xref: /kernel/linux/linux-6.6/mm/compaction.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
11#include <linux/cpu.h>
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
16#include <linux/sched/signal.h>
17#include <linux/backing-dev.h>
18#include <linux/sysctl.h>
19#include <linux/sysfs.h>
20#include <linux/page-isolation.h>
21#include <linux/kasan.h>
22#include <linux/kthread.h>
23#include <linux/freezer.h>
24#include <linux/page_owner.h>
25#include <linux/psi.h>
26#include "internal.h"
27
28#ifdef CONFIG_COMPACTION
29/*
30 * Fragmentation score check interval for proactive compaction purposes.
31 */
32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
33
34static inline void count_compact_event(enum vm_event_item item)
35{
36	count_vm_event(item);
37}
38
39static inline void count_compact_events(enum vm_event_item item, long delta)
40{
41	count_vm_events(item, delta);
42}
43#else
44#define count_compact_event(item) do { } while (0)
45#define count_compact_events(item, delta) do { } while (0)
46#endif
47
48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50#define CREATE_TRACE_POINTS
51#include <trace/events/compaction.h>
52
53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
55
56/*
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
60 */
61#if defined CONFIG_TRANSPARENT_HUGEPAGE
62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
63#elif defined CONFIG_HUGETLBFS
64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
65#else
66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
67#endif
68
69static unsigned long release_freepages(struct list_head *freelist)
70{
71	struct page *page, *next;
72	unsigned long high_pfn = 0;
73
74	list_for_each_entry_safe(page, next, freelist, lru) {
75		unsigned long pfn = page_to_pfn(page);
76		list_del(&page->lru);
77		__free_page(page);
78		if (pfn > high_pfn)
79			high_pfn = pfn;
80	}
81
82	return high_pfn;
83}
84
85static void split_map_pages(struct list_head *list)
86{
87	unsigned int i, order, nr_pages;
88	struct page *page, *next;
89	LIST_HEAD(tmp_list);
90
91	list_for_each_entry_safe(page, next, list, lru) {
92		list_del(&page->lru);
93
94		order = page_private(page);
95		nr_pages = 1 << order;
96
97		post_alloc_hook(page, order, __GFP_MOVABLE);
98		if (order)
99			split_page(page, order);
100
101		for (i = 0; i < nr_pages; i++) {
102			list_add(&page->lru, &tmp_list);
103			page++;
104		}
105	}
106
107	list_splice(&tmp_list, list);
108}
109
110#ifdef CONFIG_COMPACTION
111bool PageMovable(struct page *page)
112{
113	const struct movable_operations *mops;
114
115	VM_BUG_ON_PAGE(!PageLocked(page), page);
116	if (!__PageMovable(page))
117		return false;
118
119	mops = page_movable_ops(page);
120	if (mops)
121		return true;
122
123	return false;
124}
125
126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127{
128	VM_BUG_ON_PAGE(!PageLocked(page), page);
129	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__SetPageMovable);
133
134void __ClearPageMovable(struct page *page)
135{
136	VM_BUG_ON_PAGE(!PageMovable(page), page);
137	/*
138	 * This page still has the type of a movable page, but it's
139	 * actually not movable any more.
140	 */
141	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142}
143EXPORT_SYMBOL(__ClearPageMovable);
144
145/* Do not skip compaction more than 64 times */
146#define COMPACT_MAX_DEFER_SHIFT 6
147
148/*
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152 */
153static void defer_compaction(struct zone *zone, int order)
154{
155	zone->compact_considered = 0;
156	zone->compact_defer_shift++;
157
158	if (order < zone->compact_order_failed)
159		zone->compact_order_failed = order;
160
161	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164	trace_mm_compaction_defer_compaction(zone, order);
165}
166
167/* Returns true if compaction should be skipped this time */
168static bool compaction_deferred(struct zone *zone, int order)
169{
170	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172	if (order < zone->compact_order_failed)
173		return false;
174
175	/* Avoid possible overflow */
176	if (++zone->compact_considered >= defer_limit) {
177		zone->compact_considered = defer_limit;
178		return false;
179	}
180
181	trace_mm_compaction_deferred(zone, order);
182
183	return true;
184}
185
186/*
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
190 */
191void compaction_defer_reset(struct zone *zone, int order,
192		bool alloc_success)
193{
194	if (alloc_success) {
195		zone->compact_considered = 0;
196		zone->compact_defer_shift = 0;
197	}
198	if (order >= zone->compact_order_failed)
199		zone->compact_order_failed = order + 1;
200
201	trace_mm_compaction_defer_reset(zone, order);
202}
203
204/* Returns true if restarting compaction after many failures */
205static bool compaction_restarting(struct zone *zone, int order)
206{
207	if (order < zone->compact_order_failed)
208		return false;
209
210	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211		zone->compact_considered >= 1UL << zone->compact_defer_shift;
212}
213
214/* Returns true if the pageblock should be scanned for pages to isolate. */
215static inline bool isolation_suitable(struct compact_control *cc,
216					struct page *page)
217{
218	if (cc->ignore_skip_hint)
219		return true;
220
221	return !get_pageblock_skip(page);
222}
223
224static void reset_cached_positions(struct zone *zone)
225{
226	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228	zone->compact_cached_free_pfn =
229				pageblock_start_pfn(zone_end_pfn(zone) - 1);
230}
231
232#ifdef CONFIG_SPARSEMEM
233/*
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
237 */
238static unsigned long skip_offline_sections(unsigned long start_pfn)
239{
240	unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242	if (online_section_nr(start_nr))
243		return 0;
244
245	while (++start_nr <= __highest_present_section_nr) {
246		if (online_section_nr(start_nr))
247			return section_nr_to_pfn(start_nr);
248	}
249
250	return 0;
251}
252
253/*
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
257 */
258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
259{
260	unsigned long start_nr = pfn_to_section_nr(start_pfn);
261
262	if (!start_nr || online_section_nr(start_nr))
263		return 0;
264
265	while (start_nr-- > 0) {
266		if (online_section_nr(start_nr))
267			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
268	}
269
270	return 0;
271}
272#else
273static unsigned long skip_offline_sections(unsigned long start_pfn)
274{
275	return 0;
276}
277
278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
279{
280	return 0;
281}
282#endif
283
284/*
285 * Compound pages of >= pageblock_order should consistently be skipped until
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
288 */
289static bool pageblock_skip_persistent(struct page *page)
290{
291	if (!PageCompound(page))
292		return false;
293
294	page = compound_head(page);
295
296	if (compound_order(page) >= pageblock_order)
297		return true;
298
299	return false;
300}
301
302static bool
303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
304							bool check_target)
305{
306	struct page *page = pfn_to_online_page(pfn);
307	struct page *block_page;
308	struct page *end_page;
309	unsigned long block_pfn;
310
311	if (!page)
312		return false;
313	if (zone != page_zone(page))
314		return false;
315	if (pageblock_skip_persistent(page))
316		return false;
317
318	/*
319	 * If skip is already cleared do no further checking once the
320	 * restart points have been set.
321	 */
322	if (check_source && check_target && !get_pageblock_skip(page))
323		return true;
324
325	/*
326	 * If clearing skip for the target scanner, do not select a
327	 * non-movable pageblock as the starting point.
328	 */
329	if (!check_source && check_target &&
330	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
331		return false;
332
333	/* Ensure the start of the pageblock or zone is online and valid */
334	block_pfn = pageblock_start_pfn(pfn);
335	block_pfn = max(block_pfn, zone->zone_start_pfn);
336	block_page = pfn_to_online_page(block_pfn);
337	if (block_page) {
338		page = block_page;
339		pfn = block_pfn;
340	}
341
342	/* Ensure the end of the pageblock or zone is online and valid */
343	block_pfn = pageblock_end_pfn(pfn) - 1;
344	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345	end_page = pfn_to_online_page(block_pfn);
346	if (!end_page)
347		return false;
348
349	/*
350	 * Only clear the hint if a sample indicates there is either a
351	 * free page or an LRU page in the block. One or other condition
352	 * is necessary for the block to be a migration source/target.
353	 */
354	do {
355		if (check_source && PageLRU(page)) {
356			clear_pageblock_skip(page);
357			return true;
358		}
359
360		if (check_target && PageBuddy(page)) {
361			clear_pageblock_skip(page);
362			return true;
363		}
364
365		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366	} while (page <= end_page);
367
368	return false;
369}
370
371/*
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
374 * meet.
375 */
376static void __reset_isolation_suitable(struct zone *zone)
377{
378	unsigned long migrate_pfn = zone->zone_start_pfn;
379	unsigned long free_pfn = zone_end_pfn(zone) - 1;
380	unsigned long reset_migrate = free_pfn;
381	unsigned long reset_free = migrate_pfn;
382	bool source_set = false;
383	bool free_set = false;
384
385	if (!zone->compact_blockskip_flush)
386		return;
387
388	zone->compact_blockskip_flush = false;
389
390	/*
391	 * Walk the zone and update pageblock skip information. Source looks
392	 * for PageLRU while target looks for PageBuddy. When the scanner
393	 * is found, both PageBuddy and PageLRU are checked as the pageblock
394	 * is suitable as both source and target.
395	 */
396	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
397					free_pfn -= pageblock_nr_pages) {
398		cond_resched();
399
400		/* Update the migrate PFN */
401		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
402		    migrate_pfn < reset_migrate) {
403			source_set = true;
404			reset_migrate = migrate_pfn;
405			zone->compact_init_migrate_pfn = reset_migrate;
406			zone->compact_cached_migrate_pfn[0] = reset_migrate;
407			zone->compact_cached_migrate_pfn[1] = reset_migrate;
408		}
409
410		/* Update the free PFN */
411		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
412		    free_pfn > reset_free) {
413			free_set = true;
414			reset_free = free_pfn;
415			zone->compact_init_free_pfn = reset_free;
416			zone->compact_cached_free_pfn = reset_free;
417		}
418	}
419
420	/* Leave no distance if no suitable block was reset */
421	if (reset_migrate >= reset_free) {
422		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
423		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
424		zone->compact_cached_free_pfn = free_pfn;
425	}
426}
427
428void reset_isolation_suitable(pg_data_t *pgdat)
429{
430	int zoneid;
431
432	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
433		struct zone *zone = &pgdat->node_zones[zoneid];
434		if (!populated_zone(zone))
435			continue;
436
437		/* Only flush if a full compaction finished recently */
438		if (zone->compact_blockskip_flush)
439			__reset_isolation_suitable(zone);
440	}
441}
442
443/*
444 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
445 * locks are not required for read/writers. Returns true if it was already set.
446 */
447static bool test_and_set_skip(struct compact_control *cc, struct page *page)
448{
449	bool skip;
450
451	/* Do not update if skip hint is being ignored */
452	if (cc->ignore_skip_hint)
453		return false;
454
455	skip = get_pageblock_skip(page);
456	if (!skip && !cc->no_set_skip_hint)
457		set_pageblock_skip(page);
458
459	return skip;
460}
461
462static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463{
464	struct zone *zone = cc->zone;
465
466	/* Set for isolation rather than compaction */
467	if (cc->no_set_skip_hint)
468		return;
469
470	pfn = pageblock_end_pfn(pfn);
471
472	/* Update where async and sync compaction should restart */
473	if (pfn > zone->compact_cached_migrate_pfn[0])
474		zone->compact_cached_migrate_pfn[0] = pfn;
475	if (cc->mode != MIGRATE_ASYNC &&
476	    pfn > zone->compact_cached_migrate_pfn[1])
477		zone->compact_cached_migrate_pfn[1] = pfn;
478}
479
480/*
481 * If no pages were isolated then mark this pageblock to be skipped in the
482 * future. The information is later cleared by __reset_isolation_suitable().
483 */
484static void update_pageblock_skip(struct compact_control *cc,
485			struct page *page, unsigned long pfn)
486{
487	struct zone *zone = cc->zone;
488
489	if (cc->no_set_skip_hint)
490		return;
491
492	set_pageblock_skip(page);
493
494	if (pfn < zone->compact_cached_free_pfn)
495		zone->compact_cached_free_pfn = pfn;
496}
497#else
498static inline bool isolation_suitable(struct compact_control *cc,
499					struct page *page)
500{
501	return true;
502}
503
504static inline bool pageblock_skip_persistent(struct page *page)
505{
506	return false;
507}
508
509static inline void update_pageblock_skip(struct compact_control *cc,
510			struct page *page, unsigned long pfn)
511{
512}
513
514static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
515{
516}
517
518static bool test_and_set_skip(struct compact_control *cc, struct page *page)
519{
520	return false;
521}
522#endif /* CONFIG_COMPACTION */
523
524/*
525 * Compaction requires the taking of some coarse locks that are potentially
526 * very heavily contended. For async compaction, trylock and record if the
527 * lock is contended. The lock will still be acquired but compaction will
528 * abort when the current block is finished regardless of success rate.
529 * Sync compaction acquires the lock.
530 *
531 * Always returns true which makes it easier to track lock state in callers.
532 */
533static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
534						struct compact_control *cc)
535	__acquires(lock)
536{
537	/* Track if the lock is contended in async mode */
538	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
539		if (spin_trylock_irqsave(lock, *flags))
540			return true;
541
542		cc->contended = true;
543	}
544
545	spin_lock_irqsave(lock, *flags);
546	return true;
547}
548
549/*
550 * Compaction requires the taking of some coarse locks that are potentially
551 * very heavily contended. The lock should be periodically unlocked to avoid
552 * having disabled IRQs for a long time, even when there is nobody waiting on
553 * the lock. It might also be that allowing the IRQs will result in
554 * need_resched() becoming true. If scheduling is needed, compaction schedules.
555 * Either compaction type will also abort if a fatal signal is pending.
556 * In either case if the lock was locked, it is dropped and not regained.
557 *
558 * Returns true if compaction should abort due to fatal signal pending.
559 * Returns false when compaction can continue.
560 */
561static bool compact_unlock_should_abort(spinlock_t *lock,
562		unsigned long flags, bool *locked, struct compact_control *cc)
563{
564	if (*locked) {
565		spin_unlock_irqrestore(lock, flags);
566		*locked = false;
567	}
568
569	if (fatal_signal_pending(current)) {
570		cc->contended = true;
571		return true;
572	}
573
574	cond_resched();
575
576	return false;
577}
578
579/*
580 * Isolate free pages onto a private freelist. If @strict is true, will abort
581 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
582 * (even though it may still end up isolating some pages).
583 */
584static unsigned long isolate_freepages_block(struct compact_control *cc,
585				unsigned long *start_pfn,
586				unsigned long end_pfn,
587				struct list_head *freelist,
588				unsigned int stride,
589				bool strict)
590{
591	int nr_scanned = 0, total_isolated = 0;
592	struct page *page;
593	unsigned long flags = 0;
594	bool locked = false;
595	unsigned long blockpfn = *start_pfn;
596	unsigned int order;
597
598	/* Strict mode is for isolation, speed is secondary */
599	if (strict)
600		stride = 1;
601
602	page = pfn_to_page(blockpfn);
603
604	/* Isolate free pages. */
605	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
606		int isolated;
607
608		/*
609		 * Periodically drop the lock (if held) regardless of its
610		 * contention, to give chance to IRQs. Abort if fatal signal
611		 * pending.
612		 */
613		if (!(blockpfn % COMPACT_CLUSTER_MAX)
614		    && compact_unlock_should_abort(&cc->zone->lock, flags,
615								&locked, cc))
616			break;
617
618		nr_scanned++;
619
620		/*
621		 * For compound pages such as THP and hugetlbfs, we can save
622		 * potentially a lot of iterations if we skip them at once.
623		 * The check is racy, but we can consider only valid values
624		 * and the only danger is skipping too much.
625		 */
626		if (PageCompound(page)) {
627			const unsigned int order = compound_order(page);
628
629			if (likely(order <= MAX_ORDER)) {
630				blockpfn += (1UL << order) - 1;
631				page += (1UL << order) - 1;
632				nr_scanned += (1UL << order) - 1;
633			}
634			goto isolate_fail;
635		}
636
637		if (!PageBuddy(page))
638			goto isolate_fail;
639
640		/* If we already hold the lock, we can skip some rechecking. */
641		if (!locked) {
642			locked = compact_lock_irqsave(&cc->zone->lock,
643								&flags, cc);
644
645			/* Recheck this is a buddy page under lock */
646			if (!PageBuddy(page))
647				goto isolate_fail;
648		}
649
650		/* Found a free page, will break it into order-0 pages */
651		order = buddy_order(page);
652		isolated = __isolate_free_page(page, order);
653		if (!isolated)
654			break;
655		set_page_private(page, order);
656
657		nr_scanned += isolated - 1;
658		total_isolated += isolated;
659		cc->nr_freepages += isolated;
660		list_add_tail(&page->lru, freelist);
661
662		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663			blockpfn += isolated;
664			break;
665		}
666		/* Advance to the end of split page */
667		blockpfn += isolated - 1;
668		page += isolated - 1;
669		continue;
670
671isolate_fail:
672		if (strict)
673			break;
674
675	}
676
677	if (locked)
678		spin_unlock_irqrestore(&cc->zone->lock, flags);
679
680	/*
681	 * There is a tiny chance that we have read bogus compound_order(),
682	 * so be careful to not go outside of the pageblock.
683	 */
684	if (unlikely(blockpfn > end_pfn))
685		blockpfn = end_pfn;
686
687	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
688					nr_scanned, total_isolated);
689
690	/* Record how far we have got within the block */
691	*start_pfn = blockpfn;
692
693	/*
694	 * If strict isolation is requested by CMA then check that all the
695	 * pages requested were isolated. If there were any failures, 0 is
696	 * returned and CMA will fail.
697	 */
698	if (strict && blockpfn < end_pfn)
699		total_isolated = 0;
700
701	cc->total_free_scanned += nr_scanned;
702	if (total_isolated)
703		count_compact_events(COMPACTISOLATED, total_isolated);
704	return total_isolated;
705}
706
707/**
708 * isolate_freepages_range() - isolate free pages.
709 * @cc:        Compaction control structure.
710 * @start_pfn: The first PFN to start isolating.
711 * @end_pfn:   The one-past-last PFN.
712 *
713 * Non-free pages, invalid PFNs, or zone boundaries within the
714 * [start_pfn, end_pfn) range are considered errors, cause function to
715 * undo its actions and return zero.
716 *
717 * Otherwise, function returns one-past-the-last PFN of isolated page
718 * (which may be greater then end_pfn if end fell in a middle of
719 * a free page).
720 */
721unsigned long
722isolate_freepages_range(struct compact_control *cc,
723			unsigned long start_pfn, unsigned long end_pfn)
724{
725	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
726	LIST_HEAD(freelist);
727
728	pfn = start_pfn;
729	block_start_pfn = pageblock_start_pfn(pfn);
730	if (block_start_pfn < cc->zone->zone_start_pfn)
731		block_start_pfn = cc->zone->zone_start_pfn;
732	block_end_pfn = pageblock_end_pfn(pfn);
733
734	for (; pfn < end_pfn; pfn += isolated,
735				block_start_pfn = block_end_pfn,
736				block_end_pfn += pageblock_nr_pages) {
737		/* Protect pfn from changing by isolate_freepages_block */
738		unsigned long isolate_start_pfn = pfn;
739
740		/*
741		 * pfn could pass the block_end_pfn if isolated freepage
742		 * is more than pageblock order. In this case, we adjust
743		 * scanning range to right one.
744		 */
745		if (pfn >= block_end_pfn) {
746			block_start_pfn = pageblock_start_pfn(pfn);
747			block_end_pfn = pageblock_end_pfn(pfn);
748		}
749
750		block_end_pfn = min(block_end_pfn, end_pfn);
751
752		if (!pageblock_pfn_to_page(block_start_pfn,
753					block_end_pfn, cc->zone))
754			break;
755
756		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
757					block_end_pfn, &freelist, 0, true);
758
759		/*
760		 * In strict mode, isolate_freepages_block() returns 0 if
761		 * there are any holes in the block (ie. invalid PFNs or
762		 * non-free pages).
763		 */
764		if (!isolated)
765			break;
766
767		/*
768		 * If we managed to isolate pages, it is always (1 << n) *
769		 * pageblock_nr_pages for some non-negative n.  (Max order
770		 * page may span two pageblocks).
771		 */
772	}
773
774	/* __isolate_free_page() does not map the pages */
775	split_map_pages(&freelist);
776
777	if (pfn < end_pfn) {
778		/* Loop terminated early, cleanup. */
779		release_freepages(&freelist);
780		return 0;
781	}
782
783	/* We don't use freelists for anything. */
784	return pfn;
785}
786
787/* Similar to reclaim, but different enough that they don't share logic */
788static bool too_many_isolated(struct compact_control *cc)
789{
790	pg_data_t *pgdat = cc->zone->zone_pgdat;
791	bool too_many;
792
793	unsigned long active, inactive, isolated;
794
795	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
796			node_page_state(pgdat, NR_INACTIVE_ANON);
797	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
798			node_page_state(pgdat, NR_ACTIVE_ANON);
799	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
800			node_page_state(pgdat, NR_ISOLATED_ANON);
801
802	/*
803	 * Allow GFP_NOFS to isolate past the limit set for regular
804	 * compaction runs. This prevents an ABBA deadlock when other
805	 * compactors have already isolated to the limit, but are
806	 * blocked on filesystem locks held by the GFP_NOFS thread.
807	 */
808	if (cc->gfp_mask & __GFP_FS) {
809		inactive >>= 3;
810		active >>= 3;
811	}
812
813	too_many = isolated > (inactive + active) / 2;
814	if (!too_many)
815		wake_throttle_isolated(pgdat);
816
817	return too_many;
818}
819
820/**
821 * isolate_migratepages_block() - isolate all migrate-able pages within
822 *				  a single pageblock
823 * @cc:		Compaction control structure.
824 * @low_pfn:	The first PFN to isolate
825 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
826 * @mode:	Isolation mode to be used.
827 *
828 * Isolate all pages that can be migrated from the range specified by
829 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
830 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
831 * -ENOMEM in case we could not allocate a page, or 0.
832 * cc->migrate_pfn will contain the next pfn to scan.
833 *
834 * The pages are isolated on cc->migratepages list (not required to be empty),
835 * and cc->nr_migratepages is updated accordingly.
836 */
837static int
838isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
839			unsigned long end_pfn, isolate_mode_t mode)
840{
841	pg_data_t *pgdat = cc->zone->zone_pgdat;
842	unsigned long nr_scanned = 0, nr_isolated = 0;
843	struct lruvec *lruvec;
844	unsigned long flags = 0;
845	struct lruvec *locked = NULL;
846	struct folio *folio = NULL;
847	struct page *page = NULL, *valid_page = NULL;
848	struct address_space *mapping;
849	unsigned long start_pfn = low_pfn;
850	bool skip_on_failure = false;
851	unsigned long next_skip_pfn = 0;
852	bool skip_updated = false;
853	int ret = 0;
854
855	cc->migrate_pfn = low_pfn;
856
857	/*
858	 * Ensure that there are not too many pages isolated from the LRU
859	 * list by either parallel reclaimers or compaction. If there are,
860	 * delay for some time until fewer pages are isolated
861	 */
862	while (unlikely(too_many_isolated(cc))) {
863		/* stop isolation if there are still pages not migrated */
864		if (cc->nr_migratepages)
865			return -EAGAIN;
866
867		/* async migration should just abort */
868		if (cc->mode == MIGRATE_ASYNC)
869			return -EAGAIN;
870
871		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872
873		if (fatal_signal_pending(current))
874			return -EINTR;
875	}
876
877	cond_resched();
878
879	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
880		skip_on_failure = true;
881		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
882	}
883
884	/* Time to isolate some pages for migration */
885	for (; low_pfn < end_pfn; low_pfn++) {
886
887		if (skip_on_failure && low_pfn >= next_skip_pfn) {
888			/*
889			 * We have isolated all migration candidates in the
890			 * previous order-aligned block, and did not skip it due
891			 * to failure. We should migrate the pages now and
892			 * hopefully succeed compaction.
893			 */
894			if (nr_isolated)
895				break;
896
897			/*
898			 * We failed to isolate in the previous order-aligned
899			 * block. Set the new boundary to the end of the
900			 * current block. Note we can't simply increase
901			 * next_skip_pfn by 1 << order, as low_pfn might have
902			 * been incremented by a higher number due to skipping
903			 * a compound or a high-order buddy page in the
904			 * previous loop iteration.
905			 */
906			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
907		}
908
909		/*
910		 * Periodically drop the lock (if held) regardless of its
911		 * contention, to give chance to IRQs. Abort completely if
912		 * a fatal signal is pending.
913		 */
914		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
915			if (locked) {
916				unlock_page_lruvec_irqrestore(locked, flags);
917				locked = NULL;
918			}
919
920			if (fatal_signal_pending(current)) {
921				cc->contended = true;
922				ret = -EINTR;
923
924				goto fatal_pending;
925			}
926
927			cond_resched();
928		}
929
930		nr_scanned++;
931
932		page = pfn_to_page(low_pfn);
933
934		/*
935		 * Check if the pageblock has already been marked skipped.
936		 * Only the first PFN is checked as the caller isolates
937		 * COMPACT_CLUSTER_MAX at a time so the second call must
938		 * not falsely conclude that the block should be skipped.
939		 */
940		if (!valid_page && (pageblock_aligned(low_pfn) ||
941				    low_pfn == cc->zone->zone_start_pfn)) {
942			if (!isolation_suitable(cc, page)) {
943				low_pfn = end_pfn;
944				folio = NULL;
945				goto isolate_abort;
946			}
947			valid_page = page;
948		}
949
950		if (PageHuge(page) && cc->alloc_contig) {
951			if (locked) {
952				unlock_page_lruvec_irqrestore(locked, flags);
953				locked = NULL;
954			}
955
956			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
957
958			/*
959			 * Fail isolation in case isolate_or_dissolve_huge_page()
960			 * reports an error. In case of -ENOMEM, abort right away.
961			 */
962			if (ret < 0) {
963				 /* Do not report -EBUSY down the chain */
964				if (ret == -EBUSY)
965					ret = 0;
966				low_pfn += compound_nr(page) - 1;
967				nr_scanned += compound_nr(page) - 1;
968				goto isolate_fail;
969			}
970
971			if (PageHuge(page)) {
972				/*
973				 * Hugepage was successfully isolated and placed
974				 * on the cc->migratepages list.
975				 */
976				folio = page_folio(page);
977				low_pfn += folio_nr_pages(folio) - 1;
978				goto isolate_success_no_list;
979			}
980
981			/*
982			 * Ok, the hugepage was dissolved. Now these pages are
983			 * Buddy and cannot be re-allocated because they are
984			 * isolated. Fall-through as the check below handles
985			 * Buddy pages.
986			 */
987		}
988
989		/*
990		 * Skip if free. We read page order here without zone lock
991		 * which is generally unsafe, but the race window is small and
992		 * the worst thing that can happen is that we skip some
993		 * potential isolation targets.
994		 */
995		if (PageBuddy(page)) {
996			unsigned long freepage_order = buddy_order_unsafe(page);
997
998			/*
999			 * Without lock, we cannot be sure that what we got is
1000			 * a valid page order. Consider only values in the
1001			 * valid order range to prevent low_pfn overflow.
1002			 */
1003			if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
1004				low_pfn += (1UL << freepage_order) - 1;
1005				nr_scanned += (1UL << freepage_order) - 1;
1006			}
1007			continue;
1008		}
1009
1010		/*
1011		 * Regardless of being on LRU, compound pages such as THP and
1012		 * hugetlbfs are not to be compacted unless we are attempting
1013		 * an allocation much larger than the huge page size (eg CMA).
1014		 * We can potentially save a lot of iterations if we skip them
1015		 * at once. The check is racy, but we can consider only valid
1016		 * values and the only danger is skipping too much.
1017		 */
1018		if (PageCompound(page) && !cc->alloc_contig) {
1019			const unsigned int order = compound_order(page);
1020
1021			if (likely(order <= MAX_ORDER)) {
1022				low_pfn += (1UL << order) - 1;
1023				nr_scanned += (1UL << order) - 1;
1024			}
1025			goto isolate_fail;
1026		}
1027
1028		/*
1029		 * Check may be lockless but that's ok as we recheck later.
1030		 * It's possible to migrate LRU and non-lru movable pages.
1031		 * Skip any other type of page
1032		 */
1033		if (!PageLRU(page)) {
1034			/*
1035			 * __PageMovable can return false positive so we need
1036			 * to verify it under page_lock.
1037			 */
1038			if (unlikely(__PageMovable(page)) &&
1039					!PageIsolated(page)) {
1040				if (locked) {
1041					unlock_page_lruvec_irqrestore(locked, flags);
1042					locked = NULL;
1043				}
1044
1045				if (isolate_movable_page(page, mode)) {
1046					folio = page_folio(page);
1047					goto isolate_success;
1048				}
1049			}
1050
1051			goto isolate_fail;
1052		}
1053
1054		/*
1055		 * Be careful not to clear PageLRU until after we're
1056		 * sure the page is not being freed elsewhere -- the
1057		 * page release code relies on it.
1058		 */
1059		folio = folio_get_nontail_page(page);
1060		if (unlikely(!folio))
1061			goto isolate_fail;
1062
1063		/*
1064		 * Migration will fail if an anonymous page is pinned in memory,
1065		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066		 * admittedly racy check.
1067		 */
1068		mapping = folio_mapping(folio);
1069		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070			goto isolate_fail_put;
1071
1072		/*
1073		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074		 * because those do not depend on fs locks.
1075		 */
1076		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077			goto isolate_fail_put;
1078
1079		/* Only take pages on LRU: a check now makes later tests safe */
1080		if (!folio_test_lru(folio))
1081			goto isolate_fail_put;
1082
1083		/* Compaction might skip unevictable pages but CMA takes them */
1084		if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1085			goto isolate_fail_put;
1086
1087		/*
1088		 * To minimise LRU disruption, the caller can indicate with
1089		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1090		 * it will be able to migrate without blocking - clean pages
1091		 * for the most part.  PageWriteback would require blocking.
1092		 */
1093		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1094			goto isolate_fail_put;
1095
1096		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1097			bool migrate_dirty;
1098
1099			/*
1100			 * Only folios without mappings or that have
1101			 * a ->migrate_folio callback are possible to
1102			 * migrate without blocking.  However, we may
1103			 * be racing with truncation, which can free
1104			 * the mapping.  Truncation holds the folio lock
1105			 * until after the folio is removed from the page
1106			 * cache so holding it ourselves is sufficient.
1107			 */
1108			if (!folio_trylock(folio))
1109				goto isolate_fail_put;
1110
1111			mapping = folio_mapping(folio);
1112			migrate_dirty = !mapping ||
1113					mapping->a_ops->migrate_folio;
1114			folio_unlock(folio);
1115			if (!migrate_dirty)
1116				goto isolate_fail_put;
1117		}
1118
1119		/* Try isolate the folio */
1120		if (!folio_test_clear_lru(folio))
1121			goto isolate_fail_put;
1122
1123		lruvec = folio_lruvec(folio);
1124
1125		/* If we already hold the lock, we can skip some rechecking */
1126		if (lruvec != locked) {
1127			if (locked)
1128				unlock_page_lruvec_irqrestore(locked, flags);
1129
1130			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1131			locked = lruvec;
1132
1133			lruvec_memcg_debug(lruvec, folio);
1134
1135			/*
1136			 * Try get exclusive access under lock. If marked for
1137			 * skip, the scan is aborted unless the current context
1138			 * is a rescan to reach the end of the pageblock.
1139			 */
1140			if (!skip_updated && valid_page) {
1141				skip_updated = true;
1142				if (test_and_set_skip(cc, valid_page) &&
1143				    !cc->finish_pageblock) {
1144					low_pfn = end_pfn;
1145					goto isolate_abort;
1146				}
1147			}
1148
1149			/*
1150			 * folio become large since the non-locked check,
1151			 * and it's on LRU.
1152			 */
1153			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1154				low_pfn += folio_nr_pages(folio) - 1;
1155				nr_scanned += folio_nr_pages(folio) - 1;
1156				folio_set_lru(folio);
1157				goto isolate_fail_put;
1158			}
1159		}
1160
1161		/* The folio is taken off the LRU */
1162		if (folio_test_large(folio))
1163			low_pfn += folio_nr_pages(folio) - 1;
1164
1165		/* Successfully isolated */
1166		lruvec_del_folio(lruvec, folio);
1167		node_stat_mod_folio(folio,
1168				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1169				folio_nr_pages(folio));
1170
1171isolate_success:
1172		list_add(&folio->lru, &cc->migratepages);
1173isolate_success_no_list:
1174		cc->nr_migratepages += folio_nr_pages(folio);
1175		nr_isolated += folio_nr_pages(folio);
1176		nr_scanned += folio_nr_pages(folio) - 1;
1177
1178		/*
1179		 * Avoid isolating too much unless this block is being
1180		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1181		 * or a lock is contended. For contention, isolate quickly to
1182		 * potentially remove one source of contention.
1183		 */
1184		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1185		    !cc->finish_pageblock && !cc->contended) {
1186			++low_pfn;
1187			break;
1188		}
1189
1190		continue;
1191
1192isolate_fail_put:
1193		/* Avoid potential deadlock in freeing page under lru_lock */
1194		if (locked) {
1195			unlock_page_lruvec_irqrestore(locked, flags);
1196			locked = NULL;
1197		}
1198		folio_put(folio);
1199
1200isolate_fail:
1201		if (!skip_on_failure && ret != -ENOMEM)
1202			continue;
1203
1204		/*
1205		 * We have isolated some pages, but then failed. Release them
1206		 * instead of migrating, as we cannot form the cc->order buddy
1207		 * page anyway.
1208		 */
1209		if (nr_isolated) {
1210			if (locked) {
1211				unlock_page_lruvec_irqrestore(locked, flags);
1212				locked = NULL;
1213			}
1214			putback_movable_pages(&cc->migratepages);
1215			cc->nr_migratepages = 0;
1216			nr_isolated = 0;
1217		}
1218
1219		if (low_pfn < next_skip_pfn) {
1220			low_pfn = next_skip_pfn - 1;
1221			/*
1222			 * The check near the loop beginning would have updated
1223			 * next_skip_pfn too, but this is a bit simpler.
1224			 */
1225			next_skip_pfn += 1UL << cc->order;
1226		}
1227
1228		if (ret == -ENOMEM)
1229			break;
1230	}
1231
1232	/*
1233	 * The PageBuddy() check could have potentially brought us outside
1234	 * the range to be scanned.
1235	 */
1236	if (unlikely(low_pfn > end_pfn))
1237		low_pfn = end_pfn;
1238
1239	folio = NULL;
1240
1241isolate_abort:
1242	if (locked)
1243		unlock_page_lruvec_irqrestore(locked, flags);
1244	if (folio) {
1245		folio_set_lru(folio);
1246		folio_put(folio);
1247	}
1248
1249	/*
1250	 * Update the cached scanner pfn once the pageblock has been scanned.
1251	 * Pages will either be migrated in which case there is no point
1252	 * scanning in the near future or migration failed in which case the
1253	 * failure reason may persist. The block is marked for skipping if
1254	 * there were no pages isolated in the block or if the block is
1255	 * rescanned twice in a row.
1256	 */
1257	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1258		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1259			set_pageblock_skip(valid_page);
1260		update_cached_migrate(cc, low_pfn);
1261	}
1262
1263	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1264						nr_scanned, nr_isolated);
1265
1266fatal_pending:
1267	cc->total_migrate_scanned += nr_scanned;
1268	if (nr_isolated)
1269		count_compact_events(COMPACTISOLATED, nr_isolated);
1270
1271	cc->migrate_pfn = low_pfn;
1272
1273	return ret;
1274}
1275
1276/**
1277 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1278 * @cc:        Compaction control structure.
1279 * @start_pfn: The first PFN to start isolating.
1280 * @end_pfn:   The one-past-last PFN.
1281 *
1282 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1283 * in case we could not allocate a page, or 0.
1284 */
1285int
1286isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1287							unsigned long end_pfn)
1288{
1289	unsigned long pfn, block_start_pfn, block_end_pfn;
1290	int ret = 0;
1291
1292	/* Scan block by block. First and last block may be incomplete */
1293	pfn = start_pfn;
1294	block_start_pfn = pageblock_start_pfn(pfn);
1295	if (block_start_pfn < cc->zone->zone_start_pfn)
1296		block_start_pfn = cc->zone->zone_start_pfn;
1297	block_end_pfn = pageblock_end_pfn(pfn);
1298
1299	for (; pfn < end_pfn; pfn = block_end_pfn,
1300				block_start_pfn = block_end_pfn,
1301				block_end_pfn += pageblock_nr_pages) {
1302
1303		block_end_pfn = min(block_end_pfn, end_pfn);
1304
1305		if (!pageblock_pfn_to_page(block_start_pfn,
1306					block_end_pfn, cc->zone))
1307			continue;
1308
1309		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1310						 ISOLATE_UNEVICTABLE);
1311
1312		if (ret)
1313			break;
1314
1315		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1316			break;
1317	}
1318
1319	return ret;
1320}
1321
1322#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1323#ifdef CONFIG_COMPACTION
1324
1325static bool suitable_migration_source(struct compact_control *cc,
1326							struct page *page)
1327{
1328	int block_mt;
1329
1330	if (pageblock_skip_persistent(page))
1331		return false;
1332
1333	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1334		return true;
1335
1336	block_mt = get_pageblock_migratetype(page);
1337
1338	if (cc->migratetype == MIGRATE_MOVABLE)
1339		return is_migrate_movable(block_mt);
1340	else
1341		return block_mt == cc->migratetype;
1342}
1343
1344/* Returns true if the page is within a block suitable for migration to */
1345static bool suitable_migration_target(struct compact_control *cc,
1346							struct page *page)
1347{
1348	/* If the page is a large free page, then disallow migration */
1349	if (PageBuddy(page)) {
1350		/*
1351		 * We are checking page_order without zone->lock taken. But
1352		 * the only small danger is that we skip a potentially suitable
1353		 * pageblock, so it's not worth to check order for valid range.
1354		 */
1355		if (buddy_order_unsafe(page) >= pageblock_order)
1356			return false;
1357	}
1358
1359	if (cc->ignore_block_suitable)
1360		return true;
1361
1362	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1363	if (is_migrate_movable(get_pageblock_migratetype(page)))
1364		return true;
1365
1366	/* Otherwise skip the block */
1367	return false;
1368}
1369
1370static inline unsigned int
1371freelist_scan_limit(struct compact_control *cc)
1372{
1373	unsigned short shift = BITS_PER_LONG - 1;
1374
1375	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1376}
1377
1378/*
1379 * Test whether the free scanner has reached the same or lower pageblock than
1380 * the migration scanner, and compaction should thus terminate.
1381 */
1382static inline bool compact_scanners_met(struct compact_control *cc)
1383{
1384	return (cc->free_pfn >> pageblock_order)
1385		<= (cc->migrate_pfn >> pageblock_order);
1386}
1387
1388/*
1389 * Used when scanning for a suitable migration target which scans freelists
1390 * in reverse. Reorders the list such as the unscanned pages are scanned
1391 * first on the next iteration of the free scanner
1392 */
1393static void
1394move_freelist_head(struct list_head *freelist, struct page *freepage)
1395{
1396	LIST_HEAD(sublist);
1397
1398	if (!list_is_last(freelist, &freepage->lru)) {
1399		list_cut_before(&sublist, freelist, &freepage->lru);
1400		list_splice_tail(&sublist, freelist);
1401	}
1402}
1403
1404/*
1405 * Similar to move_freelist_head except used by the migration scanner
1406 * when scanning forward. It's possible for these list operations to
1407 * move against each other if they search the free list exactly in
1408 * lockstep.
1409 */
1410static void
1411move_freelist_tail(struct list_head *freelist, struct page *freepage)
1412{
1413	LIST_HEAD(sublist);
1414
1415	if (!list_is_first(freelist, &freepage->lru)) {
1416		list_cut_position(&sublist, freelist, &freepage->lru);
1417		list_splice_tail(&sublist, freelist);
1418	}
1419}
1420
1421static void
1422fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1423{
1424	unsigned long start_pfn, end_pfn;
1425	struct page *page;
1426
1427	/* Do not search around if there are enough pages already */
1428	if (cc->nr_freepages >= cc->nr_migratepages)
1429		return;
1430
1431	/* Minimise scanning during async compaction */
1432	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1433		return;
1434
1435	/* Pageblock boundaries */
1436	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1437	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1438
1439	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1440	if (!page)
1441		return;
1442
1443	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1444
1445	/* Skip this pageblock in the future as it's full or nearly full */
1446	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1447		set_pageblock_skip(page);
1448}
1449
1450/* Search orders in round-robin fashion */
1451static int next_search_order(struct compact_control *cc, int order)
1452{
1453	order--;
1454	if (order < 0)
1455		order = cc->order - 1;
1456
1457	/* Search wrapped around? */
1458	if (order == cc->search_order) {
1459		cc->search_order--;
1460		if (cc->search_order < 0)
1461			cc->search_order = cc->order - 1;
1462		return -1;
1463	}
1464
1465	return order;
1466}
1467
1468static void fast_isolate_freepages(struct compact_control *cc)
1469{
1470	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1471	unsigned int nr_scanned = 0, total_isolated = 0;
1472	unsigned long low_pfn, min_pfn, highest = 0;
1473	unsigned long nr_isolated = 0;
1474	unsigned long distance;
1475	struct page *page = NULL;
1476	bool scan_start = false;
1477	int order;
1478
1479	/* Full compaction passes in a negative order */
1480	if (cc->order <= 0)
1481		return;
1482
1483	/*
1484	 * If starting the scan, use a deeper search and use the highest
1485	 * PFN found if a suitable one is not found.
1486	 */
1487	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1488		limit = pageblock_nr_pages >> 1;
1489		scan_start = true;
1490	}
1491
1492	/*
1493	 * Preferred point is in the top quarter of the scan space but take
1494	 * a pfn from the top half if the search is problematic.
1495	 */
1496	distance = (cc->free_pfn - cc->migrate_pfn);
1497	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1498	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1499
1500	if (WARN_ON_ONCE(min_pfn > low_pfn))
1501		low_pfn = min_pfn;
1502
1503	/*
1504	 * Search starts from the last successful isolation order or the next
1505	 * order to search after a previous failure
1506	 */
1507	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1508
1509	for (order = cc->search_order;
1510	     !page && order >= 0;
1511	     order = next_search_order(cc, order)) {
1512		struct free_area *area = &cc->zone->free_area[order];
1513		struct list_head *freelist;
1514		struct page *freepage;
1515		unsigned long flags;
1516		unsigned int order_scanned = 0;
1517		unsigned long high_pfn = 0;
1518
1519		if (!area->nr_free)
1520			continue;
1521
1522		spin_lock_irqsave(&cc->zone->lock, flags);
1523		freelist = &area->free_list[MIGRATE_MOVABLE];
1524		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1525			unsigned long pfn;
1526
1527			order_scanned++;
1528			nr_scanned++;
1529			pfn = page_to_pfn(freepage);
1530
1531			if (pfn >= highest)
1532				highest = max(pageblock_start_pfn(pfn),
1533					      cc->zone->zone_start_pfn);
1534
1535			if (pfn >= low_pfn) {
1536				cc->fast_search_fail = 0;
1537				cc->search_order = order;
1538				page = freepage;
1539				break;
1540			}
1541
1542			if (pfn >= min_pfn && pfn > high_pfn) {
1543				high_pfn = pfn;
1544
1545				/* Shorten the scan if a candidate is found */
1546				limit >>= 1;
1547			}
1548
1549			if (order_scanned >= limit)
1550				break;
1551		}
1552
1553		/* Use a maximum candidate pfn if a preferred one was not found */
1554		if (!page && high_pfn) {
1555			page = pfn_to_page(high_pfn);
1556
1557			/* Update freepage for the list reorder below */
1558			freepage = page;
1559		}
1560
1561		/* Reorder to so a future search skips recent pages */
1562		move_freelist_head(freelist, freepage);
1563
1564		/* Isolate the page if available */
1565		if (page) {
1566			if (__isolate_free_page(page, order)) {
1567				set_page_private(page, order);
1568				nr_isolated = 1 << order;
1569				nr_scanned += nr_isolated - 1;
1570				total_isolated += nr_isolated;
1571				cc->nr_freepages += nr_isolated;
1572				list_add_tail(&page->lru, &cc->freepages);
1573				count_compact_events(COMPACTISOLATED, nr_isolated);
1574			} else {
1575				/* If isolation fails, abort the search */
1576				order = cc->search_order + 1;
1577				page = NULL;
1578			}
1579		}
1580
1581		spin_unlock_irqrestore(&cc->zone->lock, flags);
1582
1583		/* Skip fast search if enough freepages isolated */
1584		if (cc->nr_freepages >= cc->nr_migratepages)
1585			break;
1586
1587		/*
1588		 * Smaller scan on next order so the total scan is related
1589		 * to freelist_scan_limit.
1590		 */
1591		if (order_scanned >= limit)
1592			limit = max(1U, limit >> 1);
1593	}
1594
1595	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1596						   nr_scanned, total_isolated);
1597
1598	if (!page) {
1599		cc->fast_search_fail++;
1600		if (scan_start) {
1601			/*
1602			 * Use the highest PFN found above min. If one was
1603			 * not found, be pessimistic for direct compaction
1604			 * and use the min mark.
1605			 */
1606			if (highest >= min_pfn) {
1607				page = pfn_to_page(highest);
1608				cc->free_pfn = highest;
1609			} else {
1610				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1611					page = pageblock_pfn_to_page(min_pfn,
1612						min(pageblock_end_pfn(min_pfn),
1613						    zone_end_pfn(cc->zone)),
1614						cc->zone);
1615					cc->free_pfn = min_pfn;
1616				}
1617			}
1618		}
1619	}
1620
1621	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1622		highest -= pageblock_nr_pages;
1623		cc->zone->compact_cached_free_pfn = highest;
1624	}
1625
1626	cc->total_free_scanned += nr_scanned;
1627	if (!page)
1628		return;
1629
1630	low_pfn = page_to_pfn(page);
1631	fast_isolate_around(cc, low_pfn);
1632}
1633
1634/*
1635 * Based on information in the current compact_control, find blocks
1636 * suitable for isolating free pages from and then isolate them.
1637 */
1638static void isolate_freepages(struct compact_control *cc)
1639{
1640	struct zone *zone = cc->zone;
1641	struct page *page;
1642	unsigned long block_start_pfn;	/* start of current pageblock */
1643	unsigned long isolate_start_pfn; /* exact pfn we start at */
1644	unsigned long block_end_pfn;	/* end of current pageblock */
1645	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1646	struct list_head *freelist = &cc->freepages;
1647	unsigned int stride;
1648
1649	/* Try a small search of the free lists for a candidate */
1650	fast_isolate_freepages(cc);
1651	if (cc->nr_freepages)
1652		goto splitmap;
1653
1654	/*
1655	 * Initialise the free scanner. The starting point is where we last
1656	 * successfully isolated from, zone-cached value, or the end of the
1657	 * zone when isolating for the first time. For looping we also need
1658	 * this pfn aligned down to the pageblock boundary, because we do
1659	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1660	 * For ending point, take care when isolating in last pageblock of a
1661	 * zone which ends in the middle of a pageblock.
1662	 * The low boundary is the end of the pageblock the migration scanner
1663	 * is using.
1664	 */
1665	isolate_start_pfn = cc->free_pfn;
1666	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1667	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1668						zone_end_pfn(zone));
1669	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1670	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1671
1672	/*
1673	 * Isolate free pages until enough are available to migrate the
1674	 * pages on cc->migratepages. We stop searching if the migrate
1675	 * and free page scanners meet or enough free pages are isolated.
1676	 */
1677	for (; block_start_pfn >= low_pfn;
1678				block_end_pfn = block_start_pfn,
1679				block_start_pfn -= pageblock_nr_pages,
1680				isolate_start_pfn = block_start_pfn) {
1681		unsigned long nr_isolated;
1682
1683		/*
1684		 * This can iterate a massively long zone without finding any
1685		 * suitable migration targets, so periodically check resched.
1686		 */
1687		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1688			cond_resched();
1689
1690		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1691									zone);
1692		if (!page) {
1693			unsigned long next_pfn;
1694
1695			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1696			if (next_pfn)
1697				block_start_pfn = max(next_pfn, low_pfn);
1698
1699			continue;
1700		}
1701
1702		/* Check the block is suitable for migration */
1703		if (!suitable_migration_target(cc, page))
1704			continue;
1705
1706		/* If isolation recently failed, do not retry */
1707		if (!isolation_suitable(cc, page))
1708			continue;
1709
1710		/* Found a block suitable for isolating free pages from. */
1711		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1712					block_end_pfn, freelist, stride, false);
1713
1714		/* Update the skip hint if the full pageblock was scanned */
1715		if (isolate_start_pfn == block_end_pfn)
1716			update_pageblock_skip(cc, page, block_start_pfn -
1717					      pageblock_nr_pages);
1718
1719		/* Are enough freepages isolated? */
1720		if (cc->nr_freepages >= cc->nr_migratepages) {
1721			if (isolate_start_pfn >= block_end_pfn) {
1722				/*
1723				 * Restart at previous pageblock if more
1724				 * freepages can be isolated next time.
1725				 */
1726				isolate_start_pfn =
1727					block_start_pfn - pageblock_nr_pages;
1728			}
1729			break;
1730		} else if (isolate_start_pfn < block_end_pfn) {
1731			/*
1732			 * If isolation failed early, do not continue
1733			 * needlessly.
1734			 */
1735			break;
1736		}
1737
1738		/* Adjust stride depending on isolation */
1739		if (nr_isolated) {
1740			stride = 1;
1741			continue;
1742		}
1743		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1744	}
1745
1746	/*
1747	 * Record where the free scanner will restart next time. Either we
1748	 * broke from the loop and set isolate_start_pfn based on the last
1749	 * call to isolate_freepages_block(), or we met the migration scanner
1750	 * and the loop terminated due to isolate_start_pfn < low_pfn
1751	 */
1752	cc->free_pfn = isolate_start_pfn;
1753
1754splitmap:
1755	/* __isolate_free_page() does not map the pages */
1756	split_map_pages(freelist);
1757}
1758
1759/*
1760 * This is a migrate-callback that "allocates" freepages by taking pages
1761 * from the isolated freelists in the block we are migrating to.
1762 */
1763static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1764{
1765	struct compact_control *cc = (struct compact_control *)data;
1766	struct folio *dst;
1767
1768	if (list_empty(&cc->freepages)) {
1769		isolate_freepages(cc);
1770
1771		if (list_empty(&cc->freepages))
1772			return NULL;
1773	}
1774
1775	dst = list_entry(cc->freepages.next, struct folio, lru);
1776	list_del(&dst->lru);
1777	cc->nr_freepages--;
1778
1779	return dst;
1780}
1781
1782/*
1783 * This is a migrate-callback that "frees" freepages back to the isolated
1784 * freelist.  All pages on the freelist are from the same zone, so there is no
1785 * special handling needed for NUMA.
1786 */
1787static void compaction_free(struct folio *dst, unsigned long data)
1788{
1789	struct compact_control *cc = (struct compact_control *)data;
1790
1791	list_add(&dst->lru, &cc->freepages);
1792	cc->nr_freepages++;
1793}
1794
1795/* possible outcome of isolate_migratepages */
1796typedef enum {
1797	ISOLATE_ABORT,		/* Abort compaction now */
1798	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1799	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1800} isolate_migrate_t;
1801
1802/*
1803 * Allow userspace to control policy on scanning the unevictable LRU for
1804 * compactable pages.
1805 */
1806static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1807/*
1808 * Tunable for proactive compaction. It determines how
1809 * aggressively the kernel should compact memory in the
1810 * background. It takes values in the range [0, 100].
1811 */
1812static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1813static int sysctl_extfrag_threshold = 500;
1814static int __read_mostly sysctl_compact_memory;
1815
1816static inline void
1817update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1818{
1819	if (cc->fast_start_pfn == ULONG_MAX)
1820		return;
1821
1822	if (!cc->fast_start_pfn)
1823		cc->fast_start_pfn = pfn;
1824
1825	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1826}
1827
1828static inline unsigned long
1829reinit_migrate_pfn(struct compact_control *cc)
1830{
1831	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1832		return cc->migrate_pfn;
1833
1834	cc->migrate_pfn = cc->fast_start_pfn;
1835	cc->fast_start_pfn = ULONG_MAX;
1836
1837	return cc->migrate_pfn;
1838}
1839
1840/*
1841 * Briefly search the free lists for a migration source that already has
1842 * some free pages to reduce the number of pages that need migration
1843 * before a pageblock is free.
1844 */
1845static unsigned long fast_find_migrateblock(struct compact_control *cc)
1846{
1847	unsigned int limit = freelist_scan_limit(cc);
1848	unsigned int nr_scanned = 0;
1849	unsigned long distance;
1850	unsigned long pfn = cc->migrate_pfn;
1851	unsigned long high_pfn;
1852	int order;
1853	bool found_block = false;
1854
1855	/* Skip hints are relied on to avoid repeats on the fast search */
1856	if (cc->ignore_skip_hint)
1857		return pfn;
1858
1859	/*
1860	 * If the pageblock should be finished then do not select a different
1861	 * pageblock.
1862	 */
1863	if (cc->finish_pageblock)
1864		return pfn;
1865
1866	/*
1867	 * If the migrate_pfn is not at the start of a zone or the start
1868	 * of a pageblock then assume this is a continuation of a previous
1869	 * scan restarted due to COMPACT_CLUSTER_MAX.
1870	 */
1871	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1872		return pfn;
1873
1874	/*
1875	 * For smaller orders, just linearly scan as the number of pages
1876	 * to migrate should be relatively small and does not necessarily
1877	 * justify freeing up a large block for a small allocation.
1878	 */
1879	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1880		return pfn;
1881
1882	/*
1883	 * Only allow kcompactd and direct requests for movable pages to
1884	 * quickly clear out a MOVABLE pageblock for allocation. This
1885	 * reduces the risk that a large movable pageblock is freed for
1886	 * an unmovable/reclaimable small allocation.
1887	 */
1888	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1889		return pfn;
1890
1891	/*
1892	 * When starting the migration scanner, pick any pageblock within the
1893	 * first half of the search space. Otherwise try and pick a pageblock
1894	 * within the first eighth to reduce the chances that a migration
1895	 * target later becomes a source.
1896	 */
1897	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1898	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1899		distance >>= 2;
1900	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1901
1902	for (order = cc->order - 1;
1903	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1904	     order--) {
1905		struct free_area *area = &cc->zone->free_area[order];
1906		struct list_head *freelist;
1907		unsigned long flags;
1908		struct page *freepage;
1909
1910		if (!area->nr_free)
1911			continue;
1912
1913		spin_lock_irqsave(&cc->zone->lock, flags);
1914		freelist = &area->free_list[MIGRATE_MOVABLE];
1915		list_for_each_entry(freepage, freelist, buddy_list) {
1916			unsigned long free_pfn;
1917
1918			if (nr_scanned++ >= limit) {
1919				move_freelist_tail(freelist, freepage);
1920				break;
1921			}
1922
1923			free_pfn = page_to_pfn(freepage);
1924			if (free_pfn < high_pfn) {
1925				/*
1926				 * Avoid if skipped recently. Ideally it would
1927				 * move to the tail but even safe iteration of
1928				 * the list assumes an entry is deleted, not
1929				 * reordered.
1930				 */
1931				if (get_pageblock_skip(freepage))
1932					continue;
1933
1934				/* Reorder to so a future search skips recent pages */
1935				move_freelist_tail(freelist, freepage);
1936
1937				update_fast_start_pfn(cc, free_pfn);
1938				pfn = pageblock_start_pfn(free_pfn);
1939				if (pfn < cc->zone->zone_start_pfn)
1940					pfn = cc->zone->zone_start_pfn;
1941				cc->fast_search_fail = 0;
1942				found_block = true;
1943				break;
1944			}
1945		}
1946		spin_unlock_irqrestore(&cc->zone->lock, flags);
1947	}
1948
1949	cc->total_migrate_scanned += nr_scanned;
1950
1951	/*
1952	 * If fast scanning failed then use a cached entry for a page block
1953	 * that had free pages as the basis for starting a linear scan.
1954	 */
1955	if (!found_block) {
1956		cc->fast_search_fail++;
1957		pfn = reinit_migrate_pfn(cc);
1958	}
1959	return pfn;
1960}
1961
1962/*
1963 * Isolate all pages that can be migrated from the first suitable block,
1964 * starting at the block pointed to by the migrate scanner pfn within
1965 * compact_control.
1966 */
1967static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1968{
1969	unsigned long block_start_pfn;
1970	unsigned long block_end_pfn;
1971	unsigned long low_pfn;
1972	struct page *page;
1973	const isolate_mode_t isolate_mode =
1974		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1975		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1976	bool fast_find_block;
1977
1978	/*
1979	 * Start at where we last stopped, or beginning of the zone as
1980	 * initialized by compact_zone(). The first failure will use
1981	 * the lowest PFN as the starting point for linear scanning.
1982	 */
1983	low_pfn = fast_find_migrateblock(cc);
1984	block_start_pfn = pageblock_start_pfn(low_pfn);
1985	if (block_start_pfn < cc->zone->zone_start_pfn)
1986		block_start_pfn = cc->zone->zone_start_pfn;
1987
1988	/*
1989	 * fast_find_migrateblock() has already ensured the pageblock is not
1990	 * set with a skipped flag, so to avoid the isolation_suitable check
1991	 * below again, check whether the fast search was successful.
1992	 */
1993	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1994
1995	/* Only scan within a pageblock boundary */
1996	block_end_pfn = pageblock_end_pfn(low_pfn);
1997
1998	/*
1999	 * Iterate over whole pageblocks until we find the first suitable.
2000	 * Do not cross the free scanner.
2001	 */
2002	for (; block_end_pfn <= cc->free_pfn;
2003			fast_find_block = false,
2004			cc->migrate_pfn = low_pfn = block_end_pfn,
2005			block_start_pfn = block_end_pfn,
2006			block_end_pfn += pageblock_nr_pages) {
2007
2008		/*
2009		 * This can potentially iterate a massively long zone with
2010		 * many pageblocks unsuitable, so periodically check if we
2011		 * need to schedule.
2012		 */
2013		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2014			cond_resched();
2015
2016		page = pageblock_pfn_to_page(block_start_pfn,
2017						block_end_pfn, cc->zone);
2018		if (!page) {
2019			unsigned long next_pfn;
2020
2021			next_pfn = skip_offline_sections(block_start_pfn);
2022			if (next_pfn)
2023				block_end_pfn = min(next_pfn, cc->free_pfn);
2024			continue;
2025		}
2026
2027		/*
2028		 * If isolation recently failed, do not retry. Only check the
2029		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2030		 * to be visited multiple times. Assume skip was checked
2031		 * before making it "skip" so other compaction instances do
2032		 * not scan the same block.
2033		 */
2034		if ((pageblock_aligned(low_pfn) ||
2035		     low_pfn == cc->zone->zone_start_pfn) &&
2036		    !fast_find_block && !isolation_suitable(cc, page))
2037			continue;
2038
2039		/*
2040		 * For async direct compaction, only scan the pageblocks of the
2041		 * same migratetype without huge pages. Async direct compaction
2042		 * is optimistic to see if the minimum amount of work satisfies
2043		 * the allocation. The cached PFN is updated as it's possible
2044		 * that all remaining blocks between source and target are
2045		 * unsuitable and the compaction scanners fail to meet.
2046		 */
2047		if (!suitable_migration_source(cc, page)) {
2048			update_cached_migrate(cc, block_end_pfn);
2049			continue;
2050		}
2051
2052		/* Perform the isolation */
2053		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2054						isolate_mode))
2055			return ISOLATE_ABORT;
2056
2057		/*
2058		 * Either we isolated something and proceed with migration. Or
2059		 * we failed and compact_zone should decide if we should
2060		 * continue or not.
2061		 */
2062		break;
2063	}
2064
2065	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2066}
2067
2068/*
2069 * order == -1 is expected when compacting via
2070 * /proc/sys/vm/compact_memory
2071 */
2072static inline bool is_via_compact_memory(int order)
2073{
2074	return order == -1;
2075}
2076
2077/*
2078 * Determine whether kswapd is (or recently was!) running on this node.
2079 *
2080 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2081 * zero it.
2082 */
2083static bool kswapd_is_running(pg_data_t *pgdat)
2084{
2085	bool running;
2086
2087	pgdat_kswapd_lock(pgdat);
2088	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2089	pgdat_kswapd_unlock(pgdat);
2090
2091	return running;
2092}
2093
2094/*
2095 * A zone's fragmentation score is the external fragmentation wrt to the
2096 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2097 */
2098static unsigned int fragmentation_score_zone(struct zone *zone)
2099{
2100	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2101}
2102
2103/*
2104 * A weighted zone's fragmentation score is the external fragmentation
2105 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2106 * returns a value in the range [0, 100].
2107 *
2108 * The scaling factor ensures that proactive compaction focuses on larger
2109 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2110 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2111 * and thus never exceeds the high threshold for proactive compaction.
2112 */
2113static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2114{
2115	unsigned long score;
2116
2117	score = zone->present_pages * fragmentation_score_zone(zone);
2118	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2119}
2120
2121/*
2122 * The per-node proactive (background) compaction process is started by its
2123 * corresponding kcompactd thread when the node's fragmentation score
2124 * exceeds the high threshold. The compaction process remains active till
2125 * the node's score falls below the low threshold, or one of the back-off
2126 * conditions is met.
2127 */
2128static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2129{
2130	unsigned int score = 0;
2131	int zoneid;
2132
2133	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2134		struct zone *zone;
2135
2136		zone = &pgdat->node_zones[zoneid];
2137		if (!populated_zone(zone))
2138			continue;
2139		score += fragmentation_score_zone_weighted(zone);
2140	}
2141
2142	return score;
2143}
2144
2145static unsigned int fragmentation_score_wmark(bool low)
2146{
2147	unsigned int wmark_low;
2148
2149	/*
2150	 * Cap the low watermark to avoid excessive compaction
2151	 * activity in case a user sets the proactiveness tunable
2152	 * close to 100 (maximum).
2153	 */
2154	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2155	return low ? wmark_low : min(wmark_low + 10, 100U);
2156}
2157
2158static bool should_proactive_compact_node(pg_data_t *pgdat)
2159{
2160	int wmark_high;
2161
2162	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2163		return false;
2164
2165	wmark_high = fragmentation_score_wmark(false);
2166	return fragmentation_score_node(pgdat) > wmark_high;
2167}
2168
2169static enum compact_result __compact_finished(struct compact_control *cc)
2170{
2171	unsigned int order;
2172	const int migratetype = cc->migratetype;
2173	int ret;
2174
2175	/* Compaction run completes if the migrate and free scanner meet */
2176	if (compact_scanners_met(cc)) {
2177		/* Let the next compaction start anew. */
2178		reset_cached_positions(cc->zone);
2179
2180		/*
2181		 * Mark that the PG_migrate_skip information should be cleared
2182		 * by kswapd when it goes to sleep. kcompactd does not set the
2183		 * flag itself as the decision to be clear should be directly
2184		 * based on an allocation request.
2185		 */
2186		if (cc->direct_compaction)
2187			cc->zone->compact_blockskip_flush = true;
2188
2189		if (cc->whole_zone)
2190			return COMPACT_COMPLETE;
2191		else
2192			return COMPACT_PARTIAL_SKIPPED;
2193	}
2194
2195	if (cc->proactive_compaction) {
2196		int score, wmark_low;
2197		pg_data_t *pgdat;
2198
2199		pgdat = cc->zone->zone_pgdat;
2200		if (kswapd_is_running(pgdat))
2201			return COMPACT_PARTIAL_SKIPPED;
2202
2203		score = fragmentation_score_zone(cc->zone);
2204		wmark_low = fragmentation_score_wmark(true);
2205
2206		if (score > wmark_low)
2207			ret = COMPACT_CONTINUE;
2208		else
2209			ret = COMPACT_SUCCESS;
2210
2211		goto out;
2212	}
2213
2214	if (is_via_compact_memory(cc->order))
2215		return COMPACT_CONTINUE;
2216
2217	/*
2218	 * Always finish scanning a pageblock to reduce the possibility of
2219	 * fallbacks in the future. This is particularly important when
2220	 * migration source is unmovable/reclaimable but it's not worth
2221	 * special casing.
2222	 */
2223	if (!pageblock_aligned(cc->migrate_pfn))
2224		return COMPACT_CONTINUE;
2225
2226	/* Direct compactor: Is a suitable page free? */
2227	ret = COMPACT_NO_SUITABLE_PAGE;
2228	for (order = cc->order; order <= MAX_ORDER; order++) {
2229		struct free_area *area = &cc->zone->free_area[order];
2230		bool can_steal;
2231
2232		/* Job done if page is free of the right migratetype */
2233		if (!free_area_empty(area, migratetype))
2234			return COMPACT_SUCCESS;
2235
2236#ifdef CONFIG_CMA
2237		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2238		if (migratetype == get_cma_migratetype() &&
2239			!free_area_empty(area, MIGRATE_CMA))
2240			return COMPACT_SUCCESS;
2241#endif
2242		/*
2243		 * Job done if allocation would steal freepages from
2244		 * other migratetype buddy lists.
2245		 */
2246		if (find_suitable_fallback(area, order, migratetype,
2247						true, &can_steal) != -1)
2248			/*
2249			 * Movable pages are OK in any pageblock. If we are
2250			 * stealing for a non-movable allocation, make sure
2251			 * we finish compacting the current pageblock first
2252			 * (which is assured by the above migrate_pfn align
2253			 * check) so it is as free as possible and we won't
2254			 * have to steal another one soon.
2255			 */
2256			return COMPACT_SUCCESS;
2257	}
2258
2259out:
2260	if (cc->contended || fatal_signal_pending(current))
2261		ret = COMPACT_CONTENDED;
2262
2263	return ret;
2264}
2265
2266static enum compact_result compact_finished(struct compact_control *cc)
2267{
2268	int ret;
2269
2270	ret = __compact_finished(cc);
2271	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2272	if (ret == COMPACT_NO_SUITABLE_PAGE)
2273		ret = COMPACT_CONTINUE;
2274
2275	return ret;
2276}
2277
2278static bool __compaction_suitable(struct zone *zone, int order,
2279				  int highest_zoneidx,
2280				  unsigned long wmark_target)
2281{
2282	unsigned long watermark;
2283	/*
2284	 * Watermarks for order-0 must be met for compaction to be able to
2285	 * isolate free pages for migration targets. This means that the
2286	 * watermark and alloc_flags have to match, or be more pessimistic than
2287	 * the check in __isolate_free_page(). We don't use the direct
2288	 * compactor's alloc_flags, as they are not relevant for freepage
2289	 * isolation. We however do use the direct compactor's highest_zoneidx
2290	 * to skip over zones where lowmem reserves would prevent allocation
2291	 * even if compaction succeeds.
2292	 * For costly orders, we require low watermark instead of min for
2293	 * compaction to proceed to increase its chances.
2294	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2295	 * suitable migration targets
2296	 */
2297	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2298				low_wmark_pages(zone) : min_wmark_pages(zone);
2299	watermark += compact_gap(order);
2300	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2301				   ALLOC_CMA, wmark_target);
2302}
2303
2304/*
2305 * compaction_suitable: Is this suitable to run compaction on this zone now?
2306 */
2307bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2308{
2309	enum compact_result compact_result;
2310	bool suitable;
2311
2312	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2313					 zone_page_state(zone, NR_FREE_PAGES));
2314	/*
2315	 * fragmentation index determines if allocation failures are due to
2316	 * low memory or external fragmentation
2317	 *
2318	 * index of -1000 would imply allocations might succeed depending on
2319	 * watermarks, but we already failed the high-order watermark check
2320	 * index towards 0 implies failure is due to lack of memory
2321	 * index towards 1000 implies failure is due to fragmentation
2322	 *
2323	 * Only compact if a failure would be due to fragmentation. Also
2324	 * ignore fragindex for non-costly orders where the alternative to
2325	 * a successful reclaim/compaction is OOM. Fragindex and the
2326	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2327	 * excessive compaction for costly orders, but it should not be at the
2328	 * expense of system stability.
2329	 */
2330	if (suitable) {
2331		compact_result = COMPACT_CONTINUE;
2332		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2333			int fragindex = fragmentation_index(zone, order);
2334
2335			if (fragindex >= 0 &&
2336			    fragindex <= sysctl_extfrag_threshold) {
2337				suitable = false;
2338				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2339			}
2340		}
2341	} else {
2342		compact_result = COMPACT_SKIPPED;
2343	}
2344
2345	trace_mm_compaction_suitable(zone, order, compact_result);
2346
2347	return suitable;
2348}
2349
2350bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2351		int alloc_flags)
2352{
2353	struct zone *zone;
2354	struct zoneref *z;
2355
2356	/*
2357	 * Make sure at least one zone would pass __compaction_suitable if we continue
2358	 * retrying the reclaim.
2359	 */
2360	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2361				ac->highest_zoneidx, ac->nodemask) {
2362		unsigned long available;
2363
2364		/*
2365		 * Do not consider all the reclaimable memory because we do not
2366		 * want to trash just for a single high order allocation which
2367		 * is even not guaranteed to appear even if __compaction_suitable
2368		 * is happy about the watermark check.
2369		 */
2370		available = zone_reclaimable_pages(zone) / order;
2371		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2372		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2373					  available))
2374			return true;
2375	}
2376
2377	return false;
2378}
2379
2380static enum compact_result
2381compact_zone(struct compact_control *cc, struct capture_control *capc)
2382{
2383	enum compact_result ret;
2384	unsigned long start_pfn = cc->zone->zone_start_pfn;
2385	unsigned long end_pfn = zone_end_pfn(cc->zone);
2386	unsigned long last_migrated_pfn;
2387	const bool sync = cc->mode != MIGRATE_ASYNC;
2388	bool update_cached;
2389	unsigned int nr_succeeded = 0;
2390
2391	/*
2392	 * These counters track activities during zone compaction.  Initialize
2393	 * them before compacting a new zone.
2394	 */
2395	cc->total_migrate_scanned = 0;
2396	cc->total_free_scanned = 0;
2397	cc->nr_migratepages = 0;
2398	cc->nr_freepages = 0;
2399	INIT_LIST_HEAD(&cc->freepages);
2400	INIT_LIST_HEAD(&cc->migratepages);
2401
2402	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2403
2404	if (!is_via_compact_memory(cc->order)) {
2405		unsigned long watermark;
2406
2407		/* Allocation can already succeed, nothing to do */
2408		watermark = wmark_pages(cc->zone,
2409					cc->alloc_flags & ALLOC_WMARK_MASK);
2410		if (zone_watermark_ok(cc->zone, cc->order, watermark,
2411				      cc->highest_zoneidx, cc->alloc_flags))
2412			return COMPACT_SUCCESS;
2413
2414		/* Compaction is likely to fail */
2415		if (!compaction_suitable(cc->zone, cc->order,
2416					 cc->highest_zoneidx))
2417			return COMPACT_SKIPPED;
2418	}
2419
2420	/*
2421	 * Clear pageblock skip if there were failures recently and compaction
2422	 * is about to be retried after being deferred.
2423	 */
2424	if (compaction_restarting(cc->zone, cc->order))
2425		__reset_isolation_suitable(cc->zone);
2426
2427	/*
2428	 * Setup to move all movable pages to the end of the zone. Used cached
2429	 * information on where the scanners should start (unless we explicitly
2430	 * want to compact the whole zone), but check that it is initialised
2431	 * by ensuring the values are within zone boundaries.
2432	 */
2433	cc->fast_start_pfn = 0;
2434	if (cc->whole_zone) {
2435		cc->migrate_pfn = start_pfn;
2436		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2437	} else {
2438		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2439		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2440		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2441			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2442			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2443		}
2444		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2445			cc->migrate_pfn = start_pfn;
2446			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2447			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2448		}
2449
2450		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2451			cc->whole_zone = true;
2452	}
2453
2454	last_migrated_pfn = 0;
2455
2456	/*
2457	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2458	 * the basis that some migrations will fail in ASYNC mode. However,
2459	 * if the cached PFNs match and pageblocks are skipped due to having
2460	 * no isolation candidates, then the sync state does not matter.
2461	 * Until a pageblock with isolation candidates is found, keep the
2462	 * cached PFNs in sync to avoid revisiting the same blocks.
2463	 */
2464	update_cached = !sync &&
2465		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2466
2467	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2468
2469	/* lru_add_drain_all could be expensive with involving other CPUs */
2470	lru_add_drain();
2471
2472	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2473		int err;
2474		unsigned long iteration_start_pfn = cc->migrate_pfn;
2475
2476		/*
2477		 * Avoid multiple rescans of the same pageblock which can
2478		 * happen if a page cannot be isolated (dirty/writeback in
2479		 * async mode) or if the migrated pages are being allocated
2480		 * before the pageblock is cleared.  The first rescan will
2481		 * capture the entire pageblock for migration. If it fails,
2482		 * it'll be marked skip and scanning will proceed as normal.
2483		 */
2484		cc->finish_pageblock = false;
2485		if (pageblock_start_pfn(last_migrated_pfn) ==
2486		    pageblock_start_pfn(iteration_start_pfn)) {
2487			cc->finish_pageblock = true;
2488		}
2489
2490rescan:
2491		switch (isolate_migratepages(cc)) {
2492		case ISOLATE_ABORT:
2493			ret = COMPACT_CONTENDED;
2494			putback_movable_pages(&cc->migratepages);
2495			cc->nr_migratepages = 0;
2496			goto out;
2497		case ISOLATE_NONE:
2498			if (update_cached) {
2499				cc->zone->compact_cached_migrate_pfn[1] =
2500					cc->zone->compact_cached_migrate_pfn[0];
2501			}
2502
2503			/*
2504			 * We haven't isolated and migrated anything, but
2505			 * there might still be unflushed migrations from
2506			 * previous cc->order aligned block.
2507			 */
2508			goto check_drain;
2509		case ISOLATE_SUCCESS:
2510			update_cached = false;
2511			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2512				pageblock_start_pfn(cc->migrate_pfn - 1));
2513		}
2514
2515		err = migrate_pages(&cc->migratepages, compaction_alloc,
2516				compaction_free, (unsigned long)cc, cc->mode,
2517				MR_COMPACTION, &nr_succeeded);
2518
2519		trace_mm_compaction_migratepages(cc, nr_succeeded);
2520
2521		/* All pages were either migrated or will be released */
2522		cc->nr_migratepages = 0;
2523		if (err) {
2524			putback_movable_pages(&cc->migratepages);
2525			/*
2526			 * migrate_pages() may return -ENOMEM when scanners meet
2527			 * and we want compact_finished() to detect it
2528			 */
2529			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2530				ret = COMPACT_CONTENDED;
2531				goto out;
2532			}
2533			/*
2534			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2535			 * within the pageblock_order-aligned block and
2536			 * fast_find_migrateblock may be used then scan the
2537			 * remainder of the pageblock. This will mark the
2538			 * pageblock "skip" to avoid rescanning in the near
2539			 * future. This will isolate more pages than necessary
2540			 * for the request but avoid loops due to
2541			 * fast_find_migrateblock revisiting blocks that were
2542			 * recently partially scanned.
2543			 */
2544			if (!pageblock_aligned(cc->migrate_pfn) &&
2545			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2546			    (cc->mode < MIGRATE_SYNC)) {
2547				cc->finish_pageblock = true;
2548
2549				/*
2550				 * Draining pcplists does not help THP if
2551				 * any page failed to migrate. Even after
2552				 * drain, the pageblock will not be free.
2553				 */
2554				if (cc->order == COMPACTION_HPAGE_ORDER)
2555					last_migrated_pfn = 0;
2556
2557				goto rescan;
2558			}
2559		}
2560
2561		/* Stop if a page has been captured */
2562		if (capc && capc->page) {
2563			ret = COMPACT_SUCCESS;
2564			break;
2565		}
2566
2567check_drain:
2568		/*
2569		 * Has the migration scanner moved away from the previous
2570		 * cc->order aligned block where we migrated from? If yes,
2571		 * flush the pages that were freed, so that they can merge and
2572		 * compact_finished() can detect immediately if allocation
2573		 * would succeed.
2574		 */
2575		if (cc->order > 0 && last_migrated_pfn) {
2576			unsigned long current_block_start =
2577				block_start_pfn(cc->migrate_pfn, cc->order);
2578
2579			if (last_migrated_pfn < current_block_start) {
2580				lru_add_drain_cpu_zone(cc->zone);
2581				/* No more flushing until we migrate again */
2582				last_migrated_pfn = 0;
2583			}
2584		}
2585	}
2586
2587out:
2588	/*
2589	 * Release free pages and update where the free scanner should restart,
2590	 * so we don't leave any returned pages behind in the next attempt.
2591	 */
2592	if (cc->nr_freepages > 0) {
2593		unsigned long free_pfn = release_freepages(&cc->freepages);
2594
2595		cc->nr_freepages = 0;
2596		VM_BUG_ON(free_pfn == 0);
2597		/* The cached pfn is always the first in a pageblock */
2598		free_pfn = pageblock_start_pfn(free_pfn);
2599		/*
2600		 * Only go back, not forward. The cached pfn might have been
2601		 * already reset to zone end in compact_finished()
2602		 */
2603		if (free_pfn > cc->zone->compact_cached_free_pfn)
2604			cc->zone->compact_cached_free_pfn = free_pfn;
2605	}
2606
2607	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2608	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2609
2610	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2611
2612	VM_BUG_ON(!list_empty(&cc->freepages));
2613	VM_BUG_ON(!list_empty(&cc->migratepages));
2614
2615	return ret;
2616}
2617
2618static enum compact_result compact_zone_order(struct zone *zone, int order,
2619		gfp_t gfp_mask, enum compact_priority prio,
2620		unsigned int alloc_flags, int highest_zoneidx,
2621		struct page **capture)
2622{
2623	enum compact_result ret;
2624	struct compact_control cc = {
2625		.order = order,
2626		.search_order = order,
2627		.gfp_mask = gfp_mask,
2628		.zone = zone,
2629		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2630					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2631		.alloc_flags = alloc_flags,
2632		.highest_zoneidx = highest_zoneidx,
2633		.direct_compaction = true,
2634		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2635		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2636		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2637	};
2638	struct capture_control capc = {
2639		.cc = &cc,
2640		.page = NULL,
2641	};
2642
2643	/*
2644	 * Make sure the structs are really initialized before we expose the
2645	 * capture control, in case we are interrupted and the interrupt handler
2646	 * frees a page.
2647	 */
2648	barrier();
2649	WRITE_ONCE(current->capture_control, &capc);
2650
2651	ret = compact_zone(&cc, &capc);
2652
2653	/*
2654	 * Make sure we hide capture control first before we read the captured
2655	 * page pointer, otherwise an interrupt could free and capture a page
2656	 * and we would leak it.
2657	 */
2658	WRITE_ONCE(current->capture_control, NULL);
2659	*capture = READ_ONCE(capc.page);
2660	/*
2661	 * Technically, it is also possible that compaction is skipped but
2662	 * the page is still captured out of luck(IRQ came and freed the page).
2663	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2664	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2665	 */
2666	if (*capture)
2667		ret = COMPACT_SUCCESS;
2668
2669	return ret;
2670}
2671
2672/**
2673 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2674 * @gfp_mask: The GFP mask of the current allocation
2675 * @order: The order of the current allocation
2676 * @alloc_flags: The allocation flags of the current allocation
2677 * @ac: The context of current allocation
2678 * @prio: Determines how hard direct compaction should try to succeed
2679 * @capture: Pointer to free page created by compaction will be stored here
2680 *
2681 * This is the main entry point for direct page compaction.
2682 */
2683enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2684		unsigned int alloc_flags, const struct alloc_context *ac,
2685		enum compact_priority prio, struct page **capture)
2686{
2687	int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2688	struct zoneref *z;
2689	struct zone *zone;
2690	enum compact_result rc = COMPACT_SKIPPED;
2691
2692	/*
2693	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2694	 * tricky context because the migration might require IO
2695	 */
2696	if (!may_perform_io)
2697		return COMPACT_SKIPPED;
2698
2699	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2700
2701	/* Compact each zone in the list */
2702	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2703					ac->highest_zoneidx, ac->nodemask) {
2704		enum compact_result status;
2705
2706		if (prio > MIN_COMPACT_PRIORITY
2707					&& compaction_deferred(zone, order)) {
2708			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2709			continue;
2710		}
2711
2712		status = compact_zone_order(zone, order, gfp_mask, prio,
2713				alloc_flags, ac->highest_zoneidx, capture);
2714		rc = max(status, rc);
2715
2716		/* The allocation should succeed, stop compacting */
2717		if (status == COMPACT_SUCCESS) {
2718			/*
2719			 * We think the allocation will succeed in this zone,
2720			 * but it is not certain, hence the false. The caller
2721			 * will repeat this with true if allocation indeed
2722			 * succeeds in this zone.
2723			 */
2724			compaction_defer_reset(zone, order, false);
2725
2726			break;
2727		}
2728
2729		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2730					status == COMPACT_PARTIAL_SKIPPED))
2731			/*
2732			 * We think that allocation won't succeed in this zone
2733			 * so we defer compaction there. If it ends up
2734			 * succeeding after all, it will be reset.
2735			 */
2736			defer_compaction(zone, order);
2737
2738		/*
2739		 * We might have stopped compacting due to need_resched() in
2740		 * async compaction, or due to a fatal signal detected. In that
2741		 * case do not try further zones
2742		 */
2743		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2744					|| fatal_signal_pending(current))
2745			break;
2746	}
2747
2748	return rc;
2749}
2750
2751/*
2752 * Compact all zones within a node till each zone's fragmentation score
2753 * reaches within proactive compaction thresholds (as determined by the
2754 * proactiveness tunable).
2755 *
2756 * It is possible that the function returns before reaching score targets
2757 * due to various back-off conditions, such as, contention on per-node or
2758 * per-zone locks.
2759 */
2760static void proactive_compact_node(pg_data_t *pgdat)
2761{
2762	int zoneid;
2763	struct zone *zone;
2764	struct compact_control cc = {
2765		.order = -1,
2766		.mode = MIGRATE_SYNC_LIGHT,
2767		.ignore_skip_hint = true,
2768		.whole_zone = true,
2769		.gfp_mask = GFP_KERNEL,
2770		.proactive_compaction = true,
2771	};
2772
2773	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2774		zone = &pgdat->node_zones[zoneid];
2775		if (!populated_zone(zone))
2776			continue;
2777
2778		cc.zone = zone;
2779
2780		compact_zone(&cc, NULL);
2781
2782		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2783				     cc.total_migrate_scanned);
2784		count_compact_events(KCOMPACTD_FREE_SCANNED,
2785				     cc.total_free_scanned);
2786	}
2787}
2788
2789/* Compact all zones within a node */
2790static void compact_node(int nid)
2791{
2792	pg_data_t *pgdat = NODE_DATA(nid);
2793	int zoneid;
2794	struct zone *zone;
2795	struct compact_control cc = {
2796		.order = -1,
2797		.mode = MIGRATE_SYNC,
2798		.ignore_skip_hint = true,
2799		.whole_zone = true,
2800		.gfp_mask = GFP_KERNEL,
2801	};
2802
2803
2804	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2805
2806		zone = &pgdat->node_zones[zoneid];
2807		if (!populated_zone(zone))
2808			continue;
2809
2810		cc.zone = zone;
2811
2812		compact_zone(&cc, NULL);
2813	}
2814}
2815
2816/* Compact all nodes in the system */
2817static void compact_nodes(void)
2818{
2819	int nid;
2820
2821	/* Flush pending updates to the LRU lists */
2822	lru_add_drain_all();
2823
2824	for_each_online_node(nid)
2825		compact_node(nid);
2826}
2827
2828static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2829		void *buffer, size_t *length, loff_t *ppos)
2830{
2831	int rc, nid;
2832
2833	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2834	if (rc)
2835		return rc;
2836
2837	if (write && sysctl_compaction_proactiveness) {
2838		for_each_online_node(nid) {
2839			pg_data_t *pgdat = NODE_DATA(nid);
2840
2841			if (pgdat->proactive_compact_trigger)
2842				continue;
2843
2844			pgdat->proactive_compact_trigger = true;
2845			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2846							     pgdat->nr_zones - 1);
2847			wake_up_interruptible(&pgdat->kcompactd_wait);
2848		}
2849	}
2850
2851	return 0;
2852}
2853
2854/*
2855 * This is the entry point for compacting all nodes via
2856 * /proc/sys/vm/compact_memory
2857 */
2858static int sysctl_compaction_handler(struct ctl_table *table, int write,
2859			void *buffer, size_t *length, loff_t *ppos)
2860{
2861	int ret;
2862
2863	ret = proc_dointvec(table, write, buffer, length, ppos);
2864	if (ret)
2865		return ret;
2866
2867	if (sysctl_compact_memory != 1)
2868		return -EINVAL;
2869
2870	if (write)
2871		compact_nodes();
2872
2873	return 0;
2874}
2875
2876#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2877static ssize_t compact_store(struct device *dev,
2878			     struct device_attribute *attr,
2879			     const char *buf, size_t count)
2880{
2881	int nid = dev->id;
2882
2883	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2884		/* Flush pending updates to the LRU lists */
2885		lru_add_drain_all();
2886
2887		compact_node(nid);
2888	}
2889
2890	return count;
2891}
2892static DEVICE_ATTR_WO(compact);
2893
2894int compaction_register_node(struct node *node)
2895{
2896	return device_create_file(&node->dev, &dev_attr_compact);
2897}
2898
2899void compaction_unregister_node(struct node *node)
2900{
2901	device_remove_file(&node->dev, &dev_attr_compact);
2902}
2903#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2904
2905static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2906{
2907	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2908		pgdat->proactive_compact_trigger;
2909}
2910
2911static bool kcompactd_node_suitable(pg_data_t *pgdat)
2912{
2913	int zoneid;
2914	struct zone *zone;
2915	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2916
2917	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2918		zone = &pgdat->node_zones[zoneid];
2919
2920		if (!populated_zone(zone))
2921			continue;
2922
2923		/* Allocation can already succeed, check other zones */
2924		if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2925				      min_wmark_pages(zone),
2926				      highest_zoneidx, 0))
2927			continue;
2928
2929		if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2930					highest_zoneidx))
2931			return true;
2932	}
2933
2934	return false;
2935}
2936
2937static void kcompactd_do_work(pg_data_t *pgdat)
2938{
2939	/*
2940	 * With no special task, compact all zones so that a page of requested
2941	 * order is allocatable.
2942	 */
2943	int zoneid;
2944	struct zone *zone;
2945	struct compact_control cc = {
2946		.order = pgdat->kcompactd_max_order,
2947		.search_order = pgdat->kcompactd_max_order,
2948		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2949		.mode = MIGRATE_SYNC_LIGHT,
2950		.ignore_skip_hint = false,
2951		.gfp_mask = GFP_KERNEL,
2952	};
2953	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2954							cc.highest_zoneidx);
2955	count_compact_event(KCOMPACTD_WAKE);
2956
2957	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2958		int status;
2959
2960		zone = &pgdat->node_zones[zoneid];
2961		if (!populated_zone(zone))
2962			continue;
2963
2964		if (compaction_deferred(zone, cc.order))
2965			continue;
2966
2967		/* Allocation can already succeed, nothing to do */
2968		if (zone_watermark_ok(zone, cc.order,
2969				      min_wmark_pages(zone), zoneid, 0))
2970			continue;
2971
2972		if (!compaction_suitable(zone, cc.order, zoneid))
2973			continue;
2974
2975		if (kthread_should_stop())
2976			return;
2977
2978		cc.zone = zone;
2979		status = compact_zone(&cc, NULL);
2980
2981		if (status == COMPACT_SUCCESS) {
2982			compaction_defer_reset(zone, cc.order, false);
2983		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2984			/*
2985			 * Buddy pages may become stranded on pcps that could
2986			 * otherwise coalesce on the zone's free area for
2987			 * order >= cc.order.  This is ratelimited by the
2988			 * upcoming deferral.
2989			 */
2990			drain_all_pages(zone);
2991
2992			/*
2993			 * We use sync migration mode here, so we defer like
2994			 * sync direct compaction does.
2995			 */
2996			defer_compaction(zone, cc.order);
2997		}
2998
2999		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3000				     cc.total_migrate_scanned);
3001		count_compact_events(KCOMPACTD_FREE_SCANNED,
3002				     cc.total_free_scanned);
3003	}
3004
3005	/*
3006	 * Regardless of success, we are done until woken up next. But remember
3007	 * the requested order/highest_zoneidx in case it was higher/tighter
3008	 * than our current ones
3009	 */
3010	if (pgdat->kcompactd_max_order <= cc.order)
3011		pgdat->kcompactd_max_order = 0;
3012	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3013		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3014}
3015
3016void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3017{
3018	if (!order)
3019		return;
3020
3021	if (pgdat->kcompactd_max_order < order)
3022		pgdat->kcompactd_max_order = order;
3023
3024	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3025		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3026
3027	/*
3028	 * Pairs with implicit barrier in wait_event_freezable()
3029	 * such that wakeups are not missed.
3030	 */
3031	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3032		return;
3033
3034	if (!kcompactd_node_suitable(pgdat))
3035		return;
3036
3037	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3038							highest_zoneidx);
3039	wake_up_interruptible(&pgdat->kcompactd_wait);
3040}
3041
3042/*
3043 * The background compaction daemon, started as a kernel thread
3044 * from the init process.
3045 */
3046static int kcompactd(void *p)
3047{
3048	pg_data_t *pgdat = (pg_data_t *)p;
3049	struct task_struct *tsk = current;
3050	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3051	long timeout = default_timeout;
3052
3053	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3054
3055	if (!cpumask_empty(cpumask))
3056		set_cpus_allowed_ptr(tsk, cpumask);
3057
3058	set_freezable();
3059
3060	pgdat->kcompactd_max_order = 0;
3061	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3062
3063	while (!kthread_should_stop()) {
3064		unsigned long pflags;
3065
3066		/*
3067		 * Avoid the unnecessary wakeup for proactive compaction
3068		 * when it is disabled.
3069		 */
3070		if (!sysctl_compaction_proactiveness)
3071			timeout = MAX_SCHEDULE_TIMEOUT;
3072		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3073		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3074			kcompactd_work_requested(pgdat), timeout) &&
3075			!pgdat->proactive_compact_trigger) {
3076
3077			psi_memstall_enter(&pflags);
3078			kcompactd_do_work(pgdat);
3079			psi_memstall_leave(&pflags);
3080			/*
3081			 * Reset the timeout value. The defer timeout from
3082			 * proactive compaction is lost here but that is fine
3083			 * as the condition of the zone changing substantionally
3084			 * then carrying on with the previous defer interval is
3085			 * not useful.
3086			 */
3087			timeout = default_timeout;
3088			continue;
3089		}
3090
3091		/*
3092		 * Start the proactive work with default timeout. Based
3093		 * on the fragmentation score, this timeout is updated.
3094		 */
3095		timeout = default_timeout;
3096		if (should_proactive_compact_node(pgdat)) {
3097			unsigned int prev_score, score;
3098
3099			prev_score = fragmentation_score_node(pgdat);
3100			proactive_compact_node(pgdat);
3101			score = fragmentation_score_node(pgdat);
3102			/*
3103			 * Defer proactive compaction if the fragmentation
3104			 * score did not go down i.e. no progress made.
3105			 */
3106			if (unlikely(score >= prev_score))
3107				timeout =
3108				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3109		}
3110		if (unlikely(pgdat->proactive_compact_trigger))
3111			pgdat->proactive_compact_trigger = false;
3112	}
3113
3114	return 0;
3115}
3116
3117/*
3118 * This kcompactd start function will be called by init and node-hot-add.
3119 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3120 */
3121void __meminit kcompactd_run(int nid)
3122{
3123	pg_data_t *pgdat = NODE_DATA(nid);
3124
3125	if (pgdat->kcompactd)
3126		return;
3127
3128	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3129	if (IS_ERR(pgdat->kcompactd)) {
3130		pr_err("Failed to start kcompactd on node %d\n", nid);
3131		pgdat->kcompactd = NULL;
3132	}
3133}
3134
3135/*
3136 * Called by memory hotplug when all memory in a node is offlined. Caller must
3137 * be holding mem_hotplug_begin/done().
3138 */
3139void __meminit kcompactd_stop(int nid)
3140{
3141	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3142
3143	if (kcompactd) {
3144		kthread_stop(kcompactd);
3145		NODE_DATA(nid)->kcompactd = NULL;
3146	}
3147}
3148
3149/*
3150 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3151 * not required for correctness. So if the last cpu in a node goes
3152 * away, we get changed to run anywhere: as the first one comes back,
3153 * restore their cpu bindings.
3154 */
3155static int kcompactd_cpu_online(unsigned int cpu)
3156{
3157	int nid;
3158
3159	for_each_node_state(nid, N_MEMORY) {
3160		pg_data_t *pgdat = NODE_DATA(nid);
3161		const struct cpumask *mask;
3162
3163		mask = cpumask_of_node(pgdat->node_id);
3164
3165		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3166			/* One of our CPUs online: restore mask */
3167			if (pgdat->kcompactd)
3168				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3169	}
3170	return 0;
3171}
3172
3173static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3174		int write, void *buffer, size_t *lenp, loff_t *ppos)
3175{
3176	int ret, old;
3177
3178	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3179		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3180
3181	old = *(int *)table->data;
3182	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3183	if (ret)
3184		return ret;
3185	if (old != *(int *)table->data)
3186		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3187			     table->procname, current->comm,
3188			     task_pid_nr(current));
3189	return ret;
3190}
3191
3192static struct ctl_table vm_compaction[] = {
3193	{
3194		.procname	= "compact_memory",
3195		.data		= &sysctl_compact_memory,
3196		.maxlen		= sizeof(int),
3197		.mode		= 0200,
3198		.proc_handler	= sysctl_compaction_handler,
3199	},
3200	{
3201		.procname	= "compaction_proactiveness",
3202		.data		= &sysctl_compaction_proactiveness,
3203		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3204		.mode		= 0644,
3205		.proc_handler	= compaction_proactiveness_sysctl_handler,
3206		.extra1		= SYSCTL_ZERO,
3207		.extra2		= SYSCTL_ONE_HUNDRED,
3208	},
3209	{
3210		.procname	= "extfrag_threshold",
3211		.data		= &sysctl_extfrag_threshold,
3212		.maxlen		= sizeof(int),
3213		.mode		= 0644,
3214		.proc_handler	= proc_dointvec_minmax,
3215		.extra1		= SYSCTL_ZERO,
3216		.extra2		= SYSCTL_ONE_THOUSAND,
3217	},
3218	{
3219		.procname	= "compact_unevictable_allowed",
3220		.data		= &sysctl_compact_unevictable_allowed,
3221		.maxlen		= sizeof(int),
3222		.mode		= 0644,
3223		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3224		.extra1		= SYSCTL_ZERO,
3225		.extra2		= SYSCTL_ONE,
3226	},
3227	{ }
3228};
3229
3230static int __init kcompactd_init(void)
3231{
3232	int nid;
3233	int ret;
3234
3235	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3236					"mm/compaction:online",
3237					kcompactd_cpu_online, NULL);
3238	if (ret < 0) {
3239		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3240		return ret;
3241	}
3242
3243	for_each_node_state(nid, N_MEMORY)
3244		kcompactd_run(nid);
3245	register_sysctl_init("vm", vm_compaction);
3246	return 0;
3247}
3248subsys_initcall(kcompactd_init)
3249
3250#endif /* CONFIG_COMPACTION */
3251