162306a36Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
262306a36Sopenharmony_ci/*
362306a36Sopenharmony_ci * NTP state machine interfaces and logic.
462306a36Sopenharmony_ci *
562306a36Sopenharmony_ci * This code was mainly moved from kernel/timer.c and kernel/time.c
662306a36Sopenharmony_ci * Please see those files for relevant copyright info and historical
762306a36Sopenharmony_ci * changelogs.
862306a36Sopenharmony_ci */
962306a36Sopenharmony_ci#include <linux/capability.h>
1062306a36Sopenharmony_ci#include <linux/clocksource.h>
1162306a36Sopenharmony_ci#include <linux/workqueue.h>
1262306a36Sopenharmony_ci#include <linux/hrtimer.h>
1362306a36Sopenharmony_ci#include <linux/jiffies.h>
1462306a36Sopenharmony_ci#include <linux/math64.h>
1562306a36Sopenharmony_ci#include <linux/timex.h>
1662306a36Sopenharmony_ci#include <linux/time.h>
1762306a36Sopenharmony_ci#include <linux/mm.h>
1862306a36Sopenharmony_ci#include <linux/module.h>
1962306a36Sopenharmony_ci#include <linux/rtc.h>
2062306a36Sopenharmony_ci#include <linux/audit.h>
2162306a36Sopenharmony_ci
2262306a36Sopenharmony_ci#include "ntp_internal.h"
2362306a36Sopenharmony_ci#include "timekeeping_internal.h"
2462306a36Sopenharmony_ci
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci/*
2762306a36Sopenharmony_ci * NTP timekeeping variables:
2862306a36Sopenharmony_ci *
2962306a36Sopenharmony_ci * Note: All of the NTP state is protected by the timekeeping locks.
3062306a36Sopenharmony_ci */
3162306a36Sopenharmony_ci
3262306a36Sopenharmony_ci
3362306a36Sopenharmony_ci/* USER_HZ period (usecs): */
3462306a36Sopenharmony_ciunsigned long			tick_usec = USER_TICK_USEC;
3562306a36Sopenharmony_ci
3662306a36Sopenharmony_ci/* SHIFTED_HZ period (nsecs): */
3762306a36Sopenharmony_ciunsigned long			tick_nsec;
3862306a36Sopenharmony_ci
3962306a36Sopenharmony_cistatic u64			tick_length;
4062306a36Sopenharmony_cistatic u64			tick_length_base;
4162306a36Sopenharmony_ci
4262306a36Sopenharmony_ci#define SECS_PER_DAY		86400
4362306a36Sopenharmony_ci#define MAX_TICKADJ		500LL		/* usecs */
4462306a36Sopenharmony_ci#define MAX_TICKADJ_SCALED \
4562306a36Sopenharmony_ci	(((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
4662306a36Sopenharmony_ci#define MAX_TAI_OFFSET		100000
4762306a36Sopenharmony_ci
4862306a36Sopenharmony_ci/*
4962306a36Sopenharmony_ci * phase-lock loop variables
5062306a36Sopenharmony_ci */
5162306a36Sopenharmony_ci
5262306a36Sopenharmony_ci/*
5362306a36Sopenharmony_ci * clock synchronization status
5462306a36Sopenharmony_ci *
5562306a36Sopenharmony_ci * (TIME_ERROR prevents overwriting the CMOS clock)
5662306a36Sopenharmony_ci */
5762306a36Sopenharmony_cistatic int			time_state = TIME_OK;
5862306a36Sopenharmony_ci
5962306a36Sopenharmony_ci/* clock status bits:							*/
6062306a36Sopenharmony_cistatic int			time_status = STA_UNSYNC;
6162306a36Sopenharmony_ci
6262306a36Sopenharmony_ci/* time adjustment (nsecs):						*/
6362306a36Sopenharmony_cistatic s64			time_offset;
6462306a36Sopenharmony_ci
6562306a36Sopenharmony_ci/* pll time constant:							*/
6662306a36Sopenharmony_cistatic long			time_constant = 2;
6762306a36Sopenharmony_ci
6862306a36Sopenharmony_ci/* maximum error (usecs):						*/
6962306a36Sopenharmony_cistatic long			time_maxerror = NTP_PHASE_LIMIT;
7062306a36Sopenharmony_ci
7162306a36Sopenharmony_ci/* estimated error (usecs):						*/
7262306a36Sopenharmony_cistatic long			time_esterror = NTP_PHASE_LIMIT;
7362306a36Sopenharmony_ci
7462306a36Sopenharmony_ci/* frequency offset (scaled nsecs/secs):				*/
7562306a36Sopenharmony_cistatic s64			time_freq;
7662306a36Sopenharmony_ci
7762306a36Sopenharmony_ci/* time at last adjustment (secs):					*/
7862306a36Sopenharmony_cistatic time64_t		time_reftime;
7962306a36Sopenharmony_ci
8062306a36Sopenharmony_cistatic long			time_adjust;
8162306a36Sopenharmony_ci
8262306a36Sopenharmony_ci/* constant (boot-param configurable) NTP tick adjustment (upscaled)	*/
8362306a36Sopenharmony_cistatic s64			ntp_tick_adj;
8462306a36Sopenharmony_ci
8562306a36Sopenharmony_ci/* second value of the next pending leapsecond, or TIME64_MAX if no leap */
8662306a36Sopenharmony_cistatic time64_t			ntp_next_leap_sec = TIME64_MAX;
8762306a36Sopenharmony_ci
8862306a36Sopenharmony_ci#ifdef CONFIG_NTP_PPS
8962306a36Sopenharmony_ci
9062306a36Sopenharmony_ci/*
9162306a36Sopenharmony_ci * The following variables are used when a pulse-per-second (PPS) signal
9262306a36Sopenharmony_ci * is available. They establish the engineering parameters of the clock
9362306a36Sopenharmony_ci * discipline loop when controlled by the PPS signal.
9462306a36Sopenharmony_ci */
9562306a36Sopenharmony_ci#define PPS_VALID	10	/* PPS signal watchdog max (s) */
9662306a36Sopenharmony_ci#define PPS_POPCORN	4	/* popcorn spike threshold (shift) */
9762306a36Sopenharmony_ci#define PPS_INTMIN	2	/* min freq interval (s) (shift) */
9862306a36Sopenharmony_ci#define PPS_INTMAX	8	/* max freq interval (s) (shift) */
9962306a36Sopenharmony_ci#define PPS_INTCOUNT	4	/* number of consecutive good intervals to
10062306a36Sopenharmony_ci				   increase pps_shift or consecutive bad
10162306a36Sopenharmony_ci				   intervals to decrease it */
10262306a36Sopenharmony_ci#define PPS_MAXWANDER	100000	/* max PPS freq wander (ns/s) */
10362306a36Sopenharmony_ci
10462306a36Sopenharmony_cistatic int pps_valid;		/* signal watchdog counter */
10562306a36Sopenharmony_cistatic long pps_tf[3];		/* phase median filter */
10662306a36Sopenharmony_cistatic long pps_jitter;		/* current jitter (ns) */
10762306a36Sopenharmony_cistatic struct timespec64 pps_fbase; /* beginning of the last freq interval */
10862306a36Sopenharmony_cistatic int pps_shift;		/* current interval duration (s) (shift) */
10962306a36Sopenharmony_cistatic int pps_intcnt;		/* interval counter */
11062306a36Sopenharmony_cistatic s64 pps_freq;		/* frequency offset (scaled ns/s) */
11162306a36Sopenharmony_cistatic long pps_stabil;		/* current stability (scaled ns/s) */
11262306a36Sopenharmony_ci
11362306a36Sopenharmony_ci/*
11462306a36Sopenharmony_ci * PPS signal quality monitors
11562306a36Sopenharmony_ci */
11662306a36Sopenharmony_cistatic long pps_calcnt;		/* calibration intervals */
11762306a36Sopenharmony_cistatic long pps_jitcnt;		/* jitter limit exceeded */
11862306a36Sopenharmony_cistatic long pps_stbcnt;		/* stability limit exceeded */
11962306a36Sopenharmony_cistatic long pps_errcnt;		/* calibration errors */
12062306a36Sopenharmony_ci
12162306a36Sopenharmony_ci
12262306a36Sopenharmony_ci/* PPS kernel consumer compensates the whole phase error immediately.
12362306a36Sopenharmony_ci * Otherwise, reduce the offset by a fixed factor times the time constant.
12462306a36Sopenharmony_ci */
12562306a36Sopenharmony_cistatic inline s64 ntp_offset_chunk(s64 offset)
12662306a36Sopenharmony_ci{
12762306a36Sopenharmony_ci	if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
12862306a36Sopenharmony_ci		return offset;
12962306a36Sopenharmony_ci	else
13062306a36Sopenharmony_ci		return shift_right(offset, SHIFT_PLL + time_constant);
13162306a36Sopenharmony_ci}
13262306a36Sopenharmony_ci
13362306a36Sopenharmony_cistatic inline void pps_reset_freq_interval(void)
13462306a36Sopenharmony_ci{
13562306a36Sopenharmony_ci	/* the PPS calibration interval may end
13662306a36Sopenharmony_ci	   surprisingly early */
13762306a36Sopenharmony_ci	pps_shift = PPS_INTMIN;
13862306a36Sopenharmony_ci	pps_intcnt = 0;
13962306a36Sopenharmony_ci}
14062306a36Sopenharmony_ci
14162306a36Sopenharmony_ci/**
14262306a36Sopenharmony_ci * pps_clear - Clears the PPS state variables
14362306a36Sopenharmony_ci */
14462306a36Sopenharmony_cistatic inline void pps_clear(void)
14562306a36Sopenharmony_ci{
14662306a36Sopenharmony_ci	pps_reset_freq_interval();
14762306a36Sopenharmony_ci	pps_tf[0] = 0;
14862306a36Sopenharmony_ci	pps_tf[1] = 0;
14962306a36Sopenharmony_ci	pps_tf[2] = 0;
15062306a36Sopenharmony_ci	pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
15162306a36Sopenharmony_ci	pps_freq = 0;
15262306a36Sopenharmony_ci}
15362306a36Sopenharmony_ci
15462306a36Sopenharmony_ci/* Decrease pps_valid to indicate that another second has passed since
15562306a36Sopenharmony_ci * the last PPS signal. When it reaches 0, indicate that PPS signal is
15662306a36Sopenharmony_ci * missing.
15762306a36Sopenharmony_ci */
15862306a36Sopenharmony_cistatic inline void pps_dec_valid(void)
15962306a36Sopenharmony_ci{
16062306a36Sopenharmony_ci	if (pps_valid > 0)
16162306a36Sopenharmony_ci		pps_valid--;
16262306a36Sopenharmony_ci	else {
16362306a36Sopenharmony_ci		time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
16462306a36Sopenharmony_ci				 STA_PPSWANDER | STA_PPSERROR);
16562306a36Sopenharmony_ci		pps_clear();
16662306a36Sopenharmony_ci	}
16762306a36Sopenharmony_ci}
16862306a36Sopenharmony_ci
16962306a36Sopenharmony_cistatic inline void pps_set_freq(s64 freq)
17062306a36Sopenharmony_ci{
17162306a36Sopenharmony_ci	pps_freq = freq;
17262306a36Sopenharmony_ci}
17362306a36Sopenharmony_ci
17462306a36Sopenharmony_cistatic inline int is_error_status(int status)
17562306a36Sopenharmony_ci{
17662306a36Sopenharmony_ci	return (status & (STA_UNSYNC|STA_CLOCKERR))
17762306a36Sopenharmony_ci		/* PPS signal lost when either PPS time or
17862306a36Sopenharmony_ci		 * PPS frequency synchronization requested
17962306a36Sopenharmony_ci		 */
18062306a36Sopenharmony_ci		|| ((status & (STA_PPSFREQ|STA_PPSTIME))
18162306a36Sopenharmony_ci			&& !(status & STA_PPSSIGNAL))
18262306a36Sopenharmony_ci		/* PPS jitter exceeded when
18362306a36Sopenharmony_ci		 * PPS time synchronization requested */
18462306a36Sopenharmony_ci		|| ((status & (STA_PPSTIME|STA_PPSJITTER))
18562306a36Sopenharmony_ci			== (STA_PPSTIME|STA_PPSJITTER))
18662306a36Sopenharmony_ci		/* PPS wander exceeded or calibration error when
18762306a36Sopenharmony_ci		 * PPS frequency synchronization requested
18862306a36Sopenharmony_ci		 */
18962306a36Sopenharmony_ci		|| ((status & STA_PPSFREQ)
19062306a36Sopenharmony_ci			&& (status & (STA_PPSWANDER|STA_PPSERROR)));
19162306a36Sopenharmony_ci}
19262306a36Sopenharmony_ci
19362306a36Sopenharmony_cistatic inline void pps_fill_timex(struct __kernel_timex *txc)
19462306a36Sopenharmony_ci{
19562306a36Sopenharmony_ci	txc->ppsfreq	   = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
19662306a36Sopenharmony_ci					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
19762306a36Sopenharmony_ci	txc->jitter	   = pps_jitter;
19862306a36Sopenharmony_ci	if (!(time_status & STA_NANO))
19962306a36Sopenharmony_ci		txc->jitter = pps_jitter / NSEC_PER_USEC;
20062306a36Sopenharmony_ci	txc->shift	   = pps_shift;
20162306a36Sopenharmony_ci	txc->stabil	   = pps_stabil;
20262306a36Sopenharmony_ci	txc->jitcnt	   = pps_jitcnt;
20362306a36Sopenharmony_ci	txc->calcnt	   = pps_calcnt;
20462306a36Sopenharmony_ci	txc->errcnt	   = pps_errcnt;
20562306a36Sopenharmony_ci	txc->stbcnt	   = pps_stbcnt;
20662306a36Sopenharmony_ci}
20762306a36Sopenharmony_ci
20862306a36Sopenharmony_ci#else /* !CONFIG_NTP_PPS */
20962306a36Sopenharmony_ci
21062306a36Sopenharmony_cistatic inline s64 ntp_offset_chunk(s64 offset)
21162306a36Sopenharmony_ci{
21262306a36Sopenharmony_ci	return shift_right(offset, SHIFT_PLL + time_constant);
21362306a36Sopenharmony_ci}
21462306a36Sopenharmony_ci
21562306a36Sopenharmony_cistatic inline void pps_reset_freq_interval(void) {}
21662306a36Sopenharmony_cistatic inline void pps_clear(void) {}
21762306a36Sopenharmony_cistatic inline void pps_dec_valid(void) {}
21862306a36Sopenharmony_cistatic inline void pps_set_freq(s64 freq) {}
21962306a36Sopenharmony_ci
22062306a36Sopenharmony_cistatic inline int is_error_status(int status)
22162306a36Sopenharmony_ci{
22262306a36Sopenharmony_ci	return status & (STA_UNSYNC|STA_CLOCKERR);
22362306a36Sopenharmony_ci}
22462306a36Sopenharmony_ci
22562306a36Sopenharmony_cistatic inline void pps_fill_timex(struct __kernel_timex *txc)
22662306a36Sopenharmony_ci{
22762306a36Sopenharmony_ci	/* PPS is not implemented, so these are zero */
22862306a36Sopenharmony_ci	txc->ppsfreq	   = 0;
22962306a36Sopenharmony_ci	txc->jitter	   = 0;
23062306a36Sopenharmony_ci	txc->shift	   = 0;
23162306a36Sopenharmony_ci	txc->stabil	   = 0;
23262306a36Sopenharmony_ci	txc->jitcnt	   = 0;
23362306a36Sopenharmony_ci	txc->calcnt	   = 0;
23462306a36Sopenharmony_ci	txc->errcnt	   = 0;
23562306a36Sopenharmony_ci	txc->stbcnt	   = 0;
23662306a36Sopenharmony_ci}
23762306a36Sopenharmony_ci
23862306a36Sopenharmony_ci#endif /* CONFIG_NTP_PPS */
23962306a36Sopenharmony_ci
24062306a36Sopenharmony_ci
24162306a36Sopenharmony_ci/**
24262306a36Sopenharmony_ci * ntp_synced - Returns 1 if the NTP status is not UNSYNC
24362306a36Sopenharmony_ci *
24462306a36Sopenharmony_ci */
24562306a36Sopenharmony_cistatic inline int ntp_synced(void)
24662306a36Sopenharmony_ci{
24762306a36Sopenharmony_ci	return !(time_status & STA_UNSYNC);
24862306a36Sopenharmony_ci}
24962306a36Sopenharmony_ci
25062306a36Sopenharmony_ci
25162306a36Sopenharmony_ci/*
25262306a36Sopenharmony_ci * NTP methods:
25362306a36Sopenharmony_ci */
25462306a36Sopenharmony_ci
25562306a36Sopenharmony_ci/*
25662306a36Sopenharmony_ci * Update (tick_length, tick_length_base, tick_nsec), based
25762306a36Sopenharmony_ci * on (tick_usec, ntp_tick_adj, time_freq):
25862306a36Sopenharmony_ci */
25962306a36Sopenharmony_cistatic void ntp_update_frequency(void)
26062306a36Sopenharmony_ci{
26162306a36Sopenharmony_ci	u64 second_length;
26262306a36Sopenharmony_ci	u64 new_base;
26362306a36Sopenharmony_ci
26462306a36Sopenharmony_ci	second_length		 = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
26562306a36Sopenharmony_ci						<< NTP_SCALE_SHIFT;
26662306a36Sopenharmony_ci
26762306a36Sopenharmony_ci	second_length		+= ntp_tick_adj;
26862306a36Sopenharmony_ci	second_length		+= time_freq;
26962306a36Sopenharmony_ci
27062306a36Sopenharmony_ci	tick_nsec		 = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
27162306a36Sopenharmony_ci	new_base		 = div_u64(second_length, NTP_INTERVAL_FREQ);
27262306a36Sopenharmony_ci
27362306a36Sopenharmony_ci	/*
27462306a36Sopenharmony_ci	 * Don't wait for the next second_overflow, apply
27562306a36Sopenharmony_ci	 * the change to the tick length immediately:
27662306a36Sopenharmony_ci	 */
27762306a36Sopenharmony_ci	tick_length		+= new_base - tick_length_base;
27862306a36Sopenharmony_ci	tick_length_base	 = new_base;
27962306a36Sopenharmony_ci}
28062306a36Sopenharmony_ci
28162306a36Sopenharmony_cistatic inline s64 ntp_update_offset_fll(s64 offset64, long secs)
28262306a36Sopenharmony_ci{
28362306a36Sopenharmony_ci	time_status &= ~STA_MODE;
28462306a36Sopenharmony_ci
28562306a36Sopenharmony_ci	if (secs < MINSEC)
28662306a36Sopenharmony_ci		return 0;
28762306a36Sopenharmony_ci
28862306a36Sopenharmony_ci	if (!(time_status & STA_FLL) && (secs <= MAXSEC))
28962306a36Sopenharmony_ci		return 0;
29062306a36Sopenharmony_ci
29162306a36Sopenharmony_ci	time_status |= STA_MODE;
29262306a36Sopenharmony_ci
29362306a36Sopenharmony_ci	return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
29462306a36Sopenharmony_ci}
29562306a36Sopenharmony_ci
29662306a36Sopenharmony_cistatic void ntp_update_offset(long offset)
29762306a36Sopenharmony_ci{
29862306a36Sopenharmony_ci	s64 freq_adj;
29962306a36Sopenharmony_ci	s64 offset64;
30062306a36Sopenharmony_ci	long secs;
30162306a36Sopenharmony_ci
30262306a36Sopenharmony_ci	if (!(time_status & STA_PLL))
30362306a36Sopenharmony_ci		return;
30462306a36Sopenharmony_ci
30562306a36Sopenharmony_ci	if (!(time_status & STA_NANO)) {
30662306a36Sopenharmony_ci		/* Make sure the multiplication below won't overflow */
30762306a36Sopenharmony_ci		offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
30862306a36Sopenharmony_ci		offset *= NSEC_PER_USEC;
30962306a36Sopenharmony_ci	}
31062306a36Sopenharmony_ci
31162306a36Sopenharmony_ci	/*
31262306a36Sopenharmony_ci	 * Scale the phase adjustment and
31362306a36Sopenharmony_ci	 * clamp to the operating range.
31462306a36Sopenharmony_ci	 */
31562306a36Sopenharmony_ci	offset = clamp(offset, -MAXPHASE, MAXPHASE);
31662306a36Sopenharmony_ci
31762306a36Sopenharmony_ci	/*
31862306a36Sopenharmony_ci	 * Select how the frequency is to be controlled
31962306a36Sopenharmony_ci	 * and in which mode (PLL or FLL).
32062306a36Sopenharmony_ci	 */
32162306a36Sopenharmony_ci	secs = (long)(__ktime_get_real_seconds() - time_reftime);
32262306a36Sopenharmony_ci	if (unlikely(time_status & STA_FREQHOLD))
32362306a36Sopenharmony_ci		secs = 0;
32462306a36Sopenharmony_ci
32562306a36Sopenharmony_ci	time_reftime = __ktime_get_real_seconds();
32662306a36Sopenharmony_ci
32762306a36Sopenharmony_ci	offset64    = offset;
32862306a36Sopenharmony_ci	freq_adj    = ntp_update_offset_fll(offset64, secs);
32962306a36Sopenharmony_ci
33062306a36Sopenharmony_ci	/*
33162306a36Sopenharmony_ci	 * Clamp update interval to reduce PLL gain with low
33262306a36Sopenharmony_ci	 * sampling rate (e.g. intermittent network connection)
33362306a36Sopenharmony_ci	 * to avoid instability.
33462306a36Sopenharmony_ci	 */
33562306a36Sopenharmony_ci	if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
33662306a36Sopenharmony_ci		secs = 1 << (SHIFT_PLL + 1 + time_constant);
33762306a36Sopenharmony_ci
33862306a36Sopenharmony_ci	freq_adj    += (offset64 * secs) <<
33962306a36Sopenharmony_ci			(NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
34062306a36Sopenharmony_ci
34162306a36Sopenharmony_ci	freq_adj    = min(freq_adj + time_freq, MAXFREQ_SCALED);
34262306a36Sopenharmony_ci
34362306a36Sopenharmony_ci	time_freq   = max(freq_adj, -MAXFREQ_SCALED);
34462306a36Sopenharmony_ci
34562306a36Sopenharmony_ci	time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
34662306a36Sopenharmony_ci}
34762306a36Sopenharmony_ci
34862306a36Sopenharmony_ci/**
34962306a36Sopenharmony_ci * ntp_clear - Clears the NTP state variables
35062306a36Sopenharmony_ci */
35162306a36Sopenharmony_civoid ntp_clear(void)
35262306a36Sopenharmony_ci{
35362306a36Sopenharmony_ci	time_adjust	= 0;		/* stop active adjtime() */
35462306a36Sopenharmony_ci	time_status	|= STA_UNSYNC;
35562306a36Sopenharmony_ci	time_maxerror	= NTP_PHASE_LIMIT;
35662306a36Sopenharmony_ci	time_esterror	= NTP_PHASE_LIMIT;
35762306a36Sopenharmony_ci
35862306a36Sopenharmony_ci	ntp_update_frequency();
35962306a36Sopenharmony_ci
36062306a36Sopenharmony_ci	tick_length	= tick_length_base;
36162306a36Sopenharmony_ci	time_offset	= 0;
36262306a36Sopenharmony_ci
36362306a36Sopenharmony_ci	ntp_next_leap_sec = TIME64_MAX;
36462306a36Sopenharmony_ci	/* Clear PPS state variables */
36562306a36Sopenharmony_ci	pps_clear();
36662306a36Sopenharmony_ci}
36762306a36Sopenharmony_ci
36862306a36Sopenharmony_ci
36962306a36Sopenharmony_ciu64 ntp_tick_length(void)
37062306a36Sopenharmony_ci{
37162306a36Sopenharmony_ci	return tick_length;
37262306a36Sopenharmony_ci}
37362306a36Sopenharmony_ci
37462306a36Sopenharmony_ci/**
37562306a36Sopenharmony_ci * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
37662306a36Sopenharmony_ci *
37762306a36Sopenharmony_ci * Provides the time of the next leapsecond against CLOCK_REALTIME in
37862306a36Sopenharmony_ci * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
37962306a36Sopenharmony_ci */
38062306a36Sopenharmony_ciktime_t ntp_get_next_leap(void)
38162306a36Sopenharmony_ci{
38262306a36Sopenharmony_ci	ktime_t ret;
38362306a36Sopenharmony_ci
38462306a36Sopenharmony_ci	if ((time_state == TIME_INS) && (time_status & STA_INS))
38562306a36Sopenharmony_ci		return ktime_set(ntp_next_leap_sec, 0);
38662306a36Sopenharmony_ci	ret = KTIME_MAX;
38762306a36Sopenharmony_ci	return ret;
38862306a36Sopenharmony_ci}
38962306a36Sopenharmony_ci
39062306a36Sopenharmony_ci/*
39162306a36Sopenharmony_ci * this routine handles the overflow of the microsecond field
39262306a36Sopenharmony_ci *
39362306a36Sopenharmony_ci * The tricky bits of code to handle the accurate clock support
39462306a36Sopenharmony_ci * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
39562306a36Sopenharmony_ci * They were originally developed for SUN and DEC kernels.
39662306a36Sopenharmony_ci * All the kudos should go to Dave for this stuff.
39762306a36Sopenharmony_ci *
39862306a36Sopenharmony_ci * Also handles leap second processing, and returns leap offset
39962306a36Sopenharmony_ci */
40062306a36Sopenharmony_ciint second_overflow(time64_t secs)
40162306a36Sopenharmony_ci{
40262306a36Sopenharmony_ci	s64 delta;
40362306a36Sopenharmony_ci	int leap = 0;
40462306a36Sopenharmony_ci	s32 rem;
40562306a36Sopenharmony_ci
40662306a36Sopenharmony_ci	/*
40762306a36Sopenharmony_ci	 * Leap second processing. If in leap-insert state at the end of the
40862306a36Sopenharmony_ci	 * day, the system clock is set back one second; if in leap-delete
40962306a36Sopenharmony_ci	 * state, the system clock is set ahead one second.
41062306a36Sopenharmony_ci	 */
41162306a36Sopenharmony_ci	switch (time_state) {
41262306a36Sopenharmony_ci	case TIME_OK:
41362306a36Sopenharmony_ci		if (time_status & STA_INS) {
41462306a36Sopenharmony_ci			time_state = TIME_INS;
41562306a36Sopenharmony_ci			div_s64_rem(secs, SECS_PER_DAY, &rem);
41662306a36Sopenharmony_ci			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
41762306a36Sopenharmony_ci		} else if (time_status & STA_DEL) {
41862306a36Sopenharmony_ci			time_state = TIME_DEL;
41962306a36Sopenharmony_ci			div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
42062306a36Sopenharmony_ci			ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
42162306a36Sopenharmony_ci		}
42262306a36Sopenharmony_ci		break;
42362306a36Sopenharmony_ci	case TIME_INS:
42462306a36Sopenharmony_ci		if (!(time_status & STA_INS)) {
42562306a36Sopenharmony_ci			ntp_next_leap_sec = TIME64_MAX;
42662306a36Sopenharmony_ci			time_state = TIME_OK;
42762306a36Sopenharmony_ci		} else if (secs == ntp_next_leap_sec) {
42862306a36Sopenharmony_ci			leap = -1;
42962306a36Sopenharmony_ci			time_state = TIME_OOP;
43062306a36Sopenharmony_ci			printk(KERN_NOTICE
43162306a36Sopenharmony_ci				"Clock: inserting leap second 23:59:60 UTC\n");
43262306a36Sopenharmony_ci		}
43362306a36Sopenharmony_ci		break;
43462306a36Sopenharmony_ci	case TIME_DEL:
43562306a36Sopenharmony_ci		if (!(time_status & STA_DEL)) {
43662306a36Sopenharmony_ci			ntp_next_leap_sec = TIME64_MAX;
43762306a36Sopenharmony_ci			time_state = TIME_OK;
43862306a36Sopenharmony_ci		} else if (secs == ntp_next_leap_sec) {
43962306a36Sopenharmony_ci			leap = 1;
44062306a36Sopenharmony_ci			ntp_next_leap_sec = TIME64_MAX;
44162306a36Sopenharmony_ci			time_state = TIME_WAIT;
44262306a36Sopenharmony_ci			printk(KERN_NOTICE
44362306a36Sopenharmony_ci				"Clock: deleting leap second 23:59:59 UTC\n");
44462306a36Sopenharmony_ci		}
44562306a36Sopenharmony_ci		break;
44662306a36Sopenharmony_ci	case TIME_OOP:
44762306a36Sopenharmony_ci		ntp_next_leap_sec = TIME64_MAX;
44862306a36Sopenharmony_ci		time_state = TIME_WAIT;
44962306a36Sopenharmony_ci		break;
45062306a36Sopenharmony_ci	case TIME_WAIT:
45162306a36Sopenharmony_ci		if (!(time_status & (STA_INS | STA_DEL)))
45262306a36Sopenharmony_ci			time_state = TIME_OK;
45362306a36Sopenharmony_ci		break;
45462306a36Sopenharmony_ci	}
45562306a36Sopenharmony_ci
45662306a36Sopenharmony_ci
45762306a36Sopenharmony_ci	/* Bump the maxerror field */
45862306a36Sopenharmony_ci	time_maxerror += MAXFREQ / NSEC_PER_USEC;
45962306a36Sopenharmony_ci	if (time_maxerror > NTP_PHASE_LIMIT) {
46062306a36Sopenharmony_ci		time_maxerror = NTP_PHASE_LIMIT;
46162306a36Sopenharmony_ci		time_status |= STA_UNSYNC;
46262306a36Sopenharmony_ci	}
46362306a36Sopenharmony_ci
46462306a36Sopenharmony_ci	/* Compute the phase adjustment for the next second */
46562306a36Sopenharmony_ci	tick_length	 = tick_length_base;
46662306a36Sopenharmony_ci
46762306a36Sopenharmony_ci	delta		 = ntp_offset_chunk(time_offset);
46862306a36Sopenharmony_ci	time_offset	-= delta;
46962306a36Sopenharmony_ci	tick_length	+= delta;
47062306a36Sopenharmony_ci
47162306a36Sopenharmony_ci	/* Check PPS signal */
47262306a36Sopenharmony_ci	pps_dec_valid();
47362306a36Sopenharmony_ci
47462306a36Sopenharmony_ci	if (!time_adjust)
47562306a36Sopenharmony_ci		goto out;
47662306a36Sopenharmony_ci
47762306a36Sopenharmony_ci	if (time_adjust > MAX_TICKADJ) {
47862306a36Sopenharmony_ci		time_adjust -= MAX_TICKADJ;
47962306a36Sopenharmony_ci		tick_length += MAX_TICKADJ_SCALED;
48062306a36Sopenharmony_ci		goto out;
48162306a36Sopenharmony_ci	}
48262306a36Sopenharmony_ci
48362306a36Sopenharmony_ci	if (time_adjust < -MAX_TICKADJ) {
48462306a36Sopenharmony_ci		time_adjust += MAX_TICKADJ;
48562306a36Sopenharmony_ci		tick_length -= MAX_TICKADJ_SCALED;
48662306a36Sopenharmony_ci		goto out;
48762306a36Sopenharmony_ci	}
48862306a36Sopenharmony_ci
48962306a36Sopenharmony_ci	tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
49062306a36Sopenharmony_ci							 << NTP_SCALE_SHIFT;
49162306a36Sopenharmony_ci	time_adjust = 0;
49262306a36Sopenharmony_ci
49362306a36Sopenharmony_ciout:
49462306a36Sopenharmony_ci	return leap;
49562306a36Sopenharmony_ci}
49662306a36Sopenharmony_ci
49762306a36Sopenharmony_ci#if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
49862306a36Sopenharmony_cistatic void sync_hw_clock(struct work_struct *work);
49962306a36Sopenharmony_cistatic DECLARE_WORK(sync_work, sync_hw_clock);
50062306a36Sopenharmony_cistatic struct hrtimer sync_hrtimer;
50162306a36Sopenharmony_ci#define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC)
50262306a36Sopenharmony_ci
50362306a36Sopenharmony_cistatic enum hrtimer_restart sync_timer_callback(struct hrtimer *timer)
50462306a36Sopenharmony_ci{
50562306a36Sopenharmony_ci	queue_work(system_freezable_power_efficient_wq, &sync_work);
50662306a36Sopenharmony_ci
50762306a36Sopenharmony_ci	return HRTIMER_NORESTART;
50862306a36Sopenharmony_ci}
50962306a36Sopenharmony_ci
51062306a36Sopenharmony_cistatic void sched_sync_hw_clock(unsigned long offset_nsec, bool retry)
51162306a36Sopenharmony_ci{
51262306a36Sopenharmony_ci	ktime_t exp = ktime_set(ktime_get_real_seconds(), 0);
51362306a36Sopenharmony_ci
51462306a36Sopenharmony_ci	if (retry)
51562306a36Sopenharmony_ci		exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec);
51662306a36Sopenharmony_ci	else
51762306a36Sopenharmony_ci		exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec);
51862306a36Sopenharmony_ci
51962306a36Sopenharmony_ci	hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS);
52062306a36Sopenharmony_ci}
52162306a36Sopenharmony_ci
52262306a36Sopenharmony_ci/*
52362306a36Sopenharmony_ci * Check whether @now is correct versus the required time to update the RTC
52462306a36Sopenharmony_ci * and calculate the value which needs to be written to the RTC so that the
52562306a36Sopenharmony_ci * next seconds increment of the RTC after the write is aligned with the next
52662306a36Sopenharmony_ci * seconds increment of clock REALTIME.
52762306a36Sopenharmony_ci *
52862306a36Sopenharmony_ci * tsched     t1 write(t2.tv_sec - 1sec))	t2 RTC increments seconds
52962306a36Sopenharmony_ci *
53062306a36Sopenharmony_ci * t2.tv_nsec == 0
53162306a36Sopenharmony_ci * tsched = t2 - set_offset_nsec
53262306a36Sopenharmony_ci * newval = t2 - NSEC_PER_SEC
53362306a36Sopenharmony_ci *
53462306a36Sopenharmony_ci * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC
53562306a36Sopenharmony_ci *
53662306a36Sopenharmony_ci * As the execution of this code is not guaranteed to happen exactly at
53762306a36Sopenharmony_ci * tsched this allows it to happen within a fuzzy region:
53862306a36Sopenharmony_ci *
53962306a36Sopenharmony_ci *	abs(now - tsched) < FUZZ
54062306a36Sopenharmony_ci *
54162306a36Sopenharmony_ci * If @now is not inside the allowed window the function returns false.
54262306a36Sopenharmony_ci */
54362306a36Sopenharmony_cistatic inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec,
54462306a36Sopenharmony_ci				  struct timespec64 *to_set,
54562306a36Sopenharmony_ci				  const struct timespec64 *now)
54662306a36Sopenharmony_ci{
54762306a36Sopenharmony_ci	/* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */
54862306a36Sopenharmony_ci	const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5;
54962306a36Sopenharmony_ci	struct timespec64 delay = {.tv_sec = -1,
55062306a36Sopenharmony_ci				   .tv_nsec = set_offset_nsec};
55162306a36Sopenharmony_ci
55262306a36Sopenharmony_ci	*to_set = timespec64_add(*now, delay);
55362306a36Sopenharmony_ci
55462306a36Sopenharmony_ci	if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) {
55562306a36Sopenharmony_ci		to_set->tv_nsec = 0;
55662306a36Sopenharmony_ci		return true;
55762306a36Sopenharmony_ci	}
55862306a36Sopenharmony_ci
55962306a36Sopenharmony_ci	if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) {
56062306a36Sopenharmony_ci		to_set->tv_sec++;
56162306a36Sopenharmony_ci		to_set->tv_nsec = 0;
56262306a36Sopenharmony_ci		return true;
56362306a36Sopenharmony_ci	}
56462306a36Sopenharmony_ci	return false;
56562306a36Sopenharmony_ci}
56662306a36Sopenharmony_ci
56762306a36Sopenharmony_ci#ifdef CONFIG_GENERIC_CMOS_UPDATE
56862306a36Sopenharmony_ciint __weak update_persistent_clock64(struct timespec64 now64)
56962306a36Sopenharmony_ci{
57062306a36Sopenharmony_ci	return -ENODEV;
57162306a36Sopenharmony_ci}
57262306a36Sopenharmony_ci#else
57362306a36Sopenharmony_cistatic inline int update_persistent_clock64(struct timespec64 now64)
57462306a36Sopenharmony_ci{
57562306a36Sopenharmony_ci	return -ENODEV;
57662306a36Sopenharmony_ci}
57762306a36Sopenharmony_ci#endif
57862306a36Sopenharmony_ci
57962306a36Sopenharmony_ci#ifdef CONFIG_RTC_SYSTOHC
58062306a36Sopenharmony_ci/* Save NTP synchronized time to the RTC */
58162306a36Sopenharmony_cistatic int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
58262306a36Sopenharmony_ci{
58362306a36Sopenharmony_ci	struct rtc_device *rtc;
58462306a36Sopenharmony_ci	struct rtc_time tm;
58562306a36Sopenharmony_ci	int err = -ENODEV;
58662306a36Sopenharmony_ci
58762306a36Sopenharmony_ci	rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE);
58862306a36Sopenharmony_ci	if (!rtc)
58962306a36Sopenharmony_ci		return -ENODEV;
59062306a36Sopenharmony_ci
59162306a36Sopenharmony_ci	if (!rtc->ops || !rtc->ops->set_time)
59262306a36Sopenharmony_ci		goto out_close;
59362306a36Sopenharmony_ci
59462306a36Sopenharmony_ci	/* First call might not have the correct offset */
59562306a36Sopenharmony_ci	if (*offset_nsec == rtc->set_offset_nsec) {
59662306a36Sopenharmony_ci		rtc_time64_to_tm(to_set->tv_sec, &tm);
59762306a36Sopenharmony_ci		err = rtc_set_time(rtc, &tm);
59862306a36Sopenharmony_ci	} else {
59962306a36Sopenharmony_ci		/* Store the update offset and let the caller try again */
60062306a36Sopenharmony_ci		*offset_nsec = rtc->set_offset_nsec;
60162306a36Sopenharmony_ci		err = -EAGAIN;
60262306a36Sopenharmony_ci	}
60362306a36Sopenharmony_ciout_close:
60462306a36Sopenharmony_ci	rtc_class_close(rtc);
60562306a36Sopenharmony_ci	return err;
60662306a36Sopenharmony_ci}
60762306a36Sopenharmony_ci#else
60862306a36Sopenharmony_cistatic inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec)
60962306a36Sopenharmony_ci{
61062306a36Sopenharmony_ci	return -ENODEV;
61162306a36Sopenharmony_ci}
61262306a36Sopenharmony_ci#endif
61362306a36Sopenharmony_ci
61462306a36Sopenharmony_ci/*
61562306a36Sopenharmony_ci * If we have an externally synchronized Linux clock, then update RTC clock
61662306a36Sopenharmony_ci * accordingly every ~11 minutes. Generally RTCs can only store second
61762306a36Sopenharmony_ci * precision, but many RTCs will adjust the phase of their second tick to
61862306a36Sopenharmony_ci * match the moment of update. This infrastructure arranges to call to the RTC
61962306a36Sopenharmony_ci * set at the correct moment to phase synchronize the RTC second tick over
62062306a36Sopenharmony_ci * with the kernel clock.
62162306a36Sopenharmony_ci */
62262306a36Sopenharmony_cistatic void sync_hw_clock(struct work_struct *work)
62362306a36Sopenharmony_ci{
62462306a36Sopenharmony_ci	/*
62562306a36Sopenharmony_ci	 * The default synchronization offset is 500ms for the deprecated
62662306a36Sopenharmony_ci	 * update_persistent_clock64() under the assumption that it uses
62762306a36Sopenharmony_ci	 * the infamous CMOS clock (MC146818).
62862306a36Sopenharmony_ci	 */
62962306a36Sopenharmony_ci	static unsigned long offset_nsec = NSEC_PER_SEC / 2;
63062306a36Sopenharmony_ci	struct timespec64 now, to_set;
63162306a36Sopenharmony_ci	int res = -EAGAIN;
63262306a36Sopenharmony_ci
63362306a36Sopenharmony_ci	/*
63462306a36Sopenharmony_ci	 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer()
63562306a36Sopenharmony_ci	 * managed to schedule the work between the timer firing and the
63662306a36Sopenharmony_ci	 * work being able to rearm the timer. Wait for the timer to expire.
63762306a36Sopenharmony_ci	 */
63862306a36Sopenharmony_ci	if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer))
63962306a36Sopenharmony_ci		return;
64062306a36Sopenharmony_ci
64162306a36Sopenharmony_ci	ktime_get_real_ts64(&now);
64262306a36Sopenharmony_ci	/* If @now is not in the allowed window, try again */
64362306a36Sopenharmony_ci	if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now))
64462306a36Sopenharmony_ci		goto rearm;
64562306a36Sopenharmony_ci
64662306a36Sopenharmony_ci	/* Take timezone adjusted RTCs into account */
64762306a36Sopenharmony_ci	if (persistent_clock_is_local)
64862306a36Sopenharmony_ci		to_set.tv_sec -= (sys_tz.tz_minuteswest * 60);
64962306a36Sopenharmony_ci
65062306a36Sopenharmony_ci	/* Try the legacy RTC first. */
65162306a36Sopenharmony_ci	res = update_persistent_clock64(to_set);
65262306a36Sopenharmony_ci	if (res != -ENODEV)
65362306a36Sopenharmony_ci		goto rearm;
65462306a36Sopenharmony_ci
65562306a36Sopenharmony_ci	/* Try the RTC class */
65662306a36Sopenharmony_ci	res = update_rtc(&to_set, &offset_nsec);
65762306a36Sopenharmony_ci	if (res == -ENODEV)
65862306a36Sopenharmony_ci		return;
65962306a36Sopenharmony_cirearm:
66062306a36Sopenharmony_ci	sched_sync_hw_clock(offset_nsec, res != 0);
66162306a36Sopenharmony_ci}
66262306a36Sopenharmony_ci
66362306a36Sopenharmony_civoid ntp_notify_cmos_timer(void)
66462306a36Sopenharmony_ci{
66562306a36Sopenharmony_ci	/*
66662306a36Sopenharmony_ci	 * When the work is currently executed but has not yet the timer
66762306a36Sopenharmony_ci	 * rearmed this queues the work immediately again. No big issue,
66862306a36Sopenharmony_ci	 * just a pointless work scheduled.
66962306a36Sopenharmony_ci	 */
67062306a36Sopenharmony_ci	if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer))
67162306a36Sopenharmony_ci		queue_work(system_freezable_power_efficient_wq, &sync_work);
67262306a36Sopenharmony_ci}
67362306a36Sopenharmony_ci
67462306a36Sopenharmony_cistatic void __init ntp_init_cmos_sync(void)
67562306a36Sopenharmony_ci{
67662306a36Sopenharmony_ci	hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
67762306a36Sopenharmony_ci	sync_hrtimer.function = sync_timer_callback;
67862306a36Sopenharmony_ci}
67962306a36Sopenharmony_ci#else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
68062306a36Sopenharmony_cistatic inline void __init ntp_init_cmos_sync(void) { }
68162306a36Sopenharmony_ci#endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */
68262306a36Sopenharmony_ci
68362306a36Sopenharmony_ci/*
68462306a36Sopenharmony_ci * Propagate a new txc->status value into the NTP state:
68562306a36Sopenharmony_ci */
68662306a36Sopenharmony_cistatic inline void process_adj_status(const struct __kernel_timex *txc)
68762306a36Sopenharmony_ci{
68862306a36Sopenharmony_ci	if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
68962306a36Sopenharmony_ci		time_state = TIME_OK;
69062306a36Sopenharmony_ci		time_status = STA_UNSYNC;
69162306a36Sopenharmony_ci		ntp_next_leap_sec = TIME64_MAX;
69262306a36Sopenharmony_ci		/* restart PPS frequency calibration */
69362306a36Sopenharmony_ci		pps_reset_freq_interval();
69462306a36Sopenharmony_ci	}
69562306a36Sopenharmony_ci
69662306a36Sopenharmony_ci	/*
69762306a36Sopenharmony_ci	 * If we turn on PLL adjustments then reset the
69862306a36Sopenharmony_ci	 * reference time to current time.
69962306a36Sopenharmony_ci	 */
70062306a36Sopenharmony_ci	if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
70162306a36Sopenharmony_ci		time_reftime = __ktime_get_real_seconds();
70262306a36Sopenharmony_ci
70362306a36Sopenharmony_ci	/* only set allowed bits */
70462306a36Sopenharmony_ci	time_status &= STA_RONLY;
70562306a36Sopenharmony_ci	time_status |= txc->status & ~STA_RONLY;
70662306a36Sopenharmony_ci}
70762306a36Sopenharmony_ci
70862306a36Sopenharmony_ci
70962306a36Sopenharmony_cistatic inline void process_adjtimex_modes(const struct __kernel_timex *txc,
71062306a36Sopenharmony_ci					  s32 *time_tai)
71162306a36Sopenharmony_ci{
71262306a36Sopenharmony_ci	if (txc->modes & ADJ_STATUS)
71362306a36Sopenharmony_ci		process_adj_status(txc);
71462306a36Sopenharmony_ci
71562306a36Sopenharmony_ci	if (txc->modes & ADJ_NANO)
71662306a36Sopenharmony_ci		time_status |= STA_NANO;
71762306a36Sopenharmony_ci
71862306a36Sopenharmony_ci	if (txc->modes & ADJ_MICRO)
71962306a36Sopenharmony_ci		time_status &= ~STA_NANO;
72062306a36Sopenharmony_ci
72162306a36Sopenharmony_ci	if (txc->modes & ADJ_FREQUENCY) {
72262306a36Sopenharmony_ci		time_freq = txc->freq * PPM_SCALE;
72362306a36Sopenharmony_ci		time_freq = min(time_freq, MAXFREQ_SCALED);
72462306a36Sopenharmony_ci		time_freq = max(time_freq, -MAXFREQ_SCALED);
72562306a36Sopenharmony_ci		/* update pps_freq */
72662306a36Sopenharmony_ci		pps_set_freq(time_freq);
72762306a36Sopenharmony_ci	}
72862306a36Sopenharmony_ci
72962306a36Sopenharmony_ci	if (txc->modes & ADJ_MAXERROR)
73062306a36Sopenharmony_ci		time_maxerror = txc->maxerror;
73162306a36Sopenharmony_ci
73262306a36Sopenharmony_ci	if (txc->modes & ADJ_ESTERROR)
73362306a36Sopenharmony_ci		time_esterror = txc->esterror;
73462306a36Sopenharmony_ci
73562306a36Sopenharmony_ci	if (txc->modes & ADJ_TIMECONST) {
73662306a36Sopenharmony_ci		time_constant = txc->constant;
73762306a36Sopenharmony_ci		if (!(time_status & STA_NANO))
73862306a36Sopenharmony_ci			time_constant += 4;
73962306a36Sopenharmony_ci		time_constant = min(time_constant, (long)MAXTC);
74062306a36Sopenharmony_ci		time_constant = max(time_constant, 0l);
74162306a36Sopenharmony_ci	}
74262306a36Sopenharmony_ci
74362306a36Sopenharmony_ci	if (txc->modes & ADJ_TAI &&
74462306a36Sopenharmony_ci			txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
74562306a36Sopenharmony_ci		*time_tai = txc->constant;
74662306a36Sopenharmony_ci
74762306a36Sopenharmony_ci	if (txc->modes & ADJ_OFFSET)
74862306a36Sopenharmony_ci		ntp_update_offset(txc->offset);
74962306a36Sopenharmony_ci
75062306a36Sopenharmony_ci	if (txc->modes & ADJ_TICK)
75162306a36Sopenharmony_ci		tick_usec = txc->tick;
75262306a36Sopenharmony_ci
75362306a36Sopenharmony_ci	if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
75462306a36Sopenharmony_ci		ntp_update_frequency();
75562306a36Sopenharmony_ci}
75662306a36Sopenharmony_ci
75762306a36Sopenharmony_ci
75862306a36Sopenharmony_ci/*
75962306a36Sopenharmony_ci * adjtimex mainly allows reading (and writing, if superuser) of
76062306a36Sopenharmony_ci * kernel time-keeping variables. used by xntpd.
76162306a36Sopenharmony_ci */
76262306a36Sopenharmony_ciint __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts,
76362306a36Sopenharmony_ci		  s32 *time_tai, struct audit_ntp_data *ad)
76462306a36Sopenharmony_ci{
76562306a36Sopenharmony_ci	int result;
76662306a36Sopenharmony_ci
76762306a36Sopenharmony_ci	if (txc->modes & ADJ_ADJTIME) {
76862306a36Sopenharmony_ci		long save_adjust = time_adjust;
76962306a36Sopenharmony_ci
77062306a36Sopenharmony_ci		if (!(txc->modes & ADJ_OFFSET_READONLY)) {
77162306a36Sopenharmony_ci			/* adjtime() is independent from ntp_adjtime() */
77262306a36Sopenharmony_ci			time_adjust = txc->offset;
77362306a36Sopenharmony_ci			ntp_update_frequency();
77462306a36Sopenharmony_ci
77562306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_ADJUST,	save_adjust);
77662306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_ADJUST,	time_adjust);
77762306a36Sopenharmony_ci		}
77862306a36Sopenharmony_ci		txc->offset = save_adjust;
77962306a36Sopenharmony_ci	} else {
78062306a36Sopenharmony_ci		/* If there are input parameters, then process them: */
78162306a36Sopenharmony_ci		if (txc->modes) {
78262306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_OFFSET,	time_offset);
78362306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_FREQ,	time_freq);
78462306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_STATUS,	time_status);
78562306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_TAI,	*time_tai);
78662306a36Sopenharmony_ci			audit_ntp_set_old(ad, AUDIT_NTP_TICK,	tick_usec);
78762306a36Sopenharmony_ci
78862306a36Sopenharmony_ci			process_adjtimex_modes(txc, time_tai);
78962306a36Sopenharmony_ci
79062306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_OFFSET,	time_offset);
79162306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_FREQ,	time_freq);
79262306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_STATUS,	time_status);
79362306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_TAI,	*time_tai);
79462306a36Sopenharmony_ci			audit_ntp_set_new(ad, AUDIT_NTP_TICK,	tick_usec);
79562306a36Sopenharmony_ci		}
79662306a36Sopenharmony_ci
79762306a36Sopenharmony_ci		txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
79862306a36Sopenharmony_ci				  NTP_SCALE_SHIFT);
79962306a36Sopenharmony_ci		if (!(time_status & STA_NANO))
80062306a36Sopenharmony_ci			txc->offset = (u32)txc->offset / NSEC_PER_USEC;
80162306a36Sopenharmony_ci	}
80262306a36Sopenharmony_ci
80362306a36Sopenharmony_ci	result = time_state;	/* mostly `TIME_OK' */
80462306a36Sopenharmony_ci	/* check for errors */
80562306a36Sopenharmony_ci	if (is_error_status(time_status))
80662306a36Sopenharmony_ci		result = TIME_ERROR;
80762306a36Sopenharmony_ci
80862306a36Sopenharmony_ci	txc->freq	   = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
80962306a36Sopenharmony_ci					 PPM_SCALE_INV, NTP_SCALE_SHIFT);
81062306a36Sopenharmony_ci	txc->maxerror	   = time_maxerror;
81162306a36Sopenharmony_ci	txc->esterror	   = time_esterror;
81262306a36Sopenharmony_ci	txc->status	   = time_status;
81362306a36Sopenharmony_ci	txc->constant	   = time_constant;
81462306a36Sopenharmony_ci	txc->precision	   = 1;
81562306a36Sopenharmony_ci	txc->tolerance	   = MAXFREQ_SCALED / PPM_SCALE;
81662306a36Sopenharmony_ci	txc->tick	   = tick_usec;
81762306a36Sopenharmony_ci	txc->tai	   = *time_tai;
81862306a36Sopenharmony_ci
81962306a36Sopenharmony_ci	/* fill PPS status fields */
82062306a36Sopenharmony_ci	pps_fill_timex(txc);
82162306a36Sopenharmony_ci
82262306a36Sopenharmony_ci	txc->time.tv_sec = ts->tv_sec;
82362306a36Sopenharmony_ci	txc->time.tv_usec = ts->tv_nsec;
82462306a36Sopenharmony_ci	if (!(time_status & STA_NANO))
82562306a36Sopenharmony_ci		txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC;
82662306a36Sopenharmony_ci
82762306a36Sopenharmony_ci	/* Handle leapsec adjustments */
82862306a36Sopenharmony_ci	if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
82962306a36Sopenharmony_ci		if ((time_state == TIME_INS) && (time_status & STA_INS)) {
83062306a36Sopenharmony_ci			result = TIME_OOP;
83162306a36Sopenharmony_ci			txc->tai++;
83262306a36Sopenharmony_ci			txc->time.tv_sec--;
83362306a36Sopenharmony_ci		}
83462306a36Sopenharmony_ci		if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
83562306a36Sopenharmony_ci			result = TIME_WAIT;
83662306a36Sopenharmony_ci			txc->tai--;
83762306a36Sopenharmony_ci			txc->time.tv_sec++;
83862306a36Sopenharmony_ci		}
83962306a36Sopenharmony_ci		if ((time_state == TIME_OOP) &&
84062306a36Sopenharmony_ci					(ts->tv_sec == ntp_next_leap_sec)) {
84162306a36Sopenharmony_ci			result = TIME_WAIT;
84262306a36Sopenharmony_ci		}
84362306a36Sopenharmony_ci	}
84462306a36Sopenharmony_ci
84562306a36Sopenharmony_ci	return result;
84662306a36Sopenharmony_ci}
84762306a36Sopenharmony_ci
84862306a36Sopenharmony_ci#ifdef	CONFIG_NTP_PPS
84962306a36Sopenharmony_ci
85062306a36Sopenharmony_ci/* actually struct pps_normtime is good old struct timespec, but it is
85162306a36Sopenharmony_ci * semantically different (and it is the reason why it was invented):
85262306a36Sopenharmony_ci * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
85362306a36Sopenharmony_ci * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
85462306a36Sopenharmony_cistruct pps_normtime {
85562306a36Sopenharmony_ci	s64		sec;	/* seconds */
85662306a36Sopenharmony_ci	long		nsec;	/* nanoseconds */
85762306a36Sopenharmony_ci};
85862306a36Sopenharmony_ci
85962306a36Sopenharmony_ci/* normalize the timestamp so that nsec is in the
86062306a36Sopenharmony_ci   ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
86162306a36Sopenharmony_cistatic inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
86262306a36Sopenharmony_ci{
86362306a36Sopenharmony_ci	struct pps_normtime norm = {
86462306a36Sopenharmony_ci		.sec = ts.tv_sec,
86562306a36Sopenharmony_ci		.nsec = ts.tv_nsec
86662306a36Sopenharmony_ci	};
86762306a36Sopenharmony_ci
86862306a36Sopenharmony_ci	if (norm.nsec > (NSEC_PER_SEC >> 1)) {
86962306a36Sopenharmony_ci		norm.nsec -= NSEC_PER_SEC;
87062306a36Sopenharmony_ci		norm.sec++;
87162306a36Sopenharmony_ci	}
87262306a36Sopenharmony_ci
87362306a36Sopenharmony_ci	return norm;
87462306a36Sopenharmony_ci}
87562306a36Sopenharmony_ci
87662306a36Sopenharmony_ci/* get current phase correction and jitter */
87762306a36Sopenharmony_cistatic inline long pps_phase_filter_get(long *jitter)
87862306a36Sopenharmony_ci{
87962306a36Sopenharmony_ci	*jitter = pps_tf[0] - pps_tf[1];
88062306a36Sopenharmony_ci	if (*jitter < 0)
88162306a36Sopenharmony_ci		*jitter = -*jitter;
88262306a36Sopenharmony_ci
88362306a36Sopenharmony_ci	/* TODO: test various filters */
88462306a36Sopenharmony_ci	return pps_tf[0];
88562306a36Sopenharmony_ci}
88662306a36Sopenharmony_ci
88762306a36Sopenharmony_ci/* add the sample to the phase filter */
88862306a36Sopenharmony_cistatic inline void pps_phase_filter_add(long err)
88962306a36Sopenharmony_ci{
89062306a36Sopenharmony_ci	pps_tf[2] = pps_tf[1];
89162306a36Sopenharmony_ci	pps_tf[1] = pps_tf[0];
89262306a36Sopenharmony_ci	pps_tf[0] = err;
89362306a36Sopenharmony_ci}
89462306a36Sopenharmony_ci
89562306a36Sopenharmony_ci/* decrease frequency calibration interval length.
89662306a36Sopenharmony_ci * It is halved after four consecutive unstable intervals.
89762306a36Sopenharmony_ci */
89862306a36Sopenharmony_cistatic inline void pps_dec_freq_interval(void)
89962306a36Sopenharmony_ci{
90062306a36Sopenharmony_ci	if (--pps_intcnt <= -PPS_INTCOUNT) {
90162306a36Sopenharmony_ci		pps_intcnt = -PPS_INTCOUNT;
90262306a36Sopenharmony_ci		if (pps_shift > PPS_INTMIN) {
90362306a36Sopenharmony_ci			pps_shift--;
90462306a36Sopenharmony_ci			pps_intcnt = 0;
90562306a36Sopenharmony_ci		}
90662306a36Sopenharmony_ci	}
90762306a36Sopenharmony_ci}
90862306a36Sopenharmony_ci
90962306a36Sopenharmony_ci/* increase frequency calibration interval length.
91062306a36Sopenharmony_ci * It is doubled after four consecutive stable intervals.
91162306a36Sopenharmony_ci */
91262306a36Sopenharmony_cistatic inline void pps_inc_freq_interval(void)
91362306a36Sopenharmony_ci{
91462306a36Sopenharmony_ci	if (++pps_intcnt >= PPS_INTCOUNT) {
91562306a36Sopenharmony_ci		pps_intcnt = PPS_INTCOUNT;
91662306a36Sopenharmony_ci		if (pps_shift < PPS_INTMAX) {
91762306a36Sopenharmony_ci			pps_shift++;
91862306a36Sopenharmony_ci			pps_intcnt = 0;
91962306a36Sopenharmony_ci		}
92062306a36Sopenharmony_ci	}
92162306a36Sopenharmony_ci}
92262306a36Sopenharmony_ci
92362306a36Sopenharmony_ci/* update clock frequency based on MONOTONIC_RAW clock PPS signal
92462306a36Sopenharmony_ci * timestamps
92562306a36Sopenharmony_ci *
92662306a36Sopenharmony_ci * At the end of the calibration interval the difference between the
92762306a36Sopenharmony_ci * first and last MONOTONIC_RAW clock timestamps divided by the length
92862306a36Sopenharmony_ci * of the interval becomes the frequency update. If the interval was
92962306a36Sopenharmony_ci * too long, the data are discarded.
93062306a36Sopenharmony_ci * Returns the difference between old and new frequency values.
93162306a36Sopenharmony_ci */
93262306a36Sopenharmony_cistatic long hardpps_update_freq(struct pps_normtime freq_norm)
93362306a36Sopenharmony_ci{
93462306a36Sopenharmony_ci	long delta, delta_mod;
93562306a36Sopenharmony_ci	s64 ftemp;
93662306a36Sopenharmony_ci
93762306a36Sopenharmony_ci	/* check if the frequency interval was too long */
93862306a36Sopenharmony_ci	if (freq_norm.sec > (2 << pps_shift)) {
93962306a36Sopenharmony_ci		time_status |= STA_PPSERROR;
94062306a36Sopenharmony_ci		pps_errcnt++;
94162306a36Sopenharmony_ci		pps_dec_freq_interval();
94262306a36Sopenharmony_ci		printk_deferred(KERN_ERR
94362306a36Sopenharmony_ci			"hardpps: PPSERROR: interval too long - %lld s\n",
94462306a36Sopenharmony_ci			freq_norm.sec);
94562306a36Sopenharmony_ci		return 0;
94662306a36Sopenharmony_ci	}
94762306a36Sopenharmony_ci
94862306a36Sopenharmony_ci	/* here the raw frequency offset and wander (stability) is
94962306a36Sopenharmony_ci	 * calculated. If the wander is less than the wander threshold
95062306a36Sopenharmony_ci	 * the interval is increased; otherwise it is decreased.
95162306a36Sopenharmony_ci	 */
95262306a36Sopenharmony_ci	ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
95362306a36Sopenharmony_ci			freq_norm.sec);
95462306a36Sopenharmony_ci	delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
95562306a36Sopenharmony_ci	pps_freq = ftemp;
95662306a36Sopenharmony_ci	if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
95762306a36Sopenharmony_ci		printk_deferred(KERN_WARNING
95862306a36Sopenharmony_ci				"hardpps: PPSWANDER: change=%ld\n", delta);
95962306a36Sopenharmony_ci		time_status |= STA_PPSWANDER;
96062306a36Sopenharmony_ci		pps_stbcnt++;
96162306a36Sopenharmony_ci		pps_dec_freq_interval();
96262306a36Sopenharmony_ci	} else {	/* good sample */
96362306a36Sopenharmony_ci		pps_inc_freq_interval();
96462306a36Sopenharmony_ci	}
96562306a36Sopenharmony_ci
96662306a36Sopenharmony_ci	/* the stability metric is calculated as the average of recent
96762306a36Sopenharmony_ci	 * frequency changes, but is used only for performance
96862306a36Sopenharmony_ci	 * monitoring
96962306a36Sopenharmony_ci	 */
97062306a36Sopenharmony_ci	delta_mod = delta;
97162306a36Sopenharmony_ci	if (delta_mod < 0)
97262306a36Sopenharmony_ci		delta_mod = -delta_mod;
97362306a36Sopenharmony_ci	pps_stabil += (div_s64(((s64)delta_mod) <<
97462306a36Sopenharmony_ci				(NTP_SCALE_SHIFT - SHIFT_USEC),
97562306a36Sopenharmony_ci				NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
97662306a36Sopenharmony_ci
97762306a36Sopenharmony_ci	/* if enabled, the system clock frequency is updated */
97862306a36Sopenharmony_ci	if ((time_status & STA_PPSFREQ) != 0 &&
97962306a36Sopenharmony_ci	    (time_status & STA_FREQHOLD) == 0) {
98062306a36Sopenharmony_ci		time_freq = pps_freq;
98162306a36Sopenharmony_ci		ntp_update_frequency();
98262306a36Sopenharmony_ci	}
98362306a36Sopenharmony_ci
98462306a36Sopenharmony_ci	return delta;
98562306a36Sopenharmony_ci}
98662306a36Sopenharmony_ci
98762306a36Sopenharmony_ci/* correct REALTIME clock phase error against PPS signal */
98862306a36Sopenharmony_cistatic void hardpps_update_phase(long error)
98962306a36Sopenharmony_ci{
99062306a36Sopenharmony_ci	long correction = -error;
99162306a36Sopenharmony_ci	long jitter;
99262306a36Sopenharmony_ci
99362306a36Sopenharmony_ci	/* add the sample to the median filter */
99462306a36Sopenharmony_ci	pps_phase_filter_add(correction);
99562306a36Sopenharmony_ci	correction = pps_phase_filter_get(&jitter);
99662306a36Sopenharmony_ci
99762306a36Sopenharmony_ci	/* Nominal jitter is due to PPS signal noise. If it exceeds the
99862306a36Sopenharmony_ci	 * threshold, the sample is discarded; otherwise, if so enabled,
99962306a36Sopenharmony_ci	 * the time offset is updated.
100062306a36Sopenharmony_ci	 */
100162306a36Sopenharmony_ci	if (jitter > (pps_jitter << PPS_POPCORN)) {
100262306a36Sopenharmony_ci		printk_deferred(KERN_WARNING
100362306a36Sopenharmony_ci				"hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
100462306a36Sopenharmony_ci				jitter, (pps_jitter << PPS_POPCORN));
100562306a36Sopenharmony_ci		time_status |= STA_PPSJITTER;
100662306a36Sopenharmony_ci		pps_jitcnt++;
100762306a36Sopenharmony_ci	} else if (time_status & STA_PPSTIME) {
100862306a36Sopenharmony_ci		/* correct the time using the phase offset */
100962306a36Sopenharmony_ci		time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
101062306a36Sopenharmony_ci				NTP_INTERVAL_FREQ);
101162306a36Sopenharmony_ci		/* cancel running adjtime() */
101262306a36Sopenharmony_ci		time_adjust = 0;
101362306a36Sopenharmony_ci	}
101462306a36Sopenharmony_ci	/* update jitter */
101562306a36Sopenharmony_ci	pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
101662306a36Sopenharmony_ci}
101762306a36Sopenharmony_ci
101862306a36Sopenharmony_ci/*
101962306a36Sopenharmony_ci * __hardpps() - discipline CPU clock oscillator to external PPS signal
102062306a36Sopenharmony_ci *
102162306a36Sopenharmony_ci * This routine is called at each PPS signal arrival in order to
102262306a36Sopenharmony_ci * discipline the CPU clock oscillator to the PPS signal. It takes two
102362306a36Sopenharmony_ci * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
102462306a36Sopenharmony_ci * is used to correct clock phase error and the latter is used to
102562306a36Sopenharmony_ci * correct the frequency.
102662306a36Sopenharmony_ci *
102762306a36Sopenharmony_ci * This code is based on David Mills's reference nanokernel
102862306a36Sopenharmony_ci * implementation. It was mostly rewritten but keeps the same idea.
102962306a36Sopenharmony_ci */
103062306a36Sopenharmony_civoid __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
103162306a36Sopenharmony_ci{
103262306a36Sopenharmony_ci	struct pps_normtime pts_norm, freq_norm;
103362306a36Sopenharmony_ci
103462306a36Sopenharmony_ci	pts_norm = pps_normalize_ts(*phase_ts);
103562306a36Sopenharmony_ci
103662306a36Sopenharmony_ci	/* clear the error bits, they will be set again if needed */
103762306a36Sopenharmony_ci	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
103862306a36Sopenharmony_ci
103962306a36Sopenharmony_ci	/* indicate signal presence */
104062306a36Sopenharmony_ci	time_status |= STA_PPSSIGNAL;
104162306a36Sopenharmony_ci	pps_valid = PPS_VALID;
104262306a36Sopenharmony_ci
104362306a36Sopenharmony_ci	/* when called for the first time,
104462306a36Sopenharmony_ci	 * just start the frequency interval */
104562306a36Sopenharmony_ci	if (unlikely(pps_fbase.tv_sec == 0)) {
104662306a36Sopenharmony_ci		pps_fbase = *raw_ts;
104762306a36Sopenharmony_ci		return;
104862306a36Sopenharmony_ci	}
104962306a36Sopenharmony_ci
105062306a36Sopenharmony_ci	/* ok, now we have a base for frequency calculation */
105162306a36Sopenharmony_ci	freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
105262306a36Sopenharmony_ci
105362306a36Sopenharmony_ci	/* check that the signal is in the range
105462306a36Sopenharmony_ci	 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
105562306a36Sopenharmony_ci	if ((freq_norm.sec == 0) ||
105662306a36Sopenharmony_ci			(freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
105762306a36Sopenharmony_ci			(freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
105862306a36Sopenharmony_ci		time_status |= STA_PPSJITTER;
105962306a36Sopenharmony_ci		/* restart the frequency calibration interval */
106062306a36Sopenharmony_ci		pps_fbase = *raw_ts;
106162306a36Sopenharmony_ci		printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
106262306a36Sopenharmony_ci		return;
106362306a36Sopenharmony_ci	}
106462306a36Sopenharmony_ci
106562306a36Sopenharmony_ci	/* signal is ok */
106662306a36Sopenharmony_ci
106762306a36Sopenharmony_ci	/* check if the current frequency interval is finished */
106862306a36Sopenharmony_ci	if (freq_norm.sec >= (1 << pps_shift)) {
106962306a36Sopenharmony_ci		pps_calcnt++;
107062306a36Sopenharmony_ci		/* restart the frequency calibration interval */
107162306a36Sopenharmony_ci		pps_fbase = *raw_ts;
107262306a36Sopenharmony_ci		hardpps_update_freq(freq_norm);
107362306a36Sopenharmony_ci	}
107462306a36Sopenharmony_ci
107562306a36Sopenharmony_ci	hardpps_update_phase(pts_norm.nsec);
107662306a36Sopenharmony_ci
107762306a36Sopenharmony_ci}
107862306a36Sopenharmony_ci#endif	/* CONFIG_NTP_PPS */
107962306a36Sopenharmony_ci
108062306a36Sopenharmony_cistatic int __init ntp_tick_adj_setup(char *str)
108162306a36Sopenharmony_ci{
108262306a36Sopenharmony_ci	int rc = kstrtos64(str, 0, &ntp_tick_adj);
108362306a36Sopenharmony_ci	if (rc)
108462306a36Sopenharmony_ci		return rc;
108562306a36Sopenharmony_ci
108662306a36Sopenharmony_ci	ntp_tick_adj <<= NTP_SCALE_SHIFT;
108762306a36Sopenharmony_ci	return 1;
108862306a36Sopenharmony_ci}
108962306a36Sopenharmony_ci
109062306a36Sopenharmony_ci__setup("ntp_tick_adj=", ntp_tick_adj_setup);
109162306a36Sopenharmony_ci
109262306a36Sopenharmony_civoid __init ntp_init(void)
109362306a36Sopenharmony_ci{
109462306a36Sopenharmony_ci	ntp_clear();
109562306a36Sopenharmony_ci	ntp_init_cmos_sync();
109662306a36Sopenharmony_ci}
1097