162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 262306a36Sopenharmony_ci/* 362306a36Sopenharmony_ci * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org> 462306a36Sopenharmony_ci */ 562306a36Sopenharmony_ci 662306a36Sopenharmony_ci#include <crypto/aes.h> 762306a36Sopenharmony_ci#include <linux/crypto.h> 862306a36Sopenharmony_ci#include <linux/module.h> 962306a36Sopenharmony_ci#include <asm/unaligned.h> 1062306a36Sopenharmony_ci 1162306a36Sopenharmony_ci/* 1262306a36Sopenharmony_ci * Emit the sbox as volatile const to prevent the compiler from doing 1362306a36Sopenharmony_ci * constant folding on sbox references involving fixed indexes. 1462306a36Sopenharmony_ci */ 1562306a36Sopenharmony_cistatic volatile const u8 __cacheline_aligned aes_sbox[] = { 1662306a36Sopenharmony_ci 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 1762306a36Sopenharmony_ci 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 1862306a36Sopenharmony_ci 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 1962306a36Sopenharmony_ci 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 2062306a36Sopenharmony_ci 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 2162306a36Sopenharmony_ci 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 2262306a36Sopenharmony_ci 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 2362306a36Sopenharmony_ci 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 2462306a36Sopenharmony_ci 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 2562306a36Sopenharmony_ci 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 2662306a36Sopenharmony_ci 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 2762306a36Sopenharmony_ci 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 2862306a36Sopenharmony_ci 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 2962306a36Sopenharmony_ci 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 3062306a36Sopenharmony_ci 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 3162306a36Sopenharmony_ci 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 3262306a36Sopenharmony_ci 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 3362306a36Sopenharmony_ci 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 3462306a36Sopenharmony_ci 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 3562306a36Sopenharmony_ci 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 3662306a36Sopenharmony_ci 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 3762306a36Sopenharmony_ci 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 3862306a36Sopenharmony_ci 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 3962306a36Sopenharmony_ci 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 4062306a36Sopenharmony_ci 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 4162306a36Sopenharmony_ci 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 4262306a36Sopenharmony_ci 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 4362306a36Sopenharmony_ci 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 4462306a36Sopenharmony_ci 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 4562306a36Sopenharmony_ci 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 4662306a36Sopenharmony_ci 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 4762306a36Sopenharmony_ci 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, 4862306a36Sopenharmony_ci}; 4962306a36Sopenharmony_ci 5062306a36Sopenharmony_cistatic volatile const u8 __cacheline_aligned aes_inv_sbox[] = { 5162306a36Sopenharmony_ci 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 5262306a36Sopenharmony_ci 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 5362306a36Sopenharmony_ci 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 5462306a36Sopenharmony_ci 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 5562306a36Sopenharmony_ci 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 5662306a36Sopenharmony_ci 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 5762306a36Sopenharmony_ci 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 5862306a36Sopenharmony_ci 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 5962306a36Sopenharmony_ci 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 6062306a36Sopenharmony_ci 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 6162306a36Sopenharmony_ci 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 6262306a36Sopenharmony_ci 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 6362306a36Sopenharmony_ci 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 6462306a36Sopenharmony_ci 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 6562306a36Sopenharmony_ci 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 6662306a36Sopenharmony_ci 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 6762306a36Sopenharmony_ci 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 6862306a36Sopenharmony_ci 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 6962306a36Sopenharmony_ci 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 7062306a36Sopenharmony_ci 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 7162306a36Sopenharmony_ci 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 7262306a36Sopenharmony_ci 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 7362306a36Sopenharmony_ci 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 7462306a36Sopenharmony_ci 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 7562306a36Sopenharmony_ci 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 7662306a36Sopenharmony_ci 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 7762306a36Sopenharmony_ci 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 7862306a36Sopenharmony_ci 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 7962306a36Sopenharmony_ci 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 8062306a36Sopenharmony_ci 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 8162306a36Sopenharmony_ci 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 8262306a36Sopenharmony_ci 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, 8362306a36Sopenharmony_ci}; 8462306a36Sopenharmony_ci 8562306a36Sopenharmony_ciextern const u8 crypto_aes_sbox[256] __alias(aes_sbox); 8662306a36Sopenharmony_ciextern const u8 crypto_aes_inv_sbox[256] __alias(aes_inv_sbox); 8762306a36Sopenharmony_ci 8862306a36Sopenharmony_ciEXPORT_SYMBOL(crypto_aes_sbox); 8962306a36Sopenharmony_ciEXPORT_SYMBOL(crypto_aes_inv_sbox); 9062306a36Sopenharmony_ci 9162306a36Sopenharmony_cistatic u32 mul_by_x(u32 w) 9262306a36Sopenharmony_ci{ 9362306a36Sopenharmony_ci u32 x = w & 0x7f7f7f7f; 9462306a36Sopenharmony_ci u32 y = w & 0x80808080; 9562306a36Sopenharmony_ci 9662306a36Sopenharmony_ci /* multiply by polynomial 'x' (0b10) in GF(2^8) */ 9762306a36Sopenharmony_ci return (x << 1) ^ (y >> 7) * 0x1b; 9862306a36Sopenharmony_ci} 9962306a36Sopenharmony_ci 10062306a36Sopenharmony_cistatic u32 mul_by_x2(u32 w) 10162306a36Sopenharmony_ci{ 10262306a36Sopenharmony_ci u32 x = w & 0x3f3f3f3f; 10362306a36Sopenharmony_ci u32 y = w & 0x80808080; 10462306a36Sopenharmony_ci u32 z = w & 0x40404040; 10562306a36Sopenharmony_ci 10662306a36Sopenharmony_ci /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ 10762306a36Sopenharmony_ci return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; 10862306a36Sopenharmony_ci} 10962306a36Sopenharmony_ci 11062306a36Sopenharmony_cistatic u32 mix_columns(u32 x) 11162306a36Sopenharmony_ci{ 11262306a36Sopenharmony_ci /* 11362306a36Sopenharmony_ci * Perform the following matrix multiplication in GF(2^8) 11462306a36Sopenharmony_ci * 11562306a36Sopenharmony_ci * | 0x2 0x3 0x1 0x1 | | x[0] | 11662306a36Sopenharmony_ci * | 0x1 0x2 0x3 0x1 | | x[1] | 11762306a36Sopenharmony_ci * | 0x1 0x1 0x2 0x3 | x | x[2] | 11862306a36Sopenharmony_ci * | 0x3 0x1 0x1 0x2 | | x[3] | 11962306a36Sopenharmony_ci */ 12062306a36Sopenharmony_ci u32 y = mul_by_x(x) ^ ror32(x, 16); 12162306a36Sopenharmony_ci 12262306a36Sopenharmony_ci return y ^ ror32(x ^ y, 8); 12362306a36Sopenharmony_ci} 12462306a36Sopenharmony_ci 12562306a36Sopenharmony_cistatic u32 inv_mix_columns(u32 x) 12662306a36Sopenharmony_ci{ 12762306a36Sopenharmony_ci /* 12862306a36Sopenharmony_ci * Perform the following matrix multiplication in GF(2^8) 12962306a36Sopenharmony_ci * 13062306a36Sopenharmony_ci * | 0xe 0xb 0xd 0x9 | | x[0] | 13162306a36Sopenharmony_ci * | 0x9 0xe 0xb 0xd | | x[1] | 13262306a36Sopenharmony_ci * | 0xd 0x9 0xe 0xb | x | x[2] | 13362306a36Sopenharmony_ci * | 0xb 0xd 0x9 0xe | | x[3] | 13462306a36Sopenharmony_ci * 13562306a36Sopenharmony_ci * which can conveniently be reduced to 13662306a36Sopenharmony_ci * 13762306a36Sopenharmony_ci * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | 13862306a36Sopenharmony_ci * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | 13962306a36Sopenharmony_ci * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | 14062306a36Sopenharmony_ci * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | 14162306a36Sopenharmony_ci */ 14262306a36Sopenharmony_ci u32 y = mul_by_x2(x); 14362306a36Sopenharmony_ci 14462306a36Sopenharmony_ci return mix_columns(x ^ y ^ ror32(y, 16)); 14562306a36Sopenharmony_ci} 14662306a36Sopenharmony_ci 14762306a36Sopenharmony_cistatic __always_inline u32 subshift(u32 in[], int pos) 14862306a36Sopenharmony_ci{ 14962306a36Sopenharmony_ci return (aes_sbox[in[pos] & 0xff]) ^ 15062306a36Sopenharmony_ci (aes_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ 15162306a36Sopenharmony_ci (aes_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ 15262306a36Sopenharmony_ci (aes_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); 15362306a36Sopenharmony_ci} 15462306a36Sopenharmony_ci 15562306a36Sopenharmony_cistatic __always_inline u32 inv_subshift(u32 in[], int pos) 15662306a36Sopenharmony_ci{ 15762306a36Sopenharmony_ci return (aes_inv_sbox[in[pos] & 0xff]) ^ 15862306a36Sopenharmony_ci (aes_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ 15962306a36Sopenharmony_ci (aes_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ 16062306a36Sopenharmony_ci (aes_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); 16162306a36Sopenharmony_ci} 16262306a36Sopenharmony_ci 16362306a36Sopenharmony_cistatic u32 subw(u32 in) 16462306a36Sopenharmony_ci{ 16562306a36Sopenharmony_ci return (aes_sbox[in & 0xff]) ^ 16662306a36Sopenharmony_ci (aes_sbox[(in >> 8) & 0xff] << 8) ^ 16762306a36Sopenharmony_ci (aes_sbox[(in >> 16) & 0xff] << 16) ^ 16862306a36Sopenharmony_ci (aes_sbox[(in >> 24) & 0xff] << 24); 16962306a36Sopenharmony_ci} 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ci/** 17262306a36Sopenharmony_ci * aes_expandkey - Expands the AES key as described in FIPS-197 17362306a36Sopenharmony_ci * @ctx: The location where the computed key will be stored. 17462306a36Sopenharmony_ci * @in_key: The supplied key. 17562306a36Sopenharmony_ci * @key_len: The length of the supplied key. 17662306a36Sopenharmony_ci * 17762306a36Sopenharmony_ci * Returns 0 on success. The function fails only if an invalid key size (or 17862306a36Sopenharmony_ci * pointer) is supplied. 17962306a36Sopenharmony_ci * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes 18062306a36Sopenharmony_ci * key schedule plus a 16 bytes key which is used before the first round). 18162306a36Sopenharmony_ci * The decryption key is prepared for the "Equivalent Inverse Cipher" as 18262306a36Sopenharmony_ci * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is 18362306a36Sopenharmony_ci * for the initial combination, the second slot for the first round and so on. 18462306a36Sopenharmony_ci */ 18562306a36Sopenharmony_ciint aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, 18662306a36Sopenharmony_ci unsigned int key_len) 18762306a36Sopenharmony_ci{ 18862306a36Sopenharmony_ci u32 kwords = key_len / sizeof(u32); 18962306a36Sopenharmony_ci u32 rc, i, j; 19062306a36Sopenharmony_ci int err; 19162306a36Sopenharmony_ci 19262306a36Sopenharmony_ci err = aes_check_keylen(key_len); 19362306a36Sopenharmony_ci if (err) 19462306a36Sopenharmony_ci return err; 19562306a36Sopenharmony_ci 19662306a36Sopenharmony_ci ctx->key_length = key_len; 19762306a36Sopenharmony_ci 19862306a36Sopenharmony_ci for (i = 0; i < kwords; i++) 19962306a36Sopenharmony_ci ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); 20062306a36Sopenharmony_ci 20162306a36Sopenharmony_ci for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { 20262306a36Sopenharmony_ci u32 *rki = ctx->key_enc + (i * kwords); 20362306a36Sopenharmony_ci u32 *rko = rki + kwords; 20462306a36Sopenharmony_ci 20562306a36Sopenharmony_ci rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; 20662306a36Sopenharmony_ci rko[1] = rko[0] ^ rki[1]; 20762306a36Sopenharmony_ci rko[2] = rko[1] ^ rki[2]; 20862306a36Sopenharmony_ci rko[3] = rko[2] ^ rki[3]; 20962306a36Sopenharmony_ci 21062306a36Sopenharmony_ci if (key_len == AES_KEYSIZE_192) { 21162306a36Sopenharmony_ci if (i >= 7) 21262306a36Sopenharmony_ci break; 21362306a36Sopenharmony_ci rko[4] = rko[3] ^ rki[4]; 21462306a36Sopenharmony_ci rko[5] = rko[4] ^ rki[5]; 21562306a36Sopenharmony_ci } else if (key_len == AES_KEYSIZE_256) { 21662306a36Sopenharmony_ci if (i >= 6) 21762306a36Sopenharmony_ci break; 21862306a36Sopenharmony_ci rko[4] = subw(rko[3]) ^ rki[4]; 21962306a36Sopenharmony_ci rko[5] = rko[4] ^ rki[5]; 22062306a36Sopenharmony_ci rko[6] = rko[5] ^ rki[6]; 22162306a36Sopenharmony_ci rko[7] = rko[6] ^ rki[7]; 22262306a36Sopenharmony_ci } 22362306a36Sopenharmony_ci } 22462306a36Sopenharmony_ci 22562306a36Sopenharmony_ci /* 22662306a36Sopenharmony_ci * Generate the decryption keys for the Equivalent Inverse Cipher. 22762306a36Sopenharmony_ci * This involves reversing the order of the round keys, and applying 22862306a36Sopenharmony_ci * the Inverse Mix Columns transformation to all but the first and 22962306a36Sopenharmony_ci * the last one. 23062306a36Sopenharmony_ci */ 23162306a36Sopenharmony_ci ctx->key_dec[0] = ctx->key_enc[key_len + 24]; 23262306a36Sopenharmony_ci ctx->key_dec[1] = ctx->key_enc[key_len + 25]; 23362306a36Sopenharmony_ci ctx->key_dec[2] = ctx->key_enc[key_len + 26]; 23462306a36Sopenharmony_ci ctx->key_dec[3] = ctx->key_enc[key_len + 27]; 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { 23762306a36Sopenharmony_ci ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); 23862306a36Sopenharmony_ci ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); 23962306a36Sopenharmony_ci ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); 24062306a36Sopenharmony_ci ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); 24162306a36Sopenharmony_ci } 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ci ctx->key_dec[i] = ctx->key_enc[0]; 24462306a36Sopenharmony_ci ctx->key_dec[i + 1] = ctx->key_enc[1]; 24562306a36Sopenharmony_ci ctx->key_dec[i + 2] = ctx->key_enc[2]; 24662306a36Sopenharmony_ci ctx->key_dec[i + 3] = ctx->key_enc[3]; 24762306a36Sopenharmony_ci 24862306a36Sopenharmony_ci return 0; 24962306a36Sopenharmony_ci} 25062306a36Sopenharmony_ciEXPORT_SYMBOL(aes_expandkey); 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci/** 25362306a36Sopenharmony_ci * aes_encrypt - Encrypt a single AES block 25462306a36Sopenharmony_ci * @ctx: Context struct containing the key schedule 25562306a36Sopenharmony_ci * @out: Buffer to store the ciphertext 25662306a36Sopenharmony_ci * @in: Buffer containing the plaintext 25762306a36Sopenharmony_ci */ 25862306a36Sopenharmony_civoid aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) 25962306a36Sopenharmony_ci{ 26062306a36Sopenharmony_ci const u32 *rkp = ctx->key_enc + 4; 26162306a36Sopenharmony_ci int rounds = 6 + ctx->key_length / 4; 26262306a36Sopenharmony_ci u32 st0[4], st1[4]; 26362306a36Sopenharmony_ci int round; 26462306a36Sopenharmony_ci 26562306a36Sopenharmony_ci st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); 26662306a36Sopenharmony_ci st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); 26762306a36Sopenharmony_ci st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); 26862306a36Sopenharmony_ci st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); 26962306a36Sopenharmony_ci 27062306a36Sopenharmony_ci /* 27162306a36Sopenharmony_ci * Force the compiler to emit data independent Sbox references, 27262306a36Sopenharmony_ci * by xoring the input with Sbox values that are known to add up 27362306a36Sopenharmony_ci * to zero. This pulls the entire Sbox into the D-cache before any 27462306a36Sopenharmony_ci * data dependent lookups are done. 27562306a36Sopenharmony_ci */ 27662306a36Sopenharmony_ci st0[0] ^= aes_sbox[ 0] ^ aes_sbox[ 64] ^ aes_sbox[134] ^ aes_sbox[195]; 27762306a36Sopenharmony_ci st0[1] ^= aes_sbox[16] ^ aes_sbox[ 82] ^ aes_sbox[158] ^ aes_sbox[221]; 27862306a36Sopenharmony_ci st0[2] ^= aes_sbox[32] ^ aes_sbox[ 96] ^ aes_sbox[160] ^ aes_sbox[234]; 27962306a36Sopenharmony_ci st0[3] ^= aes_sbox[48] ^ aes_sbox[112] ^ aes_sbox[186] ^ aes_sbox[241]; 28062306a36Sopenharmony_ci 28162306a36Sopenharmony_ci for (round = 0;; round += 2, rkp += 8) { 28262306a36Sopenharmony_ci st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; 28362306a36Sopenharmony_ci st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; 28462306a36Sopenharmony_ci st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; 28562306a36Sopenharmony_ci st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; 28662306a36Sopenharmony_ci 28762306a36Sopenharmony_ci if (round == rounds - 2) 28862306a36Sopenharmony_ci break; 28962306a36Sopenharmony_ci 29062306a36Sopenharmony_ci st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; 29162306a36Sopenharmony_ci st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; 29262306a36Sopenharmony_ci st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; 29362306a36Sopenharmony_ci st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; 29462306a36Sopenharmony_ci } 29562306a36Sopenharmony_ci 29662306a36Sopenharmony_ci put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); 29762306a36Sopenharmony_ci put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); 29862306a36Sopenharmony_ci put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); 29962306a36Sopenharmony_ci put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); 30062306a36Sopenharmony_ci} 30162306a36Sopenharmony_ciEXPORT_SYMBOL(aes_encrypt); 30262306a36Sopenharmony_ci 30362306a36Sopenharmony_ci/** 30462306a36Sopenharmony_ci * aes_decrypt - Decrypt a single AES block 30562306a36Sopenharmony_ci * @ctx: Context struct containing the key schedule 30662306a36Sopenharmony_ci * @out: Buffer to store the plaintext 30762306a36Sopenharmony_ci * @in: Buffer containing the ciphertext 30862306a36Sopenharmony_ci */ 30962306a36Sopenharmony_civoid aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) 31062306a36Sopenharmony_ci{ 31162306a36Sopenharmony_ci const u32 *rkp = ctx->key_dec + 4; 31262306a36Sopenharmony_ci int rounds = 6 + ctx->key_length / 4; 31362306a36Sopenharmony_ci u32 st0[4], st1[4]; 31462306a36Sopenharmony_ci int round; 31562306a36Sopenharmony_ci 31662306a36Sopenharmony_ci st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); 31762306a36Sopenharmony_ci st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); 31862306a36Sopenharmony_ci st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); 31962306a36Sopenharmony_ci st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); 32062306a36Sopenharmony_ci 32162306a36Sopenharmony_ci /* 32262306a36Sopenharmony_ci * Force the compiler to emit data independent Sbox references, 32362306a36Sopenharmony_ci * by xoring the input with Sbox values that are known to add up 32462306a36Sopenharmony_ci * to zero. This pulls the entire Sbox into the D-cache before any 32562306a36Sopenharmony_ci * data dependent lookups are done. 32662306a36Sopenharmony_ci */ 32762306a36Sopenharmony_ci st0[0] ^= aes_inv_sbox[ 0] ^ aes_inv_sbox[ 64] ^ aes_inv_sbox[129] ^ aes_inv_sbox[200]; 32862306a36Sopenharmony_ci st0[1] ^= aes_inv_sbox[16] ^ aes_inv_sbox[ 83] ^ aes_inv_sbox[150] ^ aes_inv_sbox[212]; 32962306a36Sopenharmony_ci st0[2] ^= aes_inv_sbox[32] ^ aes_inv_sbox[ 96] ^ aes_inv_sbox[160] ^ aes_inv_sbox[236]; 33062306a36Sopenharmony_ci st0[3] ^= aes_inv_sbox[48] ^ aes_inv_sbox[112] ^ aes_inv_sbox[187] ^ aes_inv_sbox[247]; 33162306a36Sopenharmony_ci 33262306a36Sopenharmony_ci for (round = 0;; round += 2, rkp += 8) { 33362306a36Sopenharmony_ci st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; 33462306a36Sopenharmony_ci st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; 33562306a36Sopenharmony_ci st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; 33662306a36Sopenharmony_ci st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; 33762306a36Sopenharmony_ci 33862306a36Sopenharmony_ci if (round == rounds - 2) 33962306a36Sopenharmony_ci break; 34062306a36Sopenharmony_ci 34162306a36Sopenharmony_ci st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; 34262306a36Sopenharmony_ci st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; 34362306a36Sopenharmony_ci st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; 34462306a36Sopenharmony_ci st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; 34562306a36Sopenharmony_ci } 34662306a36Sopenharmony_ci 34762306a36Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); 34862306a36Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); 34962306a36Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); 35062306a36Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); 35162306a36Sopenharmony_ci} 35262306a36Sopenharmony_ciEXPORT_SYMBOL(aes_decrypt); 35362306a36Sopenharmony_ci 35462306a36Sopenharmony_ciMODULE_DESCRIPTION("Generic AES library"); 35562306a36Sopenharmony_ciMODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); 35662306a36Sopenharmony_ciMODULE_LICENSE("GPL v2"); 357