1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2 *
3 * Copyright 2016-2022 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8#ifndef HABANALABS_H_
9#define HABANALABS_H_
10
11#include <linux/types.h>
12#include <linux/ioctl.h>
13
14/*
15 * Defines that are asic-specific but constitutes as ABI between kernel driver
16 * and userspace
17 */
18#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20
21/*
22 * 128 SOBs reserved for collective wait
23 * 16 SOBs reserved for sync stream
24 */
25#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		144
26
27/*
28 * 64 monitors reserved for collective wait
29 * 8 monitors reserved for sync stream
30 */
31#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		72
32
33/* Max number of elements in timestamps registration buffers */
34#define	TS_MAX_ELEMENTS_NUM				(1 << 20) /* 1MB */
35
36/*
37 * Goya queue Numbering
38 *
39 * The external queues (PCI DMA channels) MUST be before the internal queues
40 * and each group (PCI DMA channels and internal) must be contiguous inside
41 * itself but there can be a gap between the two groups (although not
42 * recommended)
43 */
44
45enum goya_queue_id {
46	GOYA_QUEUE_ID_DMA_0 = 0,
47	GOYA_QUEUE_ID_DMA_1 = 1,
48	GOYA_QUEUE_ID_DMA_2 = 2,
49	GOYA_QUEUE_ID_DMA_3 = 3,
50	GOYA_QUEUE_ID_DMA_4 = 4,
51	GOYA_QUEUE_ID_CPU_PQ = 5,
52	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
53	GOYA_QUEUE_ID_TPC0 = 7,
54	GOYA_QUEUE_ID_TPC1 = 8,
55	GOYA_QUEUE_ID_TPC2 = 9,
56	GOYA_QUEUE_ID_TPC3 = 10,
57	GOYA_QUEUE_ID_TPC4 = 11,
58	GOYA_QUEUE_ID_TPC5 = 12,
59	GOYA_QUEUE_ID_TPC6 = 13,
60	GOYA_QUEUE_ID_TPC7 = 14,
61	GOYA_QUEUE_ID_SIZE
62};
63
64/*
65 * Gaudi queue Numbering
66 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
67 * Except one CPU queue, all the rest are internal queues.
68 */
69
70enum gaudi_queue_id {
71	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
72	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
73	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
74	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
75	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
76	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
77	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
78	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
79	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
80	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
81	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
82	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
83	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
84	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
85	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
86	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
87	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
88	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
89	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
90	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
91	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
92	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* internal */
93	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* internal */
94	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* internal */
95	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* internal */
96	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
97	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
98	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
99	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
100	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
101	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
102	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
103	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
104	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
105	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
106	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
107	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
108	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
109	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
110	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
111	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
112	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
113	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
114	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
115	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
116	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
117	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
118	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
119	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
120	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
121	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
122	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
123	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
124	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
125	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
126	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
127	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
128	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
129	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
130	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
131	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
132	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
133	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
134	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
135	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
136	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
137	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
138	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
139	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
140	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
141	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
142	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
143	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
144	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
145	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
146	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
147	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
148	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
149	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
150	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
151	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
152	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
153	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
154	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
155	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
156	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
157	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
158	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
159	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
160	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
161	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
162	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
163	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
164	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
165	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
166	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
167	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
168	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
169	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
170	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
171	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
172	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
173	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
174	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
175	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
176	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
177	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
178	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
179	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
180	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
181	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
182	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
183	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
184	GAUDI_QUEUE_ID_SIZE
185};
186
187/*
188 * In GAUDI2 we have two modes of operation in regard to queues:
189 * 1. Legacy mode, where each QMAN exposes 4 streams to the user
190 * 2. F/W mode, where we use F/W to schedule the JOBS to the different queues.
191 *
192 * When in legacy mode, the user sends the queue id per JOB according to
193 * enum gaudi2_queue_id below.
194 *
195 * When in F/W mode, the user sends a stream id per Command Submission. The
196 * stream id is a running number from 0 up to (N-1), where N is the number
197 * of streams the F/W exposes and is passed to the user in
198 * struct hl_info_hw_ip_info
199 */
200
201enum gaudi2_queue_id {
202	GAUDI2_QUEUE_ID_PDMA_0_0 = 0,
203	GAUDI2_QUEUE_ID_PDMA_0_1 = 1,
204	GAUDI2_QUEUE_ID_PDMA_0_2 = 2,
205	GAUDI2_QUEUE_ID_PDMA_0_3 = 3,
206	GAUDI2_QUEUE_ID_PDMA_1_0 = 4,
207	GAUDI2_QUEUE_ID_PDMA_1_1 = 5,
208	GAUDI2_QUEUE_ID_PDMA_1_2 = 6,
209	GAUDI2_QUEUE_ID_PDMA_1_3 = 7,
210	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_0 = 8,
211	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_1 = 9,
212	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_2 = 10,
213	GAUDI2_QUEUE_ID_DCORE0_EDMA_0_3 = 11,
214	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_0 = 12,
215	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_1 = 13,
216	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_2 = 14,
217	GAUDI2_QUEUE_ID_DCORE0_EDMA_1_3 = 15,
218	GAUDI2_QUEUE_ID_DCORE0_MME_0_0 = 16,
219	GAUDI2_QUEUE_ID_DCORE0_MME_0_1 = 17,
220	GAUDI2_QUEUE_ID_DCORE0_MME_0_2 = 18,
221	GAUDI2_QUEUE_ID_DCORE0_MME_0_3 = 19,
222	GAUDI2_QUEUE_ID_DCORE0_TPC_0_0 = 20,
223	GAUDI2_QUEUE_ID_DCORE0_TPC_0_1 = 21,
224	GAUDI2_QUEUE_ID_DCORE0_TPC_0_2 = 22,
225	GAUDI2_QUEUE_ID_DCORE0_TPC_0_3 = 23,
226	GAUDI2_QUEUE_ID_DCORE0_TPC_1_0 = 24,
227	GAUDI2_QUEUE_ID_DCORE0_TPC_1_1 = 25,
228	GAUDI2_QUEUE_ID_DCORE0_TPC_1_2 = 26,
229	GAUDI2_QUEUE_ID_DCORE0_TPC_1_3 = 27,
230	GAUDI2_QUEUE_ID_DCORE0_TPC_2_0 = 28,
231	GAUDI2_QUEUE_ID_DCORE0_TPC_2_1 = 29,
232	GAUDI2_QUEUE_ID_DCORE0_TPC_2_2 = 30,
233	GAUDI2_QUEUE_ID_DCORE0_TPC_2_3 = 31,
234	GAUDI2_QUEUE_ID_DCORE0_TPC_3_0 = 32,
235	GAUDI2_QUEUE_ID_DCORE0_TPC_3_1 = 33,
236	GAUDI2_QUEUE_ID_DCORE0_TPC_3_2 = 34,
237	GAUDI2_QUEUE_ID_DCORE0_TPC_3_3 = 35,
238	GAUDI2_QUEUE_ID_DCORE0_TPC_4_0 = 36,
239	GAUDI2_QUEUE_ID_DCORE0_TPC_4_1 = 37,
240	GAUDI2_QUEUE_ID_DCORE0_TPC_4_2 = 38,
241	GAUDI2_QUEUE_ID_DCORE0_TPC_4_3 = 39,
242	GAUDI2_QUEUE_ID_DCORE0_TPC_5_0 = 40,
243	GAUDI2_QUEUE_ID_DCORE0_TPC_5_1 = 41,
244	GAUDI2_QUEUE_ID_DCORE0_TPC_5_2 = 42,
245	GAUDI2_QUEUE_ID_DCORE0_TPC_5_3 = 43,
246	GAUDI2_QUEUE_ID_DCORE0_TPC_6_0 = 44,
247	GAUDI2_QUEUE_ID_DCORE0_TPC_6_1 = 45,
248	GAUDI2_QUEUE_ID_DCORE0_TPC_6_2 = 46,
249	GAUDI2_QUEUE_ID_DCORE0_TPC_6_3 = 47,
250	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_0 = 48,
251	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_1 = 49,
252	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_2 = 50,
253	GAUDI2_QUEUE_ID_DCORE1_EDMA_0_3 = 51,
254	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_0 = 52,
255	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_1 = 53,
256	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_2 = 54,
257	GAUDI2_QUEUE_ID_DCORE1_EDMA_1_3 = 55,
258	GAUDI2_QUEUE_ID_DCORE1_MME_0_0 = 56,
259	GAUDI2_QUEUE_ID_DCORE1_MME_0_1 = 57,
260	GAUDI2_QUEUE_ID_DCORE1_MME_0_2 = 58,
261	GAUDI2_QUEUE_ID_DCORE1_MME_0_3 = 59,
262	GAUDI2_QUEUE_ID_DCORE1_TPC_0_0 = 60,
263	GAUDI2_QUEUE_ID_DCORE1_TPC_0_1 = 61,
264	GAUDI2_QUEUE_ID_DCORE1_TPC_0_2 = 62,
265	GAUDI2_QUEUE_ID_DCORE1_TPC_0_3 = 63,
266	GAUDI2_QUEUE_ID_DCORE1_TPC_1_0 = 64,
267	GAUDI2_QUEUE_ID_DCORE1_TPC_1_1 = 65,
268	GAUDI2_QUEUE_ID_DCORE1_TPC_1_2 = 66,
269	GAUDI2_QUEUE_ID_DCORE1_TPC_1_3 = 67,
270	GAUDI2_QUEUE_ID_DCORE1_TPC_2_0 = 68,
271	GAUDI2_QUEUE_ID_DCORE1_TPC_2_1 = 69,
272	GAUDI2_QUEUE_ID_DCORE1_TPC_2_2 = 70,
273	GAUDI2_QUEUE_ID_DCORE1_TPC_2_3 = 71,
274	GAUDI2_QUEUE_ID_DCORE1_TPC_3_0 = 72,
275	GAUDI2_QUEUE_ID_DCORE1_TPC_3_1 = 73,
276	GAUDI2_QUEUE_ID_DCORE1_TPC_3_2 = 74,
277	GAUDI2_QUEUE_ID_DCORE1_TPC_3_3 = 75,
278	GAUDI2_QUEUE_ID_DCORE1_TPC_4_0 = 76,
279	GAUDI2_QUEUE_ID_DCORE1_TPC_4_1 = 77,
280	GAUDI2_QUEUE_ID_DCORE1_TPC_4_2 = 78,
281	GAUDI2_QUEUE_ID_DCORE1_TPC_4_3 = 79,
282	GAUDI2_QUEUE_ID_DCORE1_TPC_5_0 = 80,
283	GAUDI2_QUEUE_ID_DCORE1_TPC_5_1 = 81,
284	GAUDI2_QUEUE_ID_DCORE1_TPC_5_2 = 82,
285	GAUDI2_QUEUE_ID_DCORE1_TPC_5_3 = 83,
286	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_0 = 84,
287	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_1 = 85,
288	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_2 = 86,
289	GAUDI2_QUEUE_ID_DCORE2_EDMA_0_3 = 87,
290	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_0 = 88,
291	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_1 = 89,
292	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_2 = 90,
293	GAUDI2_QUEUE_ID_DCORE2_EDMA_1_3 = 91,
294	GAUDI2_QUEUE_ID_DCORE2_MME_0_0 = 92,
295	GAUDI2_QUEUE_ID_DCORE2_MME_0_1 = 93,
296	GAUDI2_QUEUE_ID_DCORE2_MME_0_2 = 94,
297	GAUDI2_QUEUE_ID_DCORE2_MME_0_3 = 95,
298	GAUDI2_QUEUE_ID_DCORE2_TPC_0_0 = 96,
299	GAUDI2_QUEUE_ID_DCORE2_TPC_0_1 = 97,
300	GAUDI2_QUEUE_ID_DCORE2_TPC_0_2 = 98,
301	GAUDI2_QUEUE_ID_DCORE2_TPC_0_3 = 99,
302	GAUDI2_QUEUE_ID_DCORE2_TPC_1_0 = 100,
303	GAUDI2_QUEUE_ID_DCORE2_TPC_1_1 = 101,
304	GAUDI2_QUEUE_ID_DCORE2_TPC_1_2 = 102,
305	GAUDI2_QUEUE_ID_DCORE2_TPC_1_3 = 103,
306	GAUDI2_QUEUE_ID_DCORE2_TPC_2_0 = 104,
307	GAUDI2_QUEUE_ID_DCORE2_TPC_2_1 = 105,
308	GAUDI2_QUEUE_ID_DCORE2_TPC_2_2 = 106,
309	GAUDI2_QUEUE_ID_DCORE2_TPC_2_3 = 107,
310	GAUDI2_QUEUE_ID_DCORE2_TPC_3_0 = 108,
311	GAUDI2_QUEUE_ID_DCORE2_TPC_3_1 = 109,
312	GAUDI2_QUEUE_ID_DCORE2_TPC_3_2 = 110,
313	GAUDI2_QUEUE_ID_DCORE2_TPC_3_3 = 111,
314	GAUDI2_QUEUE_ID_DCORE2_TPC_4_0 = 112,
315	GAUDI2_QUEUE_ID_DCORE2_TPC_4_1 = 113,
316	GAUDI2_QUEUE_ID_DCORE2_TPC_4_2 = 114,
317	GAUDI2_QUEUE_ID_DCORE2_TPC_4_3 = 115,
318	GAUDI2_QUEUE_ID_DCORE2_TPC_5_0 = 116,
319	GAUDI2_QUEUE_ID_DCORE2_TPC_5_1 = 117,
320	GAUDI2_QUEUE_ID_DCORE2_TPC_5_2 = 118,
321	GAUDI2_QUEUE_ID_DCORE2_TPC_5_3 = 119,
322	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_0 = 120,
323	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_1 = 121,
324	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_2 = 122,
325	GAUDI2_QUEUE_ID_DCORE3_EDMA_0_3 = 123,
326	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_0 = 124,
327	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_1 = 125,
328	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_2 = 126,
329	GAUDI2_QUEUE_ID_DCORE3_EDMA_1_3 = 127,
330	GAUDI2_QUEUE_ID_DCORE3_MME_0_0 = 128,
331	GAUDI2_QUEUE_ID_DCORE3_MME_0_1 = 129,
332	GAUDI2_QUEUE_ID_DCORE3_MME_0_2 = 130,
333	GAUDI2_QUEUE_ID_DCORE3_MME_0_3 = 131,
334	GAUDI2_QUEUE_ID_DCORE3_TPC_0_0 = 132,
335	GAUDI2_QUEUE_ID_DCORE3_TPC_0_1 = 133,
336	GAUDI2_QUEUE_ID_DCORE3_TPC_0_2 = 134,
337	GAUDI2_QUEUE_ID_DCORE3_TPC_0_3 = 135,
338	GAUDI2_QUEUE_ID_DCORE3_TPC_1_0 = 136,
339	GAUDI2_QUEUE_ID_DCORE3_TPC_1_1 = 137,
340	GAUDI2_QUEUE_ID_DCORE3_TPC_1_2 = 138,
341	GAUDI2_QUEUE_ID_DCORE3_TPC_1_3 = 139,
342	GAUDI2_QUEUE_ID_DCORE3_TPC_2_0 = 140,
343	GAUDI2_QUEUE_ID_DCORE3_TPC_2_1 = 141,
344	GAUDI2_QUEUE_ID_DCORE3_TPC_2_2 = 142,
345	GAUDI2_QUEUE_ID_DCORE3_TPC_2_3 = 143,
346	GAUDI2_QUEUE_ID_DCORE3_TPC_3_0 = 144,
347	GAUDI2_QUEUE_ID_DCORE3_TPC_3_1 = 145,
348	GAUDI2_QUEUE_ID_DCORE3_TPC_3_2 = 146,
349	GAUDI2_QUEUE_ID_DCORE3_TPC_3_3 = 147,
350	GAUDI2_QUEUE_ID_DCORE3_TPC_4_0 = 148,
351	GAUDI2_QUEUE_ID_DCORE3_TPC_4_1 = 149,
352	GAUDI2_QUEUE_ID_DCORE3_TPC_4_2 = 150,
353	GAUDI2_QUEUE_ID_DCORE3_TPC_4_3 = 151,
354	GAUDI2_QUEUE_ID_DCORE3_TPC_5_0 = 152,
355	GAUDI2_QUEUE_ID_DCORE3_TPC_5_1 = 153,
356	GAUDI2_QUEUE_ID_DCORE3_TPC_5_2 = 154,
357	GAUDI2_QUEUE_ID_DCORE3_TPC_5_3 = 155,
358	GAUDI2_QUEUE_ID_NIC_0_0 = 156,
359	GAUDI2_QUEUE_ID_NIC_0_1 = 157,
360	GAUDI2_QUEUE_ID_NIC_0_2 = 158,
361	GAUDI2_QUEUE_ID_NIC_0_3 = 159,
362	GAUDI2_QUEUE_ID_NIC_1_0 = 160,
363	GAUDI2_QUEUE_ID_NIC_1_1 = 161,
364	GAUDI2_QUEUE_ID_NIC_1_2 = 162,
365	GAUDI2_QUEUE_ID_NIC_1_3 = 163,
366	GAUDI2_QUEUE_ID_NIC_2_0 = 164,
367	GAUDI2_QUEUE_ID_NIC_2_1 = 165,
368	GAUDI2_QUEUE_ID_NIC_2_2 = 166,
369	GAUDI2_QUEUE_ID_NIC_2_3 = 167,
370	GAUDI2_QUEUE_ID_NIC_3_0 = 168,
371	GAUDI2_QUEUE_ID_NIC_3_1 = 169,
372	GAUDI2_QUEUE_ID_NIC_3_2 = 170,
373	GAUDI2_QUEUE_ID_NIC_3_3 = 171,
374	GAUDI2_QUEUE_ID_NIC_4_0 = 172,
375	GAUDI2_QUEUE_ID_NIC_4_1 = 173,
376	GAUDI2_QUEUE_ID_NIC_4_2 = 174,
377	GAUDI2_QUEUE_ID_NIC_4_3 = 175,
378	GAUDI2_QUEUE_ID_NIC_5_0 = 176,
379	GAUDI2_QUEUE_ID_NIC_5_1 = 177,
380	GAUDI2_QUEUE_ID_NIC_5_2 = 178,
381	GAUDI2_QUEUE_ID_NIC_5_3 = 179,
382	GAUDI2_QUEUE_ID_NIC_6_0 = 180,
383	GAUDI2_QUEUE_ID_NIC_6_1 = 181,
384	GAUDI2_QUEUE_ID_NIC_6_2 = 182,
385	GAUDI2_QUEUE_ID_NIC_6_3 = 183,
386	GAUDI2_QUEUE_ID_NIC_7_0 = 184,
387	GAUDI2_QUEUE_ID_NIC_7_1 = 185,
388	GAUDI2_QUEUE_ID_NIC_7_2 = 186,
389	GAUDI2_QUEUE_ID_NIC_7_3 = 187,
390	GAUDI2_QUEUE_ID_NIC_8_0 = 188,
391	GAUDI2_QUEUE_ID_NIC_8_1 = 189,
392	GAUDI2_QUEUE_ID_NIC_8_2 = 190,
393	GAUDI2_QUEUE_ID_NIC_8_3 = 191,
394	GAUDI2_QUEUE_ID_NIC_9_0 = 192,
395	GAUDI2_QUEUE_ID_NIC_9_1 = 193,
396	GAUDI2_QUEUE_ID_NIC_9_2 = 194,
397	GAUDI2_QUEUE_ID_NIC_9_3 = 195,
398	GAUDI2_QUEUE_ID_NIC_10_0 = 196,
399	GAUDI2_QUEUE_ID_NIC_10_1 = 197,
400	GAUDI2_QUEUE_ID_NIC_10_2 = 198,
401	GAUDI2_QUEUE_ID_NIC_10_3 = 199,
402	GAUDI2_QUEUE_ID_NIC_11_0 = 200,
403	GAUDI2_QUEUE_ID_NIC_11_1 = 201,
404	GAUDI2_QUEUE_ID_NIC_11_2 = 202,
405	GAUDI2_QUEUE_ID_NIC_11_3 = 203,
406	GAUDI2_QUEUE_ID_NIC_12_0 = 204,
407	GAUDI2_QUEUE_ID_NIC_12_1 = 205,
408	GAUDI2_QUEUE_ID_NIC_12_2 = 206,
409	GAUDI2_QUEUE_ID_NIC_12_3 = 207,
410	GAUDI2_QUEUE_ID_NIC_13_0 = 208,
411	GAUDI2_QUEUE_ID_NIC_13_1 = 209,
412	GAUDI2_QUEUE_ID_NIC_13_2 = 210,
413	GAUDI2_QUEUE_ID_NIC_13_3 = 211,
414	GAUDI2_QUEUE_ID_NIC_14_0 = 212,
415	GAUDI2_QUEUE_ID_NIC_14_1 = 213,
416	GAUDI2_QUEUE_ID_NIC_14_2 = 214,
417	GAUDI2_QUEUE_ID_NIC_14_3 = 215,
418	GAUDI2_QUEUE_ID_NIC_15_0 = 216,
419	GAUDI2_QUEUE_ID_NIC_15_1 = 217,
420	GAUDI2_QUEUE_ID_NIC_15_2 = 218,
421	GAUDI2_QUEUE_ID_NIC_15_3 = 219,
422	GAUDI2_QUEUE_ID_NIC_16_0 = 220,
423	GAUDI2_QUEUE_ID_NIC_16_1 = 221,
424	GAUDI2_QUEUE_ID_NIC_16_2 = 222,
425	GAUDI2_QUEUE_ID_NIC_16_3 = 223,
426	GAUDI2_QUEUE_ID_NIC_17_0 = 224,
427	GAUDI2_QUEUE_ID_NIC_17_1 = 225,
428	GAUDI2_QUEUE_ID_NIC_17_2 = 226,
429	GAUDI2_QUEUE_ID_NIC_17_3 = 227,
430	GAUDI2_QUEUE_ID_NIC_18_0 = 228,
431	GAUDI2_QUEUE_ID_NIC_18_1 = 229,
432	GAUDI2_QUEUE_ID_NIC_18_2 = 230,
433	GAUDI2_QUEUE_ID_NIC_18_3 = 231,
434	GAUDI2_QUEUE_ID_NIC_19_0 = 232,
435	GAUDI2_QUEUE_ID_NIC_19_1 = 233,
436	GAUDI2_QUEUE_ID_NIC_19_2 = 234,
437	GAUDI2_QUEUE_ID_NIC_19_3 = 235,
438	GAUDI2_QUEUE_ID_NIC_20_0 = 236,
439	GAUDI2_QUEUE_ID_NIC_20_1 = 237,
440	GAUDI2_QUEUE_ID_NIC_20_2 = 238,
441	GAUDI2_QUEUE_ID_NIC_20_3 = 239,
442	GAUDI2_QUEUE_ID_NIC_21_0 = 240,
443	GAUDI2_QUEUE_ID_NIC_21_1 = 241,
444	GAUDI2_QUEUE_ID_NIC_21_2 = 242,
445	GAUDI2_QUEUE_ID_NIC_21_3 = 243,
446	GAUDI2_QUEUE_ID_NIC_22_0 = 244,
447	GAUDI2_QUEUE_ID_NIC_22_1 = 245,
448	GAUDI2_QUEUE_ID_NIC_22_2 = 246,
449	GAUDI2_QUEUE_ID_NIC_22_3 = 247,
450	GAUDI2_QUEUE_ID_NIC_23_0 = 248,
451	GAUDI2_QUEUE_ID_NIC_23_1 = 249,
452	GAUDI2_QUEUE_ID_NIC_23_2 = 250,
453	GAUDI2_QUEUE_ID_NIC_23_3 = 251,
454	GAUDI2_QUEUE_ID_ROT_0_0 = 252,
455	GAUDI2_QUEUE_ID_ROT_0_1 = 253,
456	GAUDI2_QUEUE_ID_ROT_0_2 = 254,
457	GAUDI2_QUEUE_ID_ROT_0_3 = 255,
458	GAUDI2_QUEUE_ID_ROT_1_0 = 256,
459	GAUDI2_QUEUE_ID_ROT_1_1 = 257,
460	GAUDI2_QUEUE_ID_ROT_1_2 = 258,
461	GAUDI2_QUEUE_ID_ROT_1_3 = 259,
462	GAUDI2_QUEUE_ID_CPU_PQ = 260,
463	GAUDI2_QUEUE_ID_SIZE
464};
465
466/*
467 * Engine Numbering
468 *
469 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
470 */
471
472enum goya_engine_id {
473	GOYA_ENGINE_ID_DMA_0 = 0,
474	GOYA_ENGINE_ID_DMA_1,
475	GOYA_ENGINE_ID_DMA_2,
476	GOYA_ENGINE_ID_DMA_3,
477	GOYA_ENGINE_ID_DMA_4,
478	GOYA_ENGINE_ID_MME_0,
479	GOYA_ENGINE_ID_TPC_0,
480	GOYA_ENGINE_ID_TPC_1,
481	GOYA_ENGINE_ID_TPC_2,
482	GOYA_ENGINE_ID_TPC_3,
483	GOYA_ENGINE_ID_TPC_4,
484	GOYA_ENGINE_ID_TPC_5,
485	GOYA_ENGINE_ID_TPC_6,
486	GOYA_ENGINE_ID_TPC_7,
487	GOYA_ENGINE_ID_SIZE
488};
489
490enum gaudi_engine_id {
491	GAUDI_ENGINE_ID_DMA_0 = 0,
492	GAUDI_ENGINE_ID_DMA_1,
493	GAUDI_ENGINE_ID_DMA_2,
494	GAUDI_ENGINE_ID_DMA_3,
495	GAUDI_ENGINE_ID_DMA_4,
496	GAUDI_ENGINE_ID_DMA_5,
497	GAUDI_ENGINE_ID_DMA_6,
498	GAUDI_ENGINE_ID_DMA_7,
499	GAUDI_ENGINE_ID_MME_0,
500	GAUDI_ENGINE_ID_MME_1,
501	GAUDI_ENGINE_ID_MME_2,
502	GAUDI_ENGINE_ID_MME_3,
503	GAUDI_ENGINE_ID_TPC_0,
504	GAUDI_ENGINE_ID_TPC_1,
505	GAUDI_ENGINE_ID_TPC_2,
506	GAUDI_ENGINE_ID_TPC_3,
507	GAUDI_ENGINE_ID_TPC_4,
508	GAUDI_ENGINE_ID_TPC_5,
509	GAUDI_ENGINE_ID_TPC_6,
510	GAUDI_ENGINE_ID_TPC_7,
511	GAUDI_ENGINE_ID_NIC_0,
512	GAUDI_ENGINE_ID_NIC_1,
513	GAUDI_ENGINE_ID_NIC_2,
514	GAUDI_ENGINE_ID_NIC_3,
515	GAUDI_ENGINE_ID_NIC_4,
516	GAUDI_ENGINE_ID_NIC_5,
517	GAUDI_ENGINE_ID_NIC_6,
518	GAUDI_ENGINE_ID_NIC_7,
519	GAUDI_ENGINE_ID_NIC_8,
520	GAUDI_ENGINE_ID_NIC_9,
521	GAUDI_ENGINE_ID_SIZE
522};
523
524enum gaudi2_engine_id {
525	GAUDI2_DCORE0_ENGINE_ID_EDMA_0 = 0,
526	GAUDI2_DCORE0_ENGINE_ID_EDMA_1,
527	GAUDI2_DCORE0_ENGINE_ID_MME,
528	GAUDI2_DCORE0_ENGINE_ID_TPC_0,
529	GAUDI2_DCORE0_ENGINE_ID_TPC_1,
530	GAUDI2_DCORE0_ENGINE_ID_TPC_2,
531	GAUDI2_DCORE0_ENGINE_ID_TPC_3,
532	GAUDI2_DCORE0_ENGINE_ID_TPC_4,
533	GAUDI2_DCORE0_ENGINE_ID_TPC_5,
534	GAUDI2_DCORE0_ENGINE_ID_DEC_0,
535	GAUDI2_DCORE0_ENGINE_ID_DEC_1,
536	GAUDI2_DCORE1_ENGINE_ID_EDMA_0,
537	GAUDI2_DCORE1_ENGINE_ID_EDMA_1,
538	GAUDI2_DCORE1_ENGINE_ID_MME,
539	GAUDI2_DCORE1_ENGINE_ID_TPC_0,
540	GAUDI2_DCORE1_ENGINE_ID_TPC_1,
541	GAUDI2_DCORE1_ENGINE_ID_TPC_2,
542	GAUDI2_DCORE1_ENGINE_ID_TPC_3,
543	GAUDI2_DCORE1_ENGINE_ID_TPC_4,
544	GAUDI2_DCORE1_ENGINE_ID_TPC_5,
545	GAUDI2_DCORE1_ENGINE_ID_DEC_0,
546	GAUDI2_DCORE1_ENGINE_ID_DEC_1,
547	GAUDI2_DCORE2_ENGINE_ID_EDMA_0,
548	GAUDI2_DCORE2_ENGINE_ID_EDMA_1,
549	GAUDI2_DCORE2_ENGINE_ID_MME,
550	GAUDI2_DCORE2_ENGINE_ID_TPC_0,
551	GAUDI2_DCORE2_ENGINE_ID_TPC_1,
552	GAUDI2_DCORE2_ENGINE_ID_TPC_2,
553	GAUDI2_DCORE2_ENGINE_ID_TPC_3,
554	GAUDI2_DCORE2_ENGINE_ID_TPC_4,
555	GAUDI2_DCORE2_ENGINE_ID_TPC_5,
556	GAUDI2_DCORE2_ENGINE_ID_DEC_0,
557	GAUDI2_DCORE2_ENGINE_ID_DEC_1,
558	GAUDI2_DCORE3_ENGINE_ID_EDMA_0,
559	GAUDI2_DCORE3_ENGINE_ID_EDMA_1,
560	GAUDI2_DCORE3_ENGINE_ID_MME,
561	GAUDI2_DCORE3_ENGINE_ID_TPC_0,
562	GAUDI2_DCORE3_ENGINE_ID_TPC_1,
563	GAUDI2_DCORE3_ENGINE_ID_TPC_2,
564	GAUDI2_DCORE3_ENGINE_ID_TPC_3,
565	GAUDI2_DCORE3_ENGINE_ID_TPC_4,
566	GAUDI2_DCORE3_ENGINE_ID_TPC_5,
567	GAUDI2_DCORE3_ENGINE_ID_DEC_0,
568	GAUDI2_DCORE3_ENGINE_ID_DEC_1,
569	GAUDI2_DCORE0_ENGINE_ID_TPC_6,
570	GAUDI2_ENGINE_ID_PDMA_0,
571	GAUDI2_ENGINE_ID_PDMA_1,
572	GAUDI2_ENGINE_ID_ROT_0,
573	GAUDI2_ENGINE_ID_ROT_1,
574	GAUDI2_PCIE_ENGINE_ID_DEC_0,
575	GAUDI2_PCIE_ENGINE_ID_DEC_1,
576	GAUDI2_ENGINE_ID_NIC0_0,
577	GAUDI2_ENGINE_ID_NIC0_1,
578	GAUDI2_ENGINE_ID_NIC1_0,
579	GAUDI2_ENGINE_ID_NIC1_1,
580	GAUDI2_ENGINE_ID_NIC2_0,
581	GAUDI2_ENGINE_ID_NIC2_1,
582	GAUDI2_ENGINE_ID_NIC3_0,
583	GAUDI2_ENGINE_ID_NIC3_1,
584	GAUDI2_ENGINE_ID_NIC4_0,
585	GAUDI2_ENGINE_ID_NIC4_1,
586	GAUDI2_ENGINE_ID_NIC5_0,
587	GAUDI2_ENGINE_ID_NIC5_1,
588	GAUDI2_ENGINE_ID_NIC6_0,
589	GAUDI2_ENGINE_ID_NIC6_1,
590	GAUDI2_ENGINE_ID_NIC7_0,
591	GAUDI2_ENGINE_ID_NIC7_1,
592	GAUDI2_ENGINE_ID_NIC8_0,
593	GAUDI2_ENGINE_ID_NIC8_1,
594	GAUDI2_ENGINE_ID_NIC9_0,
595	GAUDI2_ENGINE_ID_NIC9_1,
596	GAUDI2_ENGINE_ID_NIC10_0,
597	GAUDI2_ENGINE_ID_NIC10_1,
598	GAUDI2_ENGINE_ID_NIC11_0,
599	GAUDI2_ENGINE_ID_NIC11_1,
600	GAUDI2_ENGINE_ID_PCIE,
601	GAUDI2_ENGINE_ID_PSOC,
602	GAUDI2_ENGINE_ID_ARC_FARM,
603	GAUDI2_ENGINE_ID_KDMA,
604	GAUDI2_ENGINE_ID_SIZE
605};
606
607/*
608 * ASIC specific PLL index
609 *
610 * Used to retrieve in frequency info of different IPs via
611 * HL_INFO_PLL_FREQUENCY under HL_IOCTL_INFO IOCTL. The enums need to be
612 * used as an index in struct hl_pll_frequency_info
613 */
614
615enum hl_goya_pll_index {
616	HL_GOYA_CPU_PLL = 0,
617	HL_GOYA_IC_PLL,
618	HL_GOYA_MC_PLL,
619	HL_GOYA_MME_PLL,
620	HL_GOYA_PCI_PLL,
621	HL_GOYA_EMMC_PLL,
622	HL_GOYA_TPC_PLL,
623	HL_GOYA_PLL_MAX
624};
625
626enum hl_gaudi_pll_index {
627	HL_GAUDI_CPU_PLL = 0,
628	HL_GAUDI_PCI_PLL,
629	HL_GAUDI_SRAM_PLL,
630	HL_GAUDI_HBM_PLL,
631	HL_GAUDI_NIC_PLL,
632	HL_GAUDI_DMA_PLL,
633	HL_GAUDI_MESH_PLL,
634	HL_GAUDI_MME_PLL,
635	HL_GAUDI_TPC_PLL,
636	HL_GAUDI_IF_PLL,
637	HL_GAUDI_PLL_MAX
638};
639
640enum hl_gaudi2_pll_index {
641	HL_GAUDI2_CPU_PLL = 0,
642	HL_GAUDI2_PCI_PLL,
643	HL_GAUDI2_SRAM_PLL,
644	HL_GAUDI2_HBM_PLL,
645	HL_GAUDI2_NIC_PLL,
646	HL_GAUDI2_DMA_PLL,
647	HL_GAUDI2_MESH_PLL,
648	HL_GAUDI2_MME_PLL,
649	HL_GAUDI2_TPC_PLL,
650	HL_GAUDI2_IF_PLL,
651	HL_GAUDI2_VID_PLL,
652	HL_GAUDI2_MSS_PLL,
653	HL_GAUDI2_PLL_MAX
654};
655
656/**
657 * enum hl_goya_dma_direction - Direction of DMA operation inside a LIN_DMA packet that is
658 *                              submitted to the GOYA's DMA QMAN. This attribute is not relevant
659 *                              to the H/W but the kernel driver use it to parse the packet's
660 *                              addresses and patch/validate them.
661 * @HL_DMA_HOST_TO_DRAM: DMA operation from Host memory to GOYA's DDR.
662 * @HL_DMA_HOST_TO_SRAM: DMA operation from Host memory to GOYA's SRAM.
663 * @HL_DMA_DRAM_TO_SRAM: DMA operation from GOYA's DDR to GOYA's SRAM.
664 * @HL_DMA_SRAM_TO_DRAM: DMA operation from GOYA's SRAM to GOYA's DDR.
665 * @HL_DMA_SRAM_TO_HOST: DMA operation from GOYA's SRAM to Host memory.
666 * @HL_DMA_DRAM_TO_HOST: DMA operation from GOYA's DDR to Host memory.
667 * @HL_DMA_DRAM_TO_DRAM: DMA operation from GOYA's DDR to GOYA's DDR.
668 * @HL_DMA_SRAM_TO_SRAM: DMA operation from GOYA's SRAM to GOYA's SRAM.
669 * @HL_DMA_ENUM_MAX: number of values in enum
670 */
671enum hl_goya_dma_direction {
672	HL_DMA_HOST_TO_DRAM,
673	HL_DMA_HOST_TO_SRAM,
674	HL_DMA_DRAM_TO_SRAM,
675	HL_DMA_SRAM_TO_DRAM,
676	HL_DMA_SRAM_TO_HOST,
677	HL_DMA_DRAM_TO_HOST,
678	HL_DMA_DRAM_TO_DRAM,
679	HL_DMA_SRAM_TO_SRAM,
680	HL_DMA_ENUM_MAX
681};
682
683/**
684 * enum hl_device_status - Device status information.
685 * @HL_DEVICE_STATUS_OPERATIONAL: Device is operational.
686 * @HL_DEVICE_STATUS_IN_RESET: Device is currently during reset.
687 * @HL_DEVICE_STATUS_MALFUNCTION: Device is unusable.
688 * @HL_DEVICE_STATUS_NEEDS_RESET: Device needs reset because auto reset was disabled.
689 * @HL_DEVICE_STATUS_IN_DEVICE_CREATION: Device is operational but its creation is still in
690 *                                       progress.
691 * @HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE: Device is currently during reset that was
692 *                                                  triggered because the user released the device
693 * @HL_DEVICE_STATUS_LAST: Last status.
694 */
695enum hl_device_status {
696	HL_DEVICE_STATUS_OPERATIONAL,
697	HL_DEVICE_STATUS_IN_RESET,
698	HL_DEVICE_STATUS_MALFUNCTION,
699	HL_DEVICE_STATUS_NEEDS_RESET,
700	HL_DEVICE_STATUS_IN_DEVICE_CREATION,
701	HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE,
702	HL_DEVICE_STATUS_LAST = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE
703};
704
705enum hl_server_type {
706	HL_SERVER_TYPE_UNKNOWN = 0,
707	HL_SERVER_GAUDI_HLS1 = 1,
708	HL_SERVER_GAUDI_HLS1H = 2,
709	HL_SERVER_GAUDI_TYPE1 = 3,
710	HL_SERVER_GAUDI_TYPE2 = 4,
711	HL_SERVER_GAUDI2_HLS2 = 5,
712	HL_SERVER_GAUDI2_TYPE1 = 7
713};
714
715/*
716 * Notifier event values - for the notification mechanism and the HL_INFO_GET_EVENTS command
717 *
718 * HL_NOTIFIER_EVENT_TPC_ASSERT		- Indicates TPC assert event
719 * HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	- Indicates undefined operation code
720 * HL_NOTIFIER_EVENT_DEVICE_RESET	- Indicates device requires a reset
721 * HL_NOTIFIER_EVENT_CS_TIMEOUT		- Indicates CS timeout error
722 * HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	- Indicates device is unavailable
723 * HL_NOTIFIER_EVENT_USER_ENGINE_ERR	- Indicates device engine in error state
724 * HL_NOTIFIER_EVENT_GENERAL_HW_ERR     - Indicates device HW error
725 * HL_NOTIFIER_EVENT_RAZWI              - Indicates razwi happened
726 * HL_NOTIFIER_EVENT_PAGE_FAULT         - Indicates page fault happened
727 * HL_NOTIFIER_EVENT_CRITICAL_HW_ERR    - Indicates a HW error that requires SW abort and
728 *                                        HW reset
729 * HL_NOTIFIER_EVENT_CRITICAL_FW_ERR    - Indicates a FW error that requires SW abort and
730 *                                        HW reset
731 */
732#define HL_NOTIFIER_EVENT_TPC_ASSERT		(1ULL << 0)
733#define HL_NOTIFIER_EVENT_UNDEFINED_OPCODE	(1ULL << 1)
734#define HL_NOTIFIER_EVENT_DEVICE_RESET		(1ULL << 2)
735#define HL_NOTIFIER_EVENT_CS_TIMEOUT		(1ULL << 3)
736#define HL_NOTIFIER_EVENT_DEVICE_UNAVAILABLE	(1ULL << 4)
737#define HL_NOTIFIER_EVENT_USER_ENGINE_ERR	(1ULL << 5)
738#define HL_NOTIFIER_EVENT_GENERAL_HW_ERR	(1ULL << 6)
739#define HL_NOTIFIER_EVENT_RAZWI			(1ULL << 7)
740#define HL_NOTIFIER_EVENT_PAGE_FAULT		(1ULL << 8)
741#define HL_NOTIFIER_EVENT_CRITICL_HW_ERR	(1ULL << 9)
742#define HL_NOTIFIER_EVENT_CRITICL_FW_ERR	(1ULL << 10)
743
744/* Opcode for management ioctl
745 *
746 * HW_IP_INFO            - Receive information about different IP blocks in the
747 *                         device.
748 * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
749 *                         occurred since the last hard reset.
750 * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
751 *                         specific context. This is relevant only for devices
752 *                         where the dram is managed by the kernel driver
753 * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
754 *                         internal engine.
755 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
756 *                         require an open context.
757 * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
758 *                               over the last period specified by the user.
759 *                               The period can be between 100ms to 1s, in
760 *                               resolution of 100ms. The return value is a
761 *                               percentage of the utilization rate.
762 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
763 *                               event occurred since the driver was loaded.
764 * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
765 *                               of the device in MHz. The maximum clock rate is
766 *                               configurable via sysfs parameter
767 * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
768 *                         operations performed on the device since the last
769 *                         time the driver was loaded.
770 * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
771 *                         for synchronization.
772 * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
773 * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
774 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
775 * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
776 * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
777 * HL_INFO_PLL_FREQUENCY - Retrieve PLL frequency
778 * HL_INFO_POWER         - Retrieve power information
779 * HL_INFO_OPEN_STATS    - Retrieve info regarding recent device open calls
780 * HL_INFO_DRAM_REPLACED_ROWS - Retrieve DRAM replaced rows info
781 * HL_INFO_DRAM_PENDING_ROWS - Retrieve DRAM pending rows num
782 * HL_INFO_LAST_ERR_OPEN_DEV_TIME - Retrieve timestamp of the last time the device was opened
783 *                                  and CS timeout or razwi error occurred.
784 * HL_INFO_CS_TIMEOUT_EVENT - Retrieve CS timeout timestamp and its related CS sequence number.
785 * HL_INFO_RAZWI_EVENT - Retrieve parameters of razwi:
786 *                            Timestamp of razwi.
787 *                            The address which accessing it caused the razwi.
788 *                            Razwi initiator.
789 *                            Razwi cause, was it a page fault or MMU access error.
790 *                            May return 0 even though no new data is available, in that case
791 *                            timestamp will be 0.
792 * HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES - Retrieve valid page sizes for device memory allocation
793 * HL_INFO_SECURED_ATTESTATION - Retrieve attestation report of the boot.
794 * HL_INFO_REGISTER_EVENTFD   - Register eventfd for event notifications.
795 * HL_INFO_UNREGISTER_EVENTFD - Unregister eventfd
796 * HL_INFO_GET_EVENTS         - Retrieve the last occurred events
797 * HL_INFO_UNDEFINED_OPCODE_EVENT - Retrieve last undefined opcode error information.
798 *                                  May return 0 even though no new data is available, in that case
799 *                                  timestamp will be 0.
800 * HL_INFO_ENGINE_STATUS - Retrieve the status of all the h/w engines in the asic.
801 * HL_INFO_PAGE_FAULT_EVENT - Retrieve parameters of captured page fault.
802 *                            May return 0 even though no new data is available, in that case
803 *                            timestamp will be 0.
804 * HL_INFO_USER_MAPPINGS - Retrieve user mappings, captured after page fault event.
805 * HL_INFO_FW_GENERIC_REQ - Send generic request to FW.
806 * HL_INFO_HW_ERR_EVENT   - Retrieve information on the reported HW error.
807 *                          May return 0 even though no new data is available, in that case
808 *                          timestamp will be 0.
809 * HL_INFO_FW_ERR_EVENT   - Retrieve information on the reported FW error.
810 *                          May return 0 even though no new data is available, in that case
811 *                          timestamp will be 0.
812 */
813#define HL_INFO_HW_IP_INFO			0
814#define HL_INFO_HW_EVENTS			1
815#define HL_INFO_DRAM_USAGE			2
816#define HL_INFO_HW_IDLE				3
817#define HL_INFO_DEVICE_STATUS			4
818#define HL_INFO_DEVICE_UTILIZATION		6
819#define HL_INFO_HW_EVENTS_AGGREGATE		7
820#define HL_INFO_CLK_RATE			8
821#define HL_INFO_RESET_COUNT			9
822#define HL_INFO_TIME_SYNC			10
823#define HL_INFO_CS_COUNTERS			11
824#define HL_INFO_PCI_COUNTERS			12
825#define HL_INFO_CLK_THROTTLE_REASON		13
826#define HL_INFO_SYNC_MANAGER			14
827#define HL_INFO_TOTAL_ENERGY			15
828#define HL_INFO_PLL_FREQUENCY			16
829#define HL_INFO_POWER				17
830#define HL_INFO_OPEN_STATS			18
831#define HL_INFO_DRAM_REPLACED_ROWS		21
832#define HL_INFO_DRAM_PENDING_ROWS		22
833#define HL_INFO_LAST_ERR_OPEN_DEV_TIME		23
834#define HL_INFO_CS_TIMEOUT_EVENT		24
835#define HL_INFO_RAZWI_EVENT			25
836#define HL_INFO_DEV_MEM_ALLOC_PAGE_SIZES	26
837#define HL_INFO_SECURED_ATTESTATION		27
838#define HL_INFO_REGISTER_EVENTFD		28
839#define HL_INFO_UNREGISTER_EVENTFD		29
840#define HL_INFO_GET_EVENTS			30
841#define HL_INFO_UNDEFINED_OPCODE_EVENT		31
842#define HL_INFO_ENGINE_STATUS			32
843#define HL_INFO_PAGE_FAULT_EVENT		33
844#define HL_INFO_USER_MAPPINGS			34
845#define HL_INFO_FW_GENERIC_REQ			35
846#define HL_INFO_HW_ERR_EVENT			36
847#define HL_INFO_FW_ERR_EVENT			37
848
849#define HL_INFO_VERSION_MAX_LEN			128
850#define HL_INFO_CARD_NAME_MAX_LEN		16
851
852/* Maximum buffer size for retrieving engines status */
853#define HL_ENGINES_DATA_MAX_SIZE	SZ_1M
854
855/**
856 * struct hl_info_hw_ip_info - hardware information on various IPs in the ASIC
857 * @sram_base_address: The first SRAM physical base address that is free to be
858 *                     used by the user.
859 * @dram_base_address: The first DRAM virtual or physical base address that is
860 *                     free to be used by the user.
861 * @dram_size: The DRAM size that is available to the user.
862 * @sram_size: The SRAM size that is available to the user.
863 * @num_of_events: The number of events that can be received from the f/w. This
864 *                 is needed so the user can what is the size of the h/w events
865 *                 array he needs to pass to the kernel when he wants to fetch
866 *                 the event counters.
867 * @device_id: PCI device ID of the ASIC.
868 * @module_id: Module ID of the ASIC for mezzanine cards in servers
869 *             (From OCP spec).
870 * @decoder_enabled_mask: Bit-mask that represents which decoders are enabled.
871 * @first_available_interrupt_id: The first available interrupt ID for the user
872 *                                to be used when it works with user interrupts.
873 *                                Relevant for Gaudi2 and later.
874 * @server_type: Server type that the Gaudi ASIC is currently installed in.
875 *               The value is according to enum hl_server_type
876 * @cpld_version: CPLD version on the board.
877 * @psoc_pci_pll_nr: PCI PLL NR value. Needed by the profiler in some ASICs.
878 * @psoc_pci_pll_nf: PCI PLL NF value. Needed by the profiler in some ASICs.
879 * @psoc_pci_pll_od: PCI PLL OD value. Needed by the profiler in some ASICs.
880 * @psoc_pci_pll_div_factor: PCI PLL DIV factor value. Needed by the profiler
881 *                           in some ASICs.
882 * @tpc_enabled_mask: Bit-mask that represents which TPCs are enabled. Relevant
883 *                    for Goya/Gaudi only.
884 * @dram_enabled: Whether the DRAM is enabled.
885 * @security_enabled: Whether security is enabled on device.
886 * @mme_master_slave_mode: Indicate whether the MME is working in master/slave
887 *                         configuration. Relevant for Greco and later.
888 * @cpucp_version: The CPUCP f/w version.
889 * @card_name: The card name as passed by the f/w.
890 * @tpc_enabled_mask_ext: Bit-mask that represents which TPCs are enabled.
891 *                        Relevant for Greco and later.
892 * @dram_page_size: The DRAM physical page size.
893 * @edma_enabled_mask: Bit-mask that represents which EDMAs are enabled.
894 *                     Relevant for Gaudi2 and later.
895 * @number_of_user_interrupts: The number of interrupts that are available to the userspace
896 *                             application to use. Relevant for Gaudi2 and later.
897 * @device_mem_alloc_default_page_size: default page size used in device memory allocation.
898 * @revision_id: PCI revision ID of the ASIC.
899 * @tpc_interrupt_id: interrupt id for TPC to use in order to raise events towards the host.
900 * @rotator_enabled_mask: Bit-mask that represents which rotators are enabled.
901 *                        Relevant for Gaudi3 and later.
902 * @engine_core_interrupt_reg_addr: interrupt register address for engine core to use
903 *                                  in order to raise events toward FW.
904 * @reserved_dram_size: DRAM size reserved for driver and firmware.
905 */
906struct hl_info_hw_ip_info {
907	__u64 sram_base_address;
908	__u64 dram_base_address;
909	__u64 dram_size;
910	__u32 sram_size;
911	__u32 num_of_events;
912	__u32 device_id;
913	__u32 module_id;
914	__u32 decoder_enabled_mask;
915	__u16 first_available_interrupt_id;
916	__u16 server_type;
917	__u32 cpld_version;
918	__u32 psoc_pci_pll_nr;
919	__u32 psoc_pci_pll_nf;
920	__u32 psoc_pci_pll_od;
921	__u32 psoc_pci_pll_div_factor;
922	__u8 tpc_enabled_mask;
923	__u8 dram_enabled;
924	__u8 security_enabled;
925	__u8 mme_master_slave_mode;
926	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
927	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
928	__u64 tpc_enabled_mask_ext;
929	__u64 dram_page_size;
930	__u32 edma_enabled_mask;
931	__u16 number_of_user_interrupts;
932	__u8 reserved1;
933	__u8 reserved2;
934	__u64 reserved3;
935	__u64 device_mem_alloc_default_page_size;
936	__u64 reserved4;
937	__u64 reserved5;
938	__u32 reserved6;
939	__u8 reserved7;
940	__u8 revision_id;
941	__u16 tpc_interrupt_id;
942	__u32 rotator_enabled_mask;
943	__u32 reserved9;
944	__u64 engine_core_interrupt_reg_addr;
945	__u64 reserved_dram_size;
946};
947
948struct hl_info_dram_usage {
949	__u64 dram_free_mem;
950	__u64 ctx_dram_mem;
951};
952
953#define HL_BUSY_ENGINES_MASK_EXT_SIZE	4
954
955struct hl_info_hw_idle {
956	__u32 is_idle;
957	/*
958	 * Bitmask of busy engines.
959	 * Bits definition is according to `enum <chip>_engine_id'.
960	 */
961	__u32 busy_engines_mask;
962
963	/*
964	 * Extended Bitmask of busy engines.
965	 * Bits definition is according to `enum <chip>_engine_id'.
966	 */
967	__u64 busy_engines_mask_ext[HL_BUSY_ENGINES_MASK_EXT_SIZE];
968};
969
970struct hl_info_device_status {
971	__u32 status;
972	__u32 pad;
973};
974
975struct hl_info_device_utilization {
976	__u32 utilization;
977	__u32 pad;
978};
979
980struct hl_info_clk_rate {
981	__u32 cur_clk_rate_mhz;
982	__u32 max_clk_rate_mhz;
983};
984
985struct hl_info_reset_count {
986	__u32 hard_reset_cnt;
987	__u32 soft_reset_cnt;
988};
989
990struct hl_info_time_sync {
991	__u64 device_time;
992	__u64 host_time;
993};
994
995/**
996 * struct hl_info_pci_counters - pci counters
997 * @rx_throughput: PCI rx throughput KBps
998 * @tx_throughput: PCI tx throughput KBps
999 * @replay_cnt: PCI replay counter
1000 */
1001struct hl_info_pci_counters {
1002	__u64 rx_throughput;
1003	__u64 tx_throughput;
1004	__u64 replay_cnt;
1005};
1006
1007enum hl_clk_throttling_type {
1008	HL_CLK_THROTTLE_TYPE_POWER,
1009	HL_CLK_THROTTLE_TYPE_THERMAL,
1010	HL_CLK_THROTTLE_TYPE_MAX
1011};
1012
1013/* clk_throttling_reason masks */
1014#define HL_CLK_THROTTLE_POWER		(1 << HL_CLK_THROTTLE_TYPE_POWER)
1015#define HL_CLK_THROTTLE_THERMAL		(1 << HL_CLK_THROTTLE_TYPE_THERMAL)
1016
1017/**
1018 * struct hl_info_clk_throttle - clock throttling reason
1019 * @clk_throttling_reason: each bit represents a clk throttling reason
1020 * @clk_throttling_timestamp_us: represents CPU timestamp in microseconds of the start-event
1021 * @clk_throttling_duration_ns: the clock throttle time in nanosec
1022 */
1023struct hl_info_clk_throttle {
1024	__u32 clk_throttling_reason;
1025	__u32 pad;
1026	__u64 clk_throttling_timestamp_us[HL_CLK_THROTTLE_TYPE_MAX];
1027	__u64 clk_throttling_duration_ns[HL_CLK_THROTTLE_TYPE_MAX];
1028};
1029
1030/**
1031 * struct hl_info_energy - device energy information
1032 * @total_energy_consumption: total device energy consumption
1033 */
1034struct hl_info_energy {
1035	__u64 total_energy_consumption;
1036};
1037
1038#define HL_PLL_NUM_OUTPUTS 4
1039
1040struct hl_pll_frequency_info {
1041	__u16 output[HL_PLL_NUM_OUTPUTS];
1042};
1043
1044/**
1045 * struct hl_open_stats_info - device open statistics information
1046 * @open_counter: ever growing counter, increased on each successful dev open
1047 * @last_open_period_ms: duration (ms) device was open last time
1048 * @is_compute_ctx_active: Whether there is an active compute context executing
1049 * @compute_ctx_in_release: true if the current compute context is being released
1050 */
1051struct hl_open_stats_info {
1052	__u64 open_counter;
1053	__u64 last_open_period_ms;
1054	__u8 is_compute_ctx_active;
1055	__u8 compute_ctx_in_release;
1056	__u8 pad[6];
1057};
1058
1059/**
1060 * struct hl_power_info - power information
1061 * @power: power consumption
1062 */
1063struct hl_power_info {
1064	__u64 power;
1065};
1066
1067/**
1068 * struct hl_info_sync_manager - sync manager information
1069 * @first_available_sync_object: first available sob
1070 * @first_available_monitor: first available monitor
1071 * @first_available_cq: first available cq
1072 */
1073struct hl_info_sync_manager {
1074	__u32 first_available_sync_object;
1075	__u32 first_available_monitor;
1076	__u32 first_available_cq;
1077	__u32 reserved;
1078};
1079
1080/**
1081 * struct hl_info_cs_counters - command submission counters
1082 * @total_out_of_mem_drop_cnt: total dropped due to memory allocation issue
1083 * @ctx_out_of_mem_drop_cnt: context dropped due to memory allocation issue
1084 * @total_parsing_drop_cnt: total dropped due to error in packet parsing
1085 * @ctx_parsing_drop_cnt: context dropped due to error in packet parsing
1086 * @total_queue_full_drop_cnt: total dropped due to queue full
1087 * @ctx_queue_full_drop_cnt: context dropped due to queue full
1088 * @total_device_in_reset_drop_cnt: total dropped due to device in reset
1089 * @ctx_device_in_reset_drop_cnt: context dropped due to device in reset
1090 * @total_max_cs_in_flight_drop_cnt: total dropped due to maximum CS in-flight
1091 * @ctx_max_cs_in_flight_drop_cnt: context dropped due to maximum CS in-flight
1092 * @total_validation_drop_cnt: total dropped due to validation error
1093 * @ctx_validation_drop_cnt: context dropped due to validation error
1094 */
1095struct hl_info_cs_counters {
1096	__u64 total_out_of_mem_drop_cnt;
1097	__u64 ctx_out_of_mem_drop_cnt;
1098	__u64 total_parsing_drop_cnt;
1099	__u64 ctx_parsing_drop_cnt;
1100	__u64 total_queue_full_drop_cnt;
1101	__u64 ctx_queue_full_drop_cnt;
1102	__u64 total_device_in_reset_drop_cnt;
1103	__u64 ctx_device_in_reset_drop_cnt;
1104	__u64 total_max_cs_in_flight_drop_cnt;
1105	__u64 ctx_max_cs_in_flight_drop_cnt;
1106	__u64 total_validation_drop_cnt;
1107	__u64 ctx_validation_drop_cnt;
1108};
1109
1110/**
1111 * struct hl_info_last_err_open_dev_time - last error boot information.
1112 * @timestamp: timestamp of last time the device was opened and error occurred.
1113 */
1114struct hl_info_last_err_open_dev_time {
1115	__s64 timestamp;
1116};
1117
1118/**
1119 * struct hl_info_cs_timeout_event - last CS timeout information.
1120 * @timestamp: timestamp when last CS timeout event occurred.
1121 * @seq: sequence number of last CS timeout event.
1122 */
1123struct hl_info_cs_timeout_event {
1124	__s64 timestamp;
1125	__u64 seq;
1126};
1127
1128#define HL_RAZWI_NA_ENG_ID U16_MAX
1129#define HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR 128
1130#define HL_RAZWI_READ		BIT(0)
1131#define HL_RAZWI_WRITE		BIT(1)
1132#define HL_RAZWI_LBW		BIT(2)
1133#define HL_RAZWI_HBW		BIT(3)
1134#define HL_RAZWI_RR		BIT(4)
1135#define HL_RAZWI_ADDR_DEC	BIT(5)
1136
1137/**
1138 * struct hl_info_razwi_event - razwi information.
1139 * @timestamp: timestamp of razwi.
1140 * @addr: address which accessing it caused razwi.
1141 * @engine_id: engine id of the razwi initiator, if it was initiated by engine that does not
1142 *             have engine id it will be set to HL_RAZWI_NA_ENG_ID. If there are several possible
1143 *             engines which caused the razwi, it will hold all of them.
1144 * @num_of_possible_engines: contains number of possible engine ids. In some asics, razwi indication
1145 *                           might be common for several engines and there is no way to get the
1146 *                           exact engine. In this way, engine_id array will be filled with all
1147 *                           possible engines caused this razwi. Also, there might be possibility
1148 *                           in gaudi, where we don't indication on specific engine, in that case
1149 *                           the value of this parameter will be zero.
1150 * @flags: bitmask for additional data: HL_RAZWI_READ - razwi caused by read operation
1151 *                                      HL_RAZWI_WRITE - razwi caused by write operation
1152 *                                      HL_RAZWI_LBW - razwi caused by lbw fabric transaction
1153 *                                      HL_RAZWI_HBW - razwi caused by hbw fabric transaction
1154 *                                      HL_RAZWI_RR - razwi caused by range register
1155 *                                      HL_RAZWI_ADDR_DEC - razwi caused by address decode error
1156 *         Note: this data is not supported by all asics, in that case the relevant bits will not
1157 *               be set.
1158 */
1159struct hl_info_razwi_event {
1160	__s64 timestamp;
1161	__u64 addr;
1162	__u16 engine_id[HL_RAZWI_MAX_NUM_OF_ENGINES_PER_RTR];
1163	__u16 num_of_possible_engines;
1164	__u8 flags;
1165	__u8 pad[5];
1166};
1167
1168#define MAX_QMAN_STREAMS_INFO		4
1169#define OPCODE_INFO_MAX_ADDR_SIZE	8
1170/**
1171 * struct hl_info_undefined_opcode_event - info about last undefined opcode error
1172 * @timestamp: timestamp of the undefined opcode error
1173 * @cb_addr_streams: CB addresses (per stream) that are currently exists in the PQ
1174 *                   entries. In case all streams array entries are
1175 *                   filled with values, it means the execution was in Lower-CP.
1176 * @cq_addr: the address of the current handled command buffer
1177 * @cq_size: the size of the current handled command buffer
1178 * @cb_addr_streams_len: num of streams - actual len of cb_addr_streams array.
1179 *                       should be equal to 1 in case of undefined opcode
1180 *                       in Upper-CP (specific stream) and equal to 4 incase
1181 *                       of undefined opcode in Lower-CP.
1182 * @engine_id: engine-id that the error occurred on
1183 * @stream_id: the stream id the error occurred on. In case the stream equals to
1184 *             MAX_QMAN_STREAMS_INFO it means the error occurred on a Lower-CP.
1185 */
1186struct hl_info_undefined_opcode_event {
1187	__s64 timestamp;
1188	__u64 cb_addr_streams[MAX_QMAN_STREAMS_INFO][OPCODE_INFO_MAX_ADDR_SIZE];
1189	__u64 cq_addr;
1190	__u32 cq_size;
1191	__u32 cb_addr_streams_len;
1192	__u32 engine_id;
1193	__u32 stream_id;
1194};
1195
1196/**
1197 * struct hl_info_hw_err_event - info about HW error
1198 * @timestamp: timestamp of error occurrence
1199 * @event_id: The async event ID (specific to each device type).
1200 * @pad: size padding for u64 granularity.
1201 */
1202struct hl_info_hw_err_event {
1203	__s64 timestamp;
1204	__u16 event_id;
1205	__u16 pad[3];
1206};
1207
1208/* FW error definition for event_type in struct hl_info_fw_err_event */
1209enum hl_info_fw_err_type {
1210	HL_INFO_FW_HEARTBEAT_ERR,
1211	HL_INFO_FW_REPORTED_ERR,
1212};
1213
1214/**
1215 * struct hl_info_fw_err_event - info about FW error
1216 * @timestamp: time-stamp of error occurrence
1217 * @err_type: The type of event as defined in hl_info_fw_err_type.
1218 * @event_id: The async event ID (specific to each device type, applicable only when event type is
1219 *             HL_INFO_FW_REPORTED_ERR).
1220 * @pad: size padding for u64 granularity.
1221 */
1222struct hl_info_fw_err_event {
1223	__s64 timestamp;
1224	__u16 err_type;
1225	__u16 event_id;
1226	__u32 pad;
1227};
1228
1229/**
1230 * struct hl_info_dev_memalloc_page_sizes - valid page sizes in device mem alloc information.
1231 * @page_order_bitmask: bitmap in which a set bit represents the order of the supported page size
1232 *                      (e.g. 0x2100000 means that 1MB and 32MB pages are supported).
1233 */
1234struct hl_info_dev_memalloc_page_sizes {
1235	__u64 page_order_bitmask;
1236};
1237
1238#define SEC_PCR_DATA_BUF_SZ	256
1239#define SEC_PCR_QUOTE_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1240#define SEC_SIGNATURE_BUF_SZ	255	/* (256 - 1) 1 byte used for size */
1241#define SEC_PUB_DATA_BUF_SZ	510	/* (512 - 2) 2 bytes used for size */
1242#define SEC_CERTIFICATE_BUF_SZ	2046	/* (2048 - 2) 2 bytes used for size */
1243
1244/*
1245 * struct hl_info_sec_attest - attestation report of the boot
1246 * @nonce: number only used once. random number provided by host. this also passed to the quote
1247 *         command as a qualifying data.
1248 * @pcr_quote_len: length of the attestation quote data (bytes)
1249 * @pub_data_len: length of the public data (bytes)
1250 * @certificate_len: length of the certificate (bytes)
1251 * @pcr_num_reg: number of PCR registers in the pcr_data array
1252 * @pcr_reg_len: length of each PCR register in the pcr_data array (bytes)
1253 * @quote_sig_len: length of the attestation report signature (bytes)
1254 * @pcr_data: raw values of the PCR registers
1255 * @pcr_quote: attestation report data structure
1256 * @quote_sig: signature structure of the attestation report
1257 * @public_data: public key for the signed attestation
1258 *		 (outPublic + name + qualifiedName)
1259 * @certificate: certificate for the attestation signing key
1260 */
1261struct hl_info_sec_attest {
1262	__u32 nonce;
1263	__u16 pcr_quote_len;
1264	__u16 pub_data_len;
1265	__u16 certificate_len;
1266	__u8 pcr_num_reg;
1267	__u8 pcr_reg_len;
1268	__u8 quote_sig_len;
1269	__u8 pcr_data[SEC_PCR_DATA_BUF_SZ];
1270	__u8 pcr_quote[SEC_PCR_QUOTE_BUF_SZ];
1271	__u8 quote_sig[SEC_SIGNATURE_BUF_SZ];
1272	__u8 public_data[SEC_PUB_DATA_BUF_SZ];
1273	__u8 certificate[SEC_CERTIFICATE_BUF_SZ];
1274	__u8 pad0[2];
1275};
1276
1277/**
1278 * struct hl_page_fault_info - page fault information.
1279 * @timestamp: timestamp of page fault.
1280 * @addr: address which accessing it caused page fault.
1281 * @engine_id: engine id which caused the page fault, supported only in gaudi3.
1282 */
1283struct hl_page_fault_info {
1284	__s64 timestamp;
1285	__u64 addr;
1286	__u16 engine_id;
1287	__u8 pad[6];
1288};
1289
1290/**
1291 * struct hl_user_mapping - user mapping information.
1292 * @dev_va: device virtual address.
1293 * @size: virtual address mapping size.
1294 */
1295struct hl_user_mapping {
1296	__u64 dev_va;
1297	__u64 size;
1298};
1299
1300enum gaudi_dcores {
1301	HL_GAUDI_WS_DCORE,
1302	HL_GAUDI_WN_DCORE,
1303	HL_GAUDI_EN_DCORE,
1304	HL_GAUDI_ES_DCORE
1305};
1306
1307/**
1308 * struct hl_info_args - Main structure to retrieve device related information.
1309 * @return_pointer: User space address of the relevant structure related to HL_INFO_* operation
1310 *                  mentioned in @op.
1311 * @return_size: Size of the structure used in @return_pointer, just like "size" in "snprintf", it
1312 *               limits how many bytes the kernel can write. For hw_events array, the size should be
1313 *               hl_info_hw_ip_info.num_of_events * sizeof(__u32).
1314 * @op: Defines which type of information to be retrieved. Refer HL_INFO_* for details.
1315 * @dcore_id: DCORE id for which the information is relevant (for Gaudi refer to enum gaudi_dcores).
1316 * @ctx_id: Context ID of the user. Currently not in use.
1317 * @period_ms: Period value, in milliseconds, for utilization rate in range 100ms - 1000ms in 100 ms
1318 *             resolution. Currently not in use.
1319 * @pll_index: Index as defined in hl_<asic type>_pll_index enumeration.
1320 * @eventfd: event file descriptor for event notifications.
1321 * @user_buffer_actual_size: Actual data size which was copied to user allocated buffer by the
1322 *                           driver. It is possible for the user to allocate buffer larger than
1323 *                           needed, hence updating this variable so user will know the exact amount
1324 *                           of bytes copied by the kernel to the buffer.
1325 * @sec_attest_nonce: Nonce number used for attestation report.
1326 * @array_size: Number of array members copied to user buffer.
1327 *              Relevant for HL_INFO_USER_MAPPINGS info ioctl.
1328 * @fw_sub_opcode: generic requests sub opcodes.
1329 * @pad: Padding to 64 bit.
1330 */
1331struct hl_info_args {
1332	__u64 return_pointer;
1333	__u32 return_size;
1334	__u32 op;
1335
1336	union {
1337		__u32 dcore_id;
1338		__u32 ctx_id;
1339		__u32 period_ms;
1340		__u32 pll_index;
1341		__u32 eventfd;
1342		__u32 user_buffer_actual_size;
1343		__u32 sec_attest_nonce;
1344		__u32 array_size;
1345		__u32 fw_sub_opcode;
1346	};
1347
1348	__u32 pad;
1349};
1350
1351/* Opcode to create a new command buffer */
1352#define HL_CB_OP_CREATE		0
1353/* Opcode to destroy previously created command buffer */
1354#define HL_CB_OP_DESTROY	1
1355/* Opcode to retrieve information about a command buffer */
1356#define HL_CB_OP_INFO		2
1357
1358/* 2MB minus 32 bytes for 2xMSG_PROT */
1359#define HL_MAX_CB_SIZE		(0x200000 - 32)
1360
1361/* Indicates whether the command buffer should be mapped to the device's MMU */
1362#define HL_CB_FLAGS_MAP			0x1
1363
1364/* Used with HL_CB_OP_INFO opcode to get the device va address for kernel mapped CB */
1365#define HL_CB_FLAGS_GET_DEVICE_VA	0x2
1366
1367struct hl_cb_in {
1368	/* Handle of CB or 0 if we want to create one */
1369	__u64 cb_handle;
1370	/* HL_CB_OP_* */
1371	__u32 op;
1372
1373	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
1374	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
1375	 */
1376	__u32 cb_size;
1377
1378	/* Context ID - Currently not in use */
1379	__u32 ctx_id;
1380	/* HL_CB_FLAGS_* */
1381	__u32 flags;
1382};
1383
1384struct hl_cb_out {
1385	union {
1386		/* Handle of CB */
1387		__u64 cb_handle;
1388
1389		union {
1390			/* Information about CB */
1391			struct {
1392				/* Usage count of CB */
1393				__u32 usage_cnt;
1394				__u32 pad;
1395			};
1396
1397			/* CB mapped address to device MMU */
1398			__u64 device_va;
1399		};
1400	};
1401};
1402
1403union hl_cb_args {
1404	struct hl_cb_in in;
1405	struct hl_cb_out out;
1406};
1407
1408/* HL_CS_CHUNK_FLAGS_ values
1409 *
1410 * HL_CS_CHUNK_FLAGS_USER_ALLOC_CB:
1411 *      Indicates if the CB was allocated and mapped by userspace
1412 *      (relevant to greco and above). User allocated CB is a command buffer,
1413 *      allocated by the user, via malloc (or similar). After allocating the
1414 *      CB, the user invokes - “memory ioctl” to map the user memory into a
1415 *      device virtual address. The user provides this address via the
1416 *      cb_handle field. The interface provides the ability to create a
1417 *      large CBs, Which aren’t limited to “HL_MAX_CB_SIZE”. Therefore, it
1418 *      increases the PCI-DMA queues throughput. This CB allocation method
1419 *      also reduces the use of Linux DMA-able memory pool. Which are limited
1420 *      and used by other Linux sub-systems.
1421 */
1422#define HL_CS_CHUNK_FLAGS_USER_ALLOC_CB 0x1
1423
1424/*
1425 * This structure size must always be fixed to 64-bytes for backward
1426 * compatibility
1427 */
1428struct hl_cs_chunk {
1429	union {
1430		/* Goya/Gaudi:
1431		 * For external queue, this represents a Handle of CB on the
1432		 * Host.
1433		 * For internal queue in Goya, this represents an SRAM or
1434		 * a DRAM address of the internal CB. In Gaudi, this might also
1435		 * represent a mapped host address of the CB.
1436		 *
1437		 * Greco onwards:
1438		 * For H/W queue, this represents either a Handle of CB on the
1439		 * Host, or an SRAM, a DRAM, or a mapped host address of the CB.
1440		 *
1441		 * A mapped host address is in the device address space, after
1442		 * a host address was mapped by the device MMU.
1443		 */
1444		__u64 cb_handle;
1445
1446		/* Relevant only when HL_CS_FLAGS_WAIT or
1447		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1448		 * This holds address of array of u64 values that contain
1449		 * signal CS sequence numbers. The wait described by
1450		 * this job will listen on all those signals
1451		 * (wait event per signal)
1452		 */
1453		__u64 signal_seq_arr;
1454
1455		/*
1456		 * Relevant only when HL_CS_FLAGS_WAIT or
1457		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set
1458		 * along with HL_CS_FLAGS_ENCAP_SIGNALS.
1459		 * This is the CS sequence which has the encapsulated signals.
1460		 */
1461		__u64 encaps_signal_seq;
1462	};
1463
1464	/* Index of queue to put the CB on */
1465	__u32 queue_index;
1466
1467	union {
1468		/*
1469		 * Size of command buffer with valid packets
1470		 * Can be smaller then actual CB size
1471		 */
1472		__u32 cb_size;
1473
1474		/* Relevant only when HL_CS_FLAGS_WAIT or
1475		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1476		 * Number of entries in signal_seq_arr
1477		 */
1478		__u32 num_signal_seq_arr;
1479
1480		/* Relevant only when HL_CS_FLAGS_WAIT or
1481		 * HL_CS_FLAGS_COLLECTIVE_WAIT is set along
1482		 * with HL_CS_FLAGS_ENCAP_SIGNALS
1483		 * This set the signals range that the user want to wait for
1484		 * out of the whole reserved signals range.
1485		 * e.g if the signals range is 20, and user don't want
1486		 * to wait for signal 8, so he set this offset to 7, then
1487		 * he call the API again with 9 and so on till 20.
1488		 */
1489		__u32 encaps_signal_offset;
1490	};
1491
1492	/* HL_CS_CHUNK_FLAGS_* */
1493	__u32 cs_chunk_flags;
1494
1495	/* Relevant only when HL_CS_FLAGS_COLLECTIVE_WAIT is set.
1496	 * This holds the collective engine ID. The wait described by this job
1497	 * will sync with this engine and with all NICs before completion.
1498	 */
1499	__u32 collective_engine_id;
1500
1501	/* Align structure to 64 bytes */
1502	__u32 pad[10];
1503};
1504
1505/* SIGNAL/WAIT/COLLECTIVE_WAIT flags are mutually exclusive */
1506#define HL_CS_FLAGS_FORCE_RESTORE		0x1
1507#define HL_CS_FLAGS_SIGNAL			0x2
1508#define HL_CS_FLAGS_WAIT			0x4
1509#define HL_CS_FLAGS_COLLECTIVE_WAIT		0x8
1510
1511#define HL_CS_FLAGS_TIMESTAMP			0x20
1512#define HL_CS_FLAGS_STAGED_SUBMISSION		0x40
1513#define HL_CS_FLAGS_STAGED_SUBMISSION_FIRST	0x80
1514#define HL_CS_FLAGS_STAGED_SUBMISSION_LAST	0x100
1515#define HL_CS_FLAGS_CUSTOM_TIMEOUT		0x200
1516#define HL_CS_FLAGS_SKIP_RESET_ON_TIMEOUT	0x400
1517
1518/*
1519 * The encapsulated signals CS is merged into the existing CS ioctls.
1520 * In order to use this feature need to follow the below procedure:
1521 * 1. Reserve signals, set the CS type to HL_CS_FLAGS_RESERVE_SIGNALS_ONLY
1522 *    the output of this API will be the SOB offset from CFG_BASE.
1523 *    this address will be used to patch CB cmds to do the signaling for this
1524 *    SOB by incrementing it's value.
1525 *    for reverting the reservation use HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY
1526 *    CS type, note that this might fail if out-of-sync happened to the SOB
1527 *    value, in case other signaling request to the same SOB occurred between
1528 *    reserve-unreserve calls.
1529 * 2. Use the staged CS to do the encapsulated signaling jobs.
1530 *    use HL_CS_FLAGS_STAGED_SUBMISSION and HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1531 *    along with HL_CS_FLAGS_ENCAP_SIGNALS flag, and set encaps_signal_offset
1532 *    field. This offset allows app to wait on part of the reserved signals.
1533 * 3. Use WAIT/COLLECTIVE WAIT CS along with HL_CS_FLAGS_ENCAP_SIGNALS flag
1534 *    to wait for the encapsulated signals.
1535 */
1536#define HL_CS_FLAGS_ENCAP_SIGNALS		0x800
1537#define HL_CS_FLAGS_RESERVE_SIGNALS_ONLY	0x1000
1538#define HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY	0x2000
1539
1540/*
1541 * The engine cores CS is merged into the existing CS ioctls.
1542 * Use it to control the engine cores mode.
1543 */
1544#define HL_CS_FLAGS_ENGINE_CORE_COMMAND		0x4000
1545
1546/*
1547 * The flush HBW PCI writes is merged into the existing CS ioctls.
1548 * Used to flush all HBW PCI writes.
1549 * This is a blocking operation and for this reason the user shall not use
1550 * the return sequence number (which will be invalid anyway)
1551 */
1552#define HL_CS_FLAGS_FLUSH_PCI_HBW_WRITES	0x8000
1553
1554/*
1555 * The engines CS is merged into the existing CS ioctls.
1556 * Use it to control engines modes.
1557 */
1558#define HL_CS_FLAGS_ENGINES_COMMAND		0x10000
1559
1560#define HL_CS_STATUS_SUCCESS		0
1561
1562#define HL_MAX_JOBS_PER_CS		512
1563
1564/*
1565 * enum hl_engine_command - engine command
1566 *
1567 * @HL_ENGINE_CORE_HALT: engine core halt
1568 * @HL_ENGINE_CORE_RUN: engine core run
1569 * @HL_ENGINE_STALL: user engine/s stall
1570 * @HL_ENGINE_RESUME: user engine/s resume
1571 */
1572enum hl_engine_command {
1573	HL_ENGINE_CORE_HALT = 1,
1574	HL_ENGINE_CORE_RUN = 2,
1575	HL_ENGINE_STALL = 3,
1576	HL_ENGINE_RESUME = 4,
1577	HL_ENGINE_COMMAND_MAX
1578};
1579
1580struct hl_cs_in {
1581
1582	union {
1583		struct {
1584			/* this holds address of array of hl_cs_chunk for restore phase */
1585			__u64 chunks_restore;
1586
1587			/* holds address of array of hl_cs_chunk for execution phase */
1588			__u64 chunks_execute;
1589		};
1590
1591		/* Valid only when HL_CS_FLAGS_ENGINE_CORE_COMMAND is set */
1592		struct {
1593			/* this holds address of array of uint32 for engine_cores */
1594			__u64 engine_cores;
1595
1596			/* number of engine cores in engine_cores array */
1597			__u32 num_engine_cores;
1598
1599			/* the core command to be sent towards engine cores */
1600			__u32 core_command;
1601		};
1602
1603		/* Valid only when HL_CS_FLAGS_ENGINES_COMMAND is set */
1604		struct {
1605			/* this holds address of array of uint32 for engines */
1606			__u64 engines;
1607
1608			/* number of engines in engines array */
1609			__u32 num_engines;
1610
1611			/* the engine command to be sent towards engines */
1612			__u32 engine_command;
1613		};
1614	};
1615
1616	union {
1617		/*
1618		 * Sequence number of a staged submission CS
1619		 * valid only if HL_CS_FLAGS_STAGED_SUBMISSION is set and
1620		 * HL_CS_FLAGS_STAGED_SUBMISSION_FIRST is unset.
1621		 */
1622		__u64 seq;
1623
1624		/*
1625		 * Encapsulated signals handle id
1626		 * Valid for two flows:
1627		 * 1. CS with encapsulated signals:
1628		 *    when HL_CS_FLAGS_STAGED_SUBMISSION and
1629		 *    HL_CS_FLAGS_STAGED_SUBMISSION_FIRST
1630		 *    and HL_CS_FLAGS_ENCAP_SIGNALS are set.
1631		 * 2. unreserve signals:
1632		 *    valid when HL_CS_FLAGS_UNRESERVE_SIGNALS_ONLY is set.
1633		 */
1634		__u32 encaps_sig_handle_id;
1635
1636		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1637		struct {
1638			/* Encapsulated signals number */
1639			__u32 encaps_signals_count;
1640
1641			/* Encapsulated signals queue index (stream) */
1642			__u32 encaps_signals_q_idx;
1643		};
1644	};
1645
1646	/* Number of chunks in restore phase array. Maximum number is
1647	 * HL_MAX_JOBS_PER_CS
1648	 */
1649	__u32 num_chunks_restore;
1650
1651	/* Number of chunks in execution array. Maximum number is
1652	 * HL_MAX_JOBS_PER_CS
1653	 */
1654	__u32 num_chunks_execute;
1655
1656	/* timeout in seconds - valid only if HL_CS_FLAGS_CUSTOM_TIMEOUT
1657	 * is set
1658	 */
1659	__u32 timeout;
1660
1661	/* HL_CS_FLAGS_* */
1662	__u32 cs_flags;
1663
1664	/* Context ID - Currently not in use */
1665	__u32 ctx_id;
1666	__u8 pad[4];
1667};
1668
1669struct hl_cs_out {
1670	union {
1671		/*
1672		 * seq holds the sequence number of the CS to pass to wait
1673		 * ioctl. All values are valid except for 0 and ULLONG_MAX
1674		 */
1675		__u64 seq;
1676
1677		/* Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY is set */
1678		struct {
1679			/* This is the reserved signal handle id */
1680			__u32 handle_id;
1681
1682			/* This is the signals count */
1683			__u32 count;
1684		};
1685	};
1686
1687	/* HL_CS_STATUS */
1688	__u32 status;
1689
1690	/*
1691	 * SOB base address offset
1692	 * Valid only when HL_CS_FLAGS_RESERVE_SIGNALS_ONLY or HL_CS_FLAGS_SIGNAL is set
1693	 */
1694	__u32 sob_base_addr_offset;
1695
1696	/*
1697	 * Count of completed signals in SOB before current signal submission.
1698	 * Valid only when (HL_CS_FLAGS_ENCAP_SIGNALS & HL_CS_FLAGS_STAGED_SUBMISSION)
1699	 * or HL_CS_FLAGS_SIGNAL is set
1700	 */
1701	__u16 sob_count_before_submission;
1702	__u16 pad[3];
1703};
1704
1705union hl_cs_args {
1706	struct hl_cs_in in;
1707	struct hl_cs_out out;
1708};
1709
1710#define HL_WAIT_CS_FLAGS_INTERRUPT		0x2
1711#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK		0xFFF00000
1712#define HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT	0xFFF00000
1713#define HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT	0xFFE00000
1714#define HL_WAIT_CS_FLAGS_MULTI_CS		0x4
1715#define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ	0x10
1716#define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT	0x20
1717
1718#define HL_WAIT_MULTI_CS_LIST_MAX_LEN	32
1719
1720struct hl_wait_cs_in {
1721	union {
1722		struct {
1723			/*
1724			 * In case of wait_cs holds the CS sequence number.
1725			 * In case of wait for multi CS hold a user pointer to
1726			 * an array of CS sequence numbers
1727			 */
1728			__u64 seq;
1729			/* Absolute timeout to wait for command submission
1730			 * in microseconds
1731			 */
1732			__u64 timeout_us;
1733		};
1734
1735		struct {
1736			union {
1737				/* User address for completion comparison.
1738				 * upon interrupt, driver will compare the value pointed
1739				 * by this address with the supplied target value.
1740				 * in order not to perform any comparison, set address
1741				 * to all 1s.
1742				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1743				 */
1744				__u64 addr;
1745
1746				/* cq_counters_handle to a kernel mapped cb which contains
1747				 * cq counters.
1748				 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1749				 */
1750				__u64 cq_counters_handle;
1751			};
1752
1753			/* Target value for completion comparison */
1754			__u64 target;
1755		};
1756	};
1757
1758	/* Context ID - Currently not in use */
1759	__u32 ctx_id;
1760
1761	/* HL_WAIT_CS_FLAGS_*
1762	 * If HL_WAIT_CS_FLAGS_INTERRUPT is set, this field should include
1763	 * interrupt id according to HL_WAIT_CS_FLAGS_INTERRUPT_MASK
1764	 *
1765	 * in order to wait for any CQ interrupt, set interrupt value to
1766	 * HL_WAIT_CS_FLAGS_ANY_CQ_INTERRUPT.
1767	 *
1768	 * in order to wait for any decoder interrupt, set interrupt value to
1769	 * HL_WAIT_CS_FLAGS_ANY_DEC_INTERRUPT.
1770	 */
1771	__u32 flags;
1772
1773	union {
1774		struct {
1775			/* Multi CS API info- valid entries in multi-CS array */
1776			__u8 seq_arr_len;
1777			__u8 pad[7];
1778		};
1779
1780		/* Absolute timeout to wait for an interrupt in microseconds.
1781		 * Relevant only when HL_WAIT_CS_FLAGS_INTERRUPT is set
1782		 */
1783		__u64 interrupt_timeout_us;
1784	};
1785
1786	/*
1787	 * cq counter offset inside the counters cb pointed by cq_counters_handle above.
1788	 * upon interrupt, driver will compare the value pointed
1789	 * by this address (cq_counters_handle + cq_counters_offset)
1790	 * with the supplied target value.
1791	 * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
1792	 */
1793	__u64 cq_counters_offset;
1794
1795	/*
1796	 * Timestamp_handle timestamps buffer handle.
1797	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1798	 */
1799	__u64 timestamp_handle;
1800
1801	/*
1802	 * Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
1803	 * upon interrupt, if the cq reached the target value then driver will write
1804	 * timestamp to this offset.
1805	 * relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
1806	 */
1807	__u64 timestamp_offset;
1808};
1809
1810#define HL_WAIT_CS_STATUS_COMPLETED	0
1811#define HL_WAIT_CS_STATUS_BUSY		1
1812#define HL_WAIT_CS_STATUS_TIMEDOUT	2
1813#define HL_WAIT_CS_STATUS_ABORTED	3
1814
1815#define HL_WAIT_CS_STATUS_FLAG_GONE		0x1
1816#define HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD	0x2
1817
1818struct hl_wait_cs_out {
1819	/* HL_WAIT_CS_STATUS_* */
1820	__u32 status;
1821	/* HL_WAIT_CS_STATUS_FLAG* */
1822	__u32 flags;
1823	/*
1824	 * valid only if HL_WAIT_CS_STATUS_FLAG_TIMESTAMP_VLD is set
1825	 * for wait_cs: timestamp of CS completion
1826	 * for wait_multi_cs: timestamp of FIRST CS completion
1827	 */
1828	__s64 timestamp_nsec;
1829	/* multi CS completion bitmap */
1830	__u32 cs_completion_map;
1831	__u32 pad;
1832};
1833
1834union hl_wait_cs_args {
1835	struct hl_wait_cs_in in;
1836	struct hl_wait_cs_out out;
1837};
1838
1839/* Opcode to allocate device memory */
1840#define HL_MEM_OP_ALLOC			0
1841
1842/* Opcode to free previously allocated device memory */
1843#define HL_MEM_OP_FREE			1
1844
1845/* Opcode to map host and device memory */
1846#define HL_MEM_OP_MAP			2
1847
1848/* Opcode to unmap previously mapped host and device memory */
1849#define HL_MEM_OP_UNMAP			3
1850
1851/* Opcode to map a hw block */
1852#define HL_MEM_OP_MAP_BLOCK		4
1853
1854/* Opcode to create DMA-BUF object for an existing device memory allocation
1855 * and to export an FD of that DMA-BUF back to the caller
1856 */
1857#define HL_MEM_OP_EXPORT_DMABUF_FD	5
1858
1859/* Opcode to create timestamps pool for user interrupts registration support
1860 * The memory will be allocated by the kernel driver, A timestamp buffer which the user
1861 * will get handle to it for mmap, and another internal buffer used by the
1862 * driver for registration management
1863 * The memory will be freed when the user closes the file descriptor(ctx close)
1864 */
1865#define HL_MEM_OP_TS_ALLOC		6
1866
1867/* Memory flags */
1868#define HL_MEM_CONTIGUOUS	0x1
1869#define HL_MEM_SHARED		0x2
1870#define HL_MEM_USERPTR		0x4
1871#define HL_MEM_FORCE_HINT	0x8
1872#define HL_MEM_PREFETCH		0x40
1873
1874/**
1875 * structure hl_mem_in - structure that handle input args for memory IOCTL
1876 * @union arg: union of structures to be used based on the input operation
1877 * @op: specify the requested memory operation (one of the HL_MEM_OP_* definitions).
1878 * @flags: flags for the memory operation (one of the HL_MEM_* definitions).
1879 *         For the HL_MEM_OP_EXPORT_DMABUF_FD opcode, this field holds the DMA-BUF file/FD flags.
1880 * @ctx_id: context ID - currently not in use.
1881 * @num_of_elements: number of timestamp elements used only with HL_MEM_OP_TS_ALLOC opcode.
1882 */
1883struct hl_mem_in {
1884	union {
1885		/**
1886		 * structure for device memory allocation (used with the HL_MEM_OP_ALLOC op)
1887		 * @mem_size: memory size to allocate
1888		 * @page_size: page size to use on allocation. when the value is 0 the default page
1889		 *             size will be taken.
1890		 */
1891		struct {
1892			__u64 mem_size;
1893			__u64 page_size;
1894		} alloc;
1895
1896		/**
1897		 * structure for free-ing device memory (used with the HL_MEM_OP_FREE op)
1898		 * @handle: handle returned from HL_MEM_OP_ALLOC
1899		 */
1900		struct {
1901			__u64 handle;
1902		} free;
1903
1904		/**
1905		 * structure for mapping device memory (used with the HL_MEM_OP_MAP op)
1906		 * @hint_addr: requested virtual address of mapped memory.
1907		 *             the driver will try to map the requested region to this hint
1908		 *             address, as long as the address is valid and not already mapped.
1909		 *             the user should check the returned address of the IOCTL to make
1910		 *             sure he got the hint address.
1911		 *             passing 0 here means that the driver will choose the address itself.
1912		 * @handle: handle returned from HL_MEM_OP_ALLOC.
1913		 */
1914		struct {
1915			__u64 hint_addr;
1916			__u64 handle;
1917		} map_device;
1918
1919		/**
1920		 * structure for mapping host memory (used with the HL_MEM_OP_MAP op)
1921		 * @host_virt_addr: address of allocated host memory.
1922		 * @hint_addr: requested virtual address of mapped memory.
1923		 *             the driver will try to map the requested region to this hint
1924		 *             address, as long as the address is valid and not already mapped.
1925		 *             the user should check the returned address of the IOCTL to make
1926		 *             sure he got the hint address.
1927		 *             passing 0 here means that the driver will choose the address itself.
1928		 * @size: size of allocated host memory.
1929		 */
1930		struct {
1931			__u64 host_virt_addr;
1932			__u64 hint_addr;
1933			__u64 mem_size;
1934		} map_host;
1935
1936		/**
1937		 * structure for mapping hw block (used with the HL_MEM_OP_MAP_BLOCK op)
1938		 * @block_addr:HW block address to map, a handle and size will be returned
1939		 *             to the user and will be used to mmap the relevant block.
1940		 *             only addresses from configuration space are allowed.
1941		 */
1942		struct {
1943			__u64 block_addr;
1944		} map_block;
1945
1946		/**
1947		 * structure for unmapping host memory (used with the HL_MEM_OP_UNMAP op)
1948		 * @device_virt_addr: virtual address returned from HL_MEM_OP_MAP
1949		 */
1950		struct {
1951			__u64 device_virt_addr;
1952		} unmap;
1953
1954		/**
1955		 * structure for exporting DMABUF object (used with
1956		 * the HL_MEM_OP_EXPORT_DMABUF_FD op)
1957		 * @addr: for Gaudi1, the driver expects a physical address
1958		 *        inside the device's DRAM. this is because in Gaudi1
1959		 *        we don't have MMU that covers the device's DRAM.
1960		 *        for all other ASICs, the driver expects a device
1961		 *        virtual address that represents the start address of
1962		 *        a mapped DRAM memory area inside the device.
1963		 *        the address must be the same as was received from the
1964		 *        driver during a previous HL_MEM_OP_MAP operation.
1965		 * @mem_size: size of memory to export.
1966		 * @offset: for Gaudi1, this value must be 0. For all other ASICs,
1967		 *          the driver expects an offset inside of the memory area
1968		 *          describe by addr. the offset represents the start
1969		 *          address of that the exported dma-buf object describes.
1970		 */
1971		struct {
1972			__u64 addr;
1973			__u64 mem_size;
1974			__u64 offset;
1975		} export_dmabuf_fd;
1976	};
1977
1978	__u32 op;
1979	__u32 flags;
1980	__u32 ctx_id;
1981	__u32 num_of_elements;
1982};
1983
1984struct hl_mem_out {
1985	union {
1986		/*
1987		 * Used for HL_MEM_OP_MAP as the virtual address that was
1988		 * assigned in the device VA space.
1989		 * A value of 0 means the requested operation failed.
1990		 */
1991		__u64 device_virt_addr;
1992
1993		/*
1994		 * Used in HL_MEM_OP_ALLOC
1995		 * This is the assigned handle for the allocated memory
1996		 */
1997		__u64 handle;
1998
1999		struct {
2000			/*
2001			 * Used in HL_MEM_OP_MAP_BLOCK.
2002			 * This is the assigned handle for the mapped block
2003			 */
2004			__u64 block_handle;
2005
2006			/*
2007			 * Used in HL_MEM_OP_MAP_BLOCK
2008			 * This is the size of the mapped block
2009			 */
2010			__u32 block_size;
2011
2012			__u32 pad;
2013		};
2014
2015		/* Returned in HL_MEM_OP_EXPORT_DMABUF_FD. Represents the
2016		 * DMA-BUF object that was created to describe a memory
2017		 * allocation on the device's memory space. The FD should be
2018		 * passed to the importer driver
2019		 */
2020		__s32 fd;
2021	};
2022};
2023
2024union hl_mem_args {
2025	struct hl_mem_in in;
2026	struct hl_mem_out out;
2027};
2028
2029#define HL_DEBUG_MAX_AUX_VALUES		10
2030
2031struct hl_debug_params_etr {
2032	/* Address in memory to allocate buffer */
2033	__u64 buffer_address;
2034
2035	/* Size of buffer to allocate */
2036	__u64 buffer_size;
2037
2038	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2039	__u32 sink_mode;
2040	__u32 pad;
2041};
2042
2043struct hl_debug_params_etf {
2044	/* Address in memory to allocate buffer */
2045	__u64 buffer_address;
2046
2047	/* Size of buffer to allocate */
2048	__u64 buffer_size;
2049
2050	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
2051	__u32 sink_mode;
2052	__u32 pad;
2053};
2054
2055struct hl_debug_params_stm {
2056	/* Two bit masks for HW event and Stimulus Port */
2057	__u64 he_mask;
2058	__u64 sp_mask;
2059
2060	/* Trace source ID */
2061	__u32 id;
2062
2063	/* Frequency for the timestamp register */
2064	__u32 frequency;
2065};
2066
2067struct hl_debug_params_bmon {
2068	/* Two address ranges that the user can request to filter */
2069	__u64 start_addr0;
2070	__u64 addr_mask0;
2071
2072	__u64 start_addr1;
2073	__u64 addr_mask1;
2074
2075	/* Capture window configuration */
2076	__u32 bw_win;
2077	__u32 win_capture;
2078
2079	/* Trace source ID */
2080	__u32 id;
2081
2082	/* Control register */
2083	__u32 control;
2084
2085	/* Two more address ranges that the user can request to filter */
2086	__u64 start_addr2;
2087	__u64 end_addr2;
2088
2089	__u64 start_addr3;
2090	__u64 end_addr3;
2091};
2092
2093struct hl_debug_params_spmu {
2094	/* Event types selection */
2095	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
2096
2097	/* Number of event types selection */
2098	__u32 event_types_num;
2099
2100	/* TRC configuration register values */
2101	__u32 pmtrc_val;
2102	__u32 trc_ctrl_host_val;
2103	__u32 trc_en_host_val;
2104};
2105
2106/* Opcode for ETR component */
2107#define HL_DEBUG_OP_ETR		0
2108/* Opcode for ETF component */
2109#define HL_DEBUG_OP_ETF		1
2110/* Opcode for STM component */
2111#define HL_DEBUG_OP_STM		2
2112/* Opcode for FUNNEL component */
2113#define HL_DEBUG_OP_FUNNEL	3
2114/* Opcode for BMON component */
2115#define HL_DEBUG_OP_BMON	4
2116/* Opcode for SPMU component */
2117#define HL_DEBUG_OP_SPMU	5
2118/* Opcode for timestamp (deprecated) */
2119#define HL_DEBUG_OP_TIMESTAMP	6
2120/* Opcode for setting the device into or out of debug mode. The enable
2121 * variable should be 1 for enabling debug mode and 0 for disabling it
2122 */
2123#define HL_DEBUG_OP_SET_MODE	7
2124
2125struct hl_debug_args {
2126	/*
2127	 * Pointer to user input structure.
2128	 * This field is relevant to specific opcodes.
2129	 */
2130	__u64 input_ptr;
2131	/* Pointer to user output structure */
2132	__u64 output_ptr;
2133	/* Size of user input structure */
2134	__u32 input_size;
2135	/* Size of user output structure */
2136	__u32 output_size;
2137	/* HL_DEBUG_OP_* */
2138	__u32 op;
2139	/*
2140	 * Register index in the component, taken from the debug_regs_index enum
2141	 * in the various ASIC header files
2142	 */
2143	__u32 reg_idx;
2144	/* Enable/disable */
2145	__u32 enable;
2146	/* Context ID - Currently not in use */
2147	__u32 ctx_id;
2148};
2149
2150/*
2151 * Various information operations such as:
2152 * - H/W IP information
2153 * - Current dram usage
2154 *
2155 * The user calls this IOCTL with an opcode that describes the required
2156 * information. The user should supply a pointer to a user-allocated memory
2157 * chunk, which will be filled by the driver with the requested information.
2158 *
2159 * The user supplies the maximum amount of size to copy into the user's memory,
2160 * in order to prevent data corruption in case of differences between the
2161 * definitions of structures in kernel and userspace, e.g. in case of old
2162 * userspace and new kernel driver
2163 */
2164#define HL_IOCTL_INFO	\
2165		_IOWR('H', 0x01, struct hl_info_args)
2166
2167/*
2168 * Command Buffer
2169 * - Request a Command Buffer
2170 * - Destroy a Command Buffer
2171 *
2172 * The command buffers are memory blocks that reside in DMA-able address
2173 * space and are physically contiguous so they can be accessed by the device
2174 * directly. They are allocated using the coherent DMA API.
2175 *
2176 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
2177 * process needs to use that handle to mmap the buffer so it can access them.
2178 *
2179 * In some instances, the device must access the command buffer through the
2180 * device's MMU, and thus its memory should be mapped. In these cases, user can
2181 * indicate the driver that such a mapping is required.
2182 * The resulting device virtual address will be used internally by the driver,
2183 * and won't be returned to user.
2184 *
2185 */
2186#define HL_IOCTL_CB		\
2187		_IOWR('H', 0x02, union hl_cb_args)
2188
2189/*
2190 * Command Submission
2191 *
2192 * To submit work to the device, the user need to call this IOCTL with a set
2193 * of JOBS. That set of JOBS constitutes a CS object.
2194 * Each JOB will be enqueued on a specific queue, according to the user's input.
2195 * There can be more then one JOB per queue.
2196 *
2197 * The CS IOCTL will receive two sets of JOBS. One set is for "restore" phase
2198 * and a second set is for "execution" phase.
2199 * The JOBS on the "restore" phase are enqueued only after context-switch
2200 * (or if its the first CS for this context). The user can also order the
2201 * driver to run the "restore" phase explicitly
2202 *
2203 * Goya/Gaudi:
2204 * There are two types of queues - external and internal. External queues
2205 * are DMA queues which transfer data from/to the Host. All other queues are
2206 * internal. The driver will get completion notifications from the device only
2207 * on JOBS which are enqueued in the external queues.
2208 *
2209 * Greco onwards:
2210 * There is a single type of queue for all types of engines, either DMA engines
2211 * for transfers from/to the host or inside the device, or compute engines.
2212 * The driver will get completion notifications from the device for all queues.
2213 *
2214 * For jobs on external queues, the user needs to create command buffers
2215 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
2216 * internal queues, the user needs to prepare a "command buffer" with packets
2217 * on either the device SRAM/DRAM or the host, and give the device address of
2218 * that buffer to the CS ioctl.
2219 * For jobs on H/W queues both options of command buffers are valid.
2220 *
2221 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
2222 * means it returns immediately after ALL the JOBS were enqueued on their
2223 * relevant queues. Therefore, the user mustn't assume the CS has been completed
2224 * or has even started to execute.
2225 *
2226 * Upon successful enqueue, the IOCTL returns a sequence number which the user
2227 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
2228 * non-internal JOBS have been completed. Note that if the CS has internal JOBS
2229 * which can execute AFTER the external JOBS have finished, the driver might
2230 * report that the CS has finished executing BEFORE the internal JOBS have
2231 * actually finished executing.
2232 *
2233 * Even though the sequence number increments per CS, the user can NOT
2234 * automatically assume that if CS with sequence number N finished, then CS
2235 * with sequence number N-1 also finished. The user can make this assumption if
2236 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
2237 * queues).
2238 */
2239#define HL_IOCTL_CS			\
2240		_IOWR('H', 0x03, union hl_cs_args)
2241
2242/*
2243 * Wait for Command Submission
2244 *
2245 * The user can call this IOCTL with a handle it received from the CS IOCTL
2246 * to wait until the handle's CS has finished executing. The user will wait
2247 * inside the kernel until the CS has finished or until the user-requested
2248 * timeout has expired.
2249 *
2250 * If the timeout value is 0, the driver won't sleep at all. It will check
2251 * the status of the CS and return immediately
2252 *
2253 * The return value of the IOCTL is a standard Linux error code. The possible
2254 * values are:
2255 *
2256 * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
2257 *             that the user process received
2258 * ETIMEDOUT - The CS has caused a timeout on the device
2259 * EIO       - The CS was aborted (usually because the device was reset)
2260 * ENODEV    - The device wants to do hard-reset (so user need to close FD)
2261 *
2262 * The driver also returns a custom define in case the IOCTL call returned 0.
2263 * The define can be one of the following:
2264 *
2265 * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
2266 * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
2267 * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
2268 *                                 (ETIMEDOUT)
2269 * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
2270 *                                 device was reset (EIO)
2271 */
2272
2273#define HL_IOCTL_WAIT_CS			\
2274		_IOWR('H', 0x04, union hl_wait_cs_args)
2275
2276/*
2277 * Memory
2278 * - Map host memory to device MMU
2279 * - Unmap host memory from device MMU
2280 *
2281 * This IOCTL allows the user to map host memory to the device MMU
2282 *
2283 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
2284 * to allocate the memory in user-space (malloc/new). The driver pins the
2285 * physical pages (up to the allowed limit by the OS), assigns a virtual
2286 * address in the device VA space and initializes the device MMU.
2287 *
2288 * There is an option for the user to specify the requested virtual address.
2289 *
2290 */
2291#define HL_IOCTL_MEMORY		\
2292		_IOWR('H', 0x05, union hl_mem_args)
2293
2294/*
2295 * Debug
2296 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
2297 *
2298 * This IOCTL allows the user to get debug traces from the chip.
2299 *
2300 * Before the user can send configuration requests of the various
2301 * debug/profile engines, it needs to set the device into debug mode.
2302 * This is because the debug/profile infrastructure is shared component in the
2303 * device and we can't allow multiple users to access it at the same time.
2304 *
2305 * Once a user set the device into debug mode, the driver won't allow other
2306 * users to "work" with the device, i.e. open a FD. If there are multiple users
2307 * opened on the device, the driver won't allow any user to debug the device.
2308 *
2309 * For each configuration request, the user needs to provide the register index
2310 * and essential data such as buffer address and size.
2311 *
2312 * Once the user has finished using the debug/profile engines, he should
2313 * set the device into non-debug mode, i.e. disable debug mode.
2314 *
2315 * The driver can decide to "kick out" the user if he abuses this interface.
2316 *
2317 */
2318#define HL_IOCTL_DEBUG		\
2319		_IOWR('H', 0x06, struct hl_debug_args)
2320
2321#define HL_COMMAND_START	0x01
2322#define HL_COMMAND_END		0x07
2323
2324#endif /* HABANALABS_H_ */
2325