xref: /kernel/linux/linux-6.6/lib/math/rational.c (revision 62306a36)
162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * rational fractions
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
662306a36Sopenharmony_ci * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
762306a36Sopenharmony_ci *
862306a36Sopenharmony_ci * helper functions when coping with rational numbers
962306a36Sopenharmony_ci */
1062306a36Sopenharmony_ci
1162306a36Sopenharmony_ci#include <linux/rational.h>
1262306a36Sopenharmony_ci#include <linux/compiler.h>
1362306a36Sopenharmony_ci#include <linux/export.h>
1462306a36Sopenharmony_ci#include <linux/minmax.h>
1562306a36Sopenharmony_ci#include <linux/limits.h>
1662306a36Sopenharmony_ci#include <linux/module.h>
1762306a36Sopenharmony_ci
1862306a36Sopenharmony_ci/*
1962306a36Sopenharmony_ci * calculate best rational approximation for a given fraction
2062306a36Sopenharmony_ci * taking into account restricted register size, e.g. to find
2162306a36Sopenharmony_ci * appropriate values for a pll with 5 bit denominator and
2262306a36Sopenharmony_ci * 8 bit numerator register fields, trying to set up with a
2362306a36Sopenharmony_ci * frequency ratio of 3.1415, one would say:
2462306a36Sopenharmony_ci *
2562306a36Sopenharmony_ci * rational_best_approximation(31415, 10000,
2662306a36Sopenharmony_ci *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
2762306a36Sopenharmony_ci *
2862306a36Sopenharmony_ci * you may look at given_numerator as a fixed point number,
2962306a36Sopenharmony_ci * with the fractional part size described in given_denominator.
3062306a36Sopenharmony_ci *
3162306a36Sopenharmony_ci * for theoretical background, see:
3262306a36Sopenharmony_ci * https://en.wikipedia.org/wiki/Continued_fraction
3362306a36Sopenharmony_ci */
3462306a36Sopenharmony_ci
3562306a36Sopenharmony_civoid rational_best_approximation(
3662306a36Sopenharmony_ci	unsigned long given_numerator, unsigned long given_denominator,
3762306a36Sopenharmony_ci	unsigned long max_numerator, unsigned long max_denominator,
3862306a36Sopenharmony_ci	unsigned long *best_numerator, unsigned long *best_denominator)
3962306a36Sopenharmony_ci{
4062306a36Sopenharmony_ci	/* n/d is the starting rational, which is continually
4162306a36Sopenharmony_ci	 * decreased each iteration using the Euclidean algorithm.
4262306a36Sopenharmony_ci	 *
4362306a36Sopenharmony_ci	 * dp is the value of d from the prior iteration.
4462306a36Sopenharmony_ci	 *
4562306a36Sopenharmony_ci	 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
4662306a36Sopenharmony_ci	 * approximations of the rational.  They are, respectively,
4762306a36Sopenharmony_ci	 * the current, previous, and two prior iterations of it.
4862306a36Sopenharmony_ci	 *
4962306a36Sopenharmony_ci	 * a is current term of the continued fraction.
5062306a36Sopenharmony_ci	 */
5162306a36Sopenharmony_ci	unsigned long n, d, n0, d0, n1, d1, n2, d2;
5262306a36Sopenharmony_ci	n = given_numerator;
5362306a36Sopenharmony_ci	d = given_denominator;
5462306a36Sopenharmony_ci	n0 = d1 = 0;
5562306a36Sopenharmony_ci	n1 = d0 = 1;
5662306a36Sopenharmony_ci
5762306a36Sopenharmony_ci	for (;;) {
5862306a36Sopenharmony_ci		unsigned long dp, a;
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_ci		if (d == 0)
6162306a36Sopenharmony_ci			break;
6262306a36Sopenharmony_ci		/* Find next term in continued fraction, 'a', via
6362306a36Sopenharmony_ci		 * Euclidean algorithm.
6462306a36Sopenharmony_ci		 */
6562306a36Sopenharmony_ci		dp = d;
6662306a36Sopenharmony_ci		a = n / d;
6762306a36Sopenharmony_ci		d = n % d;
6862306a36Sopenharmony_ci		n = dp;
6962306a36Sopenharmony_ci
7062306a36Sopenharmony_ci		/* Calculate the current rational approximation (aka
7162306a36Sopenharmony_ci		 * convergent), n2/d2, using the term just found and
7262306a36Sopenharmony_ci		 * the two prior approximations.
7362306a36Sopenharmony_ci		 */
7462306a36Sopenharmony_ci		n2 = n0 + a * n1;
7562306a36Sopenharmony_ci		d2 = d0 + a * d1;
7662306a36Sopenharmony_ci
7762306a36Sopenharmony_ci		/* If the current convergent exceeds the maxes, then
7862306a36Sopenharmony_ci		 * return either the previous convergent or the
7962306a36Sopenharmony_ci		 * largest semi-convergent, the final term of which is
8062306a36Sopenharmony_ci		 * found below as 't'.
8162306a36Sopenharmony_ci		 */
8262306a36Sopenharmony_ci		if ((n2 > max_numerator) || (d2 > max_denominator)) {
8362306a36Sopenharmony_ci			unsigned long t = ULONG_MAX;
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ci			if (d1)
8662306a36Sopenharmony_ci				t = (max_denominator - d0) / d1;
8762306a36Sopenharmony_ci			if (n1)
8862306a36Sopenharmony_ci				t = min(t, (max_numerator - n0) / n1);
8962306a36Sopenharmony_ci
9062306a36Sopenharmony_ci			/* This tests if the semi-convergent is closer than the previous
9162306a36Sopenharmony_ci			 * convergent.  If d1 is zero there is no previous convergent as this
9262306a36Sopenharmony_ci			 * is the 1st iteration, so always choose the semi-convergent.
9362306a36Sopenharmony_ci			 */
9462306a36Sopenharmony_ci			if (!d1 || 2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
9562306a36Sopenharmony_ci				n1 = n0 + t * n1;
9662306a36Sopenharmony_ci				d1 = d0 + t * d1;
9762306a36Sopenharmony_ci			}
9862306a36Sopenharmony_ci			break;
9962306a36Sopenharmony_ci		}
10062306a36Sopenharmony_ci		n0 = n1;
10162306a36Sopenharmony_ci		n1 = n2;
10262306a36Sopenharmony_ci		d0 = d1;
10362306a36Sopenharmony_ci		d1 = d2;
10462306a36Sopenharmony_ci	}
10562306a36Sopenharmony_ci	*best_numerator = n1;
10662306a36Sopenharmony_ci	*best_denominator = d1;
10762306a36Sopenharmony_ci}
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ciEXPORT_SYMBOL(rational_best_approximation);
11062306a36Sopenharmony_ci
11162306a36Sopenharmony_ciMODULE_LICENSE("GPL v2");
112