xref: /kernel/linux/linux-6.6/mm/damon/core.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Data Access Monitor
4 *
5 * Author: SeongJae Park <sjpark@amazon.de>
6 */
7
8#define pr_fmt(fmt) "damon: " fmt
9
10#include <linux/damon.h>
11#include <linux/delay.h>
12#include <linux/kthread.h>
13#include <linux/mm.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16
17#define CREATE_TRACE_POINTS
18#include <trace/events/damon.h>
19
20#ifdef CONFIG_DAMON_KUNIT_TEST
21#undef DAMON_MIN_REGION
22#define DAMON_MIN_REGION 1
23#endif
24
25static DEFINE_MUTEX(damon_lock);
26static int nr_running_ctxs;
27static bool running_exclusive_ctxs;
28
29static DEFINE_MUTEX(damon_ops_lock);
30static struct damon_operations damon_registered_ops[NR_DAMON_OPS];
31
32static struct kmem_cache *damon_region_cache __ro_after_init;
33
34/* Should be called under damon_ops_lock with id smaller than NR_DAMON_OPS */
35static bool __damon_is_registered_ops(enum damon_ops_id id)
36{
37	struct damon_operations empty_ops = {};
38
39	if (!memcmp(&empty_ops, &damon_registered_ops[id], sizeof(empty_ops)))
40		return false;
41	return true;
42}
43
44/**
45 * damon_is_registered_ops() - Check if a given damon_operations is registered.
46 * @id:	Id of the damon_operations to check if registered.
47 *
48 * Return: true if the ops is set, false otherwise.
49 */
50bool damon_is_registered_ops(enum damon_ops_id id)
51{
52	bool registered;
53
54	if (id >= NR_DAMON_OPS)
55		return false;
56	mutex_lock(&damon_ops_lock);
57	registered = __damon_is_registered_ops(id);
58	mutex_unlock(&damon_ops_lock);
59	return registered;
60}
61
62/**
63 * damon_register_ops() - Register a monitoring operations set to DAMON.
64 * @ops:	monitoring operations set to register.
65 *
66 * This function registers a monitoring operations set of valid &struct
67 * damon_operations->id so that others can find and use them later.
68 *
69 * Return: 0 on success, negative error code otherwise.
70 */
71int damon_register_ops(struct damon_operations *ops)
72{
73	int err = 0;
74
75	if (ops->id >= NR_DAMON_OPS)
76		return -EINVAL;
77	mutex_lock(&damon_ops_lock);
78	/* Fail for already registered ops */
79	if (__damon_is_registered_ops(ops->id)) {
80		err = -EINVAL;
81		goto out;
82	}
83	damon_registered_ops[ops->id] = *ops;
84out:
85	mutex_unlock(&damon_ops_lock);
86	return err;
87}
88
89/**
90 * damon_select_ops() - Select a monitoring operations to use with the context.
91 * @ctx:	monitoring context to use the operations.
92 * @id:		id of the registered monitoring operations to select.
93 *
94 * This function finds registered monitoring operations set of @id and make
95 * @ctx to use it.
96 *
97 * Return: 0 on success, negative error code otherwise.
98 */
99int damon_select_ops(struct damon_ctx *ctx, enum damon_ops_id id)
100{
101	int err = 0;
102
103	if (id >= NR_DAMON_OPS)
104		return -EINVAL;
105
106	mutex_lock(&damon_ops_lock);
107	if (!__damon_is_registered_ops(id))
108		err = -EINVAL;
109	else
110		ctx->ops = damon_registered_ops[id];
111	mutex_unlock(&damon_ops_lock);
112	return err;
113}
114
115/*
116 * Construct a damon_region struct
117 *
118 * Returns the pointer to the new struct if success, or NULL otherwise
119 */
120struct damon_region *damon_new_region(unsigned long start, unsigned long end)
121{
122	struct damon_region *region;
123
124	region = kmem_cache_alloc(damon_region_cache, GFP_KERNEL);
125	if (!region)
126		return NULL;
127
128	region->ar.start = start;
129	region->ar.end = end;
130	region->nr_accesses = 0;
131	INIT_LIST_HEAD(&region->list);
132
133	region->age = 0;
134	region->last_nr_accesses = 0;
135
136	return region;
137}
138
139void damon_add_region(struct damon_region *r, struct damon_target *t)
140{
141	list_add_tail(&r->list, &t->regions_list);
142	t->nr_regions++;
143}
144
145static void damon_del_region(struct damon_region *r, struct damon_target *t)
146{
147	list_del(&r->list);
148	t->nr_regions--;
149}
150
151static void damon_free_region(struct damon_region *r)
152{
153	kmem_cache_free(damon_region_cache, r);
154}
155
156void damon_destroy_region(struct damon_region *r, struct damon_target *t)
157{
158	damon_del_region(r, t);
159	damon_free_region(r);
160}
161
162/*
163 * Check whether a region is intersecting an address range
164 *
165 * Returns true if it is.
166 */
167static bool damon_intersect(struct damon_region *r,
168		struct damon_addr_range *re)
169{
170	return !(r->ar.end <= re->start || re->end <= r->ar.start);
171}
172
173/*
174 * Fill holes in regions with new regions.
175 */
176static int damon_fill_regions_holes(struct damon_region *first,
177		struct damon_region *last, struct damon_target *t)
178{
179	struct damon_region *r = first;
180
181	damon_for_each_region_from(r, t) {
182		struct damon_region *next, *newr;
183
184		if (r == last)
185			break;
186		next = damon_next_region(r);
187		if (r->ar.end != next->ar.start) {
188			newr = damon_new_region(r->ar.end, next->ar.start);
189			if (!newr)
190				return -ENOMEM;
191			damon_insert_region(newr, r, next, t);
192		}
193	}
194	return 0;
195}
196
197/*
198 * damon_set_regions() - Set regions of a target for given address ranges.
199 * @t:		the given target.
200 * @ranges:	array of new monitoring target ranges.
201 * @nr_ranges:	length of @ranges.
202 *
203 * This function adds new regions to, or modify existing regions of a
204 * monitoring target to fit in specific ranges.
205 *
206 * Return: 0 if success, or negative error code otherwise.
207 */
208int damon_set_regions(struct damon_target *t, struct damon_addr_range *ranges,
209		unsigned int nr_ranges)
210{
211	struct damon_region *r, *next;
212	unsigned int i;
213	int err;
214
215	/* Remove regions which are not in the new ranges */
216	damon_for_each_region_safe(r, next, t) {
217		for (i = 0; i < nr_ranges; i++) {
218			if (damon_intersect(r, &ranges[i]))
219				break;
220		}
221		if (i == nr_ranges)
222			damon_destroy_region(r, t);
223	}
224
225	r = damon_first_region(t);
226	/* Add new regions or resize existing regions to fit in the ranges */
227	for (i = 0; i < nr_ranges; i++) {
228		struct damon_region *first = NULL, *last, *newr;
229		struct damon_addr_range *range;
230
231		range = &ranges[i];
232		/* Get the first/last regions intersecting with the range */
233		damon_for_each_region_from(r, t) {
234			if (damon_intersect(r, range)) {
235				if (!first)
236					first = r;
237				last = r;
238			}
239			if (r->ar.start >= range->end)
240				break;
241		}
242		if (!first) {
243			/* no region intersects with this range */
244			newr = damon_new_region(
245					ALIGN_DOWN(range->start,
246						DAMON_MIN_REGION),
247					ALIGN(range->end, DAMON_MIN_REGION));
248			if (!newr)
249				return -ENOMEM;
250			damon_insert_region(newr, damon_prev_region(r), r, t);
251		} else {
252			/* resize intersecting regions to fit in this range */
253			first->ar.start = ALIGN_DOWN(range->start,
254					DAMON_MIN_REGION);
255			last->ar.end = ALIGN(range->end, DAMON_MIN_REGION);
256
257			/* fill possible holes in the range */
258			err = damon_fill_regions_holes(first, last, t);
259			if (err)
260				return err;
261		}
262	}
263	return 0;
264}
265
266struct damos_filter *damos_new_filter(enum damos_filter_type type,
267		bool matching)
268{
269	struct damos_filter *filter;
270
271	filter = kmalloc(sizeof(*filter), GFP_KERNEL);
272	if (!filter)
273		return NULL;
274	filter->type = type;
275	filter->matching = matching;
276	INIT_LIST_HEAD(&filter->list);
277	return filter;
278}
279
280void damos_add_filter(struct damos *s, struct damos_filter *f)
281{
282	list_add_tail(&f->list, &s->filters);
283}
284
285static void damos_del_filter(struct damos_filter *f)
286{
287	list_del(&f->list);
288}
289
290static void damos_free_filter(struct damos_filter *f)
291{
292	kfree(f);
293}
294
295void damos_destroy_filter(struct damos_filter *f)
296{
297	damos_del_filter(f);
298	damos_free_filter(f);
299}
300
301/* initialize private fields of damos_quota and return the pointer */
302static struct damos_quota *damos_quota_init_priv(struct damos_quota *quota)
303{
304	quota->total_charged_sz = 0;
305	quota->total_charged_ns = 0;
306	quota->esz = 0;
307	quota->charged_sz = 0;
308	quota->charged_from = 0;
309	quota->charge_target_from = NULL;
310	quota->charge_addr_from = 0;
311	return quota;
312}
313
314struct damos *damon_new_scheme(struct damos_access_pattern *pattern,
315			enum damos_action action, struct damos_quota *quota,
316			struct damos_watermarks *wmarks)
317{
318	struct damos *scheme;
319
320	scheme = kmalloc(sizeof(*scheme), GFP_KERNEL);
321	if (!scheme)
322		return NULL;
323	scheme->pattern = *pattern;
324	scheme->action = action;
325	INIT_LIST_HEAD(&scheme->filters);
326	scheme->stat = (struct damos_stat){};
327	INIT_LIST_HEAD(&scheme->list);
328
329	scheme->quota = *(damos_quota_init_priv(quota));
330
331	scheme->wmarks = *wmarks;
332	scheme->wmarks.activated = true;
333
334	return scheme;
335}
336
337void damon_add_scheme(struct damon_ctx *ctx, struct damos *s)
338{
339	list_add_tail(&s->list, &ctx->schemes);
340}
341
342static void damon_del_scheme(struct damos *s)
343{
344	list_del(&s->list);
345}
346
347static void damon_free_scheme(struct damos *s)
348{
349	kfree(s);
350}
351
352void damon_destroy_scheme(struct damos *s)
353{
354	struct damos_filter *f, *next;
355
356	damos_for_each_filter_safe(f, next, s)
357		damos_destroy_filter(f);
358	damon_del_scheme(s);
359	damon_free_scheme(s);
360}
361
362/*
363 * Construct a damon_target struct
364 *
365 * Returns the pointer to the new struct if success, or NULL otherwise
366 */
367struct damon_target *damon_new_target(void)
368{
369	struct damon_target *t;
370
371	t = kmalloc(sizeof(*t), GFP_KERNEL);
372	if (!t)
373		return NULL;
374
375	t->pid = NULL;
376	t->nr_regions = 0;
377	INIT_LIST_HEAD(&t->regions_list);
378	INIT_LIST_HEAD(&t->list);
379
380	return t;
381}
382
383void damon_add_target(struct damon_ctx *ctx, struct damon_target *t)
384{
385	list_add_tail(&t->list, &ctx->adaptive_targets);
386}
387
388bool damon_targets_empty(struct damon_ctx *ctx)
389{
390	return list_empty(&ctx->adaptive_targets);
391}
392
393static void damon_del_target(struct damon_target *t)
394{
395	list_del(&t->list);
396}
397
398void damon_free_target(struct damon_target *t)
399{
400	struct damon_region *r, *next;
401
402	damon_for_each_region_safe(r, next, t)
403		damon_free_region(r);
404	kfree(t);
405}
406
407void damon_destroy_target(struct damon_target *t)
408{
409	damon_del_target(t);
410	damon_free_target(t);
411}
412
413unsigned int damon_nr_regions(struct damon_target *t)
414{
415	return t->nr_regions;
416}
417
418struct damon_ctx *damon_new_ctx(void)
419{
420	struct damon_ctx *ctx;
421
422	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
423	if (!ctx)
424		return NULL;
425
426	init_completion(&ctx->kdamond_started);
427
428	ctx->attrs.sample_interval = 5 * 1000;
429	ctx->attrs.aggr_interval = 100 * 1000;
430	ctx->attrs.ops_update_interval = 60 * 1000 * 1000;
431
432	ctx->passed_sample_intervals = 0;
433	/* These will be set from kdamond_init_intervals_sis() */
434	ctx->next_aggregation_sis = 0;
435	ctx->next_ops_update_sis = 0;
436
437	mutex_init(&ctx->kdamond_lock);
438
439	ctx->attrs.min_nr_regions = 10;
440	ctx->attrs.max_nr_regions = 1000;
441
442	INIT_LIST_HEAD(&ctx->adaptive_targets);
443	INIT_LIST_HEAD(&ctx->schemes);
444
445	return ctx;
446}
447
448static void damon_destroy_targets(struct damon_ctx *ctx)
449{
450	struct damon_target *t, *next_t;
451
452	if (ctx->ops.cleanup) {
453		ctx->ops.cleanup(ctx);
454		return;
455	}
456
457	damon_for_each_target_safe(t, next_t, ctx)
458		damon_destroy_target(t);
459}
460
461void damon_destroy_ctx(struct damon_ctx *ctx)
462{
463	struct damos *s, *next_s;
464
465	damon_destroy_targets(ctx);
466
467	damon_for_each_scheme_safe(s, next_s, ctx)
468		damon_destroy_scheme(s);
469
470	kfree(ctx);
471}
472
473static unsigned int damon_age_for_new_attrs(unsigned int age,
474		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
475{
476	return age * old_attrs->aggr_interval / new_attrs->aggr_interval;
477}
478
479/* convert access ratio in bp (per 10,000) to nr_accesses */
480static unsigned int damon_accesses_bp_to_nr_accesses(
481		unsigned int accesses_bp, struct damon_attrs *attrs)
482{
483	return accesses_bp * damon_max_nr_accesses(attrs) / 10000;
484}
485
486/* convert nr_accesses to access ratio in bp (per 10,000) */
487static unsigned int damon_nr_accesses_to_accesses_bp(
488		unsigned int nr_accesses, struct damon_attrs *attrs)
489{
490	return nr_accesses * 10000 / damon_max_nr_accesses(attrs);
491}
492
493static unsigned int damon_nr_accesses_for_new_attrs(unsigned int nr_accesses,
494		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
495{
496	return damon_accesses_bp_to_nr_accesses(
497			damon_nr_accesses_to_accesses_bp(
498				nr_accesses, old_attrs),
499			new_attrs);
500}
501
502static void damon_update_monitoring_result(struct damon_region *r,
503		struct damon_attrs *old_attrs, struct damon_attrs *new_attrs)
504{
505	r->nr_accesses = damon_nr_accesses_for_new_attrs(r->nr_accesses,
506			old_attrs, new_attrs);
507	r->age = damon_age_for_new_attrs(r->age, old_attrs, new_attrs);
508}
509
510/*
511 * region->nr_accesses is the number of sampling intervals in the last
512 * aggregation interval that access to the region has found, and region->age is
513 * the number of aggregation intervals that its access pattern has maintained.
514 * For the reason, the real meaning of the two fields depend on current
515 * sampling interval and aggregation interval.  This function updates
516 * ->nr_accesses and ->age of given damon_ctx's regions for new damon_attrs.
517 */
518static void damon_update_monitoring_results(struct damon_ctx *ctx,
519		struct damon_attrs *new_attrs)
520{
521	struct damon_attrs *old_attrs = &ctx->attrs;
522	struct damon_target *t;
523	struct damon_region *r;
524
525	/* if any interval is zero, simply forgive conversion */
526	if (!old_attrs->sample_interval || !old_attrs->aggr_interval ||
527			!new_attrs->sample_interval ||
528			!new_attrs->aggr_interval)
529		return;
530
531	damon_for_each_target(t, ctx)
532		damon_for_each_region(r, t)
533			damon_update_monitoring_result(
534					r, old_attrs, new_attrs);
535}
536
537/**
538 * damon_set_attrs() - Set attributes for the monitoring.
539 * @ctx:		monitoring context
540 * @attrs:		monitoring attributes
541 *
542 * This function should not be called while the kdamond is running.
543 * Every time interval is in micro-seconds.
544 *
545 * Return: 0 on success, negative error code otherwise.
546 */
547int damon_set_attrs(struct damon_ctx *ctx, struct damon_attrs *attrs)
548{
549	unsigned long sample_interval = attrs->sample_interval ?
550		attrs->sample_interval : 1;
551
552	if (attrs->min_nr_regions < 3)
553		return -EINVAL;
554	if (attrs->min_nr_regions > attrs->max_nr_regions)
555		return -EINVAL;
556	if (attrs->sample_interval > attrs->aggr_interval)
557		return -EINVAL;
558
559	ctx->next_aggregation_sis = ctx->passed_sample_intervals +
560		attrs->aggr_interval / sample_interval;
561	ctx->next_ops_update_sis = ctx->passed_sample_intervals +
562		attrs->ops_update_interval / sample_interval;
563
564	damon_update_monitoring_results(ctx, attrs);
565	ctx->attrs = *attrs;
566	return 0;
567}
568
569/**
570 * damon_set_schemes() - Set data access monitoring based operation schemes.
571 * @ctx:	monitoring context
572 * @schemes:	array of the schemes
573 * @nr_schemes:	number of entries in @schemes
574 *
575 * This function should not be called while the kdamond of the context is
576 * running.
577 */
578void damon_set_schemes(struct damon_ctx *ctx, struct damos **schemes,
579			ssize_t nr_schemes)
580{
581	struct damos *s, *next;
582	ssize_t i;
583
584	damon_for_each_scheme_safe(s, next, ctx)
585		damon_destroy_scheme(s);
586	for (i = 0; i < nr_schemes; i++)
587		damon_add_scheme(ctx, schemes[i]);
588}
589
590/**
591 * damon_nr_running_ctxs() - Return number of currently running contexts.
592 */
593int damon_nr_running_ctxs(void)
594{
595	int nr_ctxs;
596
597	mutex_lock(&damon_lock);
598	nr_ctxs = nr_running_ctxs;
599	mutex_unlock(&damon_lock);
600
601	return nr_ctxs;
602}
603
604/* Returns the size upper limit for each monitoring region */
605static unsigned long damon_region_sz_limit(struct damon_ctx *ctx)
606{
607	struct damon_target *t;
608	struct damon_region *r;
609	unsigned long sz = 0;
610
611	damon_for_each_target(t, ctx) {
612		damon_for_each_region(r, t)
613			sz += damon_sz_region(r);
614	}
615
616	if (ctx->attrs.min_nr_regions)
617		sz /= ctx->attrs.min_nr_regions;
618	if (sz < DAMON_MIN_REGION)
619		sz = DAMON_MIN_REGION;
620
621	return sz;
622}
623
624static int kdamond_fn(void *data);
625
626/*
627 * __damon_start() - Starts monitoring with given context.
628 * @ctx:	monitoring context
629 *
630 * This function should be called while damon_lock is hold.
631 *
632 * Return: 0 on success, negative error code otherwise.
633 */
634static int __damon_start(struct damon_ctx *ctx)
635{
636	int err = -EBUSY;
637
638	mutex_lock(&ctx->kdamond_lock);
639	if (!ctx->kdamond) {
640		err = 0;
641		reinit_completion(&ctx->kdamond_started);
642		ctx->kdamond = kthread_run(kdamond_fn, ctx, "kdamond.%d",
643				nr_running_ctxs);
644		if (IS_ERR(ctx->kdamond)) {
645			err = PTR_ERR(ctx->kdamond);
646			ctx->kdamond = NULL;
647		} else {
648			wait_for_completion(&ctx->kdamond_started);
649		}
650	}
651	mutex_unlock(&ctx->kdamond_lock);
652
653	return err;
654}
655
656/**
657 * damon_start() - Starts the monitorings for a given group of contexts.
658 * @ctxs:	an array of the pointers for contexts to start monitoring
659 * @nr_ctxs:	size of @ctxs
660 * @exclusive:	exclusiveness of this contexts group
661 *
662 * This function starts a group of monitoring threads for a group of monitoring
663 * contexts.  One thread per each context is created and run in parallel.  The
664 * caller should handle synchronization between the threads by itself.  If
665 * @exclusive is true and a group of threads that created by other
666 * 'damon_start()' call is currently running, this function does nothing but
667 * returns -EBUSY.
668 *
669 * Return: 0 on success, negative error code otherwise.
670 */
671int damon_start(struct damon_ctx **ctxs, int nr_ctxs, bool exclusive)
672{
673	int i;
674	int err = 0;
675
676	mutex_lock(&damon_lock);
677	if ((exclusive && nr_running_ctxs) ||
678			(!exclusive && running_exclusive_ctxs)) {
679		mutex_unlock(&damon_lock);
680		return -EBUSY;
681	}
682
683	for (i = 0; i < nr_ctxs; i++) {
684		err = __damon_start(ctxs[i]);
685		if (err)
686			break;
687		nr_running_ctxs++;
688	}
689	if (exclusive && nr_running_ctxs)
690		running_exclusive_ctxs = true;
691	mutex_unlock(&damon_lock);
692
693	return err;
694}
695
696/*
697 * __damon_stop() - Stops monitoring of a given context.
698 * @ctx:	monitoring context
699 *
700 * Return: 0 on success, negative error code otherwise.
701 */
702static int __damon_stop(struct damon_ctx *ctx)
703{
704	struct task_struct *tsk;
705
706	mutex_lock(&ctx->kdamond_lock);
707	tsk = ctx->kdamond;
708	if (tsk) {
709		get_task_struct(tsk);
710		mutex_unlock(&ctx->kdamond_lock);
711		kthread_stop(tsk);
712		put_task_struct(tsk);
713		return 0;
714	}
715	mutex_unlock(&ctx->kdamond_lock);
716
717	return -EPERM;
718}
719
720/**
721 * damon_stop() - Stops the monitorings for a given group of contexts.
722 * @ctxs:	an array of the pointers for contexts to stop monitoring
723 * @nr_ctxs:	size of @ctxs
724 *
725 * Return: 0 on success, negative error code otherwise.
726 */
727int damon_stop(struct damon_ctx **ctxs, int nr_ctxs)
728{
729	int i, err = 0;
730
731	for (i = 0; i < nr_ctxs; i++) {
732		/* nr_running_ctxs is decremented in kdamond_fn */
733		err = __damon_stop(ctxs[i]);
734		if (err)
735			break;
736	}
737	return err;
738}
739
740/*
741 * Reset the aggregated monitoring results ('nr_accesses' of each region).
742 */
743static void kdamond_reset_aggregated(struct damon_ctx *c)
744{
745	struct damon_target *t;
746	unsigned int ti = 0;	/* target's index */
747
748	damon_for_each_target(t, c) {
749		struct damon_region *r;
750
751		damon_for_each_region(r, t) {
752			trace_damon_aggregated(t, ti, r, damon_nr_regions(t));
753			r->last_nr_accesses = r->nr_accesses;
754			r->nr_accesses = 0;
755		}
756		ti++;
757	}
758}
759
760static void damon_split_region_at(struct damon_target *t,
761				  struct damon_region *r, unsigned long sz_r);
762
763static bool __damos_valid_target(struct damon_region *r, struct damos *s)
764{
765	unsigned long sz;
766
767	sz = damon_sz_region(r);
768	return s->pattern.min_sz_region <= sz &&
769		sz <= s->pattern.max_sz_region &&
770		s->pattern.min_nr_accesses <= r->nr_accesses &&
771		r->nr_accesses <= s->pattern.max_nr_accesses &&
772		s->pattern.min_age_region <= r->age &&
773		r->age <= s->pattern.max_age_region;
774}
775
776static bool damos_valid_target(struct damon_ctx *c, struct damon_target *t,
777		struct damon_region *r, struct damos *s)
778{
779	bool ret = __damos_valid_target(r, s);
780
781	if (!ret || !s->quota.esz || !c->ops.get_scheme_score)
782		return ret;
783
784	return c->ops.get_scheme_score(c, t, r, s) >= s->quota.min_score;
785}
786
787/*
788 * damos_skip_charged_region() - Check if the given region or starting part of
789 * it is already charged for the DAMOS quota.
790 * @t:	The target of the region.
791 * @rp:	The pointer to the region.
792 * @s:	The scheme to be applied.
793 *
794 * If a quota of a scheme has exceeded in a quota charge window, the scheme's
795 * action would applied to only a part of the target access pattern fulfilling
796 * regions.  To avoid applying the scheme action to only already applied
797 * regions, DAMON skips applying the scheme action to the regions that charged
798 * in the previous charge window.
799 *
800 * This function checks if a given region should be skipped or not for the
801 * reason.  If only the starting part of the region has previously charged,
802 * this function splits the region into two so that the second one covers the
803 * area that not charged in the previous charge widnow and saves the second
804 * region in *rp and returns false, so that the caller can apply DAMON action
805 * to the second one.
806 *
807 * Return: true if the region should be entirely skipped, false otherwise.
808 */
809static bool damos_skip_charged_region(struct damon_target *t,
810		struct damon_region **rp, struct damos *s)
811{
812	struct damon_region *r = *rp;
813	struct damos_quota *quota = &s->quota;
814	unsigned long sz_to_skip;
815
816	/* Skip previously charged regions */
817	if (quota->charge_target_from) {
818		if (t != quota->charge_target_from)
819			return true;
820		if (r == damon_last_region(t)) {
821			quota->charge_target_from = NULL;
822			quota->charge_addr_from = 0;
823			return true;
824		}
825		if (quota->charge_addr_from &&
826				r->ar.end <= quota->charge_addr_from)
827			return true;
828
829		if (quota->charge_addr_from && r->ar.start <
830				quota->charge_addr_from) {
831			sz_to_skip = ALIGN_DOWN(quota->charge_addr_from -
832					r->ar.start, DAMON_MIN_REGION);
833			if (!sz_to_skip) {
834				if (damon_sz_region(r) <= DAMON_MIN_REGION)
835					return true;
836				sz_to_skip = DAMON_MIN_REGION;
837			}
838			damon_split_region_at(t, r, sz_to_skip);
839			r = damon_next_region(r);
840			*rp = r;
841		}
842		quota->charge_target_from = NULL;
843		quota->charge_addr_from = 0;
844	}
845	return false;
846}
847
848static void damos_update_stat(struct damos *s,
849		unsigned long sz_tried, unsigned long sz_applied)
850{
851	s->stat.nr_tried++;
852	s->stat.sz_tried += sz_tried;
853	if (sz_applied)
854		s->stat.nr_applied++;
855	s->stat.sz_applied += sz_applied;
856}
857
858static bool __damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
859		struct damon_region *r, struct damos_filter *filter)
860{
861	bool matched = false;
862	struct damon_target *ti;
863	int target_idx = 0;
864	unsigned long start, end;
865
866	switch (filter->type) {
867	case DAMOS_FILTER_TYPE_TARGET:
868		damon_for_each_target(ti, ctx) {
869			if (ti == t)
870				break;
871			target_idx++;
872		}
873		matched = target_idx == filter->target_idx;
874		break;
875	case DAMOS_FILTER_TYPE_ADDR:
876		start = ALIGN_DOWN(filter->addr_range.start, DAMON_MIN_REGION);
877		end = ALIGN_DOWN(filter->addr_range.end, DAMON_MIN_REGION);
878
879		/* inside the range */
880		if (start <= r->ar.start && r->ar.end <= end) {
881			matched = true;
882			break;
883		}
884		/* outside of the range */
885		if (r->ar.end <= start || end <= r->ar.start) {
886			matched = false;
887			break;
888		}
889		/* start before the range and overlap */
890		if (r->ar.start < start) {
891			damon_split_region_at(t, r, start - r->ar.start);
892			matched = false;
893			break;
894		}
895		/* start inside the range */
896		damon_split_region_at(t, r, end - r->ar.start);
897		matched = true;
898		break;
899	default:
900		return false;
901	}
902
903	return matched == filter->matching;
904}
905
906static bool damos_filter_out(struct damon_ctx *ctx, struct damon_target *t,
907		struct damon_region *r, struct damos *s)
908{
909	struct damos_filter *filter;
910
911	damos_for_each_filter(filter, s) {
912		if (__damos_filter_out(ctx, t, r, filter))
913			return true;
914	}
915	return false;
916}
917
918static void damos_apply_scheme(struct damon_ctx *c, struct damon_target *t,
919		struct damon_region *r, struct damos *s)
920{
921	struct damos_quota *quota = &s->quota;
922	unsigned long sz = damon_sz_region(r);
923	struct timespec64 begin, end;
924	unsigned long sz_applied = 0;
925	int err = 0;
926
927	if (c->ops.apply_scheme) {
928		if (quota->esz && quota->charged_sz + sz > quota->esz) {
929			sz = ALIGN_DOWN(quota->esz - quota->charged_sz,
930					DAMON_MIN_REGION);
931			if (!sz)
932				goto update_stat;
933			damon_split_region_at(t, r, sz);
934		}
935		if (damos_filter_out(c, t, r, s))
936			return;
937		ktime_get_coarse_ts64(&begin);
938		if (c->callback.before_damos_apply)
939			err = c->callback.before_damos_apply(c, t, r, s);
940		if (!err)
941			sz_applied = c->ops.apply_scheme(c, t, r, s);
942		ktime_get_coarse_ts64(&end);
943		quota->total_charged_ns += timespec64_to_ns(&end) -
944			timespec64_to_ns(&begin);
945		quota->charged_sz += sz;
946		if (quota->esz && quota->charged_sz >= quota->esz) {
947			quota->charge_target_from = t;
948			quota->charge_addr_from = r->ar.end + 1;
949		}
950	}
951	if (s->action != DAMOS_STAT)
952		r->age = 0;
953
954update_stat:
955	damos_update_stat(s, sz, sz_applied);
956}
957
958static void damon_do_apply_schemes(struct damon_ctx *c,
959				   struct damon_target *t,
960				   struct damon_region *r)
961{
962	struct damos *s;
963
964	damon_for_each_scheme(s, c) {
965		struct damos_quota *quota = &s->quota;
966
967		if (!s->wmarks.activated)
968			continue;
969
970		/* Check the quota */
971		if (quota->esz && quota->charged_sz >= quota->esz)
972			continue;
973
974		if (damos_skip_charged_region(t, &r, s))
975			continue;
976
977		if (!damos_valid_target(c, t, r, s))
978			continue;
979
980		damos_apply_scheme(c, t, r, s);
981	}
982}
983
984/* Shouldn't be called if quota->ms and quota->sz are zero */
985static void damos_set_effective_quota(struct damos_quota *quota)
986{
987	unsigned long throughput;
988	unsigned long esz;
989
990	if (!quota->ms) {
991		quota->esz = quota->sz;
992		return;
993	}
994
995	if (quota->total_charged_ns)
996		throughput = quota->total_charged_sz * 1000000 /
997			quota->total_charged_ns;
998	else
999		throughput = PAGE_SIZE * 1024;
1000	esz = throughput * quota->ms;
1001
1002	if (quota->sz && quota->sz < esz)
1003		esz = quota->sz;
1004	quota->esz = esz;
1005}
1006
1007static void damos_adjust_quota(struct damon_ctx *c, struct damos *s)
1008{
1009	struct damos_quota *quota = &s->quota;
1010	struct damon_target *t;
1011	struct damon_region *r;
1012	unsigned long cumulated_sz;
1013	unsigned int score, max_score = 0;
1014
1015	if (!quota->ms && !quota->sz)
1016		return;
1017
1018	/* New charge window starts */
1019	if (time_after_eq(jiffies, quota->charged_from +
1020				msecs_to_jiffies(quota->reset_interval))) {
1021		if (quota->esz && quota->charged_sz >= quota->esz)
1022			s->stat.qt_exceeds++;
1023		quota->total_charged_sz += quota->charged_sz;
1024		quota->charged_from = jiffies;
1025		quota->charged_sz = 0;
1026		damos_set_effective_quota(quota);
1027	}
1028
1029	if (!c->ops.get_scheme_score)
1030		return;
1031
1032	/* Fill up the score histogram */
1033	memset(quota->histogram, 0, sizeof(quota->histogram));
1034	damon_for_each_target(t, c) {
1035		damon_for_each_region(r, t) {
1036			if (!__damos_valid_target(r, s))
1037				continue;
1038			score = c->ops.get_scheme_score(c, t, r, s);
1039			quota->histogram[score] += damon_sz_region(r);
1040			if (score > max_score)
1041				max_score = score;
1042		}
1043	}
1044
1045	/* Set the min score limit */
1046	for (cumulated_sz = 0, score = max_score; ; score--) {
1047		cumulated_sz += quota->histogram[score];
1048		if (cumulated_sz >= quota->esz || !score)
1049			break;
1050	}
1051	quota->min_score = score;
1052}
1053
1054static void kdamond_apply_schemes(struct damon_ctx *c)
1055{
1056	struct damon_target *t;
1057	struct damon_region *r, *next_r;
1058	struct damos *s;
1059
1060	damon_for_each_scheme(s, c) {
1061		if (!s->wmarks.activated)
1062			continue;
1063
1064		damos_adjust_quota(c, s);
1065	}
1066
1067	damon_for_each_target(t, c) {
1068		damon_for_each_region_safe(r, next_r, t)
1069			damon_do_apply_schemes(c, t, r);
1070	}
1071}
1072
1073/*
1074 * Merge two adjacent regions into one region
1075 */
1076static void damon_merge_two_regions(struct damon_target *t,
1077		struct damon_region *l, struct damon_region *r)
1078{
1079	unsigned long sz_l = damon_sz_region(l), sz_r = damon_sz_region(r);
1080
1081	l->nr_accesses = (l->nr_accesses * sz_l + r->nr_accesses * sz_r) /
1082			(sz_l + sz_r);
1083	l->age = (l->age * sz_l + r->age * sz_r) / (sz_l + sz_r);
1084	l->ar.end = r->ar.end;
1085	damon_destroy_region(r, t);
1086}
1087
1088/*
1089 * Merge adjacent regions having similar access frequencies
1090 *
1091 * t		target affected by this merge operation
1092 * thres	'->nr_accesses' diff threshold for the merge
1093 * sz_limit	size upper limit of each region
1094 */
1095static void damon_merge_regions_of(struct damon_target *t, unsigned int thres,
1096				   unsigned long sz_limit)
1097{
1098	struct damon_region *r, *prev = NULL, *next;
1099
1100	damon_for_each_region_safe(r, next, t) {
1101		if (abs(r->nr_accesses - r->last_nr_accesses) > thres)
1102			r->age = 0;
1103		else
1104			r->age++;
1105
1106		if (prev && prev->ar.end == r->ar.start &&
1107		    abs(prev->nr_accesses - r->nr_accesses) <= thres &&
1108		    damon_sz_region(prev) + damon_sz_region(r) <= sz_limit)
1109			damon_merge_two_regions(t, prev, r);
1110		else
1111			prev = r;
1112	}
1113}
1114
1115/*
1116 * Merge adjacent regions having similar access frequencies
1117 *
1118 * threshold	'->nr_accesses' diff threshold for the merge
1119 * sz_limit	size upper limit of each region
1120 *
1121 * This function merges monitoring target regions which are adjacent and their
1122 * access frequencies are similar.  This is for minimizing the monitoring
1123 * overhead under the dynamically changeable access pattern.  If a merge was
1124 * unnecessarily made, later 'kdamond_split_regions()' will revert it.
1125 */
1126static void kdamond_merge_regions(struct damon_ctx *c, unsigned int threshold,
1127				  unsigned long sz_limit)
1128{
1129	struct damon_target *t;
1130
1131	damon_for_each_target(t, c)
1132		damon_merge_regions_of(t, threshold, sz_limit);
1133}
1134
1135/*
1136 * Split a region in two
1137 *
1138 * r		the region to be split
1139 * sz_r		size of the first sub-region that will be made
1140 */
1141static void damon_split_region_at(struct damon_target *t,
1142				  struct damon_region *r, unsigned long sz_r)
1143{
1144	struct damon_region *new;
1145
1146	new = damon_new_region(r->ar.start + sz_r, r->ar.end);
1147	if (!new)
1148		return;
1149
1150	r->ar.end = new->ar.start;
1151
1152	new->age = r->age;
1153	new->last_nr_accesses = r->last_nr_accesses;
1154
1155	damon_insert_region(new, r, damon_next_region(r), t);
1156}
1157
1158/* Split every region in the given target into 'nr_subs' regions */
1159static void damon_split_regions_of(struct damon_target *t, int nr_subs)
1160{
1161	struct damon_region *r, *next;
1162	unsigned long sz_region, sz_sub = 0;
1163	int i;
1164
1165	damon_for_each_region_safe(r, next, t) {
1166		sz_region = damon_sz_region(r);
1167
1168		for (i = 0; i < nr_subs - 1 &&
1169				sz_region > 2 * DAMON_MIN_REGION; i++) {
1170			/*
1171			 * Randomly select size of left sub-region to be at
1172			 * least 10 percent and at most 90% of original region
1173			 */
1174			sz_sub = ALIGN_DOWN(damon_rand(1, 10) *
1175					sz_region / 10, DAMON_MIN_REGION);
1176			/* Do not allow blank region */
1177			if (sz_sub == 0 || sz_sub >= sz_region)
1178				continue;
1179
1180			damon_split_region_at(t, r, sz_sub);
1181			sz_region = sz_sub;
1182		}
1183	}
1184}
1185
1186/*
1187 * Split every target region into randomly-sized small regions
1188 *
1189 * This function splits every target region into random-sized small regions if
1190 * current total number of the regions is equal or smaller than half of the
1191 * user-specified maximum number of regions.  This is for maximizing the
1192 * monitoring accuracy under the dynamically changeable access patterns.  If a
1193 * split was unnecessarily made, later 'kdamond_merge_regions()' will revert
1194 * it.
1195 */
1196static void kdamond_split_regions(struct damon_ctx *ctx)
1197{
1198	struct damon_target *t;
1199	unsigned int nr_regions = 0;
1200	static unsigned int last_nr_regions;
1201	int nr_subregions = 2;
1202
1203	damon_for_each_target(t, ctx)
1204		nr_regions += damon_nr_regions(t);
1205
1206	if (nr_regions > ctx->attrs.max_nr_regions / 2)
1207		return;
1208
1209	/* Maybe the middle of the region has different access frequency */
1210	if (last_nr_regions == nr_regions &&
1211			nr_regions < ctx->attrs.max_nr_regions / 3)
1212		nr_subregions = 3;
1213
1214	damon_for_each_target(t, ctx)
1215		damon_split_regions_of(t, nr_subregions);
1216
1217	last_nr_regions = nr_regions;
1218}
1219
1220/*
1221 * Check whether current monitoring should be stopped
1222 *
1223 * The monitoring is stopped when either the user requested to stop, or all
1224 * monitoring targets are invalid.
1225 *
1226 * Returns true if need to stop current monitoring.
1227 */
1228static bool kdamond_need_stop(struct damon_ctx *ctx)
1229{
1230	struct damon_target *t;
1231
1232	if (kthread_should_stop())
1233		return true;
1234
1235	if (!ctx->ops.target_valid)
1236		return false;
1237
1238	damon_for_each_target(t, ctx) {
1239		if (ctx->ops.target_valid(t))
1240			return false;
1241	}
1242
1243	return true;
1244}
1245
1246static unsigned long damos_wmark_metric_value(enum damos_wmark_metric metric)
1247{
1248	struct sysinfo i;
1249
1250	switch (metric) {
1251	case DAMOS_WMARK_FREE_MEM_RATE:
1252		si_meminfo(&i);
1253		return i.freeram * 1000 / i.totalram;
1254	default:
1255		break;
1256	}
1257	return -EINVAL;
1258}
1259
1260/*
1261 * Returns zero if the scheme is active.  Else, returns time to wait for next
1262 * watermark check in micro-seconds.
1263 */
1264static unsigned long damos_wmark_wait_us(struct damos *scheme)
1265{
1266	unsigned long metric;
1267
1268	if (scheme->wmarks.metric == DAMOS_WMARK_NONE)
1269		return 0;
1270
1271	metric = damos_wmark_metric_value(scheme->wmarks.metric);
1272	/* higher than high watermark or lower than low watermark */
1273	if (metric > scheme->wmarks.high || scheme->wmarks.low > metric) {
1274		if (scheme->wmarks.activated)
1275			pr_debug("deactivate a scheme (%d) for %s wmark\n",
1276					scheme->action,
1277					metric > scheme->wmarks.high ?
1278					"high" : "low");
1279		scheme->wmarks.activated = false;
1280		return scheme->wmarks.interval;
1281	}
1282
1283	/* inactive and higher than middle watermark */
1284	if ((scheme->wmarks.high >= metric && metric >= scheme->wmarks.mid) &&
1285			!scheme->wmarks.activated)
1286		return scheme->wmarks.interval;
1287
1288	if (!scheme->wmarks.activated)
1289		pr_debug("activate a scheme (%d)\n", scheme->action);
1290	scheme->wmarks.activated = true;
1291	return 0;
1292}
1293
1294static void kdamond_usleep(unsigned long usecs)
1295{
1296	/* See Documentation/timers/timers-howto.rst for the thresholds */
1297	if (usecs > 20 * USEC_PER_MSEC)
1298		schedule_timeout_idle(usecs_to_jiffies(usecs));
1299	else
1300		usleep_idle_range(usecs, usecs + 1);
1301}
1302
1303/* Returns negative error code if it's not activated but should return */
1304static int kdamond_wait_activation(struct damon_ctx *ctx)
1305{
1306	struct damos *s;
1307	unsigned long wait_time;
1308	unsigned long min_wait_time = 0;
1309	bool init_wait_time = false;
1310
1311	while (!kdamond_need_stop(ctx)) {
1312		damon_for_each_scheme(s, ctx) {
1313			wait_time = damos_wmark_wait_us(s);
1314			if (!init_wait_time || wait_time < min_wait_time) {
1315				init_wait_time = true;
1316				min_wait_time = wait_time;
1317			}
1318		}
1319		if (!min_wait_time)
1320			return 0;
1321
1322		kdamond_usleep(min_wait_time);
1323
1324		if (ctx->callback.after_wmarks_check &&
1325				ctx->callback.after_wmarks_check(ctx))
1326			break;
1327	}
1328	return -EBUSY;
1329}
1330
1331static void kdamond_init_intervals_sis(struct damon_ctx *ctx)
1332{
1333	unsigned long sample_interval = ctx->attrs.sample_interval ?
1334		ctx->attrs.sample_interval : 1;
1335
1336	ctx->passed_sample_intervals = 0;
1337	ctx->next_aggregation_sis = ctx->attrs.aggr_interval / sample_interval;
1338	ctx->next_ops_update_sis = ctx->attrs.ops_update_interval /
1339		sample_interval;
1340}
1341
1342/*
1343 * The monitoring daemon that runs as a kernel thread
1344 */
1345static int kdamond_fn(void *data)
1346{
1347	struct damon_ctx *ctx = data;
1348	struct damon_target *t;
1349	struct damon_region *r, *next;
1350	unsigned int max_nr_accesses = 0;
1351	unsigned long sz_limit = 0;
1352
1353	pr_debug("kdamond (%d) starts\n", current->pid);
1354
1355	complete(&ctx->kdamond_started);
1356	kdamond_init_intervals_sis(ctx);
1357
1358	if (ctx->ops.init)
1359		ctx->ops.init(ctx);
1360	if (ctx->callback.before_start && ctx->callback.before_start(ctx))
1361		goto done;
1362
1363	sz_limit = damon_region_sz_limit(ctx);
1364
1365	while (!kdamond_need_stop(ctx)) {
1366		/*
1367		 * ctx->attrs and ctx->next_{aggregation,ops_update}_sis could
1368		 * be changed from after_wmarks_check() or after_aggregation()
1369		 * callbacks.  Read the values here, and use those for this
1370		 * iteration.  That is, damon_set_attrs() updated new values
1371		 * are respected from next iteration.
1372		 */
1373		unsigned long next_aggregation_sis = ctx->next_aggregation_sis;
1374		unsigned long next_ops_update_sis = ctx->next_ops_update_sis;
1375		unsigned long sample_interval = ctx->attrs.sample_interval;
1376
1377		if (kdamond_wait_activation(ctx))
1378			break;
1379
1380		if (ctx->ops.prepare_access_checks)
1381			ctx->ops.prepare_access_checks(ctx);
1382		if (ctx->callback.after_sampling &&
1383				ctx->callback.after_sampling(ctx))
1384			break;
1385
1386		kdamond_usleep(sample_interval);
1387		ctx->passed_sample_intervals++;
1388
1389		if (ctx->ops.check_accesses)
1390			max_nr_accesses = ctx->ops.check_accesses(ctx);
1391
1392		sample_interval = ctx->attrs.sample_interval ?
1393			ctx->attrs.sample_interval : 1;
1394		if (ctx->passed_sample_intervals == next_aggregation_sis) {
1395			ctx->next_aggregation_sis = next_aggregation_sis +
1396				ctx->attrs.aggr_interval / sample_interval;
1397			kdamond_merge_regions(ctx,
1398					max_nr_accesses / 10,
1399					sz_limit);
1400			if (ctx->callback.after_aggregation &&
1401					ctx->callback.after_aggregation(ctx))
1402				break;
1403			if (!list_empty(&ctx->schemes))
1404				kdamond_apply_schemes(ctx);
1405			kdamond_reset_aggregated(ctx);
1406			kdamond_split_regions(ctx);
1407			if (ctx->ops.reset_aggregated)
1408				ctx->ops.reset_aggregated(ctx);
1409		}
1410
1411		if (ctx->passed_sample_intervals == next_ops_update_sis) {
1412			ctx->next_ops_update_sis = next_ops_update_sis +
1413				ctx->attrs.ops_update_interval /
1414				sample_interval;
1415			if (ctx->ops.update)
1416				ctx->ops.update(ctx);
1417			sz_limit = damon_region_sz_limit(ctx);
1418		}
1419	}
1420done:
1421	damon_for_each_target(t, ctx) {
1422		damon_for_each_region_safe(r, next, t)
1423			damon_destroy_region(r, t);
1424	}
1425
1426	if (ctx->callback.before_terminate)
1427		ctx->callback.before_terminate(ctx);
1428	if (ctx->ops.cleanup)
1429		ctx->ops.cleanup(ctx);
1430
1431	pr_debug("kdamond (%d) finishes\n", current->pid);
1432	mutex_lock(&ctx->kdamond_lock);
1433	ctx->kdamond = NULL;
1434	mutex_unlock(&ctx->kdamond_lock);
1435
1436	mutex_lock(&damon_lock);
1437	nr_running_ctxs--;
1438	if (!nr_running_ctxs && running_exclusive_ctxs)
1439		running_exclusive_ctxs = false;
1440	mutex_unlock(&damon_lock);
1441
1442	return 0;
1443}
1444
1445/*
1446 * struct damon_system_ram_region - System RAM resource address region of
1447 *				    [@start, @end).
1448 * @start:	Start address of the region (inclusive).
1449 * @end:	End address of the region (exclusive).
1450 */
1451struct damon_system_ram_region {
1452	unsigned long start;
1453	unsigned long end;
1454};
1455
1456static int walk_system_ram(struct resource *res, void *arg)
1457{
1458	struct damon_system_ram_region *a = arg;
1459
1460	if (a->end - a->start < resource_size(res)) {
1461		a->start = res->start;
1462		a->end = res->end;
1463	}
1464	return 0;
1465}
1466
1467/*
1468 * Find biggest 'System RAM' resource and store its start and end address in
1469 * @start and @end, respectively.  If no System RAM is found, returns false.
1470 */
1471static bool damon_find_biggest_system_ram(unsigned long *start,
1472						unsigned long *end)
1473
1474{
1475	struct damon_system_ram_region arg = {};
1476
1477	walk_system_ram_res(0, ULONG_MAX, &arg, walk_system_ram);
1478	if (arg.end <= arg.start)
1479		return false;
1480
1481	*start = arg.start;
1482	*end = arg.end;
1483	return true;
1484}
1485
1486/**
1487 * damon_set_region_biggest_system_ram_default() - Set the region of the given
1488 * monitoring target as requested, or biggest 'System RAM'.
1489 * @t:		The monitoring target to set the region.
1490 * @start:	The pointer to the start address of the region.
1491 * @end:	The pointer to the end address of the region.
1492 *
1493 * This function sets the region of @t as requested by @start and @end.  If the
1494 * values of @start and @end are zero, however, this function finds the biggest
1495 * 'System RAM' resource and sets the region to cover the resource.  In the
1496 * latter case, this function saves the start and end addresses of the resource
1497 * in @start and @end, respectively.
1498 *
1499 * Return: 0 on success, negative error code otherwise.
1500 */
1501int damon_set_region_biggest_system_ram_default(struct damon_target *t,
1502			unsigned long *start, unsigned long *end)
1503{
1504	struct damon_addr_range addr_range;
1505
1506	if (*start > *end)
1507		return -EINVAL;
1508
1509	if (!*start && !*end &&
1510		!damon_find_biggest_system_ram(start, end))
1511		return -EINVAL;
1512
1513	addr_range.start = *start;
1514	addr_range.end = *end;
1515	return damon_set_regions(t, &addr_range, 1);
1516}
1517
1518static int __init damon_init(void)
1519{
1520	damon_region_cache = KMEM_CACHE(damon_region, 0);
1521	if (unlikely(!damon_region_cache)) {
1522		pr_err("creating damon_region_cache fails\n");
1523		return -ENOMEM;
1524	}
1525
1526	return 0;
1527}
1528
1529subsys_initcall(damon_init);
1530
1531#include "core-test.h"
1532