1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */ 2/* 3 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 4 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 5 * Copyright (c) 2004, 2020 Intel Corporation. All rights reserved. 6 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 7 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 9 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 10 */ 11 12#ifndef IB_VERBS_H 13#define IB_VERBS_H 14 15#include <linux/ethtool.h> 16#include <linux/types.h> 17#include <linux/device.h> 18#include <linux/dma-mapping.h> 19#include <linux/kref.h> 20#include <linux/list.h> 21#include <linux/rwsem.h> 22#include <linux/workqueue.h> 23#include <linux/irq_poll.h> 24#include <uapi/linux/if_ether.h> 25#include <net/ipv6.h> 26#include <net/ip.h> 27#include <linux/string.h> 28#include <linux/slab.h> 29#include <linux/netdevice.h> 30#include <linux/refcount.h> 31#include <linux/if_link.h> 32#include <linux/atomic.h> 33#include <linux/mmu_notifier.h> 34#include <linux/uaccess.h> 35#include <linux/cgroup_rdma.h> 36#include <linux/irqflags.h> 37#include <linux/preempt.h> 38#include <linux/dim.h> 39#include <uapi/rdma/ib_user_verbs.h> 40#include <rdma/rdma_counter.h> 41#include <rdma/restrack.h> 42#include <rdma/signature.h> 43#include <uapi/rdma/rdma_user_ioctl.h> 44#include <uapi/rdma/ib_user_ioctl_verbs.h> 45 46#define IB_FW_VERSION_NAME_MAX ETHTOOL_FWVERS_LEN 47 48struct ib_umem_odp; 49struct ib_uqp_object; 50struct ib_usrq_object; 51struct ib_uwq_object; 52struct rdma_cm_id; 53struct ib_port; 54struct hw_stats_device_data; 55 56extern struct workqueue_struct *ib_wq; 57extern struct workqueue_struct *ib_comp_wq; 58extern struct workqueue_struct *ib_comp_unbound_wq; 59 60struct ib_ucq_object; 61 62__printf(3, 4) __cold 63void ibdev_printk(const char *level, const struct ib_device *ibdev, 64 const char *format, ...); 65__printf(2, 3) __cold 66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...); 67__printf(2, 3) __cold 68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...); 69__printf(2, 3) __cold 70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...); 71__printf(2, 3) __cold 72void ibdev_err(const struct ib_device *ibdev, const char *format, ...); 73__printf(2, 3) __cold 74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...); 75__printf(2, 3) __cold 76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...); 77__printf(2, 3) __cold 78void ibdev_info(const struct ib_device *ibdev, const char *format, ...); 79 80#if defined(CONFIG_DYNAMIC_DEBUG) || \ 81 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 82#define ibdev_dbg(__dev, format, args...) \ 83 dynamic_ibdev_dbg(__dev, format, ##args) 84#else 85__printf(2, 3) __cold 86static inline 87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {} 88#endif 89 90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...) \ 91do { \ 92 static DEFINE_RATELIMIT_STATE(_rs, \ 93 DEFAULT_RATELIMIT_INTERVAL, \ 94 DEFAULT_RATELIMIT_BURST); \ 95 if (__ratelimit(&_rs)) \ 96 ibdev_level(ibdev, fmt, ##__VA_ARGS__); \ 97} while (0) 98 99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \ 100 ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__) 101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \ 102 ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__) 103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \ 104 ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__) 105#define ibdev_err_ratelimited(ibdev, fmt, ...) \ 106 ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__) 107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \ 108 ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__) 109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \ 110 ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__) 111#define ibdev_info_ratelimited(ibdev, fmt, ...) \ 112 ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__) 113 114#if defined(CONFIG_DYNAMIC_DEBUG) || \ 115 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 116/* descriptor check is first to prevent flooding with "callbacks suppressed" */ 117#define ibdev_dbg_ratelimited(ibdev, fmt, ...) \ 118do { \ 119 static DEFINE_RATELIMIT_STATE(_rs, \ 120 DEFAULT_RATELIMIT_INTERVAL, \ 121 DEFAULT_RATELIMIT_BURST); \ 122 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); \ 123 if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs)) \ 124 __dynamic_ibdev_dbg(&descriptor, ibdev, fmt, \ 125 ##__VA_ARGS__); \ 126} while (0) 127#else 128__printf(2, 3) __cold 129static inline 130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {} 131#endif 132 133union ib_gid { 134 u8 raw[16]; 135 struct { 136 __be64 subnet_prefix; 137 __be64 interface_id; 138 } global; 139}; 140 141extern union ib_gid zgid; 142 143enum ib_gid_type { 144 IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB, 145 IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1, 146 IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2, 147 IB_GID_TYPE_SIZE 148}; 149 150#define ROCE_V2_UDP_DPORT 4791 151struct ib_gid_attr { 152 struct net_device __rcu *ndev; 153 struct ib_device *device; 154 union ib_gid gid; 155 enum ib_gid_type gid_type; 156 u16 index; 157 u32 port_num; 158}; 159 160enum { 161 /* set the local administered indication */ 162 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 163}; 164 165enum rdma_transport_type { 166 RDMA_TRANSPORT_IB, 167 RDMA_TRANSPORT_IWARP, 168 RDMA_TRANSPORT_USNIC, 169 RDMA_TRANSPORT_USNIC_UDP, 170 RDMA_TRANSPORT_UNSPECIFIED, 171}; 172 173enum rdma_protocol_type { 174 RDMA_PROTOCOL_IB, 175 RDMA_PROTOCOL_IBOE, 176 RDMA_PROTOCOL_IWARP, 177 RDMA_PROTOCOL_USNIC_UDP 178}; 179 180__attribute_const__ enum rdma_transport_type 181rdma_node_get_transport(unsigned int node_type); 182 183enum rdma_network_type { 184 RDMA_NETWORK_IB, 185 RDMA_NETWORK_ROCE_V1, 186 RDMA_NETWORK_IPV4, 187 RDMA_NETWORK_IPV6 188}; 189 190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 191{ 192 if (network_type == RDMA_NETWORK_IPV4 || 193 network_type == RDMA_NETWORK_IPV6) 194 return IB_GID_TYPE_ROCE_UDP_ENCAP; 195 else if (network_type == RDMA_NETWORK_ROCE_V1) 196 return IB_GID_TYPE_ROCE; 197 else 198 return IB_GID_TYPE_IB; 199} 200 201static inline enum rdma_network_type 202rdma_gid_attr_network_type(const struct ib_gid_attr *attr) 203{ 204 if (attr->gid_type == IB_GID_TYPE_IB) 205 return RDMA_NETWORK_IB; 206 207 if (attr->gid_type == IB_GID_TYPE_ROCE) 208 return RDMA_NETWORK_ROCE_V1; 209 210 if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid)) 211 return RDMA_NETWORK_IPV4; 212 else 213 return RDMA_NETWORK_IPV6; 214} 215 216enum rdma_link_layer { 217 IB_LINK_LAYER_UNSPECIFIED, 218 IB_LINK_LAYER_INFINIBAND, 219 IB_LINK_LAYER_ETHERNET, 220}; 221 222enum ib_device_cap_flags { 223 IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR, 224 IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR, 225 IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR, 226 IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI, 227 IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG, 228 IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT, 229 IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE, 230 IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD, 231 IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT, 232 /* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */ 233 IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT, 234 IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID, 235 IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN, 236 IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE, 237 IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ, 238 239 /* Reserved, old SEND_W_INV = 1 << 16,*/ 240 IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW, 241 /* 242 * Devices should set IB_DEVICE_UD_IP_SUM if they support 243 * insertion of UDP and TCP checksum on outgoing UD IPoIB 244 * messages and can verify the validity of checksum for 245 * incoming messages. Setting this flag implies that the 246 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 247 */ 248 IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM, 249 IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC, 250 251 /* 252 * This device supports the IB "base memory management extension", 253 * which includes support for fast registrations (IB_WR_REG_MR, 254 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 255 * also be set by any iWarp device which must support FRs to comply 256 * to the iWarp verbs spec. iWarp devices also support the 257 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 258 * stag. 259 */ 260 IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS, 261 IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A, 262 IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B, 263 IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM, 264 /* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */ 265 IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM, 266 IB_DEVICE_MANAGED_FLOW_STEERING = 267 IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING, 268 /* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */ 269 IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS, 270 /* The device supports padding incoming writes to cacheline. */ 271 IB_DEVICE_PCI_WRITE_END_PADDING = 272 IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING, 273 /* Placement type attributes */ 274 IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL, 275 IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT, 276 IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE, 277}; 278 279enum ib_kernel_cap_flags { 280 /* 281 * This device supports a per-device lkey or stag that can be 282 * used without performing a memory registration for the local 283 * memory. Note that ULPs should never check this flag, but 284 * instead of use the local_dma_lkey flag in the ib_pd structure, 285 * which will always contain a usable lkey. 286 */ 287 IBK_LOCAL_DMA_LKEY = 1 << 0, 288 /* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */ 289 IBK_INTEGRITY_HANDOVER = 1 << 1, 290 /* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */ 291 IBK_ON_DEMAND_PAGING = 1 << 2, 292 /* IB_MR_TYPE_SG_GAPS is supported */ 293 IBK_SG_GAPS_REG = 1 << 3, 294 /* Driver supports RDMA_NLDEV_CMD_DELLINK */ 295 IBK_ALLOW_USER_UNREG = 1 << 4, 296 297 /* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */ 298 IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5, 299 /* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */ 300 IBK_UD_TSO = 1 << 6, 301 /* iopib will use the device ops: 302 * get_vf_config 303 * get_vf_guid 304 * get_vf_stats 305 * set_vf_guid 306 * set_vf_link_state 307 */ 308 IBK_VIRTUAL_FUNCTION = 1 << 7, 309 /* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */ 310 IBK_RDMA_NETDEV_OPA = 1 << 8, 311}; 312 313enum ib_atomic_cap { 314 IB_ATOMIC_NONE, 315 IB_ATOMIC_HCA, 316 IB_ATOMIC_GLOB 317}; 318 319enum ib_odp_general_cap_bits { 320 IB_ODP_SUPPORT = 1 << 0, 321 IB_ODP_SUPPORT_IMPLICIT = 1 << 1, 322}; 323 324enum ib_odp_transport_cap_bits { 325 IB_ODP_SUPPORT_SEND = 1 << 0, 326 IB_ODP_SUPPORT_RECV = 1 << 1, 327 IB_ODP_SUPPORT_WRITE = 1 << 2, 328 IB_ODP_SUPPORT_READ = 1 << 3, 329 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 330 IB_ODP_SUPPORT_SRQ_RECV = 1 << 5, 331}; 332 333struct ib_odp_caps { 334 uint64_t general_caps; 335 struct { 336 uint32_t rc_odp_caps; 337 uint32_t uc_odp_caps; 338 uint32_t ud_odp_caps; 339 uint32_t xrc_odp_caps; 340 } per_transport_caps; 341}; 342 343struct ib_rss_caps { 344 /* Corresponding bit will be set if qp type from 345 * 'enum ib_qp_type' is supported, e.g. 346 * supported_qpts |= 1 << IB_QPT_UD 347 */ 348 u32 supported_qpts; 349 u32 max_rwq_indirection_tables; 350 u32 max_rwq_indirection_table_size; 351}; 352 353enum ib_tm_cap_flags { 354 /* Support tag matching with rendezvous offload for RC transport */ 355 IB_TM_CAP_RNDV_RC = 1 << 0, 356}; 357 358struct ib_tm_caps { 359 /* Max size of RNDV header */ 360 u32 max_rndv_hdr_size; 361 /* Max number of entries in tag matching list */ 362 u32 max_num_tags; 363 /* From enum ib_tm_cap_flags */ 364 u32 flags; 365 /* Max number of outstanding list operations */ 366 u32 max_ops; 367 /* Max number of SGE in tag matching entry */ 368 u32 max_sge; 369}; 370 371struct ib_cq_init_attr { 372 unsigned int cqe; 373 u32 comp_vector; 374 u32 flags; 375}; 376 377enum ib_cq_attr_mask { 378 IB_CQ_MODERATE = 1 << 0, 379}; 380 381struct ib_cq_caps { 382 u16 max_cq_moderation_count; 383 u16 max_cq_moderation_period; 384}; 385 386struct ib_dm_mr_attr { 387 u64 length; 388 u64 offset; 389 u32 access_flags; 390}; 391 392struct ib_dm_alloc_attr { 393 u64 length; 394 u32 alignment; 395 u32 flags; 396}; 397 398struct ib_device_attr { 399 u64 fw_ver; 400 __be64 sys_image_guid; 401 u64 max_mr_size; 402 u64 page_size_cap; 403 u32 vendor_id; 404 u32 vendor_part_id; 405 u32 hw_ver; 406 int max_qp; 407 int max_qp_wr; 408 u64 device_cap_flags; 409 u64 kernel_cap_flags; 410 int max_send_sge; 411 int max_recv_sge; 412 int max_sge_rd; 413 int max_cq; 414 int max_cqe; 415 int max_mr; 416 int max_pd; 417 int max_qp_rd_atom; 418 int max_ee_rd_atom; 419 int max_res_rd_atom; 420 int max_qp_init_rd_atom; 421 int max_ee_init_rd_atom; 422 enum ib_atomic_cap atomic_cap; 423 enum ib_atomic_cap masked_atomic_cap; 424 int max_ee; 425 int max_rdd; 426 int max_mw; 427 int max_raw_ipv6_qp; 428 int max_raw_ethy_qp; 429 int max_mcast_grp; 430 int max_mcast_qp_attach; 431 int max_total_mcast_qp_attach; 432 int max_ah; 433 int max_srq; 434 int max_srq_wr; 435 int max_srq_sge; 436 unsigned int max_fast_reg_page_list_len; 437 unsigned int max_pi_fast_reg_page_list_len; 438 u16 max_pkeys; 439 u8 local_ca_ack_delay; 440 int sig_prot_cap; 441 int sig_guard_cap; 442 struct ib_odp_caps odp_caps; 443 uint64_t timestamp_mask; 444 uint64_t hca_core_clock; /* in KHZ */ 445 struct ib_rss_caps rss_caps; 446 u32 max_wq_type_rq; 447 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 448 struct ib_tm_caps tm_caps; 449 struct ib_cq_caps cq_caps; 450 u64 max_dm_size; 451 /* Max entries for sgl for optimized performance per READ */ 452 u32 max_sgl_rd; 453}; 454 455enum ib_mtu { 456 IB_MTU_256 = 1, 457 IB_MTU_512 = 2, 458 IB_MTU_1024 = 3, 459 IB_MTU_2048 = 4, 460 IB_MTU_4096 = 5 461}; 462 463enum opa_mtu { 464 OPA_MTU_8192 = 6, 465 OPA_MTU_10240 = 7 466}; 467 468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 469{ 470 switch (mtu) { 471 case IB_MTU_256: return 256; 472 case IB_MTU_512: return 512; 473 case IB_MTU_1024: return 1024; 474 case IB_MTU_2048: return 2048; 475 case IB_MTU_4096: return 4096; 476 default: return -1; 477 } 478} 479 480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu) 481{ 482 if (mtu >= 4096) 483 return IB_MTU_4096; 484 else if (mtu >= 2048) 485 return IB_MTU_2048; 486 else if (mtu >= 1024) 487 return IB_MTU_1024; 488 else if (mtu >= 512) 489 return IB_MTU_512; 490 else 491 return IB_MTU_256; 492} 493 494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu) 495{ 496 switch (mtu) { 497 case OPA_MTU_8192: 498 return 8192; 499 case OPA_MTU_10240: 500 return 10240; 501 default: 502 return(ib_mtu_enum_to_int((enum ib_mtu)mtu)); 503 } 504} 505 506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu) 507{ 508 if (mtu >= 10240) 509 return OPA_MTU_10240; 510 else if (mtu >= 8192) 511 return OPA_MTU_8192; 512 else 513 return ((enum opa_mtu)ib_mtu_int_to_enum(mtu)); 514} 515 516enum ib_port_state { 517 IB_PORT_NOP = 0, 518 IB_PORT_DOWN = 1, 519 IB_PORT_INIT = 2, 520 IB_PORT_ARMED = 3, 521 IB_PORT_ACTIVE = 4, 522 IB_PORT_ACTIVE_DEFER = 5 523}; 524 525enum ib_port_phys_state { 526 IB_PORT_PHYS_STATE_SLEEP = 1, 527 IB_PORT_PHYS_STATE_POLLING = 2, 528 IB_PORT_PHYS_STATE_DISABLED = 3, 529 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 530 IB_PORT_PHYS_STATE_LINK_UP = 5, 531 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 532 IB_PORT_PHYS_STATE_PHY_TEST = 7, 533}; 534 535enum ib_port_width { 536 IB_WIDTH_1X = 1, 537 IB_WIDTH_2X = 16, 538 IB_WIDTH_4X = 2, 539 IB_WIDTH_8X = 4, 540 IB_WIDTH_12X = 8 541}; 542 543static inline int ib_width_enum_to_int(enum ib_port_width width) 544{ 545 switch (width) { 546 case IB_WIDTH_1X: return 1; 547 case IB_WIDTH_2X: return 2; 548 case IB_WIDTH_4X: return 4; 549 case IB_WIDTH_8X: return 8; 550 case IB_WIDTH_12X: return 12; 551 default: return -1; 552 } 553} 554 555enum ib_port_speed { 556 IB_SPEED_SDR = 1, 557 IB_SPEED_DDR = 2, 558 IB_SPEED_QDR = 4, 559 IB_SPEED_FDR10 = 8, 560 IB_SPEED_FDR = 16, 561 IB_SPEED_EDR = 32, 562 IB_SPEED_HDR = 64, 563 IB_SPEED_NDR = 128, 564}; 565 566enum ib_stat_flag { 567 IB_STAT_FLAG_OPTIONAL = 1 << 0, 568}; 569 570/** 571 * struct rdma_stat_desc 572 * @name - The name of the counter 573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL 574 * @priv - Driver private information; Core code should not use 575 */ 576struct rdma_stat_desc { 577 const char *name; 578 unsigned int flags; 579 const void *priv; 580}; 581 582/** 583 * struct rdma_hw_stats 584 * @lock - Mutex to protect parallel write access to lifespan and values 585 * of counters, which are 64bits and not guaranteed to be written 586 * atomicaly on 32bits systems. 587 * @timestamp - Used by the core code to track when the last update was 588 * @lifespan - Used by the core code to determine how old the counters 589 * should be before being updated again. Stored in jiffies, defaults 590 * to 10 milliseconds, drivers can override the default be specifying 591 * their own value during their allocation routine. 592 * @descs - Array of pointers to static descriptors used for the counters 593 * in directory. 594 * @is_disabled - A bitmap to indicate each counter is currently disabled 595 * or not. 596 * @num_counters - How many hardware counters there are. If name is 597 * shorter than this number, a kernel oops will result. Driver authors 598 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 599 * in their code to prevent this. 600 * @value - Array of u64 counters that are accessed by the sysfs code and 601 * filled in by the drivers get_stats routine 602 */ 603struct rdma_hw_stats { 604 struct mutex lock; /* Protect lifespan and values[] */ 605 unsigned long timestamp; 606 unsigned long lifespan; 607 const struct rdma_stat_desc *descs; 608 unsigned long *is_disabled; 609 int num_counters; 610 u64 value[]; 611}; 612 613#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 614 615struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 616 const struct rdma_stat_desc *descs, int num_counters, 617 unsigned long lifespan); 618 619void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats); 620 621/* Define bits for the various functionality this port needs to be supported by 622 * the core. 623 */ 624/* Management 0x00000FFF */ 625#define RDMA_CORE_CAP_IB_MAD 0x00000001 626#define RDMA_CORE_CAP_IB_SMI 0x00000002 627#define RDMA_CORE_CAP_IB_CM 0x00000004 628#define RDMA_CORE_CAP_IW_CM 0x00000008 629#define RDMA_CORE_CAP_IB_SA 0x00000010 630#define RDMA_CORE_CAP_OPA_MAD 0x00000020 631 632/* Address format 0x000FF000 */ 633#define RDMA_CORE_CAP_AF_IB 0x00001000 634#define RDMA_CORE_CAP_ETH_AH 0x00002000 635#define RDMA_CORE_CAP_OPA_AH 0x00004000 636#define RDMA_CORE_CAP_IB_GRH_REQUIRED 0x00008000 637 638/* Protocol 0xFFF00000 */ 639#define RDMA_CORE_CAP_PROT_IB 0x00100000 640#define RDMA_CORE_CAP_PROT_ROCE 0x00200000 641#define RDMA_CORE_CAP_PROT_IWARP 0x00400000 642#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 643#define RDMA_CORE_CAP_PROT_RAW_PACKET 0x01000000 644#define RDMA_CORE_CAP_PROT_USNIC 0x02000000 645 646#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \ 647 | RDMA_CORE_CAP_PROT_ROCE \ 648 | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP) 649 650#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 651 | RDMA_CORE_CAP_IB_MAD \ 652 | RDMA_CORE_CAP_IB_SMI \ 653 | RDMA_CORE_CAP_IB_CM \ 654 | RDMA_CORE_CAP_IB_SA \ 655 | RDMA_CORE_CAP_AF_IB) 656#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 657 | RDMA_CORE_CAP_IB_MAD \ 658 | RDMA_CORE_CAP_IB_CM \ 659 | RDMA_CORE_CAP_AF_IB \ 660 | RDMA_CORE_CAP_ETH_AH) 661#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 662 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 663 | RDMA_CORE_CAP_IB_MAD \ 664 | RDMA_CORE_CAP_IB_CM \ 665 | RDMA_CORE_CAP_AF_IB \ 666 | RDMA_CORE_CAP_ETH_AH) 667#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 668 | RDMA_CORE_CAP_IW_CM) 669#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 670 | RDMA_CORE_CAP_OPA_MAD) 671 672#define RDMA_CORE_PORT_RAW_PACKET (RDMA_CORE_CAP_PROT_RAW_PACKET) 673 674#define RDMA_CORE_PORT_USNIC (RDMA_CORE_CAP_PROT_USNIC) 675 676struct ib_port_attr { 677 u64 subnet_prefix; 678 enum ib_port_state state; 679 enum ib_mtu max_mtu; 680 enum ib_mtu active_mtu; 681 u32 phys_mtu; 682 int gid_tbl_len; 683 unsigned int ip_gids:1; 684 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 685 u32 port_cap_flags; 686 u32 max_msg_sz; 687 u32 bad_pkey_cntr; 688 u32 qkey_viol_cntr; 689 u16 pkey_tbl_len; 690 u32 sm_lid; 691 u32 lid; 692 u8 lmc; 693 u8 max_vl_num; 694 u8 sm_sl; 695 u8 subnet_timeout; 696 u8 init_type_reply; 697 u8 active_width; 698 u16 active_speed; 699 u8 phys_state; 700 u16 port_cap_flags2; 701}; 702 703enum ib_device_modify_flags { 704 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 705 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 706}; 707 708#define IB_DEVICE_NODE_DESC_MAX 64 709 710struct ib_device_modify { 711 u64 sys_image_guid; 712 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 713}; 714 715enum ib_port_modify_flags { 716 IB_PORT_SHUTDOWN = 1, 717 IB_PORT_INIT_TYPE = (1<<2), 718 IB_PORT_RESET_QKEY_CNTR = (1<<3), 719 IB_PORT_OPA_MASK_CHG = (1<<4) 720}; 721 722struct ib_port_modify { 723 u32 set_port_cap_mask; 724 u32 clr_port_cap_mask; 725 u8 init_type; 726}; 727 728enum ib_event_type { 729 IB_EVENT_CQ_ERR, 730 IB_EVENT_QP_FATAL, 731 IB_EVENT_QP_REQ_ERR, 732 IB_EVENT_QP_ACCESS_ERR, 733 IB_EVENT_COMM_EST, 734 IB_EVENT_SQ_DRAINED, 735 IB_EVENT_PATH_MIG, 736 IB_EVENT_PATH_MIG_ERR, 737 IB_EVENT_DEVICE_FATAL, 738 IB_EVENT_PORT_ACTIVE, 739 IB_EVENT_PORT_ERR, 740 IB_EVENT_LID_CHANGE, 741 IB_EVENT_PKEY_CHANGE, 742 IB_EVENT_SM_CHANGE, 743 IB_EVENT_SRQ_ERR, 744 IB_EVENT_SRQ_LIMIT_REACHED, 745 IB_EVENT_QP_LAST_WQE_REACHED, 746 IB_EVENT_CLIENT_REREGISTER, 747 IB_EVENT_GID_CHANGE, 748 IB_EVENT_WQ_FATAL, 749}; 750 751const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 752 753struct ib_event { 754 struct ib_device *device; 755 union { 756 struct ib_cq *cq; 757 struct ib_qp *qp; 758 struct ib_srq *srq; 759 struct ib_wq *wq; 760 u32 port_num; 761 } element; 762 enum ib_event_type event; 763}; 764 765struct ib_event_handler { 766 struct ib_device *device; 767 void (*handler)(struct ib_event_handler *, struct ib_event *); 768 struct list_head list; 769}; 770 771#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 772 do { \ 773 (_ptr)->device = _device; \ 774 (_ptr)->handler = _handler; \ 775 INIT_LIST_HEAD(&(_ptr)->list); \ 776 } while (0) 777 778struct ib_global_route { 779 const struct ib_gid_attr *sgid_attr; 780 union ib_gid dgid; 781 u32 flow_label; 782 u8 sgid_index; 783 u8 hop_limit; 784 u8 traffic_class; 785}; 786 787struct ib_grh { 788 __be32 version_tclass_flow; 789 __be16 paylen; 790 u8 next_hdr; 791 u8 hop_limit; 792 union ib_gid sgid; 793 union ib_gid dgid; 794}; 795 796union rdma_network_hdr { 797 struct ib_grh ibgrh; 798 struct { 799 /* The IB spec states that if it's IPv4, the header 800 * is located in the last 20 bytes of the header. 801 */ 802 u8 reserved[20]; 803 struct iphdr roce4grh; 804 }; 805}; 806 807#define IB_QPN_MASK 0xFFFFFF 808 809enum { 810 IB_MULTICAST_QPN = 0xffffff 811}; 812 813#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 814#define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 815 816enum ib_ah_flags { 817 IB_AH_GRH = 1 818}; 819 820enum ib_rate { 821 IB_RATE_PORT_CURRENT = 0, 822 IB_RATE_2_5_GBPS = 2, 823 IB_RATE_5_GBPS = 5, 824 IB_RATE_10_GBPS = 3, 825 IB_RATE_20_GBPS = 6, 826 IB_RATE_30_GBPS = 4, 827 IB_RATE_40_GBPS = 7, 828 IB_RATE_60_GBPS = 8, 829 IB_RATE_80_GBPS = 9, 830 IB_RATE_120_GBPS = 10, 831 IB_RATE_14_GBPS = 11, 832 IB_RATE_56_GBPS = 12, 833 IB_RATE_112_GBPS = 13, 834 IB_RATE_168_GBPS = 14, 835 IB_RATE_25_GBPS = 15, 836 IB_RATE_100_GBPS = 16, 837 IB_RATE_200_GBPS = 17, 838 IB_RATE_300_GBPS = 18, 839 IB_RATE_28_GBPS = 19, 840 IB_RATE_50_GBPS = 20, 841 IB_RATE_400_GBPS = 21, 842 IB_RATE_600_GBPS = 22, 843}; 844 845/** 846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 847 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 849 * @rate: rate to convert. 850 */ 851__attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 852 853/** 854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 855 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 856 * @rate: rate to convert. 857 */ 858__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 859 860 861/** 862 * enum ib_mr_type - memory region type 863 * @IB_MR_TYPE_MEM_REG: memory region that is used for 864 * normal registration 865 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 866 * register any arbitrary sg lists (without 867 * the normal mr constraints - see 868 * ib_map_mr_sg) 869 * @IB_MR_TYPE_DM: memory region that is used for device 870 * memory registration 871 * @IB_MR_TYPE_USER: memory region that is used for the user-space 872 * application 873 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 874 * without address translations (VA=PA) 875 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 876 * data integrity operations 877 */ 878enum ib_mr_type { 879 IB_MR_TYPE_MEM_REG, 880 IB_MR_TYPE_SG_GAPS, 881 IB_MR_TYPE_DM, 882 IB_MR_TYPE_USER, 883 IB_MR_TYPE_DMA, 884 IB_MR_TYPE_INTEGRITY, 885}; 886 887enum ib_mr_status_check { 888 IB_MR_CHECK_SIG_STATUS = 1, 889}; 890 891/** 892 * struct ib_mr_status - Memory region status container 893 * 894 * @fail_status: Bitmask of MR checks status. For each 895 * failed check a corresponding status bit is set. 896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 897 * failure. 898 */ 899struct ib_mr_status { 900 u32 fail_status; 901 struct ib_sig_err sig_err; 902}; 903 904/** 905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 906 * enum. 907 * @mult: multiple to convert. 908 */ 909__attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 910 911struct rdma_ah_init_attr { 912 struct rdma_ah_attr *ah_attr; 913 u32 flags; 914 struct net_device *xmit_slave; 915}; 916 917enum rdma_ah_attr_type { 918 RDMA_AH_ATTR_TYPE_UNDEFINED, 919 RDMA_AH_ATTR_TYPE_IB, 920 RDMA_AH_ATTR_TYPE_ROCE, 921 RDMA_AH_ATTR_TYPE_OPA, 922}; 923 924struct ib_ah_attr { 925 u16 dlid; 926 u8 src_path_bits; 927}; 928 929struct roce_ah_attr { 930 u8 dmac[ETH_ALEN]; 931}; 932 933struct opa_ah_attr { 934 u32 dlid; 935 u8 src_path_bits; 936 bool make_grd; 937}; 938 939struct rdma_ah_attr { 940 struct ib_global_route grh; 941 u8 sl; 942 u8 static_rate; 943 u32 port_num; 944 u8 ah_flags; 945 enum rdma_ah_attr_type type; 946 union { 947 struct ib_ah_attr ib; 948 struct roce_ah_attr roce; 949 struct opa_ah_attr opa; 950 }; 951}; 952 953enum ib_wc_status { 954 IB_WC_SUCCESS, 955 IB_WC_LOC_LEN_ERR, 956 IB_WC_LOC_QP_OP_ERR, 957 IB_WC_LOC_EEC_OP_ERR, 958 IB_WC_LOC_PROT_ERR, 959 IB_WC_WR_FLUSH_ERR, 960 IB_WC_MW_BIND_ERR, 961 IB_WC_BAD_RESP_ERR, 962 IB_WC_LOC_ACCESS_ERR, 963 IB_WC_REM_INV_REQ_ERR, 964 IB_WC_REM_ACCESS_ERR, 965 IB_WC_REM_OP_ERR, 966 IB_WC_RETRY_EXC_ERR, 967 IB_WC_RNR_RETRY_EXC_ERR, 968 IB_WC_LOC_RDD_VIOL_ERR, 969 IB_WC_REM_INV_RD_REQ_ERR, 970 IB_WC_REM_ABORT_ERR, 971 IB_WC_INV_EECN_ERR, 972 IB_WC_INV_EEC_STATE_ERR, 973 IB_WC_FATAL_ERR, 974 IB_WC_RESP_TIMEOUT_ERR, 975 IB_WC_GENERAL_ERR 976}; 977 978const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 979 980enum ib_wc_opcode { 981 IB_WC_SEND = IB_UVERBS_WC_SEND, 982 IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE, 983 IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ, 984 IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP, 985 IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD, 986 IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW, 987 IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV, 988 IB_WC_LSO = IB_UVERBS_WC_TSO, 989 IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE, 990 IB_WC_REG_MR, 991 IB_WC_MASKED_COMP_SWAP, 992 IB_WC_MASKED_FETCH_ADD, 993 IB_WC_FLUSH = IB_UVERBS_WC_FLUSH, 994/* 995 * Set value of IB_WC_RECV so consumers can test if a completion is a 996 * receive by testing (opcode & IB_WC_RECV). 997 */ 998 IB_WC_RECV = 1 << 7, 999 IB_WC_RECV_RDMA_WITH_IMM 1000}; 1001 1002enum ib_wc_flags { 1003 IB_WC_GRH = 1, 1004 IB_WC_WITH_IMM = (1<<1), 1005 IB_WC_WITH_INVALIDATE = (1<<2), 1006 IB_WC_IP_CSUM_OK = (1<<3), 1007 IB_WC_WITH_SMAC = (1<<4), 1008 IB_WC_WITH_VLAN = (1<<5), 1009 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 1010}; 1011 1012struct ib_wc { 1013 union { 1014 u64 wr_id; 1015 struct ib_cqe *wr_cqe; 1016 }; 1017 enum ib_wc_status status; 1018 enum ib_wc_opcode opcode; 1019 u32 vendor_err; 1020 u32 byte_len; 1021 struct ib_qp *qp; 1022 union { 1023 __be32 imm_data; 1024 u32 invalidate_rkey; 1025 } ex; 1026 u32 src_qp; 1027 u32 slid; 1028 int wc_flags; 1029 u16 pkey_index; 1030 u8 sl; 1031 u8 dlid_path_bits; 1032 u32 port_num; /* valid only for DR SMPs on switches */ 1033 u8 smac[ETH_ALEN]; 1034 u16 vlan_id; 1035 u8 network_hdr_type; 1036}; 1037 1038enum ib_cq_notify_flags { 1039 IB_CQ_SOLICITED = 1 << 0, 1040 IB_CQ_NEXT_COMP = 1 << 1, 1041 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 1042 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 1043}; 1044 1045enum ib_srq_type { 1046 IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC, 1047 IB_SRQT_XRC = IB_UVERBS_SRQT_XRC, 1048 IB_SRQT_TM = IB_UVERBS_SRQT_TM, 1049}; 1050 1051static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 1052{ 1053 return srq_type == IB_SRQT_XRC || 1054 srq_type == IB_SRQT_TM; 1055} 1056 1057enum ib_srq_attr_mask { 1058 IB_SRQ_MAX_WR = 1 << 0, 1059 IB_SRQ_LIMIT = 1 << 1, 1060}; 1061 1062struct ib_srq_attr { 1063 u32 max_wr; 1064 u32 max_sge; 1065 u32 srq_limit; 1066}; 1067 1068struct ib_srq_init_attr { 1069 void (*event_handler)(struct ib_event *, void *); 1070 void *srq_context; 1071 struct ib_srq_attr attr; 1072 enum ib_srq_type srq_type; 1073 1074 struct { 1075 struct ib_cq *cq; 1076 union { 1077 struct { 1078 struct ib_xrcd *xrcd; 1079 } xrc; 1080 1081 struct { 1082 u32 max_num_tags; 1083 } tag_matching; 1084 }; 1085 } ext; 1086}; 1087 1088struct ib_qp_cap { 1089 u32 max_send_wr; 1090 u32 max_recv_wr; 1091 u32 max_send_sge; 1092 u32 max_recv_sge; 1093 u32 max_inline_data; 1094 1095 /* 1096 * Maximum number of rdma_rw_ctx structures in flight at a time. 1097 * ib_create_qp() will calculate the right amount of neededed WRs 1098 * and MRs based on this. 1099 */ 1100 u32 max_rdma_ctxs; 1101}; 1102 1103enum ib_sig_type { 1104 IB_SIGNAL_ALL_WR, 1105 IB_SIGNAL_REQ_WR 1106}; 1107 1108enum ib_qp_type { 1109 /* 1110 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 1111 * here (and in that order) since the MAD layer uses them as 1112 * indices into a 2-entry table. 1113 */ 1114 IB_QPT_SMI, 1115 IB_QPT_GSI, 1116 1117 IB_QPT_RC = IB_UVERBS_QPT_RC, 1118 IB_QPT_UC = IB_UVERBS_QPT_UC, 1119 IB_QPT_UD = IB_UVERBS_QPT_UD, 1120 IB_QPT_RAW_IPV6, 1121 IB_QPT_RAW_ETHERTYPE, 1122 IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET, 1123 IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI, 1124 IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT, 1125 IB_QPT_MAX, 1126 IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER, 1127 /* Reserve a range for qp types internal to the low level driver. 1128 * These qp types will not be visible at the IB core layer, so the 1129 * IB_QPT_MAX usages should not be affected in the core layer 1130 */ 1131 IB_QPT_RESERVED1 = 0x1000, 1132 IB_QPT_RESERVED2, 1133 IB_QPT_RESERVED3, 1134 IB_QPT_RESERVED4, 1135 IB_QPT_RESERVED5, 1136 IB_QPT_RESERVED6, 1137 IB_QPT_RESERVED7, 1138 IB_QPT_RESERVED8, 1139 IB_QPT_RESERVED9, 1140 IB_QPT_RESERVED10, 1141}; 1142 1143enum ib_qp_create_flags { 1144 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1145 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1146 IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK, 1147 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1148 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1149 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1150 IB_QP_CREATE_NETIF_QP = 1 << 5, 1151 IB_QP_CREATE_INTEGRITY_EN = 1 << 6, 1152 IB_QP_CREATE_NETDEV_USE = 1 << 7, 1153 IB_QP_CREATE_SCATTER_FCS = 1154 IB_UVERBS_QP_CREATE_SCATTER_FCS, 1155 IB_QP_CREATE_CVLAN_STRIPPING = 1156 IB_UVERBS_QP_CREATE_CVLAN_STRIPPING, 1157 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1158 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1159 IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING, 1160 /* reserve bits 26-31 for low level drivers' internal use */ 1161 IB_QP_CREATE_RESERVED_START = 1 << 26, 1162 IB_QP_CREATE_RESERVED_END = 1 << 31, 1163}; 1164 1165/* 1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1167 * callback to destroy the passed in QP. 1168 */ 1169 1170struct ib_qp_init_attr { 1171 /* This callback occurs in workqueue context */ 1172 void (*event_handler)(struct ib_event *, void *); 1173 1174 void *qp_context; 1175 struct ib_cq *send_cq; 1176 struct ib_cq *recv_cq; 1177 struct ib_srq *srq; 1178 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1179 struct ib_qp_cap cap; 1180 enum ib_sig_type sq_sig_type; 1181 enum ib_qp_type qp_type; 1182 u32 create_flags; 1183 1184 /* 1185 * Only needed for special QP types, or when using the RW API. 1186 */ 1187 u32 port_num; 1188 struct ib_rwq_ind_table *rwq_ind_tbl; 1189 u32 source_qpn; 1190}; 1191 1192struct ib_qp_open_attr { 1193 void (*event_handler)(struct ib_event *, void *); 1194 void *qp_context; 1195 u32 qp_num; 1196 enum ib_qp_type qp_type; 1197}; 1198 1199enum ib_rnr_timeout { 1200 IB_RNR_TIMER_655_36 = 0, 1201 IB_RNR_TIMER_000_01 = 1, 1202 IB_RNR_TIMER_000_02 = 2, 1203 IB_RNR_TIMER_000_03 = 3, 1204 IB_RNR_TIMER_000_04 = 4, 1205 IB_RNR_TIMER_000_06 = 5, 1206 IB_RNR_TIMER_000_08 = 6, 1207 IB_RNR_TIMER_000_12 = 7, 1208 IB_RNR_TIMER_000_16 = 8, 1209 IB_RNR_TIMER_000_24 = 9, 1210 IB_RNR_TIMER_000_32 = 10, 1211 IB_RNR_TIMER_000_48 = 11, 1212 IB_RNR_TIMER_000_64 = 12, 1213 IB_RNR_TIMER_000_96 = 13, 1214 IB_RNR_TIMER_001_28 = 14, 1215 IB_RNR_TIMER_001_92 = 15, 1216 IB_RNR_TIMER_002_56 = 16, 1217 IB_RNR_TIMER_003_84 = 17, 1218 IB_RNR_TIMER_005_12 = 18, 1219 IB_RNR_TIMER_007_68 = 19, 1220 IB_RNR_TIMER_010_24 = 20, 1221 IB_RNR_TIMER_015_36 = 21, 1222 IB_RNR_TIMER_020_48 = 22, 1223 IB_RNR_TIMER_030_72 = 23, 1224 IB_RNR_TIMER_040_96 = 24, 1225 IB_RNR_TIMER_061_44 = 25, 1226 IB_RNR_TIMER_081_92 = 26, 1227 IB_RNR_TIMER_122_88 = 27, 1228 IB_RNR_TIMER_163_84 = 28, 1229 IB_RNR_TIMER_245_76 = 29, 1230 IB_RNR_TIMER_327_68 = 30, 1231 IB_RNR_TIMER_491_52 = 31 1232}; 1233 1234enum ib_qp_attr_mask { 1235 IB_QP_STATE = 1, 1236 IB_QP_CUR_STATE = (1<<1), 1237 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1238 IB_QP_ACCESS_FLAGS = (1<<3), 1239 IB_QP_PKEY_INDEX = (1<<4), 1240 IB_QP_PORT = (1<<5), 1241 IB_QP_QKEY = (1<<6), 1242 IB_QP_AV = (1<<7), 1243 IB_QP_PATH_MTU = (1<<8), 1244 IB_QP_TIMEOUT = (1<<9), 1245 IB_QP_RETRY_CNT = (1<<10), 1246 IB_QP_RNR_RETRY = (1<<11), 1247 IB_QP_RQ_PSN = (1<<12), 1248 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1249 IB_QP_ALT_PATH = (1<<14), 1250 IB_QP_MIN_RNR_TIMER = (1<<15), 1251 IB_QP_SQ_PSN = (1<<16), 1252 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1253 IB_QP_PATH_MIG_STATE = (1<<18), 1254 IB_QP_CAP = (1<<19), 1255 IB_QP_DEST_QPN = (1<<20), 1256 IB_QP_RESERVED1 = (1<<21), 1257 IB_QP_RESERVED2 = (1<<22), 1258 IB_QP_RESERVED3 = (1<<23), 1259 IB_QP_RESERVED4 = (1<<24), 1260 IB_QP_RATE_LIMIT = (1<<25), 1261 1262 IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0), 1263}; 1264 1265enum ib_qp_state { 1266 IB_QPS_RESET, 1267 IB_QPS_INIT, 1268 IB_QPS_RTR, 1269 IB_QPS_RTS, 1270 IB_QPS_SQD, 1271 IB_QPS_SQE, 1272 IB_QPS_ERR 1273}; 1274 1275enum ib_mig_state { 1276 IB_MIG_MIGRATED, 1277 IB_MIG_REARM, 1278 IB_MIG_ARMED 1279}; 1280 1281enum ib_mw_type { 1282 IB_MW_TYPE_1 = 1, 1283 IB_MW_TYPE_2 = 2 1284}; 1285 1286struct ib_qp_attr { 1287 enum ib_qp_state qp_state; 1288 enum ib_qp_state cur_qp_state; 1289 enum ib_mtu path_mtu; 1290 enum ib_mig_state path_mig_state; 1291 u32 qkey; 1292 u32 rq_psn; 1293 u32 sq_psn; 1294 u32 dest_qp_num; 1295 int qp_access_flags; 1296 struct ib_qp_cap cap; 1297 struct rdma_ah_attr ah_attr; 1298 struct rdma_ah_attr alt_ah_attr; 1299 u16 pkey_index; 1300 u16 alt_pkey_index; 1301 u8 en_sqd_async_notify; 1302 u8 sq_draining; 1303 u8 max_rd_atomic; 1304 u8 max_dest_rd_atomic; 1305 u8 min_rnr_timer; 1306 u32 port_num; 1307 u8 timeout; 1308 u8 retry_cnt; 1309 u8 rnr_retry; 1310 u32 alt_port_num; 1311 u8 alt_timeout; 1312 u32 rate_limit; 1313 struct net_device *xmit_slave; 1314}; 1315 1316enum ib_wr_opcode { 1317 /* These are shared with userspace */ 1318 IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE, 1319 IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM, 1320 IB_WR_SEND = IB_UVERBS_WR_SEND, 1321 IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM, 1322 IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ, 1323 IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP, 1324 IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD, 1325 IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW, 1326 IB_WR_LSO = IB_UVERBS_WR_TSO, 1327 IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV, 1328 IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV, 1329 IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV, 1330 IB_WR_MASKED_ATOMIC_CMP_AND_SWP = 1331 IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP, 1332 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD = 1333 IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1334 IB_WR_FLUSH = IB_UVERBS_WR_FLUSH, 1335 IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE, 1336 1337 /* These are kernel only and can not be issued by userspace */ 1338 IB_WR_REG_MR = 0x20, 1339 IB_WR_REG_MR_INTEGRITY, 1340 1341 /* reserve values for low level drivers' internal use. 1342 * These values will not be used at all in the ib core layer. 1343 */ 1344 IB_WR_RESERVED1 = 0xf0, 1345 IB_WR_RESERVED2, 1346 IB_WR_RESERVED3, 1347 IB_WR_RESERVED4, 1348 IB_WR_RESERVED5, 1349 IB_WR_RESERVED6, 1350 IB_WR_RESERVED7, 1351 IB_WR_RESERVED8, 1352 IB_WR_RESERVED9, 1353 IB_WR_RESERVED10, 1354}; 1355 1356enum ib_send_flags { 1357 IB_SEND_FENCE = 1, 1358 IB_SEND_SIGNALED = (1<<1), 1359 IB_SEND_SOLICITED = (1<<2), 1360 IB_SEND_INLINE = (1<<3), 1361 IB_SEND_IP_CSUM = (1<<4), 1362 1363 /* reserve bits 26-31 for low level drivers' internal use */ 1364 IB_SEND_RESERVED_START = (1 << 26), 1365 IB_SEND_RESERVED_END = (1 << 31), 1366}; 1367 1368struct ib_sge { 1369 u64 addr; 1370 u32 length; 1371 u32 lkey; 1372}; 1373 1374struct ib_cqe { 1375 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1376}; 1377 1378struct ib_send_wr { 1379 struct ib_send_wr *next; 1380 union { 1381 u64 wr_id; 1382 struct ib_cqe *wr_cqe; 1383 }; 1384 struct ib_sge *sg_list; 1385 int num_sge; 1386 enum ib_wr_opcode opcode; 1387 int send_flags; 1388 union { 1389 __be32 imm_data; 1390 u32 invalidate_rkey; 1391 } ex; 1392}; 1393 1394struct ib_rdma_wr { 1395 struct ib_send_wr wr; 1396 u64 remote_addr; 1397 u32 rkey; 1398}; 1399 1400static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1401{ 1402 return container_of(wr, struct ib_rdma_wr, wr); 1403} 1404 1405struct ib_atomic_wr { 1406 struct ib_send_wr wr; 1407 u64 remote_addr; 1408 u64 compare_add; 1409 u64 swap; 1410 u64 compare_add_mask; 1411 u64 swap_mask; 1412 u32 rkey; 1413}; 1414 1415static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1416{ 1417 return container_of(wr, struct ib_atomic_wr, wr); 1418} 1419 1420struct ib_ud_wr { 1421 struct ib_send_wr wr; 1422 struct ib_ah *ah; 1423 void *header; 1424 int hlen; 1425 int mss; 1426 u32 remote_qpn; 1427 u32 remote_qkey; 1428 u16 pkey_index; /* valid for GSI only */ 1429 u32 port_num; /* valid for DR SMPs on switch only */ 1430}; 1431 1432static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1433{ 1434 return container_of(wr, struct ib_ud_wr, wr); 1435} 1436 1437struct ib_reg_wr { 1438 struct ib_send_wr wr; 1439 struct ib_mr *mr; 1440 u32 key; 1441 int access; 1442}; 1443 1444static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1445{ 1446 return container_of(wr, struct ib_reg_wr, wr); 1447} 1448 1449struct ib_recv_wr { 1450 struct ib_recv_wr *next; 1451 union { 1452 u64 wr_id; 1453 struct ib_cqe *wr_cqe; 1454 }; 1455 struct ib_sge *sg_list; 1456 int num_sge; 1457}; 1458 1459enum ib_access_flags { 1460 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1461 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1462 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1463 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1464 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1465 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1466 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1467 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1468 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1469 IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL, 1470 IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT, 1471 1472 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1473 IB_ACCESS_SUPPORTED = 1474 ((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL, 1475}; 1476 1477/* 1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1479 * are hidden here instead of a uapi header! 1480 */ 1481enum ib_mr_rereg_flags { 1482 IB_MR_REREG_TRANS = 1, 1483 IB_MR_REREG_PD = (1<<1), 1484 IB_MR_REREG_ACCESS = (1<<2), 1485 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1486}; 1487 1488struct ib_umem; 1489 1490enum rdma_remove_reason { 1491 /* 1492 * Userspace requested uobject deletion or initial try 1493 * to remove uobject via cleanup. Call could fail 1494 */ 1495 RDMA_REMOVE_DESTROY, 1496 /* Context deletion. This call should delete the actual object itself */ 1497 RDMA_REMOVE_CLOSE, 1498 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1499 RDMA_REMOVE_DRIVER_REMOVE, 1500 /* uobj is being cleaned-up before being committed */ 1501 RDMA_REMOVE_ABORT, 1502 /* The driver failed to destroy the uobject and is being disconnected */ 1503 RDMA_REMOVE_DRIVER_FAILURE, 1504}; 1505 1506struct ib_rdmacg_object { 1507#ifdef CONFIG_CGROUP_RDMA 1508 struct rdma_cgroup *cg; /* owner rdma cgroup */ 1509#endif 1510}; 1511 1512struct ib_ucontext { 1513 struct ib_device *device; 1514 struct ib_uverbs_file *ufile; 1515 1516 struct ib_rdmacg_object cg_obj; 1517 /* 1518 * Implementation details of the RDMA core, don't use in drivers: 1519 */ 1520 struct rdma_restrack_entry res; 1521 struct xarray mmap_xa; 1522}; 1523 1524struct ib_uobject { 1525 u64 user_handle; /* handle given to us by userspace */ 1526 /* ufile & ucontext owning this object */ 1527 struct ib_uverbs_file *ufile; 1528 /* FIXME, save memory: ufile->context == context */ 1529 struct ib_ucontext *context; /* associated user context */ 1530 void *object; /* containing object */ 1531 struct list_head list; /* link to context's list */ 1532 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1533 int id; /* index into kernel idr */ 1534 struct kref ref; 1535 atomic_t usecnt; /* protects exclusive access */ 1536 struct rcu_head rcu; /* kfree_rcu() overhead */ 1537 1538 const struct uverbs_api_object *uapi_object; 1539}; 1540 1541struct ib_udata { 1542 const void __user *inbuf; 1543 void __user *outbuf; 1544 size_t inlen; 1545 size_t outlen; 1546}; 1547 1548struct ib_pd { 1549 u32 local_dma_lkey; 1550 u32 flags; 1551 struct ib_device *device; 1552 struct ib_uobject *uobject; 1553 atomic_t usecnt; /* count all resources */ 1554 1555 u32 unsafe_global_rkey; 1556 1557 /* 1558 * Implementation details of the RDMA core, don't use in drivers: 1559 */ 1560 struct ib_mr *__internal_mr; 1561 struct rdma_restrack_entry res; 1562}; 1563 1564struct ib_xrcd { 1565 struct ib_device *device; 1566 atomic_t usecnt; /* count all exposed resources */ 1567 struct inode *inode; 1568 struct rw_semaphore tgt_qps_rwsem; 1569 struct xarray tgt_qps; 1570}; 1571 1572struct ib_ah { 1573 struct ib_device *device; 1574 struct ib_pd *pd; 1575 struct ib_uobject *uobject; 1576 const struct ib_gid_attr *sgid_attr; 1577 enum rdma_ah_attr_type type; 1578}; 1579 1580typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1581 1582enum ib_poll_context { 1583 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1584 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1585 IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */ 1586 IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE, 1587 1588 IB_POLL_DIRECT, /* caller context, no hw completions */ 1589}; 1590 1591struct ib_cq { 1592 struct ib_device *device; 1593 struct ib_ucq_object *uobject; 1594 ib_comp_handler comp_handler; 1595 void (*event_handler)(struct ib_event *, void *); 1596 void *cq_context; 1597 int cqe; 1598 unsigned int cqe_used; 1599 atomic_t usecnt; /* count number of work queues */ 1600 enum ib_poll_context poll_ctx; 1601 struct ib_wc *wc; 1602 struct list_head pool_entry; 1603 union { 1604 struct irq_poll iop; 1605 struct work_struct work; 1606 }; 1607 struct workqueue_struct *comp_wq; 1608 struct dim *dim; 1609 1610 /* updated only by trace points */ 1611 ktime_t timestamp; 1612 u8 interrupt:1; 1613 u8 shared:1; 1614 unsigned int comp_vector; 1615 1616 /* 1617 * Implementation details of the RDMA core, don't use in drivers: 1618 */ 1619 struct rdma_restrack_entry res; 1620}; 1621 1622struct ib_srq { 1623 struct ib_device *device; 1624 struct ib_pd *pd; 1625 struct ib_usrq_object *uobject; 1626 void (*event_handler)(struct ib_event *, void *); 1627 void *srq_context; 1628 enum ib_srq_type srq_type; 1629 atomic_t usecnt; 1630 1631 struct { 1632 struct ib_cq *cq; 1633 union { 1634 struct { 1635 struct ib_xrcd *xrcd; 1636 u32 srq_num; 1637 } xrc; 1638 }; 1639 } ext; 1640 1641 /* 1642 * Implementation details of the RDMA core, don't use in drivers: 1643 */ 1644 struct rdma_restrack_entry res; 1645}; 1646 1647enum ib_raw_packet_caps { 1648 /* 1649 * Strip cvlan from incoming packet and report it in the matching work 1650 * completion is supported. 1651 */ 1652 IB_RAW_PACKET_CAP_CVLAN_STRIPPING = 1653 IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING, 1654 /* 1655 * Scatter FCS field of an incoming packet to host memory is supported. 1656 */ 1657 IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS, 1658 /* Checksum offloads are supported (for both send and receive). */ 1659 IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM, 1660 /* 1661 * When a packet is received for an RQ with no receive WQEs, the 1662 * packet processing is delayed. 1663 */ 1664 IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP, 1665}; 1666 1667enum ib_wq_type { 1668 IB_WQT_RQ = IB_UVERBS_WQT_RQ, 1669}; 1670 1671enum ib_wq_state { 1672 IB_WQS_RESET, 1673 IB_WQS_RDY, 1674 IB_WQS_ERR 1675}; 1676 1677struct ib_wq { 1678 struct ib_device *device; 1679 struct ib_uwq_object *uobject; 1680 void *wq_context; 1681 void (*event_handler)(struct ib_event *, void *); 1682 struct ib_pd *pd; 1683 struct ib_cq *cq; 1684 u32 wq_num; 1685 enum ib_wq_state state; 1686 enum ib_wq_type wq_type; 1687 atomic_t usecnt; 1688}; 1689 1690enum ib_wq_flags { 1691 IB_WQ_FLAGS_CVLAN_STRIPPING = IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING, 1692 IB_WQ_FLAGS_SCATTER_FCS = IB_UVERBS_WQ_FLAGS_SCATTER_FCS, 1693 IB_WQ_FLAGS_DELAY_DROP = IB_UVERBS_WQ_FLAGS_DELAY_DROP, 1694 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1695 IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING, 1696}; 1697 1698struct ib_wq_init_attr { 1699 void *wq_context; 1700 enum ib_wq_type wq_type; 1701 u32 max_wr; 1702 u32 max_sge; 1703 struct ib_cq *cq; 1704 void (*event_handler)(struct ib_event *, void *); 1705 u32 create_flags; /* Use enum ib_wq_flags */ 1706}; 1707 1708enum ib_wq_attr_mask { 1709 IB_WQ_STATE = 1 << 0, 1710 IB_WQ_CUR_STATE = 1 << 1, 1711 IB_WQ_FLAGS = 1 << 2, 1712}; 1713 1714struct ib_wq_attr { 1715 enum ib_wq_state wq_state; 1716 enum ib_wq_state curr_wq_state; 1717 u32 flags; /* Use enum ib_wq_flags */ 1718 u32 flags_mask; /* Use enum ib_wq_flags */ 1719}; 1720 1721struct ib_rwq_ind_table { 1722 struct ib_device *device; 1723 struct ib_uobject *uobject; 1724 atomic_t usecnt; 1725 u32 ind_tbl_num; 1726 u32 log_ind_tbl_size; 1727 struct ib_wq **ind_tbl; 1728}; 1729 1730struct ib_rwq_ind_table_init_attr { 1731 u32 log_ind_tbl_size; 1732 /* Each entry is a pointer to Receive Work Queue */ 1733 struct ib_wq **ind_tbl; 1734}; 1735 1736enum port_pkey_state { 1737 IB_PORT_PKEY_NOT_VALID = 0, 1738 IB_PORT_PKEY_VALID = 1, 1739 IB_PORT_PKEY_LISTED = 2, 1740}; 1741 1742struct ib_qp_security; 1743 1744struct ib_port_pkey { 1745 enum port_pkey_state state; 1746 u16 pkey_index; 1747 u32 port_num; 1748 struct list_head qp_list; 1749 struct list_head to_error_list; 1750 struct ib_qp_security *sec; 1751}; 1752 1753struct ib_ports_pkeys { 1754 struct ib_port_pkey main; 1755 struct ib_port_pkey alt; 1756}; 1757 1758struct ib_qp_security { 1759 struct ib_qp *qp; 1760 struct ib_device *dev; 1761 /* Hold this mutex when changing port and pkey settings. */ 1762 struct mutex mutex; 1763 struct ib_ports_pkeys *ports_pkeys; 1764 /* A list of all open shared QP handles. Required to enforce security 1765 * properly for all users of a shared QP. 1766 */ 1767 struct list_head shared_qp_list; 1768 void *security; 1769 bool destroying; 1770 atomic_t error_list_count; 1771 struct completion error_complete; 1772 int error_comps_pending; 1773}; 1774 1775/* 1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1777 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1778 */ 1779struct ib_qp { 1780 struct ib_device *device; 1781 struct ib_pd *pd; 1782 struct ib_cq *send_cq; 1783 struct ib_cq *recv_cq; 1784 spinlock_t mr_lock; 1785 int mrs_used; 1786 struct list_head rdma_mrs; 1787 struct list_head sig_mrs; 1788 struct ib_srq *srq; 1789 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1790 struct list_head xrcd_list; 1791 1792 /* count times opened, mcast attaches, flow attaches */ 1793 atomic_t usecnt; 1794 struct list_head open_list; 1795 struct ib_qp *real_qp; 1796 struct ib_uqp_object *uobject; 1797 void (*event_handler)(struct ib_event *, void *); 1798 void *qp_context; 1799 /* sgid_attrs associated with the AV's */ 1800 const struct ib_gid_attr *av_sgid_attr; 1801 const struct ib_gid_attr *alt_path_sgid_attr; 1802 u32 qp_num; 1803 u32 max_write_sge; 1804 u32 max_read_sge; 1805 enum ib_qp_type qp_type; 1806 struct ib_rwq_ind_table *rwq_ind_tbl; 1807 struct ib_qp_security *qp_sec; 1808 u32 port; 1809 1810 bool integrity_en; 1811 /* 1812 * Implementation details of the RDMA core, don't use in drivers: 1813 */ 1814 struct rdma_restrack_entry res; 1815 1816 /* The counter the qp is bind to */ 1817 struct rdma_counter *counter; 1818}; 1819 1820struct ib_dm { 1821 struct ib_device *device; 1822 u32 length; 1823 u32 flags; 1824 struct ib_uobject *uobject; 1825 atomic_t usecnt; 1826}; 1827 1828struct ib_mr { 1829 struct ib_device *device; 1830 struct ib_pd *pd; 1831 u32 lkey; 1832 u32 rkey; 1833 u64 iova; 1834 u64 length; 1835 unsigned int page_size; 1836 enum ib_mr_type type; 1837 bool need_inval; 1838 union { 1839 struct ib_uobject *uobject; /* user */ 1840 struct list_head qp_entry; /* FR */ 1841 }; 1842 1843 struct ib_dm *dm; 1844 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1845 /* 1846 * Implementation details of the RDMA core, don't use in drivers: 1847 */ 1848 struct rdma_restrack_entry res; 1849}; 1850 1851struct ib_mw { 1852 struct ib_device *device; 1853 struct ib_pd *pd; 1854 struct ib_uobject *uobject; 1855 u32 rkey; 1856 enum ib_mw_type type; 1857}; 1858 1859/* Supported steering options */ 1860enum ib_flow_attr_type { 1861 /* steering according to rule specifications */ 1862 IB_FLOW_ATTR_NORMAL = 0x0, 1863 /* default unicast and multicast rule - 1864 * receive all Eth traffic which isn't steered to any QP 1865 */ 1866 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1867 /* default multicast rule - 1868 * receive all Eth multicast traffic which isn't steered to any QP 1869 */ 1870 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1871 /* sniffer rule - receive all port traffic */ 1872 IB_FLOW_ATTR_SNIFFER = 0x3 1873}; 1874 1875/* Supported steering header types */ 1876enum ib_flow_spec_type { 1877 /* L2 headers*/ 1878 IB_FLOW_SPEC_ETH = 0x20, 1879 IB_FLOW_SPEC_IB = 0x22, 1880 /* L3 header*/ 1881 IB_FLOW_SPEC_IPV4 = 0x30, 1882 IB_FLOW_SPEC_IPV6 = 0x31, 1883 IB_FLOW_SPEC_ESP = 0x34, 1884 /* L4 headers*/ 1885 IB_FLOW_SPEC_TCP = 0x40, 1886 IB_FLOW_SPEC_UDP = 0x41, 1887 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1888 IB_FLOW_SPEC_GRE = 0x51, 1889 IB_FLOW_SPEC_MPLS = 0x60, 1890 IB_FLOW_SPEC_INNER = 0x100, 1891 /* Actions */ 1892 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1893 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1894 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1895 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1896}; 1897#define IB_FLOW_SPEC_LAYER_MASK 0xF0 1898#define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1899 1900enum ib_flow_flags { 1901 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1902 IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */ 1903 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 3 /* Must be last */ 1904}; 1905 1906struct ib_flow_eth_filter { 1907 u8 dst_mac[6]; 1908 u8 src_mac[6]; 1909 __be16 ether_type; 1910 __be16 vlan_tag; 1911 /* Must be last */ 1912 u8 real_sz[]; 1913}; 1914 1915struct ib_flow_spec_eth { 1916 u32 type; 1917 u16 size; 1918 struct ib_flow_eth_filter val; 1919 struct ib_flow_eth_filter mask; 1920}; 1921 1922struct ib_flow_ib_filter { 1923 __be16 dlid; 1924 __u8 sl; 1925 /* Must be last */ 1926 u8 real_sz[]; 1927}; 1928 1929struct ib_flow_spec_ib { 1930 u32 type; 1931 u16 size; 1932 struct ib_flow_ib_filter val; 1933 struct ib_flow_ib_filter mask; 1934}; 1935 1936/* IPv4 header flags */ 1937enum ib_ipv4_flags { 1938 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1939 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1940 last have this flag set */ 1941}; 1942 1943struct ib_flow_ipv4_filter { 1944 __be32 src_ip; 1945 __be32 dst_ip; 1946 u8 proto; 1947 u8 tos; 1948 u8 ttl; 1949 u8 flags; 1950 /* Must be last */ 1951 u8 real_sz[]; 1952}; 1953 1954struct ib_flow_spec_ipv4 { 1955 u32 type; 1956 u16 size; 1957 struct ib_flow_ipv4_filter val; 1958 struct ib_flow_ipv4_filter mask; 1959}; 1960 1961struct ib_flow_ipv6_filter { 1962 u8 src_ip[16]; 1963 u8 dst_ip[16]; 1964 __be32 flow_label; 1965 u8 next_hdr; 1966 u8 traffic_class; 1967 u8 hop_limit; 1968 /* Must be last */ 1969 u8 real_sz[]; 1970}; 1971 1972struct ib_flow_spec_ipv6 { 1973 u32 type; 1974 u16 size; 1975 struct ib_flow_ipv6_filter val; 1976 struct ib_flow_ipv6_filter mask; 1977}; 1978 1979struct ib_flow_tcp_udp_filter { 1980 __be16 dst_port; 1981 __be16 src_port; 1982 /* Must be last */ 1983 u8 real_sz[]; 1984}; 1985 1986struct ib_flow_spec_tcp_udp { 1987 u32 type; 1988 u16 size; 1989 struct ib_flow_tcp_udp_filter val; 1990 struct ib_flow_tcp_udp_filter mask; 1991}; 1992 1993struct ib_flow_tunnel_filter { 1994 __be32 tunnel_id; 1995 u8 real_sz[]; 1996}; 1997 1998/* ib_flow_spec_tunnel describes the Vxlan tunnel 1999 * the tunnel_id from val has the vni value 2000 */ 2001struct ib_flow_spec_tunnel { 2002 u32 type; 2003 u16 size; 2004 struct ib_flow_tunnel_filter val; 2005 struct ib_flow_tunnel_filter mask; 2006}; 2007 2008struct ib_flow_esp_filter { 2009 __be32 spi; 2010 __be32 seq; 2011 /* Must be last */ 2012 u8 real_sz[]; 2013}; 2014 2015struct ib_flow_spec_esp { 2016 u32 type; 2017 u16 size; 2018 struct ib_flow_esp_filter val; 2019 struct ib_flow_esp_filter mask; 2020}; 2021 2022struct ib_flow_gre_filter { 2023 __be16 c_ks_res0_ver; 2024 __be16 protocol; 2025 __be32 key; 2026 /* Must be last */ 2027 u8 real_sz[]; 2028}; 2029 2030struct ib_flow_spec_gre { 2031 u32 type; 2032 u16 size; 2033 struct ib_flow_gre_filter val; 2034 struct ib_flow_gre_filter mask; 2035}; 2036 2037struct ib_flow_mpls_filter { 2038 __be32 tag; 2039 /* Must be last */ 2040 u8 real_sz[]; 2041}; 2042 2043struct ib_flow_spec_mpls { 2044 u32 type; 2045 u16 size; 2046 struct ib_flow_mpls_filter val; 2047 struct ib_flow_mpls_filter mask; 2048}; 2049 2050struct ib_flow_spec_action_tag { 2051 enum ib_flow_spec_type type; 2052 u16 size; 2053 u32 tag_id; 2054}; 2055 2056struct ib_flow_spec_action_drop { 2057 enum ib_flow_spec_type type; 2058 u16 size; 2059}; 2060 2061struct ib_flow_spec_action_handle { 2062 enum ib_flow_spec_type type; 2063 u16 size; 2064 struct ib_flow_action *act; 2065}; 2066 2067enum ib_counters_description { 2068 IB_COUNTER_PACKETS, 2069 IB_COUNTER_BYTES, 2070}; 2071 2072struct ib_flow_spec_action_count { 2073 enum ib_flow_spec_type type; 2074 u16 size; 2075 struct ib_counters *counters; 2076}; 2077 2078union ib_flow_spec { 2079 struct { 2080 u32 type; 2081 u16 size; 2082 }; 2083 struct ib_flow_spec_eth eth; 2084 struct ib_flow_spec_ib ib; 2085 struct ib_flow_spec_ipv4 ipv4; 2086 struct ib_flow_spec_tcp_udp tcp_udp; 2087 struct ib_flow_spec_ipv6 ipv6; 2088 struct ib_flow_spec_tunnel tunnel; 2089 struct ib_flow_spec_esp esp; 2090 struct ib_flow_spec_gre gre; 2091 struct ib_flow_spec_mpls mpls; 2092 struct ib_flow_spec_action_tag flow_tag; 2093 struct ib_flow_spec_action_drop drop; 2094 struct ib_flow_spec_action_handle action; 2095 struct ib_flow_spec_action_count flow_count; 2096}; 2097 2098struct ib_flow_attr { 2099 enum ib_flow_attr_type type; 2100 u16 size; 2101 u16 priority; 2102 u32 flags; 2103 u8 num_of_specs; 2104 u32 port; 2105 union ib_flow_spec flows[]; 2106}; 2107 2108struct ib_flow { 2109 struct ib_qp *qp; 2110 struct ib_device *device; 2111 struct ib_uobject *uobject; 2112}; 2113 2114enum ib_flow_action_type { 2115 IB_FLOW_ACTION_UNSPECIFIED, 2116 IB_FLOW_ACTION_ESP = 1, 2117}; 2118 2119struct ib_flow_action_attrs_esp_keymats { 2120 enum ib_uverbs_flow_action_esp_keymat protocol; 2121 union { 2122 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 2123 } keymat; 2124}; 2125 2126struct ib_flow_action_attrs_esp_replays { 2127 enum ib_uverbs_flow_action_esp_replay protocol; 2128 union { 2129 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 2130 } replay; 2131}; 2132 2133enum ib_flow_action_attrs_esp_flags { 2134 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 2135 * This is done in order to share the same flags between user-space and 2136 * kernel and spare an unnecessary translation. 2137 */ 2138 2139 /* Kernel flags */ 2140 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 2141 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 2142}; 2143 2144struct ib_flow_spec_list { 2145 struct ib_flow_spec_list *next; 2146 union ib_flow_spec spec; 2147}; 2148 2149struct ib_flow_action_attrs_esp { 2150 struct ib_flow_action_attrs_esp_keymats *keymat; 2151 struct ib_flow_action_attrs_esp_replays *replay; 2152 struct ib_flow_spec_list *encap; 2153 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 2154 * Value of 0 is a valid value. 2155 */ 2156 u32 esn; 2157 u32 spi; 2158 u32 seq; 2159 u32 tfc_pad; 2160 /* Use enum ib_flow_action_attrs_esp_flags */ 2161 u64 flags; 2162 u64 hard_limit_pkts; 2163}; 2164 2165struct ib_flow_action { 2166 struct ib_device *device; 2167 struct ib_uobject *uobject; 2168 enum ib_flow_action_type type; 2169 atomic_t usecnt; 2170}; 2171 2172struct ib_mad; 2173 2174enum ib_process_mad_flags { 2175 IB_MAD_IGNORE_MKEY = 1, 2176 IB_MAD_IGNORE_BKEY = 2, 2177 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 2178}; 2179 2180enum ib_mad_result { 2181 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 2182 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 2183 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 2184 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 2185}; 2186 2187struct ib_port_cache { 2188 u64 subnet_prefix; 2189 struct ib_pkey_cache *pkey; 2190 struct ib_gid_table *gid; 2191 u8 lmc; 2192 enum ib_port_state port_state; 2193}; 2194 2195struct ib_port_immutable { 2196 int pkey_tbl_len; 2197 int gid_tbl_len; 2198 u32 core_cap_flags; 2199 u32 max_mad_size; 2200}; 2201 2202struct ib_port_data { 2203 struct ib_device *ib_dev; 2204 2205 struct ib_port_immutable immutable; 2206 2207 spinlock_t pkey_list_lock; 2208 2209 spinlock_t netdev_lock; 2210 2211 struct list_head pkey_list; 2212 2213 struct ib_port_cache cache; 2214 2215 struct net_device __rcu *netdev; 2216 netdevice_tracker netdev_tracker; 2217 struct hlist_node ndev_hash_link; 2218 struct rdma_port_counter port_counter; 2219 struct ib_port *sysfs; 2220}; 2221 2222/* rdma netdev type - specifies protocol type */ 2223enum rdma_netdev_t { 2224 RDMA_NETDEV_OPA_VNIC, 2225 RDMA_NETDEV_IPOIB, 2226}; 2227 2228/** 2229 * struct rdma_netdev - rdma netdev 2230 * For cases where netstack interfacing is required. 2231 */ 2232struct rdma_netdev { 2233 void *clnt_priv; 2234 struct ib_device *hca; 2235 u32 port_num; 2236 int mtu; 2237 2238 /* 2239 * cleanup function must be specified. 2240 * FIXME: This is only used for OPA_VNIC and that usage should be 2241 * removed too. 2242 */ 2243 void (*free_rdma_netdev)(struct net_device *netdev); 2244 2245 /* control functions */ 2246 void (*set_id)(struct net_device *netdev, int id); 2247 /* send packet */ 2248 int (*send)(struct net_device *dev, struct sk_buff *skb, 2249 struct ib_ah *address, u32 dqpn); 2250 /* multicast */ 2251 int (*attach_mcast)(struct net_device *dev, struct ib_device *hca, 2252 union ib_gid *gid, u16 mlid, 2253 int set_qkey, u32 qkey); 2254 int (*detach_mcast)(struct net_device *dev, struct ib_device *hca, 2255 union ib_gid *gid, u16 mlid); 2256 /* timeout */ 2257 void (*tx_timeout)(struct net_device *dev, unsigned int txqueue); 2258}; 2259 2260struct rdma_netdev_alloc_params { 2261 size_t sizeof_priv; 2262 unsigned int txqs; 2263 unsigned int rxqs; 2264 void *param; 2265 2266 int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num, 2267 struct net_device *netdev, void *param); 2268}; 2269 2270struct ib_odp_counters { 2271 atomic64_t faults; 2272 atomic64_t invalidations; 2273 atomic64_t prefetch; 2274}; 2275 2276struct ib_counters { 2277 struct ib_device *device; 2278 struct ib_uobject *uobject; 2279 /* num of objects attached */ 2280 atomic_t usecnt; 2281}; 2282 2283struct ib_counters_read_attr { 2284 u64 *counters_buff; 2285 u32 ncounters; 2286 u32 flags; /* use enum ib_read_counters_flags */ 2287}; 2288 2289struct uverbs_attr_bundle; 2290struct iw_cm_id; 2291struct iw_cm_conn_param; 2292 2293#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2294 .size_##ib_struct = \ 2295 (sizeof(struct drv_struct) + \ 2296 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2297 BUILD_BUG_ON_ZERO( \ 2298 !__same_type(((struct drv_struct *)NULL)->member, \ 2299 struct ib_struct))) 2300 2301#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2302 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2303 gfp, false)) 2304 2305#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type) \ 2306 ((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \ 2307 GFP_KERNEL, true)) 2308 2309#define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2310 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2311 2312#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2313 2314struct rdma_user_mmap_entry { 2315 struct kref ref; 2316 struct ib_ucontext *ucontext; 2317 unsigned long start_pgoff; 2318 size_t npages; 2319 bool driver_removed; 2320}; 2321 2322/* Return the offset (in bytes) the user should pass to libc's mmap() */ 2323static inline u64 2324rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2325{ 2326 return (u64)entry->start_pgoff << PAGE_SHIFT; 2327} 2328 2329/** 2330 * struct ib_device_ops - InfiniBand device operations 2331 * This structure defines all the InfiniBand device operations, providers will 2332 * need to define the supported operations, otherwise they will be set to null. 2333 */ 2334struct ib_device_ops { 2335 struct module *owner; 2336 enum rdma_driver_id driver_id; 2337 u32 uverbs_abi_ver; 2338 unsigned int uverbs_no_driver_id_binding:1; 2339 2340 /* 2341 * NOTE: New drivers should not make use of device_group; instead new 2342 * device parameter should be exposed via netlink command. This 2343 * mechanism exists only for existing drivers. 2344 */ 2345 const struct attribute_group *device_group; 2346 const struct attribute_group **port_groups; 2347 2348 int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr, 2349 const struct ib_send_wr **bad_send_wr); 2350 int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr, 2351 const struct ib_recv_wr **bad_recv_wr); 2352 void (*drain_rq)(struct ib_qp *qp); 2353 void (*drain_sq)(struct ib_qp *qp); 2354 int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc); 2355 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2356 int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags); 2357 int (*post_srq_recv)(struct ib_srq *srq, 2358 const struct ib_recv_wr *recv_wr, 2359 const struct ib_recv_wr **bad_recv_wr); 2360 int (*process_mad)(struct ib_device *device, int process_mad_flags, 2361 u32 port_num, const struct ib_wc *in_wc, 2362 const struct ib_grh *in_grh, 2363 const struct ib_mad *in_mad, struct ib_mad *out_mad, 2364 size_t *out_mad_size, u16 *out_mad_pkey_index); 2365 int (*query_device)(struct ib_device *device, 2366 struct ib_device_attr *device_attr, 2367 struct ib_udata *udata); 2368 int (*modify_device)(struct ib_device *device, int device_modify_mask, 2369 struct ib_device_modify *device_modify); 2370 void (*get_dev_fw_str)(struct ib_device *device, char *str); 2371 const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev, 2372 int comp_vector); 2373 int (*query_port)(struct ib_device *device, u32 port_num, 2374 struct ib_port_attr *port_attr); 2375 int (*modify_port)(struct ib_device *device, u32 port_num, 2376 int port_modify_mask, 2377 struct ib_port_modify *port_modify); 2378 /** 2379 * The following mandatory functions are used only at device 2380 * registration. Keep functions such as these at the end of this 2381 * structure to avoid cache line misses when accessing struct ib_device 2382 * in fast paths. 2383 */ 2384 int (*get_port_immutable)(struct ib_device *device, u32 port_num, 2385 struct ib_port_immutable *immutable); 2386 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2387 u32 port_num); 2388 /** 2389 * When calling get_netdev, the HW vendor's driver should return the 2390 * net device of device @device at port @port_num or NULL if such 2391 * a net device doesn't exist. The vendor driver should call dev_hold 2392 * on this net device. The HW vendor's device driver must guarantee 2393 * that this function returns NULL before the net device has finished 2394 * NETDEV_UNREGISTER state. 2395 */ 2396 struct net_device *(*get_netdev)(struct ib_device *device, 2397 u32 port_num); 2398 /** 2399 * rdma netdev operation 2400 * 2401 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params 2402 * must return -EOPNOTSUPP if it doesn't support the specified type. 2403 */ 2404 struct net_device *(*alloc_rdma_netdev)( 2405 struct ib_device *device, u32 port_num, enum rdma_netdev_t type, 2406 const char *name, unsigned char name_assign_type, 2407 void (*setup)(struct net_device *)); 2408 2409 int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num, 2410 enum rdma_netdev_t type, 2411 struct rdma_netdev_alloc_params *params); 2412 /** 2413 * query_gid should be return GID value for @device, when @port_num 2414 * link layer is either IB or iWarp. It is no-op if @port_num port 2415 * is RoCE link layer. 2416 */ 2417 int (*query_gid)(struct ib_device *device, u32 port_num, int index, 2418 union ib_gid *gid); 2419 /** 2420 * When calling add_gid, the HW vendor's driver should add the gid 2421 * of device of port at gid index available at @attr. Meta-info of 2422 * that gid (for example, the network device related to this gid) is 2423 * available at @attr. @context allows the HW vendor driver to store 2424 * extra information together with a GID entry. The HW vendor driver may 2425 * allocate memory to contain this information and store it in @context 2426 * when a new GID entry is written to. Params are consistent until the 2427 * next call of add_gid or delete_gid. The function should return 0 on 2428 * success or error otherwise. The function could be called 2429 * concurrently for different ports. This function is only called when 2430 * roce_gid_table is used. 2431 */ 2432 int (*add_gid)(const struct ib_gid_attr *attr, void **context); 2433 /** 2434 * When calling del_gid, the HW vendor's driver should delete the 2435 * gid of device @device at gid index gid_index of port port_num 2436 * available in @attr. 2437 * Upon the deletion of a GID entry, the HW vendor must free any 2438 * allocated memory. The caller will clear @context afterwards. 2439 * This function is only called when roce_gid_table is used. 2440 */ 2441 int (*del_gid)(const struct ib_gid_attr *attr, void **context); 2442 int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index, 2443 u16 *pkey); 2444 int (*alloc_ucontext)(struct ib_ucontext *context, 2445 struct ib_udata *udata); 2446 void (*dealloc_ucontext)(struct ib_ucontext *context); 2447 int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma); 2448 /** 2449 * This will be called once refcount of an entry in mmap_xa reaches 2450 * zero. The type of the memory that was mapped may differ between 2451 * entries and is opaque to the rdma_user_mmap interface. 2452 * Therefore needs to be implemented by the driver in mmap_free. 2453 */ 2454 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2455 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2456 int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2457 int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2458 int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2459 struct ib_udata *udata); 2460 int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr, 2461 struct ib_udata *udata); 2462 int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2463 int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 2464 int (*destroy_ah)(struct ib_ah *ah, u32 flags); 2465 int (*create_srq)(struct ib_srq *srq, 2466 struct ib_srq_init_attr *srq_init_attr, 2467 struct ib_udata *udata); 2468 int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr, 2469 enum ib_srq_attr_mask srq_attr_mask, 2470 struct ib_udata *udata); 2471 int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr); 2472 int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2473 int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr, 2474 struct ib_udata *udata); 2475 int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2476 int qp_attr_mask, struct ib_udata *udata); 2477 int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr, 2478 int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr); 2479 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2480 int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr, 2481 struct ib_udata *udata); 2482 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period); 2483 int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2484 int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata); 2485 struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags); 2486 struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length, 2487 u64 virt_addr, int mr_access_flags, 2488 struct ib_udata *udata); 2489 struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset, 2490 u64 length, u64 virt_addr, int fd, 2491 int mr_access_flags, 2492 struct ib_udata *udata); 2493 struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start, 2494 u64 length, u64 virt_addr, 2495 int mr_access_flags, struct ib_pd *pd, 2496 struct ib_udata *udata); 2497 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2498 struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2499 u32 max_num_sg); 2500 struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd, 2501 u32 max_num_data_sg, 2502 u32 max_num_meta_sg); 2503 int (*advise_mr)(struct ib_pd *pd, 2504 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2505 struct ib_sge *sg_list, u32 num_sge, 2506 struct uverbs_attr_bundle *attrs); 2507 2508 /* 2509 * Kernel users should universally support relaxed ordering (RO), as 2510 * they are designed to read data only after observing the CQE and use 2511 * the DMA API correctly. 2512 * 2513 * Some drivers implicitly enable RO if platform supports it. 2514 */ 2515 int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2516 unsigned int *sg_offset); 2517 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2518 struct ib_mr_status *mr_status); 2519 int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata); 2520 int (*dealloc_mw)(struct ib_mw *mw); 2521 int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2522 int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid); 2523 int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2524 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2525 struct ib_flow *(*create_flow)(struct ib_qp *qp, 2526 struct ib_flow_attr *flow_attr, 2527 struct ib_udata *udata); 2528 int (*destroy_flow)(struct ib_flow *flow_id); 2529 int (*destroy_flow_action)(struct ib_flow_action *action); 2530 int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port, 2531 int state); 2532 int (*get_vf_config)(struct ib_device *device, int vf, u32 port, 2533 struct ifla_vf_info *ivf); 2534 int (*get_vf_stats)(struct ib_device *device, int vf, u32 port, 2535 struct ifla_vf_stats *stats); 2536 int (*get_vf_guid)(struct ib_device *device, int vf, u32 port, 2537 struct ifla_vf_guid *node_guid, 2538 struct ifla_vf_guid *port_guid); 2539 int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid, 2540 int type); 2541 struct ib_wq *(*create_wq)(struct ib_pd *pd, 2542 struct ib_wq_init_attr *init_attr, 2543 struct ib_udata *udata); 2544 int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2545 int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr, 2546 u32 wq_attr_mask, struct ib_udata *udata); 2547 int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table, 2548 struct ib_rwq_ind_table_init_attr *init_attr, 2549 struct ib_udata *udata); 2550 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2551 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2552 struct ib_ucontext *context, 2553 struct ib_dm_alloc_attr *attr, 2554 struct uverbs_attr_bundle *attrs); 2555 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2556 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2557 struct ib_dm_mr_attr *attr, 2558 struct uverbs_attr_bundle *attrs); 2559 int (*create_counters)(struct ib_counters *counters, 2560 struct uverbs_attr_bundle *attrs); 2561 int (*destroy_counters)(struct ib_counters *counters); 2562 int (*read_counters)(struct ib_counters *counters, 2563 struct ib_counters_read_attr *counters_read_attr, 2564 struct uverbs_attr_bundle *attrs); 2565 int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg, 2566 int data_sg_nents, unsigned int *data_sg_offset, 2567 struct scatterlist *meta_sg, int meta_sg_nents, 2568 unsigned int *meta_sg_offset); 2569 2570 /** 2571 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and 2572 * fill in the driver initialized data. The struct is kfree()'ed by 2573 * the sysfs core when the device is removed. A lifespan of -1 in the 2574 * return struct tells the core to set a default lifespan. 2575 */ 2576 struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device); 2577 struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device, 2578 u32 port_num); 2579 /** 2580 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2581 * @index - The index in the value array we wish to have updated, or 2582 * num_counters if we want all stats updated 2583 * Return codes - 2584 * < 0 - Error, no counters updated 2585 * index - Updated the single counter pointed to by index 2586 * num_counters - Updated all counters (will reset the timestamp 2587 * and prevent further calls for lifespan milliseconds) 2588 * Drivers are allowed to update all counters in leiu of just the 2589 * one given in index at their option 2590 */ 2591 int (*get_hw_stats)(struct ib_device *device, 2592 struct rdma_hw_stats *stats, u32 port, int index); 2593 2594 /** 2595 * modify_hw_stat - Modify the counter configuration 2596 * @enable: true/false when enable/disable a counter 2597 * Return codes - 0 on success or error code otherwise. 2598 */ 2599 int (*modify_hw_stat)(struct ib_device *device, u32 port, 2600 unsigned int counter_index, bool enable); 2601 /** 2602 * Allows rdma drivers to add their own restrack attributes. 2603 */ 2604 int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2605 int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr); 2606 int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq); 2607 int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq); 2608 int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp); 2609 int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp); 2610 int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id); 2611 2612 /* Device lifecycle callbacks */ 2613 /* 2614 * Called after the device becomes registered, before clients are 2615 * attached 2616 */ 2617 int (*enable_driver)(struct ib_device *dev); 2618 /* 2619 * This is called as part of ib_dealloc_device(). 2620 */ 2621 void (*dealloc_driver)(struct ib_device *dev); 2622 2623 /* iWarp CM callbacks */ 2624 void (*iw_add_ref)(struct ib_qp *qp); 2625 void (*iw_rem_ref)(struct ib_qp *qp); 2626 struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn); 2627 int (*iw_connect)(struct iw_cm_id *cm_id, 2628 struct iw_cm_conn_param *conn_param); 2629 int (*iw_accept)(struct iw_cm_id *cm_id, 2630 struct iw_cm_conn_param *conn_param); 2631 int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata, 2632 u8 pdata_len); 2633 int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog); 2634 int (*iw_destroy_listen)(struct iw_cm_id *cm_id); 2635 /** 2636 * counter_bind_qp - Bind a QP to a counter. 2637 * @counter - The counter to be bound. If counter->id is zero then 2638 * the driver needs to allocate a new counter and set counter->id 2639 */ 2640 int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp); 2641 /** 2642 * counter_unbind_qp - Unbind the qp from the dynamically-allocated 2643 * counter and bind it onto the default one 2644 */ 2645 int (*counter_unbind_qp)(struct ib_qp *qp); 2646 /** 2647 * counter_dealloc -De-allocate the hw counter 2648 */ 2649 int (*counter_dealloc)(struct rdma_counter *counter); 2650 /** 2651 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in 2652 * the driver initialized data. 2653 */ 2654 struct rdma_hw_stats *(*counter_alloc_stats)( 2655 struct rdma_counter *counter); 2656 /** 2657 * counter_update_stats - Query the stats value of this counter 2658 */ 2659 int (*counter_update_stats)(struct rdma_counter *counter); 2660 2661 /** 2662 * Allows rdma drivers to add their own restrack attributes 2663 * dumped via 'rdma stat' iproute2 command. 2664 */ 2665 int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr); 2666 2667 /* query driver for its ucontext properties */ 2668 int (*query_ucontext)(struct ib_ucontext *context, 2669 struct uverbs_attr_bundle *attrs); 2670 2671 /* 2672 * Provide NUMA node. This API exists for rdmavt/hfi1 only. 2673 * Everyone else relies on Linux memory management model. 2674 */ 2675 int (*get_numa_node)(struct ib_device *dev); 2676 2677 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2678 DECLARE_RDMA_OBJ_SIZE(ib_counters); 2679 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2680 DECLARE_RDMA_OBJ_SIZE(ib_mw); 2681 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2682 DECLARE_RDMA_OBJ_SIZE(ib_qp); 2683 DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table); 2684 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2685 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2686 DECLARE_RDMA_OBJ_SIZE(ib_xrcd); 2687}; 2688 2689struct ib_core_device { 2690 /* device must be the first element in structure until, 2691 * union of ib_core_device and device exists in ib_device. 2692 */ 2693 struct device dev; 2694 possible_net_t rdma_net; 2695 struct kobject *ports_kobj; 2696 struct list_head port_list; 2697 struct ib_device *owner; /* reach back to owner ib_device */ 2698}; 2699 2700struct rdma_restrack_root; 2701struct ib_device { 2702 /* Do not access @dma_device directly from ULP nor from HW drivers. */ 2703 struct device *dma_device; 2704 struct ib_device_ops ops; 2705 char name[IB_DEVICE_NAME_MAX]; 2706 struct rcu_head rcu_head; 2707 2708 struct list_head event_handler_list; 2709 /* Protects event_handler_list */ 2710 struct rw_semaphore event_handler_rwsem; 2711 2712 /* Protects QP's event_handler calls and open_qp list */ 2713 spinlock_t qp_open_list_lock; 2714 2715 struct rw_semaphore client_data_rwsem; 2716 struct xarray client_data; 2717 struct mutex unregistration_lock; 2718 2719 /* Synchronize GID, Pkey cache entries, subnet prefix, LMC */ 2720 rwlock_t cache_lock; 2721 /** 2722 * port_data is indexed by port number 2723 */ 2724 struct ib_port_data *port_data; 2725 2726 int num_comp_vectors; 2727 2728 union { 2729 struct device dev; 2730 struct ib_core_device coredev; 2731 }; 2732 2733 /* First group is for device attributes, 2734 * Second group is for driver provided attributes (optional). 2735 * Third group is for the hw_stats 2736 * It is a NULL terminated array. 2737 */ 2738 const struct attribute_group *groups[4]; 2739 2740 u64 uverbs_cmd_mask; 2741 2742 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2743 __be64 node_guid; 2744 u32 local_dma_lkey; 2745 u16 is_switch:1; 2746 /* Indicates kernel verbs support, should not be used in drivers */ 2747 u16 kverbs_provider:1; 2748 /* CQ adaptive moderation (RDMA DIM) */ 2749 u16 use_cq_dim:1; 2750 u8 node_type; 2751 u32 phys_port_cnt; 2752 struct ib_device_attr attrs; 2753 struct hw_stats_device_data *hw_stats_data; 2754 2755#ifdef CONFIG_CGROUP_RDMA 2756 struct rdmacg_device cg_device; 2757#endif 2758 2759 u32 index; 2760 2761 spinlock_t cq_pools_lock; 2762 struct list_head cq_pools[IB_POLL_LAST_POOL_TYPE + 1]; 2763 2764 struct rdma_restrack_root *res; 2765 2766 const struct uapi_definition *driver_def; 2767 2768 /* 2769 * Positive refcount indicates that the device is currently 2770 * registered and cannot be unregistered. 2771 */ 2772 refcount_t refcount; 2773 struct completion unreg_completion; 2774 struct work_struct unregistration_work; 2775 2776 const struct rdma_link_ops *link_ops; 2777 2778 /* Protects compat_devs xarray modifications */ 2779 struct mutex compat_devs_mutex; 2780 /* Maintains compat devices for each net namespace */ 2781 struct xarray compat_devs; 2782 2783 /* Used by iWarp CM */ 2784 char iw_ifname[IFNAMSIZ]; 2785 u32 iw_driver_flags; 2786 u32 lag_flags; 2787}; 2788 2789static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size, 2790 gfp_t gfp, bool is_numa_aware) 2791{ 2792 if (is_numa_aware && dev->ops.get_numa_node) 2793 return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev)); 2794 2795 return kzalloc(size, gfp); 2796} 2797 2798struct ib_client_nl_info; 2799struct ib_client { 2800 const char *name; 2801 int (*add)(struct ib_device *ibdev); 2802 void (*remove)(struct ib_device *, void *client_data); 2803 void (*rename)(struct ib_device *dev, void *client_data); 2804 int (*get_nl_info)(struct ib_device *ibdev, void *client_data, 2805 struct ib_client_nl_info *res); 2806 int (*get_global_nl_info)(struct ib_client_nl_info *res); 2807 2808 /* Returns the net_dev belonging to this ib_client and matching the 2809 * given parameters. 2810 * @dev: An RDMA device that the net_dev use for communication. 2811 * @port: A physical port number on the RDMA device. 2812 * @pkey: P_Key that the net_dev uses if applicable. 2813 * @gid: A GID that the net_dev uses to communicate. 2814 * @addr: An IP address the net_dev is configured with. 2815 * @client_data: The device's client data set by ib_set_client_data(). 2816 * 2817 * An ib_client that implements a net_dev on top of RDMA devices 2818 * (such as IP over IB) should implement this callback, allowing the 2819 * rdma_cm module to find the right net_dev for a given request. 2820 * 2821 * The caller is responsible for calling dev_put on the returned 2822 * netdev. */ 2823 struct net_device *(*get_net_dev_by_params)( 2824 struct ib_device *dev, 2825 u32 port, 2826 u16 pkey, 2827 const union ib_gid *gid, 2828 const struct sockaddr *addr, 2829 void *client_data); 2830 2831 refcount_t uses; 2832 struct completion uses_zero; 2833 u32 client_id; 2834 2835 /* kverbs are not required by the client */ 2836 u8 no_kverbs_req:1; 2837}; 2838 2839/* 2840 * IB block DMA iterator 2841 * 2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned 2843 * to a HW supported page size. 2844 */ 2845struct ib_block_iter { 2846 /* internal states */ 2847 struct scatterlist *__sg; /* sg holding the current aligned block */ 2848 dma_addr_t __dma_addr; /* unaligned DMA address of this block */ 2849 size_t __sg_numblocks; /* ib_umem_num_dma_blocks() */ 2850 unsigned int __sg_nents; /* number of SG entries */ 2851 unsigned int __sg_advance; /* number of bytes to advance in sg in next step */ 2852 unsigned int __pg_bit; /* alignment of current block */ 2853}; 2854 2855struct ib_device *_ib_alloc_device(size_t size); 2856#define ib_alloc_device(drv_struct, member) \ 2857 container_of(_ib_alloc_device(sizeof(struct drv_struct) + \ 2858 BUILD_BUG_ON_ZERO(offsetof( \ 2859 struct drv_struct, member))), \ 2860 struct drv_struct, member) 2861 2862void ib_dealloc_device(struct ib_device *device); 2863 2864void ib_get_device_fw_str(struct ib_device *device, char *str); 2865 2866int ib_register_device(struct ib_device *device, const char *name, 2867 struct device *dma_device); 2868void ib_unregister_device(struct ib_device *device); 2869void ib_unregister_driver(enum rdma_driver_id driver_id); 2870void ib_unregister_device_and_put(struct ib_device *device); 2871void ib_unregister_device_queued(struct ib_device *ib_dev); 2872 2873int ib_register_client (struct ib_client *client); 2874void ib_unregister_client(struct ib_client *client); 2875 2876void __rdma_block_iter_start(struct ib_block_iter *biter, 2877 struct scatterlist *sglist, 2878 unsigned int nents, 2879 unsigned long pgsz); 2880bool __rdma_block_iter_next(struct ib_block_iter *biter); 2881 2882/** 2883 * rdma_block_iter_dma_address - get the aligned dma address of the current 2884 * block held by the block iterator. 2885 * @biter: block iterator holding the memory block 2886 */ 2887static inline dma_addr_t 2888rdma_block_iter_dma_address(struct ib_block_iter *biter) 2889{ 2890 return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1); 2891} 2892 2893/** 2894 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list 2895 * @sglist: sglist to iterate over 2896 * @biter: block iterator holding the memory block 2897 * @nents: maximum number of sg entries to iterate over 2898 * @pgsz: best HW supported page size to use 2899 * 2900 * Callers may use rdma_block_iter_dma_address() to get each 2901 * blocks aligned DMA address. 2902 */ 2903#define rdma_for_each_block(sglist, biter, nents, pgsz) \ 2904 for (__rdma_block_iter_start(biter, sglist, nents, \ 2905 pgsz); \ 2906 __rdma_block_iter_next(biter);) 2907 2908/** 2909 * ib_get_client_data - Get IB client context 2910 * @device:Device to get context for 2911 * @client:Client to get context for 2912 * 2913 * ib_get_client_data() returns the client context data set with 2914 * ib_set_client_data(). This can only be called while the client is 2915 * registered to the device, once the ib_client remove() callback returns this 2916 * cannot be called. 2917 */ 2918static inline void *ib_get_client_data(struct ib_device *device, 2919 struct ib_client *client) 2920{ 2921 return xa_load(&device->client_data, client->client_id); 2922} 2923void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2924 void *data); 2925void ib_set_device_ops(struct ib_device *device, 2926 const struct ib_device_ops *ops); 2927 2928int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2929 unsigned long pfn, unsigned long size, pgprot_t prot, 2930 struct rdma_user_mmap_entry *entry); 2931int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2932 struct rdma_user_mmap_entry *entry, 2933 size_t length); 2934int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2935 struct rdma_user_mmap_entry *entry, 2936 size_t length, u32 min_pgoff, 2937 u32 max_pgoff); 2938 2939static inline int 2940rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext, 2941 struct rdma_user_mmap_entry *entry, 2942 size_t length, u32 pgoff) 2943{ 2944 return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff, 2945 pgoff); 2946} 2947 2948struct rdma_user_mmap_entry * 2949rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2950 unsigned long pgoff); 2951struct rdma_user_mmap_entry * 2952rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2953 struct vm_area_struct *vma); 2954void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2955 2956void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2957 2958static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2959{ 2960 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2961} 2962 2963static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2964{ 2965 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2966} 2967 2968static inline bool ib_is_buffer_cleared(const void __user *p, 2969 size_t len) 2970{ 2971 bool ret; 2972 u8 *buf; 2973 2974 if (len > USHRT_MAX) 2975 return false; 2976 2977 buf = memdup_user(p, len); 2978 if (IS_ERR(buf)) 2979 return false; 2980 2981 ret = !memchr_inv(buf, 0, len); 2982 kfree(buf); 2983 return ret; 2984} 2985 2986static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2987 size_t offset, 2988 size_t len) 2989{ 2990 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2991} 2992 2993/** 2994 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2995 * contains all required attributes and no attributes not allowed for 2996 * the given QP state transition. 2997 * @cur_state: Current QP state 2998 * @next_state: Next QP state 2999 * @type: QP type 3000 * @mask: Mask of supplied QP attributes 3001 * 3002 * This function is a helper function that a low-level driver's 3003 * modify_qp method can use to validate the consumer's input. It 3004 * checks that cur_state and next_state are valid QP states, that a 3005 * transition from cur_state to next_state is allowed by the IB spec, 3006 * and that the attribute mask supplied is allowed for the transition. 3007 */ 3008bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 3009 enum ib_qp_type type, enum ib_qp_attr_mask mask); 3010 3011void ib_register_event_handler(struct ib_event_handler *event_handler); 3012void ib_unregister_event_handler(struct ib_event_handler *event_handler); 3013void ib_dispatch_event(const struct ib_event *event); 3014 3015int ib_query_port(struct ib_device *device, 3016 u32 port_num, struct ib_port_attr *port_attr); 3017 3018enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 3019 u32 port_num); 3020 3021/** 3022 * rdma_cap_ib_switch - Check if the device is IB switch 3023 * @device: Device to check 3024 * 3025 * Device driver is responsible for setting is_switch bit on 3026 * in ib_device structure at init time. 3027 * 3028 * Return: true if the device is IB switch. 3029 */ 3030static inline bool rdma_cap_ib_switch(const struct ib_device *device) 3031{ 3032 return device->is_switch; 3033} 3034 3035/** 3036 * rdma_start_port - Return the first valid port number for the device 3037 * specified 3038 * 3039 * @device: Device to be checked 3040 * 3041 * Return start port number 3042 */ 3043static inline u32 rdma_start_port(const struct ib_device *device) 3044{ 3045 return rdma_cap_ib_switch(device) ? 0 : 1; 3046} 3047 3048/** 3049 * rdma_for_each_port - Iterate over all valid port numbers of the IB device 3050 * @device - The struct ib_device * to iterate over 3051 * @iter - The unsigned int to store the port number 3052 */ 3053#define rdma_for_each_port(device, iter) \ 3054 for (iter = rdma_start_port(device + \ 3055 BUILD_BUG_ON_ZERO(!__same_type(u32, \ 3056 iter))); \ 3057 iter <= rdma_end_port(device); iter++) 3058 3059/** 3060 * rdma_end_port - Return the last valid port number for the device 3061 * specified 3062 * 3063 * @device: Device to be checked 3064 * 3065 * Return last port number 3066 */ 3067static inline u32 rdma_end_port(const struct ib_device *device) 3068{ 3069 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 3070} 3071 3072static inline int rdma_is_port_valid(const struct ib_device *device, 3073 unsigned int port) 3074{ 3075 return (port >= rdma_start_port(device) && 3076 port <= rdma_end_port(device)); 3077} 3078 3079static inline bool rdma_is_grh_required(const struct ib_device *device, 3080 u32 port_num) 3081{ 3082 return device->port_data[port_num].immutable.core_cap_flags & 3083 RDMA_CORE_PORT_IB_GRH_REQUIRED; 3084} 3085 3086static inline bool rdma_protocol_ib(const struct ib_device *device, 3087 u32 port_num) 3088{ 3089 return device->port_data[port_num].immutable.core_cap_flags & 3090 RDMA_CORE_CAP_PROT_IB; 3091} 3092 3093static inline bool rdma_protocol_roce(const struct ib_device *device, 3094 u32 port_num) 3095{ 3096 return device->port_data[port_num].immutable.core_cap_flags & 3097 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 3098} 3099 3100static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, 3101 u32 port_num) 3102{ 3103 return device->port_data[port_num].immutable.core_cap_flags & 3104 RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 3105} 3106 3107static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, 3108 u32 port_num) 3109{ 3110 return device->port_data[port_num].immutable.core_cap_flags & 3111 RDMA_CORE_CAP_PROT_ROCE; 3112} 3113 3114static inline bool rdma_protocol_iwarp(const struct ib_device *device, 3115 u32 port_num) 3116{ 3117 return device->port_data[port_num].immutable.core_cap_flags & 3118 RDMA_CORE_CAP_PROT_IWARP; 3119} 3120 3121static inline bool rdma_ib_or_roce(const struct ib_device *device, 3122 u32 port_num) 3123{ 3124 return rdma_protocol_ib(device, port_num) || 3125 rdma_protocol_roce(device, port_num); 3126} 3127 3128static inline bool rdma_protocol_raw_packet(const struct ib_device *device, 3129 u32 port_num) 3130{ 3131 return device->port_data[port_num].immutable.core_cap_flags & 3132 RDMA_CORE_CAP_PROT_RAW_PACKET; 3133} 3134 3135static inline bool rdma_protocol_usnic(const struct ib_device *device, 3136 u32 port_num) 3137{ 3138 return device->port_data[port_num].immutable.core_cap_flags & 3139 RDMA_CORE_CAP_PROT_USNIC; 3140} 3141 3142/** 3143 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 3144 * Management Datagrams. 3145 * @device: Device to check 3146 * @port_num: Port number to check 3147 * 3148 * Management Datagrams (MAD) are a required part of the InfiniBand 3149 * specification and are supported on all InfiniBand devices. A slightly 3150 * extended version are also supported on OPA interfaces. 3151 * 3152 * Return: true if the port supports sending/receiving of MAD packets. 3153 */ 3154static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num) 3155{ 3156 return device->port_data[port_num].immutable.core_cap_flags & 3157 RDMA_CORE_CAP_IB_MAD; 3158} 3159 3160/** 3161 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 3162 * Management Datagrams. 3163 * @device: Device to check 3164 * @port_num: Port number to check 3165 * 3166 * Intel OmniPath devices extend and/or replace the InfiniBand Management 3167 * datagrams with their own versions. These OPA MADs share many but not all of 3168 * the characteristics of InfiniBand MADs. 3169 * 3170 * OPA MADs differ in the following ways: 3171 * 3172 * 1) MADs are variable size up to 2K 3173 * IBTA defined MADs remain fixed at 256 bytes 3174 * 2) OPA SMPs must carry valid PKeys 3175 * 3) OPA SMP packets are a different format 3176 * 3177 * Return: true if the port supports OPA MAD packet formats. 3178 */ 3179static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num) 3180{ 3181 return device->port_data[port_num].immutable.core_cap_flags & 3182 RDMA_CORE_CAP_OPA_MAD; 3183} 3184 3185/** 3186 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 3187 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 3188 * @device: Device to check 3189 * @port_num: Port number to check 3190 * 3191 * Each InfiniBand node is required to provide a Subnet Management Agent 3192 * that the subnet manager can access. Prior to the fabric being fully 3193 * configured by the subnet manager, the SMA is accessed via a well known 3194 * interface called the Subnet Management Interface (SMI). This interface 3195 * uses directed route packets to communicate with the SM to get around the 3196 * chicken and egg problem of the SM needing to know what's on the fabric 3197 * in order to configure the fabric, and needing to configure the fabric in 3198 * order to send packets to the devices on the fabric. These directed 3199 * route packets do not need the fabric fully configured in order to reach 3200 * their destination. The SMI is the only method allowed to send 3201 * directed route packets on an InfiniBand fabric. 3202 * 3203 * Return: true if the port provides an SMI. 3204 */ 3205static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num) 3206{ 3207 return device->port_data[port_num].immutable.core_cap_flags & 3208 RDMA_CORE_CAP_IB_SMI; 3209} 3210 3211/** 3212 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 3213 * Communication Manager. 3214 * @device: Device to check 3215 * @port_num: Port number to check 3216 * 3217 * The InfiniBand Communication Manager is one of many pre-defined General 3218 * Service Agents (GSA) that are accessed via the General Service 3219 * Interface (GSI). It's role is to facilitate establishment of connections 3220 * between nodes as well as other management related tasks for established 3221 * connections. 3222 * 3223 * Return: true if the port supports an IB CM (this does not guarantee that 3224 * a CM is actually running however). 3225 */ 3226static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num) 3227{ 3228 return device->port_data[port_num].immutable.core_cap_flags & 3229 RDMA_CORE_CAP_IB_CM; 3230} 3231 3232/** 3233 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 3234 * Communication Manager. 3235 * @device: Device to check 3236 * @port_num: Port number to check 3237 * 3238 * Similar to above, but specific to iWARP connections which have a different 3239 * managment protocol than InfiniBand. 3240 * 3241 * Return: true if the port supports an iWARP CM (this does not guarantee that 3242 * a CM is actually running however). 3243 */ 3244static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num) 3245{ 3246 return device->port_data[port_num].immutable.core_cap_flags & 3247 RDMA_CORE_CAP_IW_CM; 3248} 3249 3250/** 3251 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 3252 * Subnet Administration. 3253 * @device: Device to check 3254 * @port_num: Port number to check 3255 * 3256 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 3257 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 3258 * fabrics, devices should resolve routes to other hosts by contacting the 3259 * SA to query the proper route. 3260 * 3261 * Return: true if the port should act as a client to the fabric Subnet 3262 * Administration interface. This does not imply that the SA service is 3263 * running locally. 3264 */ 3265static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num) 3266{ 3267 return device->port_data[port_num].immutable.core_cap_flags & 3268 RDMA_CORE_CAP_IB_SA; 3269} 3270 3271/** 3272 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 3273 * Multicast. 3274 * @device: Device to check 3275 * @port_num: Port number to check 3276 * 3277 * InfiniBand multicast registration is more complex than normal IPv4 or 3278 * IPv6 multicast registration. Each Host Channel Adapter must register 3279 * with the Subnet Manager when it wishes to join a multicast group. It 3280 * should do so only once regardless of how many queue pairs it subscribes 3281 * to this group. And it should leave the group only after all queue pairs 3282 * attached to the group have been detached. 3283 * 3284 * Return: true if the port must undertake the additional adminstrative 3285 * overhead of registering/unregistering with the SM and tracking of the 3286 * total number of queue pairs attached to the multicast group. 3287 */ 3288static inline bool rdma_cap_ib_mcast(const struct ib_device *device, 3289 u32 port_num) 3290{ 3291 return rdma_cap_ib_sa(device, port_num); 3292} 3293 3294/** 3295 * rdma_cap_af_ib - Check if the port of device has the capability 3296 * Native Infiniband Address. 3297 * @device: Device to check 3298 * @port_num: Port number to check 3299 * 3300 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 3301 * GID. RoCE uses a different mechanism, but still generates a GID via 3302 * a prescribed mechanism and port specific data. 3303 * 3304 * Return: true if the port uses a GID address to identify devices on the 3305 * network. 3306 */ 3307static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num) 3308{ 3309 return device->port_data[port_num].immutable.core_cap_flags & 3310 RDMA_CORE_CAP_AF_IB; 3311} 3312 3313/** 3314 * rdma_cap_eth_ah - Check if the port of device has the capability 3315 * Ethernet Address Handle. 3316 * @device: Device to check 3317 * @port_num: Port number to check 3318 * 3319 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 3320 * to fabricate GIDs over Ethernet/IP specific addresses native to the 3321 * port. Normally, packet headers are generated by the sending host 3322 * adapter, but when sending connectionless datagrams, we must manually 3323 * inject the proper headers for the fabric we are communicating over. 3324 * 3325 * Return: true if we are running as a RoCE port and must force the 3326 * addition of a Global Route Header built from our Ethernet Address 3327 * Handle into our header list for connectionless packets. 3328 */ 3329static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num) 3330{ 3331 return device->port_data[port_num].immutable.core_cap_flags & 3332 RDMA_CORE_CAP_ETH_AH; 3333} 3334 3335/** 3336 * rdma_cap_opa_ah - Check if the port of device supports 3337 * OPA Address handles 3338 * @device: Device to check 3339 * @port_num: Port number to check 3340 * 3341 * Return: true if we are running on an OPA device which supports 3342 * the extended OPA addressing. 3343 */ 3344static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num) 3345{ 3346 return (device->port_data[port_num].immutable.core_cap_flags & 3347 RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH; 3348} 3349 3350/** 3351 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 3352 * 3353 * @device: Device 3354 * @port_num: Port number 3355 * 3356 * This MAD size includes the MAD headers and MAD payload. No other headers 3357 * are included. 3358 * 3359 * Return the max MAD size required by the Port. Will return 0 if the port 3360 * does not support MADs 3361 */ 3362static inline size_t rdma_max_mad_size(const struct ib_device *device, 3363 u32 port_num) 3364{ 3365 return device->port_data[port_num].immutable.max_mad_size; 3366} 3367 3368/** 3369 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 3370 * @device: Device to check 3371 * @port_num: Port number to check 3372 * 3373 * RoCE GID table mechanism manages the various GIDs for a device. 3374 * 3375 * NOTE: if allocating the port's GID table has failed, this call will still 3376 * return true, but any RoCE GID table API will fail. 3377 * 3378 * Return: true if the port uses RoCE GID table mechanism in order to manage 3379 * its GIDs. 3380 */ 3381static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 3382 u32 port_num) 3383{ 3384 return rdma_protocol_roce(device, port_num) && 3385 device->ops.add_gid && device->ops.del_gid; 3386} 3387 3388/* 3389 * Check if the device supports READ W/ INVALIDATE. 3390 */ 3391static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 3392{ 3393 /* 3394 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 3395 * has support for it yet. 3396 */ 3397 return rdma_protocol_iwarp(dev, port_num); 3398} 3399 3400/** 3401 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not. 3402 * @device: Device 3403 * @port_num: 1 based Port number 3404 * 3405 * Return true if port is an Intel OPA port , false if not 3406 */ 3407static inline bool rdma_core_cap_opa_port(struct ib_device *device, 3408 u32 port_num) 3409{ 3410 return (device->port_data[port_num].immutable.core_cap_flags & 3411 RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA; 3412} 3413 3414/** 3415 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value. 3416 * @device: Device 3417 * @port_num: Port number 3418 * @mtu: enum value of MTU 3419 * 3420 * Return the MTU size supported by the port as an integer value. Will return 3421 * -1 if enum value of mtu is not supported. 3422 */ 3423static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port, 3424 int mtu) 3425{ 3426 if (rdma_core_cap_opa_port(device, port)) 3427 return opa_mtu_enum_to_int((enum opa_mtu)mtu); 3428 else 3429 return ib_mtu_enum_to_int((enum ib_mtu)mtu); 3430} 3431 3432/** 3433 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute. 3434 * @device: Device 3435 * @port_num: Port number 3436 * @attr: port attribute 3437 * 3438 * Return the MTU size supported by the port as an integer value. 3439 */ 3440static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port, 3441 struct ib_port_attr *attr) 3442{ 3443 if (rdma_core_cap_opa_port(device, port)) 3444 return attr->phys_mtu; 3445 else 3446 return ib_mtu_enum_to_int(attr->max_mtu); 3447} 3448 3449int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 3450 int state); 3451int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 3452 struct ifla_vf_info *info); 3453int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 3454 struct ifla_vf_stats *stats); 3455int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 3456 struct ifla_vf_guid *node_guid, 3457 struct ifla_vf_guid *port_guid); 3458int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 3459 int type); 3460 3461int ib_query_pkey(struct ib_device *device, 3462 u32 port_num, u16 index, u16 *pkey); 3463 3464int ib_modify_device(struct ib_device *device, 3465 int device_modify_mask, 3466 struct ib_device_modify *device_modify); 3467 3468int ib_modify_port(struct ib_device *device, 3469 u32 port_num, int port_modify_mask, 3470 struct ib_port_modify *port_modify); 3471 3472int ib_find_gid(struct ib_device *device, union ib_gid *gid, 3473 u32 *port_num, u16 *index); 3474 3475int ib_find_pkey(struct ib_device *device, 3476 u32 port_num, u16 pkey, u16 *index); 3477 3478enum ib_pd_flags { 3479 /* 3480 * Create a memory registration for all memory in the system and place 3481 * the rkey for it into pd->unsafe_global_rkey. This can be used by 3482 * ULPs to avoid the overhead of dynamic MRs. 3483 * 3484 * This flag is generally considered unsafe and must only be used in 3485 * extremly trusted environments. Every use of it will log a warning 3486 * in the kernel log. 3487 */ 3488 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 3489}; 3490 3491struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 3492 const char *caller); 3493 3494/** 3495 * ib_alloc_pd - Allocates an unused protection domain. 3496 * @device: The device on which to allocate the protection domain. 3497 * @flags: protection domain flags 3498 * 3499 * A protection domain object provides an association between QPs, shared 3500 * receive queues, address handles, memory regions, and memory windows. 3501 * 3502 * Every PD has a local_dma_lkey which can be used as the lkey value for local 3503 * memory operations. 3504 */ 3505#define ib_alloc_pd(device, flags) \ 3506 __ib_alloc_pd((device), (flags), KBUILD_MODNAME) 3507 3508int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 3509 3510/** 3511 * ib_dealloc_pd - Deallocate kernel PD 3512 * @pd: The protection domain 3513 * 3514 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 3515 */ 3516static inline void ib_dealloc_pd(struct ib_pd *pd) 3517{ 3518 int ret = ib_dealloc_pd_user(pd, NULL); 3519 3520 WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail"); 3521} 3522 3523enum rdma_create_ah_flags { 3524 /* In a sleepable context */ 3525 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 3526}; 3527 3528/** 3529 * rdma_create_ah - Creates an address handle for the given address vector. 3530 * @pd: The protection domain associated with the address handle. 3531 * @ah_attr: The attributes of the address vector. 3532 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 3533 * 3534 * The address handle is used to reference a local or global destination 3535 * in all UD QP post sends. 3536 */ 3537struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 3538 u32 flags); 3539 3540/** 3541 * rdma_create_user_ah - Creates an address handle for the given address vector. 3542 * It resolves destination mac address for ah attribute of RoCE type. 3543 * @pd: The protection domain associated with the address handle. 3544 * @ah_attr: The attributes of the address vector. 3545 * @udata: pointer to user's input output buffer information need by 3546 * provider driver. 3547 * 3548 * It returns 0 on success and returns appropriate error code on error. 3549 * The address handle is used to reference a local or global destination 3550 * in all UD QP post sends. 3551 */ 3552struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 3553 struct rdma_ah_attr *ah_attr, 3554 struct ib_udata *udata); 3555/** 3556 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header 3557 * work completion. 3558 * @hdr: the L3 header to parse 3559 * @net_type: type of header to parse 3560 * @sgid: place to store source gid 3561 * @dgid: place to store destination gid 3562 */ 3563int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 3564 enum rdma_network_type net_type, 3565 union ib_gid *sgid, union ib_gid *dgid); 3566 3567/** 3568 * ib_get_rdma_header_version - Get the header version 3569 * @hdr: the L3 header to parse 3570 */ 3571int ib_get_rdma_header_version(const union rdma_network_hdr *hdr); 3572 3573/** 3574 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a 3575 * work completion. 3576 * @device: Device on which the received message arrived. 3577 * @port_num: Port on which the received message arrived. 3578 * @wc: Work completion associated with the received message. 3579 * @grh: References the received global route header. This parameter is 3580 * ignored unless the work completion indicates that the GRH is valid. 3581 * @ah_attr: Returned attributes that can be used when creating an address 3582 * handle for replying to the message. 3583 * When ib_init_ah_attr_from_wc() returns success, 3584 * (a) for IB link layer it optionally contains a reference to SGID attribute 3585 * when GRH is present for IB link layer. 3586 * (b) for RoCE link layer it contains a reference to SGID attribute. 3587 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID 3588 * attributes which are initialized using ib_init_ah_attr_from_wc(). 3589 * 3590 */ 3591int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 3592 const struct ib_wc *wc, const struct ib_grh *grh, 3593 struct rdma_ah_attr *ah_attr); 3594 3595/** 3596 * ib_create_ah_from_wc - Creates an address handle associated with the 3597 * sender of the specified work completion. 3598 * @pd: The protection domain associated with the address handle. 3599 * @wc: Work completion information associated with a received message. 3600 * @grh: References the received global route header. This parameter is 3601 * ignored unless the work completion indicates that the GRH is valid. 3602 * @port_num: The outbound port number to associate with the address. 3603 * 3604 * The address handle is used to reference a local or global destination 3605 * in all UD QP post sends. 3606 */ 3607struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3608 const struct ib_grh *grh, u32 port_num); 3609 3610/** 3611 * rdma_modify_ah - Modifies the address vector associated with an address 3612 * handle. 3613 * @ah: The address handle to modify. 3614 * @ah_attr: The new address vector attributes to associate with the 3615 * address handle. 3616 */ 3617int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3618 3619/** 3620 * rdma_query_ah - Queries the address vector associated with an address 3621 * handle. 3622 * @ah: The address handle to query. 3623 * @ah_attr: The address vector attributes associated with the address 3624 * handle. 3625 */ 3626int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr); 3627 3628enum rdma_destroy_ah_flags { 3629 /* In a sleepable context */ 3630 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3631}; 3632 3633/** 3634 * rdma_destroy_ah_user - Destroys an address handle. 3635 * @ah: The address handle to destroy. 3636 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3637 * @udata: Valid user data or NULL for kernel objects 3638 */ 3639int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3640 3641/** 3642 * rdma_destroy_ah - Destroys an kernel address handle. 3643 * @ah: The address handle to destroy. 3644 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3645 * 3646 * NOTE: for user ah use rdma_destroy_ah_user with valid udata! 3647 */ 3648static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags) 3649{ 3650 int ret = rdma_destroy_ah_user(ah, flags, NULL); 3651 3652 WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail"); 3653} 3654 3655struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 3656 struct ib_srq_init_attr *srq_init_attr, 3657 struct ib_usrq_object *uobject, 3658 struct ib_udata *udata); 3659static inline struct ib_srq * 3660ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr) 3661{ 3662 if (!pd->device->ops.create_srq) 3663 return ERR_PTR(-EOPNOTSUPP); 3664 3665 return ib_create_srq_user(pd, srq_init_attr, NULL, NULL); 3666} 3667 3668/** 3669 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3670 * @srq: The SRQ to modify. 3671 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3672 * the current values of selected SRQ attributes are returned. 3673 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3674 * are being modified. 3675 * 3676 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3677 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3678 * the number of receives queued drops below the limit. 3679 */ 3680int ib_modify_srq(struct ib_srq *srq, 3681 struct ib_srq_attr *srq_attr, 3682 enum ib_srq_attr_mask srq_attr_mask); 3683 3684/** 3685 * ib_query_srq - Returns the attribute list and current values for the 3686 * specified SRQ. 3687 * @srq: The SRQ to query. 3688 * @srq_attr: The attributes of the specified SRQ. 3689 */ 3690int ib_query_srq(struct ib_srq *srq, 3691 struct ib_srq_attr *srq_attr); 3692 3693/** 3694 * ib_destroy_srq_user - Destroys the specified SRQ. 3695 * @srq: The SRQ to destroy. 3696 * @udata: Valid user data or NULL for kernel objects 3697 */ 3698int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3699 3700/** 3701 * ib_destroy_srq - Destroys the specified kernel SRQ. 3702 * @srq: The SRQ to destroy. 3703 * 3704 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3705 */ 3706static inline void ib_destroy_srq(struct ib_srq *srq) 3707{ 3708 int ret = ib_destroy_srq_user(srq, NULL); 3709 3710 WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail"); 3711} 3712 3713/** 3714 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3715 * @srq: The SRQ to post the work request on. 3716 * @recv_wr: A list of work requests to post on the receive queue. 3717 * @bad_recv_wr: On an immediate failure, this parameter will reference 3718 * the work request that failed to be posted on the QP. 3719 */ 3720static inline int ib_post_srq_recv(struct ib_srq *srq, 3721 const struct ib_recv_wr *recv_wr, 3722 const struct ib_recv_wr **bad_recv_wr) 3723{ 3724 const struct ib_recv_wr *dummy; 3725 3726 return srq->device->ops.post_srq_recv(srq, recv_wr, 3727 bad_recv_wr ? : &dummy); 3728} 3729 3730struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 3731 struct ib_qp_init_attr *qp_init_attr, 3732 const char *caller); 3733/** 3734 * ib_create_qp - Creates a kernel QP associated with the specific protection 3735 * domain. 3736 * @pd: The protection domain associated with the QP. 3737 * @init_attr: A list of initial attributes required to create the 3738 * QP. If QP creation succeeds, then the attributes are updated to 3739 * the actual capabilities of the created QP. 3740 */ 3741static inline struct ib_qp *ib_create_qp(struct ib_pd *pd, 3742 struct ib_qp_init_attr *init_attr) 3743{ 3744 return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME); 3745} 3746 3747/** 3748 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3749 * @qp: The QP to modify. 3750 * @attr: On input, specifies the QP attributes to modify. On output, 3751 * the current values of selected QP attributes are returned. 3752 * @attr_mask: A bit-mask used to specify which attributes of the QP 3753 * are being modified. 3754 * @udata: pointer to user's input output buffer information 3755 * are being modified. 3756 * It returns 0 on success and returns appropriate error code on error. 3757 */ 3758int ib_modify_qp_with_udata(struct ib_qp *qp, 3759 struct ib_qp_attr *attr, 3760 int attr_mask, 3761 struct ib_udata *udata); 3762 3763/** 3764 * ib_modify_qp - Modifies the attributes for the specified QP and then 3765 * transitions the QP to the given state. 3766 * @qp: The QP to modify. 3767 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3768 * the current values of selected QP attributes are returned. 3769 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3770 * are being modified. 3771 */ 3772int ib_modify_qp(struct ib_qp *qp, 3773 struct ib_qp_attr *qp_attr, 3774 int qp_attr_mask); 3775 3776/** 3777 * ib_query_qp - Returns the attribute list and current values for the 3778 * specified QP. 3779 * @qp: The QP to query. 3780 * @qp_attr: The attributes of the specified QP. 3781 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3782 * @qp_init_attr: Additional attributes of the selected QP. 3783 * 3784 * The qp_attr_mask may be used to limit the query to gathering only the 3785 * selected attributes. 3786 */ 3787int ib_query_qp(struct ib_qp *qp, 3788 struct ib_qp_attr *qp_attr, 3789 int qp_attr_mask, 3790 struct ib_qp_init_attr *qp_init_attr); 3791 3792/** 3793 * ib_destroy_qp - Destroys the specified QP. 3794 * @qp: The QP to destroy. 3795 * @udata: Valid udata or NULL for kernel objects 3796 */ 3797int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3798 3799/** 3800 * ib_destroy_qp - Destroys the specified kernel QP. 3801 * @qp: The QP to destroy. 3802 * 3803 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3804 */ 3805static inline int ib_destroy_qp(struct ib_qp *qp) 3806{ 3807 return ib_destroy_qp_user(qp, NULL); 3808} 3809 3810/** 3811 * ib_open_qp - Obtain a reference to an existing sharable QP. 3812 * @xrcd - XRC domain 3813 * @qp_open_attr: Attributes identifying the QP to open. 3814 * 3815 * Returns a reference to a sharable QP. 3816 */ 3817struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3818 struct ib_qp_open_attr *qp_open_attr); 3819 3820/** 3821 * ib_close_qp - Release an external reference to a QP. 3822 * @qp: The QP handle to release 3823 * 3824 * The opened QP handle is released by the caller. The underlying 3825 * shared QP is not destroyed until all internal references are released. 3826 */ 3827int ib_close_qp(struct ib_qp *qp); 3828 3829/** 3830 * ib_post_send - Posts a list of work requests to the send queue of 3831 * the specified QP. 3832 * @qp: The QP to post the work request on. 3833 * @send_wr: A list of work requests to post on the send queue. 3834 * @bad_send_wr: On an immediate failure, this parameter will reference 3835 * the work request that failed to be posted on the QP. 3836 * 3837 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3838 * error is returned, the QP state shall not be affected, 3839 * ib_post_send() will return an immediate error after queueing any 3840 * earlier work requests in the list. 3841 */ 3842static inline int ib_post_send(struct ib_qp *qp, 3843 const struct ib_send_wr *send_wr, 3844 const struct ib_send_wr **bad_send_wr) 3845{ 3846 const struct ib_send_wr *dummy; 3847 3848 return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy); 3849} 3850 3851/** 3852 * ib_post_recv - Posts a list of work requests to the receive queue of 3853 * the specified QP. 3854 * @qp: The QP to post the work request on. 3855 * @recv_wr: A list of work requests to post on the receive queue. 3856 * @bad_recv_wr: On an immediate failure, this parameter will reference 3857 * the work request that failed to be posted on the QP. 3858 */ 3859static inline int ib_post_recv(struct ib_qp *qp, 3860 const struct ib_recv_wr *recv_wr, 3861 const struct ib_recv_wr **bad_recv_wr) 3862{ 3863 const struct ib_recv_wr *dummy; 3864 3865 return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy); 3866} 3867 3868struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe, 3869 int comp_vector, enum ib_poll_context poll_ctx, 3870 const char *caller); 3871static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3872 int nr_cqe, int comp_vector, 3873 enum ib_poll_context poll_ctx) 3874{ 3875 return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx, 3876 KBUILD_MODNAME); 3877} 3878 3879struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private, 3880 int nr_cqe, enum ib_poll_context poll_ctx, 3881 const char *caller); 3882 3883/** 3884 * ib_alloc_cq_any: Allocate kernel CQ 3885 * @dev: The IB device 3886 * @private: Private data attached to the CQE 3887 * @nr_cqe: Number of CQEs in the CQ 3888 * @poll_ctx: Context used for polling the CQ 3889 */ 3890static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev, 3891 void *private, int nr_cqe, 3892 enum ib_poll_context poll_ctx) 3893{ 3894 return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx, 3895 KBUILD_MODNAME); 3896} 3897 3898void ib_free_cq(struct ib_cq *cq); 3899int ib_process_cq_direct(struct ib_cq *cq, int budget); 3900 3901/** 3902 * ib_create_cq - Creates a CQ on the specified device. 3903 * @device: The device on which to create the CQ. 3904 * @comp_handler: A user-specified callback that is invoked when a 3905 * completion event occurs on the CQ. 3906 * @event_handler: A user-specified callback that is invoked when an 3907 * asynchronous event not associated with a completion occurs on the CQ. 3908 * @cq_context: Context associated with the CQ returned to the user via 3909 * the associated completion and event handlers. 3910 * @cq_attr: The attributes the CQ should be created upon. 3911 * 3912 * Users can examine the cq structure to determine the actual CQ size. 3913 */ 3914struct ib_cq *__ib_create_cq(struct ib_device *device, 3915 ib_comp_handler comp_handler, 3916 void (*event_handler)(struct ib_event *, void *), 3917 void *cq_context, 3918 const struct ib_cq_init_attr *cq_attr, 3919 const char *caller); 3920#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3921 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME) 3922 3923/** 3924 * ib_resize_cq - Modifies the capacity of the CQ. 3925 * @cq: The CQ to resize. 3926 * @cqe: The minimum size of the CQ. 3927 * 3928 * Users can examine the cq structure to determine the actual CQ size. 3929 */ 3930int ib_resize_cq(struct ib_cq *cq, int cqe); 3931 3932/** 3933 * rdma_set_cq_moderation - Modifies moderation params of the CQ 3934 * @cq: The CQ to modify. 3935 * @cq_count: number of CQEs that will trigger an event 3936 * @cq_period: max period of time in usec before triggering an event 3937 * 3938 */ 3939int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3940 3941/** 3942 * ib_destroy_cq_user - Destroys the specified CQ. 3943 * @cq: The CQ to destroy. 3944 * @udata: Valid user data or NULL for kernel objects 3945 */ 3946int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3947 3948/** 3949 * ib_destroy_cq - Destroys the specified kernel CQ. 3950 * @cq: The CQ to destroy. 3951 * 3952 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3953 */ 3954static inline void ib_destroy_cq(struct ib_cq *cq) 3955{ 3956 int ret = ib_destroy_cq_user(cq, NULL); 3957 3958 WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail"); 3959} 3960 3961/** 3962 * ib_poll_cq - poll a CQ for completion(s) 3963 * @cq:the CQ being polled 3964 * @num_entries:maximum number of completions to return 3965 * @wc:array of at least @num_entries &struct ib_wc where completions 3966 * will be returned 3967 * 3968 * Poll a CQ for (possibly multiple) completions. If the return value 3969 * is < 0, an error occurred. If the return value is >= 0, it is the 3970 * number of completions returned. If the return value is 3971 * non-negative and < num_entries, then the CQ was emptied. 3972 */ 3973static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3974 struct ib_wc *wc) 3975{ 3976 return cq->device->ops.poll_cq(cq, num_entries, wc); 3977} 3978 3979/** 3980 * ib_req_notify_cq - Request completion notification on a CQ. 3981 * @cq: The CQ to generate an event for. 3982 * @flags: 3983 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3984 * to request an event on the next solicited event or next work 3985 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3986 * may also be |ed in to request a hint about missed events, as 3987 * described below. 3988 * 3989 * Return Value: 3990 * < 0 means an error occurred while requesting notification 3991 * == 0 means notification was requested successfully, and if 3992 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3993 * were missed and it is safe to wait for another event. In 3994 * this case is it guaranteed that any work completions added 3995 * to the CQ since the last CQ poll will trigger a completion 3996 * notification event. 3997 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3998 * in. It means that the consumer must poll the CQ again to 3999 * make sure it is empty to avoid missing an event because of a 4000 * race between requesting notification and an entry being 4001 * added to the CQ. This return value means it is possible 4002 * (but not guaranteed) that a work completion has been added 4003 * to the CQ since the last poll without triggering a 4004 * completion notification event. 4005 */ 4006static inline int ib_req_notify_cq(struct ib_cq *cq, 4007 enum ib_cq_notify_flags flags) 4008{ 4009 return cq->device->ops.req_notify_cq(cq, flags); 4010} 4011 4012struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe, 4013 int comp_vector_hint, 4014 enum ib_poll_context poll_ctx); 4015 4016void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe); 4017 4018/* 4019 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to 4020 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual 4021 * address into the dma address. 4022 */ 4023static inline bool ib_uses_virt_dma(struct ib_device *dev) 4024{ 4025 return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device; 4026} 4027 4028/* 4029 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers. 4030 */ 4031static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev) 4032{ 4033 if (ib_uses_virt_dma(dev)) 4034 return false; 4035 4036 return dma_pci_p2pdma_supported(dev->dma_device); 4037} 4038 4039/** 4040 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer 4041 * @dma_addr: The DMA address 4042 * 4043 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after 4044 * going through the dma_addr marshalling. 4045 */ 4046static inline void *ib_virt_dma_to_ptr(u64 dma_addr) 4047{ 4048 /* virt_dma mode maps the kvs's directly into the dma addr */ 4049 return (void *)(uintptr_t)dma_addr; 4050} 4051 4052/** 4053 * ib_virt_dma_to_page - Convert a dma_addr to a struct page 4054 * @dma_addr: The DMA address 4055 * 4056 * Used by ib_uses_virt_dma() device to get back to the struct page after going 4057 * through the dma_addr marshalling. 4058 */ 4059static inline struct page *ib_virt_dma_to_page(u64 dma_addr) 4060{ 4061 return virt_to_page(ib_virt_dma_to_ptr(dma_addr)); 4062} 4063 4064/** 4065 * ib_dma_mapping_error - check a DMA addr for error 4066 * @dev: The device for which the dma_addr was created 4067 * @dma_addr: The DMA address to check 4068 */ 4069static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 4070{ 4071 if (ib_uses_virt_dma(dev)) 4072 return 0; 4073 return dma_mapping_error(dev->dma_device, dma_addr); 4074} 4075 4076/** 4077 * ib_dma_map_single - Map a kernel virtual address to DMA address 4078 * @dev: The device for which the dma_addr is to be created 4079 * @cpu_addr: The kernel virtual address 4080 * @size: The size of the region in bytes 4081 * @direction: The direction of the DMA 4082 */ 4083static inline u64 ib_dma_map_single(struct ib_device *dev, 4084 void *cpu_addr, size_t size, 4085 enum dma_data_direction direction) 4086{ 4087 if (ib_uses_virt_dma(dev)) 4088 return (uintptr_t)cpu_addr; 4089 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 4090} 4091 4092/** 4093 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 4094 * @dev: The device for which the DMA address was created 4095 * @addr: The DMA address 4096 * @size: The size of the region in bytes 4097 * @direction: The direction of the DMA 4098 */ 4099static inline void ib_dma_unmap_single(struct ib_device *dev, 4100 u64 addr, size_t size, 4101 enum dma_data_direction direction) 4102{ 4103 if (!ib_uses_virt_dma(dev)) 4104 dma_unmap_single(dev->dma_device, addr, size, direction); 4105} 4106 4107/** 4108 * ib_dma_map_page - Map a physical page to DMA address 4109 * @dev: The device for which the dma_addr is to be created 4110 * @page: The page to be mapped 4111 * @offset: The offset within the page 4112 * @size: The size of the region in bytes 4113 * @direction: The direction of the DMA 4114 */ 4115static inline u64 ib_dma_map_page(struct ib_device *dev, 4116 struct page *page, 4117 unsigned long offset, 4118 size_t size, 4119 enum dma_data_direction direction) 4120{ 4121 if (ib_uses_virt_dma(dev)) 4122 return (uintptr_t)(page_address(page) + offset); 4123 return dma_map_page(dev->dma_device, page, offset, size, direction); 4124} 4125 4126/** 4127 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 4128 * @dev: The device for which the DMA address was created 4129 * @addr: The DMA address 4130 * @size: The size of the region in bytes 4131 * @direction: The direction of the DMA 4132 */ 4133static inline void ib_dma_unmap_page(struct ib_device *dev, 4134 u64 addr, size_t size, 4135 enum dma_data_direction direction) 4136{ 4137 if (!ib_uses_virt_dma(dev)) 4138 dma_unmap_page(dev->dma_device, addr, size, direction); 4139} 4140 4141int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents); 4142static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 4143 struct scatterlist *sg, int nents, 4144 enum dma_data_direction direction, 4145 unsigned long dma_attrs) 4146{ 4147 if (ib_uses_virt_dma(dev)) 4148 return ib_dma_virt_map_sg(dev, sg, nents); 4149 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 4150 dma_attrs); 4151} 4152 4153static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 4154 struct scatterlist *sg, int nents, 4155 enum dma_data_direction direction, 4156 unsigned long dma_attrs) 4157{ 4158 if (!ib_uses_virt_dma(dev)) 4159 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 4160 dma_attrs); 4161} 4162 4163/** 4164 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses 4165 * @dev: The device for which the DMA addresses are to be created 4166 * @sg: The sg_table object describing the buffer 4167 * @direction: The direction of the DMA 4168 * @attrs: Optional DMA attributes for the map operation 4169 */ 4170static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev, 4171 struct sg_table *sgt, 4172 enum dma_data_direction direction, 4173 unsigned long dma_attrs) 4174{ 4175 int nents; 4176 4177 if (ib_uses_virt_dma(dev)) { 4178 nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents); 4179 if (!nents) 4180 return -EIO; 4181 sgt->nents = nents; 4182 return 0; 4183 } 4184 return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4185} 4186 4187static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev, 4188 struct sg_table *sgt, 4189 enum dma_data_direction direction, 4190 unsigned long dma_attrs) 4191{ 4192 if (!ib_uses_virt_dma(dev)) 4193 dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs); 4194} 4195 4196/** 4197 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 4198 * @dev: The device for which the DMA addresses are to be created 4199 * @sg: The array of scatter/gather entries 4200 * @nents: The number of scatter/gather entries 4201 * @direction: The direction of the DMA 4202 */ 4203static inline int ib_dma_map_sg(struct ib_device *dev, 4204 struct scatterlist *sg, int nents, 4205 enum dma_data_direction direction) 4206{ 4207 return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0); 4208} 4209 4210/** 4211 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 4212 * @dev: The device for which the DMA addresses were created 4213 * @sg: The array of scatter/gather entries 4214 * @nents: The number of scatter/gather entries 4215 * @direction: The direction of the DMA 4216 */ 4217static inline void ib_dma_unmap_sg(struct ib_device *dev, 4218 struct scatterlist *sg, int nents, 4219 enum dma_data_direction direction) 4220{ 4221 ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0); 4222} 4223 4224/** 4225 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer 4226 * @dev: The device to query 4227 * 4228 * The returned value represents a size in bytes. 4229 */ 4230static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev) 4231{ 4232 if (ib_uses_virt_dma(dev)) 4233 return UINT_MAX; 4234 return dma_get_max_seg_size(dev->dma_device); 4235} 4236 4237/** 4238 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 4239 * @dev: The device for which the DMA address was created 4240 * @addr: The DMA address 4241 * @size: The size of the region in bytes 4242 * @dir: The direction of the DMA 4243 */ 4244static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 4245 u64 addr, 4246 size_t size, 4247 enum dma_data_direction dir) 4248{ 4249 if (!ib_uses_virt_dma(dev)) 4250 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 4251} 4252 4253/** 4254 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 4255 * @dev: The device for which the DMA address was created 4256 * @addr: The DMA address 4257 * @size: The size of the region in bytes 4258 * @dir: The direction of the DMA 4259 */ 4260static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 4261 u64 addr, 4262 size_t size, 4263 enum dma_data_direction dir) 4264{ 4265 if (!ib_uses_virt_dma(dev)) 4266 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 4267} 4268 4269/* ib_reg_user_mr - register a memory region for virtual addresses from kernel 4270 * space. This function should be called when 'current' is the owning MM. 4271 */ 4272struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 4273 u64 virt_addr, int mr_access_flags); 4274 4275/* ib_advise_mr - give an advice about an address range in a memory region */ 4276int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 4277 u32 flags, struct ib_sge *sg_list, u32 num_sge); 4278/** 4279 * ib_dereg_mr_user - Deregisters a memory region and removes it from the 4280 * HCA translation table. 4281 * @mr: The memory region to deregister. 4282 * @udata: Valid user data or NULL for kernel object 4283 * 4284 * This function can fail, if the memory region has memory windows bound to it. 4285 */ 4286int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 4287 4288/** 4289 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 4290 * HCA translation table. 4291 * @mr: The memory region to deregister. 4292 * 4293 * This function can fail, if the memory region has memory windows bound to it. 4294 * 4295 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 4296 */ 4297static inline int ib_dereg_mr(struct ib_mr *mr) 4298{ 4299 return ib_dereg_mr_user(mr, NULL); 4300} 4301 4302struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 4303 u32 max_num_sg); 4304 4305struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 4306 u32 max_num_data_sg, 4307 u32 max_num_meta_sg); 4308 4309/** 4310 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 4311 * R_Key and L_Key. 4312 * @mr - struct ib_mr pointer to be updated. 4313 * @newkey - new key to be used. 4314 */ 4315static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 4316{ 4317 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 4318 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 4319} 4320 4321/** 4322 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 4323 * for calculating a new rkey for type 2 memory windows. 4324 * @rkey - the rkey to increment. 4325 */ 4326static inline u32 ib_inc_rkey(u32 rkey) 4327{ 4328 const u32 mask = 0x000000ff; 4329 return ((rkey + 1) & mask) | (rkey & ~mask); 4330} 4331 4332/** 4333 * ib_attach_mcast - Attaches the specified QP to a multicast group. 4334 * @qp: QP to attach to the multicast group. The QP must be type 4335 * IB_QPT_UD. 4336 * @gid: Multicast group GID. 4337 * @lid: Multicast group LID in host byte order. 4338 * 4339 * In order to send and receive multicast packets, subnet 4340 * administration must have created the multicast group and configured 4341 * the fabric appropriately. The port associated with the specified 4342 * QP must also be a member of the multicast group. 4343 */ 4344int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4345 4346/** 4347 * ib_detach_mcast - Detaches the specified QP from a multicast group. 4348 * @qp: QP to detach from the multicast group. 4349 * @gid: Multicast group GID. 4350 * @lid: Multicast group LID in host byte order. 4351 */ 4352int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 4353 4354struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 4355 struct inode *inode, struct ib_udata *udata); 4356int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata); 4357 4358static inline int ib_check_mr_access(struct ib_device *ib_dev, 4359 unsigned int flags) 4360{ 4361 u64 device_cap = ib_dev->attrs.device_cap_flags; 4362 4363 /* 4364 * Local write permission is required if remote write or 4365 * remote atomic permission is also requested. 4366 */ 4367 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 4368 !(flags & IB_ACCESS_LOCAL_WRITE)) 4369 return -EINVAL; 4370 4371 if (flags & ~IB_ACCESS_SUPPORTED) 4372 return -EINVAL; 4373 4374 if (flags & IB_ACCESS_ON_DEMAND && 4375 !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING)) 4376 return -EOPNOTSUPP; 4377 4378 if ((flags & IB_ACCESS_FLUSH_GLOBAL && 4379 !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) || 4380 (flags & IB_ACCESS_FLUSH_PERSISTENT && 4381 !(device_cap & IB_DEVICE_FLUSH_PERSISTENT))) 4382 return -EOPNOTSUPP; 4383 4384 return 0; 4385} 4386 4387static inline bool ib_access_writable(int access_flags) 4388{ 4389 /* 4390 * We have writable memory backing the MR if any of the following 4391 * access flags are set. "Local write" and "remote write" obviously 4392 * require write access. "Remote atomic" can do things like fetch and 4393 * add, which will modify memory, and "MW bind" can change permissions 4394 * by binding a window. 4395 */ 4396 return access_flags & 4397 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 4398 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 4399} 4400 4401/** 4402 * ib_check_mr_status: lightweight check of MR status. 4403 * This routine may provide status checks on a selected 4404 * ib_mr. first use is for signature status check. 4405 * 4406 * @mr: A memory region. 4407 * @check_mask: Bitmask of which checks to perform from 4408 * ib_mr_status_check enumeration. 4409 * @mr_status: The container of relevant status checks. 4410 * failed checks will be indicated in the status bitmask 4411 * and the relevant info shall be in the error item. 4412 */ 4413int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 4414 struct ib_mr_status *mr_status); 4415 4416/** 4417 * ib_device_try_get: Hold a registration lock 4418 * device: The device to lock 4419 * 4420 * A device under an active registration lock cannot become unregistered. It 4421 * is only possible to obtain a registration lock on a device that is fully 4422 * registered, otherwise this function returns false. 4423 * 4424 * The registration lock is only necessary for actions which require the 4425 * device to still be registered. Uses that only require the device pointer to 4426 * be valid should use get_device(&ibdev->dev) to hold the memory. 4427 * 4428 */ 4429static inline bool ib_device_try_get(struct ib_device *dev) 4430{ 4431 return refcount_inc_not_zero(&dev->refcount); 4432} 4433 4434void ib_device_put(struct ib_device *device); 4435struct ib_device *ib_device_get_by_netdev(struct net_device *ndev, 4436 enum rdma_driver_id driver_id); 4437struct ib_device *ib_device_get_by_name(const char *name, 4438 enum rdma_driver_id driver_id); 4439struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port, 4440 u16 pkey, const union ib_gid *gid, 4441 const struct sockaddr *addr); 4442int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev, 4443 unsigned int port); 4444struct ib_wq *ib_create_wq(struct ib_pd *pd, 4445 struct ib_wq_init_attr *init_attr); 4446int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata); 4447 4448int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4449 unsigned int *sg_offset, unsigned int page_size); 4450int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 4451 int data_sg_nents, unsigned int *data_sg_offset, 4452 struct scatterlist *meta_sg, int meta_sg_nents, 4453 unsigned int *meta_sg_offset, unsigned int page_size); 4454 4455static inline int 4456ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 4457 unsigned int *sg_offset, unsigned int page_size) 4458{ 4459 int n; 4460 4461 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 4462 mr->iova = 0; 4463 4464 return n; 4465} 4466 4467int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 4468 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 4469 4470void ib_drain_rq(struct ib_qp *qp); 4471void ib_drain_sq(struct ib_qp *qp); 4472void ib_drain_qp(struct ib_qp *qp); 4473 4474int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, 4475 u8 *width); 4476 4477static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr) 4478{ 4479 if (attr->type == RDMA_AH_ATTR_TYPE_ROCE) 4480 return attr->roce.dmac; 4481 return NULL; 4482} 4483 4484static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid) 4485{ 4486 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4487 attr->ib.dlid = (u16)dlid; 4488 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4489 attr->opa.dlid = dlid; 4490} 4491 4492static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr) 4493{ 4494 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4495 return attr->ib.dlid; 4496 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4497 return attr->opa.dlid; 4498 return 0; 4499} 4500 4501static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl) 4502{ 4503 attr->sl = sl; 4504} 4505 4506static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr) 4507{ 4508 return attr->sl; 4509} 4510 4511static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr, 4512 u8 src_path_bits) 4513{ 4514 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4515 attr->ib.src_path_bits = src_path_bits; 4516 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4517 attr->opa.src_path_bits = src_path_bits; 4518} 4519 4520static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr) 4521{ 4522 if (attr->type == RDMA_AH_ATTR_TYPE_IB) 4523 return attr->ib.src_path_bits; 4524 else if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4525 return attr->opa.src_path_bits; 4526 return 0; 4527} 4528 4529static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr, 4530 bool make_grd) 4531{ 4532 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4533 attr->opa.make_grd = make_grd; 4534} 4535 4536static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr) 4537{ 4538 if (attr->type == RDMA_AH_ATTR_TYPE_OPA) 4539 return attr->opa.make_grd; 4540 return false; 4541} 4542 4543static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num) 4544{ 4545 attr->port_num = port_num; 4546} 4547 4548static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr) 4549{ 4550 return attr->port_num; 4551} 4552 4553static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr, 4554 u8 static_rate) 4555{ 4556 attr->static_rate = static_rate; 4557} 4558 4559static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr) 4560{ 4561 return attr->static_rate; 4562} 4563 4564static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr, 4565 enum ib_ah_flags flag) 4566{ 4567 attr->ah_flags = flag; 4568} 4569 4570static inline enum ib_ah_flags 4571 rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr) 4572{ 4573 return attr->ah_flags; 4574} 4575 4576static inline const struct ib_global_route 4577 *rdma_ah_read_grh(const struct rdma_ah_attr *attr) 4578{ 4579 return &attr->grh; 4580} 4581 4582/*To retrieve and modify the grh */ 4583static inline struct ib_global_route 4584 *rdma_ah_retrieve_grh(struct rdma_ah_attr *attr) 4585{ 4586 return &attr->grh; 4587} 4588 4589static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid) 4590{ 4591 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4592 4593 memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid)); 4594} 4595 4596static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr, 4597 __be64 prefix) 4598{ 4599 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4600 4601 grh->dgid.global.subnet_prefix = prefix; 4602} 4603 4604static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr, 4605 __be64 if_id) 4606{ 4607 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4608 4609 grh->dgid.global.interface_id = if_id; 4610} 4611 4612static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr, 4613 union ib_gid *dgid, u32 flow_label, 4614 u8 sgid_index, u8 hop_limit, 4615 u8 traffic_class) 4616{ 4617 struct ib_global_route *grh = rdma_ah_retrieve_grh(attr); 4618 4619 attr->ah_flags = IB_AH_GRH; 4620 if (dgid) 4621 grh->dgid = *dgid; 4622 grh->flow_label = flow_label; 4623 grh->sgid_index = sgid_index; 4624 grh->hop_limit = hop_limit; 4625 grh->traffic_class = traffic_class; 4626 grh->sgid_attr = NULL; 4627} 4628 4629void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr); 4630void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 4631 u32 flow_label, u8 hop_limit, u8 traffic_class, 4632 const struct ib_gid_attr *sgid_attr); 4633void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 4634 const struct rdma_ah_attr *src); 4635void rdma_replace_ah_attr(struct rdma_ah_attr *old, 4636 const struct rdma_ah_attr *new); 4637void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src); 4638 4639/** 4640 * rdma_ah_find_type - Return address handle type. 4641 * 4642 * @dev: Device to be checked 4643 * @port_num: Port number 4644 */ 4645static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev, 4646 u32 port_num) 4647{ 4648 if (rdma_protocol_roce(dev, port_num)) 4649 return RDMA_AH_ATTR_TYPE_ROCE; 4650 if (rdma_protocol_ib(dev, port_num)) { 4651 if (rdma_cap_opa_ah(dev, port_num)) 4652 return RDMA_AH_ATTR_TYPE_OPA; 4653 return RDMA_AH_ATTR_TYPE_IB; 4654 } 4655 4656 return RDMA_AH_ATTR_TYPE_UNDEFINED; 4657} 4658 4659/** 4660 * ib_lid_cpu16 - Return lid in 16bit CPU encoding. 4661 * In the current implementation the only way to 4662 * get the 32bit lid is from other sources for OPA. 4663 * For IB, lids will always be 16bits so cast the 4664 * value accordingly. 4665 * 4666 * @lid: A 32bit LID 4667 */ 4668static inline u16 ib_lid_cpu16(u32 lid) 4669{ 4670 WARN_ON_ONCE(lid & 0xFFFF0000); 4671 return (u16)lid; 4672} 4673 4674/** 4675 * ib_lid_be16 - Return lid in 16bit BE encoding. 4676 * 4677 * @lid: A 32bit LID 4678 */ 4679static inline __be16 ib_lid_be16(u32 lid) 4680{ 4681 WARN_ON_ONCE(lid & 0xFFFF0000); 4682 return cpu_to_be16((u16)lid); 4683} 4684 4685/** 4686 * ib_get_vector_affinity - Get the affinity mappings of a given completion 4687 * vector 4688 * @device: the rdma device 4689 * @comp_vector: index of completion vector 4690 * 4691 * Returns NULL on failure, otherwise a corresponding cpu map of the 4692 * completion vector (returns all-cpus map if the device driver doesn't 4693 * implement get_vector_affinity). 4694 */ 4695static inline const struct cpumask * 4696ib_get_vector_affinity(struct ib_device *device, int comp_vector) 4697{ 4698 if (comp_vector < 0 || comp_vector >= device->num_comp_vectors || 4699 !device->ops.get_vector_affinity) 4700 return NULL; 4701 4702 return device->ops.get_vector_affinity(device, comp_vector); 4703 4704} 4705 4706/** 4707 * rdma_roce_rescan_device - Rescan all of the network devices in the system 4708 * and add their gids, as needed, to the relevant RoCE devices. 4709 * 4710 * @device: the rdma device 4711 */ 4712void rdma_roce_rescan_device(struct ib_device *ibdev); 4713 4714struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 4715 4716int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 4717 4718struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 4719 enum rdma_netdev_t type, const char *name, 4720 unsigned char name_assign_type, 4721 void (*setup)(struct net_device *)); 4722 4723int rdma_init_netdev(struct ib_device *device, u32 port_num, 4724 enum rdma_netdev_t type, const char *name, 4725 unsigned char name_assign_type, 4726 void (*setup)(struct net_device *), 4727 struct net_device *netdev); 4728 4729/** 4730 * rdma_device_to_ibdev - Get ib_device pointer from device pointer 4731 * 4732 * @device: device pointer for which ib_device pointer to retrieve 4733 * 4734 * rdma_device_to_ibdev() retrieves ib_device pointer from device. 4735 * 4736 */ 4737static inline struct ib_device *rdma_device_to_ibdev(struct device *device) 4738{ 4739 struct ib_core_device *coredev = 4740 container_of(device, struct ib_core_device, dev); 4741 4742 return coredev->owner; 4743} 4744 4745/** 4746 * ibdev_to_node - return the NUMA node for a given ib_device 4747 * @dev: device to get the NUMA node for. 4748 */ 4749static inline int ibdev_to_node(struct ib_device *ibdev) 4750{ 4751 struct device *parent = ibdev->dev.parent; 4752 4753 if (!parent) 4754 return NUMA_NO_NODE; 4755 return dev_to_node(parent); 4756} 4757 4758/** 4759 * rdma_device_to_drv_device - Helper macro to reach back to driver's 4760 * ib_device holder structure from device pointer. 4761 * 4762 * NOTE: New drivers should not make use of this API; This API is only for 4763 * existing drivers who have exposed sysfs entries using 4764 * ops->device_group. 4765 */ 4766#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member) \ 4767 container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member) 4768 4769bool rdma_dev_access_netns(const struct ib_device *device, 4770 const struct net *net); 4771 4772#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000) 4773#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF) 4774#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF) 4775 4776/** 4777 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based 4778 * on the flow_label 4779 * 4780 * This function will convert the 20 bit flow_label input to a valid RoCE v2 4781 * UDP src port 14 bit value. All RoCE V2 drivers should use this same 4782 * convention. 4783 */ 4784static inline u16 rdma_flow_label_to_udp_sport(u32 fl) 4785{ 4786 u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000; 4787 4788 fl_low ^= fl_high >> 14; 4789 return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN); 4790} 4791 4792/** 4793 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on 4794 * local and remote qpn values 4795 * 4796 * This function folded the multiplication results of two qpns, 24 bit each, 4797 * fields, and converts it to a 20 bit results. 4798 * 4799 * This function will create symmetric flow_label value based on the local 4800 * and remote qpn values. this will allow both the requester and responder 4801 * to calculate the same flow_label for a given connection. 4802 * 4803 * This helper function should be used by driver in case the upper layer 4804 * provide a zero flow_label value. This is to improve entropy of RDMA 4805 * traffic in the network. 4806 */ 4807static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn) 4808{ 4809 u64 v = (u64)lqpn * rqpn; 4810 4811 v ^= v >> 20; 4812 v ^= v >> 40; 4813 4814 return (u32)(v & IB_GRH_FLOWLABEL_MASK); 4815} 4816 4817/** 4818 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow 4819 * label. If flow label is not defined in GRH then 4820 * calculate it based on lqpn/rqpn. 4821 * 4822 * @fl: flow label from GRH 4823 * @lqpn: local qp number 4824 * @rqpn: remote qp number 4825 */ 4826static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn) 4827{ 4828 if (!fl) 4829 fl = rdma_calc_flow_label(lqpn, rqpn); 4830 4831 return rdma_flow_label_to_udp_sport(fl); 4832} 4833 4834const struct ib_port_immutable* 4835ib_port_immutable_read(struct ib_device *dev, unsigned int port); 4836#endif /* IB_VERBS_H */ 4837