xref: /kernel/linux/linux-6.6/mm/hugetlb.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37#include <linux/mm_inline.h>
38
39#include <asm/page.h>
40#include <asm/pgalloc.h>
41#include <asm/tlb.h>
42
43#include <linux/io.h>
44#include <linux/hugetlb.h>
45#include <linux/hugetlb_cgroup.h>
46#include <linux/node.h>
47#include <linux/page_owner.h>
48#include "internal.h"
49#include "hugetlb_vmemmap.h"
50
51int hugetlb_max_hstate __read_mostly;
52unsigned int default_hstate_idx;
53struct hstate hstates[HUGE_MAX_HSTATE];
54
55#ifdef CONFIG_CMA
56static struct cma *hugetlb_cma[MAX_NUMNODES];
57static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59{
60	return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
61				1 << order);
62}
63#else
64static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
65{
66	return false;
67}
68#endif
69static unsigned long hugetlb_cma_size __initdata;
70
71__initdata LIST_HEAD(huge_boot_pages);
72
73/* for command line parsing */
74static struct hstate * __initdata parsed_hstate;
75static unsigned long __initdata default_hstate_max_huge_pages;
76static bool __initdata parsed_valid_hugepagesz = true;
77static bool __initdata parsed_default_hugepagesz;
78static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
79
80/*
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
83 */
84DEFINE_SPINLOCK(hugetlb_lock);
85
86/*
87 * Serializes faults on the same logical page.  This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 */
90static int num_fault_mutexes;
91struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92
93/* Forward declaration */
94static int hugetlb_acct_memory(struct hstate *h, long delta);
95static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99		unsigned long start, unsigned long end);
100static struct resv_map *vma_resv_map(struct vm_area_struct *vma);
101
102static inline bool subpool_is_free(struct hugepage_subpool *spool)
103{
104	if (spool->count)
105		return false;
106	if (spool->max_hpages != -1)
107		return spool->used_hpages == 0;
108	if (spool->min_hpages != -1)
109		return spool->rsv_hpages == spool->min_hpages;
110
111	return true;
112}
113
114static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
115						unsigned long irq_flags)
116{
117	spin_unlock_irqrestore(&spool->lock, irq_flags);
118
119	/* If no pages are used, and no other handles to the subpool
120	 * remain, give up any reservations based on minimum size and
121	 * free the subpool */
122	if (subpool_is_free(spool)) {
123		if (spool->min_hpages != -1)
124			hugetlb_acct_memory(spool->hstate,
125						-spool->min_hpages);
126		kfree(spool);
127	}
128}
129
130struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131						long min_hpages)
132{
133	struct hugepage_subpool *spool;
134
135	spool = kzalloc(sizeof(*spool), GFP_KERNEL);
136	if (!spool)
137		return NULL;
138
139	spin_lock_init(&spool->lock);
140	spool->count = 1;
141	spool->max_hpages = max_hpages;
142	spool->hstate = h;
143	spool->min_hpages = min_hpages;
144
145	if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
146		kfree(spool);
147		return NULL;
148	}
149	spool->rsv_hpages = min_hpages;
150
151	return spool;
152}
153
154void hugepage_put_subpool(struct hugepage_subpool *spool)
155{
156	unsigned long flags;
157
158	spin_lock_irqsave(&spool->lock, flags);
159	BUG_ON(!spool->count);
160	spool->count--;
161	unlock_or_release_subpool(spool, flags);
162}
163
164/*
165 * Subpool accounting for allocating and reserving pages.
166 * Return -ENOMEM if there are not enough resources to satisfy the
167 * request.  Otherwise, return the number of pages by which the
168 * global pools must be adjusted (upward).  The returned value may
169 * only be different than the passed value (delta) in the case where
170 * a subpool minimum size must be maintained.
171 */
172static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
173				      long delta)
174{
175	long ret = delta;
176
177	if (!spool)
178		return ret;
179
180	spin_lock_irq(&spool->lock);
181
182	if (spool->max_hpages != -1) {		/* maximum size accounting */
183		if ((spool->used_hpages + delta) <= spool->max_hpages)
184			spool->used_hpages += delta;
185		else {
186			ret = -ENOMEM;
187			goto unlock_ret;
188		}
189	}
190
191	/* minimum size accounting */
192	if (spool->min_hpages != -1 && spool->rsv_hpages) {
193		if (delta > spool->rsv_hpages) {
194			/*
195			 * Asking for more reserves than those already taken on
196			 * behalf of subpool.  Return difference.
197			 */
198			ret = delta - spool->rsv_hpages;
199			spool->rsv_hpages = 0;
200		} else {
201			ret = 0;	/* reserves already accounted for */
202			spool->rsv_hpages -= delta;
203		}
204	}
205
206unlock_ret:
207	spin_unlock_irq(&spool->lock);
208	return ret;
209}
210
211/*
212 * Subpool accounting for freeing and unreserving pages.
213 * Return the number of global page reservations that must be dropped.
214 * The return value may only be different than the passed value (delta)
215 * in the case where a subpool minimum size must be maintained.
216 */
217static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
218				       long delta)
219{
220	long ret = delta;
221	unsigned long flags;
222
223	if (!spool)
224		return delta;
225
226	spin_lock_irqsave(&spool->lock, flags);
227
228	if (spool->max_hpages != -1)		/* maximum size accounting */
229		spool->used_hpages -= delta;
230
231	 /* minimum size accounting */
232	if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
233		if (spool->rsv_hpages + delta <= spool->min_hpages)
234			ret = 0;
235		else
236			ret = spool->rsv_hpages + delta - spool->min_hpages;
237
238		spool->rsv_hpages += delta;
239		if (spool->rsv_hpages > spool->min_hpages)
240			spool->rsv_hpages = spool->min_hpages;
241	}
242
243	/*
244	 * If hugetlbfs_put_super couldn't free spool due to an outstanding
245	 * quota reference, free it now.
246	 */
247	unlock_or_release_subpool(spool, flags);
248
249	return ret;
250}
251
252static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253{
254	return HUGETLBFS_SB(inode->i_sb)->spool;
255}
256
257static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258{
259	return subpool_inode(file_inode(vma->vm_file));
260}
261
262/*
263 * hugetlb vma_lock helper routines
264 */
265void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266{
267	if (__vma_shareable_lock(vma)) {
268		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269
270		down_read(&vma_lock->rw_sema);
271	} else if (__vma_private_lock(vma)) {
272		struct resv_map *resv_map = vma_resv_map(vma);
273
274		down_read(&resv_map->rw_sema);
275	}
276}
277
278void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
279{
280	if (__vma_shareable_lock(vma)) {
281		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
282
283		up_read(&vma_lock->rw_sema);
284	} else if (__vma_private_lock(vma)) {
285		struct resv_map *resv_map = vma_resv_map(vma);
286
287		up_read(&resv_map->rw_sema);
288	}
289}
290
291void hugetlb_vma_lock_write(struct vm_area_struct *vma)
292{
293	if (__vma_shareable_lock(vma)) {
294		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295
296		down_write(&vma_lock->rw_sema);
297	} else if (__vma_private_lock(vma)) {
298		struct resv_map *resv_map = vma_resv_map(vma);
299
300		down_write(&resv_map->rw_sema);
301	}
302}
303
304void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
305{
306	if (__vma_shareable_lock(vma)) {
307		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
308
309		up_write(&vma_lock->rw_sema);
310	} else if (__vma_private_lock(vma)) {
311		struct resv_map *resv_map = vma_resv_map(vma);
312
313		up_write(&resv_map->rw_sema);
314	}
315}
316
317int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
318{
319
320	if (__vma_shareable_lock(vma)) {
321		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
322
323		return down_write_trylock(&vma_lock->rw_sema);
324	} else if (__vma_private_lock(vma)) {
325		struct resv_map *resv_map = vma_resv_map(vma);
326
327		return down_write_trylock(&resv_map->rw_sema);
328	}
329
330	return 1;
331}
332
333void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
334{
335	if (__vma_shareable_lock(vma)) {
336		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
337
338		lockdep_assert_held(&vma_lock->rw_sema);
339	} else if (__vma_private_lock(vma)) {
340		struct resv_map *resv_map = vma_resv_map(vma);
341
342		lockdep_assert_held(&resv_map->rw_sema);
343	}
344}
345
346void hugetlb_vma_lock_release(struct kref *kref)
347{
348	struct hugetlb_vma_lock *vma_lock = container_of(kref,
349			struct hugetlb_vma_lock, refs);
350
351	kfree(vma_lock);
352}
353
354static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
355{
356	struct vm_area_struct *vma = vma_lock->vma;
357
358	/*
359	 * vma_lock structure may or not be released as a result of put,
360	 * it certainly will no longer be attached to vma so clear pointer.
361	 * Semaphore synchronizes access to vma_lock->vma field.
362	 */
363	vma_lock->vma = NULL;
364	vma->vm_private_data = NULL;
365	up_write(&vma_lock->rw_sema);
366	kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
367}
368
369static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
370{
371	if (__vma_shareable_lock(vma)) {
372		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
373
374		__hugetlb_vma_unlock_write_put(vma_lock);
375	} else if (__vma_private_lock(vma)) {
376		struct resv_map *resv_map = vma_resv_map(vma);
377
378		/* no free for anon vmas, but still need to unlock */
379		up_write(&resv_map->rw_sema);
380	}
381}
382
383static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
384{
385	/*
386	 * Only present in sharable vmas.
387	 */
388	if (!vma || !__vma_shareable_lock(vma))
389		return;
390
391	if (vma->vm_private_data) {
392		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
393
394		down_write(&vma_lock->rw_sema);
395		__hugetlb_vma_unlock_write_put(vma_lock);
396	}
397}
398
399static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
400{
401	struct hugetlb_vma_lock *vma_lock;
402
403	/* Only establish in (flags) sharable vmas */
404	if (!vma || !(vma->vm_flags & VM_MAYSHARE))
405		return;
406
407	/* Should never get here with non-NULL vm_private_data */
408	if (vma->vm_private_data)
409		return;
410
411	vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
412	if (!vma_lock) {
413		/*
414		 * If we can not allocate structure, then vma can not
415		 * participate in pmd sharing.  This is only a possible
416		 * performance enhancement and memory saving issue.
417		 * However, the lock is also used to synchronize page
418		 * faults with truncation.  If the lock is not present,
419		 * unlikely races could leave pages in a file past i_size
420		 * until the file is removed.  Warn in the unlikely case of
421		 * allocation failure.
422		 */
423		pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
424		return;
425	}
426
427	kref_init(&vma_lock->refs);
428	init_rwsem(&vma_lock->rw_sema);
429	vma_lock->vma = vma;
430	vma->vm_private_data = vma_lock;
431}
432
433/* Helper that removes a struct file_region from the resv_map cache and returns
434 * it for use.
435 */
436static struct file_region *
437get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
438{
439	struct file_region *nrg;
440
441	VM_BUG_ON(resv->region_cache_count <= 0);
442
443	resv->region_cache_count--;
444	nrg = list_first_entry(&resv->region_cache, struct file_region, link);
445	list_del(&nrg->link);
446
447	nrg->from = from;
448	nrg->to = to;
449
450	return nrg;
451}
452
453static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
454					      struct file_region *rg)
455{
456#ifdef CONFIG_CGROUP_HUGETLB
457	nrg->reservation_counter = rg->reservation_counter;
458	nrg->css = rg->css;
459	if (rg->css)
460		css_get(rg->css);
461#endif
462}
463
464/* Helper that records hugetlb_cgroup uncharge info. */
465static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
466						struct hstate *h,
467						struct resv_map *resv,
468						struct file_region *nrg)
469{
470#ifdef CONFIG_CGROUP_HUGETLB
471	if (h_cg) {
472		nrg->reservation_counter =
473			&h_cg->rsvd_hugepage[hstate_index(h)];
474		nrg->css = &h_cg->css;
475		/*
476		 * The caller will hold exactly one h_cg->css reference for the
477		 * whole contiguous reservation region. But this area might be
478		 * scattered when there are already some file_regions reside in
479		 * it. As a result, many file_regions may share only one css
480		 * reference. In order to ensure that one file_region must hold
481		 * exactly one h_cg->css reference, we should do css_get for
482		 * each file_region and leave the reference held by caller
483		 * untouched.
484		 */
485		css_get(&h_cg->css);
486		if (!resv->pages_per_hpage)
487			resv->pages_per_hpage = pages_per_huge_page(h);
488		/* pages_per_hpage should be the same for all entries in
489		 * a resv_map.
490		 */
491		VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
492	} else {
493		nrg->reservation_counter = NULL;
494		nrg->css = NULL;
495	}
496#endif
497}
498
499static void put_uncharge_info(struct file_region *rg)
500{
501#ifdef CONFIG_CGROUP_HUGETLB
502	if (rg->css)
503		css_put(rg->css);
504#endif
505}
506
507static bool has_same_uncharge_info(struct file_region *rg,
508				   struct file_region *org)
509{
510#ifdef CONFIG_CGROUP_HUGETLB
511	return rg->reservation_counter == org->reservation_counter &&
512	       rg->css == org->css;
513
514#else
515	return true;
516#endif
517}
518
519static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
520{
521	struct file_region *nrg, *prg;
522
523	prg = list_prev_entry(rg, link);
524	if (&prg->link != &resv->regions && prg->to == rg->from &&
525	    has_same_uncharge_info(prg, rg)) {
526		prg->to = rg->to;
527
528		list_del(&rg->link);
529		put_uncharge_info(rg);
530		kfree(rg);
531
532		rg = prg;
533	}
534
535	nrg = list_next_entry(rg, link);
536	if (&nrg->link != &resv->regions && nrg->from == rg->to &&
537	    has_same_uncharge_info(nrg, rg)) {
538		nrg->from = rg->from;
539
540		list_del(&rg->link);
541		put_uncharge_info(rg);
542		kfree(rg);
543	}
544}
545
546static inline long
547hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
548		     long to, struct hstate *h, struct hugetlb_cgroup *cg,
549		     long *regions_needed)
550{
551	struct file_region *nrg;
552
553	if (!regions_needed) {
554		nrg = get_file_region_entry_from_cache(map, from, to);
555		record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
556		list_add(&nrg->link, rg);
557		coalesce_file_region(map, nrg);
558	} else
559		*regions_needed += 1;
560
561	return to - from;
562}
563
564/*
565 * Must be called with resv->lock held.
566 *
567 * Calling this with regions_needed != NULL will count the number of pages
568 * to be added but will not modify the linked list. And regions_needed will
569 * indicate the number of file_regions needed in the cache to carry out to add
570 * the regions for this range.
571 */
572static long add_reservation_in_range(struct resv_map *resv, long f, long t,
573				     struct hugetlb_cgroup *h_cg,
574				     struct hstate *h, long *regions_needed)
575{
576	long add = 0;
577	struct list_head *head = &resv->regions;
578	long last_accounted_offset = f;
579	struct file_region *iter, *trg = NULL;
580	struct list_head *rg = NULL;
581
582	if (regions_needed)
583		*regions_needed = 0;
584
585	/* In this loop, we essentially handle an entry for the range
586	 * [last_accounted_offset, iter->from), at every iteration, with some
587	 * bounds checking.
588	 */
589	list_for_each_entry_safe(iter, trg, head, link) {
590		/* Skip irrelevant regions that start before our range. */
591		if (iter->from < f) {
592			/* If this region ends after the last accounted offset,
593			 * then we need to update last_accounted_offset.
594			 */
595			if (iter->to > last_accounted_offset)
596				last_accounted_offset = iter->to;
597			continue;
598		}
599
600		/* When we find a region that starts beyond our range, we've
601		 * finished.
602		 */
603		if (iter->from >= t) {
604			rg = iter->link.prev;
605			break;
606		}
607
608		/* Add an entry for last_accounted_offset -> iter->from, and
609		 * update last_accounted_offset.
610		 */
611		if (iter->from > last_accounted_offset)
612			add += hugetlb_resv_map_add(resv, iter->link.prev,
613						    last_accounted_offset,
614						    iter->from, h, h_cg,
615						    regions_needed);
616
617		last_accounted_offset = iter->to;
618	}
619
620	/* Handle the case where our range extends beyond
621	 * last_accounted_offset.
622	 */
623	if (!rg)
624		rg = head->prev;
625	if (last_accounted_offset < t)
626		add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
627					    t, h, h_cg, regions_needed);
628
629	return add;
630}
631
632/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
633 */
634static int allocate_file_region_entries(struct resv_map *resv,
635					int regions_needed)
636	__must_hold(&resv->lock)
637{
638	LIST_HEAD(allocated_regions);
639	int to_allocate = 0, i = 0;
640	struct file_region *trg = NULL, *rg = NULL;
641
642	VM_BUG_ON(regions_needed < 0);
643
644	/*
645	 * Check for sufficient descriptors in the cache to accommodate
646	 * the number of in progress add operations plus regions_needed.
647	 *
648	 * This is a while loop because when we drop the lock, some other call
649	 * to region_add or region_del may have consumed some region_entries,
650	 * so we keep looping here until we finally have enough entries for
651	 * (adds_in_progress + regions_needed).
652	 */
653	while (resv->region_cache_count <
654	       (resv->adds_in_progress + regions_needed)) {
655		to_allocate = resv->adds_in_progress + regions_needed -
656			      resv->region_cache_count;
657
658		/* At this point, we should have enough entries in the cache
659		 * for all the existing adds_in_progress. We should only be
660		 * needing to allocate for regions_needed.
661		 */
662		VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
663
664		spin_unlock(&resv->lock);
665		for (i = 0; i < to_allocate; i++) {
666			trg = kmalloc(sizeof(*trg), GFP_KERNEL);
667			if (!trg)
668				goto out_of_memory;
669			list_add(&trg->link, &allocated_regions);
670		}
671
672		spin_lock(&resv->lock);
673
674		list_splice(&allocated_regions, &resv->region_cache);
675		resv->region_cache_count += to_allocate;
676	}
677
678	return 0;
679
680out_of_memory:
681	list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
682		list_del(&rg->link);
683		kfree(rg);
684	}
685	return -ENOMEM;
686}
687
688/*
689 * Add the huge page range represented by [f, t) to the reserve
690 * map.  Regions will be taken from the cache to fill in this range.
691 * Sufficient regions should exist in the cache due to the previous
692 * call to region_chg with the same range, but in some cases the cache will not
693 * have sufficient entries due to races with other code doing region_add or
694 * region_del.  The extra needed entries will be allocated.
695 *
696 * regions_needed is the out value provided by a previous call to region_chg.
697 *
698 * Return the number of new huge pages added to the map.  This number is greater
699 * than or equal to zero.  If file_region entries needed to be allocated for
700 * this operation and we were not able to allocate, it returns -ENOMEM.
701 * region_add of regions of length 1 never allocate file_regions and cannot
702 * fail; region_chg will always allocate at least 1 entry and a region_add for
703 * 1 page will only require at most 1 entry.
704 */
705static long region_add(struct resv_map *resv, long f, long t,
706		       long in_regions_needed, struct hstate *h,
707		       struct hugetlb_cgroup *h_cg)
708{
709	long add = 0, actual_regions_needed = 0;
710
711	spin_lock(&resv->lock);
712retry:
713
714	/* Count how many regions are actually needed to execute this add. */
715	add_reservation_in_range(resv, f, t, NULL, NULL,
716				 &actual_regions_needed);
717
718	/*
719	 * Check for sufficient descriptors in the cache to accommodate
720	 * this add operation. Note that actual_regions_needed may be greater
721	 * than in_regions_needed, as the resv_map may have been modified since
722	 * the region_chg call. In this case, we need to make sure that we
723	 * allocate extra entries, such that we have enough for all the
724	 * existing adds_in_progress, plus the excess needed for this
725	 * operation.
726	 */
727	if (actual_regions_needed > in_regions_needed &&
728	    resv->region_cache_count <
729		    resv->adds_in_progress +
730			    (actual_regions_needed - in_regions_needed)) {
731		/* region_add operation of range 1 should never need to
732		 * allocate file_region entries.
733		 */
734		VM_BUG_ON(t - f <= 1);
735
736		if (allocate_file_region_entries(
737			    resv, actual_regions_needed - in_regions_needed)) {
738			return -ENOMEM;
739		}
740
741		goto retry;
742	}
743
744	add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
745
746	resv->adds_in_progress -= in_regions_needed;
747
748	spin_unlock(&resv->lock);
749	return add;
750}
751
752/*
753 * Examine the existing reserve map and determine how many
754 * huge pages in the specified range [f, t) are NOT currently
755 * represented.  This routine is called before a subsequent
756 * call to region_add that will actually modify the reserve
757 * map to add the specified range [f, t).  region_chg does
758 * not change the number of huge pages represented by the
759 * map.  A number of new file_region structures is added to the cache as a
760 * placeholder, for the subsequent region_add call to use. At least 1
761 * file_region structure is added.
762 *
763 * out_regions_needed is the number of regions added to the
764 * resv->adds_in_progress.  This value needs to be provided to a follow up call
765 * to region_add or region_abort for proper accounting.
766 *
767 * Returns the number of huge pages that need to be added to the existing
768 * reservation map for the range [f, t).  This number is greater or equal to
769 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
770 * is needed and can not be allocated.
771 */
772static long region_chg(struct resv_map *resv, long f, long t,
773		       long *out_regions_needed)
774{
775	long chg = 0;
776
777	spin_lock(&resv->lock);
778
779	/* Count how many hugepages in this range are NOT represented. */
780	chg = add_reservation_in_range(resv, f, t, NULL, NULL,
781				       out_regions_needed);
782
783	if (*out_regions_needed == 0)
784		*out_regions_needed = 1;
785
786	if (allocate_file_region_entries(resv, *out_regions_needed))
787		return -ENOMEM;
788
789	resv->adds_in_progress += *out_regions_needed;
790
791	spin_unlock(&resv->lock);
792	return chg;
793}
794
795/*
796 * Abort the in progress add operation.  The adds_in_progress field
797 * of the resv_map keeps track of the operations in progress between
798 * calls to region_chg and region_add.  Operations are sometimes
799 * aborted after the call to region_chg.  In such cases, region_abort
800 * is called to decrement the adds_in_progress counter. regions_needed
801 * is the value returned by the region_chg call, it is used to decrement
802 * the adds_in_progress counter.
803 *
804 * NOTE: The range arguments [f, t) are not needed or used in this
805 * routine.  They are kept to make reading the calling code easier as
806 * arguments will match the associated region_chg call.
807 */
808static void region_abort(struct resv_map *resv, long f, long t,
809			 long regions_needed)
810{
811	spin_lock(&resv->lock);
812	VM_BUG_ON(!resv->region_cache_count);
813	resv->adds_in_progress -= regions_needed;
814	spin_unlock(&resv->lock);
815}
816
817/*
818 * Delete the specified range [f, t) from the reserve map.  If the
819 * t parameter is LONG_MAX, this indicates that ALL regions after f
820 * should be deleted.  Locate the regions which intersect [f, t)
821 * and either trim, delete or split the existing regions.
822 *
823 * Returns the number of huge pages deleted from the reserve map.
824 * In the normal case, the return value is zero or more.  In the
825 * case where a region must be split, a new region descriptor must
826 * be allocated.  If the allocation fails, -ENOMEM will be returned.
827 * NOTE: If the parameter t == LONG_MAX, then we will never split
828 * a region and possibly return -ENOMEM.  Callers specifying
829 * t == LONG_MAX do not need to check for -ENOMEM error.
830 */
831static long region_del(struct resv_map *resv, long f, long t)
832{
833	struct list_head *head = &resv->regions;
834	struct file_region *rg, *trg;
835	struct file_region *nrg = NULL;
836	long del = 0;
837
838retry:
839	spin_lock(&resv->lock);
840	list_for_each_entry_safe(rg, trg, head, link) {
841		/*
842		 * Skip regions before the range to be deleted.  file_region
843		 * ranges are normally of the form [from, to).  However, there
844		 * may be a "placeholder" entry in the map which is of the form
845		 * (from, to) with from == to.  Check for placeholder entries
846		 * at the beginning of the range to be deleted.
847		 */
848		if (rg->to <= f && (rg->to != rg->from || rg->to != f))
849			continue;
850
851		if (rg->from >= t)
852			break;
853
854		if (f > rg->from && t < rg->to) { /* Must split region */
855			/*
856			 * Check for an entry in the cache before dropping
857			 * lock and attempting allocation.
858			 */
859			if (!nrg &&
860			    resv->region_cache_count > resv->adds_in_progress) {
861				nrg = list_first_entry(&resv->region_cache,
862							struct file_region,
863							link);
864				list_del(&nrg->link);
865				resv->region_cache_count--;
866			}
867
868			if (!nrg) {
869				spin_unlock(&resv->lock);
870				nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
871				if (!nrg)
872					return -ENOMEM;
873				goto retry;
874			}
875
876			del += t - f;
877			hugetlb_cgroup_uncharge_file_region(
878				resv, rg, t - f, false);
879
880			/* New entry for end of split region */
881			nrg->from = t;
882			nrg->to = rg->to;
883
884			copy_hugetlb_cgroup_uncharge_info(nrg, rg);
885
886			INIT_LIST_HEAD(&nrg->link);
887
888			/* Original entry is trimmed */
889			rg->to = f;
890
891			list_add(&nrg->link, &rg->link);
892			nrg = NULL;
893			break;
894		}
895
896		if (f <= rg->from && t >= rg->to) { /* Remove entire region */
897			del += rg->to - rg->from;
898			hugetlb_cgroup_uncharge_file_region(resv, rg,
899							    rg->to - rg->from, true);
900			list_del(&rg->link);
901			kfree(rg);
902			continue;
903		}
904
905		if (f <= rg->from) {	/* Trim beginning of region */
906			hugetlb_cgroup_uncharge_file_region(resv, rg,
907							    t - rg->from, false);
908
909			del += t - rg->from;
910			rg->from = t;
911		} else {		/* Trim end of region */
912			hugetlb_cgroup_uncharge_file_region(resv, rg,
913							    rg->to - f, false);
914
915			del += rg->to - f;
916			rg->to = f;
917		}
918	}
919
920	spin_unlock(&resv->lock);
921	kfree(nrg);
922	return del;
923}
924
925/*
926 * A rare out of memory error was encountered which prevented removal of
927 * the reserve map region for a page.  The huge page itself was free'ed
928 * and removed from the page cache.  This routine will adjust the subpool
929 * usage count, and the global reserve count if needed.  By incrementing
930 * these counts, the reserve map entry which could not be deleted will
931 * appear as a "reserved" entry instead of simply dangling with incorrect
932 * counts.
933 */
934void hugetlb_fix_reserve_counts(struct inode *inode)
935{
936	struct hugepage_subpool *spool = subpool_inode(inode);
937	long rsv_adjust;
938	bool reserved = false;
939
940	rsv_adjust = hugepage_subpool_get_pages(spool, 1);
941	if (rsv_adjust > 0) {
942		struct hstate *h = hstate_inode(inode);
943
944		if (!hugetlb_acct_memory(h, 1))
945			reserved = true;
946	} else if (!rsv_adjust) {
947		reserved = true;
948	}
949
950	if (!reserved)
951		pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
952}
953
954/*
955 * Count and return the number of huge pages in the reserve map
956 * that intersect with the range [f, t).
957 */
958static long region_count(struct resv_map *resv, long f, long t)
959{
960	struct list_head *head = &resv->regions;
961	struct file_region *rg;
962	long chg = 0;
963
964	spin_lock(&resv->lock);
965	/* Locate each segment we overlap with, and count that overlap. */
966	list_for_each_entry(rg, head, link) {
967		long seg_from;
968		long seg_to;
969
970		if (rg->to <= f)
971			continue;
972		if (rg->from >= t)
973			break;
974
975		seg_from = max(rg->from, f);
976		seg_to = min(rg->to, t);
977
978		chg += seg_to - seg_from;
979	}
980	spin_unlock(&resv->lock);
981
982	return chg;
983}
984
985/*
986 * Convert the address within this vma to the page offset within
987 * the mapping, in pagecache page units; huge pages here.
988 */
989static pgoff_t vma_hugecache_offset(struct hstate *h,
990			struct vm_area_struct *vma, unsigned long address)
991{
992	return ((address - vma->vm_start) >> huge_page_shift(h)) +
993			(vma->vm_pgoff >> huge_page_order(h));
994}
995
996pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
997				     unsigned long address)
998{
999	return vma_hugecache_offset(hstate_vma(vma), vma, address);
1000}
1001EXPORT_SYMBOL_GPL(linear_hugepage_index);
1002
1003/**
1004 * vma_kernel_pagesize - Page size granularity for this VMA.
1005 * @vma: The user mapping.
1006 *
1007 * Folios in this VMA will be aligned to, and at least the size of the
1008 * number of bytes returned by this function.
1009 *
1010 * Return: The default size of the folios allocated when backing a VMA.
1011 */
1012unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
1013{
1014	if (vma->vm_ops && vma->vm_ops->pagesize)
1015		return vma->vm_ops->pagesize(vma);
1016	return PAGE_SIZE;
1017}
1018EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
1019
1020/*
1021 * Return the page size being used by the MMU to back a VMA. In the majority
1022 * of cases, the page size used by the kernel matches the MMU size. On
1023 * architectures where it differs, an architecture-specific 'strong'
1024 * version of this symbol is required.
1025 */
1026__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
1027{
1028	return vma_kernel_pagesize(vma);
1029}
1030
1031/*
1032 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
1033 * bits of the reservation map pointer, which are always clear due to
1034 * alignment.
1035 */
1036#define HPAGE_RESV_OWNER    (1UL << 0)
1037#define HPAGE_RESV_UNMAPPED (1UL << 1)
1038#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1039
1040/*
1041 * These helpers are used to track how many pages are reserved for
1042 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1043 * is guaranteed to have their future faults succeed.
1044 *
1045 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1046 * the reserve counters are updated with the hugetlb_lock held. It is safe
1047 * to reset the VMA at fork() time as it is not in use yet and there is no
1048 * chance of the global counters getting corrupted as a result of the values.
1049 *
1050 * The private mapping reservation is represented in a subtly different
1051 * manner to a shared mapping.  A shared mapping has a region map associated
1052 * with the underlying file, this region map represents the backing file
1053 * pages which have ever had a reservation assigned which this persists even
1054 * after the page is instantiated.  A private mapping has a region map
1055 * associated with the original mmap which is attached to all VMAs which
1056 * reference it, this region map represents those offsets which have consumed
1057 * reservation ie. where pages have been instantiated.
1058 */
1059static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1060{
1061	return (unsigned long)vma->vm_private_data;
1062}
1063
1064static void set_vma_private_data(struct vm_area_struct *vma,
1065							unsigned long value)
1066{
1067	vma->vm_private_data = (void *)value;
1068}
1069
1070static void
1071resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1072					  struct hugetlb_cgroup *h_cg,
1073					  struct hstate *h)
1074{
1075#ifdef CONFIG_CGROUP_HUGETLB
1076	if (!h_cg || !h) {
1077		resv_map->reservation_counter = NULL;
1078		resv_map->pages_per_hpage = 0;
1079		resv_map->css = NULL;
1080	} else {
1081		resv_map->reservation_counter =
1082			&h_cg->rsvd_hugepage[hstate_index(h)];
1083		resv_map->pages_per_hpage = pages_per_huge_page(h);
1084		resv_map->css = &h_cg->css;
1085	}
1086#endif
1087}
1088
1089struct resv_map *resv_map_alloc(void)
1090{
1091	struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1092	struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1093
1094	if (!resv_map || !rg) {
1095		kfree(resv_map);
1096		kfree(rg);
1097		return NULL;
1098	}
1099
1100	kref_init(&resv_map->refs);
1101	spin_lock_init(&resv_map->lock);
1102	INIT_LIST_HEAD(&resv_map->regions);
1103	init_rwsem(&resv_map->rw_sema);
1104
1105	resv_map->adds_in_progress = 0;
1106	/*
1107	 * Initialize these to 0. On shared mappings, 0's here indicate these
1108	 * fields don't do cgroup accounting. On private mappings, these will be
1109	 * re-initialized to the proper values, to indicate that hugetlb cgroup
1110	 * reservations are to be un-charged from here.
1111	 */
1112	resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1113
1114	INIT_LIST_HEAD(&resv_map->region_cache);
1115	list_add(&rg->link, &resv_map->region_cache);
1116	resv_map->region_cache_count = 1;
1117
1118	return resv_map;
1119}
1120
1121void resv_map_release(struct kref *ref)
1122{
1123	struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1124	struct list_head *head = &resv_map->region_cache;
1125	struct file_region *rg, *trg;
1126
1127	/* Clear out any active regions before we release the map. */
1128	region_del(resv_map, 0, LONG_MAX);
1129
1130	/* ... and any entries left in the cache */
1131	list_for_each_entry_safe(rg, trg, head, link) {
1132		list_del(&rg->link);
1133		kfree(rg);
1134	}
1135
1136	VM_BUG_ON(resv_map->adds_in_progress);
1137
1138	kfree(resv_map);
1139}
1140
1141static inline struct resv_map *inode_resv_map(struct inode *inode)
1142{
1143	/*
1144	 * At inode evict time, i_mapping may not point to the original
1145	 * address space within the inode.  This original address space
1146	 * contains the pointer to the resv_map.  So, always use the
1147	 * address space embedded within the inode.
1148	 * The VERY common case is inode->mapping == &inode->i_data but,
1149	 * this may not be true for device special inodes.
1150	 */
1151	return (struct resv_map *)(&inode->i_data)->private_data;
1152}
1153
1154static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1155{
1156	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157	if (vma->vm_flags & VM_MAYSHARE) {
1158		struct address_space *mapping = vma->vm_file->f_mapping;
1159		struct inode *inode = mapping->host;
1160
1161		return inode_resv_map(inode);
1162
1163	} else {
1164		return (struct resv_map *)(get_vma_private_data(vma) &
1165							~HPAGE_RESV_MASK);
1166	}
1167}
1168
1169static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1170{
1171	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1172	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1173
1174	set_vma_private_data(vma, (unsigned long)map);
1175}
1176
1177static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1178{
1179	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1180	VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1181
1182	set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1183}
1184
1185static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1186{
1187	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1188
1189	return (get_vma_private_data(vma) & flag) != 0;
1190}
1191
1192bool __vma_private_lock(struct vm_area_struct *vma)
1193{
1194	return !(vma->vm_flags & VM_MAYSHARE) &&
1195		get_vma_private_data(vma) & ~HPAGE_RESV_MASK &&
1196		is_vma_resv_set(vma, HPAGE_RESV_OWNER);
1197}
1198
1199void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1200{
1201	VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1202	/*
1203	 * Clear vm_private_data
1204	 * - For shared mappings this is a per-vma semaphore that may be
1205	 *   allocated in a subsequent call to hugetlb_vm_op_open.
1206	 *   Before clearing, make sure pointer is not associated with vma
1207	 *   as this will leak the structure.  This is the case when called
1208	 *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1209	 *   been called to allocate a new structure.
1210	 * - For MAP_PRIVATE mappings, this is the reserve map which does
1211	 *   not apply to children.  Faults generated by the children are
1212	 *   not guaranteed to succeed, even if read-only.
1213	 */
1214	if (vma->vm_flags & VM_MAYSHARE) {
1215		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1216
1217		if (vma_lock && vma_lock->vma != vma)
1218			vma->vm_private_data = NULL;
1219	} else
1220		vma->vm_private_data = NULL;
1221}
1222
1223/*
1224 * Reset and decrement one ref on hugepage private reservation.
1225 * Called with mm->mmap_lock writer semaphore held.
1226 * This function should be only used by move_vma() and operate on
1227 * same sized vma. It should never come here with last ref on the
1228 * reservation.
1229 */
1230void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1231{
1232	/*
1233	 * Clear the old hugetlb private page reservation.
1234	 * It has already been transferred to new_vma.
1235	 *
1236	 * During a mremap() operation of a hugetlb vma we call move_vma()
1237	 * which copies vma into new_vma and unmaps vma. After the copy
1238	 * operation both new_vma and vma share a reference to the resv_map
1239	 * struct, and at that point vma is about to be unmapped. We don't
1240	 * want to return the reservation to the pool at unmap of vma because
1241	 * the reservation still lives on in new_vma, so simply decrement the
1242	 * ref here and remove the resv_map reference from this vma.
1243	 */
1244	struct resv_map *reservations = vma_resv_map(vma);
1245
1246	if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1247		resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1248		kref_put(&reservations->refs, resv_map_release);
1249	}
1250
1251	hugetlb_dup_vma_private(vma);
1252}
1253
1254/* Returns true if the VMA has associated reserve pages */
1255static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1256{
1257	if (vma->vm_flags & VM_NORESERVE) {
1258		/*
1259		 * This address is already reserved by other process(chg == 0),
1260		 * so, we should decrement reserved count. Without decrementing,
1261		 * reserve count remains after releasing inode, because this
1262		 * allocated page will go into page cache and is regarded as
1263		 * coming from reserved pool in releasing step.  Currently, we
1264		 * don't have any other solution to deal with this situation
1265		 * properly, so add work-around here.
1266		 */
1267		if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1268			return true;
1269		else
1270			return false;
1271	}
1272
1273	/* Shared mappings always use reserves */
1274	if (vma->vm_flags & VM_MAYSHARE) {
1275		/*
1276		 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1277		 * be a region map for all pages.  The only situation where
1278		 * there is no region map is if a hole was punched via
1279		 * fallocate.  In this case, there really are no reserves to
1280		 * use.  This situation is indicated if chg != 0.
1281		 */
1282		if (chg)
1283			return false;
1284		else
1285			return true;
1286	}
1287
1288	/*
1289	 * Only the process that called mmap() has reserves for
1290	 * private mappings.
1291	 */
1292	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1293		/*
1294		 * Like the shared case above, a hole punch or truncate
1295		 * could have been performed on the private mapping.
1296		 * Examine the value of chg to determine if reserves
1297		 * actually exist or were previously consumed.
1298		 * Very Subtle - The value of chg comes from a previous
1299		 * call to vma_needs_reserves().  The reserve map for
1300		 * private mappings has different (opposite) semantics
1301		 * than that of shared mappings.  vma_needs_reserves()
1302		 * has already taken this difference in semantics into
1303		 * account.  Therefore, the meaning of chg is the same
1304		 * as in the shared case above.  Code could easily be
1305		 * combined, but keeping it separate draws attention to
1306		 * subtle differences.
1307		 */
1308		if (chg)
1309			return false;
1310		else
1311			return true;
1312	}
1313
1314	return false;
1315}
1316
1317static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1318{
1319	int nid = folio_nid(folio);
1320
1321	lockdep_assert_held(&hugetlb_lock);
1322	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1323
1324	list_move(&folio->lru, &h->hugepage_freelists[nid]);
1325	h->free_huge_pages++;
1326	h->free_huge_pages_node[nid]++;
1327	folio_set_hugetlb_freed(folio);
1328}
1329
1330static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1331								int nid)
1332{
1333	struct folio *folio;
1334	bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1335
1336	lockdep_assert_held(&hugetlb_lock);
1337	list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1338		if (pin && !folio_is_longterm_pinnable(folio))
1339			continue;
1340
1341		if (folio_test_hwpoison(folio))
1342			continue;
1343
1344		list_move(&folio->lru, &h->hugepage_activelist);
1345		folio_ref_unfreeze(folio, 1);
1346		folio_clear_hugetlb_freed(folio);
1347		h->free_huge_pages--;
1348		h->free_huge_pages_node[nid]--;
1349		return folio;
1350	}
1351
1352	return NULL;
1353}
1354
1355static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1356							int nid, nodemask_t *nmask)
1357{
1358	unsigned int cpuset_mems_cookie;
1359	struct zonelist *zonelist;
1360	struct zone *zone;
1361	struct zoneref *z;
1362	int node = NUMA_NO_NODE;
1363
1364	zonelist = node_zonelist(nid, gfp_mask);
1365
1366retry_cpuset:
1367	cpuset_mems_cookie = read_mems_allowed_begin();
1368	for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1369		struct folio *folio;
1370
1371		if (!cpuset_zone_allowed(zone, gfp_mask))
1372			continue;
1373		/*
1374		 * no need to ask again on the same node. Pool is node rather than
1375		 * zone aware
1376		 */
1377		if (zone_to_nid(zone) == node)
1378			continue;
1379		node = zone_to_nid(zone);
1380
1381		folio = dequeue_hugetlb_folio_node_exact(h, node);
1382		if (folio)
1383			return folio;
1384	}
1385	if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1386		goto retry_cpuset;
1387
1388	return NULL;
1389}
1390
1391static unsigned long available_huge_pages(struct hstate *h)
1392{
1393	return h->free_huge_pages - h->resv_huge_pages;
1394}
1395
1396static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1397				struct vm_area_struct *vma,
1398				unsigned long address, int avoid_reserve,
1399				long chg)
1400{
1401	struct folio *folio = NULL;
1402	struct mempolicy *mpol;
1403	gfp_t gfp_mask;
1404	nodemask_t *nodemask;
1405	int nid;
1406
1407	/*
1408	 * A child process with MAP_PRIVATE mappings created by their parent
1409	 * have no page reserves. This check ensures that reservations are
1410	 * not "stolen". The child may still get SIGKILLed
1411	 */
1412	if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1413		goto err;
1414
1415	/* If reserves cannot be used, ensure enough pages are in the pool */
1416	if (avoid_reserve && !available_huge_pages(h))
1417		goto err;
1418
1419	gfp_mask = htlb_alloc_mask(h);
1420	nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1421
1422	if (mpol_is_preferred_many(mpol)) {
1423		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1424							nid, nodemask);
1425
1426		/* Fallback to all nodes if page==NULL */
1427		nodemask = NULL;
1428	}
1429
1430	if (!folio)
1431		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1432							nid, nodemask);
1433
1434	if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1435		folio_set_hugetlb_restore_reserve(folio);
1436		h->resv_huge_pages--;
1437	}
1438
1439	mpol_cond_put(mpol);
1440	return folio;
1441
1442err:
1443	return NULL;
1444}
1445
1446/*
1447 * common helper functions for hstate_next_node_to_{alloc|free}.
1448 * We may have allocated or freed a huge page based on a different
1449 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1450 * be outside of *nodes_allowed.  Ensure that we use an allowed
1451 * node for alloc or free.
1452 */
1453static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1454{
1455	nid = next_node_in(nid, *nodes_allowed);
1456	VM_BUG_ON(nid >= MAX_NUMNODES);
1457
1458	return nid;
1459}
1460
1461static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1462{
1463	if (!node_isset(nid, *nodes_allowed))
1464		nid = next_node_allowed(nid, nodes_allowed);
1465	return nid;
1466}
1467
1468/*
1469 * returns the previously saved node ["this node"] from which to
1470 * allocate a persistent huge page for the pool and advance the
1471 * next node from which to allocate, handling wrap at end of node
1472 * mask.
1473 */
1474static int hstate_next_node_to_alloc(struct hstate *h,
1475					nodemask_t *nodes_allowed)
1476{
1477	int nid;
1478
1479	VM_BUG_ON(!nodes_allowed);
1480
1481	nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1482	h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1483
1484	return nid;
1485}
1486
1487/*
1488 * helper for remove_pool_huge_page() - return the previously saved
1489 * node ["this node"] from which to free a huge page.  Advance the
1490 * next node id whether or not we find a free huge page to free so
1491 * that the next attempt to free addresses the next node.
1492 */
1493static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1494{
1495	int nid;
1496
1497	VM_BUG_ON(!nodes_allowed);
1498
1499	nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1500	h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1501
1502	return nid;
1503}
1504
1505#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)		\
1506	for (nr_nodes = nodes_weight(*mask);				\
1507		nr_nodes > 0 &&						\
1508		((node = hstate_next_node_to_alloc(hs, mask)) || 1);	\
1509		nr_nodes--)
1510
1511#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)		\
1512	for (nr_nodes = nodes_weight(*mask);				\
1513		nr_nodes > 0 &&						\
1514		((node = hstate_next_node_to_free(hs, mask)) || 1);	\
1515		nr_nodes--)
1516
1517/* used to demote non-gigantic_huge pages as well */
1518static void __destroy_compound_gigantic_folio(struct folio *folio,
1519					unsigned int order, bool demote)
1520{
1521	int i;
1522	int nr_pages = 1 << order;
1523	struct page *p;
1524
1525	atomic_set(&folio->_entire_mapcount, 0);
1526	atomic_set(&folio->_nr_pages_mapped, 0);
1527	atomic_set(&folio->_pincount, 0);
1528
1529	for (i = 1; i < nr_pages; i++) {
1530		p = folio_page(folio, i);
1531		p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1532		p->mapping = NULL;
1533		clear_compound_head(p);
1534		if (!demote)
1535			set_page_refcounted(p);
1536	}
1537
1538	__folio_clear_head(folio);
1539}
1540
1541static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1542					unsigned int order)
1543{
1544	__destroy_compound_gigantic_folio(folio, order, true);
1545}
1546
1547#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1548static void destroy_compound_gigantic_folio(struct folio *folio,
1549					unsigned int order)
1550{
1551	__destroy_compound_gigantic_folio(folio, order, false);
1552}
1553
1554static void free_gigantic_folio(struct folio *folio, unsigned int order)
1555{
1556	/*
1557	 * If the page isn't allocated using the cma allocator,
1558	 * cma_release() returns false.
1559	 */
1560#ifdef CONFIG_CMA
1561	int nid = folio_nid(folio);
1562
1563	if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1564		return;
1565#endif
1566
1567	free_contig_range(folio_pfn(folio), 1 << order);
1568}
1569
1570#ifdef CONFIG_CONTIG_ALLOC
1571static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572		int nid, nodemask_t *nodemask)
1573{
1574	struct page *page;
1575	unsigned long nr_pages = pages_per_huge_page(h);
1576	if (nid == NUMA_NO_NODE)
1577		nid = numa_mem_id();
1578
1579#ifdef CONFIG_CMA
1580	{
1581		int node;
1582
1583		if (hugetlb_cma[nid]) {
1584			page = cma_alloc(hugetlb_cma[nid], nr_pages,
1585					huge_page_order(h), true);
1586			if (page)
1587				return page_folio(page);
1588		}
1589
1590		if (!(gfp_mask & __GFP_THISNODE)) {
1591			for_each_node_mask(node, *nodemask) {
1592				if (node == nid || !hugetlb_cma[node])
1593					continue;
1594
1595				page = cma_alloc(hugetlb_cma[node], nr_pages,
1596						huge_page_order(h), true);
1597				if (page)
1598					return page_folio(page);
1599			}
1600		}
1601	}
1602#endif
1603
1604	page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1605	return page ? page_folio(page) : NULL;
1606}
1607
1608#else /* !CONFIG_CONTIG_ALLOC */
1609static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1610					int nid, nodemask_t *nodemask)
1611{
1612	return NULL;
1613}
1614#endif /* CONFIG_CONTIG_ALLOC */
1615
1616#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1617static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1618					int nid, nodemask_t *nodemask)
1619{
1620	return NULL;
1621}
1622static inline void free_gigantic_folio(struct folio *folio,
1623						unsigned int order) { }
1624static inline void destroy_compound_gigantic_folio(struct folio *folio,
1625						unsigned int order) { }
1626#endif
1627
1628static inline void __clear_hugetlb_destructor(struct hstate *h,
1629						struct folio *folio)
1630{
1631	lockdep_assert_held(&hugetlb_lock);
1632
1633	folio_clear_hugetlb(folio);
1634}
1635
1636/*
1637 * Remove hugetlb folio from lists.
1638 * If vmemmap exists for the folio, update dtor so that the folio appears
1639 * as just a compound page.  Otherwise, wait until after allocating vmemmap
1640 * to update dtor.
1641 *
1642 * A reference is held on the folio, except in the case of demote.
1643 *
1644 * Must be called with hugetlb lock held.
1645 */
1646static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647							bool adjust_surplus,
1648							bool demote)
1649{
1650	int nid = folio_nid(folio);
1651
1652	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1653	VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1654
1655	lockdep_assert_held(&hugetlb_lock);
1656	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1657		return;
1658
1659	list_del(&folio->lru);
1660
1661	if (folio_test_hugetlb_freed(folio)) {
1662		h->free_huge_pages--;
1663		h->free_huge_pages_node[nid]--;
1664	}
1665	if (adjust_surplus) {
1666		h->surplus_huge_pages--;
1667		h->surplus_huge_pages_node[nid]--;
1668	}
1669
1670	/*
1671	 * We can only clear the hugetlb destructor after allocating vmemmap
1672	 * pages.  Otherwise, someone (memory error handling) may try to write
1673	 * to tail struct pages.
1674	 */
1675	if (!folio_test_hugetlb_vmemmap_optimized(folio))
1676		__clear_hugetlb_destructor(h, folio);
1677
1678	 /*
1679	  * In the case of demote we do not ref count the page as it will soon
1680	  * be turned into a page of smaller size.
1681	 */
1682	if (!demote)
1683		folio_ref_unfreeze(folio, 1);
1684
1685	h->nr_huge_pages--;
1686	h->nr_huge_pages_node[nid]--;
1687}
1688
1689static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1690							bool adjust_surplus)
1691{
1692	__remove_hugetlb_folio(h, folio, adjust_surplus, false);
1693}
1694
1695static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1696							bool adjust_surplus)
1697{
1698	__remove_hugetlb_folio(h, folio, adjust_surplus, true);
1699}
1700
1701static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1702			     bool adjust_surplus)
1703{
1704	int zeroed;
1705	int nid = folio_nid(folio);
1706
1707	VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1708
1709	lockdep_assert_held(&hugetlb_lock);
1710
1711	INIT_LIST_HEAD(&folio->lru);
1712	h->nr_huge_pages++;
1713	h->nr_huge_pages_node[nid]++;
1714
1715	if (adjust_surplus) {
1716		h->surplus_huge_pages++;
1717		h->surplus_huge_pages_node[nid]++;
1718	}
1719
1720	folio_set_hugetlb(folio);
1721	folio_change_private(folio, NULL);
1722	/*
1723	 * We have to set hugetlb_vmemmap_optimized again as above
1724	 * folio_change_private(folio, NULL) cleared it.
1725	 */
1726	folio_set_hugetlb_vmemmap_optimized(folio);
1727
1728	/*
1729	 * This folio is about to be managed by the hugetlb allocator and
1730	 * should have no users.  Drop our reference, and check for others
1731	 * just in case.
1732	 */
1733	zeroed = folio_put_testzero(folio);
1734	if (unlikely(!zeroed))
1735		/*
1736		 * It is VERY unlikely soneone else has taken a ref
1737		 * on the folio.  In this case, we simply return as
1738		 * free_huge_folio() will be called when this other ref
1739		 * is dropped.
1740		 */
1741		return;
1742
1743	arch_clear_hugepage_flags(&folio->page);
1744	enqueue_hugetlb_folio(h, folio);
1745}
1746
1747static void __update_and_free_hugetlb_folio(struct hstate *h,
1748						struct folio *folio)
1749{
1750	bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1751
1752	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1753		return;
1754
1755	/*
1756	 * If we don't know which subpages are hwpoisoned, we can't free
1757	 * the hugepage, so it's leaked intentionally.
1758	 */
1759	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1760		return;
1761
1762	if (hugetlb_vmemmap_restore(h, &folio->page)) {
1763		spin_lock_irq(&hugetlb_lock);
1764		/*
1765		 * If we cannot allocate vmemmap pages, just refuse to free the
1766		 * page and put the page back on the hugetlb free list and treat
1767		 * as a surplus page.
1768		 */
1769		add_hugetlb_folio(h, folio, true);
1770		spin_unlock_irq(&hugetlb_lock);
1771		return;
1772	}
1773
1774	/*
1775	 * Move PageHWPoison flag from head page to the raw error pages,
1776	 * which makes any healthy subpages reusable.
1777	 */
1778	if (unlikely(folio_test_hwpoison(folio)))
1779		folio_clear_hugetlb_hwpoison(folio);
1780
1781	/*
1782	 * If vmemmap pages were allocated above, then we need to clear the
1783	 * hugetlb destructor under the hugetlb lock.
1784	 */
1785	if (clear_dtor) {
1786		spin_lock_irq(&hugetlb_lock);
1787		__clear_hugetlb_destructor(h, folio);
1788		spin_unlock_irq(&hugetlb_lock);
1789	}
1790
1791	/*
1792	 * Non-gigantic pages demoted from CMA allocated gigantic pages
1793	 * need to be given back to CMA in free_gigantic_folio.
1794	 */
1795	if (hstate_is_gigantic(h) ||
1796	    hugetlb_cma_folio(folio, huge_page_order(h))) {
1797		destroy_compound_gigantic_folio(folio, huge_page_order(h));
1798		free_gigantic_folio(folio, huge_page_order(h));
1799	} else {
1800		__free_pages(&folio->page, huge_page_order(h));
1801	}
1802}
1803
1804/*
1805 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1806 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1807 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1808 * the vmemmap pages.
1809 *
1810 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1811 * freed and frees them one-by-one. As the page->mapping pointer is going
1812 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1813 * structure of a lockless linked list of huge pages to be freed.
1814 */
1815static LLIST_HEAD(hpage_freelist);
1816
1817static void free_hpage_workfn(struct work_struct *work)
1818{
1819	struct llist_node *node;
1820
1821	node = llist_del_all(&hpage_freelist);
1822
1823	while (node) {
1824		struct page *page;
1825		struct hstate *h;
1826
1827		page = container_of((struct address_space **)node,
1828				     struct page, mapping);
1829		node = node->next;
1830		page->mapping = NULL;
1831		/*
1832		 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1833		 * folio_hstate() is going to trigger because a previous call to
1834		 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1835		 * not use folio_hstate() directly.
1836		 */
1837		h = size_to_hstate(page_size(page));
1838
1839		__update_and_free_hugetlb_folio(h, page_folio(page));
1840
1841		cond_resched();
1842	}
1843}
1844static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1845
1846static inline void flush_free_hpage_work(struct hstate *h)
1847{
1848	if (hugetlb_vmemmap_optimizable(h))
1849		flush_work(&free_hpage_work);
1850}
1851
1852static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1853				 bool atomic)
1854{
1855	if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1856		__update_and_free_hugetlb_folio(h, folio);
1857		return;
1858	}
1859
1860	/*
1861	 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1862	 *
1863	 * Only call schedule_work() if hpage_freelist is previously
1864	 * empty. Otherwise, schedule_work() had been called but the workfn
1865	 * hasn't retrieved the list yet.
1866	 */
1867	if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1868		schedule_work(&free_hpage_work);
1869}
1870
1871static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1872{
1873	struct page *page, *t_page;
1874	struct folio *folio;
1875
1876	list_for_each_entry_safe(page, t_page, list, lru) {
1877		folio = page_folio(page);
1878		update_and_free_hugetlb_folio(h, folio, false);
1879		cond_resched();
1880	}
1881}
1882
1883struct hstate *size_to_hstate(unsigned long size)
1884{
1885	struct hstate *h;
1886
1887	for_each_hstate(h) {
1888		if (huge_page_size(h) == size)
1889			return h;
1890	}
1891	return NULL;
1892}
1893
1894void free_huge_folio(struct folio *folio)
1895{
1896	/*
1897	 * Can't pass hstate in here because it is called from the
1898	 * compound page destructor.
1899	 */
1900	struct hstate *h = folio_hstate(folio);
1901	int nid = folio_nid(folio);
1902	struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1903	bool restore_reserve;
1904	unsigned long flags;
1905
1906	VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1907	VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1908
1909	hugetlb_set_folio_subpool(folio, NULL);
1910	if (folio_test_anon(folio))
1911		__ClearPageAnonExclusive(&folio->page);
1912	folio->mapping = NULL;
1913	restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1914	folio_clear_hugetlb_restore_reserve(folio);
1915
1916	/*
1917	 * If HPageRestoreReserve was set on page, page allocation consumed a
1918	 * reservation.  If the page was associated with a subpool, there
1919	 * would have been a page reserved in the subpool before allocation
1920	 * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1921	 * reservation, do not call hugepage_subpool_put_pages() as this will
1922	 * remove the reserved page from the subpool.
1923	 */
1924	if (!restore_reserve) {
1925		/*
1926		 * A return code of zero implies that the subpool will be
1927		 * under its minimum size if the reservation is not restored
1928		 * after page is free.  Therefore, force restore_reserve
1929		 * operation.
1930		 */
1931		if (hugepage_subpool_put_pages(spool, 1) == 0)
1932			restore_reserve = true;
1933	}
1934
1935	spin_lock_irqsave(&hugetlb_lock, flags);
1936	folio_clear_hugetlb_migratable(folio);
1937	hugetlb_cgroup_uncharge_folio(hstate_index(h),
1938				     pages_per_huge_page(h), folio);
1939	hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1940					  pages_per_huge_page(h), folio);
1941	if (restore_reserve)
1942		h->resv_huge_pages++;
1943
1944	if (folio_test_hugetlb_temporary(folio)) {
1945		remove_hugetlb_folio(h, folio, false);
1946		spin_unlock_irqrestore(&hugetlb_lock, flags);
1947		update_and_free_hugetlb_folio(h, folio, true);
1948	} else if (h->surplus_huge_pages_node[nid]) {
1949		/* remove the page from active list */
1950		remove_hugetlb_folio(h, folio, true);
1951		spin_unlock_irqrestore(&hugetlb_lock, flags);
1952		update_and_free_hugetlb_folio(h, folio, true);
1953	} else {
1954		arch_clear_hugepage_flags(&folio->page);
1955		enqueue_hugetlb_folio(h, folio);
1956		spin_unlock_irqrestore(&hugetlb_lock, flags);
1957	}
1958}
1959
1960/*
1961 * Must be called with the hugetlb lock held
1962 */
1963static void __prep_account_new_huge_page(struct hstate *h, int nid)
1964{
1965	lockdep_assert_held(&hugetlb_lock);
1966	h->nr_huge_pages++;
1967	h->nr_huge_pages_node[nid]++;
1968}
1969
1970static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1971{
1972	hugetlb_vmemmap_optimize(h, &folio->page);
1973	INIT_LIST_HEAD(&folio->lru);
1974	folio_set_hugetlb(folio);
1975	hugetlb_set_folio_subpool(folio, NULL);
1976	set_hugetlb_cgroup(folio, NULL);
1977	set_hugetlb_cgroup_rsvd(folio, NULL);
1978}
1979
1980static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1981{
1982	__prep_new_hugetlb_folio(h, folio);
1983	spin_lock_irq(&hugetlb_lock);
1984	__prep_account_new_huge_page(h, nid);
1985	spin_unlock_irq(&hugetlb_lock);
1986}
1987
1988static bool __prep_compound_gigantic_folio(struct folio *folio,
1989					unsigned int order, bool demote)
1990{
1991	int i, j;
1992	int nr_pages = 1 << order;
1993	struct page *p;
1994
1995	__folio_clear_reserved(folio);
1996	for (i = 0; i < nr_pages; i++) {
1997		p = folio_page(folio, i);
1998
1999		/*
2000		 * For gigantic hugepages allocated through bootmem at
2001		 * boot, it's safer to be consistent with the not-gigantic
2002		 * hugepages and clear the PG_reserved bit from all tail pages
2003		 * too.  Otherwise drivers using get_user_pages() to access tail
2004		 * pages may get the reference counting wrong if they see
2005		 * PG_reserved set on a tail page (despite the head page not
2006		 * having PG_reserved set).  Enforcing this consistency between
2007		 * head and tail pages allows drivers to optimize away a check
2008		 * on the head page when they need know if put_page() is needed
2009		 * after get_user_pages().
2010		 */
2011		if (i != 0)	/* head page cleared above */
2012			__ClearPageReserved(p);
2013		/*
2014		 * Subtle and very unlikely
2015		 *
2016		 * Gigantic 'page allocators' such as memblock or cma will
2017		 * return a set of pages with each page ref counted.  We need
2018		 * to turn this set of pages into a compound page with tail
2019		 * page ref counts set to zero.  Code such as speculative page
2020		 * cache adding could take a ref on a 'to be' tail page.
2021		 * We need to respect any increased ref count, and only set
2022		 * the ref count to zero if count is currently 1.  If count
2023		 * is not 1, we return an error.  An error return indicates
2024		 * the set of pages can not be converted to a gigantic page.
2025		 * The caller who allocated the pages should then discard the
2026		 * pages using the appropriate free interface.
2027		 *
2028		 * In the case of demote, the ref count will be zero.
2029		 */
2030		if (!demote) {
2031			if (!page_ref_freeze(p, 1)) {
2032				pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2033				goto out_error;
2034			}
2035		} else {
2036			VM_BUG_ON_PAGE(page_count(p), p);
2037		}
2038		if (i != 0)
2039			set_compound_head(p, &folio->page);
2040	}
2041	__folio_set_head(folio);
2042	/* we rely on prep_new_hugetlb_folio to set the destructor */
2043	folio_set_order(folio, order);
2044	atomic_set(&folio->_entire_mapcount, -1);
2045	atomic_set(&folio->_nr_pages_mapped, 0);
2046	atomic_set(&folio->_pincount, 0);
2047	return true;
2048
2049out_error:
2050	/* undo page modifications made above */
2051	for (j = 0; j < i; j++) {
2052		p = folio_page(folio, j);
2053		if (j != 0)
2054			clear_compound_head(p);
2055		set_page_refcounted(p);
2056	}
2057	/* need to clear PG_reserved on remaining tail pages  */
2058	for (; j < nr_pages; j++) {
2059		p = folio_page(folio, j);
2060		__ClearPageReserved(p);
2061	}
2062	return false;
2063}
2064
2065static bool prep_compound_gigantic_folio(struct folio *folio,
2066							unsigned int order)
2067{
2068	return __prep_compound_gigantic_folio(folio, order, false);
2069}
2070
2071static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2072							unsigned int order)
2073{
2074	return __prep_compound_gigantic_folio(folio, order, true);
2075}
2076
2077/*
2078 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2079 * transparent huge pages.  See the PageTransHuge() documentation for more
2080 * details.
2081 */
2082int PageHuge(struct page *page)
2083{
2084	struct folio *folio;
2085
2086	if (!PageCompound(page))
2087		return 0;
2088	folio = page_folio(page);
2089	return folio_test_hugetlb(folio);
2090}
2091EXPORT_SYMBOL_GPL(PageHuge);
2092
2093/*
2094 * Find and lock address space (mapping) in write mode.
2095 *
2096 * Upon entry, the page is locked which means that page_mapping() is
2097 * stable.  Due to locking order, we can only trylock_write.  If we can
2098 * not get the lock, simply return NULL to caller.
2099 */
2100struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2101{
2102	struct address_space *mapping = page_mapping(hpage);
2103
2104	if (!mapping)
2105		return mapping;
2106
2107	if (i_mmap_trylock_write(mapping))
2108		return mapping;
2109
2110	return NULL;
2111}
2112
2113pgoff_t hugetlb_basepage_index(struct page *page)
2114{
2115	struct page *page_head = compound_head(page);
2116	pgoff_t index = page_index(page_head);
2117	unsigned long compound_idx;
2118
2119	if (compound_order(page_head) > MAX_ORDER)
2120		compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2121	else
2122		compound_idx = page - page_head;
2123
2124	return (index << compound_order(page_head)) + compound_idx;
2125}
2126
2127static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2128		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2129		nodemask_t *node_alloc_noretry)
2130{
2131	int order = huge_page_order(h);
2132	struct page *page;
2133	bool alloc_try_hard = true;
2134	bool retry = true;
2135
2136	/*
2137	 * By default we always try hard to allocate the page with
2138	 * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2139	 * a loop (to adjust global huge page counts) and previous allocation
2140	 * failed, do not continue to try hard on the same node.  Use the
2141	 * node_alloc_noretry bitmap to manage this state information.
2142	 */
2143	if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2144		alloc_try_hard = false;
2145	gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2146	if (alloc_try_hard)
2147		gfp_mask |= __GFP_RETRY_MAYFAIL;
2148	if (nid == NUMA_NO_NODE)
2149		nid = numa_mem_id();
2150retry:
2151	page = __alloc_pages(gfp_mask, order, nid, nmask);
2152
2153	/* Freeze head page */
2154	if (page && !page_ref_freeze(page, 1)) {
2155		__free_pages(page, order);
2156		if (retry) {	/* retry once */
2157			retry = false;
2158			goto retry;
2159		}
2160		/* WOW!  twice in a row. */
2161		pr_warn("HugeTLB head page unexpected inflated ref count\n");
2162		page = NULL;
2163	}
2164
2165	/*
2166	 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2167	 * indicates an overall state change.  Clear bit so that we resume
2168	 * normal 'try hard' allocations.
2169	 */
2170	if (node_alloc_noretry && page && !alloc_try_hard)
2171		node_clear(nid, *node_alloc_noretry);
2172
2173	/*
2174	 * If we tried hard to get a page but failed, set bit so that
2175	 * subsequent attempts will not try as hard until there is an
2176	 * overall state change.
2177	 */
2178	if (node_alloc_noretry && !page && alloc_try_hard)
2179		node_set(nid, *node_alloc_noretry);
2180
2181	if (!page) {
2182		__count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2183		return NULL;
2184	}
2185
2186	__count_vm_event(HTLB_BUDDY_PGALLOC);
2187	return page_folio(page);
2188}
2189
2190/*
2191 * Common helper to allocate a fresh hugetlb page. All specific allocators
2192 * should use this function to get new hugetlb pages
2193 *
2194 * Note that returned page is 'frozen':  ref count of head page and all tail
2195 * pages is zero.
2196 */
2197static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2198		gfp_t gfp_mask, int nid, nodemask_t *nmask,
2199		nodemask_t *node_alloc_noretry)
2200{
2201	struct folio *folio;
2202	bool retry = false;
2203
2204retry:
2205	if (hstate_is_gigantic(h))
2206		folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2207	else
2208		folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2209				nid, nmask, node_alloc_noretry);
2210	if (!folio)
2211		return NULL;
2212	if (hstate_is_gigantic(h)) {
2213		if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2214			/*
2215			 * Rare failure to convert pages to compound page.
2216			 * Free pages and try again - ONCE!
2217			 */
2218			free_gigantic_folio(folio, huge_page_order(h));
2219			if (!retry) {
2220				retry = true;
2221				goto retry;
2222			}
2223			return NULL;
2224		}
2225	}
2226	prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2227
2228	return folio;
2229}
2230
2231/*
2232 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2233 * manner.
2234 */
2235static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2236				nodemask_t *node_alloc_noretry)
2237{
2238	struct folio *folio;
2239	int nr_nodes, node;
2240	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2241
2242	for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2243		folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2244					nodes_allowed, node_alloc_noretry);
2245		if (folio) {
2246			free_huge_folio(folio); /* free it into the hugepage allocator */
2247			return 1;
2248		}
2249	}
2250
2251	return 0;
2252}
2253
2254/*
2255 * Remove huge page from pool from next node to free.  Attempt to keep
2256 * persistent huge pages more or less balanced over allowed nodes.
2257 * This routine only 'removes' the hugetlb page.  The caller must make
2258 * an additional call to free the page to low level allocators.
2259 * Called with hugetlb_lock locked.
2260 */
2261static struct page *remove_pool_huge_page(struct hstate *h,
2262						nodemask_t *nodes_allowed,
2263						 bool acct_surplus)
2264{
2265	int nr_nodes, node;
2266	struct page *page = NULL;
2267	struct folio *folio;
2268
2269	lockdep_assert_held(&hugetlb_lock);
2270	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2271		/*
2272		 * If we're returning unused surplus pages, only examine
2273		 * nodes with surplus pages.
2274		 */
2275		if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2276		    !list_empty(&h->hugepage_freelists[node])) {
2277			page = list_entry(h->hugepage_freelists[node].next,
2278					  struct page, lru);
2279			folio = page_folio(page);
2280			remove_hugetlb_folio(h, folio, acct_surplus);
2281			break;
2282		}
2283	}
2284
2285	return page;
2286}
2287
2288/*
2289 * Dissolve a given free hugepage into free buddy pages. This function does
2290 * nothing for in-use hugepages and non-hugepages.
2291 * This function returns values like below:
2292 *
2293 *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2294 *           when the system is under memory pressure and the feature of
2295 *           freeing unused vmemmap pages associated with each hugetlb page
2296 *           is enabled.
2297 *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2298 *           (allocated or reserved.)
2299 *       0:  successfully dissolved free hugepages or the page is not a
2300 *           hugepage (considered as already dissolved)
2301 */
2302int dissolve_free_huge_page(struct page *page)
2303{
2304	int rc = -EBUSY;
2305	struct folio *folio = page_folio(page);
2306
2307retry:
2308	/* Not to disrupt normal path by vainly holding hugetlb_lock */
2309	if (!folio_test_hugetlb(folio))
2310		return 0;
2311
2312	spin_lock_irq(&hugetlb_lock);
2313	if (!folio_test_hugetlb(folio)) {
2314		rc = 0;
2315		goto out;
2316	}
2317
2318	if (!folio_ref_count(folio)) {
2319		struct hstate *h = folio_hstate(folio);
2320		if (!available_huge_pages(h))
2321			goto out;
2322
2323		/*
2324		 * We should make sure that the page is already on the free list
2325		 * when it is dissolved.
2326		 */
2327		if (unlikely(!folio_test_hugetlb_freed(folio))) {
2328			spin_unlock_irq(&hugetlb_lock);
2329			cond_resched();
2330
2331			/*
2332			 * Theoretically, we should return -EBUSY when we
2333			 * encounter this race. In fact, we have a chance
2334			 * to successfully dissolve the page if we do a
2335			 * retry. Because the race window is quite small.
2336			 * If we seize this opportunity, it is an optimization
2337			 * for increasing the success rate of dissolving page.
2338			 */
2339			goto retry;
2340		}
2341
2342		remove_hugetlb_folio(h, folio, false);
2343		h->max_huge_pages--;
2344		spin_unlock_irq(&hugetlb_lock);
2345
2346		/*
2347		 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2348		 * before freeing the page.  update_and_free_hugtlb_folio will fail to
2349		 * free the page if it can not allocate required vmemmap.  We
2350		 * need to adjust max_huge_pages if the page is not freed.
2351		 * Attempt to allocate vmemmmap here so that we can take
2352		 * appropriate action on failure.
2353		 */
2354		rc = hugetlb_vmemmap_restore(h, &folio->page);
2355		if (!rc) {
2356			update_and_free_hugetlb_folio(h, folio, false);
2357		} else {
2358			spin_lock_irq(&hugetlb_lock);
2359			add_hugetlb_folio(h, folio, false);
2360			h->max_huge_pages++;
2361			spin_unlock_irq(&hugetlb_lock);
2362		}
2363
2364		return rc;
2365	}
2366out:
2367	spin_unlock_irq(&hugetlb_lock);
2368	return rc;
2369}
2370
2371/*
2372 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2373 * make specified memory blocks removable from the system.
2374 * Note that this will dissolve a free gigantic hugepage completely, if any
2375 * part of it lies within the given range.
2376 * Also note that if dissolve_free_huge_page() returns with an error, all
2377 * free hugepages that were dissolved before that error are lost.
2378 */
2379int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2380{
2381	unsigned long pfn;
2382	struct page *page;
2383	int rc = 0;
2384	unsigned int order;
2385	struct hstate *h;
2386
2387	if (!hugepages_supported())
2388		return rc;
2389
2390	order = huge_page_order(&default_hstate);
2391	for_each_hstate(h)
2392		order = min(order, huge_page_order(h));
2393
2394	for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2395		page = pfn_to_page(pfn);
2396		rc = dissolve_free_huge_page(page);
2397		if (rc)
2398			break;
2399	}
2400
2401	return rc;
2402}
2403
2404/*
2405 * Allocates a fresh surplus page from the page allocator.
2406 */
2407static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2408				gfp_t gfp_mask,	int nid, nodemask_t *nmask)
2409{
2410	struct folio *folio = NULL;
2411
2412	if (hstate_is_gigantic(h))
2413		return NULL;
2414
2415	spin_lock_irq(&hugetlb_lock);
2416	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2417		goto out_unlock;
2418	spin_unlock_irq(&hugetlb_lock);
2419
2420	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2421	if (!folio)
2422		return NULL;
2423
2424	spin_lock_irq(&hugetlb_lock);
2425	/*
2426	 * We could have raced with the pool size change.
2427	 * Double check that and simply deallocate the new page
2428	 * if we would end up overcommiting the surpluses. Abuse
2429	 * temporary page to workaround the nasty free_huge_folio
2430	 * codeflow
2431	 */
2432	if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2433		folio_set_hugetlb_temporary(folio);
2434		spin_unlock_irq(&hugetlb_lock);
2435		free_huge_folio(folio);
2436		return NULL;
2437	}
2438
2439	h->surplus_huge_pages++;
2440	h->surplus_huge_pages_node[folio_nid(folio)]++;
2441
2442out_unlock:
2443	spin_unlock_irq(&hugetlb_lock);
2444
2445	return folio;
2446}
2447
2448static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2449				     int nid, nodemask_t *nmask)
2450{
2451	struct folio *folio;
2452
2453	if (hstate_is_gigantic(h))
2454		return NULL;
2455
2456	folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2457	if (!folio)
2458		return NULL;
2459
2460	/* fresh huge pages are frozen */
2461	folio_ref_unfreeze(folio, 1);
2462	/*
2463	 * We do not account these pages as surplus because they are only
2464	 * temporary and will be released properly on the last reference
2465	 */
2466	folio_set_hugetlb_temporary(folio);
2467
2468	return folio;
2469}
2470
2471/*
2472 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2473 */
2474static
2475struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2476		struct vm_area_struct *vma, unsigned long addr)
2477{
2478	struct folio *folio = NULL;
2479	struct mempolicy *mpol;
2480	gfp_t gfp_mask = htlb_alloc_mask(h);
2481	int nid;
2482	nodemask_t *nodemask;
2483
2484	nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2485	if (mpol_is_preferred_many(mpol)) {
2486		gfp_t gfp = gfp_mask | __GFP_NOWARN;
2487
2488		gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2489		folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2490
2491		/* Fallback to all nodes if page==NULL */
2492		nodemask = NULL;
2493	}
2494
2495	if (!folio)
2496		folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2497	mpol_cond_put(mpol);
2498	return folio;
2499}
2500
2501/* folio migration callback function */
2502struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2503		nodemask_t *nmask, gfp_t gfp_mask)
2504{
2505	spin_lock_irq(&hugetlb_lock);
2506	if (available_huge_pages(h)) {
2507		struct folio *folio;
2508
2509		folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2510						preferred_nid, nmask);
2511		if (folio) {
2512			spin_unlock_irq(&hugetlb_lock);
2513			return folio;
2514		}
2515	}
2516	spin_unlock_irq(&hugetlb_lock);
2517
2518	return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2519}
2520
2521/* mempolicy aware migration callback */
2522struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2523		unsigned long address)
2524{
2525	struct mempolicy *mpol;
2526	nodemask_t *nodemask;
2527	struct folio *folio;
2528	gfp_t gfp_mask;
2529	int node;
2530
2531	gfp_mask = htlb_alloc_mask(h);
2532	node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2533	folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2534	mpol_cond_put(mpol);
2535
2536	return folio;
2537}
2538
2539/*
2540 * Increase the hugetlb pool such that it can accommodate a reservation
2541 * of size 'delta'.
2542 */
2543static int gather_surplus_pages(struct hstate *h, long delta)
2544	__must_hold(&hugetlb_lock)
2545{
2546	LIST_HEAD(surplus_list);
2547	struct folio *folio, *tmp;
2548	int ret;
2549	long i;
2550	long needed, allocated;
2551	bool alloc_ok = true;
2552
2553	lockdep_assert_held(&hugetlb_lock);
2554	needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2555	if (needed <= 0) {
2556		h->resv_huge_pages += delta;
2557		return 0;
2558	}
2559
2560	allocated = 0;
2561
2562	ret = -ENOMEM;
2563retry:
2564	spin_unlock_irq(&hugetlb_lock);
2565	for (i = 0; i < needed; i++) {
2566		folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2567				NUMA_NO_NODE, NULL);
2568		if (!folio) {
2569			alloc_ok = false;
2570			break;
2571		}
2572		list_add(&folio->lru, &surplus_list);
2573		cond_resched();
2574	}
2575	allocated += i;
2576
2577	/*
2578	 * After retaking hugetlb_lock, we need to recalculate 'needed'
2579	 * because either resv_huge_pages or free_huge_pages may have changed.
2580	 */
2581	spin_lock_irq(&hugetlb_lock);
2582	needed = (h->resv_huge_pages + delta) -
2583			(h->free_huge_pages + allocated);
2584	if (needed > 0) {
2585		if (alloc_ok)
2586			goto retry;
2587		/*
2588		 * We were not able to allocate enough pages to
2589		 * satisfy the entire reservation so we free what
2590		 * we've allocated so far.
2591		 */
2592		goto free;
2593	}
2594	/*
2595	 * The surplus_list now contains _at_least_ the number of extra pages
2596	 * needed to accommodate the reservation.  Add the appropriate number
2597	 * of pages to the hugetlb pool and free the extras back to the buddy
2598	 * allocator.  Commit the entire reservation here to prevent another
2599	 * process from stealing the pages as they are added to the pool but
2600	 * before they are reserved.
2601	 */
2602	needed += allocated;
2603	h->resv_huge_pages += delta;
2604	ret = 0;
2605
2606	/* Free the needed pages to the hugetlb pool */
2607	list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2608		if ((--needed) < 0)
2609			break;
2610		/* Add the page to the hugetlb allocator */
2611		enqueue_hugetlb_folio(h, folio);
2612	}
2613free:
2614	spin_unlock_irq(&hugetlb_lock);
2615
2616	/*
2617	 * Free unnecessary surplus pages to the buddy allocator.
2618	 * Pages have no ref count, call free_huge_folio directly.
2619	 */
2620	list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2621		free_huge_folio(folio);
2622	spin_lock_irq(&hugetlb_lock);
2623
2624	return ret;
2625}
2626
2627/*
2628 * This routine has two main purposes:
2629 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2630 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2631 *    to the associated reservation map.
2632 * 2) Free any unused surplus pages that may have been allocated to satisfy
2633 *    the reservation.  As many as unused_resv_pages may be freed.
2634 */
2635static void return_unused_surplus_pages(struct hstate *h,
2636					unsigned long unused_resv_pages)
2637{
2638	unsigned long nr_pages;
2639	struct page *page;
2640	LIST_HEAD(page_list);
2641
2642	lockdep_assert_held(&hugetlb_lock);
2643	/* Uncommit the reservation */
2644	h->resv_huge_pages -= unused_resv_pages;
2645
2646	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2647		goto out;
2648
2649	/*
2650	 * Part (or even all) of the reservation could have been backed
2651	 * by pre-allocated pages. Only free surplus pages.
2652	 */
2653	nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2654
2655	/*
2656	 * We want to release as many surplus pages as possible, spread
2657	 * evenly across all nodes with memory. Iterate across these nodes
2658	 * until we can no longer free unreserved surplus pages. This occurs
2659	 * when the nodes with surplus pages have no free pages.
2660	 * remove_pool_huge_page() will balance the freed pages across the
2661	 * on-line nodes with memory and will handle the hstate accounting.
2662	 */
2663	while (nr_pages--) {
2664		page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2665		if (!page)
2666			goto out;
2667
2668		list_add(&page->lru, &page_list);
2669	}
2670
2671out:
2672	spin_unlock_irq(&hugetlb_lock);
2673	update_and_free_pages_bulk(h, &page_list);
2674	spin_lock_irq(&hugetlb_lock);
2675}
2676
2677
2678/*
2679 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2680 * are used by the huge page allocation routines to manage reservations.
2681 *
2682 * vma_needs_reservation is called to determine if the huge page at addr
2683 * within the vma has an associated reservation.  If a reservation is
2684 * needed, the value 1 is returned.  The caller is then responsible for
2685 * managing the global reservation and subpool usage counts.  After
2686 * the huge page has been allocated, vma_commit_reservation is called
2687 * to add the page to the reservation map.  If the page allocation fails,
2688 * the reservation must be ended instead of committed.  vma_end_reservation
2689 * is called in such cases.
2690 *
2691 * In the normal case, vma_commit_reservation returns the same value
2692 * as the preceding vma_needs_reservation call.  The only time this
2693 * is not the case is if a reserve map was changed between calls.  It
2694 * is the responsibility of the caller to notice the difference and
2695 * take appropriate action.
2696 *
2697 * vma_add_reservation is used in error paths where a reservation must
2698 * be restored when a newly allocated huge page must be freed.  It is
2699 * to be called after calling vma_needs_reservation to determine if a
2700 * reservation exists.
2701 *
2702 * vma_del_reservation is used in error paths where an entry in the reserve
2703 * map was created during huge page allocation and must be removed.  It is to
2704 * be called after calling vma_needs_reservation to determine if a reservation
2705 * exists.
2706 */
2707enum vma_resv_mode {
2708	VMA_NEEDS_RESV,
2709	VMA_COMMIT_RESV,
2710	VMA_END_RESV,
2711	VMA_ADD_RESV,
2712	VMA_DEL_RESV,
2713};
2714static long __vma_reservation_common(struct hstate *h,
2715				struct vm_area_struct *vma, unsigned long addr,
2716				enum vma_resv_mode mode)
2717{
2718	struct resv_map *resv;
2719	pgoff_t idx;
2720	long ret;
2721	long dummy_out_regions_needed;
2722
2723	resv = vma_resv_map(vma);
2724	if (!resv)
2725		return 1;
2726
2727	idx = vma_hugecache_offset(h, vma, addr);
2728	switch (mode) {
2729	case VMA_NEEDS_RESV:
2730		ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2731		/* We assume that vma_reservation_* routines always operate on
2732		 * 1 page, and that adding to resv map a 1 page entry can only
2733		 * ever require 1 region.
2734		 */
2735		VM_BUG_ON(dummy_out_regions_needed != 1);
2736		break;
2737	case VMA_COMMIT_RESV:
2738		ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2739		/* region_add calls of range 1 should never fail. */
2740		VM_BUG_ON(ret < 0);
2741		break;
2742	case VMA_END_RESV:
2743		region_abort(resv, idx, idx + 1, 1);
2744		ret = 0;
2745		break;
2746	case VMA_ADD_RESV:
2747		if (vma->vm_flags & VM_MAYSHARE) {
2748			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2749			/* region_add calls of range 1 should never fail. */
2750			VM_BUG_ON(ret < 0);
2751		} else {
2752			region_abort(resv, idx, idx + 1, 1);
2753			ret = region_del(resv, idx, idx + 1);
2754		}
2755		break;
2756	case VMA_DEL_RESV:
2757		if (vma->vm_flags & VM_MAYSHARE) {
2758			region_abort(resv, idx, idx + 1, 1);
2759			ret = region_del(resv, idx, idx + 1);
2760		} else {
2761			ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2762			/* region_add calls of range 1 should never fail. */
2763			VM_BUG_ON(ret < 0);
2764		}
2765		break;
2766	default:
2767		BUG();
2768	}
2769
2770	if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2771		return ret;
2772	/*
2773	 * We know private mapping must have HPAGE_RESV_OWNER set.
2774	 *
2775	 * In most cases, reserves always exist for private mappings.
2776	 * However, a file associated with mapping could have been
2777	 * hole punched or truncated after reserves were consumed.
2778	 * As subsequent fault on such a range will not use reserves.
2779	 * Subtle - The reserve map for private mappings has the
2780	 * opposite meaning than that of shared mappings.  If NO
2781	 * entry is in the reserve map, it means a reservation exists.
2782	 * If an entry exists in the reserve map, it means the
2783	 * reservation has already been consumed.  As a result, the
2784	 * return value of this routine is the opposite of the
2785	 * value returned from reserve map manipulation routines above.
2786	 */
2787	if (ret > 0)
2788		return 0;
2789	if (ret == 0)
2790		return 1;
2791	return ret;
2792}
2793
2794static long vma_needs_reservation(struct hstate *h,
2795			struct vm_area_struct *vma, unsigned long addr)
2796{
2797	return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2798}
2799
2800static long vma_commit_reservation(struct hstate *h,
2801			struct vm_area_struct *vma, unsigned long addr)
2802{
2803	return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2804}
2805
2806static void vma_end_reservation(struct hstate *h,
2807			struct vm_area_struct *vma, unsigned long addr)
2808{
2809	(void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2810}
2811
2812static long vma_add_reservation(struct hstate *h,
2813			struct vm_area_struct *vma, unsigned long addr)
2814{
2815	return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2816}
2817
2818static long vma_del_reservation(struct hstate *h,
2819			struct vm_area_struct *vma, unsigned long addr)
2820{
2821	return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2822}
2823
2824/*
2825 * This routine is called to restore reservation information on error paths.
2826 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2827 * and the hugetlb mutex should remain held when calling this routine.
2828 *
2829 * It handles two specific cases:
2830 * 1) A reservation was in place and the folio consumed the reservation.
2831 *    hugetlb_restore_reserve is set in the folio.
2832 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2833 *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2834 *
2835 * In case 1, free_huge_folio later in the error path will increment the
2836 * global reserve count.  But, free_huge_folio does not have enough context
2837 * to adjust the reservation map.  This case deals primarily with private
2838 * mappings.  Adjust the reserve map here to be consistent with global
2839 * reserve count adjustments to be made by free_huge_folio.  Make sure the
2840 * reserve map indicates there is a reservation present.
2841 *
2842 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2843 */
2844void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2845			unsigned long address, struct folio *folio)
2846{
2847	long rc = vma_needs_reservation(h, vma, address);
2848
2849	if (folio_test_hugetlb_restore_reserve(folio)) {
2850		if (unlikely(rc < 0))
2851			/*
2852			 * Rare out of memory condition in reserve map
2853			 * manipulation.  Clear hugetlb_restore_reserve so
2854			 * that global reserve count will not be incremented
2855			 * by free_huge_folio.  This will make it appear
2856			 * as though the reservation for this folio was
2857			 * consumed.  This may prevent the task from
2858			 * faulting in the folio at a later time.  This
2859			 * is better than inconsistent global huge page
2860			 * accounting of reserve counts.
2861			 */
2862			folio_clear_hugetlb_restore_reserve(folio);
2863		else if (rc)
2864			(void)vma_add_reservation(h, vma, address);
2865		else
2866			vma_end_reservation(h, vma, address);
2867	} else {
2868		if (!rc) {
2869			/*
2870			 * This indicates there is an entry in the reserve map
2871			 * not added by alloc_hugetlb_folio.  We know it was added
2872			 * before the alloc_hugetlb_folio call, otherwise
2873			 * hugetlb_restore_reserve would be set on the folio.
2874			 * Remove the entry so that a subsequent allocation
2875			 * does not consume a reservation.
2876			 */
2877			rc = vma_del_reservation(h, vma, address);
2878			if (rc < 0)
2879				/*
2880				 * VERY rare out of memory condition.  Since
2881				 * we can not delete the entry, set
2882				 * hugetlb_restore_reserve so that the reserve
2883				 * count will be incremented when the folio
2884				 * is freed.  This reserve will be consumed
2885				 * on a subsequent allocation.
2886				 */
2887				folio_set_hugetlb_restore_reserve(folio);
2888		} else if (rc < 0) {
2889			/*
2890			 * Rare out of memory condition from
2891			 * vma_needs_reservation call.  Memory allocation is
2892			 * only attempted if a new entry is needed.  Therefore,
2893			 * this implies there is not an entry in the
2894			 * reserve map.
2895			 *
2896			 * For shared mappings, no entry in the map indicates
2897			 * no reservation.  We are done.
2898			 */
2899			if (!(vma->vm_flags & VM_MAYSHARE))
2900				/*
2901				 * For private mappings, no entry indicates
2902				 * a reservation is present.  Since we can
2903				 * not add an entry, set hugetlb_restore_reserve
2904				 * on the folio so reserve count will be
2905				 * incremented when freed.  This reserve will
2906				 * be consumed on a subsequent allocation.
2907				 */
2908				folio_set_hugetlb_restore_reserve(folio);
2909		} else
2910			/*
2911			 * No reservation present, do nothing
2912			 */
2913			 vma_end_reservation(h, vma, address);
2914	}
2915}
2916
2917/*
2918 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2919 * the old one
2920 * @h: struct hstate old page belongs to
2921 * @old_folio: Old folio to dissolve
2922 * @list: List to isolate the page in case we need to
2923 * Returns 0 on success, otherwise negated error.
2924 */
2925static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2926			struct folio *old_folio, struct list_head *list)
2927{
2928	gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2929	int nid = folio_nid(old_folio);
2930	struct folio *new_folio;
2931	int ret = 0;
2932
2933	/*
2934	 * Before dissolving the folio, we need to allocate a new one for the
2935	 * pool to remain stable.  Here, we allocate the folio and 'prep' it
2936	 * by doing everything but actually updating counters and adding to
2937	 * the pool.  This simplifies and let us do most of the processing
2938	 * under the lock.
2939	 */
2940	new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2941	if (!new_folio)
2942		return -ENOMEM;
2943	__prep_new_hugetlb_folio(h, new_folio);
2944
2945retry:
2946	spin_lock_irq(&hugetlb_lock);
2947	if (!folio_test_hugetlb(old_folio)) {
2948		/*
2949		 * Freed from under us. Drop new_folio too.
2950		 */
2951		goto free_new;
2952	} else if (folio_ref_count(old_folio)) {
2953		bool isolated;
2954
2955		/*
2956		 * Someone has grabbed the folio, try to isolate it here.
2957		 * Fail with -EBUSY if not possible.
2958		 */
2959		spin_unlock_irq(&hugetlb_lock);
2960		isolated = isolate_hugetlb(old_folio, list);
2961		ret = isolated ? 0 : -EBUSY;
2962		spin_lock_irq(&hugetlb_lock);
2963		goto free_new;
2964	} else if (!folio_test_hugetlb_freed(old_folio)) {
2965		/*
2966		 * Folio's refcount is 0 but it has not been enqueued in the
2967		 * freelist yet. Race window is small, so we can succeed here if
2968		 * we retry.
2969		 */
2970		spin_unlock_irq(&hugetlb_lock);
2971		cond_resched();
2972		goto retry;
2973	} else {
2974		/*
2975		 * Ok, old_folio is still a genuine free hugepage. Remove it from
2976		 * the freelist and decrease the counters. These will be
2977		 * incremented again when calling __prep_account_new_huge_page()
2978		 * and enqueue_hugetlb_folio() for new_folio. The counters will
2979		 * remain stable since this happens under the lock.
2980		 */
2981		remove_hugetlb_folio(h, old_folio, false);
2982
2983		/*
2984		 * Ref count on new_folio is already zero as it was dropped
2985		 * earlier.  It can be directly added to the pool free list.
2986		 */
2987		__prep_account_new_huge_page(h, nid);
2988		enqueue_hugetlb_folio(h, new_folio);
2989
2990		/*
2991		 * Folio has been replaced, we can safely free the old one.
2992		 */
2993		spin_unlock_irq(&hugetlb_lock);
2994		update_and_free_hugetlb_folio(h, old_folio, false);
2995	}
2996
2997	return ret;
2998
2999free_new:
3000	spin_unlock_irq(&hugetlb_lock);
3001	/* Folio has a zero ref count, but needs a ref to be freed */
3002	folio_ref_unfreeze(new_folio, 1);
3003	update_and_free_hugetlb_folio(h, new_folio, false);
3004
3005	return ret;
3006}
3007
3008int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3009{
3010	struct hstate *h;
3011	struct folio *folio = page_folio(page);
3012	int ret = -EBUSY;
3013
3014	/*
3015	 * The page might have been dissolved from under our feet, so make sure
3016	 * to carefully check the state under the lock.
3017	 * Return success when racing as if we dissolved the page ourselves.
3018	 */
3019	spin_lock_irq(&hugetlb_lock);
3020	if (folio_test_hugetlb(folio)) {
3021		h = folio_hstate(folio);
3022	} else {
3023		spin_unlock_irq(&hugetlb_lock);
3024		return 0;
3025	}
3026	spin_unlock_irq(&hugetlb_lock);
3027
3028	/*
3029	 * Fence off gigantic pages as there is a cyclic dependency between
3030	 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3031	 * of bailing out right away without further retrying.
3032	 */
3033	if (hstate_is_gigantic(h))
3034		return -ENOMEM;
3035
3036	if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3037		ret = 0;
3038	else if (!folio_ref_count(folio))
3039		ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3040
3041	return ret;
3042}
3043
3044struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3045				    unsigned long addr, int avoid_reserve)
3046{
3047	struct hugepage_subpool *spool = subpool_vma(vma);
3048	struct hstate *h = hstate_vma(vma);
3049	struct folio *folio;
3050	long map_chg, map_commit;
3051	long gbl_chg;
3052	int ret, idx;
3053	struct hugetlb_cgroup *h_cg = NULL;
3054	bool deferred_reserve;
3055
3056	idx = hstate_index(h);
3057	/*
3058	 * Examine the region/reserve map to determine if the process
3059	 * has a reservation for the page to be allocated.  A return
3060	 * code of zero indicates a reservation exists (no change).
3061	 */
3062	map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3063	if (map_chg < 0)
3064		return ERR_PTR(-ENOMEM);
3065
3066	/*
3067	 * Processes that did not create the mapping will have no
3068	 * reserves as indicated by the region/reserve map. Check
3069	 * that the allocation will not exceed the subpool limit.
3070	 * Allocations for MAP_NORESERVE mappings also need to be
3071	 * checked against any subpool limit.
3072	 */
3073	if (map_chg || avoid_reserve) {
3074		gbl_chg = hugepage_subpool_get_pages(spool, 1);
3075		if (gbl_chg < 0) {
3076			vma_end_reservation(h, vma, addr);
3077			return ERR_PTR(-ENOSPC);
3078		}
3079
3080		/*
3081		 * Even though there was no reservation in the region/reserve
3082		 * map, there could be reservations associated with the
3083		 * subpool that can be used.  This would be indicated if the
3084		 * return value of hugepage_subpool_get_pages() is zero.
3085		 * However, if avoid_reserve is specified we still avoid even
3086		 * the subpool reservations.
3087		 */
3088		if (avoid_reserve)
3089			gbl_chg = 1;
3090	}
3091
3092	/* If this allocation is not consuming a reservation, charge it now.
3093	 */
3094	deferred_reserve = map_chg || avoid_reserve;
3095	if (deferred_reserve) {
3096		ret = hugetlb_cgroup_charge_cgroup_rsvd(
3097			idx, pages_per_huge_page(h), &h_cg);
3098		if (ret)
3099			goto out_subpool_put;
3100	}
3101
3102	ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3103	if (ret)
3104		goto out_uncharge_cgroup_reservation;
3105
3106	spin_lock_irq(&hugetlb_lock);
3107	/*
3108	 * glb_chg is passed to indicate whether or not a page must be taken
3109	 * from the global free pool (global change).  gbl_chg == 0 indicates
3110	 * a reservation exists for the allocation.
3111	 */
3112	folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3113	if (!folio) {
3114		spin_unlock_irq(&hugetlb_lock);
3115		folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3116		if (!folio)
3117			goto out_uncharge_cgroup;
3118		spin_lock_irq(&hugetlb_lock);
3119		if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3120			folio_set_hugetlb_restore_reserve(folio);
3121			h->resv_huge_pages--;
3122		}
3123		list_add(&folio->lru, &h->hugepage_activelist);
3124		folio_ref_unfreeze(folio, 1);
3125		/* Fall through */
3126	}
3127
3128	hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3129	/* If allocation is not consuming a reservation, also store the
3130	 * hugetlb_cgroup pointer on the page.
3131	 */
3132	if (deferred_reserve) {
3133		hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3134						  h_cg, folio);
3135	}
3136
3137	spin_unlock_irq(&hugetlb_lock);
3138
3139	hugetlb_set_folio_subpool(folio, spool);
3140
3141	map_commit = vma_commit_reservation(h, vma, addr);
3142	if (unlikely(map_chg > map_commit)) {
3143		/*
3144		 * The page was added to the reservation map between
3145		 * vma_needs_reservation and vma_commit_reservation.
3146		 * This indicates a race with hugetlb_reserve_pages.
3147		 * Adjust for the subpool count incremented above AND
3148		 * in hugetlb_reserve_pages for the same page.  Also,
3149		 * the reservation count added in hugetlb_reserve_pages
3150		 * no longer applies.
3151		 */
3152		long rsv_adjust;
3153
3154		rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3155		hugetlb_acct_memory(h, -rsv_adjust);
3156		if (deferred_reserve)
3157			hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3158					pages_per_huge_page(h), folio);
3159	}
3160	return folio;
3161
3162out_uncharge_cgroup:
3163	hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3164out_uncharge_cgroup_reservation:
3165	if (deferred_reserve)
3166		hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3167						    h_cg);
3168out_subpool_put:
3169	if (map_chg || avoid_reserve)
3170		hugepage_subpool_put_pages(spool, 1);
3171	vma_end_reservation(h, vma, addr);
3172	return ERR_PTR(-ENOSPC);
3173}
3174
3175int alloc_bootmem_huge_page(struct hstate *h, int nid)
3176	__attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3177int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3178{
3179	struct huge_bootmem_page *m = NULL; /* initialize for clang */
3180	int nr_nodes, node;
3181
3182	/* do node specific alloc */
3183	if (nid != NUMA_NO_NODE) {
3184		m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3185				0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3186		if (!m)
3187			return 0;
3188		goto found;
3189	}
3190	/* allocate from next node when distributing huge pages */
3191	for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3192		m = memblock_alloc_try_nid_raw(
3193				huge_page_size(h), huge_page_size(h),
3194				0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3195		/*
3196		 * Use the beginning of the huge page to store the
3197		 * huge_bootmem_page struct (until gather_bootmem
3198		 * puts them into the mem_map).
3199		 */
3200		if (!m)
3201			return 0;
3202		goto found;
3203	}
3204
3205found:
3206	/* Put them into a private list first because mem_map is not up yet */
3207	INIT_LIST_HEAD(&m->list);
3208	list_add(&m->list, &huge_boot_pages);
3209	m->hstate = h;
3210	return 1;
3211}
3212
3213/*
3214 * Put bootmem huge pages into the standard lists after mem_map is up.
3215 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3216 */
3217static void __init gather_bootmem_prealloc(void)
3218{
3219	struct huge_bootmem_page *m;
3220
3221	list_for_each_entry(m, &huge_boot_pages, list) {
3222		struct page *page = virt_to_page(m);
3223		struct folio *folio = page_folio(page);
3224		struct hstate *h = m->hstate;
3225
3226		VM_BUG_ON(!hstate_is_gigantic(h));
3227		WARN_ON(folio_ref_count(folio) != 1);
3228		if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3229			WARN_ON(folio_test_reserved(folio));
3230			prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3231			free_huge_folio(folio); /* add to the hugepage allocator */
3232		} else {
3233			/* VERY unlikely inflated ref count on a tail page */
3234			free_gigantic_folio(folio, huge_page_order(h));
3235		}
3236
3237		/*
3238		 * We need to restore the 'stolen' pages to totalram_pages
3239		 * in order to fix confusing memory reports from free(1) and
3240		 * other side-effects, like CommitLimit going negative.
3241		 */
3242		adjust_managed_page_count(page, pages_per_huge_page(h));
3243		cond_resched();
3244	}
3245}
3246static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3247{
3248	unsigned long i;
3249	char buf[32];
3250
3251	for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3252		if (hstate_is_gigantic(h)) {
3253			if (!alloc_bootmem_huge_page(h, nid))
3254				break;
3255		} else {
3256			struct folio *folio;
3257			gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3258
3259			folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3260					&node_states[N_MEMORY], NULL);
3261			if (!folio)
3262				break;
3263			free_huge_folio(folio); /* free it into the hugepage allocator */
3264		}
3265		cond_resched();
3266	}
3267	if (i == h->max_huge_pages_node[nid])
3268		return;
3269
3270	string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3271	pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3272		h->max_huge_pages_node[nid], buf, nid, i);
3273	h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3274	h->max_huge_pages_node[nid] = i;
3275}
3276
3277static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3278{
3279	unsigned long i;
3280	nodemask_t *node_alloc_noretry;
3281	bool node_specific_alloc = false;
3282
3283	/* skip gigantic hugepages allocation if hugetlb_cma enabled */
3284	if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3285		pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3286		return;
3287	}
3288
3289	/* do node specific alloc */
3290	for_each_online_node(i) {
3291		if (h->max_huge_pages_node[i] > 0) {
3292			hugetlb_hstate_alloc_pages_onenode(h, i);
3293			node_specific_alloc = true;
3294		}
3295	}
3296
3297	if (node_specific_alloc)
3298		return;
3299
3300	/* below will do all node balanced alloc */
3301	if (!hstate_is_gigantic(h)) {
3302		/*
3303		 * Bit mask controlling how hard we retry per-node allocations.
3304		 * Ignore errors as lower level routines can deal with
3305		 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3306		 * time, we are likely in bigger trouble.
3307		 */
3308		node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3309						GFP_KERNEL);
3310	} else {
3311		/* allocations done at boot time */
3312		node_alloc_noretry = NULL;
3313	}
3314
3315	/* bit mask controlling how hard we retry per-node allocations */
3316	if (node_alloc_noretry)
3317		nodes_clear(*node_alloc_noretry);
3318
3319	for (i = 0; i < h->max_huge_pages; ++i) {
3320		if (hstate_is_gigantic(h)) {
3321			if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3322				break;
3323		} else if (!alloc_pool_huge_page(h,
3324					 &node_states[N_MEMORY],
3325					 node_alloc_noretry))
3326			break;
3327		cond_resched();
3328	}
3329	if (i < h->max_huge_pages) {
3330		char buf[32];
3331
3332		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3333		pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3334			h->max_huge_pages, buf, i);
3335		h->max_huge_pages = i;
3336	}
3337	kfree(node_alloc_noretry);
3338}
3339
3340static void __init hugetlb_init_hstates(void)
3341{
3342	struct hstate *h, *h2;
3343
3344	for_each_hstate(h) {
3345		/* oversize hugepages were init'ed in early boot */
3346		if (!hstate_is_gigantic(h))
3347			hugetlb_hstate_alloc_pages(h);
3348
3349		/*
3350		 * Set demote order for each hstate.  Note that
3351		 * h->demote_order is initially 0.
3352		 * - We can not demote gigantic pages if runtime freeing
3353		 *   is not supported, so skip this.
3354		 * - If CMA allocation is possible, we can not demote
3355		 *   HUGETLB_PAGE_ORDER or smaller size pages.
3356		 */
3357		if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3358			continue;
3359		if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3360			continue;
3361		for_each_hstate(h2) {
3362			if (h2 == h)
3363				continue;
3364			if (h2->order < h->order &&
3365			    h2->order > h->demote_order)
3366				h->demote_order = h2->order;
3367		}
3368	}
3369}
3370
3371static void __init report_hugepages(void)
3372{
3373	struct hstate *h;
3374
3375	for_each_hstate(h) {
3376		char buf[32];
3377
3378		string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3379		pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3380			buf, h->free_huge_pages);
3381		pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3382			hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3383	}
3384}
3385
3386#ifdef CONFIG_HIGHMEM
3387static void try_to_free_low(struct hstate *h, unsigned long count,
3388						nodemask_t *nodes_allowed)
3389{
3390	int i;
3391	LIST_HEAD(page_list);
3392
3393	lockdep_assert_held(&hugetlb_lock);
3394	if (hstate_is_gigantic(h))
3395		return;
3396
3397	/*
3398	 * Collect pages to be freed on a list, and free after dropping lock
3399	 */
3400	for_each_node_mask(i, *nodes_allowed) {
3401		struct page *page, *next;
3402		struct list_head *freel = &h->hugepage_freelists[i];
3403		list_for_each_entry_safe(page, next, freel, lru) {
3404			if (count >= h->nr_huge_pages)
3405				goto out;
3406			if (PageHighMem(page))
3407				continue;
3408			remove_hugetlb_folio(h, page_folio(page), false);
3409			list_add(&page->lru, &page_list);
3410		}
3411	}
3412
3413out:
3414	spin_unlock_irq(&hugetlb_lock);
3415	update_and_free_pages_bulk(h, &page_list);
3416	spin_lock_irq(&hugetlb_lock);
3417}
3418#else
3419static inline void try_to_free_low(struct hstate *h, unsigned long count,
3420						nodemask_t *nodes_allowed)
3421{
3422}
3423#endif
3424
3425/*
3426 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3427 * balanced by operating on them in a round-robin fashion.
3428 * Returns 1 if an adjustment was made.
3429 */
3430static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3431				int delta)
3432{
3433	int nr_nodes, node;
3434
3435	lockdep_assert_held(&hugetlb_lock);
3436	VM_BUG_ON(delta != -1 && delta != 1);
3437
3438	if (delta < 0) {
3439		for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3440			if (h->surplus_huge_pages_node[node])
3441				goto found;
3442		}
3443	} else {
3444		for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3445			if (h->surplus_huge_pages_node[node] <
3446					h->nr_huge_pages_node[node])
3447				goto found;
3448		}
3449	}
3450	return 0;
3451
3452found:
3453	h->surplus_huge_pages += delta;
3454	h->surplus_huge_pages_node[node] += delta;
3455	return 1;
3456}
3457
3458#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3459static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3460			      nodemask_t *nodes_allowed)
3461{
3462	unsigned long min_count, ret;
3463	struct page *page;
3464	LIST_HEAD(page_list);
3465	NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3466
3467	/*
3468	 * Bit mask controlling how hard we retry per-node allocations.
3469	 * If we can not allocate the bit mask, do not attempt to allocate
3470	 * the requested huge pages.
3471	 */
3472	if (node_alloc_noretry)
3473		nodes_clear(*node_alloc_noretry);
3474	else
3475		return -ENOMEM;
3476
3477	/*
3478	 * resize_lock mutex prevents concurrent adjustments to number of
3479	 * pages in hstate via the proc/sysfs interfaces.
3480	 */
3481	mutex_lock(&h->resize_lock);
3482	flush_free_hpage_work(h);
3483	spin_lock_irq(&hugetlb_lock);
3484
3485	/*
3486	 * Check for a node specific request.
3487	 * Changing node specific huge page count may require a corresponding
3488	 * change to the global count.  In any case, the passed node mask
3489	 * (nodes_allowed) will restrict alloc/free to the specified node.
3490	 */
3491	if (nid != NUMA_NO_NODE) {
3492		unsigned long old_count = count;
3493
3494		count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3495		/*
3496		 * User may have specified a large count value which caused the
3497		 * above calculation to overflow.  In this case, they wanted
3498		 * to allocate as many huge pages as possible.  Set count to
3499		 * largest possible value to align with their intention.
3500		 */
3501		if (count < old_count)
3502			count = ULONG_MAX;
3503	}
3504
3505	/*
3506	 * Gigantic pages runtime allocation depend on the capability for large
3507	 * page range allocation.
3508	 * If the system does not provide this feature, return an error when
3509	 * the user tries to allocate gigantic pages but let the user free the
3510	 * boottime allocated gigantic pages.
3511	 */
3512	if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3513		if (count > persistent_huge_pages(h)) {
3514			spin_unlock_irq(&hugetlb_lock);
3515			mutex_unlock(&h->resize_lock);
3516			NODEMASK_FREE(node_alloc_noretry);
3517			return -EINVAL;
3518		}
3519		/* Fall through to decrease pool */
3520	}
3521
3522	/*
3523	 * Increase the pool size
3524	 * First take pages out of surplus state.  Then make up the
3525	 * remaining difference by allocating fresh huge pages.
3526	 *
3527	 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3528	 * to convert a surplus huge page to a normal huge page. That is
3529	 * not critical, though, it just means the overall size of the
3530	 * pool might be one hugepage larger than it needs to be, but
3531	 * within all the constraints specified by the sysctls.
3532	 */
3533	while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3534		if (!adjust_pool_surplus(h, nodes_allowed, -1))
3535			break;
3536	}
3537
3538	while (count > persistent_huge_pages(h)) {
3539		/*
3540		 * If this allocation races such that we no longer need the
3541		 * page, free_huge_folio will handle it by freeing the page
3542		 * and reducing the surplus.
3543		 */
3544		spin_unlock_irq(&hugetlb_lock);
3545
3546		/* yield cpu to avoid soft lockup */
3547		cond_resched();
3548
3549		ret = alloc_pool_huge_page(h, nodes_allowed,
3550						node_alloc_noretry);
3551		spin_lock_irq(&hugetlb_lock);
3552		if (!ret)
3553			goto out;
3554
3555		/* Bail for signals. Probably ctrl-c from user */
3556		if (signal_pending(current))
3557			goto out;
3558	}
3559
3560	/*
3561	 * Decrease the pool size
3562	 * First return free pages to the buddy allocator (being careful
3563	 * to keep enough around to satisfy reservations).  Then place
3564	 * pages into surplus state as needed so the pool will shrink
3565	 * to the desired size as pages become free.
3566	 *
3567	 * By placing pages into the surplus state independent of the
3568	 * overcommit value, we are allowing the surplus pool size to
3569	 * exceed overcommit. There are few sane options here. Since
3570	 * alloc_surplus_hugetlb_folio() is checking the global counter,
3571	 * though, we'll note that we're not allowed to exceed surplus
3572	 * and won't grow the pool anywhere else. Not until one of the
3573	 * sysctls are changed, or the surplus pages go out of use.
3574	 */
3575	min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3576	min_count = max(count, min_count);
3577	try_to_free_low(h, min_count, nodes_allowed);
3578
3579	/*
3580	 * Collect pages to be removed on list without dropping lock
3581	 */
3582	while (min_count < persistent_huge_pages(h)) {
3583		page = remove_pool_huge_page(h, nodes_allowed, 0);
3584		if (!page)
3585			break;
3586
3587		list_add(&page->lru, &page_list);
3588	}
3589	/* free the pages after dropping lock */
3590	spin_unlock_irq(&hugetlb_lock);
3591	update_and_free_pages_bulk(h, &page_list);
3592	flush_free_hpage_work(h);
3593	spin_lock_irq(&hugetlb_lock);
3594
3595	while (count < persistent_huge_pages(h)) {
3596		if (!adjust_pool_surplus(h, nodes_allowed, 1))
3597			break;
3598	}
3599out:
3600	h->max_huge_pages = persistent_huge_pages(h);
3601	spin_unlock_irq(&hugetlb_lock);
3602	mutex_unlock(&h->resize_lock);
3603
3604	NODEMASK_FREE(node_alloc_noretry);
3605
3606	return 0;
3607}
3608
3609static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3610{
3611	int i, nid = folio_nid(folio);
3612	struct hstate *target_hstate;
3613	struct page *subpage;
3614	struct folio *inner_folio;
3615	int rc = 0;
3616
3617	target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3618
3619	remove_hugetlb_folio_for_demote(h, folio, false);
3620	spin_unlock_irq(&hugetlb_lock);
3621
3622	rc = hugetlb_vmemmap_restore(h, &folio->page);
3623	if (rc) {
3624		/* Allocation of vmemmmap failed, we can not demote folio */
3625		spin_lock_irq(&hugetlb_lock);
3626		folio_ref_unfreeze(folio, 1);
3627		add_hugetlb_folio(h, folio, false);
3628		return rc;
3629	}
3630
3631	/*
3632	 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3633	 * sizes as it will not ref count folios.
3634	 */
3635	destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3636
3637	/*
3638	 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3639	 * Without the mutex, pages added to target hstate could be marked
3640	 * as surplus.
3641	 *
3642	 * Note that we already hold h->resize_lock.  To prevent deadlock,
3643	 * use the convention of always taking larger size hstate mutex first.
3644	 */
3645	mutex_lock(&target_hstate->resize_lock);
3646	for (i = 0; i < pages_per_huge_page(h);
3647				i += pages_per_huge_page(target_hstate)) {
3648		subpage = folio_page(folio, i);
3649		inner_folio = page_folio(subpage);
3650		if (hstate_is_gigantic(target_hstate))
3651			prep_compound_gigantic_folio_for_demote(inner_folio,
3652							target_hstate->order);
3653		else
3654			prep_compound_page(subpage, target_hstate->order);
3655		folio_change_private(inner_folio, NULL);
3656		prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3657		free_huge_folio(inner_folio);
3658	}
3659	mutex_unlock(&target_hstate->resize_lock);
3660
3661	spin_lock_irq(&hugetlb_lock);
3662
3663	/*
3664	 * Not absolutely necessary, but for consistency update max_huge_pages
3665	 * based on pool changes for the demoted page.
3666	 */
3667	h->max_huge_pages--;
3668	target_hstate->max_huge_pages +=
3669		pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3670
3671	return rc;
3672}
3673
3674static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3675	__must_hold(&hugetlb_lock)
3676{
3677	int nr_nodes, node;
3678	struct folio *folio;
3679
3680	lockdep_assert_held(&hugetlb_lock);
3681
3682	/* We should never get here if no demote order */
3683	if (!h->demote_order) {
3684		pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3685		return -EINVAL;		/* internal error */
3686	}
3687
3688	for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3689		list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3690			if (folio_test_hwpoison(folio))
3691				continue;
3692			return demote_free_hugetlb_folio(h, folio);
3693		}
3694	}
3695
3696	/*
3697	 * Only way to get here is if all pages on free lists are poisoned.
3698	 * Return -EBUSY so that caller will not retry.
3699	 */
3700	return -EBUSY;
3701}
3702
3703#define HSTATE_ATTR_RO(_name) \
3704	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3705
3706#define HSTATE_ATTR_WO(_name) \
3707	static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3708
3709#define HSTATE_ATTR(_name) \
3710	static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3711
3712static struct kobject *hugepages_kobj;
3713static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3714
3715static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3716
3717static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3718{
3719	int i;
3720
3721	for (i = 0; i < HUGE_MAX_HSTATE; i++)
3722		if (hstate_kobjs[i] == kobj) {
3723			if (nidp)
3724				*nidp = NUMA_NO_NODE;
3725			return &hstates[i];
3726		}
3727
3728	return kobj_to_node_hstate(kobj, nidp);
3729}
3730
3731static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3732					struct kobj_attribute *attr, char *buf)
3733{
3734	struct hstate *h;
3735	unsigned long nr_huge_pages;
3736	int nid;
3737
3738	h = kobj_to_hstate(kobj, &nid);
3739	if (nid == NUMA_NO_NODE)
3740		nr_huge_pages = h->nr_huge_pages;
3741	else
3742		nr_huge_pages = h->nr_huge_pages_node[nid];
3743
3744	return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3745}
3746
3747static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3748					   struct hstate *h, int nid,
3749					   unsigned long count, size_t len)
3750{
3751	int err;
3752	nodemask_t nodes_allowed, *n_mask;
3753
3754	if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3755		return -EINVAL;
3756
3757	if (nid == NUMA_NO_NODE) {
3758		/*
3759		 * global hstate attribute
3760		 */
3761		if (!(obey_mempolicy &&
3762				init_nodemask_of_mempolicy(&nodes_allowed)))
3763			n_mask = &node_states[N_MEMORY];
3764		else
3765			n_mask = &nodes_allowed;
3766	} else {
3767		/*
3768		 * Node specific request.  count adjustment happens in
3769		 * set_max_huge_pages() after acquiring hugetlb_lock.
3770		 */
3771		init_nodemask_of_node(&nodes_allowed, nid);
3772		n_mask = &nodes_allowed;
3773	}
3774
3775	err = set_max_huge_pages(h, count, nid, n_mask);
3776
3777	return err ? err : len;
3778}
3779
3780static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3781					 struct kobject *kobj, const char *buf,
3782					 size_t len)
3783{
3784	struct hstate *h;
3785	unsigned long count;
3786	int nid;
3787	int err;
3788
3789	err = kstrtoul(buf, 10, &count);
3790	if (err)
3791		return err;
3792
3793	h = kobj_to_hstate(kobj, &nid);
3794	return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3795}
3796
3797static ssize_t nr_hugepages_show(struct kobject *kobj,
3798				       struct kobj_attribute *attr, char *buf)
3799{
3800	return nr_hugepages_show_common(kobj, attr, buf);
3801}
3802
3803static ssize_t nr_hugepages_store(struct kobject *kobj,
3804	       struct kobj_attribute *attr, const char *buf, size_t len)
3805{
3806	return nr_hugepages_store_common(false, kobj, buf, len);
3807}
3808HSTATE_ATTR(nr_hugepages);
3809
3810#ifdef CONFIG_NUMA
3811
3812/*
3813 * hstate attribute for optionally mempolicy-based constraint on persistent
3814 * huge page alloc/free.
3815 */
3816static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3817					   struct kobj_attribute *attr,
3818					   char *buf)
3819{
3820	return nr_hugepages_show_common(kobj, attr, buf);
3821}
3822
3823static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3824	       struct kobj_attribute *attr, const char *buf, size_t len)
3825{
3826	return nr_hugepages_store_common(true, kobj, buf, len);
3827}
3828HSTATE_ATTR(nr_hugepages_mempolicy);
3829#endif
3830
3831
3832static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3833					struct kobj_attribute *attr, char *buf)
3834{
3835	struct hstate *h = kobj_to_hstate(kobj, NULL);
3836	return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3837}
3838
3839static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3840		struct kobj_attribute *attr, const char *buf, size_t count)
3841{
3842	int err;
3843	unsigned long input;
3844	struct hstate *h = kobj_to_hstate(kobj, NULL);
3845
3846	if (hstate_is_gigantic(h))
3847		return -EINVAL;
3848
3849	err = kstrtoul(buf, 10, &input);
3850	if (err)
3851		return err;
3852
3853	spin_lock_irq(&hugetlb_lock);
3854	h->nr_overcommit_huge_pages = input;
3855	spin_unlock_irq(&hugetlb_lock);
3856
3857	return count;
3858}
3859HSTATE_ATTR(nr_overcommit_hugepages);
3860
3861static ssize_t free_hugepages_show(struct kobject *kobj,
3862					struct kobj_attribute *attr, char *buf)
3863{
3864	struct hstate *h;
3865	unsigned long free_huge_pages;
3866	int nid;
3867
3868	h = kobj_to_hstate(kobj, &nid);
3869	if (nid == NUMA_NO_NODE)
3870		free_huge_pages = h->free_huge_pages;
3871	else
3872		free_huge_pages = h->free_huge_pages_node[nid];
3873
3874	return sysfs_emit(buf, "%lu\n", free_huge_pages);
3875}
3876HSTATE_ATTR_RO(free_hugepages);
3877
3878static ssize_t resv_hugepages_show(struct kobject *kobj,
3879					struct kobj_attribute *attr, char *buf)
3880{
3881	struct hstate *h = kobj_to_hstate(kobj, NULL);
3882	return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3883}
3884HSTATE_ATTR_RO(resv_hugepages);
3885
3886static ssize_t surplus_hugepages_show(struct kobject *kobj,
3887					struct kobj_attribute *attr, char *buf)
3888{
3889	struct hstate *h;
3890	unsigned long surplus_huge_pages;
3891	int nid;
3892
3893	h = kobj_to_hstate(kobj, &nid);
3894	if (nid == NUMA_NO_NODE)
3895		surplus_huge_pages = h->surplus_huge_pages;
3896	else
3897		surplus_huge_pages = h->surplus_huge_pages_node[nid];
3898
3899	return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3900}
3901HSTATE_ATTR_RO(surplus_hugepages);
3902
3903static ssize_t demote_store(struct kobject *kobj,
3904	       struct kobj_attribute *attr, const char *buf, size_t len)
3905{
3906	unsigned long nr_demote;
3907	unsigned long nr_available;
3908	nodemask_t nodes_allowed, *n_mask;
3909	struct hstate *h;
3910	int err;
3911	int nid;
3912
3913	err = kstrtoul(buf, 10, &nr_demote);
3914	if (err)
3915		return err;
3916	h = kobj_to_hstate(kobj, &nid);
3917
3918	if (nid != NUMA_NO_NODE) {
3919		init_nodemask_of_node(&nodes_allowed, nid);
3920		n_mask = &nodes_allowed;
3921	} else {
3922		n_mask = &node_states[N_MEMORY];
3923	}
3924
3925	/* Synchronize with other sysfs operations modifying huge pages */
3926	mutex_lock(&h->resize_lock);
3927	spin_lock_irq(&hugetlb_lock);
3928
3929	while (nr_demote) {
3930		/*
3931		 * Check for available pages to demote each time thorough the
3932		 * loop as demote_pool_huge_page will drop hugetlb_lock.
3933		 */
3934		if (nid != NUMA_NO_NODE)
3935			nr_available = h->free_huge_pages_node[nid];
3936		else
3937			nr_available = h->free_huge_pages;
3938		nr_available -= h->resv_huge_pages;
3939		if (!nr_available)
3940			break;
3941
3942		err = demote_pool_huge_page(h, n_mask);
3943		if (err)
3944			break;
3945
3946		nr_demote--;
3947	}
3948
3949	spin_unlock_irq(&hugetlb_lock);
3950	mutex_unlock(&h->resize_lock);
3951
3952	if (err)
3953		return err;
3954	return len;
3955}
3956HSTATE_ATTR_WO(demote);
3957
3958static ssize_t demote_size_show(struct kobject *kobj,
3959					struct kobj_attribute *attr, char *buf)
3960{
3961	struct hstate *h = kobj_to_hstate(kobj, NULL);
3962	unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3963
3964	return sysfs_emit(buf, "%lukB\n", demote_size);
3965}
3966
3967static ssize_t demote_size_store(struct kobject *kobj,
3968					struct kobj_attribute *attr,
3969					const char *buf, size_t count)
3970{
3971	struct hstate *h, *demote_hstate;
3972	unsigned long demote_size;
3973	unsigned int demote_order;
3974
3975	demote_size = (unsigned long)memparse(buf, NULL);
3976
3977	demote_hstate = size_to_hstate(demote_size);
3978	if (!demote_hstate)
3979		return -EINVAL;
3980	demote_order = demote_hstate->order;
3981	if (demote_order < HUGETLB_PAGE_ORDER)
3982		return -EINVAL;
3983
3984	/* demote order must be smaller than hstate order */
3985	h = kobj_to_hstate(kobj, NULL);
3986	if (demote_order >= h->order)
3987		return -EINVAL;
3988
3989	/* resize_lock synchronizes access to demote size and writes */
3990	mutex_lock(&h->resize_lock);
3991	h->demote_order = demote_order;
3992	mutex_unlock(&h->resize_lock);
3993
3994	return count;
3995}
3996HSTATE_ATTR(demote_size);
3997
3998static struct attribute *hstate_attrs[] = {
3999	&nr_hugepages_attr.attr,
4000	&nr_overcommit_hugepages_attr.attr,
4001	&free_hugepages_attr.attr,
4002	&resv_hugepages_attr.attr,
4003	&surplus_hugepages_attr.attr,
4004#ifdef CONFIG_NUMA
4005	&nr_hugepages_mempolicy_attr.attr,
4006#endif
4007	NULL,
4008};
4009
4010static const struct attribute_group hstate_attr_group = {
4011	.attrs = hstate_attrs,
4012};
4013
4014static struct attribute *hstate_demote_attrs[] = {
4015	&demote_size_attr.attr,
4016	&demote_attr.attr,
4017	NULL,
4018};
4019
4020static const struct attribute_group hstate_demote_attr_group = {
4021	.attrs = hstate_demote_attrs,
4022};
4023
4024static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4025				    struct kobject **hstate_kobjs,
4026				    const struct attribute_group *hstate_attr_group)
4027{
4028	int retval;
4029	int hi = hstate_index(h);
4030
4031	hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4032	if (!hstate_kobjs[hi])
4033		return -ENOMEM;
4034
4035	retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4036	if (retval) {
4037		kobject_put(hstate_kobjs[hi]);
4038		hstate_kobjs[hi] = NULL;
4039		return retval;
4040	}
4041
4042	if (h->demote_order) {
4043		retval = sysfs_create_group(hstate_kobjs[hi],
4044					    &hstate_demote_attr_group);
4045		if (retval) {
4046			pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4047			sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4048			kobject_put(hstate_kobjs[hi]);
4049			hstate_kobjs[hi] = NULL;
4050			return retval;
4051		}
4052	}
4053
4054	return 0;
4055}
4056
4057#ifdef CONFIG_NUMA
4058static bool hugetlb_sysfs_initialized __ro_after_init;
4059
4060/*
4061 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4062 * with node devices in node_devices[] using a parallel array.  The array
4063 * index of a node device or _hstate == node id.
4064 * This is here to avoid any static dependency of the node device driver, in
4065 * the base kernel, on the hugetlb module.
4066 */
4067struct node_hstate {
4068	struct kobject		*hugepages_kobj;
4069	struct kobject		*hstate_kobjs[HUGE_MAX_HSTATE];
4070};
4071static struct node_hstate node_hstates[MAX_NUMNODES];
4072
4073/*
4074 * A subset of global hstate attributes for node devices
4075 */
4076static struct attribute *per_node_hstate_attrs[] = {
4077	&nr_hugepages_attr.attr,
4078	&free_hugepages_attr.attr,
4079	&surplus_hugepages_attr.attr,
4080	NULL,
4081};
4082
4083static const struct attribute_group per_node_hstate_attr_group = {
4084	.attrs = per_node_hstate_attrs,
4085};
4086
4087/*
4088 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4089 * Returns node id via non-NULL nidp.
4090 */
4091static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4092{
4093	int nid;
4094
4095	for (nid = 0; nid < nr_node_ids; nid++) {
4096		struct node_hstate *nhs = &node_hstates[nid];
4097		int i;
4098		for (i = 0; i < HUGE_MAX_HSTATE; i++)
4099			if (nhs->hstate_kobjs[i] == kobj) {
4100				if (nidp)
4101					*nidp = nid;
4102				return &hstates[i];
4103			}
4104	}
4105
4106	BUG();
4107	return NULL;
4108}
4109
4110/*
4111 * Unregister hstate attributes from a single node device.
4112 * No-op if no hstate attributes attached.
4113 */
4114void hugetlb_unregister_node(struct node *node)
4115{
4116	struct hstate *h;
4117	struct node_hstate *nhs = &node_hstates[node->dev.id];
4118
4119	if (!nhs->hugepages_kobj)
4120		return;		/* no hstate attributes */
4121
4122	for_each_hstate(h) {
4123		int idx = hstate_index(h);
4124		struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4125
4126		if (!hstate_kobj)
4127			continue;
4128		if (h->demote_order)
4129			sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4130		sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4131		kobject_put(hstate_kobj);
4132		nhs->hstate_kobjs[idx] = NULL;
4133	}
4134
4135	kobject_put(nhs->hugepages_kobj);
4136	nhs->hugepages_kobj = NULL;
4137}
4138
4139
4140/*
4141 * Register hstate attributes for a single node device.
4142 * No-op if attributes already registered.
4143 */
4144void hugetlb_register_node(struct node *node)
4145{
4146	struct hstate *h;
4147	struct node_hstate *nhs = &node_hstates[node->dev.id];
4148	int err;
4149
4150	if (!hugetlb_sysfs_initialized)
4151		return;
4152
4153	if (nhs->hugepages_kobj)
4154		return;		/* already allocated */
4155
4156	nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4157							&node->dev.kobj);
4158	if (!nhs->hugepages_kobj)
4159		return;
4160
4161	for_each_hstate(h) {
4162		err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4163						nhs->hstate_kobjs,
4164						&per_node_hstate_attr_group);
4165		if (err) {
4166			pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4167				h->name, node->dev.id);
4168			hugetlb_unregister_node(node);
4169			break;
4170		}
4171	}
4172}
4173
4174/*
4175 * hugetlb init time:  register hstate attributes for all registered node
4176 * devices of nodes that have memory.  All on-line nodes should have
4177 * registered their associated device by this time.
4178 */
4179static void __init hugetlb_register_all_nodes(void)
4180{
4181	int nid;
4182
4183	for_each_online_node(nid)
4184		hugetlb_register_node(node_devices[nid]);
4185}
4186#else	/* !CONFIG_NUMA */
4187
4188static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4189{
4190	BUG();
4191	if (nidp)
4192		*nidp = -1;
4193	return NULL;
4194}
4195
4196static void hugetlb_register_all_nodes(void) { }
4197
4198#endif
4199
4200#ifdef CONFIG_CMA
4201static void __init hugetlb_cma_check(void);
4202#else
4203static inline __init void hugetlb_cma_check(void)
4204{
4205}
4206#endif
4207
4208static void __init hugetlb_sysfs_init(void)
4209{
4210	struct hstate *h;
4211	int err;
4212
4213	hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4214	if (!hugepages_kobj)
4215		return;
4216
4217	for_each_hstate(h) {
4218		err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4219					 hstate_kobjs, &hstate_attr_group);
4220		if (err)
4221			pr_err("HugeTLB: Unable to add hstate %s", h->name);
4222	}
4223
4224#ifdef CONFIG_NUMA
4225	hugetlb_sysfs_initialized = true;
4226#endif
4227	hugetlb_register_all_nodes();
4228}
4229
4230#ifdef CONFIG_SYSCTL
4231static void hugetlb_sysctl_init(void);
4232#else
4233static inline void hugetlb_sysctl_init(void) { }
4234#endif
4235
4236static int __init hugetlb_init(void)
4237{
4238	int i;
4239
4240	BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4241			__NR_HPAGEFLAGS);
4242
4243	if (!hugepages_supported()) {
4244		if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4245			pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4246		return 0;
4247	}
4248
4249	/*
4250	 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4251	 * architectures depend on setup being done here.
4252	 */
4253	hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4254	if (!parsed_default_hugepagesz) {
4255		/*
4256		 * If we did not parse a default huge page size, set
4257		 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4258		 * number of huge pages for this default size was implicitly
4259		 * specified, set that here as well.
4260		 * Note that the implicit setting will overwrite an explicit
4261		 * setting.  A warning will be printed in this case.
4262		 */
4263		default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4264		if (default_hstate_max_huge_pages) {
4265			if (default_hstate.max_huge_pages) {
4266				char buf[32];
4267
4268				string_get_size(huge_page_size(&default_hstate),
4269					1, STRING_UNITS_2, buf, 32);
4270				pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4271					default_hstate.max_huge_pages, buf);
4272				pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4273					default_hstate_max_huge_pages);
4274			}
4275			default_hstate.max_huge_pages =
4276				default_hstate_max_huge_pages;
4277
4278			for_each_online_node(i)
4279				default_hstate.max_huge_pages_node[i] =
4280					default_hugepages_in_node[i];
4281		}
4282	}
4283
4284	hugetlb_cma_check();
4285	hugetlb_init_hstates();
4286	gather_bootmem_prealloc();
4287	report_hugepages();
4288
4289	hugetlb_sysfs_init();
4290	hugetlb_cgroup_file_init();
4291	hugetlb_sysctl_init();
4292
4293#ifdef CONFIG_SMP
4294	num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4295#else
4296	num_fault_mutexes = 1;
4297#endif
4298	hugetlb_fault_mutex_table =
4299		kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4300			      GFP_KERNEL);
4301	BUG_ON(!hugetlb_fault_mutex_table);
4302
4303	for (i = 0; i < num_fault_mutexes; i++)
4304		mutex_init(&hugetlb_fault_mutex_table[i]);
4305	return 0;
4306}
4307subsys_initcall(hugetlb_init);
4308
4309/* Overwritten by architectures with more huge page sizes */
4310bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4311{
4312	return size == HPAGE_SIZE;
4313}
4314
4315void __init hugetlb_add_hstate(unsigned int order)
4316{
4317	struct hstate *h;
4318	unsigned long i;
4319
4320	if (size_to_hstate(PAGE_SIZE << order)) {
4321		return;
4322	}
4323	BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4324	BUG_ON(order == 0);
4325	h = &hstates[hugetlb_max_hstate++];
4326	mutex_init(&h->resize_lock);
4327	h->order = order;
4328	h->mask = ~(huge_page_size(h) - 1);
4329	for (i = 0; i < MAX_NUMNODES; ++i)
4330		INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4331	INIT_LIST_HEAD(&h->hugepage_activelist);
4332	h->next_nid_to_alloc = first_memory_node;
4333	h->next_nid_to_free = first_memory_node;
4334	snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4335					huge_page_size(h)/SZ_1K);
4336
4337	parsed_hstate = h;
4338}
4339
4340bool __init __weak hugetlb_node_alloc_supported(void)
4341{
4342	return true;
4343}
4344
4345static void __init hugepages_clear_pages_in_node(void)
4346{
4347	if (!hugetlb_max_hstate) {
4348		default_hstate_max_huge_pages = 0;
4349		memset(default_hugepages_in_node, 0,
4350			sizeof(default_hugepages_in_node));
4351	} else {
4352		parsed_hstate->max_huge_pages = 0;
4353		memset(parsed_hstate->max_huge_pages_node, 0,
4354			sizeof(parsed_hstate->max_huge_pages_node));
4355	}
4356}
4357
4358/*
4359 * hugepages command line processing
4360 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4361 * specification.  If not, ignore the hugepages value.  hugepages can also
4362 * be the first huge page command line  option in which case it implicitly
4363 * specifies the number of huge pages for the default size.
4364 */
4365static int __init hugepages_setup(char *s)
4366{
4367	unsigned long *mhp;
4368	static unsigned long *last_mhp;
4369	int node = NUMA_NO_NODE;
4370	int count;
4371	unsigned long tmp;
4372	char *p = s;
4373
4374	if (!parsed_valid_hugepagesz) {
4375		pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4376		parsed_valid_hugepagesz = true;
4377		return 1;
4378	}
4379
4380	/*
4381	 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4382	 * yet, so this hugepages= parameter goes to the "default hstate".
4383	 * Otherwise, it goes with the previously parsed hugepagesz or
4384	 * default_hugepagesz.
4385	 */
4386	else if (!hugetlb_max_hstate)
4387		mhp = &default_hstate_max_huge_pages;
4388	else
4389		mhp = &parsed_hstate->max_huge_pages;
4390
4391	if (mhp == last_mhp) {
4392		pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4393		return 1;
4394	}
4395
4396	while (*p) {
4397		count = 0;
4398		if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4399			goto invalid;
4400		/* Parameter is node format */
4401		if (p[count] == ':') {
4402			if (!hugetlb_node_alloc_supported()) {
4403				pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4404				return 1;
4405			}
4406			if (tmp >= MAX_NUMNODES || !node_online(tmp))
4407				goto invalid;
4408			node = array_index_nospec(tmp, MAX_NUMNODES);
4409			p += count + 1;
4410			/* Parse hugepages */
4411			if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4412				goto invalid;
4413			if (!hugetlb_max_hstate)
4414				default_hugepages_in_node[node] = tmp;
4415			else
4416				parsed_hstate->max_huge_pages_node[node] = tmp;
4417			*mhp += tmp;
4418			/* Go to parse next node*/
4419			if (p[count] == ',')
4420				p += count + 1;
4421			else
4422				break;
4423		} else {
4424			if (p != s)
4425				goto invalid;
4426			*mhp = tmp;
4427			break;
4428		}
4429	}
4430
4431	/*
4432	 * Global state is always initialized later in hugetlb_init.
4433	 * But we need to allocate gigantic hstates here early to still
4434	 * use the bootmem allocator.
4435	 */
4436	if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4437		hugetlb_hstate_alloc_pages(parsed_hstate);
4438
4439	last_mhp = mhp;
4440
4441	return 1;
4442
4443invalid:
4444	pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4445	hugepages_clear_pages_in_node();
4446	return 1;
4447}
4448__setup("hugepages=", hugepages_setup);
4449
4450/*
4451 * hugepagesz command line processing
4452 * A specific huge page size can only be specified once with hugepagesz.
4453 * hugepagesz is followed by hugepages on the command line.  The global
4454 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4455 * hugepagesz argument was valid.
4456 */
4457static int __init hugepagesz_setup(char *s)
4458{
4459	unsigned long size;
4460	struct hstate *h;
4461
4462	parsed_valid_hugepagesz = false;
4463	size = (unsigned long)memparse(s, NULL);
4464
4465	if (!arch_hugetlb_valid_size(size)) {
4466		pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4467		return 1;
4468	}
4469
4470	h = size_to_hstate(size);
4471	if (h) {
4472		/*
4473		 * hstate for this size already exists.  This is normally
4474		 * an error, but is allowed if the existing hstate is the
4475		 * default hstate.  More specifically, it is only allowed if
4476		 * the number of huge pages for the default hstate was not
4477		 * previously specified.
4478		 */
4479		if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4480		    default_hstate.max_huge_pages) {
4481			pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4482			return 1;
4483		}
4484
4485		/*
4486		 * No need to call hugetlb_add_hstate() as hstate already
4487		 * exists.  But, do set parsed_hstate so that a following
4488		 * hugepages= parameter will be applied to this hstate.
4489		 */
4490		parsed_hstate = h;
4491		parsed_valid_hugepagesz = true;
4492		return 1;
4493	}
4494
4495	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4496	parsed_valid_hugepagesz = true;
4497	return 1;
4498}
4499__setup("hugepagesz=", hugepagesz_setup);
4500
4501/*
4502 * default_hugepagesz command line input
4503 * Only one instance of default_hugepagesz allowed on command line.
4504 */
4505static int __init default_hugepagesz_setup(char *s)
4506{
4507	unsigned long size;
4508	int i;
4509
4510	parsed_valid_hugepagesz = false;
4511	if (parsed_default_hugepagesz) {
4512		pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4513		return 1;
4514	}
4515
4516	size = (unsigned long)memparse(s, NULL);
4517
4518	if (!arch_hugetlb_valid_size(size)) {
4519		pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4520		return 1;
4521	}
4522
4523	hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4524	parsed_valid_hugepagesz = true;
4525	parsed_default_hugepagesz = true;
4526	default_hstate_idx = hstate_index(size_to_hstate(size));
4527
4528	/*
4529	 * The number of default huge pages (for this size) could have been
4530	 * specified as the first hugetlb parameter: hugepages=X.  If so,
4531	 * then default_hstate_max_huge_pages is set.  If the default huge
4532	 * page size is gigantic (> MAX_ORDER), then the pages must be
4533	 * allocated here from bootmem allocator.
4534	 */
4535	if (default_hstate_max_huge_pages) {
4536		default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4537		for_each_online_node(i)
4538			default_hstate.max_huge_pages_node[i] =
4539				default_hugepages_in_node[i];
4540		if (hstate_is_gigantic(&default_hstate))
4541			hugetlb_hstate_alloc_pages(&default_hstate);
4542		default_hstate_max_huge_pages = 0;
4543	}
4544
4545	return 1;
4546}
4547__setup("default_hugepagesz=", default_hugepagesz_setup);
4548
4549static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4550{
4551#ifdef CONFIG_NUMA
4552	struct mempolicy *mpol = get_task_policy(current);
4553
4554	/*
4555	 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4556	 * (from policy_nodemask) specifically for hugetlb case
4557	 */
4558	if (mpol->mode == MPOL_BIND &&
4559		(apply_policy_zone(mpol, gfp_zone(gfp)) &&
4560		 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4561		return &mpol->nodes;
4562#endif
4563	return NULL;
4564}
4565
4566static unsigned int allowed_mems_nr(struct hstate *h)
4567{
4568	int node;
4569	unsigned int nr = 0;
4570	nodemask_t *mbind_nodemask;
4571	unsigned int *array = h->free_huge_pages_node;
4572	gfp_t gfp_mask = htlb_alloc_mask(h);
4573
4574	mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4575	for_each_node_mask(node, cpuset_current_mems_allowed) {
4576		if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4577			nr += array[node];
4578	}
4579
4580	return nr;
4581}
4582
4583#ifdef CONFIG_SYSCTL
4584static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4585					  void *buffer, size_t *length,
4586					  loff_t *ppos, unsigned long *out)
4587{
4588	struct ctl_table dup_table;
4589
4590	/*
4591	 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4592	 * can duplicate the @table and alter the duplicate of it.
4593	 */
4594	dup_table = *table;
4595	dup_table.data = out;
4596
4597	return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4598}
4599
4600static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4601			 struct ctl_table *table, int write,
4602			 void *buffer, size_t *length, loff_t *ppos)
4603{
4604	struct hstate *h = &default_hstate;
4605	unsigned long tmp = h->max_huge_pages;
4606	int ret;
4607
4608	if (!hugepages_supported())
4609		return -EOPNOTSUPP;
4610
4611	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4612					     &tmp);
4613	if (ret)
4614		goto out;
4615
4616	if (write)
4617		ret = __nr_hugepages_store_common(obey_mempolicy, h,
4618						  NUMA_NO_NODE, tmp, *length);
4619out:
4620	return ret;
4621}
4622
4623static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4624			  void *buffer, size_t *length, loff_t *ppos)
4625{
4626
4627	return hugetlb_sysctl_handler_common(false, table, write,
4628							buffer, length, ppos);
4629}
4630
4631#ifdef CONFIG_NUMA
4632static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4633			  void *buffer, size_t *length, loff_t *ppos)
4634{
4635	return hugetlb_sysctl_handler_common(true, table, write,
4636							buffer, length, ppos);
4637}
4638#endif /* CONFIG_NUMA */
4639
4640static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4641		void *buffer, size_t *length, loff_t *ppos)
4642{
4643	struct hstate *h = &default_hstate;
4644	unsigned long tmp;
4645	int ret;
4646
4647	if (!hugepages_supported())
4648		return -EOPNOTSUPP;
4649
4650	tmp = h->nr_overcommit_huge_pages;
4651
4652	if (write && hstate_is_gigantic(h))
4653		return -EINVAL;
4654
4655	ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4656					     &tmp);
4657	if (ret)
4658		goto out;
4659
4660	if (write) {
4661		spin_lock_irq(&hugetlb_lock);
4662		h->nr_overcommit_huge_pages = tmp;
4663		spin_unlock_irq(&hugetlb_lock);
4664	}
4665out:
4666	return ret;
4667}
4668
4669static struct ctl_table hugetlb_table[] = {
4670	{
4671		.procname	= "nr_hugepages",
4672		.data		= NULL,
4673		.maxlen		= sizeof(unsigned long),
4674		.mode		= 0644,
4675		.proc_handler	= hugetlb_sysctl_handler,
4676	},
4677#ifdef CONFIG_NUMA
4678	{
4679		.procname       = "nr_hugepages_mempolicy",
4680		.data           = NULL,
4681		.maxlen         = sizeof(unsigned long),
4682		.mode           = 0644,
4683		.proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4684	},
4685#endif
4686	{
4687		.procname	= "hugetlb_shm_group",
4688		.data		= &sysctl_hugetlb_shm_group,
4689		.maxlen		= sizeof(gid_t),
4690		.mode		= 0644,
4691		.proc_handler	= proc_dointvec,
4692	},
4693	{
4694		.procname	= "nr_overcommit_hugepages",
4695		.data		= NULL,
4696		.maxlen		= sizeof(unsigned long),
4697		.mode		= 0644,
4698		.proc_handler	= hugetlb_overcommit_handler,
4699	},
4700	{ }
4701};
4702
4703static void hugetlb_sysctl_init(void)
4704{
4705	register_sysctl_init("vm", hugetlb_table);
4706}
4707#endif /* CONFIG_SYSCTL */
4708
4709void hugetlb_report_meminfo(struct seq_file *m)
4710{
4711	struct hstate *h;
4712	unsigned long total = 0;
4713
4714	if (!hugepages_supported())
4715		return;
4716
4717	for_each_hstate(h) {
4718		unsigned long count = h->nr_huge_pages;
4719
4720		total += huge_page_size(h) * count;
4721
4722		if (h == &default_hstate)
4723			seq_printf(m,
4724				   "HugePages_Total:   %5lu\n"
4725				   "HugePages_Free:    %5lu\n"
4726				   "HugePages_Rsvd:    %5lu\n"
4727				   "HugePages_Surp:    %5lu\n"
4728				   "Hugepagesize:   %8lu kB\n",
4729				   count,
4730				   h->free_huge_pages,
4731				   h->resv_huge_pages,
4732				   h->surplus_huge_pages,
4733				   huge_page_size(h) / SZ_1K);
4734	}
4735
4736	seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4737}
4738
4739int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4740{
4741	struct hstate *h = &default_hstate;
4742
4743	if (!hugepages_supported())
4744		return 0;
4745
4746	return sysfs_emit_at(buf, len,
4747			     "Node %d HugePages_Total: %5u\n"
4748			     "Node %d HugePages_Free:  %5u\n"
4749			     "Node %d HugePages_Surp:  %5u\n",
4750			     nid, h->nr_huge_pages_node[nid],
4751			     nid, h->free_huge_pages_node[nid],
4752			     nid, h->surplus_huge_pages_node[nid]);
4753}
4754
4755void hugetlb_show_meminfo_node(int nid)
4756{
4757	struct hstate *h;
4758
4759	if (!hugepages_supported())
4760		return;
4761
4762	for_each_hstate(h)
4763		printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4764			nid,
4765			h->nr_huge_pages_node[nid],
4766			h->free_huge_pages_node[nid],
4767			h->surplus_huge_pages_node[nid],
4768			huge_page_size(h) / SZ_1K);
4769}
4770
4771void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4772{
4773	seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4774		   K(atomic_long_read(&mm->hugetlb_usage)));
4775}
4776
4777/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4778unsigned long hugetlb_total_pages(void)
4779{
4780	struct hstate *h;
4781	unsigned long nr_total_pages = 0;
4782
4783	for_each_hstate(h)
4784		nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4785	return nr_total_pages;
4786}
4787
4788static int hugetlb_acct_memory(struct hstate *h, long delta)
4789{
4790	int ret = -ENOMEM;
4791
4792	if (!delta)
4793		return 0;
4794
4795	spin_lock_irq(&hugetlb_lock);
4796	/*
4797	 * When cpuset is configured, it breaks the strict hugetlb page
4798	 * reservation as the accounting is done on a global variable. Such
4799	 * reservation is completely rubbish in the presence of cpuset because
4800	 * the reservation is not checked against page availability for the
4801	 * current cpuset. Application can still potentially OOM'ed by kernel
4802	 * with lack of free htlb page in cpuset that the task is in.
4803	 * Attempt to enforce strict accounting with cpuset is almost
4804	 * impossible (or too ugly) because cpuset is too fluid that
4805	 * task or memory node can be dynamically moved between cpusets.
4806	 *
4807	 * The change of semantics for shared hugetlb mapping with cpuset is
4808	 * undesirable. However, in order to preserve some of the semantics,
4809	 * we fall back to check against current free page availability as
4810	 * a best attempt and hopefully to minimize the impact of changing
4811	 * semantics that cpuset has.
4812	 *
4813	 * Apart from cpuset, we also have memory policy mechanism that
4814	 * also determines from which node the kernel will allocate memory
4815	 * in a NUMA system. So similar to cpuset, we also should consider
4816	 * the memory policy of the current task. Similar to the description
4817	 * above.
4818	 */
4819	if (delta > 0) {
4820		if (gather_surplus_pages(h, delta) < 0)
4821			goto out;
4822
4823		if (delta > allowed_mems_nr(h)) {
4824			return_unused_surplus_pages(h, delta);
4825			goto out;
4826		}
4827	}
4828
4829	ret = 0;
4830	if (delta < 0)
4831		return_unused_surplus_pages(h, (unsigned long) -delta);
4832
4833out:
4834	spin_unlock_irq(&hugetlb_lock);
4835	return ret;
4836}
4837
4838static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4839{
4840	struct resv_map *resv = vma_resv_map(vma);
4841
4842	/*
4843	 * HPAGE_RESV_OWNER indicates a private mapping.
4844	 * This new VMA should share its siblings reservation map if present.
4845	 * The VMA will only ever have a valid reservation map pointer where
4846	 * it is being copied for another still existing VMA.  As that VMA
4847	 * has a reference to the reservation map it cannot disappear until
4848	 * after this open call completes.  It is therefore safe to take a
4849	 * new reference here without additional locking.
4850	 */
4851	if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4852		resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4853		kref_get(&resv->refs);
4854	}
4855
4856	/*
4857	 * vma_lock structure for sharable mappings is vma specific.
4858	 * Clear old pointer (if copied via vm_area_dup) and allocate
4859	 * new structure.  Before clearing, make sure vma_lock is not
4860	 * for this vma.
4861	 */
4862	if (vma->vm_flags & VM_MAYSHARE) {
4863		struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4864
4865		if (vma_lock) {
4866			if (vma_lock->vma != vma) {
4867				vma->vm_private_data = NULL;
4868				hugetlb_vma_lock_alloc(vma);
4869			} else
4870				pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4871		} else
4872			hugetlb_vma_lock_alloc(vma);
4873	}
4874}
4875
4876static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4877{
4878	struct hstate *h = hstate_vma(vma);
4879	struct resv_map *resv;
4880	struct hugepage_subpool *spool = subpool_vma(vma);
4881	unsigned long reserve, start, end;
4882	long gbl_reserve;
4883
4884	hugetlb_vma_lock_free(vma);
4885
4886	resv = vma_resv_map(vma);
4887	if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4888		return;
4889
4890	start = vma_hugecache_offset(h, vma, vma->vm_start);
4891	end = vma_hugecache_offset(h, vma, vma->vm_end);
4892
4893	reserve = (end - start) - region_count(resv, start, end);
4894	hugetlb_cgroup_uncharge_counter(resv, start, end);
4895	if (reserve) {
4896		/*
4897		 * Decrement reserve counts.  The global reserve count may be
4898		 * adjusted if the subpool has a minimum size.
4899		 */
4900		gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4901		hugetlb_acct_memory(h, -gbl_reserve);
4902	}
4903
4904	kref_put(&resv->refs, resv_map_release);
4905}
4906
4907static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4908{
4909	if (addr & ~(huge_page_mask(hstate_vma(vma))))
4910		return -EINVAL;
4911
4912	/*
4913	 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4914	 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4915	 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4916	 */
4917	if (addr & ~PUD_MASK) {
4918		/*
4919		 * hugetlb_vm_op_split is called right before we attempt to
4920		 * split the VMA. We will need to unshare PMDs in the old and
4921		 * new VMAs, so let's unshare before we split.
4922		 */
4923		unsigned long floor = addr & PUD_MASK;
4924		unsigned long ceil = floor + PUD_SIZE;
4925
4926		if (floor >= vma->vm_start && ceil <= vma->vm_end)
4927			hugetlb_unshare_pmds(vma, floor, ceil);
4928	}
4929
4930	return 0;
4931}
4932
4933static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4934{
4935	return huge_page_size(hstate_vma(vma));
4936}
4937
4938/*
4939 * We cannot handle pagefaults against hugetlb pages at all.  They cause
4940 * handle_mm_fault() to try to instantiate regular-sized pages in the
4941 * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4942 * this far.
4943 */
4944static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4945{
4946	BUG();
4947	return 0;
4948}
4949
4950/*
4951 * When a new function is introduced to vm_operations_struct and added
4952 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4953 * This is because under System V memory model, mappings created via
4954 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4955 * their original vm_ops are overwritten with shm_vm_ops.
4956 */
4957const struct vm_operations_struct hugetlb_vm_ops = {
4958	.fault = hugetlb_vm_op_fault,
4959	.open = hugetlb_vm_op_open,
4960	.close = hugetlb_vm_op_close,
4961	.may_split = hugetlb_vm_op_split,
4962	.pagesize = hugetlb_vm_op_pagesize,
4963};
4964
4965static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4966				int writable)
4967{
4968	pte_t entry;
4969	unsigned int shift = huge_page_shift(hstate_vma(vma));
4970
4971	if (writable) {
4972		entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4973					 vma->vm_page_prot)));
4974	} else {
4975		entry = huge_pte_wrprotect(mk_huge_pte(page,
4976					   vma->vm_page_prot));
4977	}
4978	entry = pte_mkyoung(entry);
4979	entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4980
4981	return entry;
4982}
4983
4984static void set_huge_ptep_writable(struct vm_area_struct *vma,
4985				   unsigned long address, pte_t *ptep)
4986{
4987	pte_t entry;
4988
4989	entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4990	if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4991		update_mmu_cache(vma, address, ptep);
4992}
4993
4994bool is_hugetlb_entry_migration(pte_t pte)
4995{
4996	swp_entry_t swp;
4997
4998	if (huge_pte_none(pte) || pte_present(pte))
4999		return false;
5000	swp = pte_to_swp_entry(pte);
5001	if (is_migration_entry(swp))
5002		return true;
5003	else
5004		return false;
5005}
5006
5007static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5008{
5009	swp_entry_t swp;
5010
5011	if (huge_pte_none(pte) || pte_present(pte))
5012		return false;
5013	swp = pte_to_swp_entry(pte);
5014	if (is_hwpoison_entry(swp))
5015		return true;
5016	else
5017		return false;
5018}
5019
5020static void
5021hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5022		      struct folio *new_folio, pte_t old, unsigned long sz)
5023{
5024	pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5025
5026	__folio_mark_uptodate(new_folio);
5027	hugepage_add_new_anon_rmap(new_folio, vma, addr);
5028	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5029		newpte = huge_pte_mkuffd_wp(newpte);
5030	set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
5031	hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5032	folio_set_hugetlb_migratable(new_folio);
5033}
5034
5035int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5036			    struct vm_area_struct *dst_vma,
5037			    struct vm_area_struct *src_vma)
5038{
5039	pte_t *src_pte, *dst_pte, entry;
5040	struct folio *pte_folio;
5041	unsigned long addr;
5042	bool cow = is_cow_mapping(src_vma->vm_flags);
5043	struct hstate *h = hstate_vma(src_vma);
5044	unsigned long sz = huge_page_size(h);
5045	unsigned long npages = pages_per_huge_page(h);
5046	struct mmu_notifier_range range;
5047	unsigned long last_addr_mask;
5048	int ret = 0;
5049
5050	if (cow) {
5051		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5052					src_vma->vm_start,
5053					src_vma->vm_end);
5054		mmu_notifier_invalidate_range_start(&range);
5055		vma_assert_write_locked(src_vma);
5056		raw_write_seqcount_begin(&src->write_protect_seq);
5057	} else {
5058		/*
5059		 * For shared mappings the vma lock must be held before
5060		 * calling hugetlb_walk() in the src vma. Otherwise, the
5061		 * returned ptep could go away if part of a shared pmd and
5062		 * another thread calls huge_pmd_unshare.
5063		 */
5064		hugetlb_vma_lock_read(src_vma);
5065	}
5066
5067	last_addr_mask = hugetlb_mask_last_page(h);
5068	for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5069		spinlock_t *src_ptl, *dst_ptl;
5070		src_pte = hugetlb_walk(src_vma, addr, sz);
5071		if (!src_pte) {
5072			addr |= last_addr_mask;
5073			continue;
5074		}
5075		dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5076		if (!dst_pte) {
5077			ret = -ENOMEM;
5078			break;
5079		}
5080
5081		/*
5082		 * If the pagetables are shared don't copy or take references.
5083		 *
5084		 * dst_pte == src_pte is the common case of src/dest sharing.
5085		 * However, src could have 'unshared' and dst shares with
5086		 * another vma. So page_count of ptep page is checked instead
5087		 * to reliably determine whether pte is shared.
5088		 */
5089		if (page_count(virt_to_page(dst_pte)) > 1) {
5090			addr |= last_addr_mask;
5091			continue;
5092		}
5093
5094		dst_ptl = huge_pte_lock(h, dst, dst_pte);
5095		src_ptl = huge_pte_lockptr(h, src, src_pte);
5096		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5097		entry = huge_ptep_get(src_pte);
5098again:
5099		if (huge_pte_none(entry)) {
5100			/*
5101			 * Skip if src entry none.
5102			 */
5103			;
5104		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5105			if (!userfaultfd_wp(dst_vma))
5106				entry = huge_pte_clear_uffd_wp(entry);
5107			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5108		} else if (unlikely(is_hugetlb_entry_migration(entry))) {
5109			swp_entry_t swp_entry = pte_to_swp_entry(entry);
5110			bool uffd_wp = pte_swp_uffd_wp(entry);
5111
5112			if (!is_readable_migration_entry(swp_entry) && cow) {
5113				/*
5114				 * COW mappings require pages in both
5115				 * parent and child to be set to read.
5116				 */
5117				swp_entry = make_readable_migration_entry(
5118							swp_offset(swp_entry));
5119				entry = swp_entry_to_pte(swp_entry);
5120				if (userfaultfd_wp(src_vma) && uffd_wp)
5121					entry = pte_swp_mkuffd_wp(entry);
5122				set_huge_pte_at(src, addr, src_pte, entry, sz);
5123			}
5124			if (!userfaultfd_wp(dst_vma))
5125				entry = huge_pte_clear_uffd_wp(entry);
5126			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5127		} else if (unlikely(is_pte_marker(entry))) {
5128			pte_marker marker = copy_pte_marker(
5129				pte_to_swp_entry(entry), dst_vma);
5130
5131			if (marker)
5132				set_huge_pte_at(dst, addr, dst_pte,
5133						make_pte_marker(marker), sz);
5134		} else {
5135			entry = huge_ptep_get(src_pte);
5136			pte_folio = page_folio(pte_page(entry));
5137			folio_get(pte_folio);
5138
5139			/*
5140			 * Failing to duplicate the anon rmap is a rare case
5141			 * where we see pinned hugetlb pages while they're
5142			 * prone to COW. We need to do the COW earlier during
5143			 * fork.
5144			 *
5145			 * When pre-allocating the page or copying data, we
5146			 * need to be without the pgtable locks since we could
5147			 * sleep during the process.
5148			 */
5149			if (!folio_test_anon(pte_folio)) {
5150				page_dup_file_rmap(&pte_folio->page, true);
5151			} else if (page_try_dup_anon_rmap(&pte_folio->page,
5152							  true, src_vma)) {
5153				pte_t src_pte_old = entry;
5154				struct folio *new_folio;
5155
5156				spin_unlock(src_ptl);
5157				spin_unlock(dst_ptl);
5158				/* Do not use reserve as it's private owned */
5159				new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5160				if (IS_ERR(new_folio)) {
5161					folio_put(pte_folio);
5162					ret = PTR_ERR(new_folio);
5163					break;
5164				}
5165				ret = copy_user_large_folio(new_folio,
5166							    pte_folio,
5167							    addr, dst_vma);
5168				folio_put(pte_folio);
5169				if (ret) {
5170					folio_put(new_folio);
5171					break;
5172				}
5173
5174				/* Install the new hugetlb folio if src pte stable */
5175				dst_ptl = huge_pte_lock(h, dst, dst_pte);
5176				src_ptl = huge_pte_lockptr(h, src, src_pte);
5177				spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5178				entry = huge_ptep_get(src_pte);
5179				if (!pte_same(src_pte_old, entry)) {
5180					restore_reserve_on_error(h, dst_vma, addr,
5181								new_folio);
5182					folio_put(new_folio);
5183					/* huge_ptep of dst_pte won't change as in child */
5184					goto again;
5185				}
5186				hugetlb_install_folio(dst_vma, dst_pte, addr,
5187						      new_folio, src_pte_old, sz);
5188				spin_unlock(src_ptl);
5189				spin_unlock(dst_ptl);
5190				continue;
5191			}
5192
5193			if (cow) {
5194				/*
5195				 * No need to notify as we are downgrading page
5196				 * table protection not changing it to point
5197				 * to a new page.
5198				 *
5199				 * See Documentation/mm/mmu_notifier.rst
5200				 */
5201				huge_ptep_set_wrprotect(src, addr, src_pte);
5202				entry = huge_pte_wrprotect(entry);
5203			}
5204
5205			if (!userfaultfd_wp(dst_vma))
5206				entry = huge_pte_clear_uffd_wp(entry);
5207
5208			set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5209			hugetlb_count_add(npages, dst);
5210		}
5211		spin_unlock(src_ptl);
5212		spin_unlock(dst_ptl);
5213	}
5214
5215	if (cow) {
5216		raw_write_seqcount_end(&src->write_protect_seq);
5217		mmu_notifier_invalidate_range_end(&range);
5218	} else {
5219		hugetlb_vma_unlock_read(src_vma);
5220	}
5221
5222	return ret;
5223}
5224
5225static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5226			  unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5227			  unsigned long sz)
5228{
5229	struct hstate *h = hstate_vma(vma);
5230	struct mm_struct *mm = vma->vm_mm;
5231	spinlock_t *src_ptl, *dst_ptl;
5232	pte_t pte;
5233
5234	dst_ptl = huge_pte_lock(h, mm, dst_pte);
5235	src_ptl = huge_pte_lockptr(h, mm, src_pte);
5236
5237	/*
5238	 * We don't have to worry about the ordering of src and dst ptlocks
5239	 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5240	 */
5241	if (src_ptl != dst_ptl)
5242		spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5243
5244	pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5245	set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5246
5247	if (src_ptl != dst_ptl)
5248		spin_unlock(src_ptl);
5249	spin_unlock(dst_ptl);
5250}
5251
5252int move_hugetlb_page_tables(struct vm_area_struct *vma,
5253			     struct vm_area_struct *new_vma,
5254			     unsigned long old_addr, unsigned long new_addr,
5255			     unsigned long len)
5256{
5257	struct hstate *h = hstate_vma(vma);
5258	struct address_space *mapping = vma->vm_file->f_mapping;
5259	unsigned long sz = huge_page_size(h);
5260	struct mm_struct *mm = vma->vm_mm;
5261	unsigned long old_end = old_addr + len;
5262	unsigned long last_addr_mask;
5263	pte_t *src_pte, *dst_pte;
5264	struct mmu_notifier_range range;
5265	bool shared_pmd = false;
5266
5267	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5268				old_end);
5269	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5270	/*
5271	 * In case of shared PMDs, we should cover the maximum possible
5272	 * range.
5273	 */
5274	flush_cache_range(vma, range.start, range.end);
5275
5276	mmu_notifier_invalidate_range_start(&range);
5277	last_addr_mask = hugetlb_mask_last_page(h);
5278	/* Prevent race with file truncation */
5279	hugetlb_vma_lock_write(vma);
5280	i_mmap_lock_write(mapping);
5281	for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5282		src_pte = hugetlb_walk(vma, old_addr, sz);
5283		if (!src_pte) {
5284			old_addr |= last_addr_mask;
5285			new_addr |= last_addr_mask;
5286			continue;
5287		}
5288		if (huge_pte_none(huge_ptep_get(src_pte)))
5289			continue;
5290
5291		if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5292			shared_pmd = true;
5293			old_addr |= last_addr_mask;
5294			new_addr |= last_addr_mask;
5295			continue;
5296		}
5297
5298		dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5299		if (!dst_pte)
5300			break;
5301
5302		move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5303	}
5304
5305	if (shared_pmd)
5306		flush_hugetlb_tlb_range(vma, range.start, range.end);
5307	else
5308		flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5309	mmu_notifier_invalidate_range_end(&range);
5310	i_mmap_unlock_write(mapping);
5311	hugetlb_vma_unlock_write(vma);
5312
5313	return len + old_addr - old_end;
5314}
5315
5316void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5317			    unsigned long start, unsigned long end,
5318			    struct page *ref_page, zap_flags_t zap_flags)
5319{
5320	struct mm_struct *mm = vma->vm_mm;
5321	unsigned long address;
5322	pte_t *ptep;
5323	pte_t pte;
5324	spinlock_t *ptl;
5325	struct page *page;
5326	struct hstate *h = hstate_vma(vma);
5327	unsigned long sz = huge_page_size(h);
5328	unsigned long last_addr_mask;
5329	bool force_flush = false;
5330
5331	WARN_ON(!is_vm_hugetlb_page(vma));
5332	BUG_ON(start & ~huge_page_mask(h));
5333	BUG_ON(end & ~huge_page_mask(h));
5334
5335	/*
5336	 * This is a hugetlb vma, all the pte entries should point
5337	 * to huge page.
5338	 */
5339	tlb_change_page_size(tlb, sz);
5340	tlb_start_vma(tlb, vma);
5341
5342	last_addr_mask = hugetlb_mask_last_page(h);
5343	address = start;
5344	for (; address < end; address += sz) {
5345		ptep = hugetlb_walk(vma, address, sz);
5346		if (!ptep) {
5347			address |= last_addr_mask;
5348			continue;
5349		}
5350
5351		ptl = huge_pte_lock(h, mm, ptep);
5352		if (huge_pmd_unshare(mm, vma, address, ptep)) {
5353			spin_unlock(ptl);
5354			tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5355			force_flush = true;
5356			address |= last_addr_mask;
5357			continue;
5358		}
5359
5360		pte = huge_ptep_get(ptep);
5361		if (huge_pte_none(pte)) {
5362			spin_unlock(ptl);
5363			continue;
5364		}
5365
5366		/*
5367		 * Migrating hugepage or HWPoisoned hugepage is already
5368		 * unmapped and its refcount is dropped, so just clear pte here.
5369		 */
5370		if (unlikely(!pte_present(pte))) {
5371			/*
5372			 * If the pte was wr-protected by uffd-wp in any of the
5373			 * swap forms, meanwhile the caller does not want to
5374			 * drop the uffd-wp bit in this zap, then replace the
5375			 * pte with a marker.
5376			 */
5377			if (pte_swp_uffd_wp_any(pte) &&
5378			    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5379				set_huge_pte_at(mm, address, ptep,
5380						make_pte_marker(PTE_MARKER_UFFD_WP),
5381						sz);
5382			else
5383				huge_pte_clear(mm, address, ptep, sz);
5384			spin_unlock(ptl);
5385			continue;
5386		}
5387
5388		page = pte_page(pte);
5389		/*
5390		 * If a reference page is supplied, it is because a specific
5391		 * page is being unmapped, not a range. Ensure the page we
5392		 * are about to unmap is the actual page of interest.
5393		 */
5394		if (ref_page) {
5395			if (page != ref_page) {
5396				spin_unlock(ptl);
5397				continue;
5398			}
5399			/*
5400			 * Mark the VMA as having unmapped its page so that
5401			 * future faults in this VMA will fail rather than
5402			 * looking like data was lost
5403			 */
5404			set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5405		}
5406
5407		pte = huge_ptep_get_and_clear(mm, address, ptep);
5408		tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5409		if (huge_pte_dirty(pte))
5410			set_page_dirty(page);
5411		/* Leave a uffd-wp pte marker if needed */
5412		if (huge_pte_uffd_wp(pte) &&
5413		    !(zap_flags & ZAP_FLAG_DROP_MARKER))
5414			set_huge_pte_at(mm, address, ptep,
5415					make_pte_marker(PTE_MARKER_UFFD_WP),
5416					sz);
5417		hugetlb_count_sub(pages_per_huge_page(h), mm);
5418		page_remove_rmap(page, vma, true);
5419
5420		spin_unlock(ptl);
5421		tlb_remove_page_size(tlb, page, huge_page_size(h));
5422		/*
5423		 * Bail out after unmapping reference page if supplied
5424		 */
5425		if (ref_page)
5426			break;
5427	}
5428	tlb_end_vma(tlb, vma);
5429
5430	/*
5431	 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5432	 * could defer the flush until now, since by holding i_mmap_rwsem we
5433	 * guaranteed that the last refernece would not be dropped. But we must
5434	 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5435	 * dropped and the last reference to the shared PMDs page might be
5436	 * dropped as well.
5437	 *
5438	 * In theory we could defer the freeing of the PMD pages as well, but
5439	 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5440	 * detect sharing, so we cannot defer the release of the page either.
5441	 * Instead, do flush now.
5442	 */
5443	if (force_flush)
5444		tlb_flush_mmu_tlbonly(tlb);
5445}
5446
5447void __hugetlb_zap_begin(struct vm_area_struct *vma,
5448			 unsigned long *start, unsigned long *end)
5449{
5450	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5451		return;
5452
5453	adjust_range_if_pmd_sharing_possible(vma, start, end);
5454	hugetlb_vma_lock_write(vma);
5455	if (vma->vm_file)
5456		i_mmap_lock_write(vma->vm_file->f_mapping);
5457}
5458
5459void __hugetlb_zap_end(struct vm_area_struct *vma,
5460		       struct zap_details *details)
5461{
5462	zap_flags_t zap_flags = details ? details->zap_flags : 0;
5463
5464	if (!vma->vm_file)	/* hugetlbfs_file_mmap error */
5465		return;
5466
5467	if (zap_flags & ZAP_FLAG_UNMAP) {	/* final unmap */
5468		/*
5469		 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5470		 * When the vma_lock is freed, this makes the vma ineligible
5471		 * for pmd sharing.  And, i_mmap_rwsem is required to set up
5472		 * pmd sharing.  This is important as page tables for this
5473		 * unmapped range will be asynchrously deleted.  If the page
5474		 * tables are shared, there will be issues when accessed by
5475		 * someone else.
5476		 */
5477		__hugetlb_vma_unlock_write_free(vma);
5478	} else {
5479		hugetlb_vma_unlock_write(vma);
5480	}
5481
5482	if (vma->vm_file)
5483		i_mmap_unlock_write(vma->vm_file->f_mapping);
5484}
5485
5486void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5487			  unsigned long end, struct page *ref_page,
5488			  zap_flags_t zap_flags)
5489{
5490	struct mmu_notifier_range range;
5491	struct mmu_gather tlb;
5492
5493	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5494				start, end);
5495	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5496	mmu_notifier_invalidate_range_start(&range);
5497	tlb_gather_mmu(&tlb, vma->vm_mm);
5498
5499	__unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5500
5501	mmu_notifier_invalidate_range_end(&range);
5502	tlb_finish_mmu(&tlb);
5503}
5504
5505/*
5506 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5507 * mapping it owns the reserve page for. The intention is to unmap the page
5508 * from other VMAs and let the children be SIGKILLed if they are faulting the
5509 * same region.
5510 */
5511static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5512			      struct page *page, unsigned long address)
5513{
5514	struct hstate *h = hstate_vma(vma);
5515	struct vm_area_struct *iter_vma;
5516	struct address_space *mapping;
5517	pgoff_t pgoff;
5518
5519	/*
5520	 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5521	 * from page cache lookup which is in HPAGE_SIZE units.
5522	 */
5523	address = address & huge_page_mask(h);
5524	pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5525			vma->vm_pgoff;
5526	mapping = vma->vm_file->f_mapping;
5527
5528	/*
5529	 * Take the mapping lock for the duration of the table walk. As
5530	 * this mapping should be shared between all the VMAs,
5531	 * __unmap_hugepage_range() is called as the lock is already held
5532	 */
5533	i_mmap_lock_write(mapping);
5534	vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5535		/* Do not unmap the current VMA */
5536		if (iter_vma == vma)
5537			continue;
5538
5539		/*
5540		 * Shared VMAs have their own reserves and do not affect
5541		 * MAP_PRIVATE accounting but it is possible that a shared
5542		 * VMA is using the same page so check and skip such VMAs.
5543		 */
5544		if (iter_vma->vm_flags & VM_MAYSHARE)
5545			continue;
5546
5547		/*
5548		 * Unmap the page from other VMAs without their own reserves.
5549		 * They get marked to be SIGKILLed if they fault in these
5550		 * areas. This is because a future no-page fault on this VMA
5551		 * could insert a zeroed page instead of the data existing
5552		 * from the time of fork. This would look like data corruption
5553		 */
5554		if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5555			unmap_hugepage_range(iter_vma, address,
5556					     address + huge_page_size(h), page, 0);
5557	}
5558	i_mmap_unlock_write(mapping);
5559}
5560
5561/*
5562 * hugetlb_wp() should be called with page lock of the original hugepage held.
5563 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5564 * cannot race with other handlers or page migration.
5565 * Keep the pte_same checks anyway to make transition from the mutex easier.
5566 */
5567static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5568		       unsigned long address, pte_t *ptep, unsigned int flags,
5569		       struct folio *pagecache_folio, spinlock_t *ptl)
5570{
5571	const bool unshare = flags & FAULT_FLAG_UNSHARE;
5572	pte_t pte = huge_ptep_get(ptep);
5573	struct hstate *h = hstate_vma(vma);
5574	struct folio *old_folio;
5575	struct folio *new_folio;
5576	int outside_reserve = 0;
5577	vm_fault_t ret = 0;
5578	unsigned long haddr = address & huge_page_mask(h);
5579	struct mmu_notifier_range range;
5580
5581	/*
5582	 * Never handle CoW for uffd-wp protected pages.  It should be only
5583	 * handled when the uffd-wp protection is removed.
5584	 *
5585	 * Note that only the CoW optimization path (in hugetlb_no_page())
5586	 * can trigger this, because hugetlb_fault() will always resolve
5587	 * uffd-wp bit first.
5588	 */
5589	if (!unshare && huge_pte_uffd_wp(pte))
5590		return 0;
5591
5592	/*
5593	 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5594	 * PTE mapped R/O such as maybe_mkwrite() would do.
5595	 */
5596	if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5597		return VM_FAULT_SIGSEGV;
5598
5599	/* Let's take out MAP_SHARED mappings first. */
5600	if (vma->vm_flags & VM_MAYSHARE) {
5601		set_huge_ptep_writable(vma, haddr, ptep);
5602		return 0;
5603	}
5604
5605	old_folio = page_folio(pte_page(pte));
5606
5607	delayacct_wpcopy_start();
5608
5609retry_avoidcopy:
5610	/*
5611	 * If no-one else is actually using this page, we're the exclusive
5612	 * owner and can reuse this page.
5613	 */
5614	if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5615		if (!PageAnonExclusive(&old_folio->page))
5616			page_move_anon_rmap(&old_folio->page, vma);
5617		if (likely(!unshare))
5618			set_huge_ptep_writable(vma, haddr, ptep);
5619
5620		delayacct_wpcopy_end();
5621		return 0;
5622	}
5623	VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5624		       PageAnonExclusive(&old_folio->page), &old_folio->page);
5625
5626	/*
5627	 * If the process that created a MAP_PRIVATE mapping is about to
5628	 * perform a COW due to a shared page count, attempt to satisfy
5629	 * the allocation without using the existing reserves. The pagecache
5630	 * page is used to determine if the reserve at this address was
5631	 * consumed or not. If reserves were used, a partial faulted mapping
5632	 * at the time of fork() could consume its reserves on COW instead
5633	 * of the full address range.
5634	 */
5635	if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5636			old_folio != pagecache_folio)
5637		outside_reserve = 1;
5638
5639	folio_get(old_folio);
5640
5641	/*
5642	 * Drop page table lock as buddy allocator may be called. It will
5643	 * be acquired again before returning to the caller, as expected.
5644	 */
5645	spin_unlock(ptl);
5646	new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5647
5648	if (IS_ERR(new_folio)) {
5649		/*
5650		 * If a process owning a MAP_PRIVATE mapping fails to COW,
5651		 * it is due to references held by a child and an insufficient
5652		 * huge page pool. To guarantee the original mappers
5653		 * reliability, unmap the page from child processes. The child
5654		 * may get SIGKILLed if it later faults.
5655		 */
5656		if (outside_reserve) {
5657			struct address_space *mapping = vma->vm_file->f_mapping;
5658			pgoff_t idx;
5659			u32 hash;
5660
5661			folio_put(old_folio);
5662			/*
5663			 * Drop hugetlb_fault_mutex and vma_lock before
5664			 * unmapping.  unmapping needs to hold vma_lock
5665			 * in write mode.  Dropping vma_lock in read mode
5666			 * here is OK as COW mappings do not interact with
5667			 * PMD sharing.
5668			 *
5669			 * Reacquire both after unmap operation.
5670			 */
5671			idx = vma_hugecache_offset(h, vma, haddr);
5672			hash = hugetlb_fault_mutex_hash(mapping, idx);
5673			hugetlb_vma_unlock_read(vma);
5674			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5675
5676			unmap_ref_private(mm, vma, &old_folio->page, haddr);
5677
5678			mutex_lock(&hugetlb_fault_mutex_table[hash]);
5679			hugetlb_vma_lock_read(vma);
5680			spin_lock(ptl);
5681			ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5682			if (likely(ptep &&
5683				   pte_same(huge_ptep_get(ptep), pte)))
5684				goto retry_avoidcopy;
5685			/*
5686			 * race occurs while re-acquiring page table
5687			 * lock, and our job is done.
5688			 */
5689			delayacct_wpcopy_end();
5690			return 0;
5691		}
5692
5693		ret = vmf_error(PTR_ERR(new_folio));
5694		goto out_release_old;
5695	}
5696
5697	/*
5698	 * When the original hugepage is shared one, it does not have
5699	 * anon_vma prepared.
5700	 */
5701	if (unlikely(anon_vma_prepare(vma))) {
5702		ret = VM_FAULT_OOM;
5703		goto out_release_all;
5704	}
5705
5706	if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5707		ret = VM_FAULT_HWPOISON_LARGE;
5708		goto out_release_all;
5709	}
5710	__folio_mark_uptodate(new_folio);
5711
5712	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5713				haddr + huge_page_size(h));
5714	mmu_notifier_invalidate_range_start(&range);
5715
5716	/*
5717	 * Retake the page table lock to check for racing updates
5718	 * before the page tables are altered
5719	 */
5720	spin_lock(ptl);
5721	ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5722	if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5723		pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5724
5725		/* Break COW or unshare */
5726		huge_ptep_clear_flush(vma, haddr, ptep);
5727		page_remove_rmap(&old_folio->page, vma, true);
5728		hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5729		if (huge_pte_uffd_wp(pte))
5730			newpte = huge_pte_mkuffd_wp(newpte);
5731		set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5732		folio_set_hugetlb_migratable(new_folio);
5733		/* Make the old page be freed below */
5734		new_folio = old_folio;
5735	}
5736	spin_unlock(ptl);
5737	mmu_notifier_invalidate_range_end(&range);
5738out_release_all:
5739	/*
5740	 * No restore in case of successful pagetable update (Break COW or
5741	 * unshare)
5742	 */
5743	if (new_folio != old_folio)
5744		restore_reserve_on_error(h, vma, haddr, new_folio);
5745	folio_put(new_folio);
5746out_release_old:
5747	folio_put(old_folio);
5748
5749	spin_lock(ptl); /* Caller expects lock to be held */
5750
5751	delayacct_wpcopy_end();
5752	return ret;
5753}
5754
5755/*
5756 * Return whether there is a pagecache page to back given address within VMA.
5757 */
5758static bool hugetlbfs_pagecache_present(struct hstate *h,
5759			struct vm_area_struct *vma, unsigned long address)
5760{
5761	struct address_space *mapping = vma->vm_file->f_mapping;
5762	pgoff_t idx = vma_hugecache_offset(h, vma, address);
5763	struct folio *folio;
5764
5765	folio = filemap_get_folio(mapping, idx);
5766	if (IS_ERR(folio))
5767		return false;
5768	folio_put(folio);
5769	return true;
5770}
5771
5772int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5773			   pgoff_t idx)
5774{
5775	struct inode *inode = mapping->host;
5776	struct hstate *h = hstate_inode(inode);
5777	int err;
5778
5779	__folio_set_locked(folio);
5780	err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5781
5782	if (unlikely(err)) {
5783		__folio_clear_locked(folio);
5784		return err;
5785	}
5786	folio_clear_hugetlb_restore_reserve(folio);
5787
5788	/*
5789	 * mark folio dirty so that it will not be removed from cache/file
5790	 * by non-hugetlbfs specific code paths.
5791	 */
5792	folio_mark_dirty(folio);
5793
5794	spin_lock(&inode->i_lock);
5795	inode->i_blocks += blocks_per_huge_page(h);
5796	spin_unlock(&inode->i_lock);
5797	return 0;
5798}
5799
5800static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5801						  struct address_space *mapping,
5802						  pgoff_t idx,
5803						  unsigned int flags,
5804						  unsigned long haddr,
5805						  unsigned long addr,
5806						  unsigned long reason)
5807{
5808	u32 hash;
5809	struct vm_fault vmf = {
5810		.vma = vma,
5811		.address = haddr,
5812		.real_address = addr,
5813		.flags = flags,
5814
5815		/*
5816		 * Hard to debug if it ends up being
5817		 * used by a callee that assumes
5818		 * something about the other
5819		 * uninitialized fields... same as in
5820		 * memory.c
5821		 */
5822	};
5823
5824	/*
5825	 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5826	 * userfault. Also mmap_lock could be dropped due to handling
5827	 * userfault, any vma operation should be careful from here.
5828	 */
5829	hugetlb_vma_unlock_read(vma);
5830	hash = hugetlb_fault_mutex_hash(mapping, idx);
5831	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5832	return handle_userfault(&vmf, reason);
5833}
5834
5835/*
5836 * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5837 * false if pte changed or is changing.
5838 */
5839static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5840			       pte_t *ptep, pte_t old_pte)
5841{
5842	spinlock_t *ptl;
5843	bool same;
5844
5845	ptl = huge_pte_lock(h, mm, ptep);
5846	same = pte_same(huge_ptep_get(ptep), old_pte);
5847	spin_unlock(ptl);
5848
5849	return same;
5850}
5851
5852static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5853			struct vm_area_struct *vma,
5854			struct address_space *mapping, pgoff_t idx,
5855			unsigned long address, pte_t *ptep,
5856			pte_t old_pte, unsigned int flags)
5857{
5858	struct hstate *h = hstate_vma(vma);
5859	vm_fault_t ret = VM_FAULT_SIGBUS;
5860	int anon_rmap = 0;
5861	unsigned long size;
5862	struct folio *folio;
5863	pte_t new_pte;
5864	spinlock_t *ptl;
5865	unsigned long haddr = address & huge_page_mask(h);
5866	bool new_folio, new_pagecache_folio = false;
5867	u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5868
5869	/*
5870	 * Currently, we are forced to kill the process in the event the
5871	 * original mapper has unmapped pages from the child due to a failed
5872	 * COW/unsharing. Warn that such a situation has occurred as it may not
5873	 * be obvious.
5874	 */
5875	if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5876		pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5877			   current->pid);
5878		goto out;
5879	}
5880
5881	/*
5882	 * Use page lock to guard against racing truncation
5883	 * before we get page_table_lock.
5884	 */
5885	new_folio = false;
5886	folio = filemap_lock_folio(mapping, idx);
5887	if (IS_ERR(folio)) {
5888		size = i_size_read(mapping->host) >> huge_page_shift(h);
5889		if (idx >= size)
5890			goto out;
5891		/* Check for page in userfault range */
5892		if (userfaultfd_missing(vma)) {
5893			/*
5894			 * Since hugetlb_no_page() was examining pte
5895			 * without pgtable lock, we need to re-test under
5896			 * lock because the pte may not be stable and could
5897			 * have changed from under us.  Try to detect
5898			 * either changed or during-changing ptes and retry
5899			 * properly when needed.
5900			 *
5901			 * Note that userfaultfd is actually fine with
5902			 * false positives (e.g. caused by pte changed),
5903			 * but not wrong logical events (e.g. caused by
5904			 * reading a pte during changing).  The latter can
5905			 * confuse the userspace, so the strictness is very
5906			 * much preferred.  E.g., MISSING event should
5907			 * never happen on the page after UFFDIO_COPY has
5908			 * correctly installed the page and returned.
5909			 */
5910			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5911				ret = 0;
5912				goto out;
5913			}
5914
5915			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5916							haddr, address,
5917							VM_UFFD_MISSING);
5918		}
5919
5920		folio = alloc_hugetlb_folio(vma, haddr, 0);
5921		if (IS_ERR(folio)) {
5922			/*
5923			 * Returning error will result in faulting task being
5924			 * sent SIGBUS.  The hugetlb fault mutex prevents two
5925			 * tasks from racing to fault in the same page which
5926			 * could result in false unable to allocate errors.
5927			 * Page migration does not take the fault mutex, but
5928			 * does a clear then write of pte's under page table
5929			 * lock.  Page fault code could race with migration,
5930			 * notice the clear pte and try to allocate a page
5931			 * here.  Before returning error, get ptl and make
5932			 * sure there really is no pte entry.
5933			 */
5934			if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5935				ret = vmf_error(PTR_ERR(folio));
5936			else
5937				ret = 0;
5938			goto out;
5939		}
5940		clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5941		__folio_mark_uptodate(folio);
5942		new_folio = true;
5943
5944		if (vma->vm_flags & VM_MAYSHARE) {
5945			int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5946			if (err) {
5947				/*
5948				 * err can't be -EEXIST which implies someone
5949				 * else consumed the reservation since hugetlb
5950				 * fault mutex is held when add a hugetlb page
5951				 * to the page cache. So it's safe to call
5952				 * restore_reserve_on_error() here.
5953				 */
5954				restore_reserve_on_error(h, vma, haddr, folio);
5955				folio_put(folio);
5956				goto out;
5957			}
5958			new_pagecache_folio = true;
5959		} else {
5960			folio_lock(folio);
5961			if (unlikely(anon_vma_prepare(vma))) {
5962				ret = VM_FAULT_OOM;
5963				goto backout_unlocked;
5964			}
5965			anon_rmap = 1;
5966		}
5967	} else {
5968		/*
5969		 * If memory error occurs between mmap() and fault, some process
5970		 * don't have hwpoisoned swap entry for errored virtual address.
5971		 * So we need to block hugepage fault by PG_hwpoison bit check.
5972		 */
5973		if (unlikely(folio_test_hwpoison(folio))) {
5974			ret = VM_FAULT_HWPOISON_LARGE |
5975				VM_FAULT_SET_HINDEX(hstate_index(h));
5976			goto backout_unlocked;
5977		}
5978
5979		/* Check for page in userfault range. */
5980		if (userfaultfd_minor(vma)) {
5981			folio_unlock(folio);
5982			folio_put(folio);
5983			/* See comment in userfaultfd_missing() block above */
5984			if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5985				ret = 0;
5986				goto out;
5987			}
5988			return hugetlb_handle_userfault(vma, mapping, idx, flags,
5989							haddr, address,
5990							VM_UFFD_MINOR);
5991		}
5992	}
5993
5994	/*
5995	 * If we are going to COW a private mapping later, we examine the
5996	 * pending reservations for this page now. This will ensure that
5997	 * any allocations necessary to record that reservation occur outside
5998	 * the spinlock.
5999	 */
6000	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6001		if (vma_needs_reservation(h, vma, haddr) < 0) {
6002			ret = VM_FAULT_OOM;
6003			goto backout_unlocked;
6004		}
6005		/* Just decrements count, does not deallocate */
6006		vma_end_reservation(h, vma, haddr);
6007	}
6008
6009	ptl = huge_pte_lock(h, mm, ptep);
6010	ret = 0;
6011	/* If pte changed from under us, retry */
6012	if (!pte_same(huge_ptep_get(ptep), old_pte))
6013		goto backout;
6014
6015	if (anon_rmap)
6016		hugepage_add_new_anon_rmap(folio, vma, haddr);
6017	else
6018		page_dup_file_rmap(&folio->page, true);
6019	new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6020				&& (vma->vm_flags & VM_SHARED)));
6021	/*
6022	 * If this pte was previously wr-protected, keep it wr-protected even
6023	 * if populated.
6024	 */
6025	if (unlikely(pte_marker_uffd_wp(old_pte)))
6026		new_pte = huge_pte_mkuffd_wp(new_pte);
6027	set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
6028
6029	hugetlb_count_add(pages_per_huge_page(h), mm);
6030	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6031		/* Optimization, do the COW without a second fault */
6032		ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6033	}
6034
6035	spin_unlock(ptl);
6036
6037	/*
6038	 * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6039	 * found in the pagecache may not have hugetlb_migratable if they have
6040	 * been isolated for migration.
6041	 */
6042	if (new_folio)
6043		folio_set_hugetlb_migratable(folio);
6044
6045	folio_unlock(folio);
6046out:
6047	hugetlb_vma_unlock_read(vma);
6048	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6049	return ret;
6050
6051backout:
6052	spin_unlock(ptl);
6053backout_unlocked:
6054	if (new_folio && !new_pagecache_folio)
6055		restore_reserve_on_error(h, vma, haddr, folio);
6056
6057	folio_unlock(folio);
6058	folio_put(folio);
6059	goto out;
6060}
6061
6062#ifdef CONFIG_SMP
6063u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6064{
6065	unsigned long key[2];
6066	u32 hash;
6067
6068	key[0] = (unsigned long) mapping;
6069	key[1] = idx;
6070
6071	hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6072
6073	return hash & (num_fault_mutexes - 1);
6074}
6075#else
6076/*
6077 * For uniprocessor systems we always use a single mutex, so just
6078 * return 0 and avoid the hashing overhead.
6079 */
6080u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6081{
6082	return 0;
6083}
6084#endif
6085
6086vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6087			unsigned long address, unsigned int flags)
6088{
6089	pte_t *ptep, entry;
6090	spinlock_t *ptl;
6091	vm_fault_t ret;
6092	u32 hash;
6093	pgoff_t idx;
6094	struct folio *folio = NULL;
6095	struct folio *pagecache_folio = NULL;
6096	struct hstate *h = hstate_vma(vma);
6097	struct address_space *mapping;
6098	int need_wait_lock = 0;
6099	unsigned long haddr = address & huge_page_mask(h);
6100
6101	/* TODO: Handle faults under the VMA lock */
6102	if (flags & FAULT_FLAG_VMA_LOCK) {
6103		vma_end_read(vma);
6104		return VM_FAULT_RETRY;
6105	}
6106
6107	/*
6108	 * Serialize hugepage allocation and instantiation, so that we don't
6109	 * get spurious allocation failures if two CPUs race to instantiate
6110	 * the same page in the page cache.
6111	 */
6112	mapping = vma->vm_file->f_mapping;
6113	idx = vma_hugecache_offset(h, vma, haddr);
6114	hash = hugetlb_fault_mutex_hash(mapping, idx);
6115	mutex_lock(&hugetlb_fault_mutex_table[hash]);
6116
6117	/*
6118	 * Acquire vma lock before calling huge_pte_alloc and hold
6119	 * until finished with ptep.  This prevents huge_pmd_unshare from
6120	 * being called elsewhere and making the ptep no longer valid.
6121	 */
6122	hugetlb_vma_lock_read(vma);
6123	ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6124	if (!ptep) {
6125		hugetlb_vma_unlock_read(vma);
6126		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6127		return VM_FAULT_OOM;
6128	}
6129
6130	entry = huge_ptep_get(ptep);
6131	if (huge_pte_none_mostly(entry)) {
6132		if (is_pte_marker(entry)) {
6133			pte_marker marker =
6134				pte_marker_get(pte_to_swp_entry(entry));
6135
6136			if (marker & PTE_MARKER_POISONED) {
6137				ret = VM_FAULT_HWPOISON_LARGE;
6138				goto out_mutex;
6139			}
6140		}
6141
6142		/*
6143		 * Other PTE markers should be handled the same way as none PTE.
6144		 *
6145		 * hugetlb_no_page will drop vma lock and hugetlb fault
6146		 * mutex internally, which make us return immediately.
6147		 */
6148		return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6149				      entry, flags);
6150	}
6151
6152	ret = 0;
6153
6154	/*
6155	 * entry could be a migration/hwpoison entry at this point, so this
6156	 * check prevents the kernel from going below assuming that we have
6157	 * an active hugepage in pagecache. This goto expects the 2nd page
6158	 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6159	 * properly handle it.
6160	 */
6161	if (!pte_present(entry)) {
6162		if (unlikely(is_hugetlb_entry_migration(entry))) {
6163			/*
6164			 * Release the hugetlb fault lock now, but retain
6165			 * the vma lock, because it is needed to guard the
6166			 * huge_pte_lockptr() later in
6167			 * migration_entry_wait_huge(). The vma lock will
6168			 * be released there.
6169			 */
6170			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6171			migration_entry_wait_huge(vma, ptep);
6172			return 0;
6173		} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6174			ret = VM_FAULT_HWPOISON_LARGE |
6175			    VM_FAULT_SET_HINDEX(hstate_index(h));
6176		goto out_mutex;
6177	}
6178
6179	/*
6180	 * If we are going to COW/unshare the mapping later, we examine the
6181	 * pending reservations for this page now. This will ensure that any
6182	 * allocations necessary to record that reservation occur outside the
6183	 * spinlock. Also lookup the pagecache page now as it is used to
6184	 * determine if a reservation has been consumed.
6185	 */
6186	if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6187	    !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6188		if (vma_needs_reservation(h, vma, haddr) < 0) {
6189			ret = VM_FAULT_OOM;
6190			goto out_mutex;
6191		}
6192		/* Just decrements count, does not deallocate */
6193		vma_end_reservation(h, vma, haddr);
6194
6195		pagecache_folio = filemap_lock_folio(mapping, idx);
6196		if (IS_ERR(pagecache_folio))
6197			pagecache_folio = NULL;
6198	}
6199
6200	ptl = huge_pte_lock(h, mm, ptep);
6201
6202	/* Check for a racing update before calling hugetlb_wp() */
6203	if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6204		goto out_ptl;
6205
6206	/* Handle userfault-wp first, before trying to lock more pages */
6207	if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6208	    (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6209		struct vm_fault vmf = {
6210			.vma = vma,
6211			.address = haddr,
6212			.real_address = address,
6213			.flags = flags,
6214		};
6215
6216		spin_unlock(ptl);
6217		if (pagecache_folio) {
6218			folio_unlock(pagecache_folio);
6219			folio_put(pagecache_folio);
6220		}
6221		hugetlb_vma_unlock_read(vma);
6222		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6223		return handle_userfault(&vmf, VM_UFFD_WP);
6224	}
6225
6226	/*
6227	 * hugetlb_wp() requires page locks of pte_page(entry) and
6228	 * pagecache_folio, so here we need take the former one
6229	 * when folio != pagecache_folio or !pagecache_folio.
6230	 */
6231	folio = page_folio(pte_page(entry));
6232	if (folio != pagecache_folio)
6233		if (!folio_trylock(folio)) {
6234			need_wait_lock = 1;
6235			goto out_ptl;
6236		}
6237
6238	folio_get(folio);
6239
6240	if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6241		if (!huge_pte_write(entry)) {
6242			ret = hugetlb_wp(mm, vma, address, ptep, flags,
6243					 pagecache_folio, ptl);
6244			goto out_put_page;
6245		} else if (likely(flags & FAULT_FLAG_WRITE)) {
6246			entry = huge_pte_mkdirty(entry);
6247		}
6248	}
6249	entry = pte_mkyoung(entry);
6250	if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6251						flags & FAULT_FLAG_WRITE))
6252		update_mmu_cache(vma, haddr, ptep);
6253out_put_page:
6254	if (folio != pagecache_folio)
6255		folio_unlock(folio);
6256	folio_put(folio);
6257out_ptl:
6258	spin_unlock(ptl);
6259
6260	if (pagecache_folio) {
6261		folio_unlock(pagecache_folio);
6262		folio_put(pagecache_folio);
6263	}
6264out_mutex:
6265	hugetlb_vma_unlock_read(vma);
6266	mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6267	/*
6268	 * Generally it's safe to hold refcount during waiting page lock. But
6269	 * here we just wait to defer the next page fault to avoid busy loop and
6270	 * the page is not used after unlocked before returning from the current
6271	 * page fault. So we are safe from accessing freed page, even if we wait
6272	 * here without taking refcount.
6273	 */
6274	if (need_wait_lock)
6275		folio_wait_locked(folio);
6276	return ret;
6277}
6278
6279#ifdef CONFIG_USERFAULTFD
6280/*
6281 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6282 * with modifications for hugetlb pages.
6283 */
6284int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6285			     struct vm_area_struct *dst_vma,
6286			     unsigned long dst_addr,
6287			     unsigned long src_addr,
6288			     uffd_flags_t flags,
6289			     struct folio **foliop)
6290{
6291	struct mm_struct *dst_mm = dst_vma->vm_mm;
6292	bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6293	bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6294	struct hstate *h = hstate_vma(dst_vma);
6295	struct address_space *mapping = dst_vma->vm_file->f_mapping;
6296	pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6297	unsigned long size;
6298	int vm_shared = dst_vma->vm_flags & VM_SHARED;
6299	pte_t _dst_pte;
6300	spinlock_t *ptl;
6301	int ret = -ENOMEM;
6302	struct folio *folio;
6303	int writable;
6304	bool folio_in_pagecache = false;
6305
6306	if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6307		ptl = huge_pte_lock(h, dst_mm, dst_pte);
6308
6309		/* Don't overwrite any existing PTEs (even markers) */
6310		if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6311			spin_unlock(ptl);
6312			return -EEXIST;
6313		}
6314
6315		_dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6316		set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6317				huge_page_size(h));
6318
6319		/* No need to invalidate - it was non-present before */
6320		update_mmu_cache(dst_vma, dst_addr, dst_pte);
6321
6322		spin_unlock(ptl);
6323		return 0;
6324	}
6325
6326	if (is_continue) {
6327		ret = -EFAULT;
6328		folio = filemap_lock_folio(mapping, idx);
6329		if (IS_ERR(folio))
6330			goto out;
6331		folio_in_pagecache = true;
6332	} else if (!*foliop) {
6333		/* If a folio already exists, then it's UFFDIO_COPY for
6334		 * a non-missing case. Return -EEXIST.
6335		 */
6336		if (vm_shared &&
6337		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6338			ret = -EEXIST;
6339			goto out;
6340		}
6341
6342		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6343		if (IS_ERR(folio)) {
6344			ret = -ENOMEM;
6345			goto out;
6346		}
6347
6348		ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6349					   false);
6350
6351		/* fallback to copy_from_user outside mmap_lock */
6352		if (unlikely(ret)) {
6353			ret = -ENOENT;
6354			/* Free the allocated folio which may have
6355			 * consumed a reservation.
6356			 */
6357			restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6358			folio_put(folio);
6359
6360			/* Allocate a temporary folio to hold the copied
6361			 * contents.
6362			 */
6363			folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6364			if (!folio) {
6365				ret = -ENOMEM;
6366				goto out;
6367			}
6368			*foliop = folio;
6369			/* Set the outparam foliop and return to the caller to
6370			 * copy the contents outside the lock. Don't free the
6371			 * folio.
6372			 */
6373			goto out;
6374		}
6375	} else {
6376		if (vm_shared &&
6377		    hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6378			folio_put(*foliop);
6379			ret = -EEXIST;
6380			*foliop = NULL;
6381			goto out;
6382		}
6383
6384		folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6385		if (IS_ERR(folio)) {
6386			folio_put(*foliop);
6387			ret = -ENOMEM;
6388			*foliop = NULL;
6389			goto out;
6390		}
6391		ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6392		folio_put(*foliop);
6393		*foliop = NULL;
6394		if (ret) {
6395			folio_put(folio);
6396			goto out;
6397		}
6398	}
6399
6400	/*
6401	 * The memory barrier inside __folio_mark_uptodate makes sure that
6402	 * preceding stores to the page contents become visible before
6403	 * the set_pte_at() write.
6404	 */
6405	__folio_mark_uptodate(folio);
6406
6407	/* Add shared, newly allocated pages to the page cache. */
6408	if (vm_shared && !is_continue) {
6409		size = i_size_read(mapping->host) >> huge_page_shift(h);
6410		ret = -EFAULT;
6411		if (idx >= size)
6412			goto out_release_nounlock;
6413
6414		/*
6415		 * Serialization between remove_inode_hugepages() and
6416		 * hugetlb_add_to_page_cache() below happens through the
6417		 * hugetlb_fault_mutex_table that here must be hold by
6418		 * the caller.
6419		 */
6420		ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6421		if (ret)
6422			goto out_release_nounlock;
6423		folio_in_pagecache = true;
6424	}
6425
6426	ptl = huge_pte_lock(h, dst_mm, dst_pte);
6427
6428	ret = -EIO;
6429	if (folio_test_hwpoison(folio))
6430		goto out_release_unlock;
6431
6432	/*
6433	 * We allow to overwrite a pte marker: consider when both MISSING|WP
6434	 * registered, we firstly wr-protect a none pte which has no page cache
6435	 * page backing it, then access the page.
6436	 */
6437	ret = -EEXIST;
6438	if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6439		goto out_release_unlock;
6440
6441	if (folio_in_pagecache)
6442		page_dup_file_rmap(&folio->page, true);
6443	else
6444		hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6445
6446	/*
6447	 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6448	 * with wp flag set, don't set pte write bit.
6449	 */
6450	if (wp_enabled || (is_continue && !vm_shared))
6451		writable = 0;
6452	else
6453		writable = dst_vma->vm_flags & VM_WRITE;
6454
6455	_dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6456	/*
6457	 * Always mark UFFDIO_COPY page dirty; note that this may not be
6458	 * extremely important for hugetlbfs for now since swapping is not
6459	 * supported, but we should still be clear in that this page cannot be
6460	 * thrown away at will, even if write bit not set.
6461	 */
6462	_dst_pte = huge_pte_mkdirty(_dst_pte);
6463	_dst_pte = pte_mkyoung(_dst_pte);
6464
6465	if (wp_enabled)
6466		_dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6467
6468	set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6469
6470	hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6471
6472	/* No need to invalidate - it was non-present before */
6473	update_mmu_cache(dst_vma, dst_addr, dst_pte);
6474
6475	spin_unlock(ptl);
6476	if (!is_continue)
6477		folio_set_hugetlb_migratable(folio);
6478	if (vm_shared || is_continue)
6479		folio_unlock(folio);
6480	ret = 0;
6481out:
6482	return ret;
6483out_release_unlock:
6484	spin_unlock(ptl);
6485	if (vm_shared || is_continue)
6486		folio_unlock(folio);
6487out_release_nounlock:
6488	if (!folio_in_pagecache)
6489		restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6490	folio_put(folio);
6491	goto out;
6492}
6493#endif /* CONFIG_USERFAULTFD */
6494
6495struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6496				      unsigned long address, unsigned int flags,
6497				      unsigned int *page_mask)
6498{
6499	struct hstate *h = hstate_vma(vma);
6500	struct mm_struct *mm = vma->vm_mm;
6501	unsigned long haddr = address & huge_page_mask(h);
6502	struct page *page = NULL;
6503	spinlock_t *ptl;
6504	pte_t *pte, entry;
6505	int ret;
6506
6507	hugetlb_vma_lock_read(vma);
6508	pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6509	if (!pte)
6510		goto out_unlock;
6511
6512	ptl = huge_pte_lock(h, mm, pte);
6513	entry = huge_ptep_get(pte);
6514	if (pte_present(entry)) {
6515		page = pte_page(entry);
6516
6517		if (!huge_pte_write(entry)) {
6518			if (flags & FOLL_WRITE) {
6519				page = NULL;
6520				goto out;
6521			}
6522
6523			if (gup_must_unshare(vma, flags, page)) {
6524				/* Tell the caller to do unsharing */
6525				page = ERR_PTR(-EMLINK);
6526				goto out;
6527			}
6528		}
6529
6530		page = nth_page(page, ((address & ~huge_page_mask(h)) >> PAGE_SHIFT));
6531
6532		/*
6533		 * Note that page may be a sub-page, and with vmemmap
6534		 * optimizations the page struct may be read only.
6535		 * try_grab_page() will increase the ref count on the
6536		 * head page, so this will be OK.
6537		 *
6538		 * try_grab_page() should always be able to get the page here,
6539		 * because we hold the ptl lock and have verified pte_present().
6540		 */
6541		ret = try_grab_page(page, flags);
6542
6543		if (WARN_ON_ONCE(ret)) {
6544			page = ERR_PTR(ret);
6545			goto out;
6546		}
6547
6548		*page_mask = (1U << huge_page_order(h)) - 1;
6549	}
6550out:
6551	spin_unlock(ptl);
6552out_unlock:
6553	hugetlb_vma_unlock_read(vma);
6554
6555	/*
6556	 * Fixup retval for dump requests: if pagecache doesn't exist,
6557	 * don't try to allocate a new page but just skip it.
6558	 */
6559	if (!page && (flags & FOLL_DUMP) &&
6560	    !hugetlbfs_pagecache_present(h, vma, address))
6561		page = ERR_PTR(-EFAULT);
6562
6563	return page;
6564}
6565
6566long hugetlb_change_protection(struct vm_area_struct *vma,
6567		unsigned long address, unsigned long end,
6568		pgprot_t newprot, unsigned long cp_flags)
6569{
6570	struct mm_struct *mm = vma->vm_mm;
6571	unsigned long start = address;
6572	pte_t *ptep;
6573	pte_t pte;
6574	struct hstate *h = hstate_vma(vma);
6575	long pages = 0, psize = huge_page_size(h);
6576	bool shared_pmd = false;
6577	struct mmu_notifier_range range;
6578	unsigned long last_addr_mask;
6579	bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6580	bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6581
6582	/*
6583	 * In the case of shared PMDs, the area to flush could be beyond
6584	 * start/end.  Set range.start/range.end to cover the maximum possible
6585	 * range if PMD sharing is possible.
6586	 */
6587	mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6588				0, mm, start, end);
6589	adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6590
6591	BUG_ON(address >= end);
6592	flush_cache_range(vma, range.start, range.end);
6593
6594	mmu_notifier_invalidate_range_start(&range);
6595	hugetlb_vma_lock_write(vma);
6596	i_mmap_lock_write(vma->vm_file->f_mapping);
6597	last_addr_mask = hugetlb_mask_last_page(h);
6598	for (; address < end; address += psize) {
6599		spinlock_t *ptl;
6600		ptep = hugetlb_walk(vma, address, psize);
6601		if (!ptep) {
6602			if (!uffd_wp) {
6603				address |= last_addr_mask;
6604				continue;
6605			}
6606			/*
6607			 * Userfaultfd wr-protect requires pgtable
6608			 * pre-allocations to install pte markers.
6609			 */
6610			ptep = huge_pte_alloc(mm, vma, address, psize);
6611			if (!ptep) {
6612				pages = -ENOMEM;
6613				break;
6614			}
6615		}
6616		ptl = huge_pte_lock(h, mm, ptep);
6617		if (huge_pmd_unshare(mm, vma, address, ptep)) {
6618			/*
6619			 * When uffd-wp is enabled on the vma, unshare
6620			 * shouldn't happen at all.  Warn about it if it
6621			 * happened due to some reason.
6622			 */
6623			WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6624			pages++;
6625			spin_unlock(ptl);
6626			shared_pmd = true;
6627			address |= last_addr_mask;
6628			continue;
6629		}
6630		pte = huge_ptep_get(ptep);
6631		if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6632			/* Nothing to do. */
6633		} else if (unlikely(is_hugetlb_entry_migration(pte))) {
6634			swp_entry_t entry = pte_to_swp_entry(pte);
6635			struct page *page = pfn_swap_entry_to_page(entry);
6636			pte_t newpte = pte;
6637
6638			if (is_writable_migration_entry(entry)) {
6639				if (PageAnon(page))
6640					entry = make_readable_exclusive_migration_entry(
6641								swp_offset(entry));
6642				else
6643					entry = make_readable_migration_entry(
6644								swp_offset(entry));
6645				newpte = swp_entry_to_pte(entry);
6646				pages++;
6647			}
6648
6649			if (uffd_wp)
6650				newpte = pte_swp_mkuffd_wp(newpte);
6651			else if (uffd_wp_resolve)
6652				newpte = pte_swp_clear_uffd_wp(newpte);
6653			if (!pte_same(pte, newpte))
6654				set_huge_pte_at(mm, address, ptep, newpte, psize);
6655		} else if (unlikely(is_pte_marker(pte))) {
6656			/* No other markers apply for now. */
6657			WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6658			if (uffd_wp_resolve)
6659				/* Safe to modify directly (non-present->none). */
6660				huge_pte_clear(mm, address, ptep, psize);
6661		} else if (!huge_pte_none(pte)) {
6662			pte_t old_pte;
6663			unsigned int shift = huge_page_shift(hstate_vma(vma));
6664
6665			old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6666			pte = huge_pte_modify(old_pte, newprot);
6667			pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6668			if (uffd_wp)
6669				pte = huge_pte_mkuffd_wp(pte);
6670			else if (uffd_wp_resolve)
6671				pte = huge_pte_clear_uffd_wp(pte);
6672			huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6673			pages++;
6674		} else {
6675			/* None pte */
6676			if (unlikely(uffd_wp))
6677				/* Safe to modify directly (none->non-present). */
6678				set_huge_pte_at(mm, address, ptep,
6679						make_pte_marker(PTE_MARKER_UFFD_WP),
6680						psize);
6681		}
6682		spin_unlock(ptl);
6683	}
6684	/*
6685	 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6686	 * may have cleared our pud entry and done put_page on the page table:
6687	 * once we release i_mmap_rwsem, another task can do the final put_page
6688	 * and that page table be reused and filled with junk.  If we actually
6689	 * did unshare a page of pmds, flush the range corresponding to the pud.
6690	 */
6691	if (shared_pmd)
6692		flush_hugetlb_tlb_range(vma, range.start, range.end);
6693	else
6694		flush_hugetlb_tlb_range(vma, start, end);
6695	/*
6696	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6697	 * downgrading page table protection not changing it to point to a new
6698	 * page.
6699	 *
6700	 * See Documentation/mm/mmu_notifier.rst
6701	 */
6702	i_mmap_unlock_write(vma->vm_file->f_mapping);
6703	hugetlb_vma_unlock_write(vma);
6704	mmu_notifier_invalidate_range_end(&range);
6705
6706	return pages > 0 ? (pages << h->order) : pages;
6707}
6708
6709/* Return true if reservation was successful, false otherwise.  */
6710bool hugetlb_reserve_pages(struct inode *inode,
6711					long from, long to,
6712					struct vm_area_struct *vma,
6713					vm_flags_t vm_flags)
6714{
6715	long chg = -1, add = -1;
6716	struct hstate *h = hstate_inode(inode);
6717	struct hugepage_subpool *spool = subpool_inode(inode);
6718	struct resv_map *resv_map;
6719	struct hugetlb_cgroup *h_cg = NULL;
6720	long gbl_reserve, regions_needed = 0;
6721
6722	/* This should never happen */
6723	if (from > to) {
6724		VM_WARN(1, "%s called with a negative range\n", __func__);
6725		return false;
6726	}
6727
6728	/*
6729	 * vma specific semaphore used for pmd sharing and fault/truncation
6730	 * synchronization
6731	 */
6732	hugetlb_vma_lock_alloc(vma);
6733
6734	/*
6735	 * Only apply hugepage reservation if asked. At fault time, an
6736	 * attempt will be made for VM_NORESERVE to allocate a page
6737	 * without using reserves
6738	 */
6739	if (vm_flags & VM_NORESERVE)
6740		return true;
6741
6742	/*
6743	 * Shared mappings base their reservation on the number of pages that
6744	 * are already allocated on behalf of the file. Private mappings need
6745	 * to reserve the full area even if read-only as mprotect() may be
6746	 * called to make the mapping read-write. Assume !vma is a shm mapping
6747	 */
6748	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6749		/*
6750		 * resv_map can not be NULL as hugetlb_reserve_pages is only
6751		 * called for inodes for which resv_maps were created (see
6752		 * hugetlbfs_get_inode).
6753		 */
6754		resv_map = inode_resv_map(inode);
6755
6756		chg = region_chg(resv_map, from, to, &regions_needed);
6757	} else {
6758		/* Private mapping. */
6759		resv_map = resv_map_alloc();
6760		if (!resv_map)
6761			goto out_err;
6762
6763		chg = to - from;
6764
6765		set_vma_resv_map(vma, resv_map);
6766		set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6767	}
6768
6769	if (chg < 0)
6770		goto out_err;
6771
6772	if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6773				chg * pages_per_huge_page(h), &h_cg) < 0)
6774		goto out_err;
6775
6776	if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6777		/* For private mappings, the hugetlb_cgroup uncharge info hangs
6778		 * of the resv_map.
6779		 */
6780		resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6781	}
6782
6783	/*
6784	 * There must be enough pages in the subpool for the mapping. If
6785	 * the subpool has a minimum size, there may be some global
6786	 * reservations already in place (gbl_reserve).
6787	 */
6788	gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6789	if (gbl_reserve < 0)
6790		goto out_uncharge_cgroup;
6791
6792	/*
6793	 * Check enough hugepages are available for the reservation.
6794	 * Hand the pages back to the subpool if there are not
6795	 */
6796	if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6797		goto out_put_pages;
6798
6799	/*
6800	 * Account for the reservations made. Shared mappings record regions
6801	 * that have reservations as they are shared by multiple VMAs.
6802	 * When the last VMA disappears, the region map says how much
6803	 * the reservation was and the page cache tells how much of
6804	 * the reservation was consumed. Private mappings are per-VMA and
6805	 * only the consumed reservations are tracked. When the VMA
6806	 * disappears, the original reservation is the VMA size and the
6807	 * consumed reservations are stored in the map. Hence, nothing
6808	 * else has to be done for private mappings here
6809	 */
6810	if (!vma || vma->vm_flags & VM_MAYSHARE) {
6811		add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6812
6813		if (unlikely(add < 0)) {
6814			hugetlb_acct_memory(h, -gbl_reserve);
6815			goto out_put_pages;
6816		} else if (unlikely(chg > add)) {
6817			/*
6818			 * pages in this range were added to the reserve
6819			 * map between region_chg and region_add.  This
6820			 * indicates a race with alloc_hugetlb_folio.  Adjust
6821			 * the subpool and reserve counts modified above
6822			 * based on the difference.
6823			 */
6824			long rsv_adjust;
6825
6826			/*
6827			 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6828			 * reference to h_cg->css. See comment below for detail.
6829			 */
6830			hugetlb_cgroup_uncharge_cgroup_rsvd(
6831				hstate_index(h),
6832				(chg - add) * pages_per_huge_page(h), h_cg);
6833
6834			rsv_adjust = hugepage_subpool_put_pages(spool,
6835								chg - add);
6836			hugetlb_acct_memory(h, -rsv_adjust);
6837		} else if (h_cg) {
6838			/*
6839			 * The file_regions will hold their own reference to
6840			 * h_cg->css. So we should release the reference held
6841			 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6842			 * done.
6843			 */
6844			hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6845		}
6846	}
6847	return true;
6848
6849out_put_pages:
6850	/* put back original number of pages, chg */
6851	(void)hugepage_subpool_put_pages(spool, chg);
6852out_uncharge_cgroup:
6853	hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6854					    chg * pages_per_huge_page(h), h_cg);
6855out_err:
6856	hugetlb_vma_lock_free(vma);
6857	if (!vma || vma->vm_flags & VM_MAYSHARE)
6858		/* Only call region_abort if the region_chg succeeded but the
6859		 * region_add failed or didn't run.
6860		 */
6861		if (chg >= 0 && add < 0)
6862			region_abort(resv_map, from, to, regions_needed);
6863	if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
6864		kref_put(&resv_map->refs, resv_map_release);
6865		set_vma_resv_map(vma, NULL);
6866	}
6867	return false;
6868}
6869
6870long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6871								long freed)
6872{
6873	struct hstate *h = hstate_inode(inode);
6874	struct resv_map *resv_map = inode_resv_map(inode);
6875	long chg = 0;
6876	struct hugepage_subpool *spool = subpool_inode(inode);
6877	long gbl_reserve;
6878
6879	/*
6880	 * Since this routine can be called in the evict inode path for all
6881	 * hugetlbfs inodes, resv_map could be NULL.
6882	 */
6883	if (resv_map) {
6884		chg = region_del(resv_map, start, end);
6885		/*
6886		 * region_del() can fail in the rare case where a region
6887		 * must be split and another region descriptor can not be
6888		 * allocated.  If end == LONG_MAX, it will not fail.
6889		 */
6890		if (chg < 0)
6891			return chg;
6892	}
6893
6894	spin_lock(&inode->i_lock);
6895	inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6896	spin_unlock(&inode->i_lock);
6897
6898	/*
6899	 * If the subpool has a minimum size, the number of global
6900	 * reservations to be released may be adjusted.
6901	 *
6902	 * Note that !resv_map implies freed == 0. So (chg - freed)
6903	 * won't go negative.
6904	 */
6905	gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6906	hugetlb_acct_memory(h, -gbl_reserve);
6907
6908	return 0;
6909}
6910
6911#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6912static unsigned long page_table_shareable(struct vm_area_struct *svma,
6913				struct vm_area_struct *vma,
6914				unsigned long addr, pgoff_t idx)
6915{
6916	unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6917				svma->vm_start;
6918	unsigned long sbase = saddr & PUD_MASK;
6919	unsigned long s_end = sbase + PUD_SIZE;
6920
6921	/* Allow segments to share if only one is marked locked */
6922	unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6923	unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6924
6925	/*
6926	 * match the virtual addresses, permission and the alignment of the
6927	 * page table page.
6928	 *
6929	 * Also, vma_lock (vm_private_data) is required for sharing.
6930	 */
6931	if (pmd_index(addr) != pmd_index(saddr) ||
6932	    vm_flags != svm_flags ||
6933	    !range_in_vma(svma, sbase, s_end) ||
6934	    !svma->vm_private_data)
6935		return 0;
6936
6937	return saddr;
6938}
6939
6940bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6941{
6942	unsigned long start = addr & PUD_MASK;
6943	unsigned long end = start + PUD_SIZE;
6944
6945#ifdef CONFIG_USERFAULTFD
6946	if (uffd_disable_huge_pmd_share(vma))
6947		return false;
6948#endif
6949	/*
6950	 * check on proper vm_flags and page table alignment
6951	 */
6952	if (!(vma->vm_flags & VM_MAYSHARE))
6953		return false;
6954	if (!vma->vm_private_data)	/* vma lock required for sharing */
6955		return false;
6956	if (!range_in_vma(vma, start, end))
6957		return false;
6958	return true;
6959}
6960
6961/*
6962 * Determine if start,end range within vma could be mapped by shared pmd.
6963 * If yes, adjust start and end to cover range associated with possible
6964 * shared pmd mappings.
6965 */
6966void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6967				unsigned long *start, unsigned long *end)
6968{
6969	unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6970		v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6971
6972	/*
6973	 * vma needs to span at least one aligned PUD size, and the range
6974	 * must be at least partially within in.
6975	 */
6976	if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6977		(*end <= v_start) || (*start >= v_end))
6978		return;
6979
6980	/* Extend the range to be PUD aligned for a worst case scenario */
6981	if (*start > v_start)
6982		*start = ALIGN_DOWN(*start, PUD_SIZE);
6983
6984	if (*end < v_end)
6985		*end = ALIGN(*end, PUD_SIZE);
6986}
6987
6988/*
6989 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6990 * and returns the corresponding pte. While this is not necessary for the
6991 * !shared pmd case because we can allocate the pmd later as well, it makes the
6992 * code much cleaner. pmd allocation is essential for the shared case because
6993 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6994 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6995 * bad pmd for sharing.
6996 */
6997pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6998		      unsigned long addr, pud_t *pud)
6999{
7000	struct address_space *mapping = vma->vm_file->f_mapping;
7001	pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7002			vma->vm_pgoff;
7003	struct vm_area_struct *svma;
7004	unsigned long saddr;
7005	pte_t *spte = NULL;
7006	pte_t *pte;
7007
7008	i_mmap_lock_read(mapping);
7009	vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7010		if (svma == vma)
7011			continue;
7012
7013		saddr = page_table_shareable(svma, vma, addr, idx);
7014		if (saddr) {
7015			spte = hugetlb_walk(svma, saddr,
7016					    vma_mmu_pagesize(svma));
7017			if (spte) {
7018				get_page(virt_to_page(spte));
7019				break;
7020			}
7021		}
7022	}
7023
7024	if (!spte)
7025		goto out;
7026
7027	spin_lock(&mm->page_table_lock);
7028	if (pud_none(*pud)) {
7029		pud_populate(mm, pud,
7030				(pmd_t *)((unsigned long)spte & PAGE_MASK));
7031		mm_inc_nr_pmds(mm);
7032	} else {
7033		put_page(virt_to_page(spte));
7034	}
7035	spin_unlock(&mm->page_table_lock);
7036out:
7037	pte = (pte_t *)pmd_alloc(mm, pud, addr);
7038	i_mmap_unlock_read(mapping);
7039	return pte;
7040}
7041
7042/*
7043 * unmap huge page backed by shared pte.
7044 *
7045 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7046 * indicated by page_count > 1, unmap is achieved by clearing pud and
7047 * decrementing the ref count. If count == 1, the pte page is not shared.
7048 *
7049 * Called with page table lock held.
7050 *
7051 * returns: 1 successfully unmapped a shared pte page
7052 *	    0 the underlying pte page is not shared, or it is the last user
7053 */
7054int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7055					unsigned long addr, pte_t *ptep)
7056{
7057	pgd_t *pgd = pgd_offset(mm, addr);
7058	p4d_t *p4d = p4d_offset(pgd, addr);
7059	pud_t *pud = pud_offset(p4d, addr);
7060
7061	i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7062	hugetlb_vma_assert_locked(vma);
7063	BUG_ON(page_count(virt_to_page(ptep)) == 0);
7064	if (page_count(virt_to_page(ptep)) == 1)
7065		return 0;
7066
7067	pud_clear(pud);
7068	put_page(virt_to_page(ptep));
7069	mm_dec_nr_pmds(mm);
7070	return 1;
7071}
7072
7073#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7074
7075pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7076		      unsigned long addr, pud_t *pud)
7077{
7078	return NULL;
7079}
7080
7081int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7082				unsigned long addr, pte_t *ptep)
7083{
7084	return 0;
7085}
7086
7087void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7088				unsigned long *start, unsigned long *end)
7089{
7090}
7091
7092bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7093{
7094	return false;
7095}
7096#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7097
7098#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7099pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7100			unsigned long addr, unsigned long sz)
7101{
7102	pgd_t *pgd;
7103	p4d_t *p4d;
7104	pud_t *pud;
7105	pte_t *pte = NULL;
7106
7107	pgd = pgd_offset(mm, addr);
7108	p4d = p4d_alloc(mm, pgd, addr);
7109	if (!p4d)
7110		return NULL;
7111	pud = pud_alloc(mm, p4d, addr);
7112	if (pud) {
7113		if (sz == PUD_SIZE) {
7114			pte = (pte_t *)pud;
7115		} else {
7116			BUG_ON(sz != PMD_SIZE);
7117			if (want_pmd_share(vma, addr) && pud_none(*pud))
7118				pte = huge_pmd_share(mm, vma, addr, pud);
7119			else
7120				pte = (pte_t *)pmd_alloc(mm, pud, addr);
7121		}
7122	}
7123
7124	if (pte) {
7125		pte_t pteval = ptep_get_lockless(pte);
7126
7127		BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7128	}
7129
7130	return pte;
7131}
7132
7133/*
7134 * huge_pte_offset() - Walk the page table to resolve the hugepage
7135 * entry at address @addr
7136 *
7137 * Return: Pointer to page table entry (PUD or PMD) for
7138 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7139 * size @sz doesn't match the hugepage size at this level of the page
7140 * table.
7141 */
7142pte_t *huge_pte_offset(struct mm_struct *mm,
7143		       unsigned long addr, unsigned long sz)
7144{
7145	pgd_t *pgd;
7146	p4d_t *p4d;
7147	pud_t *pud;
7148	pmd_t *pmd;
7149
7150	pgd = pgd_offset(mm, addr);
7151	if (!pgd_present(*pgd))
7152		return NULL;
7153	p4d = p4d_offset(pgd, addr);
7154	if (!p4d_present(*p4d))
7155		return NULL;
7156
7157	pud = pud_offset(p4d, addr);
7158	if (sz == PUD_SIZE)
7159		/* must be pud huge, non-present or none */
7160		return (pte_t *)pud;
7161	if (!pud_present(*pud))
7162		return NULL;
7163	/* must have a valid entry and size to go further */
7164
7165	pmd = pmd_offset(pud, addr);
7166	/* must be pmd huge, non-present or none */
7167	return (pte_t *)pmd;
7168}
7169
7170/*
7171 * Return a mask that can be used to update an address to the last huge
7172 * page in a page table page mapping size.  Used to skip non-present
7173 * page table entries when linearly scanning address ranges.  Architectures
7174 * with unique huge page to page table relationships can define their own
7175 * version of this routine.
7176 */
7177unsigned long hugetlb_mask_last_page(struct hstate *h)
7178{
7179	unsigned long hp_size = huge_page_size(h);
7180
7181	if (hp_size == PUD_SIZE)
7182		return P4D_SIZE - PUD_SIZE;
7183	else if (hp_size == PMD_SIZE)
7184		return PUD_SIZE - PMD_SIZE;
7185	else
7186		return 0UL;
7187}
7188
7189#else
7190
7191/* See description above.  Architectures can provide their own version. */
7192__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7193{
7194#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7195	if (huge_page_size(h) == PMD_SIZE)
7196		return PUD_SIZE - PMD_SIZE;
7197#endif
7198	return 0UL;
7199}
7200
7201#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7202
7203/*
7204 * These functions are overwritable if your architecture needs its own
7205 * behavior.
7206 */
7207bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7208{
7209	bool ret = true;
7210
7211	spin_lock_irq(&hugetlb_lock);
7212	if (!folio_test_hugetlb(folio) ||
7213	    !folio_test_hugetlb_migratable(folio) ||
7214	    !folio_try_get(folio)) {
7215		ret = false;
7216		goto unlock;
7217	}
7218	folio_clear_hugetlb_migratable(folio);
7219	list_move_tail(&folio->lru, list);
7220unlock:
7221	spin_unlock_irq(&hugetlb_lock);
7222	return ret;
7223}
7224
7225int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7226{
7227	int ret = 0;
7228
7229	*hugetlb = false;
7230	spin_lock_irq(&hugetlb_lock);
7231	if (folio_test_hugetlb(folio)) {
7232		*hugetlb = true;
7233		if (folio_test_hugetlb_freed(folio))
7234			ret = 0;
7235		else if (folio_test_hugetlb_migratable(folio) || unpoison)
7236			ret = folio_try_get(folio);
7237		else
7238			ret = -EBUSY;
7239	}
7240	spin_unlock_irq(&hugetlb_lock);
7241	return ret;
7242}
7243
7244int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7245				bool *migratable_cleared)
7246{
7247	int ret;
7248
7249	spin_lock_irq(&hugetlb_lock);
7250	ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7251	spin_unlock_irq(&hugetlb_lock);
7252	return ret;
7253}
7254
7255void folio_putback_active_hugetlb(struct folio *folio)
7256{
7257	spin_lock_irq(&hugetlb_lock);
7258	folio_set_hugetlb_migratable(folio);
7259	list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7260	spin_unlock_irq(&hugetlb_lock);
7261	folio_put(folio);
7262}
7263
7264void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7265{
7266	struct hstate *h = folio_hstate(old_folio);
7267
7268	hugetlb_cgroup_migrate(old_folio, new_folio);
7269	set_page_owner_migrate_reason(&new_folio->page, reason);
7270
7271	/*
7272	 * transfer temporary state of the new hugetlb folio. This is
7273	 * reverse to other transitions because the newpage is going to
7274	 * be final while the old one will be freed so it takes over
7275	 * the temporary status.
7276	 *
7277	 * Also note that we have to transfer the per-node surplus state
7278	 * here as well otherwise the global surplus count will not match
7279	 * the per-node's.
7280	 */
7281	if (folio_test_hugetlb_temporary(new_folio)) {
7282		int old_nid = folio_nid(old_folio);
7283		int new_nid = folio_nid(new_folio);
7284
7285		folio_set_hugetlb_temporary(old_folio);
7286		folio_clear_hugetlb_temporary(new_folio);
7287
7288
7289		/*
7290		 * There is no need to transfer the per-node surplus state
7291		 * when we do not cross the node.
7292		 */
7293		if (new_nid == old_nid)
7294			return;
7295		spin_lock_irq(&hugetlb_lock);
7296		if (h->surplus_huge_pages_node[old_nid]) {
7297			h->surplus_huge_pages_node[old_nid]--;
7298			h->surplus_huge_pages_node[new_nid]++;
7299		}
7300		spin_unlock_irq(&hugetlb_lock);
7301	}
7302}
7303
7304static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7305				   unsigned long start,
7306				   unsigned long end)
7307{
7308	struct hstate *h = hstate_vma(vma);
7309	unsigned long sz = huge_page_size(h);
7310	struct mm_struct *mm = vma->vm_mm;
7311	struct mmu_notifier_range range;
7312	unsigned long address;
7313	spinlock_t *ptl;
7314	pte_t *ptep;
7315
7316	if (!(vma->vm_flags & VM_MAYSHARE))
7317		return;
7318
7319	if (start >= end)
7320		return;
7321
7322	flush_cache_range(vma, start, end);
7323	/*
7324	 * No need to call adjust_range_if_pmd_sharing_possible(), because
7325	 * we have already done the PUD_SIZE alignment.
7326	 */
7327	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7328				start, end);
7329	mmu_notifier_invalidate_range_start(&range);
7330	hugetlb_vma_lock_write(vma);
7331	i_mmap_lock_write(vma->vm_file->f_mapping);
7332	for (address = start; address < end; address += PUD_SIZE) {
7333		ptep = hugetlb_walk(vma, address, sz);
7334		if (!ptep)
7335			continue;
7336		ptl = huge_pte_lock(h, mm, ptep);
7337		huge_pmd_unshare(mm, vma, address, ptep);
7338		spin_unlock(ptl);
7339	}
7340	flush_hugetlb_tlb_range(vma, start, end);
7341	i_mmap_unlock_write(vma->vm_file->f_mapping);
7342	hugetlb_vma_unlock_write(vma);
7343	/*
7344	 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7345	 * Documentation/mm/mmu_notifier.rst.
7346	 */
7347	mmu_notifier_invalidate_range_end(&range);
7348}
7349
7350/*
7351 * This function will unconditionally remove all the shared pmd pgtable entries
7352 * within the specific vma for a hugetlbfs memory range.
7353 */
7354void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7355{
7356	hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7357			ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7358}
7359
7360#ifdef CONFIG_CMA
7361static bool cma_reserve_called __initdata;
7362
7363static int __init cmdline_parse_hugetlb_cma(char *p)
7364{
7365	int nid, count = 0;
7366	unsigned long tmp;
7367	char *s = p;
7368
7369	while (*s) {
7370		if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7371			break;
7372
7373		if (s[count] == ':') {
7374			if (tmp >= MAX_NUMNODES)
7375				break;
7376			nid = array_index_nospec(tmp, MAX_NUMNODES);
7377
7378			s += count + 1;
7379			tmp = memparse(s, &s);
7380			hugetlb_cma_size_in_node[nid] = tmp;
7381			hugetlb_cma_size += tmp;
7382
7383			/*
7384			 * Skip the separator if have one, otherwise
7385			 * break the parsing.
7386			 */
7387			if (*s == ',')
7388				s++;
7389			else
7390				break;
7391		} else {
7392			hugetlb_cma_size = memparse(p, &p);
7393			break;
7394		}
7395	}
7396
7397	return 0;
7398}
7399
7400early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7401
7402void __init hugetlb_cma_reserve(int order)
7403{
7404	unsigned long size, reserved, per_node;
7405	bool node_specific_cma_alloc = false;
7406	int nid;
7407
7408	cma_reserve_called = true;
7409
7410	if (!hugetlb_cma_size)
7411		return;
7412
7413	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7414		if (hugetlb_cma_size_in_node[nid] == 0)
7415			continue;
7416
7417		if (!node_online(nid)) {
7418			pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7419			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7420			hugetlb_cma_size_in_node[nid] = 0;
7421			continue;
7422		}
7423
7424		if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7425			pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7426				nid, (PAGE_SIZE << order) / SZ_1M);
7427			hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7428			hugetlb_cma_size_in_node[nid] = 0;
7429		} else {
7430			node_specific_cma_alloc = true;
7431		}
7432	}
7433
7434	/* Validate the CMA size again in case some invalid nodes specified. */
7435	if (!hugetlb_cma_size)
7436		return;
7437
7438	if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7439		pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7440			(PAGE_SIZE << order) / SZ_1M);
7441		hugetlb_cma_size = 0;
7442		return;
7443	}
7444
7445	if (!node_specific_cma_alloc) {
7446		/*
7447		 * If 3 GB area is requested on a machine with 4 numa nodes,
7448		 * let's allocate 1 GB on first three nodes and ignore the last one.
7449		 */
7450		per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7451		pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7452			hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7453	}
7454
7455	reserved = 0;
7456	for_each_online_node(nid) {
7457		int res;
7458		char name[CMA_MAX_NAME];
7459
7460		if (node_specific_cma_alloc) {
7461			if (hugetlb_cma_size_in_node[nid] == 0)
7462				continue;
7463
7464			size = hugetlb_cma_size_in_node[nid];
7465		} else {
7466			size = min(per_node, hugetlb_cma_size - reserved);
7467		}
7468
7469		size = round_up(size, PAGE_SIZE << order);
7470
7471		snprintf(name, sizeof(name), "hugetlb%d", nid);
7472		/*
7473		 * Note that 'order per bit' is based on smallest size that
7474		 * may be returned to CMA allocator in the case of
7475		 * huge page demotion.
7476		 */
7477		res = cma_declare_contiguous_nid(0, size, 0,
7478						PAGE_SIZE << HUGETLB_PAGE_ORDER,
7479						 0, false, name,
7480						 &hugetlb_cma[nid], nid);
7481		if (res) {
7482			pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7483				res, nid);
7484			continue;
7485		}
7486
7487		reserved += size;
7488		pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7489			size / SZ_1M, nid);
7490
7491		if (reserved >= hugetlb_cma_size)
7492			break;
7493	}
7494
7495	if (!reserved)
7496		/*
7497		 * hugetlb_cma_size is used to determine if allocations from
7498		 * cma are possible.  Set to zero if no cma regions are set up.
7499		 */
7500		hugetlb_cma_size = 0;
7501}
7502
7503static void __init hugetlb_cma_check(void)
7504{
7505	if (!hugetlb_cma_size || cma_reserve_called)
7506		return;
7507
7508	pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7509}
7510
7511#endif /* CONFIG_CMA */
7512