xref: /kernel/linux/linux-6.6/lib/math/div64.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
4 *
5 * Based on former do_div() implementation from asm-parisc/div64.h:
6 *	Copyright (C) 1999 Hewlett-Packard Co
7 *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 *
10 * Generic C version of 64bit/32bit division and modulo, with
11 * 64bit result and 32bit remainder.
12 *
13 * The fast case for (n>>32 == 0) is handled inline by do_div().
14 *
15 * Code generated for this function might be very inefficient
16 * for some CPUs. __div64_32() can be overridden by linking arch-specific
17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
18 * or by defining a preprocessor macro in arch/include/asm/div64.h.
19 */
20
21#include <linux/bitops.h>
22#include <linux/export.h>
23#include <linux/math.h>
24#include <linux/math64.h>
25#include <linux/log2.h>
26
27/* Not needed on 64bit architectures */
28#if BITS_PER_LONG == 32
29
30#ifndef __div64_32
31uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
32{
33	uint64_t rem = *n;
34	uint64_t b = base;
35	uint64_t res, d = 1;
36	uint32_t high = rem >> 32;
37
38	/* Reduce the thing a bit first */
39	res = 0;
40	if (high >= base) {
41		high /= base;
42		res = (uint64_t) high << 32;
43		rem -= (uint64_t) (high*base) << 32;
44	}
45
46	while ((int64_t)b > 0 && b < rem) {
47		b = b+b;
48		d = d+d;
49	}
50
51	do {
52		if (rem >= b) {
53			rem -= b;
54			res += d;
55		}
56		b >>= 1;
57		d >>= 1;
58	} while (d);
59
60	*n = res;
61	return rem;
62}
63EXPORT_SYMBOL(__div64_32);
64#endif
65
66#ifndef div_s64_rem
67s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
68{
69	u64 quotient;
70
71	if (dividend < 0) {
72		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
73		*remainder = -*remainder;
74		if (divisor > 0)
75			quotient = -quotient;
76	} else {
77		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
78		if (divisor < 0)
79			quotient = -quotient;
80	}
81	return quotient;
82}
83EXPORT_SYMBOL(div_s64_rem);
84#endif
85
86/*
87 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
88 * @dividend:	64bit dividend
89 * @divisor:	64bit divisor
90 * @remainder:  64bit remainder
91 *
92 * This implementation is a comparable to algorithm used by div64_u64.
93 * But this operation, which includes math for calculating the remainder,
94 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
95 * systems.
96 */
97#ifndef div64_u64_rem
98u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
99{
100	u32 high = divisor >> 32;
101	u64 quot;
102
103	if (high == 0) {
104		u32 rem32;
105		quot = div_u64_rem(dividend, divisor, &rem32);
106		*remainder = rem32;
107	} else {
108		int n = fls(high);
109		quot = div_u64(dividend >> n, divisor >> n);
110
111		if (quot != 0)
112			quot--;
113
114		*remainder = dividend - quot * divisor;
115		if (*remainder >= divisor) {
116			quot++;
117			*remainder -= divisor;
118		}
119	}
120
121	return quot;
122}
123EXPORT_SYMBOL(div64_u64_rem);
124#endif
125
126/*
127 * div64_u64 - unsigned 64bit divide with 64bit divisor
128 * @dividend:	64bit dividend
129 * @divisor:	64bit divisor
130 *
131 * This implementation is a modified version of the algorithm proposed
132 * by the book 'Hacker's Delight'.  The original source and full proof
133 * can be found here and is available for use without restriction.
134 *
135 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
136 */
137#ifndef div64_u64
138u64 div64_u64(u64 dividend, u64 divisor)
139{
140	u32 high = divisor >> 32;
141	u64 quot;
142
143	if (high == 0) {
144		quot = div_u64(dividend, divisor);
145	} else {
146		int n = fls(high);
147		quot = div_u64(dividend >> n, divisor >> n);
148
149		if (quot != 0)
150			quot--;
151		if ((dividend - quot * divisor) >= divisor)
152			quot++;
153	}
154
155	return quot;
156}
157EXPORT_SYMBOL(div64_u64);
158#endif
159
160#ifndef div64_s64
161s64 div64_s64(s64 dividend, s64 divisor)
162{
163	s64 quot, t;
164
165	quot = div64_u64(abs(dividend), abs(divisor));
166	t = (dividend ^ divisor) >> 63;
167
168	return (quot ^ t) - t;
169}
170EXPORT_SYMBOL(div64_s64);
171#endif
172
173#endif /* BITS_PER_LONG == 32 */
174
175/*
176 * Iterative div/mod for use when dividend is not expected to be much
177 * bigger than divisor.
178 */
179u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
180{
181	return __iter_div_u64_rem(dividend, divisor, remainder);
182}
183EXPORT_SYMBOL(iter_div_u64_rem);
184
185#ifndef mul_u64_u64_div_u64
186u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
187{
188	u64 res = 0, div, rem;
189	int shift;
190
191	/* can a * b overflow ? */
192	if (ilog2(a) + ilog2(b) > 62) {
193		/*
194		 * (b * a) / c is equal to
195		 *
196		 *      (b / c) * a +
197		 *      (b % c) * a / c
198		 *
199		 * if nothing overflows. Can the 1st multiplication
200		 * overflow? Yes, but we do not care: this can only
201		 * happen if the end result can't fit in u64 anyway.
202		 *
203		 * So the code below does
204		 *
205		 *      res = (b / c) * a;
206		 *      b = b % c;
207		 */
208		div = div64_u64_rem(b, c, &rem);
209		res = div * a;
210		b = rem;
211
212		shift = ilog2(a) + ilog2(b) - 62;
213		if (shift > 0) {
214			/* drop precision */
215			b >>= shift;
216			c >>= shift;
217			if (!c)
218				return res;
219		}
220	}
221
222	return res + div64_u64(a * b, c);
223}
224EXPORT_SYMBOL(mul_u64_u64_div_u64);
225#endif
226