xref: /kernel/linux/linux-6.6/mm/kasan/generic.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains core generic KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 *        Andrey Konovalov <andreyknvl@gmail.com>
10 */
11
12#include <linux/export.h>
13#include <linux/interrupt.h>
14#include <linux/init.h>
15#include <linux/kasan.h>
16#include <linux/kernel.h>
17#include <linux/kfence.h>
18#include <linux/kmemleak.h>
19#include <linux/linkage.h>
20#include <linux/memblock.h>
21#include <linux/memory.h>
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/printk.h>
25#include <linux/sched.h>
26#include <linux/sched/task_stack.h>
27#include <linux/slab.h>
28#include <linux/stacktrace.h>
29#include <linux/string.h>
30#include <linux/types.h>
31#include <linux/vmalloc.h>
32#include <linux/bug.h>
33
34#include "kasan.h"
35#include "../slab.h"
36
37/*
38 * All functions below always inlined so compiler could
39 * perform better optimizations in each of __asan_loadX/__assn_storeX
40 * depending on memory access size X.
41 */
42
43static __always_inline bool memory_is_poisoned_1(const void *addr)
44{
45	s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
46
47	if (unlikely(shadow_value)) {
48		s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
49		return unlikely(last_accessible_byte >= shadow_value);
50	}
51
52	return false;
53}
54
55static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
56						unsigned long size)
57{
58	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
59
60	/*
61	 * Access crosses 8(shadow size)-byte boundary. Such access maps
62	 * into 2 shadow bytes, so we need to check them both.
63	 */
64	if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
65		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
66
67	return memory_is_poisoned_1(addr + size - 1);
68}
69
70static __always_inline bool memory_is_poisoned_16(const void *addr)
71{
72	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
73
74	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
75	if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
76		return *shadow_addr || memory_is_poisoned_1(addr + 15);
77
78	return *shadow_addr;
79}
80
81static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
82					size_t size)
83{
84	while (size) {
85		if (unlikely(*start))
86			return (unsigned long)start;
87		start++;
88		size--;
89	}
90
91	return 0;
92}
93
94static __always_inline unsigned long memory_is_nonzero(const void *start,
95						const void *end)
96{
97	unsigned int words;
98	unsigned long ret;
99	unsigned int prefix = (unsigned long)start % 8;
100
101	if (end - start <= 16)
102		return bytes_is_nonzero(start, end - start);
103
104	if (prefix) {
105		prefix = 8 - prefix;
106		ret = bytes_is_nonzero(start, prefix);
107		if (unlikely(ret))
108			return ret;
109		start += prefix;
110	}
111
112	words = (end - start) / 8;
113	while (words) {
114		if (unlikely(*(u64 *)start))
115			return bytes_is_nonzero(start, 8);
116		start += 8;
117		words--;
118	}
119
120	return bytes_is_nonzero(start, (end - start) % 8);
121}
122
123static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
124{
125	unsigned long ret;
126
127	ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
128			kasan_mem_to_shadow(addr + size - 1) + 1);
129
130	if (unlikely(ret)) {
131		const void *last_byte = addr + size - 1;
132		s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
133		s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
134
135		if (unlikely(ret != (unsigned long)last_shadow ||
136			     last_accessible_byte >= *last_shadow))
137			return true;
138	}
139	return false;
140}
141
142static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
143{
144	if (__builtin_constant_p(size)) {
145		switch (size) {
146		case 1:
147			return memory_is_poisoned_1(addr);
148		case 2:
149		case 4:
150		case 8:
151			return memory_is_poisoned_2_4_8(addr, size);
152		case 16:
153			return memory_is_poisoned_16(addr);
154		default:
155			BUILD_BUG();
156		}
157	}
158
159	return memory_is_poisoned_n(addr, size);
160}
161
162static __always_inline bool check_region_inline(const void *addr,
163						size_t size, bool write,
164						unsigned long ret_ip)
165{
166	if (!kasan_arch_is_ready())
167		return true;
168
169	if (unlikely(size == 0))
170		return true;
171
172	if (unlikely(addr + size < addr))
173		return !kasan_report(addr, size, write, ret_ip);
174
175	if (unlikely(!addr_has_metadata(addr)))
176		return !kasan_report(addr, size, write, ret_ip);
177
178	if (likely(!memory_is_poisoned(addr, size)))
179		return true;
180
181	return !kasan_report(addr, size, write, ret_ip);
182}
183
184bool kasan_check_range(const void *addr, size_t size, bool write,
185					unsigned long ret_ip)
186{
187	return check_region_inline(addr, size, write, ret_ip);
188}
189
190bool kasan_byte_accessible(const void *addr)
191{
192	s8 shadow_byte;
193
194	if (!kasan_arch_is_ready())
195		return true;
196
197	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
198
199	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
200}
201
202void kasan_cache_shrink(struct kmem_cache *cache)
203{
204	kasan_quarantine_remove_cache(cache);
205}
206
207void kasan_cache_shutdown(struct kmem_cache *cache)
208{
209	if (!__kmem_cache_empty(cache))
210		kasan_quarantine_remove_cache(cache);
211}
212
213static void register_global(struct kasan_global *global)
214{
215	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
216
217	kasan_unpoison(global->beg, global->size, false);
218
219	kasan_poison(global->beg + aligned_size,
220		     global->size_with_redzone - aligned_size,
221		     KASAN_GLOBAL_REDZONE, false);
222}
223
224void __asan_register_globals(void *ptr, ssize_t size)
225{
226	int i;
227	struct kasan_global *globals = ptr;
228
229	for (i = 0; i < size; i++)
230		register_global(&globals[i]);
231}
232EXPORT_SYMBOL(__asan_register_globals);
233
234void __asan_unregister_globals(void *ptr, ssize_t size)
235{
236}
237EXPORT_SYMBOL(__asan_unregister_globals);
238
239#define DEFINE_ASAN_LOAD_STORE(size)					\
240	void __asan_load##size(void *addr)				\
241	{								\
242		check_region_inline(addr, size, false, _RET_IP_);	\
243	}								\
244	EXPORT_SYMBOL(__asan_load##size);				\
245	__alias(__asan_load##size)					\
246	void __asan_load##size##_noabort(void *);			\
247	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
248	void __asan_store##size(void *addr)				\
249	{								\
250		check_region_inline(addr, size, true, _RET_IP_);	\
251	}								\
252	EXPORT_SYMBOL(__asan_store##size);				\
253	__alias(__asan_store##size)					\
254	void __asan_store##size##_noabort(void *);			\
255	EXPORT_SYMBOL(__asan_store##size##_noabort)
256
257DEFINE_ASAN_LOAD_STORE(1);
258DEFINE_ASAN_LOAD_STORE(2);
259DEFINE_ASAN_LOAD_STORE(4);
260DEFINE_ASAN_LOAD_STORE(8);
261DEFINE_ASAN_LOAD_STORE(16);
262
263void __asan_loadN(void *addr, ssize_t size)
264{
265	kasan_check_range(addr, size, false, _RET_IP_);
266}
267EXPORT_SYMBOL(__asan_loadN);
268
269__alias(__asan_loadN)
270void __asan_loadN_noabort(void *, ssize_t);
271EXPORT_SYMBOL(__asan_loadN_noabort);
272
273void __asan_storeN(void *addr, ssize_t size)
274{
275	kasan_check_range(addr, size, true, _RET_IP_);
276}
277EXPORT_SYMBOL(__asan_storeN);
278
279__alias(__asan_storeN)
280void __asan_storeN_noabort(void *, ssize_t);
281EXPORT_SYMBOL(__asan_storeN_noabort);
282
283/* to shut up compiler complaints */
284void __asan_handle_no_return(void) {}
285EXPORT_SYMBOL(__asan_handle_no_return);
286
287/* Emitted by compiler to poison alloca()ed objects. */
288void __asan_alloca_poison(void *addr, ssize_t size)
289{
290	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
291	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
292			rounded_up_size;
293	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
294
295	const void *left_redzone = (const void *)(addr -
296			KASAN_ALLOCA_REDZONE_SIZE);
297	const void *right_redzone = (const void *)(addr + rounded_up_size);
298
299	WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
300
301	kasan_unpoison((const void *)(addr + rounded_down_size),
302			size - rounded_down_size, false);
303	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
304		     KASAN_ALLOCA_LEFT, false);
305	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
306		     KASAN_ALLOCA_RIGHT, false);
307}
308EXPORT_SYMBOL(__asan_alloca_poison);
309
310/* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
311void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
312{
313	if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
314		return;
315
316	kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
317}
318EXPORT_SYMBOL(__asan_allocas_unpoison);
319
320/* Emitted by the compiler to [un]poison local variables. */
321#define DEFINE_ASAN_SET_SHADOW(byte) \
322	void __asan_set_shadow_##byte(const void *addr, ssize_t size)	\
323	{								\
324		__memset((void *)addr, 0x##byte, size);			\
325	}								\
326	EXPORT_SYMBOL(__asan_set_shadow_##byte)
327
328DEFINE_ASAN_SET_SHADOW(00);
329DEFINE_ASAN_SET_SHADOW(f1);
330DEFINE_ASAN_SET_SHADOW(f2);
331DEFINE_ASAN_SET_SHADOW(f3);
332DEFINE_ASAN_SET_SHADOW(f5);
333DEFINE_ASAN_SET_SHADOW(f8);
334
335/* Only allow cache merging when no per-object metadata is present. */
336slab_flags_t kasan_never_merge(void)
337{
338	if (!kasan_requires_meta())
339		return 0;
340	return SLAB_KASAN;
341}
342
343/*
344 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
345 * For larger allocations larger redzones are used.
346 */
347static inline unsigned int optimal_redzone(unsigned int object_size)
348{
349	return
350		object_size <= 64        - 16   ? 16 :
351		object_size <= 128       - 32   ? 32 :
352		object_size <= 512       - 64   ? 64 :
353		object_size <= 4096      - 128  ? 128 :
354		object_size <= (1 << 14) - 256  ? 256 :
355		object_size <= (1 << 15) - 512  ? 512 :
356		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
357}
358
359void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
360			  slab_flags_t *flags)
361{
362	unsigned int ok_size;
363	unsigned int optimal_size;
364
365	if (!kasan_requires_meta())
366		return;
367
368	/*
369	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN
370	 * and that thus have per-object metadata.
371	 * Currently this flag is used in two places:
372	 * 1. In slab_ksize() to account for per-object metadata when
373	 *    calculating the size of the accessible memory within the object.
374	 * 2. In slab_common.c via kasan_never_merge() to prevent merging of
375	 *    caches with per-object metadata.
376	 */
377	*flags |= SLAB_KASAN;
378
379	ok_size = *size;
380
381	/* Add alloc meta into redzone. */
382	cache->kasan_info.alloc_meta_offset = *size;
383	*size += sizeof(struct kasan_alloc_meta);
384
385	/*
386	 * If alloc meta doesn't fit, don't add it.
387	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
388	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
389	 * larger sizes.
390	 */
391	if (*size > KMALLOC_MAX_SIZE) {
392		cache->kasan_info.alloc_meta_offset = 0;
393		*size = ok_size;
394		/* Continue, since free meta might still fit. */
395	}
396
397	/*
398	 * Add free meta into redzone when it's not possible to store
399	 * it in the object. This is the case when:
400	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
401	 *    be touched after it was freed, or
402	 * 2. Object has a constructor, which means it's expected to
403	 *    retain its content until the next allocation, or
404	 * 3. Object is too small.
405	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
406	 */
407	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
408	    cache->object_size < sizeof(struct kasan_free_meta)) {
409		ok_size = *size;
410
411		cache->kasan_info.free_meta_offset = *size;
412		*size += sizeof(struct kasan_free_meta);
413
414		/* If free meta doesn't fit, don't add it. */
415		if (*size > KMALLOC_MAX_SIZE) {
416			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
417			*size = ok_size;
418		}
419	}
420
421	/* Calculate size with optimal redzone. */
422	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
423	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
424	if (optimal_size > KMALLOC_MAX_SIZE)
425		optimal_size = KMALLOC_MAX_SIZE;
426	/* Use optimal size if the size with added metas is not large enough. */
427	if (*size < optimal_size)
428		*size = optimal_size;
429}
430
431struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
432					      const void *object)
433{
434	if (!cache->kasan_info.alloc_meta_offset)
435		return NULL;
436	return (void *)object + cache->kasan_info.alloc_meta_offset;
437}
438
439struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
440					    const void *object)
441{
442	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
443	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
444		return NULL;
445	return (void *)object + cache->kasan_info.free_meta_offset;
446}
447
448void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
449{
450	struct kasan_alloc_meta *alloc_meta;
451
452	alloc_meta = kasan_get_alloc_meta(cache, object);
453	if (alloc_meta)
454		__memset(alloc_meta, 0, sizeof(*alloc_meta));
455}
456
457size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
458{
459	struct kasan_cache *info = &cache->kasan_info;
460
461	if (!kasan_requires_meta())
462		return 0;
463
464	if (in_object)
465		return (info->free_meta_offset ?
466			0 : sizeof(struct kasan_free_meta));
467	else
468		return (info->alloc_meta_offset ?
469			sizeof(struct kasan_alloc_meta) : 0) +
470			((info->free_meta_offset &&
471			info->free_meta_offset != KASAN_NO_FREE_META) ?
472			sizeof(struct kasan_free_meta) : 0);
473}
474
475static void __kasan_record_aux_stack(void *addr, bool can_alloc)
476{
477	struct slab *slab = kasan_addr_to_slab(addr);
478	struct kmem_cache *cache;
479	struct kasan_alloc_meta *alloc_meta;
480	void *object;
481
482	if (is_kfence_address(addr) || !slab)
483		return;
484
485	cache = slab->slab_cache;
486	object = nearest_obj(cache, slab, addr);
487	alloc_meta = kasan_get_alloc_meta(cache, object);
488	if (!alloc_meta)
489		return;
490
491	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
492	alloc_meta->aux_stack[0] = kasan_save_stack(0, can_alloc);
493}
494
495void kasan_record_aux_stack(void *addr)
496{
497	return __kasan_record_aux_stack(addr, true);
498}
499
500void kasan_record_aux_stack_noalloc(void *addr)
501{
502	return __kasan_record_aux_stack(addr, false);
503}
504
505void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
506{
507	struct kasan_alloc_meta *alloc_meta;
508
509	alloc_meta = kasan_get_alloc_meta(cache, object);
510	if (alloc_meta)
511		kasan_set_track(&alloc_meta->alloc_track, flags);
512}
513
514void kasan_save_free_info(struct kmem_cache *cache, void *object)
515{
516	struct kasan_free_meta *free_meta;
517
518	free_meta = kasan_get_free_meta(cache, object);
519	if (!free_meta)
520		return;
521
522	kasan_set_track(&free_meta->free_track, 0);
523	/* The object was freed and has free track set. */
524	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREETRACK;
525}
526