162306a36Sopenharmony_ci/* 262306a36Sopenharmony_ci * Generic binary BCH encoding/decoding library 362306a36Sopenharmony_ci * 462306a36Sopenharmony_ci * This program is free software; you can redistribute it and/or modify it 562306a36Sopenharmony_ci * under the terms of the GNU General Public License version 2 as published by 662306a36Sopenharmony_ci * the Free Software Foundation. 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * This program is distributed in the hope that it will be useful, but WITHOUT 962306a36Sopenharmony_ci * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 1062306a36Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 1162306a36Sopenharmony_ci * more details. 1262306a36Sopenharmony_ci * 1362306a36Sopenharmony_ci * You should have received a copy of the GNU General Public License along with 1462306a36Sopenharmony_ci * this program; if not, write to the Free Software Foundation, Inc., 51 1562306a36Sopenharmony_ci * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 1662306a36Sopenharmony_ci * 1762306a36Sopenharmony_ci * Copyright © 2011 Parrot S.A. 1862306a36Sopenharmony_ci * 1962306a36Sopenharmony_ci * Author: Ivan Djelic <ivan.djelic@parrot.com> 2062306a36Sopenharmony_ci * 2162306a36Sopenharmony_ci * Description: 2262306a36Sopenharmony_ci * 2362306a36Sopenharmony_ci * This library provides runtime configurable encoding/decoding of binary 2462306a36Sopenharmony_ci * Bose-Chaudhuri-Hocquenghem (BCH) codes. 2562306a36Sopenharmony_ci * 2662306a36Sopenharmony_ci * Call bch_init to get a pointer to a newly allocated bch_control structure for 2762306a36Sopenharmony_ci * the given m (Galois field order), t (error correction capability) and 2862306a36Sopenharmony_ci * (optional) primitive polynomial parameters. 2962306a36Sopenharmony_ci * 3062306a36Sopenharmony_ci * Call bch_encode to compute and store ecc parity bytes to a given buffer. 3162306a36Sopenharmony_ci * Call bch_decode to detect and locate errors in received data. 3262306a36Sopenharmony_ci * 3362306a36Sopenharmony_ci * On systems supporting hw BCH features, intermediate results may be provided 3462306a36Sopenharmony_ci * to bch_decode in order to skip certain steps. See bch_decode() documentation 3562306a36Sopenharmony_ci * for details. 3662306a36Sopenharmony_ci * 3762306a36Sopenharmony_ci * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of 3862306a36Sopenharmony_ci * parameters m and t; thus allowing extra compiler optimizations and providing 3962306a36Sopenharmony_ci * better (up to 2x) encoding performance. Using this option makes sense when 4062306a36Sopenharmony_ci * (m,t) are fixed and known in advance, e.g. when using BCH error correction 4162306a36Sopenharmony_ci * on a particular NAND flash device. 4262306a36Sopenharmony_ci * 4362306a36Sopenharmony_ci * Algorithmic details: 4462306a36Sopenharmony_ci * 4562306a36Sopenharmony_ci * Encoding is performed by processing 32 input bits in parallel, using 4 4662306a36Sopenharmony_ci * remainder lookup tables. 4762306a36Sopenharmony_ci * 4862306a36Sopenharmony_ci * The final stage of decoding involves the following internal steps: 4962306a36Sopenharmony_ci * a. Syndrome computation 5062306a36Sopenharmony_ci * b. Error locator polynomial computation using Berlekamp-Massey algorithm 5162306a36Sopenharmony_ci * c. Error locator root finding (by far the most expensive step) 5262306a36Sopenharmony_ci * 5362306a36Sopenharmony_ci * In this implementation, step c is not performed using the usual Chien search. 5462306a36Sopenharmony_ci * Instead, an alternative approach described in [1] is used. It consists in 5562306a36Sopenharmony_ci * factoring the error locator polynomial using the Berlekamp Trace algorithm 5662306a36Sopenharmony_ci * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial 5762306a36Sopenharmony_ci * solving techniques [2] are used. The resulting algorithm, called BTZ, yields 5862306a36Sopenharmony_ci * much better performance than Chien search for usual (m,t) values (typically 5962306a36Sopenharmony_ci * m >= 13, t < 32, see [1]). 6062306a36Sopenharmony_ci * 6162306a36Sopenharmony_ci * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields 6262306a36Sopenharmony_ci * of characteristic 2, in: Western European Workshop on Research in Cryptology 6362306a36Sopenharmony_ci * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. 6462306a36Sopenharmony_ci * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over 6562306a36Sopenharmony_ci * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. 6662306a36Sopenharmony_ci */ 6762306a36Sopenharmony_ci 6862306a36Sopenharmony_ci#include <linux/kernel.h> 6962306a36Sopenharmony_ci#include <linux/errno.h> 7062306a36Sopenharmony_ci#include <linux/init.h> 7162306a36Sopenharmony_ci#include <linux/module.h> 7262306a36Sopenharmony_ci#include <linux/slab.h> 7362306a36Sopenharmony_ci#include <linux/bitops.h> 7462306a36Sopenharmony_ci#include <linux/bitrev.h> 7562306a36Sopenharmony_ci#include <asm/byteorder.h> 7662306a36Sopenharmony_ci#include <linux/bch.h> 7762306a36Sopenharmony_ci 7862306a36Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS) 7962306a36Sopenharmony_ci#define GF_M(_p) (CONFIG_BCH_CONST_M) 8062306a36Sopenharmony_ci#define GF_T(_p) (CONFIG_BCH_CONST_T) 8162306a36Sopenharmony_ci#define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1) 8262306a36Sopenharmony_ci#define BCH_MAX_M (CONFIG_BCH_CONST_M) 8362306a36Sopenharmony_ci#define BCH_MAX_T (CONFIG_BCH_CONST_T) 8462306a36Sopenharmony_ci#else 8562306a36Sopenharmony_ci#define GF_M(_p) ((_p)->m) 8662306a36Sopenharmony_ci#define GF_T(_p) ((_p)->t) 8762306a36Sopenharmony_ci#define GF_N(_p) ((_p)->n) 8862306a36Sopenharmony_ci#define BCH_MAX_M 15 /* 2KB */ 8962306a36Sopenharmony_ci#define BCH_MAX_T 64 /* 64 bit correction */ 9062306a36Sopenharmony_ci#endif 9162306a36Sopenharmony_ci 9262306a36Sopenharmony_ci#define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) 9362306a36Sopenharmony_ci#define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) 9462306a36Sopenharmony_ci 9562306a36Sopenharmony_ci#define BCH_ECC_MAX_WORDS DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32) 9662306a36Sopenharmony_ci 9762306a36Sopenharmony_ci#ifndef dbg 9862306a36Sopenharmony_ci#define dbg(_fmt, args...) do {} while (0) 9962306a36Sopenharmony_ci#endif 10062306a36Sopenharmony_ci 10162306a36Sopenharmony_ci/* 10262306a36Sopenharmony_ci * represent a polynomial over GF(2^m) 10362306a36Sopenharmony_ci */ 10462306a36Sopenharmony_cistruct gf_poly { 10562306a36Sopenharmony_ci unsigned int deg; /* polynomial degree */ 10662306a36Sopenharmony_ci unsigned int c[]; /* polynomial terms */ 10762306a36Sopenharmony_ci}; 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci/* given its degree, compute a polynomial size in bytes */ 11062306a36Sopenharmony_ci#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) 11162306a36Sopenharmony_ci 11262306a36Sopenharmony_ci/* polynomial of degree 1 */ 11362306a36Sopenharmony_cistruct gf_poly_deg1 { 11462306a36Sopenharmony_ci struct gf_poly poly; 11562306a36Sopenharmony_ci unsigned int c[2]; 11662306a36Sopenharmony_ci}; 11762306a36Sopenharmony_ci 11862306a36Sopenharmony_cistatic u8 swap_bits(struct bch_control *bch, u8 in) 11962306a36Sopenharmony_ci{ 12062306a36Sopenharmony_ci if (!bch->swap_bits) 12162306a36Sopenharmony_ci return in; 12262306a36Sopenharmony_ci 12362306a36Sopenharmony_ci return bitrev8(in); 12462306a36Sopenharmony_ci} 12562306a36Sopenharmony_ci 12662306a36Sopenharmony_ci/* 12762306a36Sopenharmony_ci * same as bch_encode(), but process input data one byte at a time 12862306a36Sopenharmony_ci */ 12962306a36Sopenharmony_cistatic void bch_encode_unaligned(struct bch_control *bch, 13062306a36Sopenharmony_ci const unsigned char *data, unsigned int len, 13162306a36Sopenharmony_ci uint32_t *ecc) 13262306a36Sopenharmony_ci{ 13362306a36Sopenharmony_ci int i; 13462306a36Sopenharmony_ci const uint32_t *p; 13562306a36Sopenharmony_ci const int l = BCH_ECC_WORDS(bch)-1; 13662306a36Sopenharmony_ci 13762306a36Sopenharmony_ci while (len--) { 13862306a36Sopenharmony_ci u8 tmp = swap_bits(bch, *data++); 13962306a36Sopenharmony_ci 14062306a36Sopenharmony_ci p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff); 14162306a36Sopenharmony_ci 14262306a36Sopenharmony_ci for (i = 0; i < l; i++) 14362306a36Sopenharmony_ci ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci ecc[l] = (ecc[l] << 8)^(*p); 14662306a36Sopenharmony_ci } 14762306a36Sopenharmony_ci} 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci/* 15062306a36Sopenharmony_ci * convert ecc bytes to aligned, zero-padded 32-bit ecc words 15162306a36Sopenharmony_ci */ 15262306a36Sopenharmony_cistatic void load_ecc8(struct bch_control *bch, uint32_t *dst, 15362306a36Sopenharmony_ci const uint8_t *src) 15462306a36Sopenharmony_ci{ 15562306a36Sopenharmony_ci uint8_t pad[4] = {0, 0, 0, 0}; 15662306a36Sopenharmony_ci unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 15762306a36Sopenharmony_ci 15862306a36Sopenharmony_ci for (i = 0; i < nwords; i++, src += 4) 15962306a36Sopenharmony_ci dst[i] = ((u32)swap_bits(bch, src[0]) << 24) | 16062306a36Sopenharmony_ci ((u32)swap_bits(bch, src[1]) << 16) | 16162306a36Sopenharmony_ci ((u32)swap_bits(bch, src[2]) << 8) | 16262306a36Sopenharmony_ci swap_bits(bch, src[3]); 16362306a36Sopenharmony_ci 16462306a36Sopenharmony_ci memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); 16562306a36Sopenharmony_ci dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) | 16662306a36Sopenharmony_ci ((u32)swap_bits(bch, pad[1]) << 16) | 16762306a36Sopenharmony_ci ((u32)swap_bits(bch, pad[2]) << 8) | 16862306a36Sopenharmony_ci swap_bits(bch, pad[3]); 16962306a36Sopenharmony_ci} 17062306a36Sopenharmony_ci 17162306a36Sopenharmony_ci/* 17262306a36Sopenharmony_ci * convert 32-bit ecc words to ecc bytes 17362306a36Sopenharmony_ci */ 17462306a36Sopenharmony_cistatic void store_ecc8(struct bch_control *bch, uint8_t *dst, 17562306a36Sopenharmony_ci const uint32_t *src) 17662306a36Sopenharmony_ci{ 17762306a36Sopenharmony_ci uint8_t pad[4]; 17862306a36Sopenharmony_ci unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; 17962306a36Sopenharmony_ci 18062306a36Sopenharmony_ci for (i = 0; i < nwords; i++) { 18162306a36Sopenharmony_ci *dst++ = swap_bits(bch, src[i] >> 24); 18262306a36Sopenharmony_ci *dst++ = swap_bits(bch, src[i] >> 16); 18362306a36Sopenharmony_ci *dst++ = swap_bits(bch, src[i] >> 8); 18462306a36Sopenharmony_ci *dst++ = swap_bits(bch, src[i]); 18562306a36Sopenharmony_ci } 18662306a36Sopenharmony_ci pad[0] = swap_bits(bch, src[nwords] >> 24); 18762306a36Sopenharmony_ci pad[1] = swap_bits(bch, src[nwords] >> 16); 18862306a36Sopenharmony_ci pad[2] = swap_bits(bch, src[nwords] >> 8); 18962306a36Sopenharmony_ci pad[3] = swap_bits(bch, src[nwords]); 19062306a36Sopenharmony_ci memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); 19162306a36Sopenharmony_ci} 19262306a36Sopenharmony_ci 19362306a36Sopenharmony_ci/** 19462306a36Sopenharmony_ci * bch_encode - calculate BCH ecc parity of data 19562306a36Sopenharmony_ci * @bch: BCH control structure 19662306a36Sopenharmony_ci * @data: data to encode 19762306a36Sopenharmony_ci * @len: data length in bytes 19862306a36Sopenharmony_ci * @ecc: ecc parity data, must be initialized by caller 19962306a36Sopenharmony_ci * 20062306a36Sopenharmony_ci * The @ecc parity array is used both as input and output parameter, in order to 20162306a36Sopenharmony_ci * allow incremental computations. It should be of the size indicated by member 20262306a36Sopenharmony_ci * @ecc_bytes of @bch, and should be initialized to 0 before the first call. 20362306a36Sopenharmony_ci * 20462306a36Sopenharmony_ci * The exact number of computed ecc parity bits is given by member @ecc_bits of 20562306a36Sopenharmony_ci * @bch; it may be less than m*t for large values of t. 20662306a36Sopenharmony_ci */ 20762306a36Sopenharmony_civoid bch_encode(struct bch_control *bch, const uint8_t *data, 20862306a36Sopenharmony_ci unsigned int len, uint8_t *ecc) 20962306a36Sopenharmony_ci{ 21062306a36Sopenharmony_ci const unsigned int l = BCH_ECC_WORDS(bch)-1; 21162306a36Sopenharmony_ci unsigned int i, mlen; 21262306a36Sopenharmony_ci unsigned long m; 21362306a36Sopenharmony_ci uint32_t w, r[BCH_ECC_MAX_WORDS]; 21462306a36Sopenharmony_ci const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r); 21562306a36Sopenharmony_ci const uint32_t * const tab0 = bch->mod8_tab; 21662306a36Sopenharmony_ci const uint32_t * const tab1 = tab0 + 256*(l+1); 21762306a36Sopenharmony_ci const uint32_t * const tab2 = tab1 + 256*(l+1); 21862306a36Sopenharmony_ci const uint32_t * const tab3 = tab2 + 256*(l+1); 21962306a36Sopenharmony_ci const uint32_t *pdata, *p0, *p1, *p2, *p3; 22062306a36Sopenharmony_ci 22162306a36Sopenharmony_ci if (WARN_ON(r_bytes > sizeof(r))) 22262306a36Sopenharmony_ci return; 22362306a36Sopenharmony_ci 22462306a36Sopenharmony_ci if (ecc) { 22562306a36Sopenharmony_ci /* load ecc parity bytes into internal 32-bit buffer */ 22662306a36Sopenharmony_ci load_ecc8(bch, bch->ecc_buf, ecc); 22762306a36Sopenharmony_ci } else { 22862306a36Sopenharmony_ci memset(bch->ecc_buf, 0, r_bytes); 22962306a36Sopenharmony_ci } 23062306a36Sopenharmony_ci 23162306a36Sopenharmony_ci /* process first unaligned data bytes */ 23262306a36Sopenharmony_ci m = ((unsigned long)data) & 3; 23362306a36Sopenharmony_ci if (m) { 23462306a36Sopenharmony_ci mlen = (len < (4-m)) ? len : 4-m; 23562306a36Sopenharmony_ci bch_encode_unaligned(bch, data, mlen, bch->ecc_buf); 23662306a36Sopenharmony_ci data += mlen; 23762306a36Sopenharmony_ci len -= mlen; 23862306a36Sopenharmony_ci } 23962306a36Sopenharmony_ci 24062306a36Sopenharmony_ci /* process 32-bit aligned data words */ 24162306a36Sopenharmony_ci pdata = (uint32_t *)data; 24262306a36Sopenharmony_ci mlen = len/4; 24362306a36Sopenharmony_ci data += 4*mlen; 24462306a36Sopenharmony_ci len -= 4*mlen; 24562306a36Sopenharmony_ci memcpy(r, bch->ecc_buf, r_bytes); 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci /* 24862306a36Sopenharmony_ci * split each 32-bit word into 4 polynomials of weight 8 as follows: 24962306a36Sopenharmony_ci * 25062306a36Sopenharmony_ci * 31 ...24 23 ...16 15 ... 8 7 ... 0 25162306a36Sopenharmony_ci * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt 25262306a36Sopenharmony_ci * tttttttt mod g = r0 (precomputed) 25362306a36Sopenharmony_ci * zzzzzzzz 00000000 mod g = r1 (precomputed) 25462306a36Sopenharmony_ci * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed) 25562306a36Sopenharmony_ci * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed) 25662306a36Sopenharmony_ci * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3 25762306a36Sopenharmony_ci */ 25862306a36Sopenharmony_ci while (mlen--) { 25962306a36Sopenharmony_ci /* input data is read in big-endian format */ 26062306a36Sopenharmony_ci w = cpu_to_be32(*pdata++); 26162306a36Sopenharmony_ci if (bch->swap_bits) 26262306a36Sopenharmony_ci w = (u32)swap_bits(bch, w) | 26362306a36Sopenharmony_ci ((u32)swap_bits(bch, w >> 8) << 8) | 26462306a36Sopenharmony_ci ((u32)swap_bits(bch, w >> 16) << 16) | 26562306a36Sopenharmony_ci ((u32)swap_bits(bch, w >> 24) << 24); 26662306a36Sopenharmony_ci w ^= r[0]; 26762306a36Sopenharmony_ci p0 = tab0 + (l+1)*((w >> 0) & 0xff); 26862306a36Sopenharmony_ci p1 = tab1 + (l+1)*((w >> 8) & 0xff); 26962306a36Sopenharmony_ci p2 = tab2 + (l+1)*((w >> 16) & 0xff); 27062306a36Sopenharmony_ci p3 = tab3 + (l+1)*((w >> 24) & 0xff); 27162306a36Sopenharmony_ci 27262306a36Sopenharmony_ci for (i = 0; i < l; i++) 27362306a36Sopenharmony_ci r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_ci r[l] = p0[l]^p1[l]^p2[l]^p3[l]; 27662306a36Sopenharmony_ci } 27762306a36Sopenharmony_ci memcpy(bch->ecc_buf, r, r_bytes); 27862306a36Sopenharmony_ci 27962306a36Sopenharmony_ci /* process last unaligned bytes */ 28062306a36Sopenharmony_ci if (len) 28162306a36Sopenharmony_ci bch_encode_unaligned(bch, data, len, bch->ecc_buf); 28262306a36Sopenharmony_ci 28362306a36Sopenharmony_ci /* store ecc parity bytes into original parity buffer */ 28462306a36Sopenharmony_ci if (ecc) 28562306a36Sopenharmony_ci store_ecc8(bch, ecc, bch->ecc_buf); 28662306a36Sopenharmony_ci} 28762306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_encode); 28862306a36Sopenharmony_ci 28962306a36Sopenharmony_cistatic inline int modulo(struct bch_control *bch, unsigned int v) 29062306a36Sopenharmony_ci{ 29162306a36Sopenharmony_ci const unsigned int n = GF_N(bch); 29262306a36Sopenharmony_ci while (v >= n) { 29362306a36Sopenharmony_ci v -= n; 29462306a36Sopenharmony_ci v = (v & n) + (v >> GF_M(bch)); 29562306a36Sopenharmony_ci } 29662306a36Sopenharmony_ci return v; 29762306a36Sopenharmony_ci} 29862306a36Sopenharmony_ci 29962306a36Sopenharmony_ci/* 30062306a36Sopenharmony_ci * shorter and faster modulo function, only works when v < 2N. 30162306a36Sopenharmony_ci */ 30262306a36Sopenharmony_cistatic inline int mod_s(struct bch_control *bch, unsigned int v) 30362306a36Sopenharmony_ci{ 30462306a36Sopenharmony_ci const unsigned int n = GF_N(bch); 30562306a36Sopenharmony_ci return (v < n) ? v : v-n; 30662306a36Sopenharmony_ci} 30762306a36Sopenharmony_ci 30862306a36Sopenharmony_cistatic inline int deg(unsigned int poly) 30962306a36Sopenharmony_ci{ 31062306a36Sopenharmony_ci /* polynomial degree is the most-significant bit index */ 31162306a36Sopenharmony_ci return fls(poly)-1; 31262306a36Sopenharmony_ci} 31362306a36Sopenharmony_ci 31462306a36Sopenharmony_cistatic inline int parity(unsigned int x) 31562306a36Sopenharmony_ci{ 31662306a36Sopenharmony_ci /* 31762306a36Sopenharmony_ci * public domain code snippet, lifted from 31862306a36Sopenharmony_ci * http://www-graphics.stanford.edu/~seander/bithacks.html 31962306a36Sopenharmony_ci */ 32062306a36Sopenharmony_ci x ^= x >> 1; 32162306a36Sopenharmony_ci x ^= x >> 2; 32262306a36Sopenharmony_ci x = (x & 0x11111111U) * 0x11111111U; 32362306a36Sopenharmony_ci return (x >> 28) & 1; 32462306a36Sopenharmony_ci} 32562306a36Sopenharmony_ci 32662306a36Sopenharmony_ci/* Galois field basic operations: multiply, divide, inverse, etc. */ 32762306a36Sopenharmony_ci 32862306a36Sopenharmony_cistatic inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, 32962306a36Sopenharmony_ci unsigned int b) 33062306a36Sopenharmony_ci{ 33162306a36Sopenharmony_ci return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 33262306a36Sopenharmony_ci bch->a_log_tab[b])] : 0; 33362306a36Sopenharmony_ci} 33462306a36Sopenharmony_ci 33562306a36Sopenharmony_cistatic inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) 33662306a36Sopenharmony_ci{ 33762306a36Sopenharmony_ci return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; 33862306a36Sopenharmony_ci} 33962306a36Sopenharmony_ci 34062306a36Sopenharmony_cistatic inline unsigned int gf_div(struct bch_control *bch, unsigned int a, 34162306a36Sopenharmony_ci unsigned int b) 34262306a36Sopenharmony_ci{ 34362306a36Sopenharmony_ci return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ 34462306a36Sopenharmony_ci GF_N(bch)-bch->a_log_tab[b])] : 0; 34562306a36Sopenharmony_ci} 34662306a36Sopenharmony_ci 34762306a36Sopenharmony_cistatic inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) 34862306a36Sopenharmony_ci{ 34962306a36Sopenharmony_ci return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; 35062306a36Sopenharmony_ci} 35162306a36Sopenharmony_ci 35262306a36Sopenharmony_cistatic inline unsigned int a_pow(struct bch_control *bch, int i) 35362306a36Sopenharmony_ci{ 35462306a36Sopenharmony_ci return bch->a_pow_tab[modulo(bch, i)]; 35562306a36Sopenharmony_ci} 35662306a36Sopenharmony_ci 35762306a36Sopenharmony_cistatic inline int a_log(struct bch_control *bch, unsigned int x) 35862306a36Sopenharmony_ci{ 35962306a36Sopenharmony_ci return bch->a_log_tab[x]; 36062306a36Sopenharmony_ci} 36162306a36Sopenharmony_ci 36262306a36Sopenharmony_cistatic inline int a_ilog(struct bch_control *bch, unsigned int x) 36362306a36Sopenharmony_ci{ 36462306a36Sopenharmony_ci return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); 36562306a36Sopenharmony_ci} 36662306a36Sopenharmony_ci 36762306a36Sopenharmony_ci/* 36862306a36Sopenharmony_ci * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t 36962306a36Sopenharmony_ci */ 37062306a36Sopenharmony_cistatic void compute_syndromes(struct bch_control *bch, uint32_t *ecc, 37162306a36Sopenharmony_ci unsigned int *syn) 37262306a36Sopenharmony_ci{ 37362306a36Sopenharmony_ci int i, j, s; 37462306a36Sopenharmony_ci unsigned int m; 37562306a36Sopenharmony_ci uint32_t poly; 37662306a36Sopenharmony_ci const int t = GF_T(bch); 37762306a36Sopenharmony_ci 37862306a36Sopenharmony_ci s = bch->ecc_bits; 37962306a36Sopenharmony_ci 38062306a36Sopenharmony_ci /* make sure extra bits in last ecc word are cleared */ 38162306a36Sopenharmony_ci m = ((unsigned int)s) & 31; 38262306a36Sopenharmony_ci if (m) 38362306a36Sopenharmony_ci ecc[s/32] &= ~((1u << (32-m))-1); 38462306a36Sopenharmony_ci memset(syn, 0, 2*t*sizeof(*syn)); 38562306a36Sopenharmony_ci 38662306a36Sopenharmony_ci /* compute v(a^j) for j=1 .. 2t-1 */ 38762306a36Sopenharmony_ci do { 38862306a36Sopenharmony_ci poly = *ecc++; 38962306a36Sopenharmony_ci s -= 32; 39062306a36Sopenharmony_ci while (poly) { 39162306a36Sopenharmony_ci i = deg(poly); 39262306a36Sopenharmony_ci for (j = 0; j < 2*t; j += 2) 39362306a36Sopenharmony_ci syn[j] ^= a_pow(bch, (j+1)*(i+s)); 39462306a36Sopenharmony_ci 39562306a36Sopenharmony_ci poly ^= (1 << i); 39662306a36Sopenharmony_ci } 39762306a36Sopenharmony_ci } while (s > 0); 39862306a36Sopenharmony_ci 39962306a36Sopenharmony_ci /* v(a^(2j)) = v(a^j)^2 */ 40062306a36Sopenharmony_ci for (j = 0; j < t; j++) 40162306a36Sopenharmony_ci syn[2*j+1] = gf_sqr(bch, syn[j]); 40262306a36Sopenharmony_ci} 40362306a36Sopenharmony_ci 40462306a36Sopenharmony_cistatic void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) 40562306a36Sopenharmony_ci{ 40662306a36Sopenharmony_ci memcpy(dst, src, GF_POLY_SZ(src->deg)); 40762306a36Sopenharmony_ci} 40862306a36Sopenharmony_ci 40962306a36Sopenharmony_cistatic int compute_error_locator_polynomial(struct bch_control *bch, 41062306a36Sopenharmony_ci const unsigned int *syn) 41162306a36Sopenharmony_ci{ 41262306a36Sopenharmony_ci const unsigned int t = GF_T(bch); 41362306a36Sopenharmony_ci const unsigned int n = GF_N(bch); 41462306a36Sopenharmony_ci unsigned int i, j, tmp, l, pd = 1, d = syn[0]; 41562306a36Sopenharmony_ci struct gf_poly *elp = bch->elp; 41662306a36Sopenharmony_ci struct gf_poly *pelp = bch->poly_2t[0]; 41762306a36Sopenharmony_ci struct gf_poly *elp_copy = bch->poly_2t[1]; 41862306a36Sopenharmony_ci int k, pp = -1; 41962306a36Sopenharmony_ci 42062306a36Sopenharmony_ci memset(pelp, 0, GF_POLY_SZ(2*t)); 42162306a36Sopenharmony_ci memset(elp, 0, GF_POLY_SZ(2*t)); 42262306a36Sopenharmony_ci 42362306a36Sopenharmony_ci pelp->deg = 0; 42462306a36Sopenharmony_ci pelp->c[0] = 1; 42562306a36Sopenharmony_ci elp->deg = 0; 42662306a36Sopenharmony_ci elp->c[0] = 1; 42762306a36Sopenharmony_ci 42862306a36Sopenharmony_ci /* use simplified binary Berlekamp-Massey algorithm */ 42962306a36Sopenharmony_ci for (i = 0; (i < t) && (elp->deg <= t); i++) { 43062306a36Sopenharmony_ci if (d) { 43162306a36Sopenharmony_ci k = 2*i-pp; 43262306a36Sopenharmony_ci gf_poly_copy(elp_copy, elp); 43362306a36Sopenharmony_ci /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ 43462306a36Sopenharmony_ci tmp = a_log(bch, d)+n-a_log(bch, pd); 43562306a36Sopenharmony_ci for (j = 0; j <= pelp->deg; j++) { 43662306a36Sopenharmony_ci if (pelp->c[j]) { 43762306a36Sopenharmony_ci l = a_log(bch, pelp->c[j]); 43862306a36Sopenharmony_ci elp->c[j+k] ^= a_pow(bch, tmp+l); 43962306a36Sopenharmony_ci } 44062306a36Sopenharmony_ci } 44162306a36Sopenharmony_ci /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ 44262306a36Sopenharmony_ci tmp = pelp->deg+k; 44362306a36Sopenharmony_ci if (tmp > elp->deg) { 44462306a36Sopenharmony_ci elp->deg = tmp; 44562306a36Sopenharmony_ci gf_poly_copy(pelp, elp_copy); 44662306a36Sopenharmony_ci pd = d; 44762306a36Sopenharmony_ci pp = 2*i; 44862306a36Sopenharmony_ci } 44962306a36Sopenharmony_ci } 45062306a36Sopenharmony_ci /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ 45162306a36Sopenharmony_ci if (i < t-1) { 45262306a36Sopenharmony_ci d = syn[2*i+2]; 45362306a36Sopenharmony_ci for (j = 1; j <= elp->deg; j++) 45462306a36Sopenharmony_ci d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); 45562306a36Sopenharmony_ci } 45662306a36Sopenharmony_ci } 45762306a36Sopenharmony_ci dbg("elp=%s\n", gf_poly_str(elp)); 45862306a36Sopenharmony_ci return (elp->deg > t) ? -1 : (int)elp->deg; 45962306a36Sopenharmony_ci} 46062306a36Sopenharmony_ci 46162306a36Sopenharmony_ci/* 46262306a36Sopenharmony_ci * solve a m x m linear system in GF(2) with an expected number of solutions, 46362306a36Sopenharmony_ci * and return the number of found solutions 46462306a36Sopenharmony_ci */ 46562306a36Sopenharmony_cistatic int solve_linear_system(struct bch_control *bch, unsigned int *rows, 46662306a36Sopenharmony_ci unsigned int *sol, int nsol) 46762306a36Sopenharmony_ci{ 46862306a36Sopenharmony_ci const int m = GF_M(bch); 46962306a36Sopenharmony_ci unsigned int tmp, mask; 47062306a36Sopenharmony_ci int rem, c, r, p, k, param[BCH_MAX_M]; 47162306a36Sopenharmony_ci 47262306a36Sopenharmony_ci k = 0; 47362306a36Sopenharmony_ci mask = 1 << m; 47462306a36Sopenharmony_ci 47562306a36Sopenharmony_ci /* Gaussian elimination */ 47662306a36Sopenharmony_ci for (c = 0; c < m; c++) { 47762306a36Sopenharmony_ci rem = 0; 47862306a36Sopenharmony_ci p = c-k; 47962306a36Sopenharmony_ci /* find suitable row for elimination */ 48062306a36Sopenharmony_ci for (r = p; r < m; r++) { 48162306a36Sopenharmony_ci if (rows[r] & mask) { 48262306a36Sopenharmony_ci if (r != p) { 48362306a36Sopenharmony_ci tmp = rows[r]; 48462306a36Sopenharmony_ci rows[r] = rows[p]; 48562306a36Sopenharmony_ci rows[p] = tmp; 48662306a36Sopenharmony_ci } 48762306a36Sopenharmony_ci rem = r+1; 48862306a36Sopenharmony_ci break; 48962306a36Sopenharmony_ci } 49062306a36Sopenharmony_ci } 49162306a36Sopenharmony_ci if (rem) { 49262306a36Sopenharmony_ci /* perform elimination on remaining rows */ 49362306a36Sopenharmony_ci tmp = rows[p]; 49462306a36Sopenharmony_ci for (r = rem; r < m; r++) { 49562306a36Sopenharmony_ci if (rows[r] & mask) 49662306a36Sopenharmony_ci rows[r] ^= tmp; 49762306a36Sopenharmony_ci } 49862306a36Sopenharmony_ci } else { 49962306a36Sopenharmony_ci /* elimination not needed, store defective row index */ 50062306a36Sopenharmony_ci param[k++] = c; 50162306a36Sopenharmony_ci } 50262306a36Sopenharmony_ci mask >>= 1; 50362306a36Sopenharmony_ci } 50462306a36Sopenharmony_ci /* rewrite system, inserting fake parameter rows */ 50562306a36Sopenharmony_ci if (k > 0) { 50662306a36Sopenharmony_ci p = k; 50762306a36Sopenharmony_ci for (r = m-1; r >= 0; r--) { 50862306a36Sopenharmony_ci if ((r > m-1-k) && rows[r]) 50962306a36Sopenharmony_ci /* system has no solution */ 51062306a36Sopenharmony_ci return 0; 51162306a36Sopenharmony_ci 51262306a36Sopenharmony_ci rows[r] = (p && (r == param[p-1])) ? 51362306a36Sopenharmony_ci p--, 1u << (m-r) : rows[r-p]; 51462306a36Sopenharmony_ci } 51562306a36Sopenharmony_ci } 51662306a36Sopenharmony_ci 51762306a36Sopenharmony_ci if (nsol != (1 << k)) 51862306a36Sopenharmony_ci /* unexpected number of solutions */ 51962306a36Sopenharmony_ci return 0; 52062306a36Sopenharmony_ci 52162306a36Sopenharmony_ci for (p = 0; p < nsol; p++) { 52262306a36Sopenharmony_ci /* set parameters for p-th solution */ 52362306a36Sopenharmony_ci for (c = 0; c < k; c++) 52462306a36Sopenharmony_ci rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); 52562306a36Sopenharmony_ci 52662306a36Sopenharmony_ci /* compute unique solution */ 52762306a36Sopenharmony_ci tmp = 0; 52862306a36Sopenharmony_ci for (r = m-1; r >= 0; r--) { 52962306a36Sopenharmony_ci mask = rows[r] & (tmp|1); 53062306a36Sopenharmony_ci tmp |= parity(mask) << (m-r); 53162306a36Sopenharmony_ci } 53262306a36Sopenharmony_ci sol[p] = tmp >> 1; 53362306a36Sopenharmony_ci } 53462306a36Sopenharmony_ci return nsol; 53562306a36Sopenharmony_ci} 53662306a36Sopenharmony_ci 53762306a36Sopenharmony_ci/* 53862306a36Sopenharmony_ci * this function builds and solves a linear system for finding roots of a degree 53962306a36Sopenharmony_ci * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). 54062306a36Sopenharmony_ci */ 54162306a36Sopenharmony_cistatic int find_affine4_roots(struct bch_control *bch, unsigned int a, 54262306a36Sopenharmony_ci unsigned int b, unsigned int c, 54362306a36Sopenharmony_ci unsigned int *roots) 54462306a36Sopenharmony_ci{ 54562306a36Sopenharmony_ci int i, j, k; 54662306a36Sopenharmony_ci const int m = GF_M(bch); 54762306a36Sopenharmony_ci unsigned int mask = 0xff, t, rows[16] = {0,}; 54862306a36Sopenharmony_ci 54962306a36Sopenharmony_ci j = a_log(bch, b); 55062306a36Sopenharmony_ci k = a_log(bch, a); 55162306a36Sopenharmony_ci rows[0] = c; 55262306a36Sopenharmony_ci 55362306a36Sopenharmony_ci /* build linear system to solve X^4+aX^2+bX+c = 0 */ 55462306a36Sopenharmony_ci for (i = 0; i < m; i++) { 55562306a36Sopenharmony_ci rows[i+1] = bch->a_pow_tab[4*i]^ 55662306a36Sopenharmony_ci (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ 55762306a36Sopenharmony_ci (b ? bch->a_pow_tab[mod_s(bch, j)] : 0); 55862306a36Sopenharmony_ci j++; 55962306a36Sopenharmony_ci k += 2; 56062306a36Sopenharmony_ci } 56162306a36Sopenharmony_ci /* 56262306a36Sopenharmony_ci * transpose 16x16 matrix before passing it to linear solver 56362306a36Sopenharmony_ci * warning: this code assumes m < 16 56462306a36Sopenharmony_ci */ 56562306a36Sopenharmony_ci for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { 56662306a36Sopenharmony_ci for (k = 0; k < 16; k = (k+j+1) & ~j) { 56762306a36Sopenharmony_ci t = ((rows[k] >> j)^rows[k+j]) & mask; 56862306a36Sopenharmony_ci rows[k] ^= (t << j); 56962306a36Sopenharmony_ci rows[k+j] ^= t; 57062306a36Sopenharmony_ci } 57162306a36Sopenharmony_ci } 57262306a36Sopenharmony_ci return solve_linear_system(bch, rows, roots, 4); 57362306a36Sopenharmony_ci} 57462306a36Sopenharmony_ci 57562306a36Sopenharmony_ci/* 57662306a36Sopenharmony_ci * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) 57762306a36Sopenharmony_ci */ 57862306a36Sopenharmony_cistatic int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, 57962306a36Sopenharmony_ci unsigned int *roots) 58062306a36Sopenharmony_ci{ 58162306a36Sopenharmony_ci int n = 0; 58262306a36Sopenharmony_ci 58362306a36Sopenharmony_ci if (poly->c[0]) 58462306a36Sopenharmony_ci /* poly[X] = bX+c with c!=0, root=c/b */ 58562306a36Sopenharmony_ci roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ 58662306a36Sopenharmony_ci bch->a_log_tab[poly->c[1]]); 58762306a36Sopenharmony_ci return n; 58862306a36Sopenharmony_ci} 58962306a36Sopenharmony_ci 59062306a36Sopenharmony_ci/* 59162306a36Sopenharmony_ci * compute roots of a degree 2 polynomial over GF(2^m) 59262306a36Sopenharmony_ci */ 59362306a36Sopenharmony_cistatic int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, 59462306a36Sopenharmony_ci unsigned int *roots) 59562306a36Sopenharmony_ci{ 59662306a36Sopenharmony_ci int n = 0, i, l0, l1, l2; 59762306a36Sopenharmony_ci unsigned int u, v, r; 59862306a36Sopenharmony_ci 59962306a36Sopenharmony_ci if (poly->c[0] && poly->c[1]) { 60062306a36Sopenharmony_ci 60162306a36Sopenharmony_ci l0 = bch->a_log_tab[poly->c[0]]; 60262306a36Sopenharmony_ci l1 = bch->a_log_tab[poly->c[1]]; 60362306a36Sopenharmony_ci l2 = bch->a_log_tab[poly->c[2]]; 60462306a36Sopenharmony_ci 60562306a36Sopenharmony_ci /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ 60662306a36Sopenharmony_ci u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); 60762306a36Sopenharmony_ci /* 60862306a36Sopenharmony_ci * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): 60962306a36Sopenharmony_ci * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = 61062306a36Sopenharmony_ci * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) 61162306a36Sopenharmony_ci * i.e. r and r+1 are roots iff Tr(u)=0 61262306a36Sopenharmony_ci */ 61362306a36Sopenharmony_ci r = 0; 61462306a36Sopenharmony_ci v = u; 61562306a36Sopenharmony_ci while (v) { 61662306a36Sopenharmony_ci i = deg(v); 61762306a36Sopenharmony_ci r ^= bch->xi_tab[i]; 61862306a36Sopenharmony_ci v ^= (1 << i); 61962306a36Sopenharmony_ci } 62062306a36Sopenharmony_ci /* verify root */ 62162306a36Sopenharmony_ci if ((gf_sqr(bch, r)^r) == u) { 62262306a36Sopenharmony_ci /* reverse z=a/bX transformation and compute log(1/r) */ 62362306a36Sopenharmony_ci roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 62462306a36Sopenharmony_ci bch->a_log_tab[r]+l2); 62562306a36Sopenharmony_ci roots[n++] = modulo(bch, 2*GF_N(bch)-l1- 62662306a36Sopenharmony_ci bch->a_log_tab[r^1]+l2); 62762306a36Sopenharmony_ci } 62862306a36Sopenharmony_ci } 62962306a36Sopenharmony_ci return n; 63062306a36Sopenharmony_ci} 63162306a36Sopenharmony_ci 63262306a36Sopenharmony_ci/* 63362306a36Sopenharmony_ci * compute roots of a degree 3 polynomial over GF(2^m) 63462306a36Sopenharmony_ci */ 63562306a36Sopenharmony_cistatic int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, 63662306a36Sopenharmony_ci unsigned int *roots) 63762306a36Sopenharmony_ci{ 63862306a36Sopenharmony_ci int i, n = 0; 63962306a36Sopenharmony_ci unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; 64062306a36Sopenharmony_ci 64162306a36Sopenharmony_ci if (poly->c[0]) { 64262306a36Sopenharmony_ci /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ 64362306a36Sopenharmony_ci e3 = poly->c[3]; 64462306a36Sopenharmony_ci c2 = gf_div(bch, poly->c[0], e3); 64562306a36Sopenharmony_ci b2 = gf_div(bch, poly->c[1], e3); 64662306a36Sopenharmony_ci a2 = gf_div(bch, poly->c[2], e3); 64762306a36Sopenharmony_ci 64862306a36Sopenharmony_ci /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ 64962306a36Sopenharmony_ci c = gf_mul(bch, a2, c2); /* c = a2c2 */ 65062306a36Sopenharmony_ci b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */ 65162306a36Sopenharmony_ci a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */ 65262306a36Sopenharmony_ci 65362306a36Sopenharmony_ci /* find the 4 roots of this affine polynomial */ 65462306a36Sopenharmony_ci if (find_affine4_roots(bch, a, b, c, tmp) == 4) { 65562306a36Sopenharmony_ci /* remove a2 from final list of roots */ 65662306a36Sopenharmony_ci for (i = 0; i < 4; i++) { 65762306a36Sopenharmony_ci if (tmp[i] != a2) 65862306a36Sopenharmony_ci roots[n++] = a_ilog(bch, tmp[i]); 65962306a36Sopenharmony_ci } 66062306a36Sopenharmony_ci } 66162306a36Sopenharmony_ci } 66262306a36Sopenharmony_ci return n; 66362306a36Sopenharmony_ci} 66462306a36Sopenharmony_ci 66562306a36Sopenharmony_ci/* 66662306a36Sopenharmony_ci * compute roots of a degree 4 polynomial over GF(2^m) 66762306a36Sopenharmony_ci */ 66862306a36Sopenharmony_cistatic int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, 66962306a36Sopenharmony_ci unsigned int *roots) 67062306a36Sopenharmony_ci{ 67162306a36Sopenharmony_ci int i, l, n = 0; 67262306a36Sopenharmony_ci unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; 67362306a36Sopenharmony_ci 67462306a36Sopenharmony_ci if (poly->c[0] == 0) 67562306a36Sopenharmony_ci return 0; 67662306a36Sopenharmony_ci 67762306a36Sopenharmony_ci /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ 67862306a36Sopenharmony_ci e4 = poly->c[4]; 67962306a36Sopenharmony_ci d = gf_div(bch, poly->c[0], e4); 68062306a36Sopenharmony_ci c = gf_div(bch, poly->c[1], e4); 68162306a36Sopenharmony_ci b = gf_div(bch, poly->c[2], e4); 68262306a36Sopenharmony_ci a = gf_div(bch, poly->c[3], e4); 68362306a36Sopenharmony_ci 68462306a36Sopenharmony_ci /* use Y=1/X transformation to get an affine polynomial */ 68562306a36Sopenharmony_ci if (a) { 68662306a36Sopenharmony_ci /* first, eliminate cX by using z=X+e with ae^2+c=0 */ 68762306a36Sopenharmony_ci if (c) { 68862306a36Sopenharmony_ci /* compute e such that e^2 = c/a */ 68962306a36Sopenharmony_ci f = gf_div(bch, c, a); 69062306a36Sopenharmony_ci l = a_log(bch, f); 69162306a36Sopenharmony_ci l += (l & 1) ? GF_N(bch) : 0; 69262306a36Sopenharmony_ci e = a_pow(bch, l/2); 69362306a36Sopenharmony_ci /* 69462306a36Sopenharmony_ci * use transformation z=X+e: 69562306a36Sopenharmony_ci * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d 69662306a36Sopenharmony_ci * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d 69762306a36Sopenharmony_ci * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d 69862306a36Sopenharmony_ci * z^4 + az^3 + b'z^2 + d' 69962306a36Sopenharmony_ci */ 70062306a36Sopenharmony_ci d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; 70162306a36Sopenharmony_ci b = gf_mul(bch, a, e)^b; 70262306a36Sopenharmony_ci } 70362306a36Sopenharmony_ci /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ 70462306a36Sopenharmony_ci if (d == 0) 70562306a36Sopenharmony_ci /* assume all roots have multiplicity 1 */ 70662306a36Sopenharmony_ci return 0; 70762306a36Sopenharmony_ci 70862306a36Sopenharmony_ci c2 = gf_inv(bch, d); 70962306a36Sopenharmony_ci b2 = gf_div(bch, a, d); 71062306a36Sopenharmony_ci a2 = gf_div(bch, b, d); 71162306a36Sopenharmony_ci } else { 71262306a36Sopenharmony_ci /* polynomial is already affine */ 71362306a36Sopenharmony_ci c2 = d; 71462306a36Sopenharmony_ci b2 = c; 71562306a36Sopenharmony_ci a2 = b; 71662306a36Sopenharmony_ci } 71762306a36Sopenharmony_ci /* find the 4 roots of this affine polynomial */ 71862306a36Sopenharmony_ci if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { 71962306a36Sopenharmony_ci for (i = 0; i < 4; i++) { 72062306a36Sopenharmony_ci /* post-process roots (reverse transformations) */ 72162306a36Sopenharmony_ci f = a ? gf_inv(bch, roots[i]) : roots[i]; 72262306a36Sopenharmony_ci roots[i] = a_ilog(bch, f^e); 72362306a36Sopenharmony_ci } 72462306a36Sopenharmony_ci n = 4; 72562306a36Sopenharmony_ci } 72662306a36Sopenharmony_ci return n; 72762306a36Sopenharmony_ci} 72862306a36Sopenharmony_ci 72962306a36Sopenharmony_ci/* 73062306a36Sopenharmony_ci * build monic, log-based representation of a polynomial 73162306a36Sopenharmony_ci */ 73262306a36Sopenharmony_cistatic void gf_poly_logrep(struct bch_control *bch, 73362306a36Sopenharmony_ci const struct gf_poly *a, int *rep) 73462306a36Sopenharmony_ci{ 73562306a36Sopenharmony_ci int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); 73662306a36Sopenharmony_ci 73762306a36Sopenharmony_ci /* represent 0 values with -1; warning, rep[d] is not set to 1 */ 73862306a36Sopenharmony_ci for (i = 0; i < d; i++) 73962306a36Sopenharmony_ci rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; 74062306a36Sopenharmony_ci} 74162306a36Sopenharmony_ci 74262306a36Sopenharmony_ci/* 74362306a36Sopenharmony_ci * compute polynomial Euclidean division remainder in GF(2^m)[X] 74462306a36Sopenharmony_ci */ 74562306a36Sopenharmony_cistatic void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, 74662306a36Sopenharmony_ci const struct gf_poly *b, int *rep) 74762306a36Sopenharmony_ci{ 74862306a36Sopenharmony_ci int la, p, m; 74962306a36Sopenharmony_ci unsigned int i, j, *c = a->c; 75062306a36Sopenharmony_ci const unsigned int d = b->deg; 75162306a36Sopenharmony_ci 75262306a36Sopenharmony_ci if (a->deg < d) 75362306a36Sopenharmony_ci return; 75462306a36Sopenharmony_ci 75562306a36Sopenharmony_ci /* reuse or compute log representation of denominator */ 75662306a36Sopenharmony_ci if (!rep) { 75762306a36Sopenharmony_ci rep = bch->cache; 75862306a36Sopenharmony_ci gf_poly_logrep(bch, b, rep); 75962306a36Sopenharmony_ci } 76062306a36Sopenharmony_ci 76162306a36Sopenharmony_ci for (j = a->deg; j >= d; j--) { 76262306a36Sopenharmony_ci if (c[j]) { 76362306a36Sopenharmony_ci la = a_log(bch, c[j]); 76462306a36Sopenharmony_ci p = j-d; 76562306a36Sopenharmony_ci for (i = 0; i < d; i++, p++) { 76662306a36Sopenharmony_ci m = rep[i]; 76762306a36Sopenharmony_ci if (m >= 0) 76862306a36Sopenharmony_ci c[p] ^= bch->a_pow_tab[mod_s(bch, 76962306a36Sopenharmony_ci m+la)]; 77062306a36Sopenharmony_ci } 77162306a36Sopenharmony_ci } 77262306a36Sopenharmony_ci } 77362306a36Sopenharmony_ci a->deg = d-1; 77462306a36Sopenharmony_ci while (!c[a->deg] && a->deg) 77562306a36Sopenharmony_ci a->deg--; 77662306a36Sopenharmony_ci} 77762306a36Sopenharmony_ci 77862306a36Sopenharmony_ci/* 77962306a36Sopenharmony_ci * compute polynomial Euclidean division quotient in GF(2^m)[X] 78062306a36Sopenharmony_ci */ 78162306a36Sopenharmony_cistatic void gf_poly_div(struct bch_control *bch, struct gf_poly *a, 78262306a36Sopenharmony_ci const struct gf_poly *b, struct gf_poly *q) 78362306a36Sopenharmony_ci{ 78462306a36Sopenharmony_ci if (a->deg >= b->deg) { 78562306a36Sopenharmony_ci q->deg = a->deg-b->deg; 78662306a36Sopenharmony_ci /* compute a mod b (modifies a) */ 78762306a36Sopenharmony_ci gf_poly_mod(bch, a, b, NULL); 78862306a36Sopenharmony_ci /* quotient is stored in upper part of polynomial a */ 78962306a36Sopenharmony_ci memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); 79062306a36Sopenharmony_ci } else { 79162306a36Sopenharmony_ci q->deg = 0; 79262306a36Sopenharmony_ci q->c[0] = 0; 79362306a36Sopenharmony_ci } 79462306a36Sopenharmony_ci} 79562306a36Sopenharmony_ci 79662306a36Sopenharmony_ci/* 79762306a36Sopenharmony_ci * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] 79862306a36Sopenharmony_ci */ 79962306a36Sopenharmony_cistatic struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, 80062306a36Sopenharmony_ci struct gf_poly *b) 80162306a36Sopenharmony_ci{ 80262306a36Sopenharmony_ci struct gf_poly *tmp; 80362306a36Sopenharmony_ci 80462306a36Sopenharmony_ci dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); 80562306a36Sopenharmony_ci 80662306a36Sopenharmony_ci if (a->deg < b->deg) { 80762306a36Sopenharmony_ci tmp = b; 80862306a36Sopenharmony_ci b = a; 80962306a36Sopenharmony_ci a = tmp; 81062306a36Sopenharmony_ci } 81162306a36Sopenharmony_ci 81262306a36Sopenharmony_ci while (b->deg > 0) { 81362306a36Sopenharmony_ci gf_poly_mod(bch, a, b, NULL); 81462306a36Sopenharmony_ci tmp = b; 81562306a36Sopenharmony_ci b = a; 81662306a36Sopenharmony_ci a = tmp; 81762306a36Sopenharmony_ci } 81862306a36Sopenharmony_ci 81962306a36Sopenharmony_ci dbg("%s\n", gf_poly_str(a)); 82062306a36Sopenharmony_ci 82162306a36Sopenharmony_ci return a; 82262306a36Sopenharmony_ci} 82362306a36Sopenharmony_ci 82462306a36Sopenharmony_ci/* 82562306a36Sopenharmony_ci * Given a polynomial f and an integer k, compute Tr(a^kX) mod f 82662306a36Sopenharmony_ci * This is used in Berlekamp Trace algorithm for splitting polynomials 82762306a36Sopenharmony_ci */ 82862306a36Sopenharmony_cistatic void compute_trace_bk_mod(struct bch_control *bch, int k, 82962306a36Sopenharmony_ci const struct gf_poly *f, struct gf_poly *z, 83062306a36Sopenharmony_ci struct gf_poly *out) 83162306a36Sopenharmony_ci{ 83262306a36Sopenharmony_ci const int m = GF_M(bch); 83362306a36Sopenharmony_ci int i, j; 83462306a36Sopenharmony_ci 83562306a36Sopenharmony_ci /* z contains z^2j mod f */ 83662306a36Sopenharmony_ci z->deg = 1; 83762306a36Sopenharmony_ci z->c[0] = 0; 83862306a36Sopenharmony_ci z->c[1] = bch->a_pow_tab[k]; 83962306a36Sopenharmony_ci 84062306a36Sopenharmony_ci out->deg = 0; 84162306a36Sopenharmony_ci memset(out, 0, GF_POLY_SZ(f->deg)); 84262306a36Sopenharmony_ci 84362306a36Sopenharmony_ci /* compute f log representation only once */ 84462306a36Sopenharmony_ci gf_poly_logrep(bch, f, bch->cache); 84562306a36Sopenharmony_ci 84662306a36Sopenharmony_ci for (i = 0; i < m; i++) { 84762306a36Sopenharmony_ci /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ 84862306a36Sopenharmony_ci for (j = z->deg; j >= 0; j--) { 84962306a36Sopenharmony_ci out->c[j] ^= z->c[j]; 85062306a36Sopenharmony_ci z->c[2*j] = gf_sqr(bch, z->c[j]); 85162306a36Sopenharmony_ci z->c[2*j+1] = 0; 85262306a36Sopenharmony_ci } 85362306a36Sopenharmony_ci if (z->deg > out->deg) 85462306a36Sopenharmony_ci out->deg = z->deg; 85562306a36Sopenharmony_ci 85662306a36Sopenharmony_ci if (i < m-1) { 85762306a36Sopenharmony_ci z->deg *= 2; 85862306a36Sopenharmony_ci /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ 85962306a36Sopenharmony_ci gf_poly_mod(bch, z, f, bch->cache); 86062306a36Sopenharmony_ci } 86162306a36Sopenharmony_ci } 86262306a36Sopenharmony_ci while (!out->c[out->deg] && out->deg) 86362306a36Sopenharmony_ci out->deg--; 86462306a36Sopenharmony_ci 86562306a36Sopenharmony_ci dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); 86662306a36Sopenharmony_ci} 86762306a36Sopenharmony_ci 86862306a36Sopenharmony_ci/* 86962306a36Sopenharmony_ci * factor a polynomial using Berlekamp Trace algorithm (BTA) 87062306a36Sopenharmony_ci */ 87162306a36Sopenharmony_cistatic void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, 87262306a36Sopenharmony_ci struct gf_poly **g, struct gf_poly **h) 87362306a36Sopenharmony_ci{ 87462306a36Sopenharmony_ci struct gf_poly *f2 = bch->poly_2t[0]; 87562306a36Sopenharmony_ci struct gf_poly *q = bch->poly_2t[1]; 87662306a36Sopenharmony_ci struct gf_poly *tk = bch->poly_2t[2]; 87762306a36Sopenharmony_ci struct gf_poly *z = bch->poly_2t[3]; 87862306a36Sopenharmony_ci struct gf_poly *gcd; 87962306a36Sopenharmony_ci 88062306a36Sopenharmony_ci dbg("factoring %s...\n", gf_poly_str(f)); 88162306a36Sopenharmony_ci 88262306a36Sopenharmony_ci *g = f; 88362306a36Sopenharmony_ci *h = NULL; 88462306a36Sopenharmony_ci 88562306a36Sopenharmony_ci /* tk = Tr(a^k.X) mod f */ 88662306a36Sopenharmony_ci compute_trace_bk_mod(bch, k, f, z, tk); 88762306a36Sopenharmony_ci 88862306a36Sopenharmony_ci if (tk->deg > 0) { 88962306a36Sopenharmony_ci /* compute g = gcd(f, tk) (destructive operation) */ 89062306a36Sopenharmony_ci gf_poly_copy(f2, f); 89162306a36Sopenharmony_ci gcd = gf_poly_gcd(bch, f2, tk); 89262306a36Sopenharmony_ci if (gcd->deg < f->deg) { 89362306a36Sopenharmony_ci /* compute h=f/gcd(f,tk); this will modify f and q */ 89462306a36Sopenharmony_ci gf_poly_div(bch, f, gcd, q); 89562306a36Sopenharmony_ci /* store g and h in-place (clobbering f) */ 89662306a36Sopenharmony_ci *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; 89762306a36Sopenharmony_ci gf_poly_copy(*g, gcd); 89862306a36Sopenharmony_ci gf_poly_copy(*h, q); 89962306a36Sopenharmony_ci } 90062306a36Sopenharmony_ci } 90162306a36Sopenharmony_ci} 90262306a36Sopenharmony_ci 90362306a36Sopenharmony_ci/* 90462306a36Sopenharmony_ci * find roots of a polynomial, using BTZ algorithm; see the beginning of this 90562306a36Sopenharmony_ci * file for details 90662306a36Sopenharmony_ci */ 90762306a36Sopenharmony_cistatic int find_poly_roots(struct bch_control *bch, unsigned int k, 90862306a36Sopenharmony_ci struct gf_poly *poly, unsigned int *roots) 90962306a36Sopenharmony_ci{ 91062306a36Sopenharmony_ci int cnt; 91162306a36Sopenharmony_ci struct gf_poly *f1, *f2; 91262306a36Sopenharmony_ci 91362306a36Sopenharmony_ci switch (poly->deg) { 91462306a36Sopenharmony_ci /* handle low degree polynomials with ad hoc techniques */ 91562306a36Sopenharmony_ci case 1: 91662306a36Sopenharmony_ci cnt = find_poly_deg1_roots(bch, poly, roots); 91762306a36Sopenharmony_ci break; 91862306a36Sopenharmony_ci case 2: 91962306a36Sopenharmony_ci cnt = find_poly_deg2_roots(bch, poly, roots); 92062306a36Sopenharmony_ci break; 92162306a36Sopenharmony_ci case 3: 92262306a36Sopenharmony_ci cnt = find_poly_deg3_roots(bch, poly, roots); 92362306a36Sopenharmony_ci break; 92462306a36Sopenharmony_ci case 4: 92562306a36Sopenharmony_ci cnt = find_poly_deg4_roots(bch, poly, roots); 92662306a36Sopenharmony_ci break; 92762306a36Sopenharmony_ci default: 92862306a36Sopenharmony_ci /* factor polynomial using Berlekamp Trace Algorithm (BTA) */ 92962306a36Sopenharmony_ci cnt = 0; 93062306a36Sopenharmony_ci if (poly->deg && (k <= GF_M(bch))) { 93162306a36Sopenharmony_ci factor_polynomial(bch, k, poly, &f1, &f2); 93262306a36Sopenharmony_ci if (f1) 93362306a36Sopenharmony_ci cnt += find_poly_roots(bch, k+1, f1, roots); 93462306a36Sopenharmony_ci if (f2) 93562306a36Sopenharmony_ci cnt += find_poly_roots(bch, k+1, f2, roots+cnt); 93662306a36Sopenharmony_ci } 93762306a36Sopenharmony_ci break; 93862306a36Sopenharmony_ci } 93962306a36Sopenharmony_ci return cnt; 94062306a36Sopenharmony_ci} 94162306a36Sopenharmony_ci 94262306a36Sopenharmony_ci#if defined(USE_CHIEN_SEARCH) 94362306a36Sopenharmony_ci/* 94462306a36Sopenharmony_ci * exhaustive root search (Chien) implementation - not used, included only for 94562306a36Sopenharmony_ci * reference/comparison tests 94662306a36Sopenharmony_ci */ 94762306a36Sopenharmony_cistatic int chien_search(struct bch_control *bch, unsigned int len, 94862306a36Sopenharmony_ci struct gf_poly *p, unsigned int *roots) 94962306a36Sopenharmony_ci{ 95062306a36Sopenharmony_ci int m; 95162306a36Sopenharmony_ci unsigned int i, j, syn, syn0, count = 0; 95262306a36Sopenharmony_ci const unsigned int k = 8*len+bch->ecc_bits; 95362306a36Sopenharmony_ci 95462306a36Sopenharmony_ci /* use a log-based representation of polynomial */ 95562306a36Sopenharmony_ci gf_poly_logrep(bch, p, bch->cache); 95662306a36Sopenharmony_ci bch->cache[p->deg] = 0; 95762306a36Sopenharmony_ci syn0 = gf_div(bch, p->c[0], p->c[p->deg]); 95862306a36Sopenharmony_ci 95962306a36Sopenharmony_ci for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { 96062306a36Sopenharmony_ci /* compute elp(a^i) */ 96162306a36Sopenharmony_ci for (j = 1, syn = syn0; j <= p->deg; j++) { 96262306a36Sopenharmony_ci m = bch->cache[j]; 96362306a36Sopenharmony_ci if (m >= 0) 96462306a36Sopenharmony_ci syn ^= a_pow(bch, m+j*i); 96562306a36Sopenharmony_ci } 96662306a36Sopenharmony_ci if (syn == 0) { 96762306a36Sopenharmony_ci roots[count++] = GF_N(bch)-i; 96862306a36Sopenharmony_ci if (count == p->deg) 96962306a36Sopenharmony_ci break; 97062306a36Sopenharmony_ci } 97162306a36Sopenharmony_ci } 97262306a36Sopenharmony_ci return (count == p->deg) ? count : 0; 97362306a36Sopenharmony_ci} 97462306a36Sopenharmony_ci#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) 97562306a36Sopenharmony_ci#endif /* USE_CHIEN_SEARCH */ 97662306a36Sopenharmony_ci 97762306a36Sopenharmony_ci/** 97862306a36Sopenharmony_ci * bch_decode - decode received codeword and find bit error locations 97962306a36Sopenharmony_ci * @bch: BCH control structure 98062306a36Sopenharmony_ci * @data: received data, ignored if @calc_ecc is provided 98162306a36Sopenharmony_ci * @len: data length in bytes, must always be provided 98262306a36Sopenharmony_ci * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc 98362306a36Sopenharmony_ci * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data 98462306a36Sopenharmony_ci * @syn: hw computed syndrome data (if NULL, syndrome is calculated) 98562306a36Sopenharmony_ci * @errloc: output array of error locations 98662306a36Sopenharmony_ci * 98762306a36Sopenharmony_ci * Returns: 98862306a36Sopenharmony_ci * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if 98962306a36Sopenharmony_ci * invalid parameters were provided 99062306a36Sopenharmony_ci * 99162306a36Sopenharmony_ci * Depending on the available hw BCH support and the need to compute @calc_ecc 99262306a36Sopenharmony_ci * separately (using bch_encode()), this function should be called with one of 99362306a36Sopenharmony_ci * the following parameter configurations - 99462306a36Sopenharmony_ci * 99562306a36Sopenharmony_ci * by providing @data and @recv_ecc only: 99662306a36Sopenharmony_ci * bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) 99762306a36Sopenharmony_ci * 99862306a36Sopenharmony_ci * by providing @recv_ecc and @calc_ecc: 99962306a36Sopenharmony_ci * bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) 100062306a36Sopenharmony_ci * 100162306a36Sopenharmony_ci * by providing ecc = recv_ecc XOR calc_ecc: 100262306a36Sopenharmony_ci * bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc) 100362306a36Sopenharmony_ci * 100462306a36Sopenharmony_ci * by providing syndrome results @syn: 100562306a36Sopenharmony_ci * bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc) 100662306a36Sopenharmony_ci * 100762306a36Sopenharmony_ci * Once bch_decode() has successfully returned with a positive value, error 100862306a36Sopenharmony_ci * locations returned in array @errloc should be interpreted as follows - 100962306a36Sopenharmony_ci * 101062306a36Sopenharmony_ci * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for 101162306a36Sopenharmony_ci * data correction) 101262306a36Sopenharmony_ci * 101362306a36Sopenharmony_ci * if (errloc[n] < 8*len), then n-th error is located in data and can be 101462306a36Sopenharmony_ci * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); 101562306a36Sopenharmony_ci * 101662306a36Sopenharmony_ci * Note that this function does not perform any data correction by itself, it 101762306a36Sopenharmony_ci * merely indicates error locations. 101862306a36Sopenharmony_ci */ 101962306a36Sopenharmony_ciint bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len, 102062306a36Sopenharmony_ci const uint8_t *recv_ecc, const uint8_t *calc_ecc, 102162306a36Sopenharmony_ci const unsigned int *syn, unsigned int *errloc) 102262306a36Sopenharmony_ci{ 102362306a36Sopenharmony_ci const unsigned int ecc_words = BCH_ECC_WORDS(bch); 102462306a36Sopenharmony_ci unsigned int nbits; 102562306a36Sopenharmony_ci int i, err, nroots; 102662306a36Sopenharmony_ci uint32_t sum; 102762306a36Sopenharmony_ci 102862306a36Sopenharmony_ci /* sanity check: make sure data length can be handled */ 102962306a36Sopenharmony_ci if (8*len > (bch->n-bch->ecc_bits)) 103062306a36Sopenharmony_ci return -EINVAL; 103162306a36Sopenharmony_ci 103262306a36Sopenharmony_ci /* if caller does not provide syndromes, compute them */ 103362306a36Sopenharmony_ci if (!syn) { 103462306a36Sopenharmony_ci if (!calc_ecc) { 103562306a36Sopenharmony_ci /* compute received data ecc into an internal buffer */ 103662306a36Sopenharmony_ci if (!data || !recv_ecc) 103762306a36Sopenharmony_ci return -EINVAL; 103862306a36Sopenharmony_ci bch_encode(bch, data, len, NULL); 103962306a36Sopenharmony_ci } else { 104062306a36Sopenharmony_ci /* load provided calculated ecc */ 104162306a36Sopenharmony_ci load_ecc8(bch, bch->ecc_buf, calc_ecc); 104262306a36Sopenharmony_ci } 104362306a36Sopenharmony_ci /* load received ecc or assume it was XORed in calc_ecc */ 104462306a36Sopenharmony_ci if (recv_ecc) { 104562306a36Sopenharmony_ci load_ecc8(bch, bch->ecc_buf2, recv_ecc); 104662306a36Sopenharmony_ci /* XOR received and calculated ecc */ 104762306a36Sopenharmony_ci for (i = 0, sum = 0; i < (int)ecc_words; i++) { 104862306a36Sopenharmony_ci bch->ecc_buf[i] ^= bch->ecc_buf2[i]; 104962306a36Sopenharmony_ci sum |= bch->ecc_buf[i]; 105062306a36Sopenharmony_ci } 105162306a36Sopenharmony_ci if (!sum) 105262306a36Sopenharmony_ci /* no error found */ 105362306a36Sopenharmony_ci return 0; 105462306a36Sopenharmony_ci } 105562306a36Sopenharmony_ci compute_syndromes(bch, bch->ecc_buf, bch->syn); 105662306a36Sopenharmony_ci syn = bch->syn; 105762306a36Sopenharmony_ci } 105862306a36Sopenharmony_ci 105962306a36Sopenharmony_ci err = compute_error_locator_polynomial(bch, syn); 106062306a36Sopenharmony_ci if (err > 0) { 106162306a36Sopenharmony_ci nroots = find_poly_roots(bch, 1, bch->elp, errloc); 106262306a36Sopenharmony_ci if (err != nroots) 106362306a36Sopenharmony_ci err = -1; 106462306a36Sopenharmony_ci } 106562306a36Sopenharmony_ci if (err > 0) { 106662306a36Sopenharmony_ci /* post-process raw error locations for easier correction */ 106762306a36Sopenharmony_ci nbits = (len*8)+bch->ecc_bits; 106862306a36Sopenharmony_ci for (i = 0; i < err; i++) { 106962306a36Sopenharmony_ci if (errloc[i] >= nbits) { 107062306a36Sopenharmony_ci err = -1; 107162306a36Sopenharmony_ci break; 107262306a36Sopenharmony_ci } 107362306a36Sopenharmony_ci errloc[i] = nbits-1-errloc[i]; 107462306a36Sopenharmony_ci if (!bch->swap_bits) 107562306a36Sopenharmony_ci errloc[i] = (errloc[i] & ~7) | 107662306a36Sopenharmony_ci (7-(errloc[i] & 7)); 107762306a36Sopenharmony_ci } 107862306a36Sopenharmony_ci } 107962306a36Sopenharmony_ci return (err >= 0) ? err : -EBADMSG; 108062306a36Sopenharmony_ci} 108162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_decode); 108262306a36Sopenharmony_ci 108362306a36Sopenharmony_ci/* 108462306a36Sopenharmony_ci * generate Galois field lookup tables 108562306a36Sopenharmony_ci */ 108662306a36Sopenharmony_cistatic int build_gf_tables(struct bch_control *bch, unsigned int poly) 108762306a36Sopenharmony_ci{ 108862306a36Sopenharmony_ci unsigned int i, x = 1; 108962306a36Sopenharmony_ci const unsigned int k = 1 << deg(poly); 109062306a36Sopenharmony_ci 109162306a36Sopenharmony_ci /* primitive polynomial must be of degree m */ 109262306a36Sopenharmony_ci if (k != (1u << GF_M(bch))) 109362306a36Sopenharmony_ci return -1; 109462306a36Sopenharmony_ci 109562306a36Sopenharmony_ci for (i = 0; i < GF_N(bch); i++) { 109662306a36Sopenharmony_ci bch->a_pow_tab[i] = x; 109762306a36Sopenharmony_ci bch->a_log_tab[x] = i; 109862306a36Sopenharmony_ci if (i && (x == 1)) 109962306a36Sopenharmony_ci /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ 110062306a36Sopenharmony_ci return -1; 110162306a36Sopenharmony_ci x <<= 1; 110262306a36Sopenharmony_ci if (x & k) 110362306a36Sopenharmony_ci x ^= poly; 110462306a36Sopenharmony_ci } 110562306a36Sopenharmony_ci bch->a_pow_tab[GF_N(bch)] = 1; 110662306a36Sopenharmony_ci bch->a_log_tab[0] = 0; 110762306a36Sopenharmony_ci 110862306a36Sopenharmony_ci return 0; 110962306a36Sopenharmony_ci} 111062306a36Sopenharmony_ci 111162306a36Sopenharmony_ci/* 111262306a36Sopenharmony_ci * compute generator polynomial remainder tables for fast encoding 111362306a36Sopenharmony_ci */ 111462306a36Sopenharmony_cistatic void build_mod8_tables(struct bch_control *bch, const uint32_t *g) 111562306a36Sopenharmony_ci{ 111662306a36Sopenharmony_ci int i, j, b, d; 111762306a36Sopenharmony_ci uint32_t data, hi, lo, *tab; 111862306a36Sopenharmony_ci const int l = BCH_ECC_WORDS(bch); 111962306a36Sopenharmony_ci const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); 112062306a36Sopenharmony_ci const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); 112162306a36Sopenharmony_ci 112262306a36Sopenharmony_ci memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); 112362306a36Sopenharmony_ci 112462306a36Sopenharmony_ci for (i = 0; i < 256; i++) { 112562306a36Sopenharmony_ci /* p(X)=i is a small polynomial of weight <= 8 */ 112662306a36Sopenharmony_ci for (b = 0; b < 4; b++) { 112762306a36Sopenharmony_ci /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ 112862306a36Sopenharmony_ci tab = bch->mod8_tab + (b*256+i)*l; 112962306a36Sopenharmony_ci data = i << (8*b); 113062306a36Sopenharmony_ci while (data) { 113162306a36Sopenharmony_ci d = deg(data); 113262306a36Sopenharmony_ci /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ 113362306a36Sopenharmony_ci data ^= g[0] >> (31-d); 113462306a36Sopenharmony_ci for (j = 0; j < ecclen; j++) { 113562306a36Sopenharmony_ci hi = (d < 31) ? g[j] << (d+1) : 0; 113662306a36Sopenharmony_ci lo = (j+1 < plen) ? 113762306a36Sopenharmony_ci g[j+1] >> (31-d) : 0; 113862306a36Sopenharmony_ci tab[j] ^= hi|lo; 113962306a36Sopenharmony_ci } 114062306a36Sopenharmony_ci } 114162306a36Sopenharmony_ci } 114262306a36Sopenharmony_ci } 114362306a36Sopenharmony_ci} 114462306a36Sopenharmony_ci 114562306a36Sopenharmony_ci/* 114662306a36Sopenharmony_ci * build a base for factoring degree 2 polynomials 114762306a36Sopenharmony_ci */ 114862306a36Sopenharmony_cistatic int build_deg2_base(struct bch_control *bch) 114962306a36Sopenharmony_ci{ 115062306a36Sopenharmony_ci const int m = GF_M(bch); 115162306a36Sopenharmony_ci int i, j, r; 115262306a36Sopenharmony_ci unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M]; 115362306a36Sopenharmony_ci 115462306a36Sopenharmony_ci /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ 115562306a36Sopenharmony_ci for (i = 0; i < m; i++) { 115662306a36Sopenharmony_ci for (j = 0, sum = 0; j < m; j++) 115762306a36Sopenharmony_ci sum ^= a_pow(bch, i*(1 << j)); 115862306a36Sopenharmony_ci 115962306a36Sopenharmony_ci if (sum) { 116062306a36Sopenharmony_ci ak = bch->a_pow_tab[i]; 116162306a36Sopenharmony_ci break; 116262306a36Sopenharmony_ci } 116362306a36Sopenharmony_ci } 116462306a36Sopenharmony_ci /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ 116562306a36Sopenharmony_ci remaining = m; 116662306a36Sopenharmony_ci memset(xi, 0, sizeof(xi)); 116762306a36Sopenharmony_ci 116862306a36Sopenharmony_ci for (x = 0; (x <= GF_N(bch)) && remaining; x++) { 116962306a36Sopenharmony_ci y = gf_sqr(bch, x)^x; 117062306a36Sopenharmony_ci for (i = 0; i < 2; i++) { 117162306a36Sopenharmony_ci r = a_log(bch, y); 117262306a36Sopenharmony_ci if (y && (r < m) && !xi[r]) { 117362306a36Sopenharmony_ci bch->xi_tab[r] = x; 117462306a36Sopenharmony_ci xi[r] = 1; 117562306a36Sopenharmony_ci remaining--; 117662306a36Sopenharmony_ci dbg("x%d = %x\n", r, x); 117762306a36Sopenharmony_ci break; 117862306a36Sopenharmony_ci } 117962306a36Sopenharmony_ci y ^= ak; 118062306a36Sopenharmony_ci } 118162306a36Sopenharmony_ci } 118262306a36Sopenharmony_ci /* should not happen but check anyway */ 118362306a36Sopenharmony_ci return remaining ? -1 : 0; 118462306a36Sopenharmony_ci} 118562306a36Sopenharmony_ci 118662306a36Sopenharmony_cistatic void *bch_alloc(size_t size, int *err) 118762306a36Sopenharmony_ci{ 118862306a36Sopenharmony_ci void *ptr; 118962306a36Sopenharmony_ci 119062306a36Sopenharmony_ci ptr = kmalloc(size, GFP_KERNEL); 119162306a36Sopenharmony_ci if (ptr == NULL) 119262306a36Sopenharmony_ci *err = 1; 119362306a36Sopenharmony_ci return ptr; 119462306a36Sopenharmony_ci} 119562306a36Sopenharmony_ci 119662306a36Sopenharmony_ci/* 119762306a36Sopenharmony_ci * compute generator polynomial for given (m,t) parameters. 119862306a36Sopenharmony_ci */ 119962306a36Sopenharmony_cistatic uint32_t *compute_generator_polynomial(struct bch_control *bch) 120062306a36Sopenharmony_ci{ 120162306a36Sopenharmony_ci const unsigned int m = GF_M(bch); 120262306a36Sopenharmony_ci const unsigned int t = GF_T(bch); 120362306a36Sopenharmony_ci int n, err = 0; 120462306a36Sopenharmony_ci unsigned int i, j, nbits, r, word, *roots; 120562306a36Sopenharmony_ci struct gf_poly *g; 120662306a36Sopenharmony_ci uint32_t *genpoly; 120762306a36Sopenharmony_ci 120862306a36Sopenharmony_ci g = bch_alloc(GF_POLY_SZ(m*t), &err); 120962306a36Sopenharmony_ci roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); 121062306a36Sopenharmony_ci genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); 121162306a36Sopenharmony_ci 121262306a36Sopenharmony_ci if (err) { 121362306a36Sopenharmony_ci kfree(genpoly); 121462306a36Sopenharmony_ci genpoly = NULL; 121562306a36Sopenharmony_ci goto finish; 121662306a36Sopenharmony_ci } 121762306a36Sopenharmony_ci 121862306a36Sopenharmony_ci /* enumerate all roots of g(X) */ 121962306a36Sopenharmony_ci memset(roots , 0, (bch->n+1)*sizeof(*roots)); 122062306a36Sopenharmony_ci for (i = 0; i < t; i++) { 122162306a36Sopenharmony_ci for (j = 0, r = 2*i+1; j < m; j++) { 122262306a36Sopenharmony_ci roots[r] = 1; 122362306a36Sopenharmony_ci r = mod_s(bch, 2*r); 122462306a36Sopenharmony_ci } 122562306a36Sopenharmony_ci } 122662306a36Sopenharmony_ci /* build generator polynomial g(X) */ 122762306a36Sopenharmony_ci g->deg = 0; 122862306a36Sopenharmony_ci g->c[0] = 1; 122962306a36Sopenharmony_ci for (i = 0; i < GF_N(bch); i++) { 123062306a36Sopenharmony_ci if (roots[i]) { 123162306a36Sopenharmony_ci /* multiply g(X) by (X+root) */ 123262306a36Sopenharmony_ci r = bch->a_pow_tab[i]; 123362306a36Sopenharmony_ci g->c[g->deg+1] = 1; 123462306a36Sopenharmony_ci for (j = g->deg; j > 0; j--) 123562306a36Sopenharmony_ci g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; 123662306a36Sopenharmony_ci 123762306a36Sopenharmony_ci g->c[0] = gf_mul(bch, g->c[0], r); 123862306a36Sopenharmony_ci g->deg++; 123962306a36Sopenharmony_ci } 124062306a36Sopenharmony_ci } 124162306a36Sopenharmony_ci /* store left-justified binary representation of g(X) */ 124262306a36Sopenharmony_ci n = g->deg+1; 124362306a36Sopenharmony_ci i = 0; 124462306a36Sopenharmony_ci 124562306a36Sopenharmony_ci while (n > 0) { 124662306a36Sopenharmony_ci nbits = (n > 32) ? 32 : n; 124762306a36Sopenharmony_ci for (j = 0, word = 0; j < nbits; j++) { 124862306a36Sopenharmony_ci if (g->c[n-1-j]) 124962306a36Sopenharmony_ci word |= 1u << (31-j); 125062306a36Sopenharmony_ci } 125162306a36Sopenharmony_ci genpoly[i++] = word; 125262306a36Sopenharmony_ci n -= nbits; 125362306a36Sopenharmony_ci } 125462306a36Sopenharmony_ci bch->ecc_bits = g->deg; 125562306a36Sopenharmony_ci 125662306a36Sopenharmony_cifinish: 125762306a36Sopenharmony_ci kfree(g); 125862306a36Sopenharmony_ci kfree(roots); 125962306a36Sopenharmony_ci 126062306a36Sopenharmony_ci return genpoly; 126162306a36Sopenharmony_ci} 126262306a36Sopenharmony_ci 126362306a36Sopenharmony_ci/** 126462306a36Sopenharmony_ci * bch_init - initialize a BCH encoder/decoder 126562306a36Sopenharmony_ci * @m: Galois field order, should be in the range 5-15 126662306a36Sopenharmony_ci * @t: maximum error correction capability, in bits 126762306a36Sopenharmony_ci * @prim_poly: user-provided primitive polynomial (or 0 to use default) 126862306a36Sopenharmony_ci * @swap_bits: swap bits within data and syndrome bytes 126962306a36Sopenharmony_ci * 127062306a36Sopenharmony_ci * Returns: 127162306a36Sopenharmony_ci * a newly allocated BCH control structure if successful, NULL otherwise 127262306a36Sopenharmony_ci * 127362306a36Sopenharmony_ci * This initialization can take some time, as lookup tables are built for fast 127462306a36Sopenharmony_ci * encoding/decoding; make sure not to call this function from a time critical 127562306a36Sopenharmony_ci * path. Usually, bch_init() should be called on module/driver init and 127662306a36Sopenharmony_ci * bch_free() should be called to release memory on exit. 127762306a36Sopenharmony_ci * 127862306a36Sopenharmony_ci * You may provide your own primitive polynomial of degree @m in argument 127962306a36Sopenharmony_ci * @prim_poly, or let bch_init() use its default polynomial. 128062306a36Sopenharmony_ci * 128162306a36Sopenharmony_ci * Once bch_init() has successfully returned a pointer to a newly allocated 128262306a36Sopenharmony_ci * BCH control structure, ecc length in bytes is given by member @ecc_bytes of 128362306a36Sopenharmony_ci * the structure. 128462306a36Sopenharmony_ci */ 128562306a36Sopenharmony_cistruct bch_control *bch_init(int m, int t, unsigned int prim_poly, 128662306a36Sopenharmony_ci bool swap_bits) 128762306a36Sopenharmony_ci{ 128862306a36Sopenharmony_ci int err = 0; 128962306a36Sopenharmony_ci unsigned int i, words; 129062306a36Sopenharmony_ci uint32_t *genpoly; 129162306a36Sopenharmony_ci struct bch_control *bch = NULL; 129262306a36Sopenharmony_ci 129362306a36Sopenharmony_ci const int min_m = 5; 129462306a36Sopenharmony_ci 129562306a36Sopenharmony_ci /* default primitive polynomials */ 129662306a36Sopenharmony_ci static const unsigned int prim_poly_tab[] = { 129762306a36Sopenharmony_ci 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, 129862306a36Sopenharmony_ci 0x402b, 0x8003, 129962306a36Sopenharmony_ci }; 130062306a36Sopenharmony_ci 130162306a36Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS) 130262306a36Sopenharmony_ci if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { 130362306a36Sopenharmony_ci printk(KERN_ERR "bch encoder/decoder was configured to support " 130462306a36Sopenharmony_ci "parameters m=%d, t=%d only!\n", 130562306a36Sopenharmony_ci CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); 130662306a36Sopenharmony_ci goto fail; 130762306a36Sopenharmony_ci } 130862306a36Sopenharmony_ci#endif 130962306a36Sopenharmony_ci if ((m < min_m) || (m > BCH_MAX_M)) 131062306a36Sopenharmony_ci /* 131162306a36Sopenharmony_ci * values of m greater than 15 are not currently supported; 131262306a36Sopenharmony_ci * supporting m > 15 would require changing table base type 131362306a36Sopenharmony_ci * (uint16_t) and a small patch in matrix transposition 131462306a36Sopenharmony_ci */ 131562306a36Sopenharmony_ci goto fail; 131662306a36Sopenharmony_ci 131762306a36Sopenharmony_ci if (t > BCH_MAX_T) 131862306a36Sopenharmony_ci /* 131962306a36Sopenharmony_ci * we can support larger than 64 bits if necessary, at the 132062306a36Sopenharmony_ci * cost of higher stack usage. 132162306a36Sopenharmony_ci */ 132262306a36Sopenharmony_ci goto fail; 132362306a36Sopenharmony_ci 132462306a36Sopenharmony_ci /* sanity checks */ 132562306a36Sopenharmony_ci if ((t < 1) || (m*t >= ((1 << m)-1))) 132662306a36Sopenharmony_ci /* invalid t value */ 132762306a36Sopenharmony_ci goto fail; 132862306a36Sopenharmony_ci 132962306a36Sopenharmony_ci /* select a primitive polynomial for generating GF(2^m) */ 133062306a36Sopenharmony_ci if (prim_poly == 0) 133162306a36Sopenharmony_ci prim_poly = prim_poly_tab[m-min_m]; 133262306a36Sopenharmony_ci 133362306a36Sopenharmony_ci bch = kzalloc(sizeof(*bch), GFP_KERNEL); 133462306a36Sopenharmony_ci if (bch == NULL) 133562306a36Sopenharmony_ci goto fail; 133662306a36Sopenharmony_ci 133762306a36Sopenharmony_ci bch->m = m; 133862306a36Sopenharmony_ci bch->t = t; 133962306a36Sopenharmony_ci bch->n = (1 << m)-1; 134062306a36Sopenharmony_ci words = DIV_ROUND_UP(m*t, 32); 134162306a36Sopenharmony_ci bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); 134262306a36Sopenharmony_ci bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); 134362306a36Sopenharmony_ci bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); 134462306a36Sopenharmony_ci bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); 134562306a36Sopenharmony_ci bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err); 134662306a36Sopenharmony_ci bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); 134762306a36Sopenharmony_ci bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err); 134862306a36Sopenharmony_ci bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err); 134962306a36Sopenharmony_ci bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err); 135062306a36Sopenharmony_ci bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); 135162306a36Sopenharmony_ci bch->swap_bits = swap_bits; 135262306a36Sopenharmony_ci 135362306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 135462306a36Sopenharmony_ci bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); 135562306a36Sopenharmony_ci 135662306a36Sopenharmony_ci if (err) 135762306a36Sopenharmony_ci goto fail; 135862306a36Sopenharmony_ci 135962306a36Sopenharmony_ci err = build_gf_tables(bch, prim_poly); 136062306a36Sopenharmony_ci if (err) 136162306a36Sopenharmony_ci goto fail; 136262306a36Sopenharmony_ci 136362306a36Sopenharmony_ci /* use generator polynomial for computing encoding tables */ 136462306a36Sopenharmony_ci genpoly = compute_generator_polynomial(bch); 136562306a36Sopenharmony_ci if (genpoly == NULL) 136662306a36Sopenharmony_ci goto fail; 136762306a36Sopenharmony_ci 136862306a36Sopenharmony_ci build_mod8_tables(bch, genpoly); 136962306a36Sopenharmony_ci kfree(genpoly); 137062306a36Sopenharmony_ci 137162306a36Sopenharmony_ci err = build_deg2_base(bch); 137262306a36Sopenharmony_ci if (err) 137362306a36Sopenharmony_ci goto fail; 137462306a36Sopenharmony_ci 137562306a36Sopenharmony_ci return bch; 137662306a36Sopenharmony_ci 137762306a36Sopenharmony_cifail: 137862306a36Sopenharmony_ci bch_free(bch); 137962306a36Sopenharmony_ci return NULL; 138062306a36Sopenharmony_ci} 138162306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_init); 138262306a36Sopenharmony_ci 138362306a36Sopenharmony_ci/** 138462306a36Sopenharmony_ci * bch_free - free the BCH control structure 138562306a36Sopenharmony_ci * @bch: BCH control structure to release 138662306a36Sopenharmony_ci */ 138762306a36Sopenharmony_civoid bch_free(struct bch_control *bch) 138862306a36Sopenharmony_ci{ 138962306a36Sopenharmony_ci unsigned int i; 139062306a36Sopenharmony_ci 139162306a36Sopenharmony_ci if (bch) { 139262306a36Sopenharmony_ci kfree(bch->a_pow_tab); 139362306a36Sopenharmony_ci kfree(bch->a_log_tab); 139462306a36Sopenharmony_ci kfree(bch->mod8_tab); 139562306a36Sopenharmony_ci kfree(bch->ecc_buf); 139662306a36Sopenharmony_ci kfree(bch->ecc_buf2); 139762306a36Sopenharmony_ci kfree(bch->xi_tab); 139862306a36Sopenharmony_ci kfree(bch->syn); 139962306a36Sopenharmony_ci kfree(bch->cache); 140062306a36Sopenharmony_ci kfree(bch->elp); 140162306a36Sopenharmony_ci 140262306a36Sopenharmony_ci for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) 140362306a36Sopenharmony_ci kfree(bch->poly_2t[i]); 140462306a36Sopenharmony_ci 140562306a36Sopenharmony_ci kfree(bch); 140662306a36Sopenharmony_ci } 140762306a36Sopenharmony_ci} 140862306a36Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_free); 140962306a36Sopenharmony_ci 141062306a36Sopenharmony_ciMODULE_LICENSE("GPL"); 141162306a36Sopenharmony_ciMODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); 141262306a36Sopenharmony_ciMODULE_DESCRIPTION("Binary BCH encoder/decoder"); 1413