xref: /kernel/linux/linux-6.6/mm/kasan/shadow.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
5 *
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 *
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 *        Andrey Konovalov <andreyknvl@gmail.com>
11 */
12
13#include <linux/init.h>
14#include <linux/kasan.h>
15#include <linux/kernel.h>
16#include <linux/kfence.h>
17#include <linux/kmemleak.h>
18#include <linux/memory.h>
19#include <linux/mm.h>
20#include <linux/string.h>
21#include <linux/types.h>
22#include <linux/vmalloc.h>
23
24#include <asm/cacheflush.h>
25#include <asm/tlbflush.h>
26
27#include "kasan.h"
28
29bool __kasan_check_read(const volatile void *p, unsigned int size)
30{
31	return kasan_check_range((void *)p, size, false, _RET_IP_);
32}
33EXPORT_SYMBOL(__kasan_check_read);
34
35bool __kasan_check_write(const volatile void *p, unsigned int size)
36{
37	return kasan_check_range((void *)p, size, true, _RET_IP_);
38}
39EXPORT_SYMBOL(__kasan_check_write);
40
41#if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42/*
43 * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44 * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45 * for the sites they want to instrument.
46 *
47 * If we have a compiler that can instrument meminstrinsics, never override
48 * these, so that non-instrumented files can safely consider them as builtins.
49 */
50#undef memset
51void *memset(void *addr, int c, size_t len)
52{
53	if (!kasan_check_range(addr, len, true, _RET_IP_))
54		return NULL;
55
56	return __memset(addr, c, len);
57}
58
59#ifdef __HAVE_ARCH_MEMMOVE
60#undef memmove
61void *memmove(void *dest, const void *src, size_t len)
62{
63	if (!kasan_check_range(src, len, false, _RET_IP_) ||
64	    !kasan_check_range(dest, len, true, _RET_IP_))
65		return NULL;
66
67	return __memmove(dest, src, len);
68}
69#endif
70
71#undef memcpy
72void *memcpy(void *dest, const void *src, size_t len)
73{
74	if (!kasan_check_range(src, len, false, _RET_IP_) ||
75	    !kasan_check_range(dest, len, true, _RET_IP_))
76		return NULL;
77
78	return __memcpy(dest, src, len);
79}
80#endif
81
82void *__asan_memset(void *addr, int c, ssize_t len)
83{
84	if (!kasan_check_range(addr, len, true, _RET_IP_))
85		return NULL;
86
87	return __memset(addr, c, len);
88}
89EXPORT_SYMBOL(__asan_memset);
90
91#ifdef __HAVE_ARCH_MEMMOVE
92void *__asan_memmove(void *dest, const void *src, ssize_t len)
93{
94	if (!kasan_check_range(src, len, false, _RET_IP_) ||
95	    !kasan_check_range(dest, len, true, _RET_IP_))
96		return NULL;
97
98	return __memmove(dest, src, len);
99}
100EXPORT_SYMBOL(__asan_memmove);
101#endif
102
103void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104{
105	if (!kasan_check_range(src, len, false, _RET_IP_) ||
106	    !kasan_check_range(dest, len, true, _RET_IP_))
107		return NULL;
108
109	return __memcpy(dest, src, len);
110}
111EXPORT_SYMBOL(__asan_memcpy);
112
113#ifdef CONFIG_KASAN_SW_TAGS
114void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115EXPORT_SYMBOL(__hwasan_memset);
116#ifdef __HAVE_ARCH_MEMMOVE
117void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118EXPORT_SYMBOL(__hwasan_memmove);
119#endif
120void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121EXPORT_SYMBOL(__hwasan_memcpy);
122#endif
123
124void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125{
126	void *shadow_start, *shadow_end;
127
128	if (!kasan_arch_is_ready())
129		return;
130
131	/*
132	 * Perform shadow offset calculation based on untagged address, as
133	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
134	 * addresses to this function.
135	 */
136	addr = kasan_reset_tag(addr);
137
138	/* Skip KFENCE memory if called explicitly outside of sl*b. */
139	if (is_kfence_address(addr))
140		return;
141
142	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
143		return;
144	if (WARN_ON(size & KASAN_GRANULE_MASK))
145		return;
146
147	shadow_start = kasan_mem_to_shadow(addr);
148	shadow_end = kasan_mem_to_shadow(addr + size);
149
150	__memset(shadow_start, value, shadow_end - shadow_start);
151}
152EXPORT_SYMBOL(kasan_poison);
153
154#ifdef CONFIG_KASAN_GENERIC
155void kasan_poison_last_granule(const void *addr, size_t size)
156{
157	if (!kasan_arch_is_ready())
158		return;
159
160	if (size & KASAN_GRANULE_MASK) {
161		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
162		*shadow = size & KASAN_GRANULE_MASK;
163	}
164}
165#endif
166
167void kasan_unpoison(const void *addr, size_t size, bool init)
168{
169	u8 tag = get_tag(addr);
170
171	/*
172	 * Perform shadow offset calculation based on untagged address, as
173	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
174	 * addresses to this function.
175	 */
176	addr = kasan_reset_tag(addr);
177
178	/*
179	 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
180	 * that calls to ksize(), where size is not a multiple of machine-word
181	 * size, would otherwise poison the invalid portion of the word.
182	 */
183	if (is_kfence_address(addr))
184		return;
185
186	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
187		return;
188
189	/* Unpoison all granules that cover the object. */
190	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
191
192	/* Partially poison the last granule for the generic mode. */
193	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
194		kasan_poison_last_granule(addr, size);
195}
196
197#ifdef CONFIG_MEMORY_HOTPLUG
198static bool shadow_mapped(unsigned long addr)
199{
200	pgd_t *pgd = pgd_offset_k(addr);
201	p4d_t *p4d;
202	pud_t *pud;
203	pmd_t *pmd;
204	pte_t *pte;
205
206	if (pgd_none(*pgd))
207		return false;
208	p4d = p4d_offset(pgd, addr);
209	if (p4d_none(*p4d))
210		return false;
211	pud = pud_offset(p4d, addr);
212	if (pud_none(*pud))
213		return false;
214
215	/*
216	 * We can't use pud_large() or pud_huge(), the first one is
217	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
218	 * pud_bad(), if pud is bad then it's bad because it's huge.
219	 */
220	if (pud_bad(*pud))
221		return true;
222	pmd = pmd_offset(pud, addr);
223	if (pmd_none(*pmd))
224		return false;
225
226	if (pmd_bad(*pmd))
227		return true;
228	pte = pte_offset_kernel(pmd, addr);
229	return !pte_none(ptep_get(pte));
230}
231
232static int __meminit kasan_mem_notifier(struct notifier_block *nb,
233			unsigned long action, void *data)
234{
235	struct memory_notify *mem_data = data;
236	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
237	unsigned long shadow_end, shadow_size;
238
239	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
240	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
241	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
242	shadow_size = nr_shadow_pages << PAGE_SHIFT;
243	shadow_end = shadow_start + shadow_size;
244
245	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
246		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
247		return NOTIFY_BAD;
248
249	switch (action) {
250	case MEM_GOING_ONLINE: {
251		void *ret;
252
253		/*
254		 * If shadow is mapped already than it must have been mapped
255		 * during the boot. This could happen if we onlining previously
256		 * offlined memory.
257		 */
258		if (shadow_mapped(shadow_start))
259			return NOTIFY_OK;
260
261		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
262					shadow_end, GFP_KERNEL,
263					PAGE_KERNEL, VM_NO_GUARD,
264					pfn_to_nid(mem_data->start_pfn),
265					__builtin_return_address(0));
266		if (!ret)
267			return NOTIFY_BAD;
268
269		kmemleak_ignore(ret);
270		return NOTIFY_OK;
271	}
272	case MEM_CANCEL_ONLINE:
273	case MEM_OFFLINE: {
274		struct vm_struct *vm;
275
276		/*
277		 * shadow_start was either mapped during boot by kasan_init()
278		 * or during memory online by __vmalloc_node_range().
279		 * In the latter case we can use vfree() to free shadow.
280		 * Non-NULL result of the find_vm_area() will tell us if
281		 * that was the second case.
282		 *
283		 * Currently it's not possible to free shadow mapped
284		 * during boot by kasan_init(). It's because the code
285		 * to do that hasn't been written yet. So we'll just
286		 * leak the memory.
287		 */
288		vm = find_vm_area((void *)shadow_start);
289		if (vm)
290			vfree((void *)shadow_start);
291	}
292	}
293
294	return NOTIFY_OK;
295}
296
297static int __init kasan_memhotplug_init(void)
298{
299	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
300
301	return 0;
302}
303
304core_initcall(kasan_memhotplug_init);
305#endif
306
307#ifdef CONFIG_KASAN_VMALLOC
308
309void __init __weak kasan_populate_early_vm_area_shadow(void *start,
310						       unsigned long size)
311{
312}
313
314static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
315				      void *unused)
316{
317	unsigned long page;
318	pte_t pte;
319
320	if (likely(!pte_none(ptep_get(ptep))))
321		return 0;
322
323	page = __get_free_page(GFP_KERNEL);
324	if (!page)
325		return -ENOMEM;
326
327	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
328	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
329
330	spin_lock(&init_mm.page_table_lock);
331	if (likely(pte_none(ptep_get(ptep)))) {
332		set_pte_at(&init_mm, addr, ptep, pte);
333		page = 0;
334	}
335	spin_unlock(&init_mm.page_table_lock);
336	if (page)
337		free_page(page);
338	return 0;
339}
340
341int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
342{
343	unsigned long shadow_start, shadow_end;
344	int ret;
345
346	if (!kasan_arch_is_ready())
347		return 0;
348
349	if (!is_vmalloc_or_module_addr((void *)addr))
350		return 0;
351
352	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
353	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
354
355	/*
356	 * User Mode Linux maps enough shadow memory for all of virtual memory
357	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
358	 *
359	 * The remaining CONFIG_UML checks in this file exist for the same
360	 * reason.
361	 */
362	if (IS_ENABLED(CONFIG_UML)) {
363		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
364		return 0;
365	}
366
367	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
368	shadow_end = PAGE_ALIGN(shadow_end);
369
370	ret = apply_to_page_range(&init_mm, shadow_start,
371				  shadow_end - shadow_start,
372				  kasan_populate_vmalloc_pte, NULL);
373	if (ret)
374		return ret;
375
376	flush_cache_vmap(shadow_start, shadow_end);
377
378	/*
379	 * We need to be careful about inter-cpu effects here. Consider:
380	 *
381	 *   CPU#0				  CPU#1
382	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
383	 *					p[99] = 1;
384	 *
385	 * With compiler instrumentation, that ends up looking like this:
386	 *
387	 *   CPU#0				  CPU#1
388	 * // vmalloc() allocates memory
389	 * // let a = area->addr
390	 * // we reach kasan_populate_vmalloc
391	 * // and call kasan_unpoison:
392	 * STORE shadow(a), unpoison_val
393	 * ...
394	 * STORE shadow(a+99), unpoison_val	x = LOAD p
395	 * // rest of vmalloc process		<data dependency>
396	 * STORE p, a				LOAD shadow(x+99)
397	 *
398	 * If there is no barrier between the end of unpoisoning the shadow
399	 * and the store of the result to p, the stores could be committed
400	 * in a different order by CPU#0, and CPU#1 could erroneously observe
401	 * poison in the shadow.
402	 *
403	 * We need some sort of barrier between the stores.
404	 *
405	 * In the vmalloc() case, this is provided by a smp_wmb() in
406	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
407	 * get_vm_area() and friends, the caller gets shadow allocated but
408	 * doesn't have any pages mapped into the virtual address space that
409	 * has been reserved. Mapping those pages in will involve taking and
410	 * releasing a page-table lock, which will provide the barrier.
411	 */
412
413	return 0;
414}
415
416static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
417					void *unused)
418{
419	unsigned long page;
420
421	page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
422
423	spin_lock(&init_mm.page_table_lock);
424
425	if (likely(!pte_none(ptep_get(ptep)))) {
426		pte_clear(&init_mm, addr, ptep);
427		free_page(page);
428	}
429	spin_unlock(&init_mm.page_table_lock);
430
431	return 0;
432}
433
434/*
435 * Release the backing for the vmalloc region [start, end), which
436 * lies within the free region [free_region_start, free_region_end).
437 *
438 * This can be run lazily, long after the region was freed. It runs
439 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
440 * infrastructure.
441 *
442 * How does this work?
443 * -------------------
444 *
445 * We have a region that is page aligned, labeled as A.
446 * That might not map onto the shadow in a way that is page-aligned:
447 *
448 *                    start                     end
449 *                    v                         v
450 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
451 *  -------- -------- --------          -------- --------
452 *      |        |       |                 |        |
453 *      |        |       |         /-------/        |
454 *      \-------\|/------/         |/---------------/
455 *              |||                ||
456 *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
457 *                 (1)      (2)      (3)
458 *
459 * First we align the start upwards and the end downwards, so that the
460 * shadow of the region aligns with shadow page boundaries. In the
461 * example, this gives us the shadow page (2). This is the shadow entirely
462 * covered by this allocation.
463 *
464 * Then we have the tricky bits. We want to know if we can free the
465 * partially covered shadow pages - (1) and (3) in the example. For this,
466 * we are given the start and end of the free region that contains this
467 * allocation. Extending our previous example, we could have:
468 *
469 *  free_region_start                                    free_region_end
470 *  |                 start                     end      |
471 *  v                 v                         v        v
472 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
473 *  -------- -------- --------          -------- --------
474 *      |        |       |                 |        |
475 *      |        |       |         /-------/        |
476 *      \-------\|/------/         |/---------------/
477 *              |||                ||
478 *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
479 *                 (1)      (2)      (3)
480 *
481 * Once again, we align the start of the free region up, and the end of
482 * the free region down so that the shadow is page aligned. So we can free
483 * page (1) - we know no allocation currently uses anything in that page,
484 * because all of it is in the vmalloc free region. But we cannot free
485 * page (3), because we can't be sure that the rest of it is unused.
486 *
487 * We only consider pages that contain part of the original region for
488 * freeing: we don't try to free other pages from the free region or we'd
489 * end up trying to free huge chunks of virtual address space.
490 *
491 * Concurrency
492 * -----------
493 *
494 * How do we know that we're not freeing a page that is simultaneously
495 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
496 *
497 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
498 * at the same time. While we run under free_vmap_area_lock, the population
499 * code does not.
500 *
501 * free_vmap_area_lock instead operates to ensure that the larger range
502 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
503 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
504 * no space identified as free will become used while we are running. This
505 * means that so long as we are careful with alignment and only free shadow
506 * pages entirely covered by the free region, we will not run in to any
507 * trouble - any simultaneous allocations will be for disjoint regions.
508 */
509void kasan_release_vmalloc(unsigned long start, unsigned long end,
510			   unsigned long free_region_start,
511			   unsigned long free_region_end)
512{
513	void *shadow_start, *shadow_end;
514	unsigned long region_start, region_end;
515	unsigned long size;
516
517	if (!kasan_arch_is_ready())
518		return;
519
520	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
521	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
522
523	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
524
525	if (start != region_start &&
526	    free_region_start < region_start)
527		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
528
529	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
530
531	if (end != region_end &&
532	    free_region_end > region_end)
533		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
534
535	shadow_start = kasan_mem_to_shadow((void *)region_start);
536	shadow_end = kasan_mem_to_shadow((void *)region_end);
537
538	if (shadow_end > shadow_start) {
539		size = shadow_end - shadow_start;
540		if (IS_ENABLED(CONFIG_UML)) {
541			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
542			return;
543		}
544		apply_to_existing_page_range(&init_mm,
545					     (unsigned long)shadow_start,
546					     size, kasan_depopulate_vmalloc_pte,
547					     NULL);
548		flush_tlb_kernel_range((unsigned long)shadow_start,
549				       (unsigned long)shadow_end);
550	}
551}
552
553void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
554			       kasan_vmalloc_flags_t flags)
555{
556	/*
557	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
558	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
559	 * Software KASAN modes can't optimize zeroing memory by combining it
560	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
561	 */
562
563	if (!kasan_arch_is_ready())
564		return (void *)start;
565
566	if (!is_vmalloc_or_module_addr(start))
567		return (void *)start;
568
569	/*
570	 * Don't tag executable memory with the tag-based mode.
571	 * The kernel doesn't tolerate having the PC register tagged.
572	 */
573	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
574	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
575		return (void *)start;
576
577	start = set_tag(start, kasan_random_tag());
578	kasan_unpoison(start, size, false);
579	return (void *)start;
580}
581
582/*
583 * Poison the shadow for a vmalloc region. Called as part of the
584 * freeing process at the time the region is freed.
585 */
586void __kasan_poison_vmalloc(const void *start, unsigned long size)
587{
588	if (!kasan_arch_is_ready())
589		return;
590
591	if (!is_vmalloc_or_module_addr(start))
592		return;
593
594	size = round_up(size, KASAN_GRANULE_SIZE);
595	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
596}
597
598#else /* CONFIG_KASAN_VMALLOC */
599
600int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
601{
602	void *ret;
603	size_t scaled_size;
604	size_t shadow_size;
605	unsigned long shadow_start;
606
607	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
608	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
609				KASAN_SHADOW_SCALE_SHIFT;
610	shadow_size = round_up(scaled_size, PAGE_SIZE);
611
612	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
613		return -EINVAL;
614
615	if (IS_ENABLED(CONFIG_UML)) {
616		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
617		return 0;
618	}
619
620	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
621			shadow_start + shadow_size,
622			GFP_KERNEL,
623			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
624			__builtin_return_address(0));
625
626	if (ret) {
627		struct vm_struct *vm = find_vm_area(addr);
628		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
629		vm->flags |= VM_KASAN;
630		kmemleak_ignore(ret);
631
632		if (vm->flags & VM_DEFER_KMEMLEAK)
633			kmemleak_vmalloc(vm, size, gfp_mask);
634
635		return 0;
636	}
637
638	return -ENOMEM;
639}
640
641void kasan_free_module_shadow(const struct vm_struct *vm)
642{
643	if (IS_ENABLED(CONFIG_UML))
644		return;
645
646	if (vm->flags & VM_KASAN)
647		vfree(kasan_mem_to_shadow(vm->addr));
648}
649
650#endif
651