit_off); 71662306a36Sopenharmony_ci int e_off = s_off + bits; 71762306a36Sopenharmony_ci int s_index, l_bit; 71862306a36Sopenharmony_ci struct pcpu_block_md *block; 71962306a36Sopenharmony_ci 72062306a36Sopenharmony_ci if (e_off > PCPU_BITMAP_BLOCK_BITS) 72162306a36Sopenharmony_ci return; 72262306a36Sopenharmony_ci 72362306a36Sopenharmony_ci s_index = pcpu_off_to_block_index(bit_off); 72462306a36Sopenharmony_ci block = chunk->md_blocks + s_index; 72562306a36Sopenharmony_ci 72662306a36Sopenharmony_ci /* scan backwards in case of alignment skipping free bits */ 72762306a36Sopenharmony_ci l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), s_off); 72862306a36Sopenharmony_ci s_off = (s_off == l_bit) ? 0 : l_bit + 1; 72962306a36Sopenharmony_ci 73062306a36Sopenharmony_ci pcpu_block_update(block, s_off, e_off); 73162306a36Sopenharmony_ci} 73262306a36Sopenharmony_ci 73362306a36Sopenharmony_ci/** 73462306a36Sopenharmony_ci * pcpu_chunk_refresh_hint - updates metadata about a chunk 73562306a36Sopenharmony_ci * @chunk: chunk of interest 73662306a36Sopenharmony_ci * @full_scan: if we should scan from the beginning 73762306a36Sopenharmony_ci * 73862306a36Sopenharmony_ci * Iterates over the metadata blocks to find the largest contig area. 73962306a36Sopenharmony_ci * A full scan can be avoided on the allocation path as this is triggered 74062306a36Sopenharmony_ci * if we broke the contig_hint. In doing so, the scan_hint will be before 74162306a36Sopenharmony_ci * the contig_hint or after if the scan_hint == contig_hint. This cannot 74262306a36Sopenharmony_ci * be prevented on freeing as we want to find the largest area possibly 74362306a36Sopenharmony_ci * spanning blocks. 74462306a36Sopenharmony_ci */ 74562306a36Sopenharmony_cistatic void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk, bool full_scan) 74662306a36Sopenharmony_ci{ 74762306a36Sopenharmony_ci struct pcpu_block_md *chunk_md = &chunk->chunk_md; 74862306a36Sopenharmony_ci int bit_off, bits; 74962306a36Sopenharmony_ci 75062306a36Sopenharmony_ci /* promote scan_hint to contig_hint */ 75162306a36Sopenharmony_ci if (!full_scan && chunk_md->scan_hint) { 75262306a36Sopenharmony_ci bit_off = chunk_md->scan_hint_start + chunk_md->scan_hint; 75362306a36Sopenharmony_ci chunk_md->contig_hint_start = chunk_md->scan_hint_start; 75462306a36Sopenharmony_ci chunk_md->contig_hint = chunk_md->scan_hint; 75562306a36Sopenharmony_ci chunk_md->scan_hint = 0; 75662306a36Sopenharmony_ci } else { 75762306a36Sopenharmony_ci bit_off = chunk_md->first_free; 75862306a36Sopenharmony_ci chunk_md->contig_hint = 0; 75962306a36Sopenharmony_ci } 76062306a36Sopenharmony_ci 76162306a36Sopenharmony_ci bits = 0; 76262306a36Sopenharmony_ci pcpu_for_each_md_free_region(chunk, bit_off, bits) 76362306a36Sopenharmony_ci pcpu_block_update(chunk_md, bit_off, bit_off + bits); 76462306a36Sopenharmony_ci} 76562306a36Sopenharmony_ci 76662306a36Sopenharmony_ci/** 76762306a36Sopenharmony_ci * pcpu_block_refresh_hint 76862306a36Sopenharmony_ci * @chunk: chunk of interest 76962306a36Sopenharmony_ci * @index: index of the metadata block 77062306a36Sopenharmony_ci * 77162306a36Sopenharmony_ci * Scans over the block beginning at first_free and updates the block 77262306a36Sopenharmony_ci * metadata accordingly. 77362306a36Sopenharmony_ci */ 77462306a36Sopenharmony_cistatic void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index) 77562306a36Sopenharmony_ci{ 77662306a36Sopenharmony_ci struct pcpu_block_md *block = chunk->md_blocks + index; 77762306a36Sopenharmony_ci unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index); 77862306a36Sopenharmony_ci unsigned int start, end; /* region start, region end */ 77962306a36Sopenharmony_ci 78062306a36Sopenharmony_ci /* promote scan_hint to contig_hint */ 78162306a36Sopenharmony_ci if (block->scan_hint) { 78262306a36Sopenharmony_ci start = block->scan_hint_start + block->scan_hint; 78362306a36Sopenharmony_ci block->contig_hint_start = block->scan_hint_start; 78462306a36Sopenharmony_ci block->contig_hint = block->scan_hint; 78562306a36Sopenharmony_ci block->scan_hint = 0; 78662306a36Sopenharmony_ci } else { 78762306a36Sopenharmony_ci start = block->first_free; 78862306a36Sopenharmony_ci block->contig_hint = 0; 78962306a36Sopenharmony_ci } 79062306a36Sopenharmony_ci 79162306a36Sopenharmony_ci block->right_free = 0; 79262306a36Sopenharmony_ci 79362306a36Sopenharmony_ci /* iterate over free areas and update the contig hints */ 79462306a36Sopenharmony_ci for_each_clear_bitrange_from(start, end, alloc_map, PCPU_BITMAP_BLOCK_BITS) 79562306a36Sopenharmony_ci pcpu_block_update(block, start, end); 79662306a36Sopenharmony_ci} 79762306a36Sopenharmony_ci 79862306a36Sopenharmony_ci/** 79962306a36Sopenharmony_ci * pcpu_block_update_hint_alloc - update hint on allocation path 80062306a36Sopenharmony_ci * @chunk: chunk of interest 80162306a36Sopenharmony_ci * @bit_off: chunk offset 80262306a36Sopenharmony_ci * @bits: size of request 80362306a36Sopenharmony_ci * 80462306a36Sopenharmony_ci * Updates metadata for the allocation path. The metadata only has to be 80562306a36Sopenharmony_ci * refreshed by a full scan iff the chunk's contig hint is broken. Block level 80662306a36Sopenharmony_ci * scans are required if the block's contig hint is broken. 80762306a36Sopenharmony_ci */ 80862306a36Sopenharmony_cistatic void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off, 80962306a36Sopenharmony_ci int bits) 81062306a36Sopenharmony_ci{ 81162306a36Sopenharmony_ci struct pcpu_block_md *chunk_md = &chunk->chunk_md; 81262306a36Sopenharmony_ci int nr_empty_pages = 0; 81362306a36Sopenharmony_ci struct pcpu_block_md *s_block, *e_block, *block; 81462306a36Sopenharmony_ci int s_index, e_index; /* block indexes of the freed allocation */ 81562306a36Sopenharmony_ci int s_off, e_off; /* block offsets of the freed allocation */ 81662306a36Sopenharmony_ci 81762306a36Sopenharmony_ci /* 81862306a36Sopenharmony_ci * Calculate per block offsets. 81962306a36Sopenharmony_ci * The calculation uses an inclusive range, but the resulting offsets 82062306a36Sopenharmony_ci * are [start, end). e_index always points to the last block in the 82162306a36Sopenharmony_ci * range. 82262306a36Sopenharmony_ci */ 82362306a36Sopenharmony_ci s_index = pcpu_off_to_block_index(bit_off); 82462306a36Sopenharmony_ci e_index = pcpu_off_to_block_index(bit_off + bits - 1); 82562306a36Sopenharmony_ci s_off = pcpu_off_to_block_off(bit_off); 82662306a36Sopenharmony_ci e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 82762306a36Sopenharmony_ci 82862306a36Sopenharmony_ci s_block = chunk->md_blocks + s_index; 82962306a36Sopenharmony_ci e_block = chunk->md_blocks + e_index; 83062306a36Sopenharmony_ci 83162306a36Sopenharmony_ci /* 83262306a36Sopenharmony_ci * Update s_block. 83362306a36Sopenharmony_ci */ 83462306a36Sopenharmony_ci if (s_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 83562306a36Sopenharmony_ci nr_empty_pages++; 83662306a36Sopenharmony_ci 83762306a36Sopenharmony_ci /* 83862306a36Sopenharmony_ci * block->first_free must be updated if the allocation takes its place. 83962306a36Sopenharmony_ci * If the allocation breaks the contig_hint, a scan is required to 84062306a36Sopenharmony_ci * restore this hint. 84162306a36Sopenharmony_ci */ 84262306a36Sopenharmony_ci if (s_off == s_block->first_free) 84362306a36Sopenharmony_ci s_block->first_free = find_next_zero_bit( 84462306a36Sopenharmony_ci pcpu_index_alloc_map(chunk, s_index), 84562306a36Sopenharmony_ci PCPU_BITMAP_BLOCK_BITS, 84662306a36Sopenharmony_ci s_off + bits); 84762306a36Sopenharmony_ci 84862306a36Sopenharmony_ci if (pcpu_region_overlap(s_block->scan_hint_start, 84962306a36Sopenharmony_ci s_block->scan_hint_start + s_block->scan_hint, 85062306a36Sopenharmony_ci s_off, 85162306a36Sopenharmony_ci s_off + bits)) 85262306a36Sopenharmony_ci s_block->scan_hint = 0; 85362306a36Sopenharmony_ci 85462306a36Sopenharmony_ci if (pcpu_region_overlap(s_block->contig_hint_start, 85562306a36Sopenharmony_ci s_block->contig_hint_start + 85662306a36Sopenharmony_ci s_block->contig_hint, 85762306a36Sopenharmony_ci s_off, 85862306a36Sopenharmony_ci s_off + bits)) { 85962306a36Sopenharmony_ci /* block contig hint is broken - scan to fix it */ 86062306a36Sopenharmony_ci if (!s_off) 86162306a36Sopenharmony_ci s_block->left_free = 0; 86262306a36Sopenharmony_ci pcpu_block_refresh_hint(chunk, s_index); 86362306a36Sopenharmony_ci } else { 86462306a36Sopenharmony_ci /* update left and right contig manually */ 86562306a36Sopenharmony_ci s_block->left_free = min(s_block->left_free, s_off); 86662306a36Sopenharmony_ci if (s_index == e_index) 86762306a36Sopenharmony_ci s_block->right_free = min_t(int, s_block->right_free, 86862306a36Sopenharmony_ci PCPU_BITMAP_BLOCK_BITS - e_off); 86962306a36Sopenharmony_ci else 87062306a36Sopenharmony_ci s_block->right_free = 0; 87162306a36Sopenharmony_ci } 87262306a36Sopenharmony_ci 87362306a36Sopenharmony_ci /* 87462306a36Sopenharmony_ci * Update e_block. 87562306a36Sopenharmony_ci */ 87662306a36Sopenharmony_ci if (s_index != e_index) { 87762306a36Sopenharmony_ci if (e_block->contig_hint == PCPU_BITMAP_BLOCK_BITS) 87862306a36Sopenharmony_ci nr_empty_pages++; 87962306a36Sopenharmony_ci 88062306a36Sopenharmony_ci /* 88162306a36Sopenharmony_ci * When the allocation is across blocks, the end is along 88262306a36Sopenharmony_ci * the left part of the e_block. 88362306a36Sopenharmony_ci */ 88462306a36Sopenharmony_ci e_block->first_free = find_next_zero_bit( 88562306a36Sopenharmony_ci pcpu_index_alloc_map(chunk, e_index), 88662306a36Sopenharmony_ci PCPU_BITMAP_BLOCK_BITS, e_off); 88762306a36Sopenharmony_ci 88862306a36Sopenharmony_ci if (e_off == PCPU_BITMAP_BLOCK_BITS) { 88962306a36Sopenharmony_ci /* reset the block */ 89062306a36Sopenharmony_ci e_block++; 89162306a36Sopenharmony_ci } else { 89262306a36Sopenharmony_ci if (e_off > e_block->scan_hint_start) 89362306a36Sopenharmony_ci e_block->scan_hint = 0; 89462306a36Sopenharmony_ci 89562306a36Sopenharmony_ci e_block->left_free = 0; 89662306a36Sopenharmony_ci if (e_off > e_block->contig_hint_start) { 89762306a36Sopenharmony_ci /* contig hint is broken - scan to fix it */ 89862306a36Sopenharmony_ci pcpu_block_refresh_hint(chunk, e_index); 89962306a36Sopenharmony_ci } else { 90062306a36Sopenharmony_ci e_block->right_free = 90162306a36Sopenharmony_ci min_t(int, e_block->right_free, 90262306a36Sopenharmony_ci PCPU_BITMAP_BLOCK_BITS - e_off); 90362306a36Sopenharmony_ci } 90462306a36Sopenharmony_ci } 90562306a36Sopenharmony_ci 90662306a36Sopenharmony_ci /* update in-between md_blocks */ 90762306a36Sopenharmony_ci nr_empty_pages += (e_index - s_index - 1); 90862306a36Sopenharmony_ci for (block = s_block + 1; block < e_block; block++) { 90962306a36Sopenharmony_ci block->scan_hint = 0; 91062306a36Sopenharmony_ci block->contig_hint = 0; 91162306a36Sopenharmony_ci block->left_free = 0; 91262306a36Sopenharmony_ci block->right_free = 0; 91362306a36Sopenharmony_ci } 91462306a36Sopenharmony_ci } 91562306a36Sopenharmony_ci 91662306a36Sopenharmony_ci /* 91762306a36Sopenharmony_ci * If the allocation is not atomic, some blocks may not be 91862306a36Sopenharmony_ci * populated with pages, while we account it here. The number 91962306a36Sopenharmony_ci * of pages will be added back with pcpu_chunk_populated() 92062306a36Sopenharmony_ci * when populating pages. 92162306a36Sopenharmony_ci */ 92262306a36Sopenharmony_ci if (nr_empty_pages) 92362306a36Sopenharmony_ci pcpu_update_empty_pages(chunk, -nr_empty_pages); 92462306a36Sopenharmony_ci 92562306a36Sopenharmony_ci if (pcpu_region_overlap(chunk_md->scan_hint_start, 92662306a36Sopenharmony_ci chunk_md->scan_hint_start + 92762306a36Sopenharmony_ci chunk_md->scan_hint, 92862306a36Sopenharmony_ci bit_off, 92962306a36Sopenharmony_ci bit_off + bits)) 93062306a36Sopenharmony_ci chunk_md->scan_hint = 0; 93162306a36Sopenharmony_ci 93262306a36Sopenharmony_ci /* 93362306a36Sopenharmony_ci * The only time a full chunk scan is required is if the chunk 93462306a36Sopenharmony_ci * contig hint is broken. Otherwise, it means a smaller space 93562306a36Sopenharmony_ci * was used and therefore the chunk contig hint is still correct. 93662306a36Sopenharmony_ci */ 93762306a36Sopenharmony_ci if (pcpu_region_overlap(chunk_md->contig_hint_start, 93862306a36Sopenharmony_ci chunk_md->contig_hint_start + 93962306a36Sopenharmony_ci chunk_md->contig_hint, 94062306a36Sopenharmony_ci bit_off, 94162306a36Sopenharmony_ci bit_off + bits)) 94262306a36Sopenharmony_ci pcpu_chunk_refresh_hint(chunk, false); 94362306a36Sopenharmony_ci} 94462306a36Sopenharmony_ci 94562306a36Sopenharmony_ci/** 94662306a36Sopenharmony_ci * pcpu_block_update_hint_free - updates the block hints on the free path 94762306a36Sopenharmony_ci * @chunk: chunk of interest 94862306a36Sopenharmony_ci * @bit_off: chunk offset 94962306a36Sopenharmony_ci * @bits: size of request 95062306a36Sopenharmony_ci * 95162306a36Sopenharmony_ci * Updates metadata for the allocation path. This avoids a blind block 95262306a36Sopenharmony_ci * refresh by making use of the block contig hints. If this fails, it scans 95362306a36Sopenharmony_ci * forward and backward to determine the extent of the free area. This is 95462306a36Sopenharmony_ci * capped at the boundary of blocks. 95562306a36Sopenharmony_ci * 95662306a36Sopenharmony_ci * A chunk update is triggered if a page becomes free, a block becomes free, 95762306a36Sopenharmony_ci * or the free spans across blocks. This tradeoff is to minimize iterating 95862306a36Sopenharmony_ci * over the block metadata to update chunk_md->contig_hint. 95962306a36Sopenharmony_ci * chunk_md->contig_hint may be off by up to a page, but it will never be more 96062306a36Sopenharmony_ci * than the available space. If the contig hint is contained in one block, it 96162306a36Sopenharmony_ci * will be accurate. 96262306a36Sopenharmony_ci */ 96362306a36Sopenharmony_cistatic void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off, 96462306a36Sopenharmony_ci int bits) 96562306a36Sopenharmony_ci{ 96662306a36Sopenharmony_ci int nr_empty_pages = 0; 96762306a36Sopenharmony_ci struct pcpu_block_md *s_block, *e_block, *block; 96862306a36Sopenharmony_ci int s_index, e_index; /* block indexes of the freed allocation */ 96962306a36Sopenharmony_ci int s_off, e_off; /* block offsets of the freed allocation */ 97062306a36Sopenharmony_ci int start, end; /* start and end of the whole free area */ 97162306a36Sopenharmony_ci 97262306a36Sopenharmony_ci /* 97362306a36Sopenharmony_ci * Calculate per block offsets. 97462306a36Sopenharmony_ci * The calculation uses an inclusive range, but the resulting offsets 97562306a36Sopenharmony_ci * are [start, end). e_index always points to the last block in the 97662306a36Sopenharmony_ci * range. 97762306a36Sopenharmony_ci */ 97862306a36Sopenharmony_ci s_index = pcpu_off_to_block_index(bit_off); 97962306a36Sopenharmony_ci e_index = pcpu_off_to_block_index(bit_off + bits - 1); 98062306a36Sopenharmony_ci s_off = pcpu_off_to_block_off(bit_off); 98162306a36Sopenharmony_ci e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1; 98262306a36Sopenharmony_ci 98362306a36Sopenharmony_ci s_block = chunk->md_blocks + s_index; 98462306a36Sopenharmony_ci e_block = chunk->md_blocks + e_index; 98562306a36Sopenharmony_ci 98662306a36Sopenharmony_ci /* 98762306a36Sopenharmony_ci * Check if the freed area aligns with the block->contig_hint. 98862306a36Sopenharmony_ci * If it does, then the scan to find the beginning/end of the 98962306a36Sopenharmony_ci * larger free area can be avoided. 99062306a36Sopenharmony_ci * 99162306a36Sopenharmony_ci * start and end refer to beginning and end of the free area 99262306a36Sopenharmony_ci * within each their respective blocks. This is not necessarily 99362306a36Sopenharmony_ci * the entire free area as it may span blocks past the beginning 99462306a36Sopenharmony_ci * or end of the block. 99562306a36Sopenharmony_ci */ 99662306a36Sopenharmony_ci start = s_off; 99762306a36Sopenharmony_ci if (s_off == s_block->contig_hint + s_block->contig_hint_start) { 99862306a36Sopenharmony_ci start = s_block->contig_hint_start; 99962306a36Sopenharmony_ci } else { 100062306a36Sopenharmony_ci /* 100162306a36Sopenharmony_ci * Scan backwards to find the extent of the free area. 100262306a36Sopenharmony_ci * find_last_bit returns the starting bit, so if the start bit 100362306a36Sopenharmony_ci * is returned, that means there was no last bit and the 100462306a36Sopenharmony_ci * remainder of the chunk is free. 100562306a36Sopenharmony_ci */ 100662306a36Sopenharmony_ci int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index), 100762306a36Sopenharmony_ci start); 100862306a36Sopenharmony_ci start = (start == l_bit) ? 0 : l_bit + 1; 100962306a36Sopenharmony_ci } 101062306a36Sopenharmony_ci 101162306a36Sopenharmony_ci end = e_off; 101262306a36Sopenharmony_ci if (e_off == e_block->contig_hint_start) 101362306a36Sopenharmony_ci end = e_block->contig_hint_start + e_block->contig_hint; 101462306a36Sopenharmony_ci else 101562306a36Sopenharmony_ci end = find_next_bit(pcpu_index_alloc_map(chunk, e_index), 101662306a36Sopenharmony_ci PCPU_BITMAP_BLOCK_BITS, end); 101762306a36Sopenharmony_ci 101862306a36Sopenharmony_ci /* update s_block */ 101962306a36Sopenharmony_ci e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS; 102062306a36Sopenharmony_ci if (!start && e_off == PCPU_BITMAP_BLOCK_BITS) 102162306a36Sopenharmony_ci nr_empty_pages++; 102262306a36Sopenharmony_ci pcpu_block_update(s_block, start, e_off); 102362306a36Sopenharmony_ci 102462306a36Sopenharmony_ci /* freeing in the same block */ 102562306a36Sopenharmony_ci if (s_index != e_index) { 102662306a36Sopenharmony_ci /* update e_block */ 102762306a36Sopenharmony_ci if (end == PCPU_BITMAP_BLOCK_BITS) 102862306a36Sopenharmony_ci nr_empty_pages++; 102962306a36Sopenharmony_ci pcpu_block_update(e_block, 0, end); 103062306a36Sopenharmony_ci 103162306a36Sopenharmony_ci /* reset md_blocks in the middle */ 103262306a36Sopenharmony_ci nr_empty_pages += (e_index - s_index - 1); 103362306a36Sopenharmony_ci for (block = s_block + 1; block < e_block; block++) { 103462306a36Sopenharmony_ci block->first_free = 0; 103562306a36Sopenharmony_ci block->scan_hint = 0; 103662306a36Sopenharmony_ci block->contig_hint_start = 0; 103762306a36Sopenharmony_ci block->contig_hint = PCPU_BITMAP_BLOCK_BITS; 103862306a36Sopenharmony_ci block->left_free = PCPU_BITMAP_BLOCK_BITS; 103962306a36Sopenharmony_ci block->right_free = PCPU_BITMAP_BLOCK_BITS; 104062306a36Sopenharmony_ci } 104162306a36Sopenharmony_ci } 104262306a36Sopenharmony_ci 104362306a36Sopenharmony_ci if (nr_empty_pages) 104462306a36Sopenharmony_ci pcpu_update_empty_pages(chunk, nr_empty_pages); 104562306a36Sopenharmony_ci 104662306a36Sopenharmony_ci /* 104762306a36Sopenharmony_ci * Refresh chunk metadata when the free makes a block free or spans 104862306a36Sopenharmony_ci * across blocks. The contig_hint may be off by up to a page, but if 104962306a36Sopenharmony_ci * the contig_hint is contained in a block, it will be accurate with 105062306a36Sopenharmony_ci * the else condition below. 105162306a36Sopenharmony_ci */ 105262306a36Sopenharmony_ci if (((end - start) >= PCPU_BITMAP_BLOCK_BITS) || s_index != e_index) 105362306a36Sopenharmony_ci pcpu_chunk_refresh_hint(chunk, true); 105462306a36Sopenharmony_ci else 105562306a36Sopenharmony_ci pcpu_block_update(&chunk->chunk_md, 105662306a36Sopenharmony_ci pcpu_block_off_to_off(s_index, start), 105762306a36Sopenharmony_ci end); 105862306a36Sopenharmony_ci} 105962306a36Sopenharmony_ci 106062306a36Sopenharmony_ci/** 106162306a36Sopenharmony_ci * pcpu_is_populated - determines if the region is populated 106262306a36Sopenharmony_ci * @chunk: chunk of interest 106362306a36Sopenharmony_ci * @bit_off: chunk offset 106462306a36Sopenharmony_ci * @bits: size of area 106562306a36Sopenharmony_ci * @next_off: return value for the next offset to start searching 106662306a36Sopenharmony_ci * 106762306a36Sopenharmony_ci * For atomic allocations, check if the backing pages are populated. 106862306a36Sopenharmony_ci * 106962306a36Sopenharmony_ci * RETURNS: 107062306a36Sopenharmony_ci * Bool if the backing pages are populated. 107162306a36Sopenharmony_ci * next_index is to skip over unpopulated blocks in pcpu_find_block_fit. 107262306a36Sopenharmony_ci */ 107362306a36Sopenharmony_cistatic bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits, 107462306a36Sopenharmony_ci int *next_off) 107562306a36Sopenharmony_ci{ 107662306a36Sopenharmony_ci unsigned int start, end; 107762306a36Sopenharmony_ci 107862306a36Sopenharmony_ci start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE); 107962306a36Sopenharmony_ci end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE); 108062306a36Sopenharmony_ci 108162306a36Sopenharmony_ci start = find_next_zero_bit(chunk->populated, end, start); 108262306a36Sopenharmony_ci if (start >= end) 108362306a36Sopenharmony_ci return true; 108462306a36Sopenharmony_ci 108562306a36Sopenharmony_ci end = find_next_bit(chunk->populated, end, start + 1); 108662306a36Sopenharmony_ci 108762306a36Sopenharmony_ci *next_off = end * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE; 108862306a36Sopenharmony_ci return false; 108962306a36Sopenharmony_ci} 109062306a36Sopenharmony_ci 109162306a36Sopenharmony_ci/** 109262306a36Sopenharmony_ci * pcpu_find_block_fit - finds the block index to start searching 109362306a36Sopenharmony_ci * @chunk: chunk of interest 109462306a36Sopenharmony_ci * @alloc_bits: size of request in allocation units 109562306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE bytes) 109662306a36Sopenharmony_ci * @pop_only: use populated regions only 109762306a36Sopenharmony_ci * 109862306a36Sopenharmony_ci * Given a chunk and an allocation spec, find the offset to begin searching 109962306a36Sopenharmony_ci * for a free region. This iterates over the bitmap metadata blocks to 110062306a36Sopenharmony_ci * find an offset that will be guaranteed to fit the requirements. It is 110162306a36Sopenharmony_ci * not quite first fit as if the allocation does not fit in the contig hint 110262306a36Sopenharmony_ci * of a block or chunk, it is skipped. This errs on the side of caution 110362306a36Sopenharmony_ci * to prevent excess iteration. Poor alignment can cause the allocator to 110462306a36Sopenharmony_ci * skip over blocks and chunks that have valid free areas. 110562306a36Sopenharmony_ci * 110662306a36Sopenharmony_ci * RETURNS: 110762306a36Sopenharmony_ci * The offset in the bitmap to begin searching. 110862306a36Sopenharmony_ci * -1 if no offset is found. 110962306a36Sopenharmony_ci */ 111062306a36Sopenharmony_cistatic int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits, 111162306a36Sopenharmony_ci size_t align, bool pop_only) 111262306a36Sopenharmony_ci{ 111362306a36Sopenharmony_ci struct pcpu_block_md *chunk_md = &chunk->chunk_md; 111462306a36Sopenharmony_ci int bit_off, bits, next_off; 111562306a36Sopenharmony_ci 111662306a36Sopenharmony_ci /* 111762306a36Sopenharmony_ci * This is an optimization to prevent scanning by assuming if the 111862306a36Sopenharmony_ci * allocation cannot fit in the global hint, there is memory pressure 111962306a36Sopenharmony_ci * and creating a new chunk would happen soon. 112062306a36Sopenharmony_ci */ 112162306a36Sopenharmony_ci if (!pcpu_check_block_hint(chunk_md, alloc_bits, align)) 112262306a36Sopenharmony_ci return -1; 112362306a36Sopenharmony_ci 112462306a36Sopenharmony_ci bit_off = pcpu_next_hint(chunk_md, alloc_bits); 112562306a36Sopenharmony_ci bits = 0; 112662306a36Sopenharmony_ci pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) { 112762306a36Sopenharmony_ci if (!pop_only || pcpu_is_populated(chunk, bit_off, bits, 112862306a36Sopenharmony_ci &next_off)) 112962306a36Sopenharmony_ci break; 113062306a36Sopenharmony_ci 113162306a36Sopenharmony_ci bit_off = next_off; 113262306a36Sopenharmony_ci bits = 0; 113362306a36Sopenharmony_ci } 113462306a36Sopenharmony_ci 113562306a36Sopenharmony_ci if (bit_off == pcpu_chunk_map_bits(chunk)) 113662306a36Sopenharmony_ci return -1; 113762306a36Sopenharmony_ci 113862306a36Sopenharmony_ci return bit_off; 113962306a36Sopenharmony_ci} 114062306a36Sopenharmony_ci 114162306a36Sopenharmony_ci/* 114262306a36Sopenharmony_ci * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off() 114362306a36Sopenharmony_ci * @map: the address to base the search on 114462306a36Sopenharmony_ci * @size: the bitmap size in bits 114562306a36Sopenharmony_ci * @start: the bitnumber to start searching at 114662306a36Sopenharmony_ci * @nr: the number of zeroed bits we're looking for 114762306a36Sopenharmony_ci * @align_mask: alignment mask for zero area 114862306a36Sopenharmony_ci * @largest_off: offset of the largest area skipped 114962306a36Sopenharmony_ci * @largest_bits: size of the largest area skipped 115062306a36Sopenharmony_ci * 115162306a36Sopenharmony_ci * The @align_mask should be one less than a power of 2. 115262306a36Sopenharmony_ci * 115362306a36Sopenharmony_ci * This is a modified version of bitmap_find_next_zero_area_off() to remember 115462306a36Sopenharmony_ci * the largest area that was skipped. This is imperfect, but in general is 115562306a36Sopenharmony_ci * good enough. The largest remembered region is the largest failed region 115662306a36Sopenharmony_ci * seen. This does not include anything we possibly skipped due to alignment. 115762306a36Sopenharmony_ci * pcpu_block_update_scan() does scan backwards to try and recover what was 115862306a36Sopenharmony_ci * lost to alignment. While this can cause scanning to miss earlier possible 115962306a36Sopenharmony_ci * free areas, smaller allocations will eventually fill those holes. 116062306a36Sopenharmony_ci */ 116162306a36Sopenharmony_cistatic unsigned long pcpu_find_zero_area(unsigned long *map, 116262306a36Sopenharmony_ci unsigned long size, 116362306a36Sopenharmony_ci unsigned long start, 116462306a36Sopenharmony_ci unsigned long nr, 116562306a36Sopenharmony_ci unsigned long align_mask, 116662306a36Sopenharmony_ci unsigned long *largest_off, 116762306a36Sopenharmony_ci unsigned long *largest_bits) 116862306a36Sopenharmony_ci{ 116962306a36Sopenharmony_ci unsigned long index, end, i, area_off, area_bits; 117062306a36Sopenharmony_ciagain: 117162306a36Sopenharmony_ci index = find_next_zero_bit(map, size, start); 117262306a36Sopenharmony_ci 117362306a36Sopenharmony_ci /* Align allocation */ 117462306a36Sopenharmony_ci index = __ALIGN_MASK(index, align_mask); 117562306a36Sopenharmony_ci area_off = index; 117662306a36Sopenharmony_ci 117762306a36Sopenharmony_ci end = index + nr; 117862306a36Sopenharmony_ci if (end > size) 117962306a36Sopenharmony_ci return end; 118062306a36Sopenharmony_ci i = find_next_bit(map, end, index); 118162306a36Sopenharmony_ci if (i < end) { 118262306a36Sopenharmony_ci area_bits = i - area_off; 118362306a36Sopenharmony_ci /* remember largest unused area with best alignment */ 118462306a36Sopenharmony_ci if (area_bits > *largest_bits || 118562306a36Sopenharmony_ci (area_bits == *largest_bits && *largest_off && 118662306a36Sopenharmony_ci (!area_off || __ffs(area_off) > __ffs(*largest_off)))) { 118762306a36Sopenharmony_ci *largest_off = area_off; 118862306a36Sopenharmony_ci *largest_bits = area_bits; 118962306a36Sopenharmony_ci } 119062306a36Sopenharmony_ci 119162306a36Sopenharmony_ci start = i + 1; 119262306a36Sopenharmony_ci goto again; 119362306a36Sopenharmony_ci } 119462306a36Sopenharmony_ci return index; 119562306a36Sopenharmony_ci} 119662306a36Sopenharmony_ci 119762306a36Sopenharmony_ci/** 119862306a36Sopenharmony_ci * pcpu_alloc_area - allocates an area from a pcpu_chunk 119962306a36Sopenharmony_ci * @chunk: chunk of interest 120062306a36Sopenharmony_ci * @alloc_bits: size of request in allocation units 120162306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 120262306a36Sopenharmony_ci * @start: bit_off to start searching 120362306a36Sopenharmony_ci * 120462306a36Sopenharmony_ci * This function takes in a @start offset to begin searching to fit an 120562306a36Sopenharmony_ci * allocation of @alloc_bits with alignment @align. It needs to scan 120662306a36Sopenharmony_ci * the allocation map because if it fits within the block's contig hint, 120762306a36Sopenharmony_ci * @start will be block->first_free. This is an attempt to fill the 120862306a36Sopenharmony_ci * allocation prior to breaking the contig hint. The allocation and 120962306a36Sopenharmony_ci * boundary maps are updated accordingly if it confirms a valid 121062306a36Sopenharmony_ci * free area. 121162306a36Sopenharmony_ci * 121262306a36Sopenharmony_ci * RETURNS: 121362306a36Sopenharmony_ci * Allocated addr offset in @chunk on success. 121462306a36Sopenharmony_ci * -1 if no matching area is found. 121562306a36Sopenharmony_ci */ 121662306a36Sopenharmony_cistatic int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits, 121762306a36Sopenharmony_ci size_t align, int start) 121862306a36Sopenharmony_ci{ 121962306a36Sopenharmony_ci struct pcpu_block_md *chunk_md = &chunk->chunk_md; 122062306a36Sopenharmony_ci size_t align_mask = (align) ? (align - 1) : 0; 122162306a36Sopenharmony_ci unsigned long area_off = 0, area_bits = 0; 122262306a36Sopenharmony_ci int bit_off, end, oslot; 122362306a36Sopenharmony_ci 122462306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 122562306a36Sopenharmony_ci 122662306a36Sopenharmony_ci oslot = pcpu_chunk_slot(chunk); 122762306a36Sopenharmony_ci 122862306a36Sopenharmony_ci /* 122962306a36Sopenharmony_ci * Search to find a fit. 123062306a36Sopenharmony_ci */ 123162306a36Sopenharmony_ci end = min_t(int, start + alloc_bits + PCPU_BITMAP_BLOCK_BITS, 123262306a36Sopenharmony_ci pcpu_chunk_map_bits(chunk)); 123362306a36Sopenharmony_ci bit_off = pcpu_find_zero_area(chunk->alloc_map, end, start, alloc_bits, 123462306a36Sopenharmony_ci align_mask, &area_off, &area_bits); 123562306a36Sopenharmony_ci if (bit_off >= end) 123662306a36Sopenharmony_ci return -1; 123762306a36Sopenharmony_ci 123862306a36Sopenharmony_ci if (area_bits) 123962306a36Sopenharmony_ci pcpu_block_update_scan(chunk, area_off, area_bits); 124062306a36Sopenharmony_ci 124162306a36Sopenharmony_ci /* update alloc map */ 124262306a36Sopenharmony_ci bitmap_set(chunk->alloc_map, bit_off, alloc_bits); 124362306a36Sopenharmony_ci 124462306a36Sopenharmony_ci /* update boundary map */ 124562306a36Sopenharmony_ci set_bit(bit_off, chunk->bound_map); 124662306a36Sopenharmony_ci bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1); 124762306a36Sopenharmony_ci set_bit(bit_off + alloc_bits, chunk->bound_map); 124862306a36Sopenharmony_ci 124962306a36Sopenharmony_ci chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE; 125062306a36Sopenharmony_ci 125162306a36Sopenharmony_ci /* update first free bit */ 125262306a36Sopenharmony_ci if (bit_off == chunk_md->first_free) 125362306a36Sopenharmony_ci chunk_md->first_free = find_next_zero_bit( 125462306a36Sopenharmony_ci chunk->alloc_map, 125562306a36Sopenharmony_ci pcpu_chunk_map_bits(chunk), 125662306a36Sopenharmony_ci bit_off + alloc_bits); 125762306a36Sopenharmony_ci 125862306a36Sopenharmony_ci pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits); 125962306a36Sopenharmony_ci 126062306a36Sopenharmony_ci pcpu_chunk_relocate(chunk, oslot); 126162306a36Sopenharmony_ci 126262306a36Sopenharmony_ci return bit_off * PCPU_MIN_ALLOC_SIZE; 126362306a36Sopenharmony_ci} 126462306a36Sopenharmony_ci 126562306a36Sopenharmony_ci/** 126662306a36Sopenharmony_ci * pcpu_free_area - frees the corresponding offset 126762306a36Sopenharmony_ci * @chunk: chunk of interest 126862306a36Sopenharmony_ci * @off: addr offset into chunk 126962306a36Sopenharmony_ci * 127062306a36Sopenharmony_ci * This function determines the size of an allocation to free using 127162306a36Sopenharmony_ci * the boundary bitmap and clears the allocation map. 127262306a36Sopenharmony_ci * 127362306a36Sopenharmony_ci * RETURNS: 127462306a36Sopenharmony_ci * Number of freed bytes. 127562306a36Sopenharmony_ci */ 127662306a36Sopenharmony_cistatic int pcpu_free_area(struct pcpu_chunk *chunk, int off) 127762306a36Sopenharmony_ci{ 127862306a36Sopenharmony_ci struct pcpu_block_md *chunk_md = &chunk->chunk_md; 127962306a36Sopenharmony_ci int bit_off, bits, end, oslot, freed; 128062306a36Sopenharmony_ci 128162306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 128262306a36Sopenharmony_ci pcpu_stats_area_dealloc(chunk); 128362306a36Sopenharmony_ci 128462306a36Sopenharmony_ci oslot = pcpu_chunk_slot(chunk); 128562306a36Sopenharmony_ci 128662306a36Sopenharmony_ci bit_off = off / PCPU_MIN_ALLOC_SIZE; 128762306a36Sopenharmony_ci 128862306a36Sopenharmony_ci /* find end index */ 128962306a36Sopenharmony_ci end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk), 129062306a36Sopenharmony_ci bit_off + 1); 129162306a36Sopenharmony_ci bits = end - bit_off; 129262306a36Sopenharmony_ci bitmap_clear(chunk->alloc_map, bit_off, bits); 129362306a36Sopenharmony_ci 129462306a36Sopenharmony_ci freed = bits * PCPU_MIN_ALLOC_SIZE; 129562306a36Sopenharmony_ci 129662306a36Sopenharmony_ci /* update metadata */ 129762306a36Sopenharmony_ci chunk->free_bytes += freed; 129862306a36Sopenharmony_ci 129962306a36Sopenharmony_ci /* update first free bit */ 130062306a36Sopenharmony_ci chunk_md->first_free = min(chunk_md->first_free, bit_off); 130162306a36Sopenharmony_ci 130262306a36Sopenharmony_ci pcpu_block_update_hint_free(chunk, bit_off, bits); 130362306a36Sopenharmony_ci 130462306a36Sopenharmony_ci pcpu_chunk_relocate(chunk, oslot); 130562306a36Sopenharmony_ci 130662306a36Sopenharmony_ci return freed; 130762306a36Sopenharmony_ci} 130862306a36Sopenharmony_ci 130962306a36Sopenharmony_cistatic void pcpu_init_md_block(struct pcpu_block_md *block, int nr_bits) 131062306a36Sopenharmony_ci{ 131162306a36Sopenharmony_ci block->scan_hint = 0; 131262306a36Sopenharmony_ci block->contig_hint = nr_bits; 131362306a36Sopenharmony_ci block->left_free = nr_bits; 131462306a36Sopenharmony_ci block->right_free = nr_bits; 131562306a36Sopenharmony_ci block->first_free = 0; 131662306a36Sopenharmony_ci block->nr_bits = nr_bits; 131762306a36Sopenharmony_ci} 131862306a36Sopenharmony_ci 131962306a36Sopenharmony_cistatic void pcpu_init_md_blocks(struct pcpu_chunk *chunk) 132062306a36Sopenharmony_ci{ 132162306a36Sopenharmony_ci struct pcpu_block_md *md_block; 132262306a36Sopenharmony_ci 132362306a36Sopenharmony_ci /* init the chunk's block */ 132462306a36Sopenharmony_ci pcpu_init_md_block(&chunk->chunk_md, pcpu_chunk_map_bits(chunk)); 132562306a36Sopenharmony_ci 132662306a36Sopenharmony_ci for (md_block = chunk->md_blocks; 132762306a36Sopenharmony_ci md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk); 132862306a36Sopenharmony_ci md_block++) 132962306a36Sopenharmony_ci pcpu_init_md_block(md_block, PCPU_BITMAP_BLOCK_BITS); 133062306a36Sopenharmony_ci} 133162306a36Sopenharmony_ci 133262306a36Sopenharmony_ci/** 133362306a36Sopenharmony_ci * pcpu_alloc_first_chunk - creates chunks that serve the first chunk 133462306a36Sopenharmony_ci * @tmp_addr: the start of the region served 133562306a36Sopenharmony_ci * @map_size: size of the region served 133662306a36Sopenharmony_ci * 133762306a36Sopenharmony_ci * This is responsible for creating the chunks that serve the first chunk. The 133862306a36Sopenharmony_ci * base_addr is page aligned down of @tmp_addr while the region end is page 133962306a36Sopenharmony_ci * aligned up. Offsets are kept track of to determine the region served. All 134062306a36Sopenharmony_ci * this is done to appease the bitmap allocator in avoiding partial blocks. 134162306a36Sopenharmony_ci * 134262306a36Sopenharmony_ci * RETURNS: 134362306a36Sopenharmony_ci * Chunk serving the region at @tmp_addr of @map_size. 134462306a36Sopenharmony_ci */ 134562306a36Sopenharmony_cistatic struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr, 134662306a36Sopenharmony_ci int map_size) 134762306a36Sopenharmony_ci{ 134862306a36Sopenharmony_ci struct pcpu_chunk *chunk; 134962306a36Sopenharmony_ci unsigned long aligned_addr; 135062306a36Sopenharmony_ci int start_offset, offset_bits, region_size, region_bits; 135162306a36Sopenharmony_ci size_t alloc_size; 135262306a36Sopenharmony_ci 135362306a36Sopenharmony_ci /* region calculations */ 135462306a36Sopenharmony_ci aligned_addr = tmp_addr & PAGE_MASK; 135562306a36Sopenharmony_ci 135662306a36Sopenharmony_ci start_offset = tmp_addr - aligned_addr; 135762306a36Sopenharmony_ci region_size = ALIGN(start_offset + map_size, PAGE_SIZE); 135862306a36Sopenharmony_ci 135962306a36Sopenharmony_ci /* allocate chunk */ 136062306a36Sopenharmony_ci alloc_size = struct_size(chunk, populated, 136162306a36Sopenharmony_ci BITS_TO_LONGS(region_size >> PAGE_SHIFT)); 136262306a36Sopenharmony_ci chunk = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 136362306a36Sopenharmony_ci if (!chunk) 136462306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 136562306a36Sopenharmony_ci alloc_size); 136662306a36Sopenharmony_ci 136762306a36Sopenharmony_ci INIT_LIST_HEAD(&chunk->list); 136862306a36Sopenharmony_ci 136962306a36Sopenharmony_ci chunk->base_addr = (void *)aligned_addr; 137062306a36Sopenharmony_ci chunk->start_offset = start_offset; 137162306a36Sopenharmony_ci chunk->end_offset = region_size - chunk->start_offset - map_size; 137262306a36Sopenharmony_ci 137362306a36Sopenharmony_ci chunk->nr_pages = region_size >> PAGE_SHIFT; 137462306a36Sopenharmony_ci region_bits = pcpu_chunk_map_bits(chunk); 137562306a36Sopenharmony_ci 137662306a36Sopenharmony_ci alloc_size = BITS_TO_LONGS(region_bits) * sizeof(chunk->alloc_map[0]); 137762306a36Sopenharmony_ci chunk->alloc_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 137862306a36Sopenharmony_ci if (!chunk->alloc_map) 137962306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 138062306a36Sopenharmony_ci alloc_size); 138162306a36Sopenharmony_ci 138262306a36Sopenharmony_ci alloc_size = 138362306a36Sopenharmony_ci BITS_TO_LONGS(region_bits + 1) * sizeof(chunk->bound_map[0]); 138462306a36Sopenharmony_ci chunk->bound_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 138562306a36Sopenharmony_ci if (!chunk->bound_map) 138662306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 138762306a36Sopenharmony_ci alloc_size); 138862306a36Sopenharmony_ci 138962306a36Sopenharmony_ci alloc_size = pcpu_chunk_nr_blocks(chunk) * sizeof(chunk->md_blocks[0]); 139062306a36Sopenharmony_ci chunk->md_blocks = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 139162306a36Sopenharmony_ci if (!chunk->md_blocks) 139262306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 139362306a36Sopenharmony_ci alloc_size); 139462306a36Sopenharmony_ci 139562306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 139662306a36Sopenharmony_ci /* first chunk is free to use */ 139762306a36Sopenharmony_ci chunk->obj_cgroups = NULL; 139862306a36Sopenharmony_ci#endif 139962306a36Sopenharmony_ci pcpu_init_md_blocks(chunk); 140062306a36Sopenharmony_ci 140162306a36Sopenharmony_ci /* manage populated page bitmap */ 140262306a36Sopenharmony_ci chunk->immutable = true; 140362306a36Sopenharmony_ci bitmap_fill(chunk->populated, chunk->nr_pages); 140462306a36Sopenharmony_ci chunk->nr_populated = chunk->nr_pages; 140562306a36Sopenharmony_ci chunk->nr_empty_pop_pages = chunk->nr_pages; 140662306a36Sopenharmony_ci 140762306a36Sopenharmony_ci chunk->free_bytes = map_size; 140862306a36Sopenharmony_ci 140962306a36Sopenharmony_ci if (chunk->start_offset) { 141062306a36Sopenharmony_ci /* hide the beginning of the bitmap */ 141162306a36Sopenharmony_ci offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE; 141262306a36Sopenharmony_ci bitmap_set(chunk->alloc_map, 0, offset_bits); 141362306a36Sopenharmony_ci set_bit(0, chunk->bound_map); 141462306a36Sopenharmony_ci set_bit(offset_bits, chunk->bound_map); 141562306a36Sopenharmony_ci 141662306a36Sopenharmony_ci chunk->chunk_md.first_free = offset_bits; 141762306a36Sopenharmony_ci 141862306a36Sopenharmony_ci pcpu_block_update_hint_alloc(chunk, 0, offset_bits); 141962306a36Sopenharmony_ci } 142062306a36Sopenharmony_ci 142162306a36Sopenharmony_ci if (chunk->end_offset) { 142262306a36Sopenharmony_ci /* hide the end of the bitmap */ 142362306a36Sopenharmony_ci offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE; 142462306a36Sopenharmony_ci bitmap_set(chunk->alloc_map, 142562306a36Sopenharmony_ci pcpu_chunk_map_bits(chunk) - offset_bits, 142662306a36Sopenharmony_ci offset_bits); 142762306a36Sopenharmony_ci set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE, 142862306a36Sopenharmony_ci chunk->bound_map); 142962306a36Sopenharmony_ci set_bit(region_bits, chunk->bound_map); 143062306a36Sopenharmony_ci 143162306a36Sopenharmony_ci pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk) 143262306a36Sopenharmony_ci - offset_bits, offset_bits); 143362306a36Sopenharmony_ci } 143462306a36Sopenharmony_ci 143562306a36Sopenharmony_ci return chunk; 143662306a36Sopenharmony_ci} 143762306a36Sopenharmony_ci 143862306a36Sopenharmony_cistatic struct pcpu_chunk *pcpu_alloc_chunk(gfp_t gfp) 143962306a36Sopenharmony_ci{ 144062306a36Sopenharmony_ci struct pcpu_chunk *chunk; 144162306a36Sopenharmony_ci int region_bits; 144262306a36Sopenharmony_ci 144362306a36Sopenharmony_ci chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size, gfp); 144462306a36Sopenharmony_ci if (!chunk) 144562306a36Sopenharmony_ci return NULL; 144662306a36Sopenharmony_ci 144762306a36Sopenharmony_ci INIT_LIST_HEAD(&chunk->list); 144862306a36Sopenharmony_ci chunk->nr_pages = pcpu_unit_pages; 144962306a36Sopenharmony_ci region_bits = pcpu_chunk_map_bits(chunk); 145062306a36Sopenharmony_ci 145162306a36Sopenharmony_ci chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) * 145262306a36Sopenharmony_ci sizeof(chunk->alloc_map[0]), gfp); 145362306a36Sopenharmony_ci if (!chunk->alloc_map) 145462306a36Sopenharmony_ci goto alloc_map_fail; 145562306a36Sopenharmony_ci 145662306a36Sopenharmony_ci chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) * 145762306a36Sopenharmony_ci sizeof(chunk->bound_map[0]), gfp); 145862306a36Sopenharmony_ci if (!chunk->bound_map) 145962306a36Sopenharmony_ci goto bound_map_fail; 146062306a36Sopenharmony_ci 146162306a36Sopenharmony_ci chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) * 146262306a36Sopenharmony_ci sizeof(chunk->md_blocks[0]), gfp); 146362306a36Sopenharmony_ci if (!chunk->md_blocks) 146462306a36Sopenharmony_ci goto md_blocks_fail; 146562306a36Sopenharmony_ci 146662306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 146762306a36Sopenharmony_ci if (!mem_cgroup_kmem_disabled()) { 146862306a36Sopenharmony_ci chunk->obj_cgroups = 146962306a36Sopenharmony_ci pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk) * 147062306a36Sopenharmony_ci sizeof(struct obj_cgroup *), gfp); 147162306a36Sopenharmony_ci if (!chunk->obj_cgroups) 147262306a36Sopenharmony_ci goto objcg_fail; 147362306a36Sopenharmony_ci } 147462306a36Sopenharmony_ci#endif 147562306a36Sopenharmony_ci 147662306a36Sopenharmony_ci pcpu_init_md_blocks(chunk); 147762306a36Sopenharmony_ci 147862306a36Sopenharmony_ci /* init metadata */ 147962306a36Sopenharmony_ci chunk->free_bytes = chunk->nr_pages * PAGE_SIZE; 148062306a36Sopenharmony_ci 148162306a36Sopenharmony_ci return chunk; 148262306a36Sopenharmony_ci 148362306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 148462306a36Sopenharmony_ciobjcg_fail: 148562306a36Sopenharmony_ci pcpu_mem_free(chunk->md_blocks); 148662306a36Sopenharmony_ci#endif 148762306a36Sopenharmony_cimd_blocks_fail: 148862306a36Sopenharmony_ci pcpu_mem_free(chunk->bound_map); 148962306a36Sopenharmony_cibound_map_fail: 149062306a36Sopenharmony_ci pcpu_mem_free(chunk->alloc_map); 149162306a36Sopenharmony_cialloc_map_fail: 149262306a36Sopenharmony_ci pcpu_mem_free(chunk); 149362306a36Sopenharmony_ci 149462306a36Sopenharmony_ci return NULL; 149562306a36Sopenharmony_ci} 149662306a36Sopenharmony_ci 149762306a36Sopenharmony_cistatic void pcpu_free_chunk(struct pcpu_chunk *chunk) 149862306a36Sopenharmony_ci{ 149962306a36Sopenharmony_ci if (!chunk) 150062306a36Sopenharmony_ci return; 150162306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 150262306a36Sopenharmony_ci pcpu_mem_free(chunk->obj_cgroups); 150362306a36Sopenharmony_ci#endif 150462306a36Sopenharmony_ci pcpu_mem_free(chunk->md_blocks); 150562306a36Sopenharmony_ci pcpu_mem_free(chunk->bound_map); 150662306a36Sopenharmony_ci pcpu_mem_free(chunk->alloc_map); 150762306a36Sopenharmony_ci pcpu_mem_free(chunk); 150862306a36Sopenharmony_ci} 150962306a36Sopenharmony_ci 151062306a36Sopenharmony_ci/** 151162306a36Sopenharmony_ci * pcpu_chunk_populated - post-population bookkeeping 151262306a36Sopenharmony_ci * @chunk: pcpu_chunk which got populated 151362306a36Sopenharmony_ci * @page_start: the start page 151462306a36Sopenharmony_ci * @page_end: the end page 151562306a36Sopenharmony_ci * 151662306a36Sopenharmony_ci * Pages in [@page_start,@page_end) have been populated to @chunk. Update 151762306a36Sopenharmony_ci * the bookkeeping information accordingly. Must be called after each 151862306a36Sopenharmony_ci * successful population. 151962306a36Sopenharmony_ci */ 152062306a36Sopenharmony_cistatic void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, 152162306a36Sopenharmony_ci int page_end) 152262306a36Sopenharmony_ci{ 152362306a36Sopenharmony_ci int nr = page_end - page_start; 152462306a36Sopenharmony_ci 152562306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 152662306a36Sopenharmony_ci 152762306a36Sopenharmony_ci bitmap_set(chunk->populated, page_start, nr); 152862306a36Sopenharmony_ci chunk->nr_populated += nr; 152962306a36Sopenharmony_ci pcpu_nr_populated += nr; 153062306a36Sopenharmony_ci 153162306a36Sopenharmony_ci pcpu_update_empty_pages(chunk, nr); 153262306a36Sopenharmony_ci} 153362306a36Sopenharmony_ci 153462306a36Sopenharmony_ci/** 153562306a36Sopenharmony_ci * pcpu_chunk_depopulated - post-depopulation bookkeeping 153662306a36Sopenharmony_ci * @chunk: pcpu_chunk which got depopulated 153762306a36Sopenharmony_ci * @page_start: the start page 153862306a36Sopenharmony_ci * @page_end: the end page 153962306a36Sopenharmony_ci * 154062306a36Sopenharmony_ci * Pages in [@page_start,@page_end) have been depopulated from @chunk. 154162306a36Sopenharmony_ci * Update the bookkeeping information accordingly. Must be called after 154262306a36Sopenharmony_ci * each successful depopulation. 154362306a36Sopenharmony_ci */ 154462306a36Sopenharmony_cistatic void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, 154562306a36Sopenharmony_ci int page_start, int page_end) 154662306a36Sopenharmony_ci{ 154762306a36Sopenharmony_ci int nr = page_end - page_start; 154862306a36Sopenharmony_ci 154962306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 155062306a36Sopenharmony_ci 155162306a36Sopenharmony_ci bitmap_clear(chunk->populated, page_start, nr); 155262306a36Sopenharmony_ci chunk->nr_populated -= nr; 155362306a36Sopenharmony_ci pcpu_nr_populated -= nr; 155462306a36Sopenharmony_ci 155562306a36Sopenharmony_ci pcpu_update_empty_pages(chunk, -nr); 155662306a36Sopenharmony_ci} 155762306a36Sopenharmony_ci 155862306a36Sopenharmony_ci/* 155962306a36Sopenharmony_ci * Chunk management implementation. 156062306a36Sopenharmony_ci * 156162306a36Sopenharmony_ci * To allow different implementations, chunk alloc/free and 156262306a36Sopenharmony_ci * [de]population are implemented in a separate file which is pulled 156362306a36Sopenharmony_ci * into this file and compiled together. The following functions 156462306a36Sopenharmony_ci * should be implemented. 156562306a36Sopenharmony_ci * 156662306a36Sopenharmony_ci * pcpu_populate_chunk - populate the specified range of a chunk 156762306a36Sopenharmony_ci * pcpu_depopulate_chunk - depopulate the specified range of a chunk 156862306a36Sopenharmony_ci * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk 156962306a36Sopenharmony_ci * pcpu_create_chunk - create a new chunk 157062306a36Sopenharmony_ci * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop 157162306a36Sopenharmony_ci * pcpu_addr_to_page - translate address to physical address 157262306a36Sopenharmony_ci * pcpu_verify_alloc_info - check alloc_info is acceptable during init 157362306a36Sopenharmony_ci */ 157462306a36Sopenharmony_cistatic int pcpu_populate_chunk(struct pcpu_chunk *chunk, 157562306a36Sopenharmony_ci int page_start, int page_end, gfp_t gfp); 157662306a36Sopenharmony_cistatic void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, 157762306a36Sopenharmony_ci int page_start, int page_end); 157862306a36Sopenharmony_cistatic void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk, 157962306a36Sopenharmony_ci int page_start, int page_end); 158062306a36Sopenharmony_cistatic struct pcpu_chunk *pcpu_create_chunk(gfp_t gfp); 158162306a36Sopenharmony_cistatic void pcpu_destroy_chunk(struct pcpu_chunk *chunk); 158262306a36Sopenharmony_cistatic struct page *pcpu_addr_to_page(void *addr); 158362306a36Sopenharmony_cistatic int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); 158462306a36Sopenharmony_ci 158562306a36Sopenharmony_ci#ifdef CONFIG_NEED_PER_CPU_KM 158662306a36Sopenharmony_ci#include "percpu-km.c" 158762306a36Sopenharmony_ci#else 158862306a36Sopenharmony_ci#include "percpu-vm.c" 158962306a36Sopenharmony_ci#endif 159062306a36Sopenharmony_ci 159162306a36Sopenharmony_ci/** 159262306a36Sopenharmony_ci * pcpu_chunk_addr_search - determine chunk containing specified address 159362306a36Sopenharmony_ci * @addr: address for which the chunk needs to be determined. 159462306a36Sopenharmony_ci * 159562306a36Sopenharmony_ci * This is an internal function that handles all but static allocations. 159662306a36Sopenharmony_ci * Static percpu address values should never be passed into the allocator. 159762306a36Sopenharmony_ci * 159862306a36Sopenharmony_ci * RETURNS: 159962306a36Sopenharmony_ci * The address of the found chunk. 160062306a36Sopenharmony_ci */ 160162306a36Sopenharmony_cistatic struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) 160262306a36Sopenharmony_ci{ 160362306a36Sopenharmony_ci /* is it in the dynamic region (first chunk)? */ 160462306a36Sopenharmony_ci if (pcpu_addr_in_chunk(pcpu_first_chunk, addr)) 160562306a36Sopenharmony_ci return pcpu_first_chunk; 160662306a36Sopenharmony_ci 160762306a36Sopenharmony_ci /* is it in the reserved region? */ 160862306a36Sopenharmony_ci if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr)) 160962306a36Sopenharmony_ci return pcpu_reserved_chunk; 161062306a36Sopenharmony_ci 161162306a36Sopenharmony_ci /* 161262306a36Sopenharmony_ci * The address is relative to unit0 which might be unused and 161362306a36Sopenharmony_ci * thus unmapped. Offset the address to the unit space of the 161462306a36Sopenharmony_ci * current processor before looking it up in the vmalloc 161562306a36Sopenharmony_ci * space. Note that any possible cpu id can be used here, so 161662306a36Sopenharmony_ci * there's no need to worry about preemption or cpu hotplug. 161762306a36Sopenharmony_ci */ 161862306a36Sopenharmony_ci addr += pcpu_unit_offsets[raw_smp_processor_id()]; 161962306a36Sopenharmony_ci return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); 162062306a36Sopenharmony_ci} 162162306a36Sopenharmony_ci 162262306a36Sopenharmony_ci#ifdef CONFIG_MEMCG_KMEM 162362306a36Sopenharmony_cistatic bool pcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, 162462306a36Sopenharmony_ci struct obj_cgroup **objcgp) 162562306a36Sopenharmony_ci{ 162662306a36Sopenharmony_ci struct obj_cgroup *objcg; 162762306a36Sopenharmony_ci 162862306a36Sopenharmony_ci if (!memcg_kmem_online() || !(gfp & __GFP_ACCOUNT)) 162962306a36Sopenharmony_ci return true; 163062306a36Sopenharmony_ci 163162306a36Sopenharmony_ci objcg = get_obj_cgroup_from_current(); 163262306a36Sopenharmony_ci if (!objcg) 163362306a36Sopenharmony_ci return true; 163462306a36Sopenharmony_ci 163562306a36Sopenharmony_ci if (obj_cgroup_charge(objcg, gfp, pcpu_obj_full_size(size))) { 163662306a36Sopenharmony_ci obj_cgroup_put(objcg); 163762306a36Sopenharmony_ci return false; 163862306a36Sopenharmony_ci } 163962306a36Sopenharmony_ci 164062306a36Sopenharmony_ci *objcgp = objcg; 164162306a36Sopenharmony_ci return true; 164262306a36Sopenharmony_ci} 164362306a36Sopenharmony_ci 164462306a36Sopenharmony_cistatic void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 164562306a36Sopenharmony_ci struct pcpu_chunk *chunk, int off, 164662306a36Sopenharmony_ci size_t size) 164762306a36Sopenharmony_ci{ 164862306a36Sopenharmony_ci if (!objcg) 164962306a36Sopenharmony_ci return; 165062306a36Sopenharmony_ci 165162306a36Sopenharmony_ci if (likely(chunk && chunk->obj_cgroups)) { 165262306a36Sopenharmony_ci chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = objcg; 165362306a36Sopenharmony_ci 165462306a36Sopenharmony_ci rcu_read_lock(); 165562306a36Sopenharmony_ci mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 165662306a36Sopenharmony_ci pcpu_obj_full_size(size)); 165762306a36Sopenharmony_ci rcu_read_unlock(); 165862306a36Sopenharmony_ci } else { 165962306a36Sopenharmony_ci obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 166062306a36Sopenharmony_ci obj_cgroup_put(objcg); 166162306a36Sopenharmony_ci } 166262306a36Sopenharmony_ci} 166362306a36Sopenharmony_ci 166462306a36Sopenharmony_cistatic void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 166562306a36Sopenharmony_ci{ 166662306a36Sopenharmony_ci struct obj_cgroup *objcg; 166762306a36Sopenharmony_ci 166862306a36Sopenharmony_ci if (unlikely(!chunk->obj_cgroups)) 166962306a36Sopenharmony_ci return; 167062306a36Sopenharmony_ci 167162306a36Sopenharmony_ci objcg = chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT]; 167262306a36Sopenharmony_ci if (!objcg) 167362306a36Sopenharmony_ci return; 167462306a36Sopenharmony_ci chunk->obj_cgroups[off >> PCPU_MIN_ALLOC_SHIFT] = NULL; 167562306a36Sopenharmony_ci 167662306a36Sopenharmony_ci obj_cgroup_uncharge(objcg, pcpu_obj_full_size(size)); 167762306a36Sopenharmony_ci 167862306a36Sopenharmony_ci rcu_read_lock(); 167962306a36Sopenharmony_ci mod_memcg_state(obj_cgroup_memcg(objcg), MEMCG_PERCPU_B, 168062306a36Sopenharmony_ci -pcpu_obj_full_size(size)); 168162306a36Sopenharmony_ci rcu_read_unlock(); 168262306a36Sopenharmony_ci 168362306a36Sopenharmony_ci obj_cgroup_put(objcg); 168462306a36Sopenharmony_ci} 168562306a36Sopenharmony_ci 168662306a36Sopenharmony_ci#else /* CONFIG_MEMCG_KMEM */ 168762306a36Sopenharmony_cistatic bool 168862306a36Sopenharmony_cipcpu_memcg_pre_alloc_hook(size_t size, gfp_t gfp, struct obj_cgroup **objcgp) 168962306a36Sopenharmony_ci{ 169062306a36Sopenharmony_ci return true; 169162306a36Sopenharmony_ci} 169262306a36Sopenharmony_ci 169362306a36Sopenharmony_cistatic void pcpu_memcg_post_alloc_hook(struct obj_cgroup *objcg, 169462306a36Sopenharmony_ci struct pcpu_chunk *chunk, int off, 169562306a36Sopenharmony_ci size_t size) 169662306a36Sopenharmony_ci{ 169762306a36Sopenharmony_ci} 169862306a36Sopenharmony_ci 169962306a36Sopenharmony_cistatic void pcpu_memcg_free_hook(struct pcpu_chunk *chunk, int off, size_t size) 170062306a36Sopenharmony_ci{ 170162306a36Sopenharmony_ci} 170262306a36Sopenharmony_ci#endif /* CONFIG_MEMCG_KMEM */ 170362306a36Sopenharmony_ci 170462306a36Sopenharmony_ci/** 170562306a36Sopenharmony_ci * pcpu_alloc - the percpu allocator 170662306a36Sopenharmony_ci * @size: size of area to allocate in bytes 170762306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 170862306a36Sopenharmony_ci * @reserved: allocate from the reserved chunk if available 170962306a36Sopenharmony_ci * @gfp: allocation flags 171062306a36Sopenharmony_ci * 171162306a36Sopenharmony_ci * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't 171262306a36Sopenharmony_ci * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN 171362306a36Sopenharmony_ci * then no warning will be triggered on invalid or failed allocation 171462306a36Sopenharmony_ci * requests. 171562306a36Sopenharmony_ci * 171662306a36Sopenharmony_ci * RETURNS: 171762306a36Sopenharmony_ci * Percpu pointer to the allocated area on success, NULL on failure. 171862306a36Sopenharmony_ci */ 171962306a36Sopenharmony_cistatic void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, 172062306a36Sopenharmony_ci gfp_t gfp) 172162306a36Sopenharmony_ci{ 172262306a36Sopenharmony_ci gfp_t pcpu_gfp; 172362306a36Sopenharmony_ci bool is_atomic; 172462306a36Sopenharmony_ci bool do_warn; 172562306a36Sopenharmony_ci struct obj_cgroup *objcg = NULL; 172662306a36Sopenharmony_ci static int warn_limit = 10; 172762306a36Sopenharmony_ci struct pcpu_chunk *chunk, *next; 172862306a36Sopenharmony_ci const char *err; 172962306a36Sopenharmony_ci int slot, off, cpu, ret; 173062306a36Sopenharmony_ci unsigned long flags; 173162306a36Sopenharmony_ci void __percpu *ptr; 173262306a36Sopenharmony_ci size_t bits, bit_align; 173362306a36Sopenharmony_ci 173462306a36Sopenharmony_ci gfp = current_gfp_context(gfp); 173562306a36Sopenharmony_ci /* whitelisted flags that can be passed to the backing allocators */ 173662306a36Sopenharmony_ci pcpu_gfp = gfp & (GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN); 173762306a36Sopenharmony_ci is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; 173862306a36Sopenharmony_ci do_warn = !(gfp & __GFP_NOWARN); 173962306a36Sopenharmony_ci 174062306a36Sopenharmony_ci /* 174162306a36Sopenharmony_ci * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE, 174262306a36Sopenharmony_ci * therefore alignment must be a minimum of that many bytes. 174362306a36Sopenharmony_ci * An allocation may have internal fragmentation from rounding up 174462306a36Sopenharmony_ci * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes. 174562306a36Sopenharmony_ci */ 174662306a36Sopenharmony_ci if (unlikely(align < PCPU_MIN_ALLOC_SIZE)) 174762306a36Sopenharmony_ci align = PCPU_MIN_ALLOC_SIZE; 174862306a36Sopenharmony_ci 174962306a36Sopenharmony_ci size = ALIGN(size, PCPU_MIN_ALLOC_SIZE); 175062306a36Sopenharmony_ci bits = size >> PCPU_MIN_ALLOC_SHIFT; 175162306a36Sopenharmony_ci bit_align = align >> PCPU_MIN_ALLOC_SHIFT; 175262306a36Sopenharmony_ci 175362306a36Sopenharmony_ci if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE || 175462306a36Sopenharmony_ci !is_power_of_2(align))) { 175562306a36Sopenharmony_ci WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n", 175662306a36Sopenharmony_ci size, align); 175762306a36Sopenharmony_ci return NULL; 175862306a36Sopenharmony_ci } 175962306a36Sopenharmony_ci 176062306a36Sopenharmony_ci if (unlikely(!pcpu_memcg_pre_alloc_hook(size, gfp, &objcg))) 176162306a36Sopenharmony_ci return NULL; 176262306a36Sopenharmony_ci 176362306a36Sopenharmony_ci if (!is_atomic) { 176462306a36Sopenharmony_ci /* 176562306a36Sopenharmony_ci * pcpu_balance_workfn() allocates memory under this mutex, 176662306a36Sopenharmony_ci * and it may wait for memory reclaim. Allow current task 176762306a36Sopenharmony_ci * to become OOM victim, in case of memory pressure. 176862306a36Sopenharmony_ci */ 176962306a36Sopenharmony_ci if (gfp & __GFP_NOFAIL) { 177062306a36Sopenharmony_ci mutex_lock(&pcpu_alloc_mutex); 177162306a36Sopenharmony_ci } else if (mutex_lock_killable(&pcpu_alloc_mutex)) { 177262306a36Sopenharmony_ci pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 177362306a36Sopenharmony_ci return NULL; 177462306a36Sopenharmony_ci } 177562306a36Sopenharmony_ci } 177662306a36Sopenharmony_ci 177762306a36Sopenharmony_ci spin_lock_irqsave(&pcpu_lock, flags); 177862306a36Sopenharmony_ci 177962306a36Sopenharmony_ci /* serve reserved allocations from the reserved chunk if available */ 178062306a36Sopenharmony_ci if (reserved && pcpu_reserved_chunk) { 178162306a36Sopenharmony_ci chunk = pcpu_reserved_chunk; 178262306a36Sopenharmony_ci 178362306a36Sopenharmony_ci off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic); 178462306a36Sopenharmony_ci if (off < 0) { 178562306a36Sopenharmony_ci err = "alloc from reserved chunk failed"; 178662306a36Sopenharmony_ci goto fail_unlock; 178762306a36Sopenharmony_ci } 178862306a36Sopenharmony_ci 178962306a36Sopenharmony_ci off = pcpu_alloc_area(chunk, bits, bit_align, off); 179062306a36Sopenharmony_ci if (off >= 0) 179162306a36Sopenharmony_ci goto area_found; 179262306a36Sopenharmony_ci 179362306a36Sopenharmony_ci err = "alloc from reserved chunk failed"; 179462306a36Sopenharmony_ci goto fail_unlock; 179562306a36Sopenharmony_ci } 179662306a36Sopenharmony_ci 179762306a36Sopenharmony_cirestart: 179862306a36Sopenharmony_ci /* search through normal chunks */ 179962306a36Sopenharmony_ci for (slot = pcpu_size_to_slot(size); slot <= pcpu_free_slot; slot++) { 180062306a36Sopenharmony_ci list_for_each_entry_safe(chunk, next, &pcpu_chunk_lists[slot], 180162306a36Sopenharmony_ci list) { 180262306a36Sopenharmony_ci off = pcpu_find_block_fit(chunk, bits, bit_align, 180362306a36Sopenharmony_ci is_atomic); 180462306a36Sopenharmony_ci if (off < 0) { 180562306a36Sopenharmony_ci if (slot < PCPU_SLOT_FAIL_THRESHOLD) 180662306a36Sopenharmony_ci pcpu_chunk_move(chunk, 0); 180762306a36Sopenharmony_ci continue; 180862306a36Sopenharmony_ci } 180962306a36Sopenharmony_ci 181062306a36Sopenharmony_ci off = pcpu_alloc_area(chunk, bits, bit_align, off); 181162306a36Sopenharmony_ci if (off >= 0) { 181262306a36Sopenharmony_ci pcpu_reintegrate_chunk(chunk); 181362306a36Sopenharmony_ci goto area_found; 181462306a36Sopenharmony_ci } 181562306a36Sopenharmony_ci } 181662306a36Sopenharmony_ci } 181762306a36Sopenharmony_ci 181862306a36Sopenharmony_ci spin_unlock_irqrestore(&pcpu_lock, flags); 181962306a36Sopenharmony_ci 182062306a36Sopenharmony_ci if (is_atomic) { 182162306a36Sopenharmony_ci err = "atomic alloc failed, no space left"; 182262306a36Sopenharmony_ci goto fail; 182362306a36Sopenharmony_ci } 182462306a36Sopenharmony_ci 182562306a36Sopenharmony_ci /* No space left. Create a new chunk. */ 182662306a36Sopenharmony_ci if (list_empty(&pcpu_chunk_lists[pcpu_free_slot])) { 182762306a36Sopenharmony_ci chunk = pcpu_create_chunk(pcpu_gfp); 182862306a36Sopenharmony_ci if (!chunk) { 182962306a36Sopenharmony_ci err = "failed to allocate new chunk"; 183062306a36Sopenharmony_ci goto fail; 183162306a36Sopenharmony_ci } 183262306a36Sopenharmony_ci 183362306a36Sopenharmony_ci spin_lock_irqsave(&pcpu_lock, flags); 183462306a36Sopenharmony_ci pcpu_chunk_relocate(chunk, -1); 183562306a36Sopenharmony_ci } else { 183662306a36Sopenharmony_ci spin_lock_irqsave(&pcpu_lock, flags); 183762306a36Sopenharmony_ci } 183862306a36Sopenharmony_ci 183962306a36Sopenharmony_ci goto restart; 184062306a36Sopenharmony_ci 184162306a36Sopenharmony_ciarea_found: 184262306a36Sopenharmony_ci pcpu_stats_area_alloc(chunk, size); 184362306a36Sopenharmony_ci spin_unlock_irqrestore(&pcpu_lock, flags); 184462306a36Sopenharmony_ci 184562306a36Sopenharmony_ci /* populate if not all pages are already there */ 184662306a36Sopenharmony_ci if (!is_atomic) { 184762306a36Sopenharmony_ci unsigned int page_end, rs, re; 184862306a36Sopenharmony_ci 184962306a36Sopenharmony_ci rs = PFN_DOWN(off); 185062306a36Sopenharmony_ci page_end = PFN_UP(off + size); 185162306a36Sopenharmony_ci 185262306a36Sopenharmony_ci for_each_clear_bitrange_from(rs, re, chunk->populated, page_end) { 185362306a36Sopenharmony_ci WARN_ON(chunk->immutable); 185462306a36Sopenharmony_ci 185562306a36Sopenharmony_ci ret = pcpu_populate_chunk(chunk, rs, re, pcpu_gfp); 185662306a36Sopenharmony_ci 185762306a36Sopenharmony_ci spin_lock_irqsave(&pcpu_lock, flags); 185862306a36Sopenharmony_ci if (ret) { 185962306a36Sopenharmony_ci pcpu_free_area(chunk, off); 186062306a36Sopenharmony_ci err = "failed to populate"; 186162306a36Sopenharmony_ci goto fail_unlock; 186262306a36Sopenharmony_ci } 186362306a36Sopenharmony_ci pcpu_chunk_populated(chunk, rs, re); 186462306a36Sopenharmony_ci spin_unlock_irqrestore(&pcpu_lock, flags); 186562306a36Sopenharmony_ci } 186662306a36Sopenharmony_ci 186762306a36Sopenharmony_ci mutex_unlock(&pcpu_alloc_mutex); 186862306a36Sopenharmony_ci } 186962306a36Sopenharmony_ci 187062306a36Sopenharmony_ci if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) 187162306a36Sopenharmony_ci pcpu_schedule_balance_work(); 187262306a36Sopenharmony_ci 187362306a36Sopenharmony_ci /* clear the areas and return address relative to base address */ 187462306a36Sopenharmony_ci for_each_possible_cpu(cpu) 187562306a36Sopenharmony_ci memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); 187662306a36Sopenharmony_ci 187762306a36Sopenharmony_ci ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); 187862306a36Sopenharmony_ci kmemleak_alloc_percpu(ptr, size, gfp); 187962306a36Sopenharmony_ci 188062306a36Sopenharmony_ci trace_percpu_alloc_percpu(_RET_IP_, reserved, is_atomic, size, align, 188162306a36Sopenharmony_ci chunk->base_addr, off, ptr, 188262306a36Sopenharmony_ci pcpu_obj_full_size(size), gfp); 188362306a36Sopenharmony_ci 188462306a36Sopenharmony_ci pcpu_memcg_post_alloc_hook(objcg, chunk, off, size); 188562306a36Sopenharmony_ci 188662306a36Sopenharmony_ci return ptr; 188762306a36Sopenharmony_ci 188862306a36Sopenharmony_cifail_unlock: 188962306a36Sopenharmony_ci spin_unlock_irqrestore(&pcpu_lock, flags); 189062306a36Sopenharmony_cifail: 189162306a36Sopenharmony_ci trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align); 189262306a36Sopenharmony_ci 189362306a36Sopenharmony_ci if (do_warn && warn_limit) { 189462306a36Sopenharmony_ci pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n", 189562306a36Sopenharmony_ci size, align, is_atomic, err); 189662306a36Sopenharmony_ci if (!is_atomic) 189762306a36Sopenharmony_ci dump_stack(); 189862306a36Sopenharmony_ci if (!--warn_limit) 189962306a36Sopenharmony_ci pr_info("limit reached, disable warning\n"); 190062306a36Sopenharmony_ci } 190162306a36Sopenharmony_ci 190262306a36Sopenharmony_ci if (is_atomic) { 190362306a36Sopenharmony_ci /* see the flag handling in pcpu_balance_workfn() */ 190462306a36Sopenharmony_ci pcpu_atomic_alloc_failed = true; 190562306a36Sopenharmony_ci pcpu_schedule_balance_work(); 190662306a36Sopenharmony_ci } else { 190762306a36Sopenharmony_ci mutex_unlock(&pcpu_alloc_mutex); 190862306a36Sopenharmony_ci } 190962306a36Sopenharmony_ci 191062306a36Sopenharmony_ci pcpu_memcg_post_alloc_hook(objcg, NULL, 0, size); 191162306a36Sopenharmony_ci 191262306a36Sopenharmony_ci return NULL; 191362306a36Sopenharmony_ci} 191462306a36Sopenharmony_ci 191562306a36Sopenharmony_ci/** 191662306a36Sopenharmony_ci * __alloc_percpu_gfp - allocate dynamic percpu area 191762306a36Sopenharmony_ci * @size: size of area to allocate in bytes 191862306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 191962306a36Sopenharmony_ci * @gfp: allocation flags 192062306a36Sopenharmony_ci * 192162306a36Sopenharmony_ci * Allocate zero-filled percpu area of @size bytes aligned at @align. If 192262306a36Sopenharmony_ci * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can 192362306a36Sopenharmony_ci * be called from any context but is a lot more likely to fail. If @gfp 192462306a36Sopenharmony_ci * has __GFP_NOWARN then no warning will be triggered on invalid or failed 192562306a36Sopenharmony_ci * allocation requests. 192662306a36Sopenharmony_ci * 192762306a36Sopenharmony_ci * RETURNS: 192862306a36Sopenharmony_ci * Percpu pointer to the allocated area on success, NULL on failure. 192962306a36Sopenharmony_ci */ 193062306a36Sopenharmony_civoid __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) 193162306a36Sopenharmony_ci{ 193262306a36Sopenharmony_ci return pcpu_alloc(size, align, false, gfp); 193362306a36Sopenharmony_ci} 193462306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__alloc_percpu_gfp); 193562306a36Sopenharmony_ci 193662306a36Sopenharmony_ci/** 193762306a36Sopenharmony_ci * __alloc_percpu - allocate dynamic percpu area 193862306a36Sopenharmony_ci * @size: size of area to allocate in bytes 193962306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 194062306a36Sopenharmony_ci * 194162306a36Sopenharmony_ci * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). 194262306a36Sopenharmony_ci */ 194362306a36Sopenharmony_civoid __percpu *__alloc_percpu(size_t size, size_t align) 194462306a36Sopenharmony_ci{ 194562306a36Sopenharmony_ci return pcpu_alloc(size, align, false, GFP_KERNEL); 194662306a36Sopenharmony_ci} 194762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(__alloc_percpu); 194862306a36Sopenharmony_ci 194962306a36Sopenharmony_ci/** 195062306a36Sopenharmony_ci * __alloc_reserved_percpu - allocate reserved percpu area 195162306a36Sopenharmony_ci * @size: size of area to allocate in bytes 195262306a36Sopenharmony_ci * @align: alignment of area (max PAGE_SIZE) 195362306a36Sopenharmony_ci * 195462306a36Sopenharmony_ci * Allocate zero-filled percpu area of @size bytes aligned at @align 195562306a36Sopenharmony_ci * from reserved percpu area if arch has set it up; otherwise, 195662306a36Sopenharmony_ci * allocation is served from the same dynamic area. Might sleep. 195762306a36Sopenharmony_ci * Might trigger writeouts. 195862306a36Sopenharmony_ci * 195962306a36Sopenharmony_ci * CONTEXT: 196062306a36Sopenharmony_ci * Does GFP_KERNEL allocation. 196162306a36Sopenharmony_ci * 196262306a36Sopenharmony_ci * RETURNS: 196362306a36Sopenharmony_ci * Percpu pointer to the allocated area on success, NULL on failure. 196462306a36Sopenharmony_ci */ 196562306a36Sopenharmony_civoid __percpu *__alloc_reserved_percpu(size_t size, size_t align) 196662306a36Sopenharmony_ci{ 196762306a36Sopenharmony_ci return pcpu_alloc(size, align, true, GFP_KERNEL); 196862306a36Sopenharmony_ci} 196962306a36Sopenharmony_ci 197062306a36Sopenharmony_ci/** 197162306a36Sopenharmony_ci * pcpu_balance_free - manage the amount of free chunks 197262306a36Sopenharmony_ci * @empty_only: free chunks only if there are no populated pages 197362306a36Sopenharmony_ci * 197462306a36Sopenharmony_ci * If empty_only is %false, reclaim all fully free chunks regardless of the 197562306a36Sopenharmony_ci * number of populated pages. Otherwise, only reclaim chunks that have no 197662306a36Sopenharmony_ci * populated pages. 197762306a36Sopenharmony_ci * 197862306a36Sopenharmony_ci * CONTEXT: 197962306a36Sopenharmony_ci * pcpu_lock (can be dropped temporarily) 198062306a36Sopenharmony_ci */ 198162306a36Sopenharmony_cistatic void pcpu_balance_free(bool empty_only) 198262306a36Sopenharmony_ci{ 198362306a36Sopenharmony_ci LIST_HEAD(to_free); 198462306a36Sopenharmony_ci struct list_head *free_head = &pcpu_chunk_lists[pcpu_free_slot]; 198562306a36Sopenharmony_ci struct pcpu_chunk *chunk, *next; 198662306a36Sopenharmony_ci 198762306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 198862306a36Sopenharmony_ci 198962306a36Sopenharmony_ci /* 199062306a36Sopenharmony_ci * There's no reason to keep around multiple unused chunks and VM 199162306a36Sopenharmony_ci * areas can be scarce. Destroy all free chunks except for one. 199262306a36Sopenharmony_ci */ 199362306a36Sopenharmony_ci list_for_each_entry_safe(chunk, next, free_head, list) { 199462306a36Sopenharmony_ci WARN_ON(chunk->immutable); 199562306a36Sopenharmony_ci 199662306a36Sopenharmony_ci /* spare the first one */ 199762306a36Sopenharmony_ci if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) 199862306a36Sopenharmony_ci continue; 199962306a36Sopenharmony_ci 200062306a36Sopenharmony_ci if (!empty_only || chunk->nr_empty_pop_pages == 0) 200162306a36Sopenharmony_ci list_move(&chunk->list, &to_free); 200262306a36Sopenharmony_ci } 200362306a36Sopenharmony_ci 200462306a36Sopenharmony_ci if (list_empty(&to_free)) 200562306a36Sopenharmony_ci return; 200662306a36Sopenharmony_ci 200762306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 200862306a36Sopenharmony_ci list_for_each_entry_safe(chunk, next, &to_free, list) { 200962306a36Sopenharmony_ci unsigned int rs, re; 201062306a36Sopenharmony_ci 201162306a36Sopenharmony_ci for_each_set_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 201262306a36Sopenharmony_ci pcpu_depopulate_chunk(chunk, rs, re); 201362306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 201462306a36Sopenharmony_ci pcpu_chunk_depopulated(chunk, rs, re); 201562306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 201662306a36Sopenharmony_ci } 201762306a36Sopenharmony_ci pcpu_destroy_chunk(chunk); 201862306a36Sopenharmony_ci cond_resched(); 201962306a36Sopenharmony_ci } 202062306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 202162306a36Sopenharmony_ci} 202262306a36Sopenharmony_ci 202362306a36Sopenharmony_ci/** 202462306a36Sopenharmony_ci * pcpu_balance_populated - manage the amount of populated pages 202562306a36Sopenharmony_ci * 202662306a36Sopenharmony_ci * Maintain a certain amount of populated pages to satisfy atomic allocations. 202762306a36Sopenharmony_ci * It is possible that this is called when physical memory is scarce causing 202862306a36Sopenharmony_ci * OOM killer to be triggered. We should avoid doing so until an actual 202962306a36Sopenharmony_ci * allocation causes the failure as it is possible that requests can be 203062306a36Sopenharmony_ci * serviced from already backed regions. 203162306a36Sopenharmony_ci * 203262306a36Sopenharmony_ci * CONTEXT: 203362306a36Sopenharmony_ci * pcpu_lock (can be dropped temporarily) 203462306a36Sopenharmony_ci */ 203562306a36Sopenharmony_cistatic void pcpu_balance_populated(void) 203662306a36Sopenharmony_ci{ 203762306a36Sopenharmony_ci /* gfp flags passed to underlying allocators */ 203862306a36Sopenharmony_ci const gfp_t gfp = GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN; 203962306a36Sopenharmony_ci struct pcpu_chunk *chunk; 204062306a36Sopenharmony_ci int slot, nr_to_pop, ret; 204162306a36Sopenharmony_ci 204262306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 204362306a36Sopenharmony_ci 204462306a36Sopenharmony_ci /* 204562306a36Sopenharmony_ci * Ensure there are certain number of free populated pages for 204662306a36Sopenharmony_ci * atomic allocs. Fill up from the most packed so that atomic 204762306a36Sopenharmony_ci * allocs don't increase fragmentation. If atomic allocation 204862306a36Sopenharmony_ci * failed previously, always populate the maximum amount. This 204962306a36Sopenharmony_ci * should prevent atomic allocs larger than PAGE_SIZE from keeping 205062306a36Sopenharmony_ci * failing indefinitely; however, large atomic allocs are not 205162306a36Sopenharmony_ci * something we support properly and can be highly unreliable and 205262306a36Sopenharmony_ci * inefficient. 205362306a36Sopenharmony_ci */ 205462306a36Sopenharmony_ciretry_pop: 205562306a36Sopenharmony_ci if (pcpu_atomic_alloc_failed) { 205662306a36Sopenharmony_ci nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; 205762306a36Sopenharmony_ci /* best effort anyway, don't worry about synchronization */ 205862306a36Sopenharmony_ci pcpu_atomic_alloc_failed = false; 205962306a36Sopenharmony_ci } else { 206062306a36Sopenharmony_ci nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - 206162306a36Sopenharmony_ci pcpu_nr_empty_pop_pages, 206262306a36Sopenharmony_ci 0, PCPU_EMPTY_POP_PAGES_HIGH); 206362306a36Sopenharmony_ci } 206462306a36Sopenharmony_ci 206562306a36Sopenharmony_ci for (slot = pcpu_size_to_slot(PAGE_SIZE); slot <= pcpu_free_slot; slot++) { 206662306a36Sopenharmony_ci unsigned int nr_unpop = 0, rs, re; 206762306a36Sopenharmony_ci 206862306a36Sopenharmony_ci if (!nr_to_pop) 206962306a36Sopenharmony_ci break; 207062306a36Sopenharmony_ci 207162306a36Sopenharmony_ci list_for_each_entry(chunk, &pcpu_chunk_lists[slot], list) { 207262306a36Sopenharmony_ci nr_unpop = chunk->nr_pages - chunk->nr_populated; 207362306a36Sopenharmony_ci if (nr_unpop) 207462306a36Sopenharmony_ci break; 207562306a36Sopenharmony_ci } 207662306a36Sopenharmony_ci 207762306a36Sopenharmony_ci if (!nr_unpop) 207862306a36Sopenharmony_ci continue; 207962306a36Sopenharmony_ci 208062306a36Sopenharmony_ci /* @chunk can't go away while pcpu_alloc_mutex is held */ 208162306a36Sopenharmony_ci for_each_clear_bitrange(rs, re, chunk->populated, chunk->nr_pages) { 208262306a36Sopenharmony_ci int nr = min_t(int, re - rs, nr_to_pop); 208362306a36Sopenharmony_ci 208462306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 208562306a36Sopenharmony_ci ret = pcpu_populate_chunk(chunk, rs, rs + nr, gfp); 208662306a36Sopenharmony_ci cond_resched(); 208762306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 208862306a36Sopenharmony_ci if (!ret) { 208962306a36Sopenharmony_ci nr_to_pop -= nr; 209062306a36Sopenharmony_ci pcpu_chunk_populated(chunk, rs, rs + nr); 209162306a36Sopenharmony_ci } else { 209262306a36Sopenharmony_ci nr_to_pop = 0; 209362306a36Sopenharmony_ci } 209462306a36Sopenharmony_ci 209562306a36Sopenharmony_ci if (!nr_to_pop) 209662306a36Sopenharmony_ci break; 209762306a36Sopenharmony_ci } 209862306a36Sopenharmony_ci } 209962306a36Sopenharmony_ci 210062306a36Sopenharmony_ci if (nr_to_pop) { 210162306a36Sopenharmony_ci /* ran out of chunks to populate, create a new one and retry */ 210262306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 210362306a36Sopenharmony_ci chunk = pcpu_create_chunk(gfp); 210462306a36Sopenharmony_ci cond_resched(); 210562306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 210662306a36Sopenharmony_ci if (chunk) { 210762306a36Sopenharmony_ci pcpu_chunk_relocate(chunk, -1); 210862306a36Sopenharmony_ci goto retry_pop; 210962306a36Sopenharmony_ci } 211062306a36Sopenharmony_ci } 211162306a36Sopenharmony_ci} 211262306a36Sopenharmony_ci 211362306a36Sopenharmony_ci/** 211462306a36Sopenharmony_ci * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages 211562306a36Sopenharmony_ci * 211662306a36Sopenharmony_ci * Scan over chunks in the depopulate list and try to release unused populated 211762306a36Sopenharmony_ci * pages back to the system. Depopulated chunks are sidelined to prevent 211862306a36Sopenharmony_ci * repopulating these pages unless required. Fully free chunks are reintegrated 211962306a36Sopenharmony_ci * and freed accordingly (1 is kept around). If we drop below the empty 212062306a36Sopenharmony_ci * populated pages threshold, reintegrate the chunk if it has empty free pages. 212162306a36Sopenharmony_ci * Each chunk is scanned in the reverse order to keep populated pages close to 212262306a36Sopenharmony_ci * the beginning of the chunk. 212362306a36Sopenharmony_ci * 212462306a36Sopenharmony_ci * CONTEXT: 212562306a36Sopenharmony_ci * pcpu_lock (can be dropped temporarily) 212662306a36Sopenharmony_ci * 212762306a36Sopenharmony_ci */ 212862306a36Sopenharmony_cistatic void pcpu_reclaim_populated(void) 212962306a36Sopenharmony_ci{ 213062306a36Sopenharmony_ci struct pcpu_chunk *chunk; 213162306a36Sopenharmony_ci struct pcpu_block_md *block; 213262306a36Sopenharmony_ci int freed_page_start, freed_page_end; 213362306a36Sopenharmony_ci int i, end; 213462306a36Sopenharmony_ci bool reintegrate; 213562306a36Sopenharmony_ci 213662306a36Sopenharmony_ci lockdep_assert_held(&pcpu_lock); 213762306a36Sopenharmony_ci 213862306a36Sopenharmony_ci /* 213962306a36Sopenharmony_ci * Once a chunk is isolated to the to_depopulate list, the chunk is no 214062306a36Sopenharmony_ci * longer discoverable to allocations whom may populate pages. The only 214162306a36Sopenharmony_ci * other accessor is the free path which only returns area back to the 214262306a36Sopenharmony_ci * allocator not touching the populated bitmap. 214362306a36Sopenharmony_ci */ 214462306a36Sopenharmony_ci while ((chunk = list_first_entry_or_null( 214562306a36Sopenharmony_ci &pcpu_chunk_lists[pcpu_to_depopulate_slot], 214662306a36Sopenharmony_ci struct pcpu_chunk, list))) { 214762306a36Sopenharmony_ci WARN_ON(chunk->immutable); 214862306a36Sopenharmony_ci 214962306a36Sopenharmony_ci /* 215062306a36Sopenharmony_ci * Scan chunk's pages in the reverse order to keep populated 215162306a36Sopenharmony_ci * pages close to the beginning of the chunk. 215262306a36Sopenharmony_ci */ 215362306a36Sopenharmony_ci freed_page_start = chunk->nr_pages; 215462306a36Sopenharmony_ci freed_page_end = 0; 215562306a36Sopenharmony_ci reintegrate = false; 215662306a36Sopenharmony_ci for (i = chunk->nr_pages - 1, end = -1; i >= 0; i--) { 215762306a36Sopenharmony_ci /* no more work to do */ 215862306a36Sopenharmony_ci if (chunk->nr_empty_pop_pages == 0) 215962306a36Sopenharmony_ci break; 216062306a36Sopenharmony_ci 216162306a36Sopenharmony_ci /* reintegrate chunk to prevent atomic alloc failures */ 216262306a36Sopenharmony_ci if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_HIGH) { 216362306a36Sopenharmony_ci reintegrate = true; 216462306a36Sopenharmony_ci break; 216562306a36Sopenharmony_ci } 216662306a36Sopenharmony_ci 216762306a36Sopenharmony_ci /* 216862306a36Sopenharmony_ci * If the page is empty and populated, start or 216962306a36Sopenharmony_ci * extend the (i, end) range. If i == 0, decrease 217062306a36Sopenharmony_ci * i and perform the depopulation to cover the last 217162306a36Sopenharmony_ci * (first) page in the chunk. 217262306a36Sopenharmony_ci */ 217362306a36Sopenharmony_ci block = chunk->md_blocks + i; 217462306a36Sopenharmony_ci if (block->contig_hint == PCPU_BITMAP_BLOCK_BITS && 217562306a36Sopenharmony_ci test_bit(i, chunk->populated)) { 217662306a36Sopenharmony_ci if (end == -1) 217762306a36Sopenharmony_ci end = i; 217862306a36Sopenharmony_ci if (i > 0) 217962306a36Sopenharmony_ci continue; 218062306a36Sopenharmony_ci i--; 218162306a36Sopenharmony_ci } 218262306a36Sopenharmony_ci 218362306a36Sopenharmony_ci /* depopulate if there is an active range */ 218462306a36Sopenharmony_ci if (end == -1) 218562306a36Sopenharmony_ci continue; 218662306a36Sopenharmony_ci 218762306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 218862306a36Sopenharmony_ci pcpu_depopulate_chunk(chunk, i + 1, end + 1); 218962306a36Sopenharmony_ci cond_resched(); 219062306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 219162306a36Sopenharmony_ci 219262306a36Sopenharmony_ci pcpu_chunk_depopulated(chunk, i + 1, end + 1); 219362306a36Sopenharmony_ci freed_page_start = min(freed_page_start, i + 1); 219462306a36Sopenharmony_ci freed_page_end = max(freed_page_end, end + 1); 219562306a36Sopenharmony_ci 219662306a36Sopenharmony_ci /* reset the range and continue */ 219762306a36Sopenharmony_ci end = -1; 219862306a36Sopenharmony_ci } 219962306a36Sopenharmony_ci 220062306a36Sopenharmony_ci /* batch tlb flush per chunk to amortize cost */ 220162306a36Sopenharmony_ci if (freed_page_start < freed_page_end) { 220262306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 220362306a36Sopenharmony_ci pcpu_post_unmap_tlb_flush(chunk, 220462306a36Sopenharmony_ci freed_page_start, 220562306a36Sopenharmony_ci freed_page_end); 220662306a36Sopenharmony_ci cond_resched(); 220762306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 220862306a36Sopenharmony_ci } 220962306a36Sopenharmony_ci 221062306a36Sopenharmony_ci if (reintegrate || chunk->free_bytes == pcpu_unit_size) 221162306a36Sopenharmony_ci pcpu_reintegrate_chunk(chunk); 221262306a36Sopenharmony_ci else 221362306a36Sopenharmony_ci list_move_tail(&chunk->list, 221462306a36Sopenharmony_ci &pcpu_chunk_lists[pcpu_sidelined_slot]); 221562306a36Sopenharmony_ci } 221662306a36Sopenharmony_ci} 221762306a36Sopenharmony_ci 221862306a36Sopenharmony_ci/** 221962306a36Sopenharmony_ci * pcpu_balance_workfn - manage the amount of free chunks and populated pages 222062306a36Sopenharmony_ci * @work: unused 222162306a36Sopenharmony_ci * 222262306a36Sopenharmony_ci * For each chunk type, manage the number of fully free chunks and the number of 222362306a36Sopenharmony_ci * populated pages. An important thing to consider is when pages are freed and 222462306a36Sopenharmony_ci * how they contribute to the global counts. 222562306a36Sopenharmony_ci */ 222662306a36Sopenharmony_cistatic void pcpu_balance_workfn(struct work_struct *work) 222762306a36Sopenharmony_ci{ 222862306a36Sopenharmony_ci /* 222962306a36Sopenharmony_ci * pcpu_balance_free() is called twice because the first time we may 223062306a36Sopenharmony_ci * trim pages in the active pcpu_nr_empty_pop_pages which may cause us 223162306a36Sopenharmony_ci * to grow other chunks. This then gives pcpu_reclaim_populated() time 223262306a36Sopenharmony_ci * to move fully free chunks to the active list to be freed if 223362306a36Sopenharmony_ci * appropriate. 223462306a36Sopenharmony_ci */ 223562306a36Sopenharmony_ci mutex_lock(&pcpu_alloc_mutex); 223662306a36Sopenharmony_ci spin_lock_irq(&pcpu_lock); 223762306a36Sopenharmony_ci 223862306a36Sopenharmony_ci pcpu_balance_free(false); 223962306a36Sopenharmony_ci pcpu_reclaim_populated(); 224062306a36Sopenharmony_ci pcpu_balance_populated(); 224162306a36Sopenharmony_ci pcpu_balance_free(true); 224262306a36Sopenharmony_ci 224362306a36Sopenharmony_ci spin_unlock_irq(&pcpu_lock); 224462306a36Sopenharmony_ci mutex_unlock(&pcpu_alloc_mutex); 224562306a36Sopenharmony_ci} 224662306a36Sopenharmony_ci 224762306a36Sopenharmony_ci/** 224862306a36Sopenharmony_ci * free_percpu - free percpu area 224962306a36Sopenharmony_ci * @ptr: pointer to area to free 225062306a36Sopenharmony_ci * 225162306a36Sopenharmony_ci * Free percpu area @ptr. 225262306a36Sopenharmony_ci * 225362306a36Sopenharmony_ci * CONTEXT: 225462306a36Sopenharmony_ci * Can be called from atomic context. 225562306a36Sopenharmony_ci */ 225662306a36Sopenharmony_civoid free_percpu(void __percpu *ptr) 225762306a36Sopenharmony_ci{ 225862306a36Sopenharmony_ci void *addr; 225962306a36Sopenharmony_ci struct pcpu_chunk *chunk; 226062306a36Sopenharmony_ci unsigned long flags; 226162306a36Sopenharmony_ci int size, off; 226262306a36Sopenharmony_ci bool need_balance = false; 226362306a36Sopenharmony_ci 226462306a36Sopenharmony_ci if (!ptr) 226562306a36Sopenharmony_ci return; 226662306a36Sopenharmony_ci 226762306a36Sopenharmony_ci kmemleak_free_percpu(ptr); 226862306a36Sopenharmony_ci 226962306a36Sopenharmony_ci addr = __pcpu_ptr_to_addr(ptr); 227062306a36Sopenharmony_ci 227162306a36Sopenharmony_ci spin_lock_irqsave(&pcpu_lock, flags); 227262306a36Sopenharmony_ci 227362306a36Sopenharmony_ci chunk = pcpu_chunk_addr_search(addr); 227462306a36Sopenharmony_ci off = addr - chunk->base_addr; 227562306a36Sopenharmony_ci 227662306a36Sopenharmony_ci size = pcpu_free_area(chunk, off); 227762306a36Sopenharmony_ci 227862306a36Sopenharmony_ci pcpu_memcg_free_hook(chunk, off, size); 227962306a36Sopenharmony_ci 228062306a36Sopenharmony_ci /* 228162306a36Sopenharmony_ci * If there are more than one fully free chunks, wake up grim reaper. 228262306a36Sopenharmony_ci * If the chunk is isolated, it may be in the process of being 228362306a36Sopenharmony_ci * reclaimed. Let reclaim manage cleaning up of that chunk. 228462306a36Sopenharmony_ci */ 228562306a36Sopenharmony_ci if (!chunk->isolated && chunk->free_bytes == pcpu_unit_size) { 228662306a36Sopenharmony_ci struct pcpu_chunk *pos; 228762306a36Sopenharmony_ci 228862306a36Sopenharmony_ci list_for_each_entry(pos, &pcpu_chunk_lists[pcpu_free_slot], list) 228962306a36Sopenharmony_ci if (pos != chunk) { 229062306a36Sopenharmony_ci need_balance = true; 229162306a36Sopenharmony_ci break; 229262306a36Sopenharmony_ci } 229362306a36Sopenharmony_ci } else if (pcpu_should_reclaim_chunk(chunk)) { 229462306a36Sopenharmony_ci pcpu_isolate_chunk(chunk); 229562306a36Sopenharmony_ci need_balance = true; 229662306a36Sopenharmony_ci } 229762306a36Sopenharmony_ci 229862306a36Sopenharmony_ci trace_percpu_free_percpu(chunk->base_addr, off, ptr); 229962306a36Sopenharmony_ci 230062306a36Sopenharmony_ci spin_unlock_irqrestore(&pcpu_lock, flags); 230162306a36Sopenharmony_ci 230262306a36Sopenharmony_ci if (need_balance) 230362306a36Sopenharmony_ci pcpu_schedule_balance_work(); 230462306a36Sopenharmony_ci} 230562306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(free_percpu); 230662306a36Sopenharmony_ci 230762306a36Sopenharmony_cibool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr) 230862306a36Sopenharmony_ci{ 230962306a36Sopenharmony_ci#ifdef CONFIG_SMP 231062306a36Sopenharmony_ci const size_t static_size = __per_cpu_end - __per_cpu_start; 231162306a36Sopenharmony_ci void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 231262306a36Sopenharmony_ci unsigned int cpu; 231362306a36Sopenharmony_ci 231462306a36Sopenharmony_ci for_each_possible_cpu(cpu) { 231562306a36Sopenharmony_ci void *start = per_cpu_ptr(base, cpu); 231662306a36Sopenharmony_ci void *va = (void *)addr; 231762306a36Sopenharmony_ci 231862306a36Sopenharmony_ci if (va >= start && va < start + static_size) { 231962306a36Sopenharmony_ci if (can_addr) { 232062306a36Sopenharmony_ci *can_addr = (unsigned long) (va - start); 232162306a36Sopenharmony_ci *can_addr += (unsigned long) 232262306a36Sopenharmony_ci per_cpu_ptr(base, get_boot_cpu_id()); 232362306a36Sopenharmony_ci } 232462306a36Sopenharmony_ci return true; 232562306a36Sopenharmony_ci } 232662306a36Sopenharmony_ci } 232762306a36Sopenharmony_ci#endif 232862306a36Sopenharmony_ci /* on UP, can't distinguish from other static vars, always false */ 232962306a36Sopenharmony_ci return false; 233062306a36Sopenharmony_ci} 233162306a36Sopenharmony_ci 233262306a36Sopenharmony_ci/** 233362306a36Sopenharmony_ci * is_kernel_percpu_address - test whether address is from static percpu area 233462306a36Sopenharmony_ci * @addr: address to test 233562306a36Sopenharmony_ci * 233662306a36Sopenharmony_ci * Test whether @addr belongs to in-kernel static percpu area. Module 233762306a36Sopenharmony_ci * static percpu areas are not considered. For those, use 233862306a36Sopenharmony_ci * is_module_percpu_address(). 233962306a36Sopenharmony_ci * 234062306a36Sopenharmony_ci * RETURNS: 234162306a36Sopenharmony_ci * %true if @addr is from in-kernel static percpu area, %false otherwise. 234262306a36Sopenharmony_ci */ 234362306a36Sopenharmony_cibool is_kernel_percpu_address(unsigned long addr) 234462306a36Sopenharmony_ci{ 234562306a36Sopenharmony_ci return __is_kernel_percpu_address(addr, NULL); 234662306a36Sopenharmony_ci} 234762306a36Sopenharmony_ci 234862306a36Sopenharmony_ci/** 234962306a36Sopenharmony_ci * per_cpu_ptr_to_phys - convert translated percpu address to physical address 235062306a36Sopenharmony_ci * @addr: the address to be converted to physical address 235162306a36Sopenharmony_ci * 235262306a36Sopenharmony_ci * Given @addr which is dereferenceable address obtained via one of 235362306a36Sopenharmony_ci * percpu access macros, this function translates it into its physical 235462306a36Sopenharmony_ci * address. The caller is responsible for ensuring @addr stays valid 235562306a36Sopenharmony_ci * until this function finishes. 235662306a36Sopenharmony_ci * 235762306a36Sopenharmony_ci * percpu allocator has special setup for the first chunk, which currently 235862306a36Sopenharmony_ci * supports either embedding in linear address space or vmalloc mapping, 235962306a36Sopenharmony_ci * and, from the second one, the backing allocator (currently either vm or 236062306a36Sopenharmony_ci * km) provides translation. 236162306a36Sopenharmony_ci * 236262306a36Sopenharmony_ci * The addr can be translated simply without checking if it falls into the 236362306a36Sopenharmony_ci * first chunk. But the current code reflects better how percpu allocator 236462306a36Sopenharmony_ci * actually works, and the verification can discover both bugs in percpu 236562306a36Sopenharmony_ci * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current 236662306a36Sopenharmony_ci * code. 236762306a36Sopenharmony_ci * 236862306a36Sopenharmony_ci * RETURNS: 236962306a36Sopenharmony_ci * The physical address for @addr. 237062306a36Sopenharmony_ci */ 237162306a36Sopenharmony_ciphys_addr_t per_cpu_ptr_to_phys(void *addr) 237262306a36Sopenharmony_ci{ 237362306a36Sopenharmony_ci void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); 237462306a36Sopenharmony_ci bool in_first_chunk = false; 237562306a36Sopenharmony_ci unsigned long first_low, first_high; 237662306a36Sopenharmony_ci unsigned int cpu; 237762306a36Sopenharmony_ci 237862306a36Sopenharmony_ci /* 237962306a36Sopenharmony_ci * The following test on unit_low/high isn't strictly 238062306a36Sopenharmony_ci * necessary but will speed up lookups of addresses which 238162306a36Sopenharmony_ci * aren't in the first chunk. 238262306a36Sopenharmony_ci * 238362306a36Sopenharmony_ci * The address check is against full chunk sizes. pcpu_base_addr 238462306a36Sopenharmony_ci * points to the beginning of the first chunk including the 238562306a36Sopenharmony_ci * static region. Assumes good intent as the first chunk may 238662306a36Sopenharmony_ci * not be full (ie. < pcpu_unit_pages in size). 238762306a36Sopenharmony_ci */ 238862306a36Sopenharmony_ci first_low = (unsigned long)pcpu_base_addr + 238962306a36Sopenharmony_ci pcpu_unit_page_offset(pcpu_low_unit_cpu, 0); 239062306a36Sopenharmony_ci first_high = (unsigned long)pcpu_base_addr + 239162306a36Sopenharmony_ci pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages); 239262306a36Sopenharmony_ci if ((unsigned long)addr >= first_low && 239362306a36Sopenharmony_ci (unsigned long)addr < first_high) { 239462306a36Sopenharmony_ci for_each_possible_cpu(cpu) { 239562306a36Sopenharmony_ci void *start = per_cpu_ptr(base, cpu); 239662306a36Sopenharmony_ci 239762306a36Sopenharmony_ci if (addr >= start && addr < start + pcpu_unit_size) { 239862306a36Sopenharmony_ci in_first_chunk = true; 239962306a36Sopenharmony_ci break; 240062306a36Sopenharmony_ci } 240162306a36Sopenharmony_ci } 240262306a36Sopenharmony_ci } 240362306a36Sopenharmony_ci 240462306a36Sopenharmony_ci if (in_first_chunk) { 240562306a36Sopenharmony_ci if (!is_vmalloc_addr(addr)) 240662306a36Sopenharmony_ci return __pa(addr); 240762306a36Sopenharmony_ci else 240862306a36Sopenharmony_ci return page_to_phys(vmalloc_to_page(addr)) + 240962306a36Sopenharmony_ci offset_in_page(addr); 241062306a36Sopenharmony_ci } else 241162306a36Sopenharmony_ci return page_to_phys(pcpu_addr_to_page(addr)) + 241262306a36Sopenharmony_ci offset_in_page(addr); 241362306a36Sopenharmony_ci} 241462306a36Sopenharmony_ci 241562306a36Sopenharmony_ci/** 241662306a36Sopenharmony_ci * pcpu_alloc_alloc_info - allocate percpu allocation info 241762306a36Sopenharmony_ci * @nr_groups: the number of groups 241862306a36Sopenharmony_ci * @nr_units: the number of units 241962306a36Sopenharmony_ci * 242062306a36Sopenharmony_ci * Allocate ai which is large enough for @nr_groups groups containing 242162306a36Sopenharmony_ci * @nr_units units. The returned ai's groups[0].cpu_map points to the 242262306a36Sopenharmony_ci * cpu_map array which is long enough for @nr_units and filled with 242362306a36Sopenharmony_ci * NR_CPUS. It's the caller's responsibility to initialize cpu_map 242462306a36Sopenharmony_ci * pointer of other groups. 242562306a36Sopenharmony_ci * 242662306a36Sopenharmony_ci * RETURNS: 242762306a36Sopenharmony_ci * Pointer to the allocated pcpu_alloc_info on success, NULL on 242862306a36Sopenharmony_ci * failure. 242962306a36Sopenharmony_ci */ 243062306a36Sopenharmony_cistruct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, 243162306a36Sopenharmony_ci int nr_units) 243262306a36Sopenharmony_ci{ 243362306a36Sopenharmony_ci struct pcpu_alloc_info *ai; 243462306a36Sopenharmony_ci size_t base_size, ai_size; 243562306a36Sopenharmony_ci void *ptr; 243662306a36Sopenharmony_ci int unit; 243762306a36Sopenharmony_ci 243862306a36Sopenharmony_ci base_size = ALIGN(struct_size(ai, groups, nr_groups), 243962306a36Sopenharmony_ci __alignof__(ai->groups[0].cpu_map[0])); 244062306a36Sopenharmony_ci ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); 244162306a36Sopenharmony_ci 244262306a36Sopenharmony_ci ptr = memblock_alloc(PFN_ALIGN(ai_size), PAGE_SIZE); 244362306a36Sopenharmony_ci if (!ptr) 244462306a36Sopenharmony_ci return NULL; 244562306a36Sopenharmony_ci ai = ptr; 244662306a36Sopenharmony_ci ptr += base_size; 244762306a36Sopenharmony_ci 244862306a36Sopenharmony_ci ai->groups[0].cpu_map = ptr; 244962306a36Sopenharmony_ci 245062306a36Sopenharmony_ci for (unit = 0; unit < nr_units; unit++) 245162306a36Sopenharmony_ci ai->groups[0].cpu_map[unit] = NR_CPUS; 245262306a36Sopenharmony_ci 245362306a36Sopenharmony_ci ai->nr_groups = nr_groups; 245462306a36Sopenharmony_ci ai->__ai_size = PFN_ALIGN(ai_size); 245562306a36Sopenharmony_ci 245662306a36Sopenharmony_ci return ai; 245762306a36Sopenharmony_ci} 245862306a36Sopenharmony_ci 245962306a36Sopenharmony_ci/** 246062306a36Sopenharmony_ci * pcpu_free_alloc_info - free percpu allocation info 246162306a36Sopenharmony_ci * @ai: pcpu_alloc_info to free 246262306a36Sopenharmony_ci * 246362306a36Sopenharmony_ci * Free @ai which was allocated by pcpu_alloc_alloc_info(). 246462306a36Sopenharmony_ci */ 246562306a36Sopenharmony_civoid __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) 246662306a36Sopenharmony_ci{ 246762306a36Sopenharmony_ci memblock_free(ai, ai->__ai_size); 246862306a36Sopenharmony_ci} 246962306a36Sopenharmony_ci 247062306a36Sopenharmony_ci/** 247162306a36Sopenharmony_ci * pcpu_dump_alloc_info - print out information about pcpu_alloc_info 247262306a36Sopenharmony_ci * @lvl: loglevel 247362306a36Sopenharmony_ci * @ai: allocation info to dump 247462306a36Sopenharmony_ci * 247562306a36Sopenharmony_ci * Print out information about @ai using loglevel @lvl. 247662306a36Sopenharmony_ci */ 247762306a36Sopenharmony_cistatic void pcpu_dump_alloc_info(const char *lvl, 247862306a36Sopenharmony_ci const struct pcpu_alloc_info *ai) 247962306a36Sopenharmony_ci{ 248062306a36Sopenharmony_ci int group_width = 1, cpu_width = 1, width; 248162306a36Sopenharmony_ci char empty_str[] = "--------"; 248262306a36Sopenharmony_ci int alloc = 0, alloc_end = 0; 248362306a36Sopenharmony_ci int group, v; 248462306a36Sopenharmony_ci int upa, apl; /* units per alloc, allocs per line */ 248562306a36Sopenharmony_ci 248662306a36Sopenharmony_ci v = ai->nr_groups; 248762306a36Sopenharmony_ci while (v /= 10) 248862306a36Sopenharmony_ci group_width++; 248962306a36Sopenharmony_ci 249062306a36Sopenharmony_ci v = num_possible_cpus(); 249162306a36Sopenharmony_ci while (v /= 10) 249262306a36Sopenharmony_ci cpu_width++; 249362306a36Sopenharmony_ci empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; 249462306a36Sopenharmony_ci 249562306a36Sopenharmony_ci upa = ai->alloc_size / ai->unit_size; 249662306a36Sopenharmony_ci width = upa * (cpu_width + 1) + group_width + 3; 249762306a36Sopenharmony_ci apl = rounddown_pow_of_two(max(60 / width, 1)); 249862306a36Sopenharmony_ci 249962306a36Sopenharmony_ci printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", 250062306a36Sopenharmony_ci lvl, ai->static_size, ai->reserved_size, ai->dyn_size, 250162306a36Sopenharmony_ci ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); 250262306a36Sopenharmony_ci 250362306a36Sopenharmony_ci for (group = 0; group < ai->nr_groups; group++) { 250462306a36Sopenharmony_ci const struct pcpu_group_info *gi = &ai->groups[group]; 250562306a36Sopenharmony_ci int unit = 0, unit_end = 0; 250662306a36Sopenharmony_ci 250762306a36Sopenharmony_ci BUG_ON(gi->nr_units % upa); 250862306a36Sopenharmony_ci for (alloc_end += gi->nr_units / upa; 250962306a36Sopenharmony_ci alloc < alloc_end; alloc++) { 251062306a36Sopenharmony_ci if (!(alloc % apl)) { 251162306a36Sopenharmony_ci pr_cont("\n"); 251262306a36Sopenharmony_ci printk("%spcpu-alloc: ", lvl); 251362306a36Sopenharmony_ci } 251462306a36Sopenharmony_ci pr_cont("[%0*d] ", group_width, group); 251562306a36Sopenharmony_ci 251662306a36Sopenharmony_ci for (unit_end += upa; unit < unit_end; unit++) 251762306a36Sopenharmony_ci if (gi->cpu_map[unit] != NR_CPUS) 251862306a36Sopenharmony_ci pr_cont("%0*d ", 251962306a36Sopenharmony_ci cpu_width, gi->cpu_map[unit]); 252062306a36Sopenharmony_ci else 252162306a36Sopenharmony_ci pr_cont("%s ", empty_str); 252262306a36Sopenharmony_ci } 252362306a36Sopenharmony_ci } 252462306a36Sopenharmony_ci pr_cont("\n"); 252562306a36Sopenharmony_ci} 252662306a36Sopenharmony_ci 252762306a36Sopenharmony_ci/** 252862306a36Sopenharmony_ci * pcpu_setup_first_chunk - initialize the first percpu chunk 252962306a36Sopenharmony_ci * @ai: pcpu_alloc_info describing how to percpu area is shaped 253062306a36Sopenharmony_ci * @base_addr: mapped address 253162306a36Sopenharmony_ci * 253262306a36Sopenharmony_ci * Initialize the first percpu chunk which contains the kernel static 253362306a36Sopenharmony_ci * percpu area. This function is to be called from arch percpu area 253462306a36Sopenharmony_ci * setup path. 253562306a36Sopenharmony_ci * 253662306a36Sopenharmony_ci * @ai contains all information necessary to initialize the first 253762306a36Sopenharmony_ci * chunk and prime the dynamic percpu allocator. 253862306a36Sopenharmony_ci * 253962306a36Sopenharmony_ci * @ai->static_size is the size of static percpu area. 254062306a36Sopenharmony_ci * 254162306a36Sopenharmony_ci * @ai->reserved_size, if non-zero, specifies the amount of bytes to 254262306a36Sopenharmony_ci * reserve after the static area in the first chunk. This reserves 254362306a36Sopenharmony_ci * the first chunk such that it's available only through reserved 254462306a36Sopenharmony_ci * percpu allocation. This is primarily used to serve module percpu 254562306a36Sopenharmony_ci * static areas on architectures where the addressing model has 254662306a36Sopenharmony_ci * limited offset range for symbol relocations to guarantee module 254762306a36Sopenharmony_ci * percpu symbols fall inside the relocatable range. 254862306a36Sopenharmony_ci * 254962306a36Sopenharmony_ci * @ai->dyn_size determines the number of bytes available for dynamic 255062306a36Sopenharmony_ci * allocation in the first chunk. The area between @ai->static_size + 255162306a36Sopenharmony_ci * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. 255262306a36Sopenharmony_ci * 255362306a36Sopenharmony_ci * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE 255462306a36Sopenharmony_ci * and equal to or larger than @ai->static_size + @ai->reserved_size + 255562306a36Sopenharmony_ci * @ai->dyn_size. 255662306a36Sopenharmony_ci * 255762306a36Sopenharmony_ci * @ai->atom_size is the allocation atom size and used as alignment 255862306a36Sopenharmony_ci * for vm areas. 255962306a36Sopenharmony_ci * 256062306a36Sopenharmony_ci * @ai->alloc_size is the allocation size and always multiple of 256162306a36Sopenharmony_ci * @ai->atom_size. This is larger than @ai->atom_size if 256262306a36Sopenharmony_ci * @ai->unit_size is larger than @ai->atom_size. 256362306a36Sopenharmony_ci * 256462306a36Sopenharmony_ci * @ai->nr_groups and @ai->groups describe virtual memory layout of 256562306a36Sopenharmony_ci * percpu areas. Units which should be colocated are put into the 256662306a36Sopenharmony_ci * same group. Dynamic VM areas will be allocated according to these 256762306a36Sopenharmony_ci * groupings. If @ai->nr_groups is zero, a single group containing 256862306a36Sopenharmony_ci * all units is assumed. 256962306a36Sopenharmony_ci * 257062306a36Sopenharmony_ci * The caller should have mapped the first chunk at @base_addr and 257162306a36Sopenharmony_ci * copied static data to each unit. 257262306a36Sopenharmony_ci * 257362306a36Sopenharmony_ci * The first chunk will always contain a static and a dynamic region. 257462306a36Sopenharmony_ci * However, the static region is not managed by any chunk. If the first 257562306a36Sopenharmony_ci * chunk also contains a reserved region, it is served by two chunks - 257662306a36Sopenharmony_ci * one for the reserved region and one for the dynamic region. They 257762306a36Sopenharmony_ci * share the same vm, but use offset regions in the area allocation map. 257862306a36Sopenharmony_ci * The chunk serving the dynamic region is circulated in the chunk slots 257962306a36Sopenharmony_ci * and available for dynamic allocation like any other chunk. 258062306a36Sopenharmony_ci */ 258162306a36Sopenharmony_civoid __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, 258262306a36Sopenharmony_ci void *base_addr) 258362306a36Sopenharmony_ci{ 258462306a36Sopenharmony_ci size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 258562306a36Sopenharmony_ci size_t static_size, dyn_size; 258662306a36Sopenharmony_ci unsigned long *group_offsets; 258762306a36Sopenharmony_ci size_t *group_sizes; 258862306a36Sopenharmony_ci unsigned long *unit_off; 258962306a36Sopenharmony_ci unsigned int cpu; 259062306a36Sopenharmony_ci int *unit_map; 259162306a36Sopenharmony_ci int group, unit, i; 259262306a36Sopenharmony_ci unsigned long tmp_addr; 259362306a36Sopenharmony_ci size_t alloc_size; 259462306a36Sopenharmony_ci 259562306a36Sopenharmony_ci#define PCPU_SETUP_BUG_ON(cond) do { \ 259662306a36Sopenharmony_ci if (unlikely(cond)) { \ 259762306a36Sopenharmony_ci pr_emerg("failed to initialize, %s\n", #cond); \ 259862306a36Sopenharmony_ci pr_emerg("cpu_possible_mask=%*pb\n", \ 259962306a36Sopenharmony_ci cpumask_pr_args(cpu_possible_mask)); \ 260062306a36Sopenharmony_ci pcpu_dump_alloc_info(KERN_EMERG, ai); \ 260162306a36Sopenharmony_ci BUG(); \ 260262306a36Sopenharmony_ci } \ 260362306a36Sopenharmony_ci} while (0) 260462306a36Sopenharmony_ci 260562306a36Sopenharmony_ci /* sanity checks */ 260662306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); 260762306a36Sopenharmony_ci#ifdef CONFIG_SMP 260862306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!ai->static_size); 260962306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start)); 261062306a36Sopenharmony_ci#endif 261162306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!base_addr); 261262306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(offset_in_page(base_addr)); 261362306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); 261462306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size)); 261562306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); 261662306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE)); 261762306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); 261862306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE)); 261962306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) || 262062306a36Sopenharmony_ci IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE))); 262162306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); 262262306a36Sopenharmony_ci 262362306a36Sopenharmony_ci /* process group information and build config tables accordingly */ 262462306a36Sopenharmony_ci alloc_size = ai->nr_groups * sizeof(group_offsets[0]); 262562306a36Sopenharmony_ci group_offsets = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 262662306a36Sopenharmony_ci if (!group_offsets) 262762306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 262862306a36Sopenharmony_ci alloc_size); 262962306a36Sopenharmony_ci 263062306a36Sopenharmony_ci alloc_size = ai->nr_groups * sizeof(group_sizes[0]); 263162306a36Sopenharmony_ci group_sizes = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 263262306a36Sopenharmony_ci if (!group_sizes) 263362306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 263462306a36Sopenharmony_ci alloc_size); 263562306a36Sopenharmony_ci 263662306a36Sopenharmony_ci alloc_size = nr_cpu_ids * sizeof(unit_map[0]); 263762306a36Sopenharmony_ci unit_map = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 263862306a36Sopenharmony_ci if (!unit_map) 263962306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 264062306a36Sopenharmony_ci alloc_size); 264162306a36Sopenharmony_ci 264262306a36Sopenharmony_ci alloc_size = nr_cpu_ids * sizeof(unit_off[0]); 264362306a36Sopenharmony_ci unit_off = memblock_alloc(alloc_size, SMP_CACHE_BYTES); 264462306a36Sopenharmony_ci if (!unit_off) 264562306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 264662306a36Sopenharmony_ci alloc_size); 264762306a36Sopenharmony_ci 264862306a36Sopenharmony_ci for (cpu = 0; cpu < nr_cpu_ids; cpu++) 264962306a36Sopenharmony_ci unit_map[cpu] = UINT_MAX; 265062306a36Sopenharmony_ci 265162306a36Sopenharmony_ci pcpu_low_unit_cpu = NR_CPUS; 265262306a36Sopenharmony_ci pcpu_high_unit_cpu = NR_CPUS; 265362306a36Sopenharmony_ci 265462306a36Sopenharmony_ci for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { 265562306a36Sopenharmony_ci const struct pcpu_group_info *gi = &ai->groups[group]; 265662306a36Sopenharmony_ci 265762306a36Sopenharmony_ci group_offsets[group] = gi->base_offset; 265862306a36Sopenharmony_ci group_sizes[group] = gi->nr_units * ai->unit_size; 265962306a36Sopenharmony_ci 266062306a36Sopenharmony_ci for (i = 0; i < gi->nr_units; i++) { 266162306a36Sopenharmony_ci cpu = gi->cpu_map[i]; 266262306a36Sopenharmony_ci if (cpu == NR_CPUS) 266362306a36Sopenharmony_ci continue; 266462306a36Sopenharmony_ci 266562306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); 266662306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); 266762306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); 266862306a36Sopenharmony_ci 266962306a36Sopenharmony_ci unit_map[cpu] = unit + i; 267062306a36Sopenharmony_ci unit_off[cpu] = gi->base_offset + i * ai->unit_size; 267162306a36Sopenharmony_ci 267262306a36Sopenharmony_ci /* determine low/high unit_cpu */ 267362306a36Sopenharmony_ci if (pcpu_low_unit_cpu == NR_CPUS || 267462306a36Sopenharmony_ci unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) 267562306a36Sopenharmony_ci pcpu_low_unit_cpu = cpu; 267662306a36Sopenharmony_ci if (pcpu_high_unit_cpu == NR_CPUS || 267762306a36Sopenharmony_ci unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) 267862306a36Sopenharmony_ci pcpu_high_unit_cpu = cpu; 267962306a36Sopenharmony_ci } 268062306a36Sopenharmony_ci } 268162306a36Sopenharmony_ci pcpu_nr_units = unit; 268262306a36Sopenharmony_ci 268362306a36Sopenharmony_ci for_each_possible_cpu(cpu) 268462306a36Sopenharmony_ci PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); 268562306a36Sopenharmony_ci 268662306a36Sopenharmony_ci /* we're done parsing the input, undefine BUG macro and dump config */ 268762306a36Sopenharmony_ci#undef PCPU_SETUP_BUG_ON 268862306a36Sopenharmony_ci pcpu_dump_alloc_info(KERN_DEBUG, ai); 268962306a36Sopenharmony_ci 269062306a36Sopenharmony_ci pcpu_nr_groups = ai->nr_groups; 269162306a36Sopenharmony_ci pcpu_group_offsets = group_offsets; 269262306a36Sopenharmony_ci pcpu_group_sizes = group_sizes; 269362306a36Sopenharmony_ci pcpu_unit_map = unit_map; 269462306a36Sopenharmony_ci pcpu_unit_offsets = unit_off; 269562306a36Sopenharmony_ci 269662306a36Sopenharmony_ci /* determine basic parameters */ 269762306a36Sopenharmony_ci pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; 269862306a36Sopenharmony_ci pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; 269962306a36Sopenharmony_ci pcpu_atom_size = ai->atom_size; 270062306a36Sopenharmony_ci pcpu_chunk_struct_size = struct_size((struct pcpu_chunk *)0, populated, 270162306a36Sopenharmony_ci BITS_TO_LONGS(pcpu_unit_pages)); 270262306a36Sopenharmony_ci 270362306a36Sopenharmony_ci pcpu_stats_save_ai(ai); 270462306a36Sopenharmony_ci 270562306a36Sopenharmony_ci /* 270662306a36Sopenharmony_ci * Allocate chunk slots. The slots after the active slots are: 270762306a36Sopenharmony_ci * sidelined_slot - isolated, depopulated chunks 270862306a36Sopenharmony_ci * free_slot - fully free chunks 270962306a36Sopenharmony_ci * to_depopulate_slot - isolated, chunks to depopulate 271062306a36Sopenharmony_ci */ 271162306a36Sopenharmony_ci pcpu_sidelined_slot = __pcpu_size_to_slot(pcpu_unit_size) + 1; 271262306a36Sopenharmony_ci pcpu_free_slot = pcpu_sidelined_slot + 1; 271362306a36Sopenharmony_ci pcpu_to_depopulate_slot = pcpu_free_slot + 1; 271462306a36Sopenharmony_ci pcpu_nr_slots = pcpu_to_depopulate_slot + 1; 271562306a36Sopenharmony_ci pcpu_chunk_lists = memblock_alloc(pcpu_nr_slots * 271662306a36Sopenharmony_ci sizeof(pcpu_chunk_lists[0]), 271762306a36Sopenharmony_ci SMP_CACHE_BYTES); 271862306a36Sopenharmony_ci if (!pcpu_chunk_lists) 271962306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 272062306a36Sopenharmony_ci pcpu_nr_slots * sizeof(pcpu_chunk_lists[0])); 272162306a36Sopenharmony_ci 272262306a36Sopenharmony_ci for (i = 0; i < pcpu_nr_slots; i++) 272362306a36Sopenharmony_ci INIT_LIST_HEAD(&pcpu_chunk_lists[i]); 272462306a36Sopenharmony_ci 272562306a36Sopenharmony_ci /* 272662306a36Sopenharmony_ci * The end of the static region needs to be aligned with the 272762306a36Sopenharmony_ci * minimum allocation size as this offsets the reserved and 272862306a36Sopenharmony_ci * dynamic region. The first chunk ends page aligned by 272962306a36Sopenharmony_ci * expanding the dynamic region, therefore the dynamic region 273062306a36Sopenharmony_ci * can be shrunk to compensate while still staying above the 273162306a36Sopenharmony_ci * configured sizes. 273262306a36Sopenharmony_ci */ 273362306a36Sopenharmony_ci static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE); 273462306a36Sopenharmony_ci dyn_size = ai->dyn_size - (static_size - ai->static_size); 273562306a36Sopenharmony_ci 273662306a36Sopenharmony_ci /* 273762306a36Sopenharmony_ci * Initialize first chunk: 273862306a36Sopenharmony_ci * This chunk is broken up into 3 parts: 273962306a36Sopenharmony_ci * < static | [reserved] | dynamic > 274062306a36Sopenharmony_ci * - static - there is no backing chunk because these allocations can 274162306a36Sopenharmony_ci * never be freed. 274262306a36Sopenharmony_ci * - reserved (pcpu_reserved_chunk) - exists primarily to serve 274362306a36Sopenharmony_ci * allocations from module load. 274462306a36Sopenharmony_ci * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first 274562306a36Sopenharmony_ci * chunk. 274662306a36Sopenharmony_ci */ 274762306a36Sopenharmony_ci tmp_addr = (unsigned long)base_addr + static_size; 274862306a36Sopenharmony_ci if (ai->reserved_size) 274962306a36Sopenharmony_ci pcpu_reserved_chunk = pcpu_alloc_first_chunk(tmp_addr, 275062306a36Sopenharmony_ci ai->reserved_size); 275162306a36Sopenharmony_ci tmp_addr = (unsigned long)base_addr + static_size + ai->reserved_size; 275262306a36Sopenharmony_ci pcpu_first_chunk = pcpu_alloc_first_chunk(tmp_addr, dyn_size); 275362306a36Sopenharmony_ci 275462306a36Sopenharmony_ci pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages; 275562306a36Sopenharmony_ci pcpu_chunk_relocate(pcpu_first_chunk, -1); 275662306a36Sopenharmony_ci 275762306a36Sopenharmony_ci /* include all regions of the first chunk */ 275862306a36Sopenharmony_ci pcpu_nr_populated += PFN_DOWN(size_sum); 275962306a36Sopenharmony_ci 276062306a36Sopenharmony_ci pcpu_stats_chunk_alloc(); 276162306a36Sopenharmony_ci trace_percpu_create_chunk(base_addr); 276262306a36Sopenharmony_ci 276362306a36Sopenharmony_ci /* we're done */ 276462306a36Sopenharmony_ci pcpu_base_addr = base_addr; 276562306a36Sopenharmony_ci} 276662306a36Sopenharmony_ci 276762306a36Sopenharmony_ci#ifdef CONFIG_SMP 276862306a36Sopenharmony_ci 276962306a36Sopenharmony_ciconst char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { 277062306a36Sopenharmony_ci [PCPU_FC_AUTO] = "auto", 277162306a36Sopenharmony_ci [PCPU_FC_EMBED] = "embed", 277262306a36Sopenharmony_ci [PCPU_FC_PAGE] = "page", 277362306a36Sopenharmony_ci}; 277462306a36Sopenharmony_ci 277562306a36Sopenharmony_cienum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; 277662306a36Sopenharmony_ci 277762306a36Sopenharmony_cistatic int __init percpu_alloc_setup(char *str) 277862306a36Sopenharmony_ci{ 277962306a36Sopenharmony_ci if (!str) 278062306a36Sopenharmony_ci return -EINVAL; 278162306a36Sopenharmony_ci 278262306a36Sopenharmony_ci if (0) 278362306a36Sopenharmony_ci /* nada */; 278462306a36Sopenharmony_ci#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK 278562306a36Sopenharmony_ci else if (!strcmp(str, "embed")) 278662306a36Sopenharmony_ci pcpu_chosen_fc = PCPU_FC_EMBED; 278762306a36Sopenharmony_ci#endif 278862306a36Sopenharmony_ci#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 278962306a36Sopenharmony_ci else if (!strcmp(str, "page")) 279062306a36Sopenharmony_ci pcpu_chosen_fc = PCPU_FC_PAGE; 279162306a36Sopenharmony_ci#endif 279262306a36Sopenharmony_ci else 279362306a36Sopenharmony_ci pr_warn("unknown allocator %s specified\n", str); 279462306a36Sopenharmony_ci 279562306a36Sopenharmony_ci return 0; 279662306a36Sopenharmony_ci} 279762306a36Sopenharmony_ciearly_param("percpu_alloc", percpu_alloc_setup); 279862306a36Sopenharmony_ci 279962306a36Sopenharmony_ci/* 280062306a36Sopenharmony_ci * pcpu_embed_first_chunk() is used by the generic percpu setup. 280162306a36Sopenharmony_ci * Build it if needed by the arch config or the generic setup is going 280262306a36Sopenharmony_ci * to be used. 280362306a36Sopenharmony_ci */ 280462306a36Sopenharmony_ci#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ 280562306a36Sopenharmony_ci !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) 280662306a36Sopenharmony_ci#define BUILD_EMBED_FIRST_CHUNK 280762306a36Sopenharmony_ci#endif 280862306a36Sopenharmony_ci 280962306a36Sopenharmony_ci/* build pcpu_page_first_chunk() iff needed by the arch config */ 281062306a36Sopenharmony_ci#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) 281162306a36Sopenharmony_ci#define BUILD_PAGE_FIRST_CHUNK 281262306a36Sopenharmony_ci#endif 281362306a36Sopenharmony_ci 281462306a36Sopenharmony_ci/* pcpu_build_alloc_info() is used by both embed and page first chunk */ 281562306a36Sopenharmony_ci#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) 281662306a36Sopenharmony_ci/** 281762306a36Sopenharmony_ci * pcpu_build_alloc_info - build alloc_info considering distances between CPUs 281862306a36Sopenharmony_ci * @reserved_size: the size of reserved percpu area in bytes 281962306a36Sopenharmony_ci * @dyn_size: minimum free size for dynamic allocation in bytes 282062306a36Sopenharmony_ci * @atom_size: allocation atom size 282162306a36Sopenharmony_ci * @cpu_distance_fn: callback to determine distance between cpus, optional 282262306a36Sopenharmony_ci * 282362306a36Sopenharmony_ci * This function determines grouping of units, their mappings to cpus 282462306a36Sopenharmony_ci * and other parameters considering needed percpu size, allocation 282562306a36Sopenharmony_ci * atom size and distances between CPUs. 282662306a36Sopenharmony_ci * 282762306a36Sopenharmony_ci * Groups are always multiples of atom size and CPUs which are of 282862306a36Sopenharmony_ci * LOCAL_DISTANCE both ways are grouped together and share space for 282962306a36Sopenharmony_ci * units in the same group. The returned configuration is guaranteed 283062306a36Sopenharmony_ci * to have CPUs on different nodes on different groups and >=75% usage 283162306a36Sopenharmony_ci * of allocated virtual address space. 283262306a36Sopenharmony_ci * 283362306a36Sopenharmony_ci * RETURNS: 283462306a36Sopenharmony_ci * On success, pointer to the new allocation_info is returned. On 283562306a36Sopenharmony_ci * failure, ERR_PTR value is returned. 283662306a36Sopenharmony_ci */ 283762306a36Sopenharmony_cistatic struct pcpu_alloc_info * __init __flatten pcpu_build_alloc_info( 283862306a36Sopenharmony_ci size_t reserved_size, size_t dyn_size, 283962306a36Sopenharmony_ci size_t atom_size, 284062306a36Sopenharmony_ci pcpu_fc_cpu_distance_fn_t cpu_distance_fn) 284162306a36Sopenharmony_ci{ 284262306a36Sopenharmony_ci static int group_map[NR_CPUS] __initdata; 284362306a36Sopenharmony_ci static int group_cnt[NR_CPUS] __initdata; 284462306a36Sopenharmony_ci static struct cpumask mask __initdata; 284562306a36Sopenharmony_ci const size_t static_size = __per_cpu_end - __per_cpu_start; 284662306a36Sopenharmony_ci int nr_groups = 1, nr_units = 0; 284762306a36Sopenharmony_ci size_t size_sum, min_unit_size, alloc_size; 284862306a36Sopenharmony_ci int upa, max_upa, best_upa; /* units_per_alloc */ 284962306a36Sopenharmony_ci int last_allocs, group, unit; 285062306a36Sopenharmony_ci unsigned int cpu, tcpu; 285162306a36Sopenharmony_ci struct pcpu_alloc_info *ai; 285262306a36Sopenharmony_ci unsigned int *cpu_map; 285362306a36Sopenharmony_ci 285462306a36Sopenharmony_ci /* this function may be called multiple times */ 285562306a36Sopenharmony_ci memset(group_map, 0, sizeof(group_map)); 285662306a36Sopenharmony_ci memset(group_cnt, 0, sizeof(group_cnt)); 285762306a36Sopenharmony_ci cpumask_clear(&mask); 285862306a36Sopenharmony_ci 285962306a36Sopenharmony_ci /* calculate size_sum and ensure dyn_size is enough for early alloc */ 286062306a36Sopenharmony_ci size_sum = PFN_ALIGN(static_size + reserved_size + 286162306a36Sopenharmony_ci max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); 286262306a36Sopenharmony_ci dyn_size = size_sum - static_size - reserved_size; 286362306a36Sopenharmony_ci 286462306a36Sopenharmony_ci /* 286562306a36Sopenharmony_ci * Determine min_unit_size, alloc_size and max_upa such that 286662306a36Sopenharmony_ci * alloc_size is multiple of atom_size and is the smallest 286762306a36Sopenharmony_ci * which can accommodate 4k aligned segments which are equal to 286862306a36Sopenharmony_ci * or larger than min_unit_size. 286962306a36Sopenharmony_ci */ 287062306a36Sopenharmony_ci min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); 287162306a36Sopenharmony_ci 287262306a36Sopenharmony_ci /* determine the maximum # of units that can fit in an allocation */ 287362306a36Sopenharmony_ci alloc_size = roundup(min_unit_size, atom_size); 287462306a36Sopenharmony_ci upa = alloc_size / min_unit_size; 287562306a36Sopenharmony_ci while (alloc_size % upa || (offset_in_page(alloc_size / upa))) 287662306a36Sopenharmony_ci upa--; 287762306a36Sopenharmony_ci max_upa = upa; 287862306a36Sopenharmony_ci 287962306a36Sopenharmony_ci cpumask_copy(&mask, cpu_possible_mask); 288062306a36Sopenharmony_ci 288162306a36Sopenharmony_ci /* group cpus according to their proximity */ 288262306a36Sopenharmony_ci for (group = 0; !cpumask_empty(&mask); group++) { 288362306a36Sopenharmony_ci /* pop the group's first cpu */ 288462306a36Sopenharmony_ci cpu = cpumask_first(&mask); 288562306a36Sopenharmony_ci group_map[cpu] = group; 288662306a36Sopenharmony_ci group_cnt[group]++; 288762306a36Sopenharmony_ci cpumask_clear_cpu(cpu, &mask); 288862306a36Sopenharmony_ci 288962306a36Sopenharmony_ci for_each_cpu(tcpu, &mask) { 289062306a36Sopenharmony_ci if (!cpu_distance_fn || 289162306a36Sopenharmony_ci (cpu_distance_fn(cpu, tcpu) == LOCAL_DISTANCE && 289262306a36Sopenharmony_ci cpu_distance_fn(tcpu, cpu) == LOCAL_DISTANCE)) { 289362306a36Sopenharmony_ci group_map[tcpu] = group; 289462306a36Sopenharmony_ci group_cnt[group]++; 289562306a36Sopenharmony_ci cpumask_clear_cpu(tcpu, &mask); 289662306a36Sopenharmony_ci } 289762306a36Sopenharmony_ci } 289862306a36Sopenharmony_ci } 289962306a36Sopenharmony_ci nr_groups = group; 290062306a36Sopenharmony_ci 290162306a36Sopenharmony_ci /* 290262306a36Sopenharmony_ci * Wasted space is caused by a ratio imbalance of upa to group_cnt. 290362306a36Sopenharmony_ci * Expand the unit_size until we use >= 75% of the units allocated. 290462306a36Sopenharmony_ci * Related to atom_size, which could be much larger than the unit_size. 290562306a36Sopenharmony_ci */ 290662306a36Sopenharmony_ci last_allocs = INT_MAX; 290762306a36Sopenharmony_ci best_upa = 0; 290862306a36Sopenharmony_ci for (upa = max_upa; upa; upa--) { 290962306a36Sopenharmony_ci int allocs = 0, wasted = 0; 291062306a36Sopenharmony_ci 291162306a36Sopenharmony_ci if (alloc_size % upa || (offset_in_page(alloc_size / upa))) 291262306a36Sopenharmony_ci continue; 291362306a36Sopenharmony_ci 291462306a36Sopenharmony_ci for (group = 0; group < nr_groups; group++) { 291562306a36Sopenharmony_ci int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); 291662306a36Sopenharmony_ci allocs += this_allocs; 291762306a36Sopenharmony_ci wasted += this_allocs * upa - group_cnt[group]; 291862306a36Sopenharmony_ci } 291962306a36Sopenharmony_ci 292062306a36Sopenharmony_ci /* 292162306a36Sopenharmony_ci * Don't accept if wastage is over 1/3. The 292262306a36Sopenharmony_ci * greater-than comparison ensures upa==1 always 292362306a36Sopenharmony_ci * passes the following check. 292462306a36Sopenharmony_ci */ 292562306a36Sopenharmony_ci if (wasted > num_possible_cpus() / 3) 292662306a36Sopenharmony_ci continue; 292762306a36Sopenharmony_ci 292862306a36Sopenharmony_ci /* and then don't consume more memory */ 292962306a36Sopenharmony_ci if (allocs > last_allocs) 293062306a36Sopenharmony_ci break; 293162306a36Sopenharmony_ci last_allocs = allocs; 293262306a36Sopenharmony_ci best_upa = upa; 293362306a36Sopenharmony_ci } 293462306a36Sopenharmony_ci BUG_ON(!best_upa); 293562306a36Sopenharmony_ci upa = best_upa; 293662306a36Sopenharmony_ci 293762306a36Sopenharmony_ci /* allocate and fill alloc_info */ 293862306a36Sopenharmony_ci for (group = 0; group < nr_groups; group++) 293962306a36Sopenharmony_ci nr_units += roundup(group_cnt[group], upa); 294062306a36Sopenharmony_ci 294162306a36Sopenharmony_ci ai = pcpu_alloc_alloc_info(nr_groups, nr_units); 294262306a36Sopenharmony_ci if (!ai) 294362306a36Sopenharmony_ci return ERR_PTR(-ENOMEM); 294462306a36Sopenharmony_ci cpu_map = ai->groups[0].cpu_map; 294562306a36Sopenharmony_ci 294662306a36Sopenharmony_ci for (group = 0; group < nr_groups; group++) { 294762306a36Sopenharmony_ci ai->groups[group].cpu_map = cpu_map; 294862306a36Sopenharmony_ci cpu_map += roundup(group_cnt[group], upa); 294962306a36Sopenharmony_ci } 295062306a36Sopenharmony_ci 295162306a36Sopenharmony_ci ai->static_size = static_size; 295262306a36Sopenharmony_ci ai->reserved_size = reserved_size; 295362306a36Sopenharmony_ci ai->dyn_size = dyn_size; 295462306a36Sopenharmony_ci ai->unit_size = alloc_size / upa; 295562306a36Sopenharmony_ci ai->atom_size = atom_size; 295662306a36Sopenharmony_ci ai->alloc_size = alloc_size; 295762306a36Sopenharmony_ci 295862306a36Sopenharmony_ci for (group = 0, unit = 0; group < nr_groups; group++) { 295962306a36Sopenharmony_ci struct pcpu_group_info *gi = &ai->groups[group]; 296062306a36Sopenharmony_ci 296162306a36Sopenharmony_ci /* 296262306a36Sopenharmony_ci * Initialize base_offset as if all groups are located 296362306a36Sopenharmony_ci * back-to-back. The caller should update this to 296462306a36Sopenharmony_ci * reflect actual allocation. 296562306a36Sopenharmony_ci */ 296662306a36Sopenharmony_ci gi->base_offset = unit * ai->unit_size; 296762306a36Sopenharmony_ci 296862306a36Sopenharmony_ci for_each_possible_cpu(cpu) 296962306a36Sopenharmony_ci if (group_map[cpu] == group) 297062306a36Sopenharmony_ci gi->cpu_map[gi->nr_units++] = cpu; 297162306a36Sopenharmony_ci gi->nr_units = roundup(gi->nr_units, upa); 297262306a36Sopenharmony_ci unit += gi->nr_units; 297362306a36Sopenharmony_ci } 297462306a36Sopenharmony_ci BUG_ON(unit != nr_units); 297562306a36Sopenharmony_ci 297662306a36Sopenharmony_ci return ai; 297762306a36Sopenharmony_ci} 297862306a36Sopenharmony_ci 297962306a36Sopenharmony_cistatic void * __init pcpu_fc_alloc(unsigned int cpu, size_t size, size_t align, 298062306a36Sopenharmony_ci pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 298162306a36Sopenharmony_ci{ 298262306a36Sopenharmony_ci const unsigned long goal = __pa(MAX_DMA_ADDRESS); 298362306a36Sopenharmony_ci#ifdef CONFIG_NUMA 298462306a36Sopenharmony_ci int node = NUMA_NO_NODE; 298562306a36Sopenharmony_ci void *ptr; 298662306a36Sopenharmony_ci 298762306a36Sopenharmony_ci if (cpu_to_nd_fn) 298862306a36Sopenharmony_ci node = cpu_to_nd_fn(cpu); 298962306a36Sopenharmony_ci 299062306a36Sopenharmony_ci if (node == NUMA_NO_NODE || !node_online(node) || !NODE_DATA(node)) { 299162306a36Sopenharmony_ci ptr = memblock_alloc_from(size, align, goal); 299262306a36Sopenharmony_ci pr_info("cpu %d has no node %d or node-local memory\n", 299362306a36Sopenharmony_ci cpu, node); 299462306a36Sopenharmony_ci pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n", 299562306a36Sopenharmony_ci cpu, size, (u64)__pa(ptr)); 299662306a36Sopenharmony_ci } else { 299762306a36Sopenharmony_ci ptr = memblock_alloc_try_nid(size, align, goal, 299862306a36Sopenharmony_ci MEMBLOCK_ALLOC_ACCESSIBLE, 299962306a36Sopenharmony_ci node); 300062306a36Sopenharmony_ci 300162306a36Sopenharmony_ci pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n", 300262306a36Sopenharmony_ci cpu, size, node, (u64)__pa(ptr)); 300362306a36Sopenharmony_ci } 300462306a36Sopenharmony_ci return ptr; 300562306a36Sopenharmony_ci#else 300662306a36Sopenharmony_ci return memblock_alloc_from(size, align, goal); 300762306a36Sopenharmony_ci#endif 300862306a36Sopenharmony_ci} 300962306a36Sopenharmony_ci 301062306a36Sopenharmony_cistatic void __init pcpu_fc_free(void *ptr, size_t size) 301162306a36Sopenharmony_ci{ 301262306a36Sopenharmony_ci memblock_free(ptr, size); 301362306a36Sopenharmony_ci} 301462306a36Sopenharmony_ci#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ 301562306a36Sopenharmony_ci 301662306a36Sopenharmony_ci#if defined(BUILD_EMBED_FIRST_CHUNK) 301762306a36Sopenharmony_ci/** 301862306a36Sopenharmony_ci * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem 301962306a36Sopenharmony_ci * @reserved_size: the size of reserved percpu area in bytes 302062306a36Sopenharmony_ci * @dyn_size: minimum free size for dynamic allocation in bytes 302162306a36Sopenharmony_ci * @atom_size: allocation atom size 302262306a36Sopenharmony_ci * @cpu_distance_fn: callback to determine distance between cpus, optional 302362306a36Sopenharmony_ci * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 302462306a36Sopenharmony_ci * 302562306a36Sopenharmony_ci * This is a helper to ease setting up embedded first percpu chunk and 302662306a36Sopenharmony_ci * can be called where pcpu_setup_first_chunk() is expected. 302762306a36Sopenharmony_ci * 302862306a36Sopenharmony_ci * If this function is used to setup the first chunk, it is allocated 302962306a36Sopenharmony_ci * by calling pcpu_fc_alloc and used as-is without being mapped into 303062306a36Sopenharmony_ci * vmalloc area. Allocations are always whole multiples of @atom_size 303162306a36Sopenharmony_ci * aligned to @atom_size. 303262306a36Sopenharmony_ci * 303362306a36Sopenharmony_ci * This enables the first chunk to piggy back on the linear physical 303462306a36Sopenharmony_ci * mapping which often uses larger page size. Please note that this 303562306a36Sopenharmony_ci * can result in very sparse cpu->unit mapping on NUMA machines thus 303662306a36Sopenharmony_ci * requiring large vmalloc address space. Don't use this allocator if 303762306a36Sopenharmony_ci * vmalloc space is not orders of magnitude larger than distances 303862306a36Sopenharmony_ci * between node memory addresses (ie. 32bit NUMA machines). 303962306a36Sopenharmony_ci * 304062306a36Sopenharmony_ci * @dyn_size specifies the minimum dynamic area size. 304162306a36Sopenharmony_ci * 304262306a36Sopenharmony_ci * If the needed size is smaller than the minimum or specified unit 304362306a36Sopenharmony_ci * size, the leftover is returned using pcpu_fc_free. 304462306a36Sopenharmony_ci * 304562306a36Sopenharmony_ci * RETURNS: 304662306a36Sopenharmony_ci * 0 on success, -errno on failure. 304762306a36Sopenharmony_ci */ 304862306a36Sopenharmony_ciint __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, 304962306a36Sopenharmony_ci size_t atom_size, 305062306a36Sopenharmony_ci pcpu_fc_cpu_distance_fn_t cpu_distance_fn, 305162306a36Sopenharmony_ci pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 305262306a36Sopenharmony_ci{ 305362306a36Sopenharmony_ci void *base = (void *)ULONG_MAX; 305462306a36Sopenharmony_ci void **areas = NULL; 305562306a36Sopenharmony_ci struct pcpu_alloc_info *ai; 305662306a36Sopenharmony_ci size_t size_sum, areas_size; 305762306a36Sopenharmony_ci unsigned long max_distance; 305862306a36Sopenharmony_ci int group, i, highest_group, rc = 0; 305962306a36Sopenharmony_ci 306062306a36Sopenharmony_ci ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, 306162306a36Sopenharmony_ci cpu_distance_fn); 306262306a36Sopenharmony_ci if (IS_ERR(ai)) 306362306a36Sopenharmony_ci return PTR_ERR(ai); 306462306a36Sopenharmony_ci 306562306a36Sopenharmony_ci size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; 306662306a36Sopenharmony_ci areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); 306762306a36Sopenharmony_ci 306862306a36Sopenharmony_ci areas = memblock_alloc(areas_size, SMP_CACHE_BYTES); 306962306a36Sopenharmony_ci if (!areas) { 307062306a36Sopenharmony_ci rc = -ENOMEM; 307162306a36Sopenharmony_ci goto out_free; 307262306a36Sopenharmony_ci } 307362306a36Sopenharmony_ci 307462306a36Sopenharmony_ci /* allocate, copy and determine base address & max_distance */ 307562306a36Sopenharmony_ci highest_group = 0; 307662306a36Sopenharmony_ci for (group = 0; group < ai->nr_groups; group++) { 307762306a36Sopenharmony_ci struct pcpu_group_info *gi = &ai->groups[group]; 307862306a36Sopenharmony_ci unsigned int cpu = NR_CPUS; 307962306a36Sopenharmony_ci void *ptr; 308062306a36Sopenharmony_ci 308162306a36Sopenharmony_ci for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) 308262306a36Sopenharmony_ci cpu = gi->cpu_map[i]; 308362306a36Sopenharmony_ci BUG_ON(cpu == NR_CPUS); 308462306a36Sopenharmony_ci 308562306a36Sopenharmony_ci /* allocate space for the whole group */ 308662306a36Sopenharmony_ci ptr = pcpu_fc_alloc(cpu, gi->nr_units * ai->unit_size, atom_size, cpu_to_nd_fn); 308762306a36Sopenharmony_ci if (!ptr) { 308862306a36Sopenharmony_ci rc = -ENOMEM; 308962306a36Sopenharmony_ci goto out_free_areas; 309062306a36Sopenharmony_ci } 309162306a36Sopenharmony_ci /* kmemleak tracks the percpu allocations separately */ 309262306a36Sopenharmony_ci kmemleak_ignore_phys(__pa(ptr)); 309362306a36Sopenharmony_ci areas[group] = ptr; 309462306a36Sopenharmony_ci 309562306a36Sopenharmony_ci base = min(ptr, base); 309662306a36Sopenharmony_ci if (ptr > areas[highest_group]) 309762306a36Sopenharmony_ci highest_group = group; 309862306a36Sopenharmony_ci } 309962306a36Sopenharmony_ci max_distance = areas[highest_group] - base; 310062306a36Sopenharmony_ci max_distance += ai->unit_size * ai->groups[highest_group].nr_units; 310162306a36Sopenharmony_ci 310262306a36Sopenharmony_ci /* warn if maximum distance is further than 75% of vmalloc space */ 310362306a36Sopenharmony_ci if (max_distance > VMALLOC_TOTAL * 3 / 4) { 310462306a36Sopenharmony_ci pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n", 310562306a36Sopenharmony_ci max_distance, VMALLOC_TOTAL); 310662306a36Sopenharmony_ci#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK 310762306a36Sopenharmony_ci /* and fail if we have fallback */ 310862306a36Sopenharmony_ci rc = -EINVAL; 310962306a36Sopenharmony_ci goto out_free_areas; 311062306a36Sopenharmony_ci#endif 311162306a36Sopenharmony_ci } 311262306a36Sopenharmony_ci 311362306a36Sopenharmony_ci /* 311462306a36Sopenharmony_ci * Copy data and free unused parts. This should happen after all 311562306a36Sopenharmony_ci * allocations are complete; otherwise, we may end up with 311662306a36Sopenharmony_ci * overlapping groups. 311762306a36Sopenharmony_ci */ 311862306a36Sopenharmony_ci for (group = 0; group < ai->nr_groups; group++) { 311962306a36Sopenharmony_ci struct pcpu_group_info *gi = &ai->groups[group]; 312062306a36Sopenharmony_ci void *ptr = areas[group]; 312162306a36Sopenharmony_ci 312262306a36Sopenharmony_ci for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { 312362306a36Sopenharmony_ci if (gi->cpu_map[i] == NR_CPUS) { 312462306a36Sopenharmony_ci /* unused unit, free whole */ 312562306a36Sopenharmony_ci pcpu_fc_free(ptr, ai->unit_size); 312662306a36Sopenharmony_ci continue; 312762306a36Sopenharmony_ci } 312862306a36Sopenharmony_ci /* copy and return the unused part */ 312962306a36Sopenharmony_ci memcpy(ptr, __per_cpu_load, ai->static_size); 313062306a36Sopenharmony_ci pcpu_fc_free(ptr + size_sum, ai->unit_size - size_sum); 313162306a36Sopenharmony_ci } 313262306a36Sopenharmony_ci } 313362306a36Sopenharmony_ci 313462306a36Sopenharmony_ci /* base address is now known, determine group base offsets */ 313562306a36Sopenharmony_ci for (group = 0; group < ai->nr_groups; group++) { 313662306a36Sopenharmony_ci ai->groups[group].base_offset = areas[group] - base; 313762306a36Sopenharmony_ci } 313862306a36Sopenharmony_ci 313962306a36Sopenharmony_ci pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n", 314062306a36Sopenharmony_ci PFN_DOWN(size_sum), ai->static_size, ai->reserved_size, 314162306a36Sopenharmony_ci ai->dyn_size, ai->unit_size); 314262306a36Sopenharmony_ci 314362306a36Sopenharmony_ci pcpu_setup_first_chunk(ai, base); 314462306a36Sopenharmony_ci goto out_free; 314562306a36Sopenharmony_ci 314662306a36Sopenharmony_ciout_free_areas: 314762306a36Sopenharmony_ci for (group = 0; group < ai->nr_groups; group++) 314862306a36Sopenharmony_ci if (areas[group]) 314962306a36Sopenharmony_ci pcpu_fc_free(areas[group], 315062306a36Sopenharmony_ci ai->groups[group].nr_units * ai->unit_size); 315162306a36Sopenharmony_ciout_free: 315262306a36Sopenharmony_ci pcpu_free_alloc_info(ai); 315362306a36Sopenharmony_ci if (areas) 315462306a36Sopenharmony_ci memblock_free(areas, areas_size); 315562306a36Sopenharmony_ci return rc; 315662306a36Sopenharmony_ci} 315762306a36Sopenharmony_ci#endif /* BUILD_EMBED_FIRST_CHUNK */ 315862306a36Sopenharmony_ci 315962306a36Sopenharmony_ci#ifdef BUILD_PAGE_FIRST_CHUNK 316062306a36Sopenharmony_ci#include <asm/pgalloc.h> 316162306a36Sopenharmony_ci 316262306a36Sopenharmony_ci#ifndef P4D_TABLE_SIZE 316362306a36Sopenharmony_ci#define P4D_TABLE_SIZE PAGE_SIZE 316462306a36Sopenharmony_ci#endif 316562306a36Sopenharmony_ci 316662306a36Sopenharmony_ci#ifndef PUD_TABLE_SIZE 316762306a36Sopenharmony_ci#define PUD_TABLE_SIZE PAGE_SIZE 316862306a36Sopenharmony_ci#endif 316962306a36Sopenharmony_ci 317062306a36Sopenharmony_ci#ifndef PMD_TABLE_SIZE 317162306a36Sopenharmony_ci#define PMD_TABLE_SIZE PAGE_SIZE 317262306a36Sopenharmony_ci#endif 317362306a36Sopenharmony_ci 317462306a36Sopenharmony_ci#ifndef PTE_TABLE_SIZE 317562306a36Sopenharmony_ci#define PTE_TABLE_SIZE PAGE_SIZE 317662306a36Sopenharmony_ci#endif 317762306a36Sopenharmony_civoid __init __weak pcpu_populate_pte(unsigned long addr) 317862306a36Sopenharmony_ci{ 317962306a36Sopenharmony_ci pgd_t *pgd = pgd_offset_k(addr); 318062306a36Sopenharmony_ci p4d_t *p4d; 318162306a36Sopenharmony_ci pud_t *pud; 318262306a36Sopenharmony_ci pmd_t *pmd; 318362306a36Sopenharmony_ci 318462306a36Sopenharmony_ci if (pgd_none(*pgd)) { 318562306a36Sopenharmony_ci p4d = memblock_alloc(P4D_TABLE_SIZE, P4D_TABLE_SIZE); 318662306a36Sopenharmony_ci if (!p4d) 318762306a36Sopenharmony_ci goto err_alloc; 318862306a36Sopenharmony_ci pgd_populate(&init_mm, pgd, p4d); 318962306a36Sopenharmony_ci } 319062306a36Sopenharmony_ci 319162306a36Sopenharmony_ci p4d = p4d_offset(pgd, addr); 319262306a36Sopenharmony_ci if (p4d_none(*p4d)) { 319362306a36Sopenharmony_ci pud = memblock_alloc(PUD_TABLE_SIZE, PUD_TABLE_SIZE); 319462306a36Sopenharmony_ci if (!pud) 319562306a36Sopenharmony_ci goto err_alloc; 319662306a36Sopenharmony_ci p4d_populate(&init_mm, p4d, pud); 319762306a36Sopenharmony_ci } 319862306a36Sopenharmony_ci 319962306a36Sopenharmony_ci pud = pud_offset(p4d, addr); 320062306a36Sopenharmony_ci if (pud_none(*pud)) { 320162306a36Sopenharmony_ci pmd = memblock_alloc(PMD_TABLE_SIZE, PMD_TABLE_SIZE); 320262306a36Sopenharmony_ci if (!pmd) 320362306a36Sopenharmony_ci goto err_alloc; 320462306a36Sopenharmony_ci pud_populate(&init_mm, pud, pmd); 320562306a36Sopenharmony_ci } 320662306a36Sopenharmony_ci 320762306a36Sopenharmony_ci pmd = pmd_offset(pud, addr); 320862306a36Sopenharmony_ci if (!pmd_present(*pmd)) { 320962306a36Sopenharmony_ci pte_t *new; 321062306a36Sopenharmony_ci 321162306a36Sopenharmony_ci new = memblock_alloc(PTE_TABLE_SIZE, PTE_TABLE_SIZE); 321262306a36Sopenharmony_ci if (!new) 321362306a36Sopenharmony_ci goto err_alloc; 321462306a36Sopenharmony_ci pmd_populate_kernel(&init_mm, pmd, new); 321562306a36Sopenharmony_ci } 321662306a36Sopenharmony_ci 321762306a36Sopenharmony_ci return; 321862306a36Sopenharmony_ci 321962306a36Sopenharmony_cierr_alloc: 322062306a36Sopenharmony_ci panic("%s: Failed to allocate memory\n", __func__); 322162306a36Sopenharmony_ci} 322262306a36Sopenharmony_ci 322362306a36Sopenharmony_ci/** 322462306a36Sopenharmony_ci * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages 322562306a36Sopenharmony_ci * @reserved_size: the size of reserved percpu area in bytes 322662306a36Sopenharmony_ci * @cpu_to_nd_fn: callback to convert cpu to it's node, optional 322762306a36Sopenharmony_ci * 322862306a36Sopenharmony_ci * This is a helper to ease setting up page-remapped first percpu 322962306a36Sopenharmony_ci * chunk and can be called where pcpu_setup_first_chunk() is expected. 323062306a36Sopenharmony_ci * 323162306a36Sopenharmony_ci * This is the basic allocator. Static percpu area is allocated 323262306a36Sopenharmony_ci * page-by-page into vmalloc area. 323362306a36Sopenharmony_ci * 323462306a36Sopenharmony_ci * RETURNS: 323562306a36Sopenharmony_ci * 0 on success, -errno on failure. 323662306a36Sopenharmony_ci */ 323762306a36Sopenharmony_ciint __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn) 323862306a36Sopenharmony_ci{ 323962306a36Sopenharmony_ci static struct vm_struct vm; 324062306a36Sopenharmony_ci struct pcpu_alloc_info *ai; 324162306a36Sopenharmony_ci char psize_str[16]; 324262306a36Sopenharmony_ci int unit_pages; 324362306a36Sopenharmony_ci size_t pages_size; 324462306a36Sopenharmony_ci struct page **pages; 324562306a36Sopenharmony_ci int unit, i, j, rc = 0; 324662306a36Sopenharmony_ci int upa; 324762306a36Sopenharmony_ci int nr_g0_units; 324862306a36Sopenharmony_ci 324962306a36Sopenharmony_ci snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); 325062306a36Sopenharmony_ci 325162306a36Sopenharmony_ci ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); 325262306a36Sopenharmony_ci if (IS_ERR(ai)) 325362306a36Sopenharmony_ci return PTR_ERR(ai); 325462306a36Sopenharmony_ci BUG_ON(ai->nr_groups != 1); 325562306a36Sopenharmony_ci upa = ai->alloc_size/ai->unit_size; 325662306a36Sopenharmony_ci nr_g0_units = roundup(num_possible_cpus(), upa); 325762306a36Sopenharmony_ci if (WARN_ON(ai->groups[0].nr_units != nr_g0_units)) { 325862306a36Sopenharmony_ci pcpu_free_alloc_info(ai); 325962306a36Sopenharmony_ci return -EINVAL; 326062306a36Sopenharmony_ci } 326162306a36Sopenharmony_ci 326262306a36Sopenharmony_ci unit_pages = ai->unit_size >> PAGE_SHIFT; 326362306a36Sopenharmony_ci 326462306a36Sopenharmony_ci /* unaligned allocations can't be freed, round up to page size */ 326562306a36Sopenharmony_ci pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * 326662306a36Sopenharmony_ci sizeof(pages[0])); 326762306a36Sopenharmony_ci pages = memblock_alloc(pages_size, SMP_CACHE_BYTES); 326862306a36Sopenharmony_ci if (!pages) 326962306a36Sopenharmony_ci panic("%s: Failed to allocate %zu bytes\n", __func__, 327062306a36Sopenharmony_ci pages_size); 327162306a36Sopenharmony_ci 327262306a36Sopenharmony_ci /* allocate pages */ 327362306a36Sopenharmony_ci j = 0; 327462306a36Sopenharmony_ci for (unit = 0; unit < num_possible_cpus(); unit++) { 327562306a36Sopenharmony_ci unsigned int cpu = ai->groups[0].cpu_map[unit]; 327662306a36Sopenharmony_ci for (i = 0; i < unit_pages; i++) { 327762306a36Sopenharmony_ci void *ptr; 327862306a36Sopenharmony_ci 327962306a36Sopenharmony_ci ptr = pcpu_fc_alloc(cpu, PAGE_SIZE, PAGE_SIZE, cpu_to_nd_fn); 328062306a36Sopenharmony_ci if (!ptr) { 328162306a36Sopenharmony_ci pr_warn("failed to allocate %s page for cpu%u\n", 328262306a36Sopenharmony_ci psize_str, cpu); 328362306a36Sopenharmony_ci goto enomem; 328462306a36Sopenharmony_ci } 328562306a36Sopenharmony_ci /* kmemleak tracks the percpu allocations separately */ 328662306a36Sopenharmony_ci kmemleak_ignore_phys(__pa(ptr)); 328762306a36Sopenharmony_ci pages[j++] = virt_to_page(ptr); 328862306a36Sopenharmony_ci } 328962306a36Sopenharmony_ci } 329062306a36Sopenharmony_ci 329162306a36Sopenharmony_ci /* allocate vm area, map the pages and copy static data */ 329262306a36Sopenharmony_ci vm.flags = VM_ALLOC; 329362306a36Sopenharmony_ci vm.size = num_possible_cpus() * ai->unit_size; 329462306a36Sopenharmony_ci vm_area_register_early(&vm, PAGE_SIZE); 329562306a36Sopenharmony_ci 329662306a36Sopenharmony_ci for (unit = 0; unit < num_possible_cpus(); unit++) { 329762306a36Sopenharmony_ci unsigned long unit_addr = 329862306a36Sopenharmony_ci (unsigned long)vm.addr + unit * ai->unit_size; 329962306a36Sopenharmony_ci 330062306a36Sopenharmony_ci for (i = 0; i < unit_pages; i++) 330162306a36Sopenharmony_ci pcpu_populate_pte(unit_addr + (i << PAGE_SHIFT)); 330262306a36Sopenharmony_ci 330362306a36Sopenharmony_ci /* pte already populated, the following shouldn't fail */ 330462306a36Sopenharmony_ci rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], 330562306a36Sopenharmony_ci unit_pages); 330662306a36Sopenharmony_ci if (rc < 0) 330762306a36Sopenharmony_ci panic("failed to map percpu area, err=%d\n", rc); 330862306a36Sopenharmony_ci 330962306a36Sopenharmony_ci flush_cache_vmap_early(unit_addr, unit_addr + ai->unit_size); 331062306a36Sopenharmony_ci 331162306a36Sopenharmony_ci /* copy static data */ 331262306a36Sopenharmony_ci memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); 331362306a36Sopenharmony_ci } 331462306a36Sopenharmony_ci 331562306a36Sopenharmony_ci /* we're ready, commit */ 331662306a36Sopenharmony_ci pr_info("%d %s pages/cpu s%zu r%zu d%zu\n", 331762306a36Sopenharmony_ci unit_pages, psize_str, ai->static_size, 331862306a36Sopenharmony_ci ai->reserved_size, ai->dyn_size); 331962306a36Sopenharmony_ci 332062306a36Sopenharmony_ci pcpu_setup_first_chunk(ai, vm.addr); 332162306a36Sopenharmony_ci goto out_free_ar; 332262306a36Sopenharmony_ci 332362306a36Sopenharmony_cienomem: 332462306a36Sopenharmony_ci while (--j >= 0) 332562306a36Sopenharmony_ci pcpu_fc_free(page_address(pages[j]), PAGE_SIZE); 332662306a36Sopenharmony_ci rc = -ENOMEM; 332762306a36Sopenharmony_ciout_free_ar: 332862306a36Sopenharmony_ci memblock_free(pages, pages_size); 332962306a36Sopenharmony_ci pcpu_free_alloc_info(ai); 333062306a36Sopenharmony_ci return rc; 333162306a36Sopenharmony_ci} 333262306a36Sopenharmony_ci#endif /* BUILD_PAGE_FIRST_CHUNK */ 333362306a36Sopenharmony_ci 333462306a36Sopenharmony_ci#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA 333562306a36Sopenharmony_ci/* 333662306a36Sopenharmony_ci * Generic SMP percpu area setup. 333762306a36Sopenharmony_ci * 333862306a36Sopenharmony_ci * The embedding helper is used because its behavior closely resembles 333962306a36Sopenharmony_ci * the original non-dynamic generic percpu area setup. This is 334062306a36Sopenharmony_ci * important because many archs have addressing restrictions and might 334162306a36Sopenharmony_ci * fail if the percpu area is located far away from the previous 334262306a36Sopenharmony_ci * location. As an added bonus, in non-NUMA cases, embedding is 334362306a36Sopenharmony_ci * generally a good idea TLB-wise because percpu area can piggy back 334462306a36Sopenharmony_ci * on the physical linear memory mapping which uses large page 334562306a36Sopenharmony_ci * mappings on applicable archs. 334662306a36Sopenharmony_ci */ 334762306a36Sopenharmony_ciunsigned long __per_cpu_offset[NR_CPUS] __read_mostly; 334862306a36Sopenharmony_ciEXPORT_SYMBOL(__per_cpu_offset); 334962306a36Sopenharmony_ci 335062306a36Sopenharmony_civoid __init setup_per_cpu_areas(void) 335162306a36Sopenharmony_ci{ 335262306a36Sopenharmony_ci unsigned long delta; 335362306a36Sopenharmony_ci unsigned int cpu; 335462306a36Sopenharmony_ci int rc; 335562306a36Sopenharmony_ci 335662306a36Sopenharmony_ci /* 335762306a36Sopenharmony_ci * Always reserve area for module percpu variables. That's 335862306a36Sopenharmony_ci * what the legacy allocator did. 335962306a36Sopenharmony_ci */ 336062306a36Sopenharmony_ci rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, 336162306a36Sopenharmony_ci PAGE_SIZE, NULL, NULL); 336262306a36Sopenharmony_ci if (rc < 0) 336362306a36Sopenharmony_ci panic("Failed to initialize percpu areas."); 336462306a36Sopenharmony_ci 336562306a36Sopenharmony_ci delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; 336662306a36Sopenharmony_ci for_each_possible_cpu(cpu) 336762306a36Sopenharmony_ci __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; 336862306a36Sopenharmony_ci} 336962306a36Sopenharmony_ci#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ 337062306a36Sopenharmony_ci 337162306a36Sopenharmony_ci#else /* CONFIG_SMP */ 337262306a36Sopenharmony_ci 337362306a36Sopenharmony_ci/* 337462306a36Sopenharmony_ci * UP percpu area setup. 337562306a36Sopenharmony_ci * 337662306a36Sopenharmony_ci * UP always uses km-based percpu allocator with identity mapping. 337762306a36Sopenharmony_ci * Static percpu variables are indistinguishable from the usual static 337862306a36Sopenharmony_ci * variables and don't require any special preparation. 337962306a36Sopenharmony_ci */ 338062306a36Sopenharmony_civoid __init setup_per_cpu_areas(void) 338162306a36Sopenharmony_ci{ 338262306a36Sopenharmony_ci const size_t unit_size = 338362306a36Sopenharmony_ci roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, 338462306a36Sopenharmony_ci PERCPU_DYNAMIC_RESERVE)); 338562306a36Sopenharmony_ci struct pcpu_alloc_info *ai; 338662306a36Sopenharmony_ci void *fc; 338762306a36Sopenharmony_ci 338862306a36Sopenharmony_ci ai = pcpu_alloc_alloc_info(1, 1); 338962306a36Sopenharmony_ci fc = memblock_alloc_from(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); 339062306a36Sopenharmony_ci if (!ai || !fc) 339162306a36Sopenharmony_ci panic("Failed to allocate memory for percpu areas."); 339262306a36Sopenharmony_ci /* kmemleak tracks the percpu allocations separately */ 339362306a36Sopenharmony_ci kmemleak_ignore_phys(__pa(fc)); 339462306a36Sopenharmony_ci 339562306a36Sopenharmony_ci ai->dyn_size = unit_size; 339662306a36Sopenharmony_ci ai->unit_size = unit_size; 339762306a36Sopenharmony_ci ai->atom_size = unit_size; 339862306a36Sopenharmony_ci ai->alloc_size = unit_size; 339962306a36Sopenharmony_ci ai->groups[0].nr_units = 1; 340062306a36Sopenharmony_ci ai->groups[0].cpu_map[0] = 0; 340162306a36Sopenharmony_ci 340262306a36Sopenharmony_ci pcpu_setup_first_chunk(ai, fc); 340362306a36Sopenharmony_ci pcpu_free_alloc_info(ai); 340462306a36Sopenharmony_ci} 340562306a36Sopenharmony_ci 340662306a36Sopenharmony_ci#endif /* CONFIG_SMP */ 340762306a36Sopenharmony_ci 340862306a36Sopenharmony_ci/* 340962306a36Sopenharmony_ci * pcpu_nr_pages - calculate total number of populated backing pages 341062306a36Sopenharmony_ci * 341162306a36Sopenharmony_ci * This reflects the number of pages populated to back chunks. Metadata is 341262306a36Sopenharmony_ci * excluded in the number exposed in meminfo as the number of backing pages 341362306a36Sopenharmony_ci * scales with the number of cpus and can quickly outweigh the memory used for 341462306a36Sopenharmony_ci * metadata. It also keeps this calculation nice and simple. 341562306a36Sopenharmony_ci * 341662306a36Sopenharmony_ci * RETURNS: 341762306a36Sopenharmony_ci * Total number of populated backing pages in use by the allocator. 341862306a36Sopenharmony_ci */ 341962306a36Sopenharmony_ciunsigned long pcpu_nr_pages(void) 342062306a36Sopenharmony_ci{ 342162306a36Sopenharmony_ci return pcpu_nr_populated * pcpu_nr_units; 342262306a36Sopenharmony_ci} 342362306a36Sopenharmony_ci 342462306a36Sopenharmony_ci/* 342562306a36Sopenharmony_ci * Percpu allocator is initialized early during boot when neither slab or 342662306a36Sopenharmony_ci * workqueue is available. Plug async management until everything is up 342762306a36Sopenharmony_ci * and running. 342862306a36Sopenharmony_ci */ 342962306a36Sopenharmony_cistatic int __init percpu_enable_async(void) 343062306a36Sopenharmony_ci{ 343162306a36Sopenharmony_ci pcpu_async_enabled = true; 343262306a36Sopenharmony_ci return 0; 343362306a36Sopenharmony_ci} 343462306a36Sopenharmony_cisubsys_initcall(percpu_enable_async); 3435