xref: /kernel/linux/linux-6.6/mm/kfence/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * KFENCE guarded object allocator and fault handling.
4 *
5 * Copyright (C) 2020, Google LLC.
6 */
7
8#define pr_fmt(fmt) "kfence: " fmt
9
10#include <linux/atomic.h>
11#include <linux/bug.h>
12#include <linux/debugfs.h>
13#include <linux/hash.h>
14#include <linux/irq_work.h>
15#include <linux/jhash.h>
16#include <linux/kcsan-checks.h>
17#include <linux/kfence.h>
18#include <linux/kmemleak.h>
19#include <linux/list.h>
20#include <linux/lockdep.h>
21#include <linux/log2.h>
22#include <linux/memblock.h>
23#include <linux/moduleparam.h>
24#include <linux/notifier.h>
25#include <linux/panic_notifier.h>
26#include <linux/random.h>
27#include <linux/rcupdate.h>
28#include <linux/sched/clock.h>
29#include <linux/seq_file.h>
30#include <linux/slab.h>
31#include <linux/spinlock.h>
32#include <linux/string.h>
33
34#include <asm/kfence.h>
35
36#include "kfence.h"
37
38/* Disables KFENCE on the first warning assuming an irrecoverable error. */
39#define KFENCE_WARN_ON(cond)                                                   \
40	({                                                                     \
41		const bool __cond = WARN_ON(cond);                             \
42		if (unlikely(__cond)) {                                        \
43			WRITE_ONCE(kfence_enabled, false);                     \
44			disabled_by_warn = true;                               \
45		}                                                              \
46		__cond;                                                        \
47	})
48
49/* === Data ================================================================= */
50
51static bool kfence_enabled __read_mostly;
52static bool disabled_by_warn __read_mostly;
53
54unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56
57#ifdef MODULE_PARAM_PREFIX
58#undef MODULE_PARAM_PREFIX
59#endif
60#define MODULE_PARAM_PREFIX "kfence."
61
62static int kfence_enable_late(void);
63static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64{
65	unsigned long num;
66	int ret = kstrtoul(val, 0, &num);
67
68	if (ret < 0)
69		return ret;
70
71	/* Using 0 to indicate KFENCE is disabled. */
72	if (!num && READ_ONCE(kfence_enabled)) {
73		pr_info("disabled\n");
74		WRITE_ONCE(kfence_enabled, false);
75	}
76
77	*((unsigned long *)kp->arg) = num;
78
79	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80		return disabled_by_warn ? -EINVAL : kfence_enable_late();
81	return 0;
82}
83
84static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85{
86	if (!READ_ONCE(kfence_enabled))
87		return sprintf(buffer, "0\n");
88
89	return param_get_ulong(buffer, kp);
90}
91
92static const struct kernel_param_ops sample_interval_param_ops = {
93	.set = param_set_sample_interval,
94	.get = param_get_sample_interval,
95};
96module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97
98/* Pool usage% threshold when currently covered allocations are skipped. */
99static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101
102/* If true, use a deferrable timer. */
103static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104module_param_named(deferrable, kfence_deferrable, bool, 0444);
105
106/* If true, check all canary bytes on panic. */
107static bool kfence_check_on_panic __read_mostly;
108module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109
110/* The pool of pages used for guard pages and objects. */
111char *__kfence_pool __read_mostly;
112EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113
114/*
115 * Per-object metadata, with one-to-one mapping of object metadata to
116 * backing pages (in __kfence_pool).
117 */
118static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119struct kfence_metadata *kfence_metadata __read_mostly;
120
121/*
122 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
123 * So introduce kfence_metadata_init to initialize metadata, and then make
124 * kfence_metadata visible after initialization is successful. This prevents
125 * potential UAF or access to uninitialized metadata.
126 */
127static struct kfence_metadata *kfence_metadata_init __read_mostly;
128
129/* Freelist with available objects. */
130static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
131static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
132
133/*
134 * The static key to set up a KFENCE allocation; or if static keys are not used
135 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
136 */
137DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
138
139/* Gates the allocation, ensuring only one succeeds in a given period. */
140atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
141
142/*
143 * A Counting Bloom filter of allocation coverage: limits currently covered
144 * allocations of the same source filling up the pool.
145 *
146 * Assuming a range of 15%-85% unique allocations in the pool at any point in
147 * time, the below parameters provide a probablity of 0.02-0.33 for false
148 * positive hits respectively:
149 *
150 *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
151 */
152#define ALLOC_COVERED_HNUM	2
153#define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
154#define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
155#define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
156#define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
157static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
158
159/* Stack depth used to determine uniqueness of an allocation. */
160#define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
161
162/*
163 * Randomness for stack hashes, making the same collisions across reboots and
164 * different machines less likely.
165 */
166static u32 stack_hash_seed __ro_after_init;
167
168/* Statistics counters for debugfs. */
169enum kfence_counter_id {
170	KFENCE_COUNTER_ALLOCATED,
171	KFENCE_COUNTER_ALLOCS,
172	KFENCE_COUNTER_FREES,
173	KFENCE_COUNTER_ZOMBIES,
174	KFENCE_COUNTER_BUGS,
175	KFENCE_COUNTER_SKIP_INCOMPAT,
176	KFENCE_COUNTER_SKIP_CAPACITY,
177	KFENCE_COUNTER_SKIP_COVERED,
178	KFENCE_COUNTER_COUNT,
179};
180static atomic_long_t counters[KFENCE_COUNTER_COUNT];
181static const char *const counter_names[] = {
182	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
183	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
184	[KFENCE_COUNTER_FREES]		= "total frees",
185	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
186	[KFENCE_COUNTER_BUGS]		= "total bugs",
187	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
188	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
189	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
190};
191static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
192
193/* === Internals ============================================================ */
194
195static inline bool should_skip_covered(void)
196{
197	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
198
199	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
200}
201
202static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
203{
204	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
205	num_entries = filter_irq_stacks(stack_entries, num_entries);
206	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
207}
208
209/*
210 * Adds (or subtracts) count @val for allocation stack trace hash
211 * @alloc_stack_hash from Counting Bloom filter.
212 */
213static void alloc_covered_add(u32 alloc_stack_hash, int val)
214{
215	int i;
216
217	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
218		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
219		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
220	}
221}
222
223/*
224 * Returns true if the allocation stack trace hash @alloc_stack_hash is
225 * currently contained (non-zero count) in Counting Bloom filter.
226 */
227static bool alloc_covered_contains(u32 alloc_stack_hash)
228{
229	int i;
230
231	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
232		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
233			return false;
234		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
235	}
236
237	return true;
238}
239
240static bool kfence_protect(unsigned long addr)
241{
242	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
243}
244
245static bool kfence_unprotect(unsigned long addr)
246{
247	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
248}
249
250static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
251{
252	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
253	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
254
255	/* The checks do not affect performance; only called from slow-paths. */
256
257	/* Only call with a pointer into kfence_metadata. */
258	if (KFENCE_WARN_ON(meta < kfence_metadata ||
259			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
260		return 0;
261
262	/*
263	 * This metadata object only ever maps to 1 page; verify that the stored
264	 * address is in the expected range.
265	 */
266	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
267		return 0;
268
269	return pageaddr;
270}
271
272/*
273 * Update the object's metadata state, including updating the alloc/free stacks
274 * depending on the state transition.
275 */
276static noinline void
277metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
278		      unsigned long *stack_entries, size_t num_stack_entries)
279{
280	struct kfence_track *track =
281		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
282
283	lockdep_assert_held(&meta->lock);
284
285	if (stack_entries) {
286		memcpy(track->stack_entries, stack_entries,
287		       num_stack_entries * sizeof(stack_entries[0]));
288	} else {
289		/*
290		 * Skip over 1 (this) functions; noinline ensures we do not
291		 * accidentally skip over the caller by never inlining.
292		 */
293		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
294	}
295	track->num_stack_entries = num_stack_entries;
296	track->pid = task_pid_nr(current);
297	track->cpu = raw_smp_processor_id();
298	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
299
300	/*
301	 * Pairs with READ_ONCE() in
302	 *	kfence_shutdown_cache(),
303	 *	kfence_handle_page_fault().
304	 */
305	WRITE_ONCE(meta->state, next);
306}
307
308/* Check canary byte at @addr. */
309static inline bool check_canary_byte(u8 *addr)
310{
311	struct kfence_metadata *meta;
312	unsigned long flags;
313
314	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
315		return true;
316
317	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318
319	meta = addr_to_metadata((unsigned long)addr);
320	raw_spin_lock_irqsave(&meta->lock, flags);
321	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322	raw_spin_unlock_irqrestore(&meta->lock, flags);
323
324	return false;
325}
326
327static inline void set_canary(const struct kfence_metadata *meta)
328{
329	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
330	unsigned long addr = pageaddr;
331
332	/*
333	 * The canary may be written to part of the object memory, but it does
334	 * not affect it. The user should initialize the object before using it.
335	 */
336	for (; addr < meta->addr; addr += sizeof(u64))
337		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
338
339	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
340	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
341		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
342}
343
344static inline void check_canary(const struct kfence_metadata *meta)
345{
346	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
347	unsigned long addr = pageaddr;
348
349	/*
350	 * We'll iterate over each canary byte per-side until a corrupted byte
351	 * is found. However, we'll still iterate over the canary bytes to the
352	 * right of the object even if there was an error in the canary bytes to
353	 * the left of the object. Specifically, if check_canary_byte()
354	 * generates an error, showing both sides might give more clues as to
355	 * what the error is about when displaying which bytes were corrupted.
356	 */
357
358	/* Apply to left of object. */
359	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
360		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
361			break;
362	}
363
364	/*
365	 * If the canary is corrupted in a certain 64 bytes, or the canary
366	 * memory cannot be completely covered by multiple consecutive 64 bytes,
367	 * it needs to be checked one by one.
368	 */
369	for (; addr < meta->addr; addr++) {
370		if (unlikely(!check_canary_byte((u8 *)addr)))
371			break;
372	}
373
374	/* Apply to right of object. */
375	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
376		if (unlikely(!check_canary_byte((u8 *)addr)))
377			return;
378	}
379	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
380		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
381
382			for (; addr - pageaddr < PAGE_SIZE; addr++) {
383				if (!check_canary_byte((u8 *)addr))
384					return;
385			}
386		}
387	}
388}
389
390static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
391				  unsigned long *stack_entries, size_t num_stack_entries,
392				  u32 alloc_stack_hash)
393{
394	struct kfence_metadata *meta = NULL;
395	unsigned long flags;
396	struct slab *slab;
397	void *addr;
398	const bool random_right_allocate = get_random_u32_below(2);
399	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
400				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
401
402	/* Try to obtain a free object. */
403	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
404	if (!list_empty(&kfence_freelist)) {
405		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
406		list_del_init(&meta->list);
407	}
408	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
409	if (!meta) {
410		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
411		return NULL;
412	}
413
414	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
415		/*
416		 * This is extremely unlikely -- we are reporting on a
417		 * use-after-free, which locked meta->lock, and the reporting
418		 * code via printk calls kmalloc() which ends up in
419		 * kfence_alloc() and tries to grab the same object that we're
420		 * reporting on. While it has never been observed, lockdep does
421		 * report that there is a possibility of deadlock. Fix it by
422		 * using trylock and bailing out gracefully.
423		 */
424		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
425		/* Put the object back on the freelist. */
426		list_add_tail(&meta->list, &kfence_freelist);
427		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
428
429		return NULL;
430	}
431
432	meta->addr = metadata_to_pageaddr(meta);
433	/* Unprotect if we're reusing this page. */
434	if (meta->state == KFENCE_OBJECT_FREED)
435		kfence_unprotect(meta->addr);
436
437	/*
438	 * Note: for allocations made before RNG initialization, will always
439	 * return zero. We still benefit from enabling KFENCE as early as
440	 * possible, even when the RNG is not yet available, as this will allow
441	 * KFENCE to detect bugs due to earlier allocations. The only downside
442	 * is that the out-of-bounds accesses detected are deterministic for
443	 * such allocations.
444	 */
445	if (random_right_allocate) {
446		/* Allocate on the "right" side, re-calculate address. */
447		meta->addr += PAGE_SIZE - size;
448		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
449	}
450
451	addr = (void *)meta->addr;
452
453	/* Update remaining metadata. */
454	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
455	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
456	WRITE_ONCE(meta->cache, cache);
457	meta->size = size;
458	meta->alloc_stack_hash = alloc_stack_hash;
459	raw_spin_unlock_irqrestore(&meta->lock, flags);
460
461	alloc_covered_add(alloc_stack_hash, 1);
462
463	/* Set required slab fields. */
464	slab = virt_to_slab((void *)meta->addr);
465	slab->slab_cache = cache;
466#if defined(CONFIG_SLUB)
467	slab->objects = 1;
468#elif defined(CONFIG_SLAB)
469	slab->s_mem = addr;
470#endif
471
472	/* Memory initialization. */
473	set_canary(meta);
474
475	/*
476	 * We check slab_want_init_on_alloc() ourselves, rather than letting
477	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
478	 * redzone.
479	 */
480	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
481		memzero_explicit(addr, size);
482	if (cache->ctor)
483		cache->ctor(addr);
484
485	if (random_fault)
486		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
487
488	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
489	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
490
491	return addr;
492}
493
494static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
495{
496	struct kcsan_scoped_access assert_page_exclusive;
497	unsigned long flags;
498	bool init;
499
500	raw_spin_lock_irqsave(&meta->lock, flags);
501
502	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
503		/* Invalid or double-free, bail out. */
504		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
505		kfence_report_error((unsigned long)addr, false, NULL, meta,
506				    KFENCE_ERROR_INVALID_FREE);
507		raw_spin_unlock_irqrestore(&meta->lock, flags);
508		return;
509	}
510
511	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
512	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
513				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
514				  &assert_page_exclusive);
515
516	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
517		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
518
519	/* Restore page protection if there was an OOB access. */
520	if (meta->unprotected_page) {
521		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
522		kfence_protect(meta->unprotected_page);
523		meta->unprotected_page = 0;
524	}
525
526	/* Mark the object as freed. */
527	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
528	init = slab_want_init_on_free(meta->cache);
529	raw_spin_unlock_irqrestore(&meta->lock, flags);
530
531	alloc_covered_add(meta->alloc_stack_hash, -1);
532
533	/* Check canary bytes for memory corruption. */
534	check_canary(meta);
535
536	/*
537	 * Clear memory if init-on-free is set. While we protect the page, the
538	 * data is still there, and after a use-after-free is detected, we
539	 * unprotect the page, so the data is still accessible.
540	 */
541	if (!zombie && unlikely(init))
542		memzero_explicit(addr, meta->size);
543
544	/* Protect to detect use-after-frees. */
545	kfence_protect((unsigned long)addr);
546
547	kcsan_end_scoped_access(&assert_page_exclusive);
548	if (!zombie) {
549		/* Add it to the tail of the freelist for reuse. */
550		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
551		KFENCE_WARN_ON(!list_empty(&meta->list));
552		list_add_tail(&meta->list, &kfence_freelist);
553		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
554
555		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
556		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
557	} else {
558		/* See kfence_shutdown_cache(). */
559		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
560	}
561}
562
563static void rcu_guarded_free(struct rcu_head *h)
564{
565	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
566
567	kfence_guarded_free((void *)meta->addr, meta, false);
568}
569
570/*
571 * Initialization of the KFENCE pool after its allocation.
572 * Returns 0 on success; otherwise returns the address up to
573 * which partial initialization succeeded.
574 */
575static unsigned long kfence_init_pool(void)
576{
577	unsigned long addr;
578	struct page *pages;
579	int i;
580
581	if (!arch_kfence_init_pool())
582		return (unsigned long)__kfence_pool;
583
584	addr = (unsigned long)__kfence_pool;
585	pages = virt_to_page(__kfence_pool);
586
587	/*
588	 * Set up object pages: they must have PG_slab set, to avoid freeing
589	 * these as real pages.
590	 *
591	 * We also want to avoid inserting kfence_free() in the kfree()
592	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
593	 * enters __slab_free() slow-path.
594	 */
595	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
596		struct slab *slab = page_slab(nth_page(pages, i));
597
598		if (!i || (i % 2))
599			continue;
600
601		__folio_set_slab(slab_folio(slab));
602#ifdef CONFIG_MEMCG
603		slab->memcg_data = (unsigned long)&kfence_metadata_init[i / 2 - 1].objcg |
604				   MEMCG_DATA_OBJCGS;
605#endif
606	}
607
608	/*
609	 * Protect the first 2 pages. The first page is mostly unnecessary, and
610	 * merely serves as an extended guard page. However, adding one
611	 * additional page in the beginning gives us an even number of pages,
612	 * which simplifies the mapping of address to metadata index.
613	 */
614	for (i = 0; i < 2; i++) {
615		if (unlikely(!kfence_protect(addr)))
616			return addr;
617
618		addr += PAGE_SIZE;
619	}
620
621	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
622		struct kfence_metadata *meta = &kfence_metadata_init[i];
623
624		/* Initialize metadata. */
625		INIT_LIST_HEAD(&meta->list);
626		raw_spin_lock_init(&meta->lock);
627		meta->state = KFENCE_OBJECT_UNUSED;
628		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
629		list_add_tail(&meta->list, &kfence_freelist);
630
631		/* Protect the right redzone. */
632		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
633			goto reset_slab;
634
635		addr += 2 * PAGE_SIZE;
636	}
637
638	/*
639	 * Make kfence_metadata visible only when initialization is successful.
640	 * Otherwise, if the initialization fails and kfence_metadata is freed,
641	 * it may cause UAF in kfence_shutdown_cache().
642	 */
643	smp_store_release(&kfence_metadata, kfence_metadata_init);
644	return 0;
645
646reset_slab:
647	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
648		struct slab *slab = page_slab(nth_page(pages, i));
649
650		if (!i || (i % 2))
651			continue;
652#ifdef CONFIG_MEMCG
653		slab->memcg_data = 0;
654#endif
655		__folio_clear_slab(slab_folio(slab));
656	}
657
658	return addr;
659}
660
661static bool __init kfence_init_pool_early(void)
662{
663	unsigned long addr;
664
665	if (!__kfence_pool)
666		return false;
667
668	addr = kfence_init_pool();
669
670	if (!addr) {
671		/*
672		 * The pool is live and will never be deallocated from this point on.
673		 * Ignore the pool object from the kmemleak phys object tree, as it would
674		 * otherwise overlap with allocations returned by kfence_alloc(), which
675		 * are registered with kmemleak through the slab post-alloc hook.
676		 */
677		kmemleak_ignore_phys(__pa(__kfence_pool));
678		return true;
679	}
680
681	/*
682	 * Only release unprotected pages, and do not try to go back and change
683	 * page attributes due to risk of failing to do so as well. If changing
684	 * page attributes for some pages fails, it is very likely that it also
685	 * fails for the first page, and therefore expect addr==__kfence_pool in
686	 * most failure cases.
687	 */
688	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
689	__kfence_pool = NULL;
690
691	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
692	kfence_metadata_init = NULL;
693
694	return false;
695}
696
697/* === DebugFS Interface ==================================================== */
698
699static int stats_show(struct seq_file *seq, void *v)
700{
701	int i;
702
703	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
704	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
705		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
706
707	return 0;
708}
709DEFINE_SHOW_ATTRIBUTE(stats);
710
711/*
712 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
713 * start_object() and next_object() return the object index + 1, because NULL is used
714 * to stop iteration.
715 */
716static void *start_object(struct seq_file *seq, loff_t *pos)
717{
718	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
719		return (void *)((long)*pos + 1);
720	return NULL;
721}
722
723static void stop_object(struct seq_file *seq, void *v)
724{
725}
726
727static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
728{
729	++*pos;
730	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
731		return (void *)((long)*pos + 1);
732	return NULL;
733}
734
735static int show_object(struct seq_file *seq, void *v)
736{
737	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
738	unsigned long flags;
739
740	raw_spin_lock_irqsave(&meta->lock, flags);
741	kfence_print_object(seq, meta);
742	raw_spin_unlock_irqrestore(&meta->lock, flags);
743	seq_puts(seq, "---------------------------------\n");
744
745	return 0;
746}
747
748static const struct seq_operations objects_sops = {
749	.start = start_object,
750	.next = next_object,
751	.stop = stop_object,
752	.show = show_object,
753};
754DEFINE_SEQ_ATTRIBUTE(objects);
755
756static int kfence_debugfs_init(void)
757{
758	struct dentry *kfence_dir;
759
760	if (!READ_ONCE(kfence_enabled))
761		return 0;
762
763	kfence_dir = debugfs_create_dir("kfence", NULL);
764	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
765	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
766	return 0;
767}
768
769late_initcall(kfence_debugfs_init);
770
771/* === Panic Notifier ====================================================== */
772
773static void kfence_check_all_canary(void)
774{
775	int i;
776
777	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
778		struct kfence_metadata *meta = &kfence_metadata[i];
779
780		if (meta->state == KFENCE_OBJECT_ALLOCATED)
781			check_canary(meta);
782	}
783}
784
785static int kfence_check_canary_callback(struct notifier_block *nb,
786					unsigned long reason, void *arg)
787{
788	kfence_check_all_canary();
789	return NOTIFY_OK;
790}
791
792static struct notifier_block kfence_check_canary_notifier = {
793	.notifier_call = kfence_check_canary_callback,
794};
795
796/* === Allocation Gate Timer ================================================ */
797
798static struct delayed_work kfence_timer;
799
800#ifdef CONFIG_KFENCE_STATIC_KEYS
801/* Wait queue to wake up allocation-gate timer task. */
802static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
803
804static void wake_up_kfence_timer(struct irq_work *work)
805{
806	wake_up(&allocation_wait);
807}
808static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
809#endif
810
811/*
812 * Set up delayed work, which will enable and disable the static key. We need to
813 * use a work queue (rather than a simple timer), since enabling and disabling a
814 * static key cannot be done from an interrupt.
815 *
816 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
817 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
818 * more aggressive sampling intervals), we could get away with a variant that
819 * avoids IPIs, at the cost of not immediately capturing allocations if the
820 * instructions remain cached.
821 */
822static void toggle_allocation_gate(struct work_struct *work)
823{
824	if (!READ_ONCE(kfence_enabled))
825		return;
826
827	atomic_set(&kfence_allocation_gate, 0);
828#ifdef CONFIG_KFENCE_STATIC_KEYS
829	/* Enable static key, and await allocation to happen. */
830	static_branch_enable(&kfence_allocation_key);
831
832	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
833
834	/* Disable static key and reset timer. */
835	static_branch_disable(&kfence_allocation_key);
836#endif
837	queue_delayed_work(system_unbound_wq, &kfence_timer,
838			   msecs_to_jiffies(kfence_sample_interval));
839}
840
841/* === Public interface ===================================================== */
842
843void __init kfence_alloc_pool_and_metadata(void)
844{
845	if (!kfence_sample_interval)
846		return;
847
848	/*
849	 * If the pool has already been initialized by arch, there is no need to
850	 * re-allocate the memory pool.
851	 */
852	if (!__kfence_pool)
853		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
854
855	if (!__kfence_pool) {
856		pr_err("failed to allocate pool\n");
857		return;
858	}
859
860	/* The memory allocated by memblock has been zeroed out. */
861	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
862	if (!kfence_metadata_init) {
863		pr_err("failed to allocate metadata\n");
864		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
865		__kfence_pool = NULL;
866	}
867}
868
869static void kfence_init_enable(void)
870{
871	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
872		static_branch_enable(&kfence_allocation_key);
873
874	if (kfence_deferrable)
875		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
876	else
877		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
878
879	if (kfence_check_on_panic)
880		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
881
882	WRITE_ONCE(kfence_enabled, true);
883	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
884
885	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
886		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
887		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
888}
889
890void __init kfence_init(void)
891{
892	stack_hash_seed = get_random_u32();
893
894	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
895	if (!kfence_sample_interval)
896		return;
897
898	if (!kfence_init_pool_early()) {
899		pr_err("%s failed\n", __func__);
900		return;
901	}
902
903	kfence_init_enable();
904}
905
906static int kfence_init_late(void)
907{
908	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
909	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
910	unsigned long addr = (unsigned long)__kfence_pool;
911	unsigned long free_size = KFENCE_POOL_SIZE;
912	int err = -ENOMEM;
913
914#ifdef CONFIG_CONTIG_ALLOC
915	struct page *pages;
916
917	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
918				   NULL);
919	if (!pages)
920		return -ENOMEM;
921
922	__kfence_pool = page_to_virt(pages);
923	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
924				   NULL);
925	if (pages)
926		kfence_metadata_init = page_to_virt(pages);
927#else
928	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
929	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
930		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
931		return -EINVAL;
932	}
933
934	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
935	if (!__kfence_pool)
936		return -ENOMEM;
937
938	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
939#endif
940
941	if (!kfence_metadata_init)
942		goto free_pool;
943
944	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
945	addr = kfence_init_pool();
946	if (!addr) {
947		kfence_init_enable();
948		kfence_debugfs_init();
949		return 0;
950	}
951
952	pr_err("%s failed\n", __func__);
953	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
954	err = -EBUSY;
955
956#ifdef CONFIG_CONTIG_ALLOC
957	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
958			  nr_pages_meta);
959free_pool:
960	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
961			  free_size / PAGE_SIZE);
962#else
963	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
964free_pool:
965	free_pages_exact((void *)addr, free_size);
966#endif
967
968	kfence_metadata_init = NULL;
969	__kfence_pool = NULL;
970	return err;
971}
972
973static int kfence_enable_late(void)
974{
975	if (!__kfence_pool)
976		return kfence_init_late();
977
978	WRITE_ONCE(kfence_enabled, true);
979	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
980	pr_info("re-enabled\n");
981	return 0;
982}
983
984void kfence_shutdown_cache(struct kmem_cache *s)
985{
986	unsigned long flags;
987	struct kfence_metadata *meta;
988	int i;
989
990	/* Pairs with release in kfence_init_pool(). */
991	if (!smp_load_acquire(&kfence_metadata))
992		return;
993
994	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
995		bool in_use;
996
997		meta = &kfence_metadata[i];
998
999		/*
1000		 * If we observe some inconsistent cache and state pair where we
1001		 * should have returned false here, cache destruction is racing
1002		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1003		 * the lock will not help, as different critical section
1004		 * serialization will have the same outcome.
1005		 */
1006		if (READ_ONCE(meta->cache) != s ||
1007		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
1008			continue;
1009
1010		raw_spin_lock_irqsave(&meta->lock, flags);
1011		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
1012		raw_spin_unlock_irqrestore(&meta->lock, flags);
1013
1014		if (in_use) {
1015			/*
1016			 * This cache still has allocations, and we should not
1017			 * release them back into the freelist so they can still
1018			 * safely be used and retain the kernel's default
1019			 * behaviour of keeping the allocations alive (leak the
1020			 * cache); however, they effectively become "zombie
1021			 * allocations" as the KFENCE objects are the only ones
1022			 * still in use and the owning cache is being destroyed.
1023			 *
1024			 * We mark them freed, so that any subsequent use shows
1025			 * more useful error messages that will include stack
1026			 * traces of the user of the object, the original
1027			 * allocation, and caller to shutdown_cache().
1028			 */
1029			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1030		}
1031	}
1032
1033	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1034		meta = &kfence_metadata[i];
1035
1036		/* See above. */
1037		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1038			continue;
1039
1040		raw_spin_lock_irqsave(&meta->lock, flags);
1041		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1042			meta->cache = NULL;
1043		raw_spin_unlock_irqrestore(&meta->lock, flags);
1044	}
1045}
1046
1047void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1048{
1049	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1050	size_t num_stack_entries;
1051	u32 alloc_stack_hash;
1052
1053	/*
1054	 * Perform size check before switching kfence_allocation_gate, so that
1055	 * we don't disable KFENCE without making an allocation.
1056	 */
1057	if (size > PAGE_SIZE) {
1058		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1059		return NULL;
1060	}
1061
1062	/*
1063	 * Skip allocations from non-default zones, including DMA. We cannot
1064	 * guarantee that pages in the KFENCE pool will have the requested
1065	 * properties (e.g. reside in DMAable memory).
1066	 */
1067	if ((flags & GFP_ZONEMASK) ||
1068	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1069		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1070		return NULL;
1071	}
1072
1073	/*
1074	 * Skip allocations for this slab, if KFENCE has been disabled for
1075	 * this slab.
1076	 */
1077	if (s->flags & SLAB_SKIP_KFENCE)
1078		return NULL;
1079
1080	if (atomic_inc_return(&kfence_allocation_gate) > 1)
1081		return NULL;
1082#ifdef CONFIG_KFENCE_STATIC_KEYS
1083	/*
1084	 * waitqueue_active() is fully ordered after the update of
1085	 * kfence_allocation_gate per atomic_inc_return().
1086	 */
1087	if (waitqueue_active(&allocation_wait)) {
1088		/*
1089		 * Calling wake_up() here may deadlock when allocations happen
1090		 * from within timer code. Use an irq_work to defer it.
1091		 */
1092		irq_work_queue(&wake_up_kfence_timer_work);
1093	}
1094#endif
1095
1096	if (!READ_ONCE(kfence_enabled))
1097		return NULL;
1098
1099	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1100
1101	/*
1102	 * Do expensive check for coverage of allocation in slow-path after
1103	 * allocation_gate has already become non-zero, even though it might
1104	 * mean not making any allocation within a given sample interval.
1105	 *
1106	 * This ensures reasonable allocation coverage when the pool is almost
1107	 * full, including avoiding long-lived allocations of the same source
1108	 * filling up the pool (e.g. pagecache allocations).
1109	 */
1110	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1111	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1112		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1113		return NULL;
1114	}
1115
1116	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1117				    alloc_stack_hash);
1118}
1119
1120size_t kfence_ksize(const void *addr)
1121{
1122	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1123
1124	/*
1125	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1126	 * either a use-after-free or invalid access.
1127	 */
1128	return meta ? meta->size : 0;
1129}
1130
1131void *kfence_object_start(const void *addr)
1132{
1133	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1134
1135	/*
1136	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1137	 * either a use-after-free or invalid access.
1138	 */
1139	return meta ? (void *)meta->addr : NULL;
1140}
1141
1142void __kfence_free(void *addr)
1143{
1144	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1145
1146#ifdef CONFIG_MEMCG
1147	KFENCE_WARN_ON(meta->objcg);
1148#endif
1149	/*
1150	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1151	 * the object, as the object page may be recycled for other-typed
1152	 * objects once it has been freed. meta->cache may be NULL if the cache
1153	 * was destroyed.
1154	 */
1155	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1156		call_rcu(&meta->rcu_head, rcu_guarded_free);
1157	else
1158		kfence_guarded_free(addr, meta, false);
1159}
1160
1161bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1162{
1163	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1164	struct kfence_metadata *to_report = NULL;
1165	enum kfence_error_type error_type;
1166	unsigned long flags;
1167
1168	if (!is_kfence_address((void *)addr))
1169		return false;
1170
1171	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1172		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1173
1174	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1175
1176	if (page_index % 2) {
1177		/* This is a redzone, report a buffer overflow. */
1178		struct kfence_metadata *meta;
1179		int distance = 0;
1180
1181		meta = addr_to_metadata(addr - PAGE_SIZE);
1182		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1183			to_report = meta;
1184			/* Data race ok; distance calculation approximate. */
1185			distance = addr - data_race(meta->addr + meta->size);
1186		}
1187
1188		meta = addr_to_metadata(addr + PAGE_SIZE);
1189		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1190			/* Data race ok; distance calculation approximate. */
1191			if (!to_report || distance > data_race(meta->addr) - addr)
1192				to_report = meta;
1193		}
1194
1195		if (!to_report)
1196			goto out;
1197
1198		raw_spin_lock_irqsave(&to_report->lock, flags);
1199		to_report->unprotected_page = addr;
1200		error_type = KFENCE_ERROR_OOB;
1201
1202		/*
1203		 * If the object was freed before we took the look we can still
1204		 * report this as an OOB -- the report will simply show the
1205		 * stacktrace of the free as well.
1206		 */
1207	} else {
1208		to_report = addr_to_metadata(addr);
1209		if (!to_report)
1210			goto out;
1211
1212		raw_spin_lock_irqsave(&to_report->lock, flags);
1213		error_type = KFENCE_ERROR_UAF;
1214		/*
1215		 * We may race with __kfence_alloc(), and it is possible that a
1216		 * freed object may be reallocated. We simply report this as a
1217		 * use-after-free, with the stack trace showing the place where
1218		 * the object was re-allocated.
1219		 */
1220	}
1221
1222out:
1223	if (to_report) {
1224		kfence_report_error(addr, is_write, regs, to_report, error_type);
1225		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1226	} else {
1227		/* This may be a UAF or OOB access, but we can't be sure. */
1228		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1229	}
1230
1231	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1232}
1233