162306a36Sopenharmony_ci/*
262306a36Sopenharmony_ci * Generic binary BCH encoding/decoding library
362306a36Sopenharmony_ci *
462306a36Sopenharmony_ci * This program is free software; you can redistribute it and/or modify it
562306a36Sopenharmony_ci * under the terms of the GNU General Public License version 2 as published by
662306a36Sopenharmony_ci * the Free Software Foundation.
762306a36Sopenharmony_ci *
862306a36Sopenharmony_ci * This program is distributed in the hope that it will be useful, but WITHOUT
962306a36Sopenharmony_ci * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
1062306a36Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
1162306a36Sopenharmony_ci * more details.
1262306a36Sopenharmony_ci *
1362306a36Sopenharmony_ci * You should have received a copy of the GNU General Public License along with
1462306a36Sopenharmony_ci * this program; if not, write to the Free Software Foundation, Inc., 51
1562306a36Sopenharmony_ci * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
1662306a36Sopenharmony_ci *
1762306a36Sopenharmony_ci * Copyright © 2011 Parrot S.A.
1862306a36Sopenharmony_ci *
1962306a36Sopenharmony_ci * Author: Ivan Djelic <ivan.djelic@parrot.com>
2062306a36Sopenharmony_ci *
2162306a36Sopenharmony_ci * Description:
2262306a36Sopenharmony_ci *
2362306a36Sopenharmony_ci * This library provides runtime configurable encoding/decoding of binary
2462306a36Sopenharmony_ci * Bose-Chaudhuri-Hocquenghem (BCH) codes.
2562306a36Sopenharmony_ci *
2662306a36Sopenharmony_ci * Call bch_init to get a pointer to a newly allocated bch_control structure for
2762306a36Sopenharmony_ci * the given m (Galois field order), t (error correction capability) and
2862306a36Sopenharmony_ci * (optional) primitive polynomial parameters.
2962306a36Sopenharmony_ci *
3062306a36Sopenharmony_ci * Call bch_encode to compute and store ecc parity bytes to a given buffer.
3162306a36Sopenharmony_ci * Call bch_decode to detect and locate errors in received data.
3262306a36Sopenharmony_ci *
3362306a36Sopenharmony_ci * On systems supporting hw BCH features, intermediate results may be provided
3462306a36Sopenharmony_ci * to bch_decode in order to skip certain steps. See bch_decode() documentation
3562306a36Sopenharmony_ci * for details.
3662306a36Sopenharmony_ci *
3762306a36Sopenharmony_ci * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
3862306a36Sopenharmony_ci * parameters m and t; thus allowing extra compiler optimizations and providing
3962306a36Sopenharmony_ci * better (up to 2x) encoding performance. Using this option makes sense when
4062306a36Sopenharmony_ci * (m,t) are fixed and known in advance, e.g. when using BCH error correction
4162306a36Sopenharmony_ci * on a particular NAND flash device.
4262306a36Sopenharmony_ci *
4362306a36Sopenharmony_ci * Algorithmic details:
4462306a36Sopenharmony_ci *
4562306a36Sopenharmony_ci * Encoding is performed by processing 32 input bits in parallel, using 4
4662306a36Sopenharmony_ci * remainder lookup tables.
4762306a36Sopenharmony_ci *
4862306a36Sopenharmony_ci * The final stage of decoding involves the following internal steps:
4962306a36Sopenharmony_ci * a. Syndrome computation
5062306a36Sopenharmony_ci * b. Error locator polynomial computation using Berlekamp-Massey algorithm
5162306a36Sopenharmony_ci * c. Error locator root finding (by far the most expensive step)
5262306a36Sopenharmony_ci *
5362306a36Sopenharmony_ci * In this implementation, step c is not performed using the usual Chien search.
5462306a36Sopenharmony_ci * Instead, an alternative approach described in [1] is used. It consists in
5562306a36Sopenharmony_ci * factoring the error locator polynomial using the Berlekamp Trace algorithm
5662306a36Sopenharmony_ci * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
5762306a36Sopenharmony_ci * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
5862306a36Sopenharmony_ci * much better performance than Chien search for usual (m,t) values (typically
5962306a36Sopenharmony_ci * m >= 13, t < 32, see [1]).
6062306a36Sopenharmony_ci *
6162306a36Sopenharmony_ci * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
6262306a36Sopenharmony_ci * of characteristic 2, in: Western European Workshop on Research in Cryptology
6362306a36Sopenharmony_ci * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
6462306a36Sopenharmony_ci * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
6562306a36Sopenharmony_ci * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
6662306a36Sopenharmony_ci */
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_ci#include <linux/kernel.h>
6962306a36Sopenharmony_ci#include <linux/errno.h>
7062306a36Sopenharmony_ci#include <linux/init.h>
7162306a36Sopenharmony_ci#include <linux/module.h>
7262306a36Sopenharmony_ci#include <linux/slab.h>
7362306a36Sopenharmony_ci#include <linux/bitops.h>
7462306a36Sopenharmony_ci#include <linux/bitrev.h>
7562306a36Sopenharmony_ci#include <asm/byteorder.h>
7662306a36Sopenharmony_ci#include <linux/bch.h>
7762306a36Sopenharmony_ci
7862306a36Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS)
7962306a36Sopenharmony_ci#define GF_M(_p)               (CONFIG_BCH_CONST_M)
8062306a36Sopenharmony_ci#define GF_T(_p)               (CONFIG_BCH_CONST_T)
8162306a36Sopenharmony_ci#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
8262306a36Sopenharmony_ci#define BCH_MAX_M              (CONFIG_BCH_CONST_M)
8362306a36Sopenharmony_ci#define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
8462306a36Sopenharmony_ci#else
8562306a36Sopenharmony_ci#define GF_M(_p)               ((_p)->m)
8662306a36Sopenharmony_ci#define GF_T(_p)               ((_p)->t)
8762306a36Sopenharmony_ci#define GF_N(_p)               ((_p)->n)
8862306a36Sopenharmony_ci#define BCH_MAX_M              15 /* 2KB */
8962306a36Sopenharmony_ci#define BCH_MAX_T              64 /* 64 bit correction */
9062306a36Sopenharmony_ci#endif
9162306a36Sopenharmony_ci
9262306a36Sopenharmony_ci#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
9362306a36Sopenharmony_ci#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
9462306a36Sopenharmony_ci
9562306a36Sopenharmony_ci#define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
9662306a36Sopenharmony_ci
9762306a36Sopenharmony_ci#ifndef dbg
9862306a36Sopenharmony_ci#define dbg(_fmt, args...)     do {} while (0)
9962306a36Sopenharmony_ci#endif
10062306a36Sopenharmony_ci
10162306a36Sopenharmony_ci/*
10262306a36Sopenharmony_ci * represent a polynomial over GF(2^m)
10362306a36Sopenharmony_ci */
10462306a36Sopenharmony_cistruct gf_poly {
10562306a36Sopenharmony_ci	unsigned int deg;    /* polynomial degree */
10662306a36Sopenharmony_ci	unsigned int c[];   /* polynomial terms */
10762306a36Sopenharmony_ci};
10862306a36Sopenharmony_ci
10962306a36Sopenharmony_ci/* given its degree, compute a polynomial size in bytes */
11062306a36Sopenharmony_ci#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
11162306a36Sopenharmony_ci
11262306a36Sopenharmony_ci/* polynomial of degree 1 */
11362306a36Sopenharmony_cistruct gf_poly_deg1 {
11462306a36Sopenharmony_ci	struct gf_poly poly;
11562306a36Sopenharmony_ci	unsigned int   c[2];
11662306a36Sopenharmony_ci};
11762306a36Sopenharmony_ci
11862306a36Sopenharmony_cistatic u8 swap_bits(struct bch_control *bch, u8 in)
11962306a36Sopenharmony_ci{
12062306a36Sopenharmony_ci	if (!bch->swap_bits)
12162306a36Sopenharmony_ci		return in;
12262306a36Sopenharmony_ci
12362306a36Sopenharmony_ci	return bitrev8(in);
12462306a36Sopenharmony_ci}
12562306a36Sopenharmony_ci
12662306a36Sopenharmony_ci/*
12762306a36Sopenharmony_ci * same as bch_encode(), but process input data one byte at a time
12862306a36Sopenharmony_ci */
12962306a36Sopenharmony_cistatic void bch_encode_unaligned(struct bch_control *bch,
13062306a36Sopenharmony_ci				 const unsigned char *data, unsigned int len,
13162306a36Sopenharmony_ci				 uint32_t *ecc)
13262306a36Sopenharmony_ci{
13362306a36Sopenharmony_ci	int i;
13462306a36Sopenharmony_ci	const uint32_t *p;
13562306a36Sopenharmony_ci	const int l = BCH_ECC_WORDS(bch)-1;
13662306a36Sopenharmony_ci
13762306a36Sopenharmony_ci	while (len--) {
13862306a36Sopenharmony_ci		u8 tmp = swap_bits(bch, *data++);
13962306a36Sopenharmony_ci
14062306a36Sopenharmony_ci		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
14162306a36Sopenharmony_ci
14262306a36Sopenharmony_ci		for (i = 0; i < l; i++)
14362306a36Sopenharmony_ci			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
14462306a36Sopenharmony_ci
14562306a36Sopenharmony_ci		ecc[l] = (ecc[l] << 8)^(*p);
14662306a36Sopenharmony_ci	}
14762306a36Sopenharmony_ci}
14862306a36Sopenharmony_ci
14962306a36Sopenharmony_ci/*
15062306a36Sopenharmony_ci * convert ecc bytes to aligned, zero-padded 32-bit ecc words
15162306a36Sopenharmony_ci */
15262306a36Sopenharmony_cistatic void load_ecc8(struct bch_control *bch, uint32_t *dst,
15362306a36Sopenharmony_ci		      const uint8_t *src)
15462306a36Sopenharmony_ci{
15562306a36Sopenharmony_ci	uint8_t pad[4] = {0, 0, 0, 0};
15662306a36Sopenharmony_ci	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
15762306a36Sopenharmony_ci
15862306a36Sopenharmony_ci	for (i = 0; i < nwords; i++, src += 4)
15962306a36Sopenharmony_ci		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
16062306a36Sopenharmony_ci			((u32)swap_bits(bch, src[1]) << 16) |
16162306a36Sopenharmony_ci			((u32)swap_bits(bch, src[2]) << 8) |
16262306a36Sopenharmony_ci			swap_bits(bch, src[3]);
16362306a36Sopenharmony_ci
16462306a36Sopenharmony_ci	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
16562306a36Sopenharmony_ci	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
16662306a36Sopenharmony_ci		((u32)swap_bits(bch, pad[1]) << 16) |
16762306a36Sopenharmony_ci		((u32)swap_bits(bch, pad[2]) << 8) |
16862306a36Sopenharmony_ci		swap_bits(bch, pad[3]);
16962306a36Sopenharmony_ci}
17062306a36Sopenharmony_ci
17162306a36Sopenharmony_ci/*
17262306a36Sopenharmony_ci * convert 32-bit ecc words to ecc bytes
17362306a36Sopenharmony_ci */
17462306a36Sopenharmony_cistatic void store_ecc8(struct bch_control *bch, uint8_t *dst,
17562306a36Sopenharmony_ci		       const uint32_t *src)
17662306a36Sopenharmony_ci{
17762306a36Sopenharmony_ci	uint8_t pad[4];
17862306a36Sopenharmony_ci	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
17962306a36Sopenharmony_ci
18062306a36Sopenharmony_ci	for (i = 0; i < nwords; i++) {
18162306a36Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 24);
18262306a36Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 16);
18362306a36Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 8);
18462306a36Sopenharmony_ci		*dst++ = swap_bits(bch, src[i]);
18562306a36Sopenharmony_ci	}
18662306a36Sopenharmony_ci	pad[0] = swap_bits(bch, src[nwords] >> 24);
18762306a36Sopenharmony_ci	pad[1] = swap_bits(bch, src[nwords] >> 16);
18862306a36Sopenharmony_ci	pad[2] = swap_bits(bch, src[nwords] >> 8);
18962306a36Sopenharmony_ci	pad[3] = swap_bits(bch, src[nwords]);
19062306a36Sopenharmony_ci	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
19162306a36Sopenharmony_ci}
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_ci/**
19462306a36Sopenharmony_ci * bch_encode - calculate BCH ecc parity of data
19562306a36Sopenharmony_ci * @bch:   BCH control structure
19662306a36Sopenharmony_ci * @data:  data to encode
19762306a36Sopenharmony_ci * @len:   data length in bytes
19862306a36Sopenharmony_ci * @ecc:   ecc parity data, must be initialized by caller
19962306a36Sopenharmony_ci *
20062306a36Sopenharmony_ci * The @ecc parity array is used both as input and output parameter, in order to
20162306a36Sopenharmony_ci * allow incremental computations. It should be of the size indicated by member
20262306a36Sopenharmony_ci * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
20362306a36Sopenharmony_ci *
20462306a36Sopenharmony_ci * The exact number of computed ecc parity bits is given by member @ecc_bits of
20562306a36Sopenharmony_ci * @bch; it may be less than m*t for large values of t.
20662306a36Sopenharmony_ci */
20762306a36Sopenharmony_civoid bch_encode(struct bch_control *bch, const uint8_t *data,
20862306a36Sopenharmony_ci		unsigned int len, uint8_t *ecc)
20962306a36Sopenharmony_ci{
21062306a36Sopenharmony_ci	const unsigned int l = BCH_ECC_WORDS(bch)-1;
21162306a36Sopenharmony_ci	unsigned int i, mlen;
21262306a36Sopenharmony_ci	unsigned long m;
21362306a36Sopenharmony_ci	uint32_t w, r[BCH_ECC_MAX_WORDS];
21462306a36Sopenharmony_ci	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
21562306a36Sopenharmony_ci	const uint32_t * const tab0 = bch->mod8_tab;
21662306a36Sopenharmony_ci	const uint32_t * const tab1 = tab0 + 256*(l+1);
21762306a36Sopenharmony_ci	const uint32_t * const tab2 = tab1 + 256*(l+1);
21862306a36Sopenharmony_ci	const uint32_t * const tab3 = tab2 + 256*(l+1);
21962306a36Sopenharmony_ci	const uint32_t *pdata, *p0, *p1, *p2, *p3;
22062306a36Sopenharmony_ci
22162306a36Sopenharmony_ci	if (WARN_ON(r_bytes > sizeof(r)))
22262306a36Sopenharmony_ci		return;
22362306a36Sopenharmony_ci
22462306a36Sopenharmony_ci	if (ecc) {
22562306a36Sopenharmony_ci		/* load ecc parity bytes into internal 32-bit buffer */
22662306a36Sopenharmony_ci		load_ecc8(bch, bch->ecc_buf, ecc);
22762306a36Sopenharmony_ci	} else {
22862306a36Sopenharmony_ci		memset(bch->ecc_buf, 0, r_bytes);
22962306a36Sopenharmony_ci	}
23062306a36Sopenharmony_ci
23162306a36Sopenharmony_ci	/* process first unaligned data bytes */
23262306a36Sopenharmony_ci	m = ((unsigned long)data) & 3;
23362306a36Sopenharmony_ci	if (m) {
23462306a36Sopenharmony_ci		mlen = (len < (4-m)) ? len : 4-m;
23562306a36Sopenharmony_ci		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
23662306a36Sopenharmony_ci		data += mlen;
23762306a36Sopenharmony_ci		len  -= mlen;
23862306a36Sopenharmony_ci	}
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci	/* process 32-bit aligned data words */
24162306a36Sopenharmony_ci	pdata = (uint32_t *)data;
24262306a36Sopenharmony_ci	mlen  = len/4;
24362306a36Sopenharmony_ci	data += 4*mlen;
24462306a36Sopenharmony_ci	len  -= 4*mlen;
24562306a36Sopenharmony_ci	memcpy(r, bch->ecc_buf, r_bytes);
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci	/*
24862306a36Sopenharmony_ci	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
24962306a36Sopenharmony_ci	 *
25062306a36Sopenharmony_ci	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
25162306a36Sopenharmony_ci	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
25262306a36Sopenharmony_ci	 *                               tttttttt  mod g = r0 (precomputed)
25362306a36Sopenharmony_ci	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
25462306a36Sopenharmony_ci	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
25562306a36Sopenharmony_ci	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
25662306a36Sopenharmony_ci	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
25762306a36Sopenharmony_ci	 */
25862306a36Sopenharmony_ci	while (mlen--) {
25962306a36Sopenharmony_ci		/* input data is read in big-endian format */
26062306a36Sopenharmony_ci		w = cpu_to_be32(*pdata++);
26162306a36Sopenharmony_ci		if (bch->swap_bits)
26262306a36Sopenharmony_ci			w = (u32)swap_bits(bch, w) |
26362306a36Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 8) << 8) |
26462306a36Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 16) << 16) |
26562306a36Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 24) << 24);
26662306a36Sopenharmony_ci		w ^= r[0];
26762306a36Sopenharmony_ci		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
26862306a36Sopenharmony_ci		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
26962306a36Sopenharmony_ci		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
27062306a36Sopenharmony_ci		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
27162306a36Sopenharmony_ci
27262306a36Sopenharmony_ci		for (i = 0; i < l; i++)
27362306a36Sopenharmony_ci			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
27462306a36Sopenharmony_ci
27562306a36Sopenharmony_ci		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
27662306a36Sopenharmony_ci	}
27762306a36Sopenharmony_ci	memcpy(bch->ecc_buf, r, r_bytes);
27862306a36Sopenharmony_ci
27962306a36Sopenharmony_ci	/* process last unaligned bytes */
28062306a36Sopenharmony_ci	if (len)
28162306a36Sopenharmony_ci		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
28262306a36Sopenharmony_ci
28362306a36Sopenharmony_ci	/* store ecc parity bytes into original parity buffer */
28462306a36Sopenharmony_ci	if (ecc)
28562306a36Sopenharmony_ci		store_ecc8(bch, ecc, bch->ecc_buf);
28662306a36Sopenharmony_ci}
28762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_encode);
28862306a36Sopenharmony_ci
28962306a36Sopenharmony_cistatic inline int modulo(struct bch_control *bch, unsigned int v)
29062306a36Sopenharmony_ci{
29162306a36Sopenharmony_ci	const unsigned int n = GF_N(bch);
29262306a36Sopenharmony_ci	while (v >= n) {
29362306a36Sopenharmony_ci		v -= n;
29462306a36Sopenharmony_ci		v = (v & n) + (v >> GF_M(bch));
29562306a36Sopenharmony_ci	}
29662306a36Sopenharmony_ci	return v;
29762306a36Sopenharmony_ci}
29862306a36Sopenharmony_ci
29962306a36Sopenharmony_ci/*
30062306a36Sopenharmony_ci * shorter and faster modulo function, only works when v < 2N.
30162306a36Sopenharmony_ci */
30262306a36Sopenharmony_cistatic inline int mod_s(struct bch_control *bch, unsigned int v)
30362306a36Sopenharmony_ci{
30462306a36Sopenharmony_ci	const unsigned int n = GF_N(bch);
30562306a36Sopenharmony_ci	return (v < n) ? v : v-n;
30662306a36Sopenharmony_ci}
30762306a36Sopenharmony_ci
30862306a36Sopenharmony_cistatic inline int deg(unsigned int poly)
30962306a36Sopenharmony_ci{
31062306a36Sopenharmony_ci	/* polynomial degree is the most-significant bit index */
31162306a36Sopenharmony_ci	return fls(poly)-1;
31262306a36Sopenharmony_ci}
31362306a36Sopenharmony_ci
31462306a36Sopenharmony_cistatic inline int parity(unsigned int x)
31562306a36Sopenharmony_ci{
31662306a36Sopenharmony_ci	/*
31762306a36Sopenharmony_ci	 * public domain code snippet, lifted from
31862306a36Sopenharmony_ci	 * http://www-graphics.stanford.edu/~seander/bithacks.html
31962306a36Sopenharmony_ci	 */
32062306a36Sopenharmony_ci	x ^= x >> 1;
32162306a36Sopenharmony_ci	x ^= x >> 2;
32262306a36Sopenharmony_ci	x = (x & 0x11111111U) * 0x11111111U;
32362306a36Sopenharmony_ci	return (x >> 28) & 1;
32462306a36Sopenharmony_ci}
32562306a36Sopenharmony_ci
32662306a36Sopenharmony_ci/* Galois field basic operations: multiply, divide, inverse, etc. */
32762306a36Sopenharmony_ci
32862306a36Sopenharmony_cistatic inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
32962306a36Sopenharmony_ci				  unsigned int b)
33062306a36Sopenharmony_ci{
33162306a36Sopenharmony_ci	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
33262306a36Sopenharmony_ci					       bch->a_log_tab[b])] : 0;
33362306a36Sopenharmony_ci}
33462306a36Sopenharmony_ci
33562306a36Sopenharmony_cistatic inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
33662306a36Sopenharmony_ci{
33762306a36Sopenharmony_ci	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
33862306a36Sopenharmony_ci}
33962306a36Sopenharmony_ci
34062306a36Sopenharmony_cistatic inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
34162306a36Sopenharmony_ci				  unsigned int b)
34262306a36Sopenharmony_ci{
34362306a36Sopenharmony_ci	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
34462306a36Sopenharmony_ci					GF_N(bch)-bch->a_log_tab[b])] : 0;
34562306a36Sopenharmony_ci}
34662306a36Sopenharmony_ci
34762306a36Sopenharmony_cistatic inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
34862306a36Sopenharmony_ci{
34962306a36Sopenharmony_ci	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
35062306a36Sopenharmony_ci}
35162306a36Sopenharmony_ci
35262306a36Sopenharmony_cistatic inline unsigned int a_pow(struct bch_control *bch, int i)
35362306a36Sopenharmony_ci{
35462306a36Sopenharmony_ci	return bch->a_pow_tab[modulo(bch, i)];
35562306a36Sopenharmony_ci}
35662306a36Sopenharmony_ci
35762306a36Sopenharmony_cistatic inline int a_log(struct bch_control *bch, unsigned int x)
35862306a36Sopenharmony_ci{
35962306a36Sopenharmony_ci	return bch->a_log_tab[x];
36062306a36Sopenharmony_ci}
36162306a36Sopenharmony_ci
36262306a36Sopenharmony_cistatic inline int a_ilog(struct bch_control *bch, unsigned int x)
36362306a36Sopenharmony_ci{
36462306a36Sopenharmony_ci	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
36562306a36Sopenharmony_ci}
36662306a36Sopenharmony_ci
36762306a36Sopenharmony_ci/*
36862306a36Sopenharmony_ci * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
36962306a36Sopenharmony_ci */
37062306a36Sopenharmony_cistatic void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
37162306a36Sopenharmony_ci			      unsigned int *syn)
37262306a36Sopenharmony_ci{
37362306a36Sopenharmony_ci	int i, j, s;
37462306a36Sopenharmony_ci	unsigned int m;
37562306a36Sopenharmony_ci	uint32_t poly;
37662306a36Sopenharmony_ci	const int t = GF_T(bch);
37762306a36Sopenharmony_ci
37862306a36Sopenharmony_ci	s = bch->ecc_bits;
37962306a36Sopenharmony_ci
38062306a36Sopenharmony_ci	/* make sure extra bits in last ecc word are cleared */
38162306a36Sopenharmony_ci	m = ((unsigned int)s) & 31;
38262306a36Sopenharmony_ci	if (m)
38362306a36Sopenharmony_ci		ecc[s/32] &= ~((1u << (32-m))-1);
38462306a36Sopenharmony_ci	memset(syn, 0, 2*t*sizeof(*syn));
38562306a36Sopenharmony_ci
38662306a36Sopenharmony_ci	/* compute v(a^j) for j=1 .. 2t-1 */
38762306a36Sopenharmony_ci	do {
38862306a36Sopenharmony_ci		poly = *ecc++;
38962306a36Sopenharmony_ci		s -= 32;
39062306a36Sopenharmony_ci		while (poly) {
39162306a36Sopenharmony_ci			i = deg(poly);
39262306a36Sopenharmony_ci			for (j = 0; j < 2*t; j += 2)
39362306a36Sopenharmony_ci				syn[j] ^= a_pow(bch, (j+1)*(i+s));
39462306a36Sopenharmony_ci
39562306a36Sopenharmony_ci			poly ^= (1 << i);
39662306a36Sopenharmony_ci		}
39762306a36Sopenharmony_ci	} while (s > 0);
39862306a36Sopenharmony_ci
39962306a36Sopenharmony_ci	/* v(a^(2j)) = v(a^j)^2 */
40062306a36Sopenharmony_ci	for (j = 0; j < t; j++)
40162306a36Sopenharmony_ci		syn[2*j+1] = gf_sqr(bch, syn[j]);
40262306a36Sopenharmony_ci}
40362306a36Sopenharmony_ci
40462306a36Sopenharmony_cistatic void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
40562306a36Sopenharmony_ci{
40662306a36Sopenharmony_ci	memcpy(dst, src, GF_POLY_SZ(src->deg));
40762306a36Sopenharmony_ci}
40862306a36Sopenharmony_ci
40962306a36Sopenharmony_cistatic int compute_error_locator_polynomial(struct bch_control *bch,
41062306a36Sopenharmony_ci					    const unsigned int *syn)
41162306a36Sopenharmony_ci{
41262306a36Sopenharmony_ci	const unsigned int t = GF_T(bch);
41362306a36Sopenharmony_ci	const unsigned int n = GF_N(bch);
41462306a36Sopenharmony_ci	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
41562306a36Sopenharmony_ci	struct gf_poly *elp = bch->elp;
41662306a36Sopenharmony_ci	struct gf_poly *pelp = bch->poly_2t[0];
41762306a36Sopenharmony_ci	struct gf_poly *elp_copy = bch->poly_2t[1];
41862306a36Sopenharmony_ci	int k, pp = -1;
41962306a36Sopenharmony_ci
42062306a36Sopenharmony_ci	memset(pelp, 0, GF_POLY_SZ(2*t));
42162306a36Sopenharmony_ci	memset(elp, 0, GF_POLY_SZ(2*t));
42262306a36Sopenharmony_ci
42362306a36Sopenharmony_ci	pelp->deg = 0;
42462306a36Sopenharmony_ci	pelp->c[0] = 1;
42562306a36Sopenharmony_ci	elp->deg = 0;
42662306a36Sopenharmony_ci	elp->c[0] = 1;
42762306a36Sopenharmony_ci
42862306a36Sopenharmony_ci	/* use simplified binary Berlekamp-Massey algorithm */
42962306a36Sopenharmony_ci	for (i = 0; (i < t) && (elp->deg <= t); i++) {
43062306a36Sopenharmony_ci		if (d) {
43162306a36Sopenharmony_ci			k = 2*i-pp;
43262306a36Sopenharmony_ci			gf_poly_copy(elp_copy, elp);
43362306a36Sopenharmony_ci			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
43462306a36Sopenharmony_ci			tmp = a_log(bch, d)+n-a_log(bch, pd);
43562306a36Sopenharmony_ci			for (j = 0; j <= pelp->deg; j++) {
43662306a36Sopenharmony_ci				if (pelp->c[j]) {
43762306a36Sopenharmony_ci					l = a_log(bch, pelp->c[j]);
43862306a36Sopenharmony_ci					elp->c[j+k] ^= a_pow(bch, tmp+l);
43962306a36Sopenharmony_ci				}
44062306a36Sopenharmony_ci			}
44162306a36Sopenharmony_ci			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
44262306a36Sopenharmony_ci			tmp = pelp->deg+k;
44362306a36Sopenharmony_ci			if (tmp > elp->deg) {
44462306a36Sopenharmony_ci				elp->deg = tmp;
44562306a36Sopenharmony_ci				gf_poly_copy(pelp, elp_copy);
44662306a36Sopenharmony_ci				pd = d;
44762306a36Sopenharmony_ci				pp = 2*i;
44862306a36Sopenharmony_ci			}
44962306a36Sopenharmony_ci		}
45062306a36Sopenharmony_ci		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
45162306a36Sopenharmony_ci		if (i < t-1) {
45262306a36Sopenharmony_ci			d = syn[2*i+2];
45362306a36Sopenharmony_ci			for (j = 1; j <= elp->deg; j++)
45462306a36Sopenharmony_ci				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
45562306a36Sopenharmony_ci		}
45662306a36Sopenharmony_ci	}
45762306a36Sopenharmony_ci	dbg("elp=%s\n", gf_poly_str(elp));
45862306a36Sopenharmony_ci	return (elp->deg > t) ? -1 : (int)elp->deg;
45962306a36Sopenharmony_ci}
46062306a36Sopenharmony_ci
46162306a36Sopenharmony_ci/*
46262306a36Sopenharmony_ci * solve a m x m linear system in GF(2) with an expected number of solutions,
46362306a36Sopenharmony_ci * and return the number of found solutions
46462306a36Sopenharmony_ci */
46562306a36Sopenharmony_cistatic int solve_linear_system(struct bch_control *bch, unsigned int *rows,
46662306a36Sopenharmony_ci			       unsigned int *sol, int nsol)
46762306a36Sopenharmony_ci{
46862306a36Sopenharmony_ci	const int m = GF_M(bch);
46962306a36Sopenharmony_ci	unsigned int tmp, mask;
47062306a36Sopenharmony_ci	int rem, c, r, p, k, param[BCH_MAX_M];
47162306a36Sopenharmony_ci
47262306a36Sopenharmony_ci	k = 0;
47362306a36Sopenharmony_ci	mask = 1 << m;
47462306a36Sopenharmony_ci
47562306a36Sopenharmony_ci	/* Gaussian elimination */
47662306a36Sopenharmony_ci	for (c = 0; c < m; c++) {
47762306a36Sopenharmony_ci		rem = 0;
47862306a36Sopenharmony_ci		p = c-k;
47962306a36Sopenharmony_ci		/* find suitable row for elimination */
48062306a36Sopenharmony_ci		for (r = p; r < m; r++) {
48162306a36Sopenharmony_ci			if (rows[r] & mask) {
48262306a36Sopenharmony_ci				if (r != p) {
48362306a36Sopenharmony_ci					tmp = rows[r];
48462306a36Sopenharmony_ci					rows[r] = rows[p];
48562306a36Sopenharmony_ci					rows[p] = tmp;
48662306a36Sopenharmony_ci				}
48762306a36Sopenharmony_ci				rem = r+1;
48862306a36Sopenharmony_ci				break;
48962306a36Sopenharmony_ci			}
49062306a36Sopenharmony_ci		}
49162306a36Sopenharmony_ci		if (rem) {
49262306a36Sopenharmony_ci			/* perform elimination on remaining rows */
49362306a36Sopenharmony_ci			tmp = rows[p];
49462306a36Sopenharmony_ci			for (r = rem; r < m; r++) {
49562306a36Sopenharmony_ci				if (rows[r] & mask)
49662306a36Sopenharmony_ci					rows[r] ^= tmp;
49762306a36Sopenharmony_ci			}
49862306a36Sopenharmony_ci		} else {
49962306a36Sopenharmony_ci			/* elimination not needed, store defective row index */
50062306a36Sopenharmony_ci			param[k++] = c;
50162306a36Sopenharmony_ci		}
50262306a36Sopenharmony_ci		mask >>= 1;
50362306a36Sopenharmony_ci	}
50462306a36Sopenharmony_ci	/* rewrite system, inserting fake parameter rows */
50562306a36Sopenharmony_ci	if (k > 0) {
50662306a36Sopenharmony_ci		p = k;
50762306a36Sopenharmony_ci		for (r = m-1; r >= 0; r--) {
50862306a36Sopenharmony_ci			if ((r > m-1-k) && rows[r])
50962306a36Sopenharmony_ci				/* system has no solution */
51062306a36Sopenharmony_ci				return 0;
51162306a36Sopenharmony_ci
51262306a36Sopenharmony_ci			rows[r] = (p && (r == param[p-1])) ?
51362306a36Sopenharmony_ci				p--, 1u << (m-r) : rows[r-p];
51462306a36Sopenharmony_ci		}
51562306a36Sopenharmony_ci	}
51662306a36Sopenharmony_ci
51762306a36Sopenharmony_ci	if (nsol != (1 << k))
51862306a36Sopenharmony_ci		/* unexpected number of solutions */
51962306a36Sopenharmony_ci		return 0;
52062306a36Sopenharmony_ci
52162306a36Sopenharmony_ci	for (p = 0; p < nsol; p++) {
52262306a36Sopenharmony_ci		/* set parameters for p-th solution */
52362306a36Sopenharmony_ci		for (c = 0; c < k; c++)
52462306a36Sopenharmony_ci			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
52562306a36Sopenharmony_ci
52662306a36Sopenharmony_ci		/* compute unique solution */
52762306a36Sopenharmony_ci		tmp = 0;
52862306a36Sopenharmony_ci		for (r = m-1; r >= 0; r--) {
52962306a36Sopenharmony_ci			mask = rows[r] & (tmp|1);
53062306a36Sopenharmony_ci			tmp |= parity(mask) << (m-r);
53162306a36Sopenharmony_ci		}
53262306a36Sopenharmony_ci		sol[p] = tmp >> 1;
53362306a36Sopenharmony_ci	}
53462306a36Sopenharmony_ci	return nsol;
53562306a36Sopenharmony_ci}
53662306a36Sopenharmony_ci
53762306a36Sopenharmony_ci/*
53862306a36Sopenharmony_ci * this function builds and solves a linear system for finding roots of a degree
53962306a36Sopenharmony_ci * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
54062306a36Sopenharmony_ci */
54162306a36Sopenharmony_cistatic int find_affine4_roots(struct bch_control *bch, unsigned int a,
54262306a36Sopenharmony_ci			      unsigned int b, unsigned int c,
54362306a36Sopenharmony_ci			      unsigned int *roots)
54462306a36Sopenharmony_ci{
54562306a36Sopenharmony_ci	int i, j, k;
54662306a36Sopenharmony_ci	const int m = GF_M(bch);
54762306a36Sopenharmony_ci	unsigned int mask = 0xff, t, rows[16] = {0,};
54862306a36Sopenharmony_ci
54962306a36Sopenharmony_ci	j = a_log(bch, b);
55062306a36Sopenharmony_ci	k = a_log(bch, a);
55162306a36Sopenharmony_ci	rows[0] = c;
55262306a36Sopenharmony_ci
55362306a36Sopenharmony_ci	/* build linear system to solve X^4+aX^2+bX+c = 0 */
55462306a36Sopenharmony_ci	for (i = 0; i < m; i++) {
55562306a36Sopenharmony_ci		rows[i+1] = bch->a_pow_tab[4*i]^
55662306a36Sopenharmony_ci			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
55762306a36Sopenharmony_ci			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
55862306a36Sopenharmony_ci		j++;
55962306a36Sopenharmony_ci		k += 2;
56062306a36Sopenharmony_ci	}
56162306a36Sopenharmony_ci	/*
56262306a36Sopenharmony_ci	 * transpose 16x16 matrix before passing it to linear solver
56362306a36Sopenharmony_ci	 * warning: this code assumes m < 16
56462306a36Sopenharmony_ci	 */
56562306a36Sopenharmony_ci	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
56662306a36Sopenharmony_ci		for (k = 0; k < 16; k = (k+j+1) & ~j) {
56762306a36Sopenharmony_ci			t = ((rows[k] >> j)^rows[k+j]) & mask;
56862306a36Sopenharmony_ci			rows[k] ^= (t << j);
56962306a36Sopenharmony_ci			rows[k+j] ^= t;
57062306a36Sopenharmony_ci		}
57162306a36Sopenharmony_ci	}
57262306a36Sopenharmony_ci	return solve_linear_system(bch, rows, roots, 4);
57362306a36Sopenharmony_ci}
57462306a36Sopenharmony_ci
57562306a36Sopenharmony_ci/*
57662306a36Sopenharmony_ci * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
57762306a36Sopenharmony_ci */
57862306a36Sopenharmony_cistatic int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
57962306a36Sopenharmony_ci				unsigned int *roots)
58062306a36Sopenharmony_ci{
58162306a36Sopenharmony_ci	int n = 0;
58262306a36Sopenharmony_ci
58362306a36Sopenharmony_ci	if (poly->c[0])
58462306a36Sopenharmony_ci		/* poly[X] = bX+c with c!=0, root=c/b */
58562306a36Sopenharmony_ci		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
58662306a36Sopenharmony_ci				   bch->a_log_tab[poly->c[1]]);
58762306a36Sopenharmony_ci	return n;
58862306a36Sopenharmony_ci}
58962306a36Sopenharmony_ci
59062306a36Sopenharmony_ci/*
59162306a36Sopenharmony_ci * compute roots of a degree 2 polynomial over GF(2^m)
59262306a36Sopenharmony_ci */
59362306a36Sopenharmony_cistatic int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
59462306a36Sopenharmony_ci				unsigned int *roots)
59562306a36Sopenharmony_ci{
59662306a36Sopenharmony_ci	int n = 0, i, l0, l1, l2;
59762306a36Sopenharmony_ci	unsigned int u, v, r;
59862306a36Sopenharmony_ci
59962306a36Sopenharmony_ci	if (poly->c[0] && poly->c[1]) {
60062306a36Sopenharmony_ci
60162306a36Sopenharmony_ci		l0 = bch->a_log_tab[poly->c[0]];
60262306a36Sopenharmony_ci		l1 = bch->a_log_tab[poly->c[1]];
60362306a36Sopenharmony_ci		l2 = bch->a_log_tab[poly->c[2]];
60462306a36Sopenharmony_ci
60562306a36Sopenharmony_ci		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
60662306a36Sopenharmony_ci		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
60762306a36Sopenharmony_ci		/*
60862306a36Sopenharmony_ci		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
60962306a36Sopenharmony_ci		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
61062306a36Sopenharmony_ci		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
61162306a36Sopenharmony_ci		 * i.e. r and r+1 are roots iff Tr(u)=0
61262306a36Sopenharmony_ci		 */
61362306a36Sopenharmony_ci		r = 0;
61462306a36Sopenharmony_ci		v = u;
61562306a36Sopenharmony_ci		while (v) {
61662306a36Sopenharmony_ci			i = deg(v);
61762306a36Sopenharmony_ci			r ^= bch->xi_tab[i];
61862306a36Sopenharmony_ci			v ^= (1 << i);
61962306a36Sopenharmony_ci		}
62062306a36Sopenharmony_ci		/* verify root */
62162306a36Sopenharmony_ci		if ((gf_sqr(bch, r)^r) == u) {
62262306a36Sopenharmony_ci			/* reverse z=a/bX transformation and compute log(1/r) */
62362306a36Sopenharmony_ci			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
62462306a36Sopenharmony_ci					    bch->a_log_tab[r]+l2);
62562306a36Sopenharmony_ci			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
62662306a36Sopenharmony_ci					    bch->a_log_tab[r^1]+l2);
62762306a36Sopenharmony_ci		}
62862306a36Sopenharmony_ci	}
62962306a36Sopenharmony_ci	return n;
63062306a36Sopenharmony_ci}
63162306a36Sopenharmony_ci
63262306a36Sopenharmony_ci/*
63362306a36Sopenharmony_ci * compute roots of a degree 3 polynomial over GF(2^m)
63462306a36Sopenharmony_ci */
63562306a36Sopenharmony_cistatic int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
63662306a36Sopenharmony_ci				unsigned int *roots)
63762306a36Sopenharmony_ci{
63862306a36Sopenharmony_ci	int i, n = 0;
63962306a36Sopenharmony_ci	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
64062306a36Sopenharmony_ci
64162306a36Sopenharmony_ci	if (poly->c[0]) {
64262306a36Sopenharmony_ci		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
64362306a36Sopenharmony_ci		e3 = poly->c[3];
64462306a36Sopenharmony_ci		c2 = gf_div(bch, poly->c[0], e3);
64562306a36Sopenharmony_ci		b2 = gf_div(bch, poly->c[1], e3);
64662306a36Sopenharmony_ci		a2 = gf_div(bch, poly->c[2], e3);
64762306a36Sopenharmony_ci
64862306a36Sopenharmony_ci		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
64962306a36Sopenharmony_ci		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
65062306a36Sopenharmony_ci		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
65162306a36Sopenharmony_ci		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
65262306a36Sopenharmony_ci
65362306a36Sopenharmony_ci		/* find the 4 roots of this affine polynomial */
65462306a36Sopenharmony_ci		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
65562306a36Sopenharmony_ci			/* remove a2 from final list of roots */
65662306a36Sopenharmony_ci			for (i = 0; i < 4; i++) {
65762306a36Sopenharmony_ci				if (tmp[i] != a2)
65862306a36Sopenharmony_ci					roots[n++] = a_ilog(bch, tmp[i]);
65962306a36Sopenharmony_ci			}
66062306a36Sopenharmony_ci		}
66162306a36Sopenharmony_ci	}
66262306a36Sopenharmony_ci	return n;
66362306a36Sopenharmony_ci}
66462306a36Sopenharmony_ci
66562306a36Sopenharmony_ci/*
66662306a36Sopenharmony_ci * compute roots of a degree 4 polynomial over GF(2^m)
66762306a36Sopenharmony_ci */
66862306a36Sopenharmony_cistatic int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
66962306a36Sopenharmony_ci				unsigned int *roots)
67062306a36Sopenharmony_ci{
67162306a36Sopenharmony_ci	int i, l, n = 0;
67262306a36Sopenharmony_ci	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
67362306a36Sopenharmony_ci
67462306a36Sopenharmony_ci	if (poly->c[0] == 0)
67562306a36Sopenharmony_ci		return 0;
67662306a36Sopenharmony_ci
67762306a36Sopenharmony_ci	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
67862306a36Sopenharmony_ci	e4 = poly->c[4];
67962306a36Sopenharmony_ci	d = gf_div(bch, poly->c[0], e4);
68062306a36Sopenharmony_ci	c = gf_div(bch, poly->c[1], e4);
68162306a36Sopenharmony_ci	b = gf_div(bch, poly->c[2], e4);
68262306a36Sopenharmony_ci	a = gf_div(bch, poly->c[3], e4);
68362306a36Sopenharmony_ci
68462306a36Sopenharmony_ci	/* use Y=1/X transformation to get an affine polynomial */
68562306a36Sopenharmony_ci	if (a) {
68662306a36Sopenharmony_ci		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
68762306a36Sopenharmony_ci		if (c) {
68862306a36Sopenharmony_ci			/* compute e such that e^2 = c/a */
68962306a36Sopenharmony_ci			f = gf_div(bch, c, a);
69062306a36Sopenharmony_ci			l = a_log(bch, f);
69162306a36Sopenharmony_ci			l += (l & 1) ? GF_N(bch) : 0;
69262306a36Sopenharmony_ci			e = a_pow(bch, l/2);
69362306a36Sopenharmony_ci			/*
69462306a36Sopenharmony_ci			 * use transformation z=X+e:
69562306a36Sopenharmony_ci			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
69662306a36Sopenharmony_ci			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
69762306a36Sopenharmony_ci			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
69862306a36Sopenharmony_ci			 * z^4 + az^3 +     b'z^2 + d'
69962306a36Sopenharmony_ci			 */
70062306a36Sopenharmony_ci			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
70162306a36Sopenharmony_ci			b = gf_mul(bch, a, e)^b;
70262306a36Sopenharmony_ci		}
70362306a36Sopenharmony_ci		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
70462306a36Sopenharmony_ci		if (d == 0)
70562306a36Sopenharmony_ci			/* assume all roots have multiplicity 1 */
70662306a36Sopenharmony_ci			return 0;
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_ci		c2 = gf_inv(bch, d);
70962306a36Sopenharmony_ci		b2 = gf_div(bch, a, d);
71062306a36Sopenharmony_ci		a2 = gf_div(bch, b, d);
71162306a36Sopenharmony_ci	} else {
71262306a36Sopenharmony_ci		/* polynomial is already affine */
71362306a36Sopenharmony_ci		c2 = d;
71462306a36Sopenharmony_ci		b2 = c;
71562306a36Sopenharmony_ci		a2 = b;
71662306a36Sopenharmony_ci	}
71762306a36Sopenharmony_ci	/* find the 4 roots of this affine polynomial */
71862306a36Sopenharmony_ci	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
71962306a36Sopenharmony_ci		for (i = 0; i < 4; i++) {
72062306a36Sopenharmony_ci			/* post-process roots (reverse transformations) */
72162306a36Sopenharmony_ci			f = a ? gf_inv(bch, roots[i]) : roots[i];
72262306a36Sopenharmony_ci			roots[i] = a_ilog(bch, f^e);
72362306a36Sopenharmony_ci		}
72462306a36Sopenharmony_ci		n = 4;
72562306a36Sopenharmony_ci	}
72662306a36Sopenharmony_ci	return n;
72762306a36Sopenharmony_ci}
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_ci/*
73062306a36Sopenharmony_ci * build monic, log-based representation of a polynomial
73162306a36Sopenharmony_ci */
73262306a36Sopenharmony_cistatic void gf_poly_logrep(struct bch_control *bch,
73362306a36Sopenharmony_ci			   const struct gf_poly *a, int *rep)
73462306a36Sopenharmony_ci{
73562306a36Sopenharmony_ci	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
73662306a36Sopenharmony_ci
73762306a36Sopenharmony_ci	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
73862306a36Sopenharmony_ci	for (i = 0; i < d; i++)
73962306a36Sopenharmony_ci		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
74062306a36Sopenharmony_ci}
74162306a36Sopenharmony_ci
74262306a36Sopenharmony_ci/*
74362306a36Sopenharmony_ci * compute polynomial Euclidean division remainder in GF(2^m)[X]
74462306a36Sopenharmony_ci */
74562306a36Sopenharmony_cistatic void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
74662306a36Sopenharmony_ci			const struct gf_poly *b, int *rep)
74762306a36Sopenharmony_ci{
74862306a36Sopenharmony_ci	int la, p, m;
74962306a36Sopenharmony_ci	unsigned int i, j, *c = a->c;
75062306a36Sopenharmony_ci	const unsigned int d = b->deg;
75162306a36Sopenharmony_ci
75262306a36Sopenharmony_ci	if (a->deg < d)
75362306a36Sopenharmony_ci		return;
75462306a36Sopenharmony_ci
75562306a36Sopenharmony_ci	/* reuse or compute log representation of denominator */
75662306a36Sopenharmony_ci	if (!rep) {
75762306a36Sopenharmony_ci		rep = bch->cache;
75862306a36Sopenharmony_ci		gf_poly_logrep(bch, b, rep);
75962306a36Sopenharmony_ci	}
76062306a36Sopenharmony_ci
76162306a36Sopenharmony_ci	for (j = a->deg; j >= d; j--) {
76262306a36Sopenharmony_ci		if (c[j]) {
76362306a36Sopenharmony_ci			la = a_log(bch, c[j]);
76462306a36Sopenharmony_ci			p = j-d;
76562306a36Sopenharmony_ci			for (i = 0; i < d; i++, p++) {
76662306a36Sopenharmony_ci				m = rep[i];
76762306a36Sopenharmony_ci				if (m >= 0)
76862306a36Sopenharmony_ci					c[p] ^= bch->a_pow_tab[mod_s(bch,
76962306a36Sopenharmony_ci								     m+la)];
77062306a36Sopenharmony_ci			}
77162306a36Sopenharmony_ci		}
77262306a36Sopenharmony_ci	}
77362306a36Sopenharmony_ci	a->deg = d-1;
77462306a36Sopenharmony_ci	while (!c[a->deg] && a->deg)
77562306a36Sopenharmony_ci		a->deg--;
77662306a36Sopenharmony_ci}
77762306a36Sopenharmony_ci
77862306a36Sopenharmony_ci/*
77962306a36Sopenharmony_ci * compute polynomial Euclidean division quotient in GF(2^m)[X]
78062306a36Sopenharmony_ci */
78162306a36Sopenharmony_cistatic void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
78262306a36Sopenharmony_ci			const struct gf_poly *b, struct gf_poly *q)
78362306a36Sopenharmony_ci{
78462306a36Sopenharmony_ci	if (a->deg >= b->deg) {
78562306a36Sopenharmony_ci		q->deg = a->deg-b->deg;
78662306a36Sopenharmony_ci		/* compute a mod b (modifies a) */
78762306a36Sopenharmony_ci		gf_poly_mod(bch, a, b, NULL);
78862306a36Sopenharmony_ci		/* quotient is stored in upper part of polynomial a */
78962306a36Sopenharmony_ci		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
79062306a36Sopenharmony_ci	} else {
79162306a36Sopenharmony_ci		q->deg = 0;
79262306a36Sopenharmony_ci		q->c[0] = 0;
79362306a36Sopenharmony_ci	}
79462306a36Sopenharmony_ci}
79562306a36Sopenharmony_ci
79662306a36Sopenharmony_ci/*
79762306a36Sopenharmony_ci * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
79862306a36Sopenharmony_ci */
79962306a36Sopenharmony_cistatic struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
80062306a36Sopenharmony_ci				   struct gf_poly *b)
80162306a36Sopenharmony_ci{
80262306a36Sopenharmony_ci	struct gf_poly *tmp;
80362306a36Sopenharmony_ci
80462306a36Sopenharmony_ci	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
80562306a36Sopenharmony_ci
80662306a36Sopenharmony_ci	if (a->deg < b->deg) {
80762306a36Sopenharmony_ci		tmp = b;
80862306a36Sopenharmony_ci		b = a;
80962306a36Sopenharmony_ci		a = tmp;
81062306a36Sopenharmony_ci	}
81162306a36Sopenharmony_ci
81262306a36Sopenharmony_ci	while (b->deg > 0) {
81362306a36Sopenharmony_ci		gf_poly_mod(bch, a, b, NULL);
81462306a36Sopenharmony_ci		tmp = b;
81562306a36Sopenharmony_ci		b = a;
81662306a36Sopenharmony_ci		a = tmp;
81762306a36Sopenharmony_ci	}
81862306a36Sopenharmony_ci
81962306a36Sopenharmony_ci	dbg("%s\n", gf_poly_str(a));
82062306a36Sopenharmony_ci
82162306a36Sopenharmony_ci	return a;
82262306a36Sopenharmony_ci}
82362306a36Sopenharmony_ci
82462306a36Sopenharmony_ci/*
82562306a36Sopenharmony_ci * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
82662306a36Sopenharmony_ci * This is used in Berlekamp Trace algorithm for splitting polynomials
82762306a36Sopenharmony_ci */
82862306a36Sopenharmony_cistatic void compute_trace_bk_mod(struct bch_control *bch, int k,
82962306a36Sopenharmony_ci				 const struct gf_poly *f, struct gf_poly *z,
83062306a36Sopenharmony_ci				 struct gf_poly *out)
83162306a36Sopenharmony_ci{
83262306a36Sopenharmony_ci	const int m = GF_M(bch);
83362306a36Sopenharmony_ci	int i, j;
83462306a36Sopenharmony_ci
83562306a36Sopenharmony_ci	/* z contains z^2j mod f */
83662306a36Sopenharmony_ci	z->deg = 1;
83762306a36Sopenharmony_ci	z->c[0] = 0;
83862306a36Sopenharmony_ci	z->c[1] = bch->a_pow_tab[k];
83962306a36Sopenharmony_ci
84062306a36Sopenharmony_ci	out->deg = 0;
84162306a36Sopenharmony_ci	memset(out, 0, GF_POLY_SZ(f->deg));
84262306a36Sopenharmony_ci
84362306a36Sopenharmony_ci	/* compute f log representation only once */
84462306a36Sopenharmony_ci	gf_poly_logrep(bch, f, bch->cache);
84562306a36Sopenharmony_ci
84662306a36Sopenharmony_ci	for (i = 0; i < m; i++) {
84762306a36Sopenharmony_ci		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
84862306a36Sopenharmony_ci		for (j = z->deg; j >= 0; j--) {
84962306a36Sopenharmony_ci			out->c[j] ^= z->c[j];
85062306a36Sopenharmony_ci			z->c[2*j] = gf_sqr(bch, z->c[j]);
85162306a36Sopenharmony_ci			z->c[2*j+1] = 0;
85262306a36Sopenharmony_ci		}
85362306a36Sopenharmony_ci		if (z->deg > out->deg)
85462306a36Sopenharmony_ci			out->deg = z->deg;
85562306a36Sopenharmony_ci
85662306a36Sopenharmony_ci		if (i < m-1) {
85762306a36Sopenharmony_ci			z->deg *= 2;
85862306a36Sopenharmony_ci			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
85962306a36Sopenharmony_ci			gf_poly_mod(bch, z, f, bch->cache);
86062306a36Sopenharmony_ci		}
86162306a36Sopenharmony_ci	}
86262306a36Sopenharmony_ci	while (!out->c[out->deg] && out->deg)
86362306a36Sopenharmony_ci		out->deg--;
86462306a36Sopenharmony_ci
86562306a36Sopenharmony_ci	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
86662306a36Sopenharmony_ci}
86762306a36Sopenharmony_ci
86862306a36Sopenharmony_ci/*
86962306a36Sopenharmony_ci * factor a polynomial using Berlekamp Trace algorithm (BTA)
87062306a36Sopenharmony_ci */
87162306a36Sopenharmony_cistatic void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
87262306a36Sopenharmony_ci			      struct gf_poly **g, struct gf_poly **h)
87362306a36Sopenharmony_ci{
87462306a36Sopenharmony_ci	struct gf_poly *f2 = bch->poly_2t[0];
87562306a36Sopenharmony_ci	struct gf_poly *q  = bch->poly_2t[1];
87662306a36Sopenharmony_ci	struct gf_poly *tk = bch->poly_2t[2];
87762306a36Sopenharmony_ci	struct gf_poly *z  = bch->poly_2t[3];
87862306a36Sopenharmony_ci	struct gf_poly *gcd;
87962306a36Sopenharmony_ci
88062306a36Sopenharmony_ci	dbg("factoring %s...\n", gf_poly_str(f));
88162306a36Sopenharmony_ci
88262306a36Sopenharmony_ci	*g = f;
88362306a36Sopenharmony_ci	*h = NULL;
88462306a36Sopenharmony_ci
88562306a36Sopenharmony_ci	/* tk = Tr(a^k.X) mod f */
88662306a36Sopenharmony_ci	compute_trace_bk_mod(bch, k, f, z, tk);
88762306a36Sopenharmony_ci
88862306a36Sopenharmony_ci	if (tk->deg > 0) {
88962306a36Sopenharmony_ci		/* compute g = gcd(f, tk) (destructive operation) */
89062306a36Sopenharmony_ci		gf_poly_copy(f2, f);
89162306a36Sopenharmony_ci		gcd = gf_poly_gcd(bch, f2, tk);
89262306a36Sopenharmony_ci		if (gcd->deg < f->deg) {
89362306a36Sopenharmony_ci			/* compute h=f/gcd(f,tk); this will modify f and q */
89462306a36Sopenharmony_ci			gf_poly_div(bch, f, gcd, q);
89562306a36Sopenharmony_ci			/* store g and h in-place (clobbering f) */
89662306a36Sopenharmony_ci			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
89762306a36Sopenharmony_ci			gf_poly_copy(*g, gcd);
89862306a36Sopenharmony_ci			gf_poly_copy(*h, q);
89962306a36Sopenharmony_ci		}
90062306a36Sopenharmony_ci	}
90162306a36Sopenharmony_ci}
90262306a36Sopenharmony_ci
90362306a36Sopenharmony_ci/*
90462306a36Sopenharmony_ci * find roots of a polynomial, using BTZ algorithm; see the beginning of this
90562306a36Sopenharmony_ci * file for details
90662306a36Sopenharmony_ci */
90762306a36Sopenharmony_cistatic int find_poly_roots(struct bch_control *bch, unsigned int k,
90862306a36Sopenharmony_ci			   struct gf_poly *poly, unsigned int *roots)
90962306a36Sopenharmony_ci{
91062306a36Sopenharmony_ci	int cnt;
91162306a36Sopenharmony_ci	struct gf_poly *f1, *f2;
91262306a36Sopenharmony_ci
91362306a36Sopenharmony_ci	switch (poly->deg) {
91462306a36Sopenharmony_ci		/* handle low degree polynomials with ad hoc techniques */
91562306a36Sopenharmony_ci	case 1:
91662306a36Sopenharmony_ci		cnt = find_poly_deg1_roots(bch, poly, roots);
91762306a36Sopenharmony_ci		break;
91862306a36Sopenharmony_ci	case 2:
91962306a36Sopenharmony_ci		cnt = find_poly_deg2_roots(bch, poly, roots);
92062306a36Sopenharmony_ci		break;
92162306a36Sopenharmony_ci	case 3:
92262306a36Sopenharmony_ci		cnt = find_poly_deg3_roots(bch, poly, roots);
92362306a36Sopenharmony_ci		break;
92462306a36Sopenharmony_ci	case 4:
92562306a36Sopenharmony_ci		cnt = find_poly_deg4_roots(bch, poly, roots);
92662306a36Sopenharmony_ci		break;
92762306a36Sopenharmony_ci	default:
92862306a36Sopenharmony_ci		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
92962306a36Sopenharmony_ci		cnt = 0;
93062306a36Sopenharmony_ci		if (poly->deg && (k <= GF_M(bch))) {
93162306a36Sopenharmony_ci			factor_polynomial(bch, k, poly, &f1, &f2);
93262306a36Sopenharmony_ci			if (f1)
93362306a36Sopenharmony_ci				cnt += find_poly_roots(bch, k+1, f1, roots);
93462306a36Sopenharmony_ci			if (f2)
93562306a36Sopenharmony_ci				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
93662306a36Sopenharmony_ci		}
93762306a36Sopenharmony_ci		break;
93862306a36Sopenharmony_ci	}
93962306a36Sopenharmony_ci	return cnt;
94062306a36Sopenharmony_ci}
94162306a36Sopenharmony_ci
94262306a36Sopenharmony_ci#if defined(USE_CHIEN_SEARCH)
94362306a36Sopenharmony_ci/*
94462306a36Sopenharmony_ci * exhaustive root search (Chien) implementation - not used, included only for
94562306a36Sopenharmony_ci * reference/comparison tests
94662306a36Sopenharmony_ci */
94762306a36Sopenharmony_cistatic int chien_search(struct bch_control *bch, unsigned int len,
94862306a36Sopenharmony_ci			struct gf_poly *p, unsigned int *roots)
94962306a36Sopenharmony_ci{
95062306a36Sopenharmony_ci	int m;
95162306a36Sopenharmony_ci	unsigned int i, j, syn, syn0, count = 0;
95262306a36Sopenharmony_ci	const unsigned int k = 8*len+bch->ecc_bits;
95362306a36Sopenharmony_ci
95462306a36Sopenharmony_ci	/* use a log-based representation of polynomial */
95562306a36Sopenharmony_ci	gf_poly_logrep(bch, p, bch->cache);
95662306a36Sopenharmony_ci	bch->cache[p->deg] = 0;
95762306a36Sopenharmony_ci	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
95862306a36Sopenharmony_ci
95962306a36Sopenharmony_ci	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
96062306a36Sopenharmony_ci		/* compute elp(a^i) */
96162306a36Sopenharmony_ci		for (j = 1, syn = syn0; j <= p->deg; j++) {
96262306a36Sopenharmony_ci			m = bch->cache[j];
96362306a36Sopenharmony_ci			if (m >= 0)
96462306a36Sopenharmony_ci				syn ^= a_pow(bch, m+j*i);
96562306a36Sopenharmony_ci		}
96662306a36Sopenharmony_ci		if (syn == 0) {
96762306a36Sopenharmony_ci			roots[count++] = GF_N(bch)-i;
96862306a36Sopenharmony_ci			if (count == p->deg)
96962306a36Sopenharmony_ci				break;
97062306a36Sopenharmony_ci		}
97162306a36Sopenharmony_ci	}
97262306a36Sopenharmony_ci	return (count == p->deg) ? count : 0;
97362306a36Sopenharmony_ci}
97462306a36Sopenharmony_ci#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
97562306a36Sopenharmony_ci#endif /* USE_CHIEN_SEARCH */
97662306a36Sopenharmony_ci
97762306a36Sopenharmony_ci/**
97862306a36Sopenharmony_ci * bch_decode - decode received codeword and find bit error locations
97962306a36Sopenharmony_ci * @bch:      BCH control structure
98062306a36Sopenharmony_ci * @data:     received data, ignored if @calc_ecc is provided
98162306a36Sopenharmony_ci * @len:      data length in bytes, must always be provided
98262306a36Sopenharmony_ci * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
98362306a36Sopenharmony_ci * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
98462306a36Sopenharmony_ci * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
98562306a36Sopenharmony_ci * @errloc:   output array of error locations
98662306a36Sopenharmony_ci *
98762306a36Sopenharmony_ci * Returns:
98862306a36Sopenharmony_ci *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
98962306a36Sopenharmony_ci *  invalid parameters were provided
99062306a36Sopenharmony_ci *
99162306a36Sopenharmony_ci * Depending on the available hw BCH support and the need to compute @calc_ecc
99262306a36Sopenharmony_ci * separately (using bch_encode()), this function should be called with one of
99362306a36Sopenharmony_ci * the following parameter configurations -
99462306a36Sopenharmony_ci *
99562306a36Sopenharmony_ci * by providing @data and @recv_ecc only:
99662306a36Sopenharmony_ci *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
99762306a36Sopenharmony_ci *
99862306a36Sopenharmony_ci * by providing @recv_ecc and @calc_ecc:
99962306a36Sopenharmony_ci *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
100062306a36Sopenharmony_ci *
100162306a36Sopenharmony_ci * by providing ecc = recv_ecc XOR calc_ecc:
100262306a36Sopenharmony_ci *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
100362306a36Sopenharmony_ci *
100462306a36Sopenharmony_ci * by providing syndrome results @syn:
100562306a36Sopenharmony_ci *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
100662306a36Sopenharmony_ci *
100762306a36Sopenharmony_ci * Once bch_decode() has successfully returned with a positive value, error
100862306a36Sopenharmony_ci * locations returned in array @errloc should be interpreted as follows -
100962306a36Sopenharmony_ci *
101062306a36Sopenharmony_ci * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
101162306a36Sopenharmony_ci * data correction)
101262306a36Sopenharmony_ci *
101362306a36Sopenharmony_ci * if (errloc[n] < 8*len), then n-th error is located in data and can be
101462306a36Sopenharmony_ci * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
101562306a36Sopenharmony_ci *
101662306a36Sopenharmony_ci * Note that this function does not perform any data correction by itself, it
101762306a36Sopenharmony_ci * merely indicates error locations.
101862306a36Sopenharmony_ci */
101962306a36Sopenharmony_ciint bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
102062306a36Sopenharmony_ci	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
102162306a36Sopenharmony_ci	       const unsigned int *syn, unsigned int *errloc)
102262306a36Sopenharmony_ci{
102362306a36Sopenharmony_ci	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
102462306a36Sopenharmony_ci	unsigned int nbits;
102562306a36Sopenharmony_ci	int i, err, nroots;
102662306a36Sopenharmony_ci	uint32_t sum;
102762306a36Sopenharmony_ci
102862306a36Sopenharmony_ci	/* sanity check: make sure data length can be handled */
102962306a36Sopenharmony_ci	if (8*len > (bch->n-bch->ecc_bits))
103062306a36Sopenharmony_ci		return -EINVAL;
103162306a36Sopenharmony_ci
103262306a36Sopenharmony_ci	/* if caller does not provide syndromes, compute them */
103362306a36Sopenharmony_ci	if (!syn) {
103462306a36Sopenharmony_ci		if (!calc_ecc) {
103562306a36Sopenharmony_ci			/* compute received data ecc into an internal buffer */
103662306a36Sopenharmony_ci			if (!data || !recv_ecc)
103762306a36Sopenharmony_ci				return -EINVAL;
103862306a36Sopenharmony_ci			bch_encode(bch, data, len, NULL);
103962306a36Sopenharmony_ci		} else {
104062306a36Sopenharmony_ci			/* load provided calculated ecc */
104162306a36Sopenharmony_ci			load_ecc8(bch, bch->ecc_buf, calc_ecc);
104262306a36Sopenharmony_ci		}
104362306a36Sopenharmony_ci		/* load received ecc or assume it was XORed in calc_ecc */
104462306a36Sopenharmony_ci		if (recv_ecc) {
104562306a36Sopenharmony_ci			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
104662306a36Sopenharmony_ci			/* XOR received and calculated ecc */
104762306a36Sopenharmony_ci			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
104862306a36Sopenharmony_ci				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
104962306a36Sopenharmony_ci				sum |= bch->ecc_buf[i];
105062306a36Sopenharmony_ci			}
105162306a36Sopenharmony_ci			if (!sum)
105262306a36Sopenharmony_ci				/* no error found */
105362306a36Sopenharmony_ci				return 0;
105462306a36Sopenharmony_ci		}
105562306a36Sopenharmony_ci		compute_syndromes(bch, bch->ecc_buf, bch->syn);
105662306a36Sopenharmony_ci		syn = bch->syn;
105762306a36Sopenharmony_ci	}
105862306a36Sopenharmony_ci
105962306a36Sopenharmony_ci	err = compute_error_locator_polynomial(bch, syn);
106062306a36Sopenharmony_ci	if (err > 0) {
106162306a36Sopenharmony_ci		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
106262306a36Sopenharmony_ci		if (err != nroots)
106362306a36Sopenharmony_ci			err = -1;
106462306a36Sopenharmony_ci	}
106562306a36Sopenharmony_ci	if (err > 0) {
106662306a36Sopenharmony_ci		/* post-process raw error locations for easier correction */
106762306a36Sopenharmony_ci		nbits = (len*8)+bch->ecc_bits;
106862306a36Sopenharmony_ci		for (i = 0; i < err; i++) {
106962306a36Sopenharmony_ci			if (errloc[i] >= nbits) {
107062306a36Sopenharmony_ci				err = -1;
107162306a36Sopenharmony_ci				break;
107262306a36Sopenharmony_ci			}
107362306a36Sopenharmony_ci			errloc[i] = nbits-1-errloc[i];
107462306a36Sopenharmony_ci			if (!bch->swap_bits)
107562306a36Sopenharmony_ci				errloc[i] = (errloc[i] & ~7) |
107662306a36Sopenharmony_ci					    (7-(errloc[i] & 7));
107762306a36Sopenharmony_ci		}
107862306a36Sopenharmony_ci	}
107962306a36Sopenharmony_ci	return (err >= 0) ? err : -EBADMSG;
108062306a36Sopenharmony_ci}
108162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_decode);
108262306a36Sopenharmony_ci
108362306a36Sopenharmony_ci/*
108462306a36Sopenharmony_ci * generate Galois field lookup tables
108562306a36Sopenharmony_ci */
108662306a36Sopenharmony_cistatic int build_gf_tables(struct bch_control *bch, unsigned int poly)
108762306a36Sopenharmony_ci{
108862306a36Sopenharmony_ci	unsigned int i, x = 1;
108962306a36Sopenharmony_ci	const unsigned int k = 1 << deg(poly);
109062306a36Sopenharmony_ci
109162306a36Sopenharmony_ci	/* primitive polynomial must be of degree m */
109262306a36Sopenharmony_ci	if (k != (1u << GF_M(bch)))
109362306a36Sopenharmony_ci		return -1;
109462306a36Sopenharmony_ci
109562306a36Sopenharmony_ci	for (i = 0; i < GF_N(bch); i++) {
109662306a36Sopenharmony_ci		bch->a_pow_tab[i] = x;
109762306a36Sopenharmony_ci		bch->a_log_tab[x] = i;
109862306a36Sopenharmony_ci		if (i && (x == 1))
109962306a36Sopenharmony_ci			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
110062306a36Sopenharmony_ci			return -1;
110162306a36Sopenharmony_ci		x <<= 1;
110262306a36Sopenharmony_ci		if (x & k)
110362306a36Sopenharmony_ci			x ^= poly;
110462306a36Sopenharmony_ci	}
110562306a36Sopenharmony_ci	bch->a_pow_tab[GF_N(bch)] = 1;
110662306a36Sopenharmony_ci	bch->a_log_tab[0] = 0;
110762306a36Sopenharmony_ci
110862306a36Sopenharmony_ci	return 0;
110962306a36Sopenharmony_ci}
111062306a36Sopenharmony_ci
111162306a36Sopenharmony_ci/*
111262306a36Sopenharmony_ci * compute generator polynomial remainder tables for fast encoding
111362306a36Sopenharmony_ci */
111462306a36Sopenharmony_cistatic void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
111562306a36Sopenharmony_ci{
111662306a36Sopenharmony_ci	int i, j, b, d;
111762306a36Sopenharmony_ci	uint32_t data, hi, lo, *tab;
111862306a36Sopenharmony_ci	const int l = BCH_ECC_WORDS(bch);
111962306a36Sopenharmony_ci	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
112062306a36Sopenharmony_ci	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
112162306a36Sopenharmony_ci
112262306a36Sopenharmony_ci	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
112362306a36Sopenharmony_ci
112462306a36Sopenharmony_ci	for (i = 0; i < 256; i++) {
112562306a36Sopenharmony_ci		/* p(X)=i is a small polynomial of weight <= 8 */
112662306a36Sopenharmony_ci		for (b = 0; b < 4; b++) {
112762306a36Sopenharmony_ci			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
112862306a36Sopenharmony_ci			tab = bch->mod8_tab + (b*256+i)*l;
112962306a36Sopenharmony_ci			data = i << (8*b);
113062306a36Sopenharmony_ci			while (data) {
113162306a36Sopenharmony_ci				d = deg(data);
113262306a36Sopenharmony_ci				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
113362306a36Sopenharmony_ci				data ^= g[0] >> (31-d);
113462306a36Sopenharmony_ci				for (j = 0; j < ecclen; j++) {
113562306a36Sopenharmony_ci					hi = (d < 31) ? g[j] << (d+1) : 0;
113662306a36Sopenharmony_ci					lo = (j+1 < plen) ?
113762306a36Sopenharmony_ci						g[j+1] >> (31-d) : 0;
113862306a36Sopenharmony_ci					tab[j] ^= hi|lo;
113962306a36Sopenharmony_ci				}
114062306a36Sopenharmony_ci			}
114162306a36Sopenharmony_ci		}
114262306a36Sopenharmony_ci	}
114362306a36Sopenharmony_ci}
114462306a36Sopenharmony_ci
114562306a36Sopenharmony_ci/*
114662306a36Sopenharmony_ci * build a base for factoring degree 2 polynomials
114762306a36Sopenharmony_ci */
114862306a36Sopenharmony_cistatic int build_deg2_base(struct bch_control *bch)
114962306a36Sopenharmony_ci{
115062306a36Sopenharmony_ci	const int m = GF_M(bch);
115162306a36Sopenharmony_ci	int i, j, r;
115262306a36Sopenharmony_ci	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
115362306a36Sopenharmony_ci
115462306a36Sopenharmony_ci	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
115562306a36Sopenharmony_ci	for (i = 0; i < m; i++) {
115662306a36Sopenharmony_ci		for (j = 0, sum = 0; j < m; j++)
115762306a36Sopenharmony_ci			sum ^= a_pow(bch, i*(1 << j));
115862306a36Sopenharmony_ci
115962306a36Sopenharmony_ci		if (sum) {
116062306a36Sopenharmony_ci			ak = bch->a_pow_tab[i];
116162306a36Sopenharmony_ci			break;
116262306a36Sopenharmony_ci		}
116362306a36Sopenharmony_ci	}
116462306a36Sopenharmony_ci	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
116562306a36Sopenharmony_ci	remaining = m;
116662306a36Sopenharmony_ci	memset(xi, 0, sizeof(xi));
116762306a36Sopenharmony_ci
116862306a36Sopenharmony_ci	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
116962306a36Sopenharmony_ci		y = gf_sqr(bch, x)^x;
117062306a36Sopenharmony_ci		for (i = 0; i < 2; i++) {
117162306a36Sopenharmony_ci			r = a_log(bch, y);
117262306a36Sopenharmony_ci			if (y && (r < m) && !xi[r]) {
117362306a36Sopenharmony_ci				bch->xi_tab[r] = x;
117462306a36Sopenharmony_ci				xi[r] = 1;
117562306a36Sopenharmony_ci				remaining--;
117662306a36Sopenharmony_ci				dbg("x%d = %x\n", r, x);
117762306a36Sopenharmony_ci				break;
117862306a36Sopenharmony_ci			}
117962306a36Sopenharmony_ci			y ^= ak;
118062306a36Sopenharmony_ci		}
118162306a36Sopenharmony_ci	}
118262306a36Sopenharmony_ci	/* should not happen but check anyway */
118362306a36Sopenharmony_ci	return remaining ? -1 : 0;
118462306a36Sopenharmony_ci}
118562306a36Sopenharmony_ci
118662306a36Sopenharmony_cistatic void *bch_alloc(size_t size, int *err)
118762306a36Sopenharmony_ci{
118862306a36Sopenharmony_ci	void *ptr;
118962306a36Sopenharmony_ci
119062306a36Sopenharmony_ci	ptr = kmalloc(size, GFP_KERNEL);
119162306a36Sopenharmony_ci	if (ptr == NULL)
119262306a36Sopenharmony_ci		*err = 1;
119362306a36Sopenharmony_ci	return ptr;
119462306a36Sopenharmony_ci}
119562306a36Sopenharmony_ci
119662306a36Sopenharmony_ci/*
119762306a36Sopenharmony_ci * compute generator polynomial for given (m,t) parameters.
119862306a36Sopenharmony_ci */
119962306a36Sopenharmony_cistatic uint32_t *compute_generator_polynomial(struct bch_control *bch)
120062306a36Sopenharmony_ci{
120162306a36Sopenharmony_ci	const unsigned int m = GF_M(bch);
120262306a36Sopenharmony_ci	const unsigned int t = GF_T(bch);
120362306a36Sopenharmony_ci	int n, err = 0;
120462306a36Sopenharmony_ci	unsigned int i, j, nbits, r, word, *roots;
120562306a36Sopenharmony_ci	struct gf_poly *g;
120662306a36Sopenharmony_ci	uint32_t *genpoly;
120762306a36Sopenharmony_ci
120862306a36Sopenharmony_ci	g = bch_alloc(GF_POLY_SZ(m*t), &err);
120962306a36Sopenharmony_ci	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
121062306a36Sopenharmony_ci	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
121162306a36Sopenharmony_ci
121262306a36Sopenharmony_ci	if (err) {
121362306a36Sopenharmony_ci		kfree(genpoly);
121462306a36Sopenharmony_ci		genpoly = NULL;
121562306a36Sopenharmony_ci		goto finish;
121662306a36Sopenharmony_ci	}
121762306a36Sopenharmony_ci
121862306a36Sopenharmony_ci	/* enumerate all roots of g(X) */
121962306a36Sopenharmony_ci	memset(roots , 0, (bch->n+1)*sizeof(*roots));
122062306a36Sopenharmony_ci	for (i = 0; i < t; i++) {
122162306a36Sopenharmony_ci		for (j = 0, r = 2*i+1; j < m; j++) {
122262306a36Sopenharmony_ci			roots[r] = 1;
122362306a36Sopenharmony_ci			r = mod_s(bch, 2*r);
122462306a36Sopenharmony_ci		}
122562306a36Sopenharmony_ci	}
122662306a36Sopenharmony_ci	/* build generator polynomial g(X) */
122762306a36Sopenharmony_ci	g->deg = 0;
122862306a36Sopenharmony_ci	g->c[0] = 1;
122962306a36Sopenharmony_ci	for (i = 0; i < GF_N(bch); i++) {
123062306a36Sopenharmony_ci		if (roots[i]) {
123162306a36Sopenharmony_ci			/* multiply g(X) by (X+root) */
123262306a36Sopenharmony_ci			r = bch->a_pow_tab[i];
123362306a36Sopenharmony_ci			g->c[g->deg+1] = 1;
123462306a36Sopenharmony_ci			for (j = g->deg; j > 0; j--)
123562306a36Sopenharmony_ci				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
123662306a36Sopenharmony_ci
123762306a36Sopenharmony_ci			g->c[0] = gf_mul(bch, g->c[0], r);
123862306a36Sopenharmony_ci			g->deg++;
123962306a36Sopenharmony_ci		}
124062306a36Sopenharmony_ci	}
124162306a36Sopenharmony_ci	/* store left-justified binary representation of g(X) */
124262306a36Sopenharmony_ci	n = g->deg+1;
124362306a36Sopenharmony_ci	i = 0;
124462306a36Sopenharmony_ci
124562306a36Sopenharmony_ci	while (n > 0) {
124662306a36Sopenharmony_ci		nbits = (n > 32) ? 32 : n;
124762306a36Sopenharmony_ci		for (j = 0, word = 0; j < nbits; j++) {
124862306a36Sopenharmony_ci			if (g->c[n-1-j])
124962306a36Sopenharmony_ci				word |= 1u << (31-j);
125062306a36Sopenharmony_ci		}
125162306a36Sopenharmony_ci		genpoly[i++] = word;
125262306a36Sopenharmony_ci		n -= nbits;
125362306a36Sopenharmony_ci	}
125462306a36Sopenharmony_ci	bch->ecc_bits = g->deg;
125562306a36Sopenharmony_ci
125662306a36Sopenharmony_cifinish:
125762306a36Sopenharmony_ci	kfree(g);
125862306a36Sopenharmony_ci	kfree(roots);
125962306a36Sopenharmony_ci
126062306a36Sopenharmony_ci	return genpoly;
126162306a36Sopenharmony_ci}
126262306a36Sopenharmony_ci
126362306a36Sopenharmony_ci/**
126462306a36Sopenharmony_ci * bch_init - initialize a BCH encoder/decoder
126562306a36Sopenharmony_ci * @m:          Galois field order, should be in the range 5-15
126662306a36Sopenharmony_ci * @t:          maximum error correction capability, in bits
126762306a36Sopenharmony_ci * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
126862306a36Sopenharmony_ci * @swap_bits:  swap bits within data and syndrome bytes
126962306a36Sopenharmony_ci *
127062306a36Sopenharmony_ci * Returns:
127162306a36Sopenharmony_ci *  a newly allocated BCH control structure if successful, NULL otherwise
127262306a36Sopenharmony_ci *
127362306a36Sopenharmony_ci * This initialization can take some time, as lookup tables are built for fast
127462306a36Sopenharmony_ci * encoding/decoding; make sure not to call this function from a time critical
127562306a36Sopenharmony_ci * path. Usually, bch_init() should be called on module/driver init and
127662306a36Sopenharmony_ci * bch_free() should be called to release memory on exit.
127762306a36Sopenharmony_ci *
127862306a36Sopenharmony_ci * You may provide your own primitive polynomial of degree @m in argument
127962306a36Sopenharmony_ci * @prim_poly, or let bch_init() use its default polynomial.
128062306a36Sopenharmony_ci *
128162306a36Sopenharmony_ci * Once bch_init() has successfully returned a pointer to a newly allocated
128262306a36Sopenharmony_ci * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
128362306a36Sopenharmony_ci * the structure.
128462306a36Sopenharmony_ci */
128562306a36Sopenharmony_cistruct bch_control *bch_init(int m, int t, unsigned int prim_poly,
128662306a36Sopenharmony_ci			     bool swap_bits)
128762306a36Sopenharmony_ci{
128862306a36Sopenharmony_ci	int err = 0;
128962306a36Sopenharmony_ci	unsigned int i, words;
129062306a36Sopenharmony_ci	uint32_t *genpoly;
129162306a36Sopenharmony_ci	struct bch_control *bch = NULL;
129262306a36Sopenharmony_ci
129362306a36Sopenharmony_ci	const int min_m = 5;
129462306a36Sopenharmony_ci
129562306a36Sopenharmony_ci	/* default primitive polynomials */
129662306a36Sopenharmony_ci	static const unsigned int prim_poly_tab[] = {
129762306a36Sopenharmony_ci		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
129862306a36Sopenharmony_ci		0x402b, 0x8003,
129962306a36Sopenharmony_ci	};
130062306a36Sopenharmony_ci
130162306a36Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS)
130262306a36Sopenharmony_ci	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
130362306a36Sopenharmony_ci		printk(KERN_ERR "bch encoder/decoder was configured to support "
130462306a36Sopenharmony_ci		       "parameters m=%d, t=%d only!\n",
130562306a36Sopenharmony_ci		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
130662306a36Sopenharmony_ci		goto fail;
130762306a36Sopenharmony_ci	}
130862306a36Sopenharmony_ci#endif
130962306a36Sopenharmony_ci	if ((m < min_m) || (m > BCH_MAX_M))
131062306a36Sopenharmony_ci		/*
131162306a36Sopenharmony_ci		 * values of m greater than 15 are not currently supported;
131262306a36Sopenharmony_ci		 * supporting m > 15 would require changing table base type
131362306a36Sopenharmony_ci		 * (uint16_t) and a small patch in matrix transposition
131462306a36Sopenharmony_ci		 */
131562306a36Sopenharmony_ci		goto fail;
131662306a36Sopenharmony_ci
131762306a36Sopenharmony_ci	if (t > BCH_MAX_T)
131862306a36Sopenharmony_ci		/*
131962306a36Sopenharmony_ci		 * we can support larger than 64 bits if necessary, at the
132062306a36Sopenharmony_ci		 * cost of higher stack usage.
132162306a36Sopenharmony_ci		 */
132262306a36Sopenharmony_ci		goto fail;
132362306a36Sopenharmony_ci
132462306a36Sopenharmony_ci	/* sanity checks */
132562306a36Sopenharmony_ci	if ((t < 1) || (m*t >= ((1 << m)-1)))
132662306a36Sopenharmony_ci		/* invalid t value */
132762306a36Sopenharmony_ci		goto fail;
132862306a36Sopenharmony_ci
132962306a36Sopenharmony_ci	/* select a primitive polynomial for generating GF(2^m) */
133062306a36Sopenharmony_ci	if (prim_poly == 0)
133162306a36Sopenharmony_ci		prim_poly = prim_poly_tab[m-min_m];
133262306a36Sopenharmony_ci
133362306a36Sopenharmony_ci	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
133462306a36Sopenharmony_ci	if (bch == NULL)
133562306a36Sopenharmony_ci		goto fail;
133662306a36Sopenharmony_ci
133762306a36Sopenharmony_ci	bch->m = m;
133862306a36Sopenharmony_ci	bch->t = t;
133962306a36Sopenharmony_ci	bch->n = (1 << m)-1;
134062306a36Sopenharmony_ci	words  = DIV_ROUND_UP(m*t, 32);
134162306a36Sopenharmony_ci	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
134262306a36Sopenharmony_ci	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
134362306a36Sopenharmony_ci	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
134462306a36Sopenharmony_ci	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
134562306a36Sopenharmony_ci	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
134662306a36Sopenharmony_ci	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
134762306a36Sopenharmony_ci	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
134862306a36Sopenharmony_ci	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
134962306a36Sopenharmony_ci	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
135062306a36Sopenharmony_ci	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
135162306a36Sopenharmony_ci	bch->swap_bits = swap_bits;
135262306a36Sopenharmony_ci
135362306a36Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
135462306a36Sopenharmony_ci		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
135562306a36Sopenharmony_ci
135662306a36Sopenharmony_ci	if (err)
135762306a36Sopenharmony_ci		goto fail;
135862306a36Sopenharmony_ci
135962306a36Sopenharmony_ci	err = build_gf_tables(bch, prim_poly);
136062306a36Sopenharmony_ci	if (err)
136162306a36Sopenharmony_ci		goto fail;
136262306a36Sopenharmony_ci
136362306a36Sopenharmony_ci	/* use generator polynomial for computing encoding tables */
136462306a36Sopenharmony_ci	genpoly = compute_generator_polynomial(bch);
136562306a36Sopenharmony_ci	if (genpoly == NULL)
136662306a36Sopenharmony_ci		goto fail;
136762306a36Sopenharmony_ci
136862306a36Sopenharmony_ci	build_mod8_tables(bch, genpoly);
136962306a36Sopenharmony_ci	kfree(genpoly);
137062306a36Sopenharmony_ci
137162306a36Sopenharmony_ci	err = build_deg2_base(bch);
137262306a36Sopenharmony_ci	if (err)
137362306a36Sopenharmony_ci		goto fail;
137462306a36Sopenharmony_ci
137562306a36Sopenharmony_ci	return bch;
137662306a36Sopenharmony_ci
137762306a36Sopenharmony_cifail:
137862306a36Sopenharmony_ci	bch_free(bch);
137962306a36Sopenharmony_ci	return NULL;
138062306a36Sopenharmony_ci}
138162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_init);
138262306a36Sopenharmony_ci
138362306a36Sopenharmony_ci/**
138462306a36Sopenharmony_ci *  bch_free - free the BCH control structure
138562306a36Sopenharmony_ci *  @bch:    BCH control structure to release
138662306a36Sopenharmony_ci */
138762306a36Sopenharmony_civoid bch_free(struct bch_control *bch)
138862306a36Sopenharmony_ci{
138962306a36Sopenharmony_ci	unsigned int i;
139062306a36Sopenharmony_ci
139162306a36Sopenharmony_ci	if (bch) {
139262306a36Sopenharmony_ci		kfree(bch->a_pow_tab);
139362306a36Sopenharmony_ci		kfree(bch->a_log_tab);
139462306a36Sopenharmony_ci		kfree(bch->mod8_tab);
139562306a36Sopenharmony_ci		kfree(bch->ecc_buf);
139662306a36Sopenharmony_ci		kfree(bch->ecc_buf2);
139762306a36Sopenharmony_ci		kfree(bch->xi_tab);
139862306a36Sopenharmony_ci		kfree(bch->syn);
139962306a36Sopenharmony_ci		kfree(bch->cache);
140062306a36Sopenharmony_ci		kfree(bch->elp);
140162306a36Sopenharmony_ci
140262306a36Sopenharmony_ci		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
140362306a36Sopenharmony_ci			kfree(bch->poly_2t[i]);
140462306a36Sopenharmony_ci
140562306a36Sopenharmony_ci		kfree(bch);
140662306a36Sopenharmony_ci	}
140762306a36Sopenharmony_ci}
140862306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_free);
140962306a36Sopenharmony_ci
141062306a36Sopenharmony_ciMODULE_LICENSE("GPL");
141162306a36Sopenharmony_ciMODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
141262306a36Sopenharmony_ciMODULE_DESCRIPTION("Binary BCH encoder/decoder");
1413