xref: /kernel/linux/linux-6.6/lib/crypto/mpi/mpi-mod.c (revision 62306a36)
162306a36Sopenharmony_ci/* mpi-mod.c -  Modular reduction
262306a36Sopenharmony_ci * Copyright (C) 1998, 1999, 2001, 2002, 2003,
362306a36Sopenharmony_ci *               2007  Free Software Foundation, Inc.
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * This file is part of Libgcrypt.
662306a36Sopenharmony_ci */
762306a36Sopenharmony_ci
862306a36Sopenharmony_ci
962306a36Sopenharmony_ci#include "mpi-internal.h"
1062306a36Sopenharmony_ci#include "longlong.h"
1162306a36Sopenharmony_ci
1262306a36Sopenharmony_ci/* Context used with Barrett reduction.  */
1362306a36Sopenharmony_cistruct barrett_ctx_s {
1462306a36Sopenharmony_ci	MPI m;   /* The modulus - may not be modified. */
1562306a36Sopenharmony_ci	int m_copied;   /* If true, M needs to be released.  */
1662306a36Sopenharmony_ci	int k;
1762306a36Sopenharmony_ci	MPI y;
1862306a36Sopenharmony_ci	MPI r1;  /* Helper MPI. */
1962306a36Sopenharmony_ci	MPI r2;  /* Helper MPI. */
2062306a36Sopenharmony_ci	MPI r3;  /* Helper MPI allocated on demand. */
2162306a36Sopenharmony_ci};
2262306a36Sopenharmony_ci
2362306a36Sopenharmony_ci
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_civoid mpi_mod(MPI rem, MPI dividend, MPI divisor)
2662306a36Sopenharmony_ci{
2762306a36Sopenharmony_ci	mpi_fdiv_r(rem, dividend, divisor);
2862306a36Sopenharmony_ci}
2962306a36Sopenharmony_ci
3062306a36Sopenharmony_ci/* This function returns a new context for Barrett based operations on
3162306a36Sopenharmony_ci * the modulus M.  This context needs to be released using
3262306a36Sopenharmony_ci * _gcry_mpi_barrett_free.  If COPY is true M will be transferred to
3362306a36Sopenharmony_ci * the context and the user may change M.  If COPY is false, M may not
3462306a36Sopenharmony_ci * be changed until gcry_mpi_barrett_free has been called.
3562306a36Sopenharmony_ci */
3662306a36Sopenharmony_cimpi_barrett_t mpi_barrett_init(MPI m, int copy)
3762306a36Sopenharmony_ci{
3862306a36Sopenharmony_ci	mpi_barrett_t ctx;
3962306a36Sopenharmony_ci	MPI tmp;
4062306a36Sopenharmony_ci
4162306a36Sopenharmony_ci	mpi_normalize(m);
4262306a36Sopenharmony_ci	ctx = kcalloc(1, sizeof(*ctx), GFP_KERNEL);
4362306a36Sopenharmony_ci	if (!ctx)
4462306a36Sopenharmony_ci		return NULL;
4562306a36Sopenharmony_ci
4662306a36Sopenharmony_ci	if (copy) {
4762306a36Sopenharmony_ci		ctx->m = mpi_copy(m);
4862306a36Sopenharmony_ci		ctx->m_copied = 1;
4962306a36Sopenharmony_ci	} else
5062306a36Sopenharmony_ci		ctx->m = m;
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_ci	ctx->k = mpi_get_nlimbs(m);
5362306a36Sopenharmony_ci	tmp = mpi_alloc(ctx->k + 1);
5462306a36Sopenharmony_ci
5562306a36Sopenharmony_ci	/* Barrett precalculation: y = floor(b^(2k) / m). */
5662306a36Sopenharmony_ci	mpi_set_ui(tmp, 1);
5762306a36Sopenharmony_ci	mpi_lshift_limbs(tmp, 2 * ctx->k);
5862306a36Sopenharmony_ci	mpi_fdiv_q(tmp, tmp, m);
5962306a36Sopenharmony_ci
6062306a36Sopenharmony_ci	ctx->y  = tmp;
6162306a36Sopenharmony_ci	ctx->r1 = mpi_alloc(2 * ctx->k + 1);
6262306a36Sopenharmony_ci	ctx->r2 = mpi_alloc(2 * ctx->k + 1);
6362306a36Sopenharmony_ci
6462306a36Sopenharmony_ci	return ctx;
6562306a36Sopenharmony_ci}
6662306a36Sopenharmony_ci
6762306a36Sopenharmony_civoid mpi_barrett_free(mpi_barrett_t ctx)
6862306a36Sopenharmony_ci{
6962306a36Sopenharmony_ci	if (ctx) {
7062306a36Sopenharmony_ci		mpi_free(ctx->y);
7162306a36Sopenharmony_ci		mpi_free(ctx->r1);
7262306a36Sopenharmony_ci		mpi_free(ctx->r2);
7362306a36Sopenharmony_ci		if (ctx->r3)
7462306a36Sopenharmony_ci			mpi_free(ctx->r3);
7562306a36Sopenharmony_ci		if (ctx->m_copied)
7662306a36Sopenharmony_ci			mpi_free(ctx->m);
7762306a36Sopenharmony_ci		kfree(ctx);
7862306a36Sopenharmony_ci	}
7962306a36Sopenharmony_ci}
8062306a36Sopenharmony_ci
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_ci/* R = X mod M
8362306a36Sopenharmony_ci *
8462306a36Sopenharmony_ci * Using Barrett reduction.  Before using this function
8562306a36Sopenharmony_ci * _gcry_mpi_barrett_init must have been called to do the
8662306a36Sopenharmony_ci * precalculations.  CTX is the context created by this precalculation
8762306a36Sopenharmony_ci * and also conveys M.  If the Barret reduction could no be done a
8862306a36Sopenharmony_ci * straightforward reduction method is used.
8962306a36Sopenharmony_ci *
9062306a36Sopenharmony_ci * We assume that these conditions are met:
9162306a36Sopenharmony_ci * Input:  x =(x_2k-1 ...x_0)_b
9262306a36Sopenharmony_ci *     m =(m_k-1 ....m_0)_b	  with m_k-1 != 0
9362306a36Sopenharmony_ci * Output: r = x mod m
9462306a36Sopenharmony_ci */
9562306a36Sopenharmony_civoid mpi_mod_barrett(MPI r, MPI x, mpi_barrett_t ctx)
9662306a36Sopenharmony_ci{
9762306a36Sopenharmony_ci	MPI m = ctx->m;
9862306a36Sopenharmony_ci	int k = ctx->k;
9962306a36Sopenharmony_ci	MPI y = ctx->y;
10062306a36Sopenharmony_ci	MPI r1 = ctx->r1;
10162306a36Sopenharmony_ci	MPI r2 = ctx->r2;
10262306a36Sopenharmony_ci	int sign;
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_ci	mpi_normalize(x);
10562306a36Sopenharmony_ci	if (mpi_get_nlimbs(x) > 2*k) {
10662306a36Sopenharmony_ci		mpi_mod(r, x, m);
10762306a36Sopenharmony_ci		return;
10862306a36Sopenharmony_ci	}
10962306a36Sopenharmony_ci
11062306a36Sopenharmony_ci	sign = x->sign;
11162306a36Sopenharmony_ci	x->sign = 0;
11262306a36Sopenharmony_ci
11362306a36Sopenharmony_ci	/* 1. q1 = floor( x / b^k-1)
11462306a36Sopenharmony_ci	 *    q2 = q1 * y
11562306a36Sopenharmony_ci	 *    q3 = floor( q2 / b^k+1 )
11662306a36Sopenharmony_ci	 * Actually, we don't need qx, we can work direct on r2
11762306a36Sopenharmony_ci	 */
11862306a36Sopenharmony_ci	mpi_set(r2, x);
11962306a36Sopenharmony_ci	mpi_rshift_limbs(r2, k-1);
12062306a36Sopenharmony_ci	mpi_mul(r2, r2, y);
12162306a36Sopenharmony_ci	mpi_rshift_limbs(r2, k+1);
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci	/* 2. r1 = x mod b^k+1
12462306a36Sopenharmony_ci	 *	r2 = q3 * m mod b^k+1
12562306a36Sopenharmony_ci	 *	r  = r1 - r2
12662306a36Sopenharmony_ci	 * 3. if r < 0 then  r = r + b^k+1
12762306a36Sopenharmony_ci	 */
12862306a36Sopenharmony_ci	mpi_set(r1, x);
12962306a36Sopenharmony_ci	if (r1->nlimbs > k+1) /* Quick modulo operation.  */
13062306a36Sopenharmony_ci		r1->nlimbs = k+1;
13162306a36Sopenharmony_ci	mpi_mul(r2, r2, m);
13262306a36Sopenharmony_ci	if (r2->nlimbs > k+1) /* Quick modulo operation. */
13362306a36Sopenharmony_ci		r2->nlimbs = k+1;
13462306a36Sopenharmony_ci	mpi_sub(r, r1, r2);
13562306a36Sopenharmony_ci
13662306a36Sopenharmony_ci	if (mpi_has_sign(r)) {
13762306a36Sopenharmony_ci		if (!ctx->r3) {
13862306a36Sopenharmony_ci			ctx->r3 = mpi_alloc(k + 2);
13962306a36Sopenharmony_ci			mpi_set_ui(ctx->r3, 1);
14062306a36Sopenharmony_ci			mpi_lshift_limbs(ctx->r3, k + 1);
14162306a36Sopenharmony_ci		}
14262306a36Sopenharmony_ci		mpi_add(r, r, ctx->r3);
14362306a36Sopenharmony_ci	}
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci	/* 4. while r >= m do r = r - m */
14662306a36Sopenharmony_ci	while (mpi_cmp(r, m) >= 0)
14762306a36Sopenharmony_ci		mpi_sub(r, r, m);
14862306a36Sopenharmony_ci
14962306a36Sopenharmony_ci	x->sign = sign;
15062306a36Sopenharmony_ci}
15162306a36Sopenharmony_ci
15262306a36Sopenharmony_ci
15362306a36Sopenharmony_civoid mpi_mul_barrett(MPI w, MPI u, MPI v, mpi_barrett_t ctx)
15462306a36Sopenharmony_ci{
15562306a36Sopenharmony_ci	mpi_mul(w, u, v);
15662306a36Sopenharmony_ci	mpi_mod_barrett(w, w, ctx);
15762306a36Sopenharmony_ci}
158