xref: /kernel/linux/linux-6.6/include/rdma/ib_verbs.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB */
2/*
3 * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
4 * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
5 * Copyright (c) 2004, 2020 Intel Corporation.  All rights reserved.
6 * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
7 * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
8 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
9 * Copyright (c) 2005, 2006, 2007 Cisco Systems.  All rights reserved.
10 */
11
12#ifndef IB_VERBS_H
13#define IB_VERBS_H
14
15#include <linux/ethtool.h>
16#include <linux/types.h>
17#include <linux/device.h>
18#include <linux/dma-mapping.h>
19#include <linux/kref.h>
20#include <linux/list.h>
21#include <linux/rwsem.h>
22#include <linux/workqueue.h>
23#include <linux/irq_poll.h>
24#include <uapi/linux/if_ether.h>
25#include <net/ipv6.h>
26#include <net/ip.h>
27#include <linux/string.h>
28#include <linux/slab.h>
29#include <linux/netdevice.h>
30#include <linux/refcount.h>
31#include <linux/if_link.h>
32#include <linux/atomic.h>
33#include <linux/mmu_notifier.h>
34#include <linux/uaccess.h>
35#include <linux/cgroup_rdma.h>
36#include <linux/irqflags.h>
37#include <linux/preempt.h>
38#include <linux/dim.h>
39#include <uapi/rdma/ib_user_verbs.h>
40#include <rdma/rdma_counter.h>
41#include <rdma/restrack.h>
42#include <rdma/signature.h>
43#include <uapi/rdma/rdma_user_ioctl.h>
44#include <uapi/rdma/ib_user_ioctl_verbs.h>
45
46#define IB_FW_VERSION_NAME_MAX	ETHTOOL_FWVERS_LEN
47
48struct ib_umem_odp;
49struct ib_uqp_object;
50struct ib_usrq_object;
51struct ib_uwq_object;
52struct rdma_cm_id;
53struct ib_port;
54struct hw_stats_device_data;
55
56extern struct workqueue_struct *ib_wq;
57extern struct workqueue_struct *ib_comp_wq;
58extern struct workqueue_struct *ib_comp_unbound_wq;
59
60struct ib_ucq_object;
61
62__printf(3, 4) __cold
63void ibdev_printk(const char *level, const struct ib_device *ibdev,
64		  const char *format, ...);
65__printf(2, 3) __cold
66void ibdev_emerg(const struct ib_device *ibdev, const char *format, ...);
67__printf(2, 3) __cold
68void ibdev_alert(const struct ib_device *ibdev, const char *format, ...);
69__printf(2, 3) __cold
70void ibdev_crit(const struct ib_device *ibdev, const char *format, ...);
71__printf(2, 3) __cold
72void ibdev_err(const struct ib_device *ibdev, const char *format, ...);
73__printf(2, 3) __cold
74void ibdev_warn(const struct ib_device *ibdev, const char *format, ...);
75__printf(2, 3) __cold
76void ibdev_notice(const struct ib_device *ibdev, const char *format, ...);
77__printf(2, 3) __cold
78void ibdev_info(const struct ib_device *ibdev, const char *format, ...);
79
80#if defined(CONFIG_DYNAMIC_DEBUG) || \
81	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
82#define ibdev_dbg(__dev, format, args...)                       \
83	dynamic_ibdev_dbg(__dev, format, ##args)
84#else
85__printf(2, 3) __cold
86static inline
87void ibdev_dbg(const struct ib_device *ibdev, const char *format, ...) {}
88#endif
89
90#define ibdev_level_ratelimited(ibdev_level, ibdev, fmt, ...)           \
91do {                                                                    \
92	static DEFINE_RATELIMIT_STATE(_rs,                              \
93				      DEFAULT_RATELIMIT_INTERVAL,       \
94				      DEFAULT_RATELIMIT_BURST);         \
95	if (__ratelimit(&_rs))                                          \
96		ibdev_level(ibdev, fmt, ##__VA_ARGS__);                 \
97} while (0)
98
99#define ibdev_emerg_ratelimited(ibdev, fmt, ...) \
100	ibdev_level_ratelimited(ibdev_emerg, ibdev, fmt, ##__VA_ARGS__)
101#define ibdev_alert_ratelimited(ibdev, fmt, ...) \
102	ibdev_level_ratelimited(ibdev_alert, ibdev, fmt, ##__VA_ARGS__)
103#define ibdev_crit_ratelimited(ibdev, fmt, ...) \
104	ibdev_level_ratelimited(ibdev_crit, ibdev, fmt, ##__VA_ARGS__)
105#define ibdev_err_ratelimited(ibdev, fmt, ...) \
106	ibdev_level_ratelimited(ibdev_err, ibdev, fmt, ##__VA_ARGS__)
107#define ibdev_warn_ratelimited(ibdev, fmt, ...) \
108	ibdev_level_ratelimited(ibdev_warn, ibdev, fmt, ##__VA_ARGS__)
109#define ibdev_notice_ratelimited(ibdev, fmt, ...) \
110	ibdev_level_ratelimited(ibdev_notice, ibdev, fmt, ##__VA_ARGS__)
111#define ibdev_info_ratelimited(ibdev, fmt, ...) \
112	ibdev_level_ratelimited(ibdev_info, ibdev, fmt, ##__VA_ARGS__)
113
114#if defined(CONFIG_DYNAMIC_DEBUG) || \
115	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
116/* descriptor check is first to prevent flooding with "callbacks suppressed" */
117#define ibdev_dbg_ratelimited(ibdev, fmt, ...)                          \
118do {                                                                    \
119	static DEFINE_RATELIMIT_STATE(_rs,                              \
120				      DEFAULT_RATELIMIT_INTERVAL,       \
121				      DEFAULT_RATELIMIT_BURST);         \
122	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);                 \
123	if (DYNAMIC_DEBUG_BRANCH(descriptor) && __ratelimit(&_rs))      \
124		__dynamic_ibdev_dbg(&descriptor, ibdev, fmt,            \
125				    ##__VA_ARGS__);                     \
126} while (0)
127#else
128__printf(2, 3) __cold
129static inline
130void ibdev_dbg_ratelimited(const struct ib_device *ibdev, const char *format, ...) {}
131#endif
132
133union ib_gid {
134	u8	raw[16];
135	struct {
136		__be64	subnet_prefix;
137		__be64	interface_id;
138	} global;
139};
140
141extern union ib_gid zgid;
142
143enum ib_gid_type {
144	IB_GID_TYPE_IB = IB_UVERBS_GID_TYPE_IB,
145	IB_GID_TYPE_ROCE = IB_UVERBS_GID_TYPE_ROCE_V1,
146	IB_GID_TYPE_ROCE_UDP_ENCAP = IB_UVERBS_GID_TYPE_ROCE_V2,
147	IB_GID_TYPE_SIZE
148};
149
150#define ROCE_V2_UDP_DPORT      4791
151struct ib_gid_attr {
152	struct net_device __rcu	*ndev;
153	struct ib_device	*device;
154	union ib_gid		gid;
155	enum ib_gid_type	gid_type;
156	u16			index;
157	u32			port_num;
158};
159
160enum {
161	/* set the local administered indication */
162	IB_SA_WELL_KNOWN_GUID	= BIT_ULL(57) | 2,
163};
164
165enum rdma_transport_type {
166	RDMA_TRANSPORT_IB,
167	RDMA_TRANSPORT_IWARP,
168	RDMA_TRANSPORT_USNIC,
169	RDMA_TRANSPORT_USNIC_UDP,
170	RDMA_TRANSPORT_UNSPECIFIED,
171};
172
173enum rdma_protocol_type {
174	RDMA_PROTOCOL_IB,
175	RDMA_PROTOCOL_IBOE,
176	RDMA_PROTOCOL_IWARP,
177	RDMA_PROTOCOL_USNIC_UDP
178};
179
180__attribute_const__ enum rdma_transport_type
181rdma_node_get_transport(unsigned int node_type);
182
183enum rdma_network_type {
184	RDMA_NETWORK_IB,
185	RDMA_NETWORK_ROCE_V1,
186	RDMA_NETWORK_IPV4,
187	RDMA_NETWORK_IPV6
188};
189
190static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
191{
192	if (network_type == RDMA_NETWORK_IPV4 ||
193	    network_type == RDMA_NETWORK_IPV6)
194		return IB_GID_TYPE_ROCE_UDP_ENCAP;
195	else if (network_type == RDMA_NETWORK_ROCE_V1)
196		return IB_GID_TYPE_ROCE;
197	else
198		return IB_GID_TYPE_IB;
199}
200
201static inline enum rdma_network_type
202rdma_gid_attr_network_type(const struct ib_gid_attr *attr)
203{
204	if (attr->gid_type == IB_GID_TYPE_IB)
205		return RDMA_NETWORK_IB;
206
207	if (attr->gid_type == IB_GID_TYPE_ROCE)
208		return RDMA_NETWORK_ROCE_V1;
209
210	if (ipv6_addr_v4mapped((struct in6_addr *)&attr->gid))
211		return RDMA_NETWORK_IPV4;
212	else
213		return RDMA_NETWORK_IPV6;
214}
215
216enum rdma_link_layer {
217	IB_LINK_LAYER_UNSPECIFIED,
218	IB_LINK_LAYER_INFINIBAND,
219	IB_LINK_LAYER_ETHERNET,
220};
221
222enum ib_device_cap_flags {
223	IB_DEVICE_RESIZE_MAX_WR = IB_UVERBS_DEVICE_RESIZE_MAX_WR,
224	IB_DEVICE_BAD_PKEY_CNTR = IB_UVERBS_DEVICE_BAD_PKEY_CNTR,
225	IB_DEVICE_BAD_QKEY_CNTR = IB_UVERBS_DEVICE_BAD_QKEY_CNTR,
226	IB_DEVICE_RAW_MULTI = IB_UVERBS_DEVICE_RAW_MULTI,
227	IB_DEVICE_AUTO_PATH_MIG = IB_UVERBS_DEVICE_AUTO_PATH_MIG,
228	IB_DEVICE_CHANGE_PHY_PORT = IB_UVERBS_DEVICE_CHANGE_PHY_PORT,
229	IB_DEVICE_UD_AV_PORT_ENFORCE = IB_UVERBS_DEVICE_UD_AV_PORT_ENFORCE,
230	IB_DEVICE_CURR_QP_STATE_MOD = IB_UVERBS_DEVICE_CURR_QP_STATE_MOD,
231	IB_DEVICE_SHUTDOWN_PORT = IB_UVERBS_DEVICE_SHUTDOWN_PORT,
232	/* IB_DEVICE_INIT_TYPE = IB_UVERBS_DEVICE_INIT_TYPE, (not in use) */
233	IB_DEVICE_PORT_ACTIVE_EVENT = IB_UVERBS_DEVICE_PORT_ACTIVE_EVENT,
234	IB_DEVICE_SYS_IMAGE_GUID = IB_UVERBS_DEVICE_SYS_IMAGE_GUID,
235	IB_DEVICE_RC_RNR_NAK_GEN = IB_UVERBS_DEVICE_RC_RNR_NAK_GEN,
236	IB_DEVICE_SRQ_RESIZE = IB_UVERBS_DEVICE_SRQ_RESIZE,
237	IB_DEVICE_N_NOTIFY_CQ = IB_UVERBS_DEVICE_N_NOTIFY_CQ,
238
239	/* Reserved, old SEND_W_INV = 1 << 16,*/
240	IB_DEVICE_MEM_WINDOW = IB_UVERBS_DEVICE_MEM_WINDOW,
241	/*
242	 * Devices should set IB_DEVICE_UD_IP_SUM if they support
243	 * insertion of UDP and TCP checksum on outgoing UD IPoIB
244	 * messages and can verify the validity of checksum for
245	 * incoming messages.  Setting this flag implies that the
246	 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
247	 */
248	IB_DEVICE_UD_IP_CSUM = IB_UVERBS_DEVICE_UD_IP_CSUM,
249	IB_DEVICE_XRC = IB_UVERBS_DEVICE_XRC,
250
251	/*
252	 * This device supports the IB "base memory management extension",
253	 * which includes support for fast registrations (IB_WR_REG_MR,
254	 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs).  This flag should
255	 * also be set by any iWarp device which must support FRs to comply
256	 * to the iWarp verbs spec.  iWarp devices also support the
257	 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
258	 * stag.
259	 */
260	IB_DEVICE_MEM_MGT_EXTENSIONS = IB_UVERBS_DEVICE_MEM_MGT_EXTENSIONS,
261	IB_DEVICE_MEM_WINDOW_TYPE_2A = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2A,
262	IB_DEVICE_MEM_WINDOW_TYPE_2B = IB_UVERBS_DEVICE_MEM_WINDOW_TYPE_2B,
263	IB_DEVICE_RC_IP_CSUM = IB_UVERBS_DEVICE_RC_IP_CSUM,
264	/* Deprecated. Please use IB_RAW_PACKET_CAP_IP_CSUM. */
265	IB_DEVICE_RAW_IP_CSUM = IB_UVERBS_DEVICE_RAW_IP_CSUM,
266	IB_DEVICE_MANAGED_FLOW_STEERING =
267		IB_UVERBS_DEVICE_MANAGED_FLOW_STEERING,
268	/* Deprecated. Please use IB_RAW_PACKET_CAP_SCATTER_FCS. */
269	IB_DEVICE_RAW_SCATTER_FCS = IB_UVERBS_DEVICE_RAW_SCATTER_FCS,
270	/* The device supports padding incoming writes to cacheline. */
271	IB_DEVICE_PCI_WRITE_END_PADDING =
272		IB_UVERBS_DEVICE_PCI_WRITE_END_PADDING,
273	/* Placement type attributes */
274	IB_DEVICE_FLUSH_GLOBAL = IB_UVERBS_DEVICE_FLUSH_GLOBAL,
275	IB_DEVICE_FLUSH_PERSISTENT = IB_UVERBS_DEVICE_FLUSH_PERSISTENT,
276	IB_DEVICE_ATOMIC_WRITE = IB_UVERBS_DEVICE_ATOMIC_WRITE,
277};
278
279enum ib_kernel_cap_flags {
280	/*
281	 * This device supports a per-device lkey or stag that can be
282	 * used without performing a memory registration for the local
283	 * memory.  Note that ULPs should never check this flag, but
284	 * instead of use the local_dma_lkey flag in the ib_pd structure,
285	 * which will always contain a usable lkey.
286	 */
287	IBK_LOCAL_DMA_LKEY = 1 << 0,
288	/* IB_QP_CREATE_INTEGRITY_EN is supported to implement T10-PI */
289	IBK_INTEGRITY_HANDOVER = 1 << 1,
290	/* IB_ACCESS_ON_DEMAND is supported during reg_user_mr() */
291	IBK_ON_DEMAND_PAGING = 1 << 2,
292	/* IB_MR_TYPE_SG_GAPS is supported */
293	IBK_SG_GAPS_REG = 1 << 3,
294	/* Driver supports RDMA_NLDEV_CMD_DELLINK */
295	IBK_ALLOW_USER_UNREG = 1 << 4,
296
297	/* ipoib will use IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK */
298	IBK_BLOCK_MULTICAST_LOOPBACK = 1 << 5,
299	/* iopib will use IB_QP_CREATE_IPOIB_UD_LSO for its QPs */
300	IBK_UD_TSO = 1 << 6,
301	/* iopib will use the device ops:
302	 *   get_vf_config
303	 *   get_vf_guid
304	 *   get_vf_stats
305	 *   set_vf_guid
306	 *   set_vf_link_state
307	 */
308	IBK_VIRTUAL_FUNCTION = 1 << 7,
309	/* ipoib will use IB_QP_CREATE_NETDEV_USE for its QPs */
310	IBK_RDMA_NETDEV_OPA = 1 << 8,
311};
312
313enum ib_atomic_cap {
314	IB_ATOMIC_NONE,
315	IB_ATOMIC_HCA,
316	IB_ATOMIC_GLOB
317};
318
319enum ib_odp_general_cap_bits {
320	IB_ODP_SUPPORT		= 1 << 0,
321	IB_ODP_SUPPORT_IMPLICIT = 1 << 1,
322};
323
324enum ib_odp_transport_cap_bits {
325	IB_ODP_SUPPORT_SEND	= 1 << 0,
326	IB_ODP_SUPPORT_RECV	= 1 << 1,
327	IB_ODP_SUPPORT_WRITE	= 1 << 2,
328	IB_ODP_SUPPORT_READ	= 1 << 3,
329	IB_ODP_SUPPORT_ATOMIC	= 1 << 4,
330	IB_ODP_SUPPORT_SRQ_RECV	= 1 << 5,
331};
332
333struct ib_odp_caps {
334	uint64_t general_caps;
335	struct {
336		uint32_t  rc_odp_caps;
337		uint32_t  uc_odp_caps;
338		uint32_t  ud_odp_caps;
339		uint32_t  xrc_odp_caps;
340	} per_transport_caps;
341};
342
343struct ib_rss_caps {
344	/* Corresponding bit will be set if qp type from
345	 * 'enum ib_qp_type' is supported, e.g.
346	 * supported_qpts |= 1 << IB_QPT_UD
347	 */
348	u32 supported_qpts;
349	u32 max_rwq_indirection_tables;
350	u32 max_rwq_indirection_table_size;
351};
352
353enum ib_tm_cap_flags {
354	/*  Support tag matching with rendezvous offload for RC transport */
355	IB_TM_CAP_RNDV_RC = 1 << 0,
356};
357
358struct ib_tm_caps {
359	/* Max size of RNDV header */
360	u32 max_rndv_hdr_size;
361	/* Max number of entries in tag matching list */
362	u32 max_num_tags;
363	/* From enum ib_tm_cap_flags */
364	u32 flags;
365	/* Max number of outstanding list operations */
366	u32 max_ops;
367	/* Max number of SGE in tag matching entry */
368	u32 max_sge;
369};
370
371struct ib_cq_init_attr {
372	unsigned int	cqe;
373	u32		comp_vector;
374	u32		flags;
375};
376
377enum ib_cq_attr_mask {
378	IB_CQ_MODERATE = 1 << 0,
379};
380
381struct ib_cq_caps {
382	u16     max_cq_moderation_count;
383	u16     max_cq_moderation_period;
384};
385
386struct ib_dm_mr_attr {
387	u64		length;
388	u64		offset;
389	u32		access_flags;
390};
391
392struct ib_dm_alloc_attr {
393	u64	length;
394	u32	alignment;
395	u32	flags;
396};
397
398struct ib_device_attr {
399	u64			fw_ver;
400	__be64			sys_image_guid;
401	u64			max_mr_size;
402	u64			page_size_cap;
403	u32			vendor_id;
404	u32			vendor_part_id;
405	u32			hw_ver;
406	int			max_qp;
407	int			max_qp_wr;
408	u64			device_cap_flags;
409	u64			kernel_cap_flags;
410	int			max_send_sge;
411	int			max_recv_sge;
412	int			max_sge_rd;
413	int			max_cq;
414	int			max_cqe;
415	int			max_mr;
416	int			max_pd;
417	int			max_qp_rd_atom;
418	int			max_ee_rd_atom;
419	int			max_res_rd_atom;
420	int			max_qp_init_rd_atom;
421	int			max_ee_init_rd_atom;
422	enum ib_atomic_cap	atomic_cap;
423	enum ib_atomic_cap	masked_atomic_cap;
424	int			max_ee;
425	int			max_rdd;
426	int			max_mw;
427	int			max_raw_ipv6_qp;
428	int			max_raw_ethy_qp;
429	int			max_mcast_grp;
430	int			max_mcast_qp_attach;
431	int			max_total_mcast_qp_attach;
432	int			max_ah;
433	int			max_srq;
434	int			max_srq_wr;
435	int			max_srq_sge;
436	unsigned int		max_fast_reg_page_list_len;
437	unsigned int		max_pi_fast_reg_page_list_len;
438	u16			max_pkeys;
439	u8			local_ca_ack_delay;
440	int			sig_prot_cap;
441	int			sig_guard_cap;
442	struct ib_odp_caps	odp_caps;
443	uint64_t		timestamp_mask;
444	uint64_t		hca_core_clock; /* in KHZ */
445	struct ib_rss_caps	rss_caps;
446	u32			max_wq_type_rq;
447	u32			raw_packet_caps; /* Use ib_raw_packet_caps enum */
448	struct ib_tm_caps	tm_caps;
449	struct ib_cq_caps       cq_caps;
450	u64			max_dm_size;
451	/* Max entries for sgl for optimized performance per READ */
452	u32			max_sgl_rd;
453};
454
455enum ib_mtu {
456	IB_MTU_256  = 1,
457	IB_MTU_512  = 2,
458	IB_MTU_1024 = 3,
459	IB_MTU_2048 = 4,
460	IB_MTU_4096 = 5
461};
462
463enum opa_mtu {
464	OPA_MTU_8192 = 6,
465	OPA_MTU_10240 = 7
466};
467
468static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
469{
470	switch (mtu) {
471	case IB_MTU_256:  return  256;
472	case IB_MTU_512:  return  512;
473	case IB_MTU_1024: return 1024;
474	case IB_MTU_2048: return 2048;
475	case IB_MTU_4096: return 4096;
476	default: 	  return -1;
477	}
478}
479
480static inline enum ib_mtu ib_mtu_int_to_enum(int mtu)
481{
482	if (mtu >= 4096)
483		return IB_MTU_4096;
484	else if (mtu >= 2048)
485		return IB_MTU_2048;
486	else if (mtu >= 1024)
487		return IB_MTU_1024;
488	else if (mtu >= 512)
489		return IB_MTU_512;
490	else
491		return IB_MTU_256;
492}
493
494static inline int opa_mtu_enum_to_int(enum opa_mtu mtu)
495{
496	switch (mtu) {
497	case OPA_MTU_8192:
498		return 8192;
499	case OPA_MTU_10240:
500		return 10240;
501	default:
502		return(ib_mtu_enum_to_int((enum ib_mtu)mtu));
503	}
504}
505
506static inline enum opa_mtu opa_mtu_int_to_enum(int mtu)
507{
508	if (mtu >= 10240)
509		return OPA_MTU_10240;
510	else if (mtu >= 8192)
511		return OPA_MTU_8192;
512	else
513		return ((enum opa_mtu)ib_mtu_int_to_enum(mtu));
514}
515
516enum ib_port_state {
517	IB_PORT_NOP		= 0,
518	IB_PORT_DOWN		= 1,
519	IB_PORT_INIT		= 2,
520	IB_PORT_ARMED		= 3,
521	IB_PORT_ACTIVE		= 4,
522	IB_PORT_ACTIVE_DEFER	= 5
523};
524
525enum ib_port_phys_state {
526	IB_PORT_PHYS_STATE_SLEEP = 1,
527	IB_PORT_PHYS_STATE_POLLING = 2,
528	IB_PORT_PHYS_STATE_DISABLED = 3,
529	IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4,
530	IB_PORT_PHYS_STATE_LINK_UP = 5,
531	IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6,
532	IB_PORT_PHYS_STATE_PHY_TEST = 7,
533};
534
535enum ib_port_width {
536	IB_WIDTH_1X	= 1,
537	IB_WIDTH_2X	= 16,
538	IB_WIDTH_4X	= 2,
539	IB_WIDTH_8X	= 4,
540	IB_WIDTH_12X	= 8
541};
542
543static inline int ib_width_enum_to_int(enum ib_port_width width)
544{
545	switch (width) {
546	case IB_WIDTH_1X:  return  1;
547	case IB_WIDTH_2X:  return  2;
548	case IB_WIDTH_4X:  return  4;
549	case IB_WIDTH_8X:  return  8;
550	case IB_WIDTH_12X: return 12;
551	default: 	  return -1;
552	}
553}
554
555enum ib_port_speed {
556	IB_SPEED_SDR	= 1,
557	IB_SPEED_DDR	= 2,
558	IB_SPEED_QDR	= 4,
559	IB_SPEED_FDR10	= 8,
560	IB_SPEED_FDR	= 16,
561	IB_SPEED_EDR	= 32,
562	IB_SPEED_HDR	= 64,
563	IB_SPEED_NDR	= 128,
564};
565
566enum ib_stat_flag {
567	IB_STAT_FLAG_OPTIONAL = 1 << 0,
568};
569
570/**
571 * struct rdma_stat_desc
572 * @name - The name of the counter
573 * @flags - Flags of the counter; For example, IB_STAT_FLAG_OPTIONAL
574 * @priv - Driver private information; Core code should not use
575 */
576struct rdma_stat_desc {
577	const char *name;
578	unsigned int flags;
579	const void *priv;
580};
581
582/**
583 * struct rdma_hw_stats
584 * @lock - Mutex to protect parallel write access to lifespan and values
585 *    of counters, which are 64bits and not guaranteed to be written
586 *    atomicaly on 32bits systems.
587 * @timestamp - Used by the core code to track when the last update was
588 * @lifespan - Used by the core code to determine how old the counters
589 *   should be before being updated again.  Stored in jiffies, defaults
590 *   to 10 milliseconds, drivers can override the default be specifying
591 *   their own value during their allocation routine.
592 * @descs - Array of pointers to static descriptors used for the counters
593 *   in directory.
594 * @is_disabled - A bitmap to indicate each counter is currently disabled
595 *   or not.
596 * @num_counters - How many hardware counters there are.  If name is
597 *   shorter than this number, a kernel oops will result.  Driver authors
598 *   are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters)
599 *   in their code to prevent this.
600 * @value - Array of u64 counters that are accessed by the sysfs code and
601 *   filled in by the drivers get_stats routine
602 */
603struct rdma_hw_stats {
604	struct mutex	lock; /* Protect lifespan and values[] */
605	unsigned long	timestamp;
606	unsigned long	lifespan;
607	const struct rdma_stat_desc *descs;
608	unsigned long	*is_disabled;
609	int		num_counters;
610	u64		value[];
611};
612
613#define RDMA_HW_STATS_DEFAULT_LIFESPAN 10
614
615struct rdma_hw_stats *rdma_alloc_hw_stats_struct(
616	const struct rdma_stat_desc *descs, int num_counters,
617	unsigned long lifespan);
618
619void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats);
620
621/* Define bits for the various functionality this port needs to be supported by
622 * the core.
623 */
624/* Management                           0x00000FFF */
625#define RDMA_CORE_CAP_IB_MAD            0x00000001
626#define RDMA_CORE_CAP_IB_SMI            0x00000002
627#define RDMA_CORE_CAP_IB_CM             0x00000004
628#define RDMA_CORE_CAP_IW_CM             0x00000008
629#define RDMA_CORE_CAP_IB_SA             0x00000010
630#define RDMA_CORE_CAP_OPA_MAD           0x00000020
631
632/* Address format                       0x000FF000 */
633#define RDMA_CORE_CAP_AF_IB             0x00001000
634#define RDMA_CORE_CAP_ETH_AH            0x00002000
635#define RDMA_CORE_CAP_OPA_AH            0x00004000
636#define RDMA_CORE_CAP_IB_GRH_REQUIRED   0x00008000
637
638/* Protocol                             0xFFF00000 */
639#define RDMA_CORE_CAP_PROT_IB           0x00100000
640#define RDMA_CORE_CAP_PROT_ROCE         0x00200000
641#define RDMA_CORE_CAP_PROT_IWARP        0x00400000
642#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
643#define RDMA_CORE_CAP_PROT_RAW_PACKET   0x01000000
644#define RDMA_CORE_CAP_PROT_USNIC        0x02000000
645
646#define RDMA_CORE_PORT_IB_GRH_REQUIRED (RDMA_CORE_CAP_IB_GRH_REQUIRED \
647					| RDMA_CORE_CAP_PROT_ROCE     \
648					| RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP)
649
650#define RDMA_CORE_PORT_IBA_IB          (RDMA_CORE_CAP_PROT_IB  \
651					| RDMA_CORE_CAP_IB_MAD \
652					| RDMA_CORE_CAP_IB_SMI \
653					| RDMA_CORE_CAP_IB_CM  \
654					| RDMA_CORE_CAP_IB_SA  \
655					| RDMA_CORE_CAP_AF_IB)
656#define RDMA_CORE_PORT_IBA_ROCE        (RDMA_CORE_CAP_PROT_ROCE \
657					| RDMA_CORE_CAP_IB_MAD  \
658					| RDMA_CORE_CAP_IB_CM   \
659					| RDMA_CORE_CAP_AF_IB   \
660					| RDMA_CORE_CAP_ETH_AH)
661#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP			\
662					(RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
663					| RDMA_CORE_CAP_IB_MAD  \
664					| RDMA_CORE_CAP_IB_CM   \
665					| RDMA_CORE_CAP_AF_IB   \
666					| RDMA_CORE_CAP_ETH_AH)
667#define RDMA_CORE_PORT_IWARP           (RDMA_CORE_CAP_PROT_IWARP \
668					| RDMA_CORE_CAP_IW_CM)
669#define RDMA_CORE_PORT_INTEL_OPA       (RDMA_CORE_PORT_IBA_IB  \
670					| RDMA_CORE_CAP_OPA_MAD)
671
672#define RDMA_CORE_PORT_RAW_PACKET	(RDMA_CORE_CAP_PROT_RAW_PACKET)
673
674#define RDMA_CORE_PORT_USNIC		(RDMA_CORE_CAP_PROT_USNIC)
675
676struct ib_port_attr {
677	u64			subnet_prefix;
678	enum ib_port_state	state;
679	enum ib_mtu		max_mtu;
680	enum ib_mtu		active_mtu;
681	u32                     phys_mtu;
682	int			gid_tbl_len;
683	unsigned int		ip_gids:1;
684	/* This is the value from PortInfo CapabilityMask, defined by IBA */
685	u32			port_cap_flags;
686	u32			max_msg_sz;
687	u32			bad_pkey_cntr;
688	u32			qkey_viol_cntr;
689	u16			pkey_tbl_len;
690	u32			sm_lid;
691	u32			lid;
692	u8			lmc;
693	u8			max_vl_num;
694	u8			sm_sl;
695	u8			subnet_timeout;
696	u8			init_type_reply;
697	u8			active_width;
698	u16			active_speed;
699	u8                      phys_state;
700	u16			port_cap_flags2;
701};
702
703enum ib_device_modify_flags {
704	IB_DEVICE_MODIFY_SYS_IMAGE_GUID	= 1 << 0,
705	IB_DEVICE_MODIFY_NODE_DESC	= 1 << 1
706};
707
708#define IB_DEVICE_NODE_DESC_MAX 64
709
710struct ib_device_modify {
711	u64	sys_image_guid;
712	char	node_desc[IB_DEVICE_NODE_DESC_MAX];
713};
714
715enum ib_port_modify_flags {
716	IB_PORT_SHUTDOWN		= 1,
717	IB_PORT_INIT_TYPE		= (1<<2),
718	IB_PORT_RESET_QKEY_CNTR		= (1<<3),
719	IB_PORT_OPA_MASK_CHG		= (1<<4)
720};
721
722struct ib_port_modify {
723	u32	set_port_cap_mask;
724	u32	clr_port_cap_mask;
725	u8	init_type;
726};
727
728enum ib_event_type {
729	IB_EVENT_CQ_ERR,
730	IB_EVENT_QP_FATAL,
731	IB_EVENT_QP_REQ_ERR,
732	IB_EVENT_QP_ACCESS_ERR,
733	IB_EVENT_COMM_EST,
734	IB_EVENT_SQ_DRAINED,
735	IB_EVENT_PATH_MIG,
736	IB_EVENT_PATH_MIG_ERR,
737	IB_EVENT_DEVICE_FATAL,
738	IB_EVENT_PORT_ACTIVE,
739	IB_EVENT_PORT_ERR,
740	IB_EVENT_LID_CHANGE,
741	IB_EVENT_PKEY_CHANGE,
742	IB_EVENT_SM_CHANGE,
743	IB_EVENT_SRQ_ERR,
744	IB_EVENT_SRQ_LIMIT_REACHED,
745	IB_EVENT_QP_LAST_WQE_REACHED,
746	IB_EVENT_CLIENT_REREGISTER,
747	IB_EVENT_GID_CHANGE,
748	IB_EVENT_WQ_FATAL,
749};
750
751const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
752
753struct ib_event {
754	struct ib_device	*device;
755	union {
756		struct ib_cq	*cq;
757		struct ib_qp	*qp;
758		struct ib_srq	*srq;
759		struct ib_wq	*wq;
760		u32		port_num;
761	} element;
762	enum ib_event_type	event;
763};
764
765struct ib_event_handler {
766	struct ib_device *device;
767	void            (*handler)(struct ib_event_handler *, struct ib_event *);
768	struct list_head  list;
769};
770
771#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler)		\
772	do {							\
773		(_ptr)->device  = _device;			\
774		(_ptr)->handler = _handler;			\
775		INIT_LIST_HEAD(&(_ptr)->list);			\
776	} while (0)
777
778struct ib_global_route {
779	const struct ib_gid_attr *sgid_attr;
780	union ib_gid	dgid;
781	u32		flow_label;
782	u8		sgid_index;
783	u8		hop_limit;
784	u8		traffic_class;
785};
786
787struct ib_grh {
788	__be32		version_tclass_flow;
789	__be16		paylen;
790	u8		next_hdr;
791	u8		hop_limit;
792	union ib_gid	sgid;
793	union ib_gid	dgid;
794};
795
796union rdma_network_hdr {
797	struct ib_grh ibgrh;
798	struct {
799		/* The IB spec states that if it's IPv4, the header
800		 * is located in the last 20 bytes of the header.
801		 */
802		u8		reserved[20];
803		struct iphdr	roce4grh;
804	};
805};
806
807#define IB_QPN_MASK		0xFFFFFF
808
809enum {
810	IB_MULTICAST_QPN = 0xffffff
811};
812
813#define IB_LID_PERMISSIVE	cpu_to_be16(0xFFFF)
814#define IB_MULTICAST_LID_BASE	cpu_to_be16(0xC000)
815
816enum ib_ah_flags {
817	IB_AH_GRH	= 1
818};
819
820enum ib_rate {
821	IB_RATE_PORT_CURRENT = 0,
822	IB_RATE_2_5_GBPS = 2,
823	IB_RATE_5_GBPS   = 5,
824	IB_RATE_10_GBPS  = 3,
825	IB_RATE_20_GBPS  = 6,
826	IB_RATE_30_GBPS  = 4,
827	IB_RATE_40_GBPS  = 7,
828	IB_RATE_60_GBPS  = 8,
829	IB_RATE_80_GBPS  = 9,
830	IB_RATE_120_GBPS = 10,
831	IB_RATE_14_GBPS  = 11,
832	IB_RATE_56_GBPS  = 12,
833	IB_RATE_112_GBPS = 13,
834	IB_RATE_168_GBPS = 14,
835	IB_RATE_25_GBPS  = 15,
836	IB_RATE_100_GBPS = 16,
837	IB_RATE_200_GBPS = 17,
838	IB_RATE_300_GBPS = 18,
839	IB_RATE_28_GBPS  = 19,
840	IB_RATE_50_GBPS  = 20,
841	IB_RATE_400_GBPS = 21,
842	IB_RATE_600_GBPS = 22,
843};
844
845/**
846 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
847 * base rate of 2.5 Gbit/sec.  For example, IB_RATE_5_GBPS will be
848 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
849 * @rate: rate to convert.
850 */
851__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
852
853/**
854 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
855 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
856 * @rate: rate to convert.
857 */
858__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
859
860
861/**
862 * enum ib_mr_type - memory region type
863 * @IB_MR_TYPE_MEM_REG:       memory region that is used for
864 *                            normal registration
865 * @IB_MR_TYPE_SG_GAPS:       memory region that is capable to
866 *                            register any arbitrary sg lists (without
867 *                            the normal mr constraints - see
868 *                            ib_map_mr_sg)
869 * @IB_MR_TYPE_DM:            memory region that is used for device
870 *                            memory registration
871 * @IB_MR_TYPE_USER:          memory region that is used for the user-space
872 *                            application
873 * @IB_MR_TYPE_DMA:           memory region that is used for DMA operations
874 *                            without address translations (VA=PA)
875 * @IB_MR_TYPE_INTEGRITY:     memory region that is used for
876 *                            data integrity operations
877 */
878enum ib_mr_type {
879	IB_MR_TYPE_MEM_REG,
880	IB_MR_TYPE_SG_GAPS,
881	IB_MR_TYPE_DM,
882	IB_MR_TYPE_USER,
883	IB_MR_TYPE_DMA,
884	IB_MR_TYPE_INTEGRITY,
885};
886
887enum ib_mr_status_check {
888	IB_MR_CHECK_SIG_STATUS = 1,
889};
890
891/**
892 * struct ib_mr_status - Memory region status container
893 *
894 * @fail_status: Bitmask of MR checks status. For each
895 *     failed check a corresponding status bit is set.
896 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
897 *     failure.
898 */
899struct ib_mr_status {
900	u32		    fail_status;
901	struct ib_sig_err   sig_err;
902};
903
904/**
905 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
906 * enum.
907 * @mult: multiple to convert.
908 */
909__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
910
911struct rdma_ah_init_attr {
912	struct rdma_ah_attr *ah_attr;
913	u32 flags;
914	struct net_device *xmit_slave;
915};
916
917enum rdma_ah_attr_type {
918	RDMA_AH_ATTR_TYPE_UNDEFINED,
919	RDMA_AH_ATTR_TYPE_IB,
920	RDMA_AH_ATTR_TYPE_ROCE,
921	RDMA_AH_ATTR_TYPE_OPA,
922};
923
924struct ib_ah_attr {
925	u16			dlid;
926	u8			src_path_bits;
927};
928
929struct roce_ah_attr {
930	u8			dmac[ETH_ALEN];
931};
932
933struct opa_ah_attr {
934	u32			dlid;
935	u8			src_path_bits;
936	bool			make_grd;
937};
938
939struct rdma_ah_attr {
940	struct ib_global_route	grh;
941	u8			sl;
942	u8			static_rate;
943	u32			port_num;
944	u8			ah_flags;
945	enum rdma_ah_attr_type type;
946	union {
947		struct ib_ah_attr ib;
948		struct roce_ah_attr roce;
949		struct opa_ah_attr opa;
950	};
951};
952
953enum ib_wc_status {
954	IB_WC_SUCCESS,
955	IB_WC_LOC_LEN_ERR,
956	IB_WC_LOC_QP_OP_ERR,
957	IB_WC_LOC_EEC_OP_ERR,
958	IB_WC_LOC_PROT_ERR,
959	IB_WC_WR_FLUSH_ERR,
960	IB_WC_MW_BIND_ERR,
961	IB_WC_BAD_RESP_ERR,
962	IB_WC_LOC_ACCESS_ERR,
963	IB_WC_REM_INV_REQ_ERR,
964	IB_WC_REM_ACCESS_ERR,
965	IB_WC_REM_OP_ERR,
966	IB_WC_RETRY_EXC_ERR,
967	IB_WC_RNR_RETRY_EXC_ERR,
968	IB_WC_LOC_RDD_VIOL_ERR,
969	IB_WC_REM_INV_RD_REQ_ERR,
970	IB_WC_REM_ABORT_ERR,
971	IB_WC_INV_EECN_ERR,
972	IB_WC_INV_EEC_STATE_ERR,
973	IB_WC_FATAL_ERR,
974	IB_WC_RESP_TIMEOUT_ERR,
975	IB_WC_GENERAL_ERR
976};
977
978const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
979
980enum ib_wc_opcode {
981	IB_WC_SEND = IB_UVERBS_WC_SEND,
982	IB_WC_RDMA_WRITE = IB_UVERBS_WC_RDMA_WRITE,
983	IB_WC_RDMA_READ = IB_UVERBS_WC_RDMA_READ,
984	IB_WC_COMP_SWAP = IB_UVERBS_WC_COMP_SWAP,
985	IB_WC_FETCH_ADD = IB_UVERBS_WC_FETCH_ADD,
986	IB_WC_BIND_MW = IB_UVERBS_WC_BIND_MW,
987	IB_WC_LOCAL_INV = IB_UVERBS_WC_LOCAL_INV,
988	IB_WC_LSO = IB_UVERBS_WC_TSO,
989	IB_WC_ATOMIC_WRITE = IB_UVERBS_WC_ATOMIC_WRITE,
990	IB_WC_REG_MR,
991	IB_WC_MASKED_COMP_SWAP,
992	IB_WC_MASKED_FETCH_ADD,
993	IB_WC_FLUSH = IB_UVERBS_WC_FLUSH,
994/*
995 * Set value of IB_WC_RECV so consumers can test if a completion is a
996 * receive by testing (opcode & IB_WC_RECV).
997 */
998	IB_WC_RECV			= 1 << 7,
999	IB_WC_RECV_RDMA_WITH_IMM
1000};
1001
1002enum ib_wc_flags {
1003	IB_WC_GRH		= 1,
1004	IB_WC_WITH_IMM		= (1<<1),
1005	IB_WC_WITH_INVALIDATE	= (1<<2),
1006	IB_WC_IP_CSUM_OK	= (1<<3),
1007	IB_WC_WITH_SMAC		= (1<<4),
1008	IB_WC_WITH_VLAN		= (1<<5),
1009	IB_WC_WITH_NETWORK_HDR_TYPE	= (1<<6),
1010};
1011
1012struct ib_wc {
1013	union {
1014		u64		wr_id;
1015		struct ib_cqe	*wr_cqe;
1016	};
1017	enum ib_wc_status	status;
1018	enum ib_wc_opcode	opcode;
1019	u32			vendor_err;
1020	u32			byte_len;
1021	struct ib_qp	       *qp;
1022	union {
1023		__be32		imm_data;
1024		u32		invalidate_rkey;
1025	} ex;
1026	u32			src_qp;
1027	u32			slid;
1028	int			wc_flags;
1029	u16			pkey_index;
1030	u8			sl;
1031	u8			dlid_path_bits;
1032	u32 port_num; /* valid only for DR SMPs on switches */
1033	u8			smac[ETH_ALEN];
1034	u16			vlan_id;
1035	u8			network_hdr_type;
1036};
1037
1038enum ib_cq_notify_flags {
1039	IB_CQ_SOLICITED			= 1 << 0,
1040	IB_CQ_NEXT_COMP			= 1 << 1,
1041	IB_CQ_SOLICITED_MASK		= IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
1042	IB_CQ_REPORT_MISSED_EVENTS	= 1 << 2,
1043};
1044
1045enum ib_srq_type {
1046	IB_SRQT_BASIC = IB_UVERBS_SRQT_BASIC,
1047	IB_SRQT_XRC = IB_UVERBS_SRQT_XRC,
1048	IB_SRQT_TM = IB_UVERBS_SRQT_TM,
1049};
1050
1051static inline bool ib_srq_has_cq(enum ib_srq_type srq_type)
1052{
1053	return srq_type == IB_SRQT_XRC ||
1054	       srq_type == IB_SRQT_TM;
1055}
1056
1057enum ib_srq_attr_mask {
1058	IB_SRQ_MAX_WR	= 1 << 0,
1059	IB_SRQ_LIMIT	= 1 << 1,
1060};
1061
1062struct ib_srq_attr {
1063	u32	max_wr;
1064	u32	max_sge;
1065	u32	srq_limit;
1066};
1067
1068struct ib_srq_init_attr {
1069	void		      (*event_handler)(struct ib_event *, void *);
1070	void		       *srq_context;
1071	struct ib_srq_attr	attr;
1072	enum ib_srq_type	srq_type;
1073
1074	struct {
1075		struct ib_cq   *cq;
1076		union {
1077			struct {
1078				struct ib_xrcd *xrcd;
1079			} xrc;
1080
1081			struct {
1082				u32		max_num_tags;
1083			} tag_matching;
1084		};
1085	} ext;
1086};
1087
1088struct ib_qp_cap {
1089	u32	max_send_wr;
1090	u32	max_recv_wr;
1091	u32	max_send_sge;
1092	u32	max_recv_sge;
1093	u32	max_inline_data;
1094
1095	/*
1096	 * Maximum number of rdma_rw_ctx structures in flight at a time.
1097	 * ib_create_qp() will calculate the right amount of neededed WRs
1098	 * and MRs based on this.
1099	 */
1100	u32	max_rdma_ctxs;
1101};
1102
1103enum ib_sig_type {
1104	IB_SIGNAL_ALL_WR,
1105	IB_SIGNAL_REQ_WR
1106};
1107
1108enum ib_qp_type {
1109	/*
1110	 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
1111	 * here (and in that order) since the MAD layer uses them as
1112	 * indices into a 2-entry table.
1113	 */
1114	IB_QPT_SMI,
1115	IB_QPT_GSI,
1116
1117	IB_QPT_RC = IB_UVERBS_QPT_RC,
1118	IB_QPT_UC = IB_UVERBS_QPT_UC,
1119	IB_QPT_UD = IB_UVERBS_QPT_UD,
1120	IB_QPT_RAW_IPV6,
1121	IB_QPT_RAW_ETHERTYPE,
1122	IB_QPT_RAW_PACKET = IB_UVERBS_QPT_RAW_PACKET,
1123	IB_QPT_XRC_INI = IB_UVERBS_QPT_XRC_INI,
1124	IB_QPT_XRC_TGT = IB_UVERBS_QPT_XRC_TGT,
1125	IB_QPT_MAX,
1126	IB_QPT_DRIVER = IB_UVERBS_QPT_DRIVER,
1127	/* Reserve a range for qp types internal to the low level driver.
1128	 * These qp types will not be visible at the IB core layer, so the
1129	 * IB_QPT_MAX usages should not be affected in the core layer
1130	 */
1131	IB_QPT_RESERVED1 = 0x1000,
1132	IB_QPT_RESERVED2,
1133	IB_QPT_RESERVED3,
1134	IB_QPT_RESERVED4,
1135	IB_QPT_RESERVED5,
1136	IB_QPT_RESERVED6,
1137	IB_QPT_RESERVED7,
1138	IB_QPT_RESERVED8,
1139	IB_QPT_RESERVED9,
1140	IB_QPT_RESERVED10,
1141};
1142
1143enum ib_qp_create_flags {
1144	IB_QP_CREATE_IPOIB_UD_LSO		= 1 << 0,
1145	IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK	=
1146		IB_UVERBS_QP_CREATE_BLOCK_MULTICAST_LOOPBACK,
1147	IB_QP_CREATE_CROSS_CHANNEL              = 1 << 2,
1148	IB_QP_CREATE_MANAGED_SEND               = 1 << 3,
1149	IB_QP_CREATE_MANAGED_RECV               = 1 << 4,
1150	IB_QP_CREATE_NETIF_QP			= 1 << 5,
1151	IB_QP_CREATE_INTEGRITY_EN		= 1 << 6,
1152	IB_QP_CREATE_NETDEV_USE			= 1 << 7,
1153	IB_QP_CREATE_SCATTER_FCS		=
1154		IB_UVERBS_QP_CREATE_SCATTER_FCS,
1155	IB_QP_CREATE_CVLAN_STRIPPING		=
1156		IB_UVERBS_QP_CREATE_CVLAN_STRIPPING,
1157	IB_QP_CREATE_SOURCE_QPN			= 1 << 10,
1158	IB_QP_CREATE_PCI_WRITE_END_PADDING	=
1159		IB_UVERBS_QP_CREATE_PCI_WRITE_END_PADDING,
1160	/* reserve bits 26-31 for low level drivers' internal use */
1161	IB_QP_CREATE_RESERVED_START		= 1 << 26,
1162	IB_QP_CREATE_RESERVED_END		= 1 << 31,
1163};
1164
1165/*
1166 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
1167 * callback to destroy the passed in QP.
1168 */
1169
1170struct ib_qp_init_attr {
1171	/* This callback occurs in workqueue context */
1172	void                  (*event_handler)(struct ib_event *, void *);
1173
1174	void		       *qp_context;
1175	struct ib_cq	       *send_cq;
1176	struct ib_cq	       *recv_cq;
1177	struct ib_srq	       *srq;
1178	struct ib_xrcd	       *xrcd;     /* XRC TGT QPs only */
1179	struct ib_qp_cap	cap;
1180	enum ib_sig_type	sq_sig_type;
1181	enum ib_qp_type		qp_type;
1182	u32			create_flags;
1183
1184	/*
1185	 * Only needed for special QP types, or when using the RW API.
1186	 */
1187	u32			port_num;
1188	struct ib_rwq_ind_table *rwq_ind_tbl;
1189	u32			source_qpn;
1190};
1191
1192struct ib_qp_open_attr {
1193	void                  (*event_handler)(struct ib_event *, void *);
1194	void		       *qp_context;
1195	u32			qp_num;
1196	enum ib_qp_type		qp_type;
1197};
1198
1199enum ib_rnr_timeout {
1200	IB_RNR_TIMER_655_36 =  0,
1201	IB_RNR_TIMER_000_01 =  1,
1202	IB_RNR_TIMER_000_02 =  2,
1203	IB_RNR_TIMER_000_03 =  3,
1204	IB_RNR_TIMER_000_04 =  4,
1205	IB_RNR_TIMER_000_06 =  5,
1206	IB_RNR_TIMER_000_08 =  6,
1207	IB_RNR_TIMER_000_12 =  7,
1208	IB_RNR_TIMER_000_16 =  8,
1209	IB_RNR_TIMER_000_24 =  9,
1210	IB_RNR_TIMER_000_32 = 10,
1211	IB_RNR_TIMER_000_48 = 11,
1212	IB_RNR_TIMER_000_64 = 12,
1213	IB_RNR_TIMER_000_96 = 13,
1214	IB_RNR_TIMER_001_28 = 14,
1215	IB_RNR_TIMER_001_92 = 15,
1216	IB_RNR_TIMER_002_56 = 16,
1217	IB_RNR_TIMER_003_84 = 17,
1218	IB_RNR_TIMER_005_12 = 18,
1219	IB_RNR_TIMER_007_68 = 19,
1220	IB_RNR_TIMER_010_24 = 20,
1221	IB_RNR_TIMER_015_36 = 21,
1222	IB_RNR_TIMER_020_48 = 22,
1223	IB_RNR_TIMER_030_72 = 23,
1224	IB_RNR_TIMER_040_96 = 24,
1225	IB_RNR_TIMER_061_44 = 25,
1226	IB_RNR_TIMER_081_92 = 26,
1227	IB_RNR_TIMER_122_88 = 27,
1228	IB_RNR_TIMER_163_84 = 28,
1229	IB_RNR_TIMER_245_76 = 29,
1230	IB_RNR_TIMER_327_68 = 30,
1231	IB_RNR_TIMER_491_52 = 31
1232};
1233
1234enum ib_qp_attr_mask {
1235	IB_QP_STATE			= 1,
1236	IB_QP_CUR_STATE			= (1<<1),
1237	IB_QP_EN_SQD_ASYNC_NOTIFY	= (1<<2),
1238	IB_QP_ACCESS_FLAGS		= (1<<3),
1239	IB_QP_PKEY_INDEX		= (1<<4),
1240	IB_QP_PORT			= (1<<5),
1241	IB_QP_QKEY			= (1<<6),
1242	IB_QP_AV			= (1<<7),
1243	IB_QP_PATH_MTU			= (1<<8),
1244	IB_QP_TIMEOUT			= (1<<9),
1245	IB_QP_RETRY_CNT			= (1<<10),
1246	IB_QP_RNR_RETRY			= (1<<11),
1247	IB_QP_RQ_PSN			= (1<<12),
1248	IB_QP_MAX_QP_RD_ATOMIC		= (1<<13),
1249	IB_QP_ALT_PATH			= (1<<14),
1250	IB_QP_MIN_RNR_TIMER		= (1<<15),
1251	IB_QP_SQ_PSN			= (1<<16),
1252	IB_QP_MAX_DEST_RD_ATOMIC	= (1<<17),
1253	IB_QP_PATH_MIG_STATE		= (1<<18),
1254	IB_QP_CAP			= (1<<19),
1255	IB_QP_DEST_QPN			= (1<<20),
1256	IB_QP_RESERVED1			= (1<<21),
1257	IB_QP_RESERVED2			= (1<<22),
1258	IB_QP_RESERVED3			= (1<<23),
1259	IB_QP_RESERVED4			= (1<<24),
1260	IB_QP_RATE_LIMIT		= (1<<25),
1261
1262	IB_QP_ATTR_STANDARD_BITS = GENMASK(20, 0),
1263};
1264
1265enum ib_qp_state {
1266	IB_QPS_RESET,
1267	IB_QPS_INIT,
1268	IB_QPS_RTR,
1269	IB_QPS_RTS,
1270	IB_QPS_SQD,
1271	IB_QPS_SQE,
1272	IB_QPS_ERR
1273};
1274
1275enum ib_mig_state {
1276	IB_MIG_MIGRATED,
1277	IB_MIG_REARM,
1278	IB_MIG_ARMED
1279};
1280
1281enum ib_mw_type {
1282	IB_MW_TYPE_1 = 1,
1283	IB_MW_TYPE_2 = 2
1284};
1285
1286struct ib_qp_attr {
1287	enum ib_qp_state	qp_state;
1288	enum ib_qp_state	cur_qp_state;
1289	enum ib_mtu		path_mtu;
1290	enum ib_mig_state	path_mig_state;
1291	u32			qkey;
1292	u32			rq_psn;
1293	u32			sq_psn;
1294	u32			dest_qp_num;
1295	int			qp_access_flags;
1296	struct ib_qp_cap	cap;
1297	struct rdma_ah_attr	ah_attr;
1298	struct rdma_ah_attr	alt_ah_attr;
1299	u16			pkey_index;
1300	u16			alt_pkey_index;
1301	u8			en_sqd_async_notify;
1302	u8			sq_draining;
1303	u8			max_rd_atomic;
1304	u8			max_dest_rd_atomic;
1305	u8			min_rnr_timer;
1306	u32			port_num;
1307	u8			timeout;
1308	u8			retry_cnt;
1309	u8			rnr_retry;
1310	u32			alt_port_num;
1311	u8			alt_timeout;
1312	u32			rate_limit;
1313	struct net_device	*xmit_slave;
1314};
1315
1316enum ib_wr_opcode {
1317	/* These are shared with userspace */
1318	IB_WR_RDMA_WRITE = IB_UVERBS_WR_RDMA_WRITE,
1319	IB_WR_RDMA_WRITE_WITH_IMM = IB_UVERBS_WR_RDMA_WRITE_WITH_IMM,
1320	IB_WR_SEND = IB_UVERBS_WR_SEND,
1321	IB_WR_SEND_WITH_IMM = IB_UVERBS_WR_SEND_WITH_IMM,
1322	IB_WR_RDMA_READ = IB_UVERBS_WR_RDMA_READ,
1323	IB_WR_ATOMIC_CMP_AND_SWP = IB_UVERBS_WR_ATOMIC_CMP_AND_SWP,
1324	IB_WR_ATOMIC_FETCH_AND_ADD = IB_UVERBS_WR_ATOMIC_FETCH_AND_ADD,
1325	IB_WR_BIND_MW = IB_UVERBS_WR_BIND_MW,
1326	IB_WR_LSO = IB_UVERBS_WR_TSO,
1327	IB_WR_SEND_WITH_INV = IB_UVERBS_WR_SEND_WITH_INV,
1328	IB_WR_RDMA_READ_WITH_INV = IB_UVERBS_WR_RDMA_READ_WITH_INV,
1329	IB_WR_LOCAL_INV = IB_UVERBS_WR_LOCAL_INV,
1330	IB_WR_MASKED_ATOMIC_CMP_AND_SWP =
1331		IB_UVERBS_WR_MASKED_ATOMIC_CMP_AND_SWP,
1332	IB_WR_MASKED_ATOMIC_FETCH_AND_ADD =
1333		IB_UVERBS_WR_MASKED_ATOMIC_FETCH_AND_ADD,
1334	IB_WR_FLUSH = IB_UVERBS_WR_FLUSH,
1335	IB_WR_ATOMIC_WRITE = IB_UVERBS_WR_ATOMIC_WRITE,
1336
1337	/* These are kernel only and can not be issued by userspace */
1338	IB_WR_REG_MR = 0x20,
1339	IB_WR_REG_MR_INTEGRITY,
1340
1341	/* reserve values for low level drivers' internal use.
1342	 * These values will not be used at all in the ib core layer.
1343	 */
1344	IB_WR_RESERVED1 = 0xf0,
1345	IB_WR_RESERVED2,
1346	IB_WR_RESERVED3,
1347	IB_WR_RESERVED4,
1348	IB_WR_RESERVED5,
1349	IB_WR_RESERVED6,
1350	IB_WR_RESERVED7,
1351	IB_WR_RESERVED8,
1352	IB_WR_RESERVED9,
1353	IB_WR_RESERVED10,
1354};
1355
1356enum ib_send_flags {
1357	IB_SEND_FENCE		= 1,
1358	IB_SEND_SIGNALED	= (1<<1),
1359	IB_SEND_SOLICITED	= (1<<2),
1360	IB_SEND_INLINE		= (1<<3),
1361	IB_SEND_IP_CSUM		= (1<<4),
1362
1363	/* reserve bits 26-31 for low level drivers' internal use */
1364	IB_SEND_RESERVED_START	= (1 << 26),
1365	IB_SEND_RESERVED_END	= (1 << 31),
1366};
1367
1368struct ib_sge {
1369	u64	addr;
1370	u32	length;
1371	u32	lkey;
1372};
1373
1374struct ib_cqe {
1375	void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1376};
1377
1378struct ib_send_wr {
1379	struct ib_send_wr      *next;
1380	union {
1381		u64		wr_id;
1382		struct ib_cqe	*wr_cqe;
1383	};
1384	struct ib_sge	       *sg_list;
1385	int			num_sge;
1386	enum ib_wr_opcode	opcode;
1387	int			send_flags;
1388	union {
1389		__be32		imm_data;
1390		u32		invalidate_rkey;
1391	} ex;
1392};
1393
1394struct ib_rdma_wr {
1395	struct ib_send_wr	wr;
1396	u64			remote_addr;
1397	u32			rkey;
1398};
1399
1400static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr)
1401{
1402	return container_of(wr, struct ib_rdma_wr, wr);
1403}
1404
1405struct ib_atomic_wr {
1406	struct ib_send_wr	wr;
1407	u64			remote_addr;
1408	u64			compare_add;
1409	u64			swap;
1410	u64			compare_add_mask;
1411	u64			swap_mask;
1412	u32			rkey;
1413};
1414
1415static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr)
1416{
1417	return container_of(wr, struct ib_atomic_wr, wr);
1418}
1419
1420struct ib_ud_wr {
1421	struct ib_send_wr	wr;
1422	struct ib_ah		*ah;
1423	void			*header;
1424	int			hlen;
1425	int			mss;
1426	u32			remote_qpn;
1427	u32			remote_qkey;
1428	u16			pkey_index; /* valid for GSI only */
1429	u32			port_num; /* valid for DR SMPs on switch only */
1430};
1431
1432static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr)
1433{
1434	return container_of(wr, struct ib_ud_wr, wr);
1435}
1436
1437struct ib_reg_wr {
1438	struct ib_send_wr	wr;
1439	struct ib_mr		*mr;
1440	u32			key;
1441	int			access;
1442};
1443
1444static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr)
1445{
1446	return container_of(wr, struct ib_reg_wr, wr);
1447}
1448
1449struct ib_recv_wr {
1450	struct ib_recv_wr      *next;
1451	union {
1452		u64		wr_id;
1453		struct ib_cqe	*wr_cqe;
1454	};
1455	struct ib_sge	       *sg_list;
1456	int			num_sge;
1457};
1458
1459enum ib_access_flags {
1460	IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE,
1461	IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE,
1462	IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ,
1463	IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC,
1464	IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND,
1465	IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED,
1466	IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND,
1467	IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB,
1468	IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING,
1469	IB_ACCESS_FLUSH_GLOBAL = IB_UVERBS_ACCESS_FLUSH_GLOBAL,
1470	IB_ACCESS_FLUSH_PERSISTENT = IB_UVERBS_ACCESS_FLUSH_PERSISTENT,
1471
1472	IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE,
1473	IB_ACCESS_SUPPORTED =
1474		((IB_ACCESS_FLUSH_PERSISTENT << 1) - 1) | IB_ACCESS_OPTIONAL,
1475};
1476
1477/*
1478 * XXX: these are apparently used for ->rereg_user_mr, no idea why they
1479 * are hidden here instead of a uapi header!
1480 */
1481enum ib_mr_rereg_flags {
1482	IB_MR_REREG_TRANS	= 1,
1483	IB_MR_REREG_PD		= (1<<1),
1484	IB_MR_REREG_ACCESS	= (1<<2),
1485	IB_MR_REREG_SUPPORTED	= ((IB_MR_REREG_ACCESS << 1) - 1)
1486};
1487
1488struct ib_umem;
1489
1490enum rdma_remove_reason {
1491	/*
1492	 * Userspace requested uobject deletion or initial try
1493	 * to remove uobject via cleanup. Call could fail
1494	 */
1495	RDMA_REMOVE_DESTROY,
1496	/* Context deletion. This call should delete the actual object itself */
1497	RDMA_REMOVE_CLOSE,
1498	/* Driver is being hot-unplugged. This call should delete the actual object itself */
1499	RDMA_REMOVE_DRIVER_REMOVE,
1500	/* uobj is being cleaned-up before being committed */
1501	RDMA_REMOVE_ABORT,
1502	/* The driver failed to destroy the uobject and is being disconnected */
1503	RDMA_REMOVE_DRIVER_FAILURE,
1504};
1505
1506struct ib_rdmacg_object {
1507#ifdef CONFIG_CGROUP_RDMA
1508	struct rdma_cgroup	*cg;		/* owner rdma cgroup */
1509#endif
1510};
1511
1512struct ib_ucontext {
1513	struct ib_device       *device;
1514	struct ib_uverbs_file  *ufile;
1515
1516	struct ib_rdmacg_object	cg_obj;
1517	/*
1518	 * Implementation details of the RDMA core, don't use in drivers:
1519	 */
1520	struct rdma_restrack_entry res;
1521	struct xarray mmap_xa;
1522};
1523
1524struct ib_uobject {
1525	u64			user_handle;	/* handle given to us by userspace */
1526	/* ufile & ucontext owning this object */
1527	struct ib_uverbs_file  *ufile;
1528	/* FIXME, save memory: ufile->context == context */
1529	struct ib_ucontext     *context;	/* associated user context */
1530	void		       *object;		/* containing object */
1531	struct list_head	list;		/* link to context's list */
1532	struct ib_rdmacg_object	cg_obj;		/* rdmacg object */
1533	int			id;		/* index into kernel idr */
1534	struct kref		ref;
1535	atomic_t		usecnt;		/* protects exclusive access */
1536	struct rcu_head		rcu;		/* kfree_rcu() overhead */
1537
1538	const struct uverbs_api_object *uapi_object;
1539};
1540
1541struct ib_udata {
1542	const void __user *inbuf;
1543	void __user *outbuf;
1544	size_t       inlen;
1545	size_t       outlen;
1546};
1547
1548struct ib_pd {
1549	u32			local_dma_lkey;
1550	u32			flags;
1551	struct ib_device       *device;
1552	struct ib_uobject      *uobject;
1553	atomic_t          	usecnt; /* count all resources */
1554
1555	u32			unsafe_global_rkey;
1556
1557	/*
1558	 * Implementation details of the RDMA core, don't use in drivers:
1559	 */
1560	struct ib_mr	       *__internal_mr;
1561	struct rdma_restrack_entry res;
1562};
1563
1564struct ib_xrcd {
1565	struct ib_device       *device;
1566	atomic_t		usecnt; /* count all exposed resources */
1567	struct inode	       *inode;
1568	struct rw_semaphore	tgt_qps_rwsem;
1569	struct xarray		tgt_qps;
1570};
1571
1572struct ib_ah {
1573	struct ib_device	*device;
1574	struct ib_pd		*pd;
1575	struct ib_uobject	*uobject;
1576	const struct ib_gid_attr *sgid_attr;
1577	enum rdma_ah_attr_type	type;
1578};
1579
1580typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1581
1582enum ib_poll_context {
1583	IB_POLL_SOFTIRQ,	   /* poll from softirq context */
1584	IB_POLL_WORKQUEUE,	   /* poll from workqueue */
1585	IB_POLL_UNBOUND_WORKQUEUE, /* poll from unbound workqueue */
1586	IB_POLL_LAST_POOL_TYPE = IB_POLL_UNBOUND_WORKQUEUE,
1587
1588	IB_POLL_DIRECT,		   /* caller context, no hw completions */
1589};
1590
1591struct ib_cq {
1592	struct ib_device       *device;
1593	struct ib_ucq_object   *uobject;
1594	ib_comp_handler   	comp_handler;
1595	void                  (*event_handler)(struct ib_event *, void *);
1596	void                   *cq_context;
1597	int               	cqe;
1598	unsigned int		cqe_used;
1599	atomic_t          	usecnt; /* count number of work queues */
1600	enum ib_poll_context	poll_ctx;
1601	struct ib_wc		*wc;
1602	struct list_head        pool_entry;
1603	union {
1604		struct irq_poll		iop;
1605		struct work_struct	work;
1606	};
1607	struct workqueue_struct *comp_wq;
1608	struct dim *dim;
1609
1610	/* updated only by trace points */
1611	ktime_t timestamp;
1612	u8 interrupt:1;
1613	u8 shared:1;
1614	unsigned int comp_vector;
1615
1616	/*
1617	 * Implementation details of the RDMA core, don't use in drivers:
1618	 */
1619	struct rdma_restrack_entry res;
1620};
1621
1622struct ib_srq {
1623	struct ib_device       *device;
1624	struct ib_pd	       *pd;
1625	struct ib_usrq_object  *uobject;
1626	void		      (*event_handler)(struct ib_event *, void *);
1627	void		       *srq_context;
1628	enum ib_srq_type	srq_type;
1629	atomic_t		usecnt;
1630
1631	struct {
1632		struct ib_cq   *cq;
1633		union {
1634			struct {
1635				struct ib_xrcd *xrcd;
1636				u32		srq_num;
1637			} xrc;
1638		};
1639	} ext;
1640
1641	/*
1642	 * Implementation details of the RDMA core, don't use in drivers:
1643	 */
1644	struct rdma_restrack_entry res;
1645};
1646
1647enum ib_raw_packet_caps {
1648	/*
1649	 * Strip cvlan from incoming packet and report it in the matching work
1650	 * completion is supported.
1651	 */
1652	IB_RAW_PACKET_CAP_CVLAN_STRIPPING =
1653		IB_UVERBS_RAW_PACKET_CAP_CVLAN_STRIPPING,
1654	/*
1655	 * Scatter FCS field of an incoming packet to host memory is supported.
1656	 */
1657	IB_RAW_PACKET_CAP_SCATTER_FCS = IB_UVERBS_RAW_PACKET_CAP_SCATTER_FCS,
1658	/* Checksum offloads are supported (for both send and receive). */
1659	IB_RAW_PACKET_CAP_IP_CSUM = IB_UVERBS_RAW_PACKET_CAP_IP_CSUM,
1660	/*
1661	 * When a packet is received for an RQ with no receive WQEs, the
1662	 * packet processing is delayed.
1663	 */
1664	IB_RAW_PACKET_CAP_DELAY_DROP = IB_UVERBS_RAW_PACKET_CAP_DELAY_DROP,
1665};
1666
1667enum ib_wq_type {
1668	IB_WQT_RQ = IB_UVERBS_WQT_RQ,
1669};
1670
1671enum ib_wq_state {
1672	IB_WQS_RESET,
1673	IB_WQS_RDY,
1674	IB_WQS_ERR
1675};
1676
1677struct ib_wq {
1678	struct ib_device       *device;
1679	struct ib_uwq_object   *uobject;
1680	void		    *wq_context;
1681	void		    (*event_handler)(struct ib_event *, void *);
1682	struct ib_pd	       *pd;
1683	struct ib_cq	       *cq;
1684	u32		wq_num;
1685	enum ib_wq_state       state;
1686	enum ib_wq_type	wq_type;
1687	atomic_t		usecnt;
1688};
1689
1690enum ib_wq_flags {
1691	IB_WQ_FLAGS_CVLAN_STRIPPING	= IB_UVERBS_WQ_FLAGS_CVLAN_STRIPPING,
1692	IB_WQ_FLAGS_SCATTER_FCS		= IB_UVERBS_WQ_FLAGS_SCATTER_FCS,
1693	IB_WQ_FLAGS_DELAY_DROP		= IB_UVERBS_WQ_FLAGS_DELAY_DROP,
1694	IB_WQ_FLAGS_PCI_WRITE_END_PADDING =
1695				IB_UVERBS_WQ_FLAGS_PCI_WRITE_END_PADDING,
1696};
1697
1698struct ib_wq_init_attr {
1699	void		       *wq_context;
1700	enum ib_wq_type	wq_type;
1701	u32		max_wr;
1702	u32		max_sge;
1703	struct	ib_cq	       *cq;
1704	void		    (*event_handler)(struct ib_event *, void *);
1705	u32		create_flags; /* Use enum ib_wq_flags */
1706};
1707
1708enum ib_wq_attr_mask {
1709	IB_WQ_STATE		= 1 << 0,
1710	IB_WQ_CUR_STATE		= 1 << 1,
1711	IB_WQ_FLAGS		= 1 << 2,
1712};
1713
1714struct ib_wq_attr {
1715	enum	ib_wq_state	wq_state;
1716	enum	ib_wq_state	curr_wq_state;
1717	u32			flags; /* Use enum ib_wq_flags */
1718	u32			flags_mask; /* Use enum ib_wq_flags */
1719};
1720
1721struct ib_rwq_ind_table {
1722	struct ib_device	*device;
1723	struct ib_uobject      *uobject;
1724	atomic_t		usecnt;
1725	u32		ind_tbl_num;
1726	u32		log_ind_tbl_size;
1727	struct ib_wq	**ind_tbl;
1728};
1729
1730struct ib_rwq_ind_table_init_attr {
1731	u32		log_ind_tbl_size;
1732	/* Each entry is a pointer to Receive Work Queue */
1733	struct ib_wq	**ind_tbl;
1734};
1735
1736enum port_pkey_state {
1737	IB_PORT_PKEY_NOT_VALID = 0,
1738	IB_PORT_PKEY_VALID = 1,
1739	IB_PORT_PKEY_LISTED = 2,
1740};
1741
1742struct ib_qp_security;
1743
1744struct ib_port_pkey {
1745	enum port_pkey_state	state;
1746	u16			pkey_index;
1747	u32			port_num;
1748	struct list_head	qp_list;
1749	struct list_head	to_error_list;
1750	struct ib_qp_security  *sec;
1751};
1752
1753struct ib_ports_pkeys {
1754	struct ib_port_pkey	main;
1755	struct ib_port_pkey	alt;
1756};
1757
1758struct ib_qp_security {
1759	struct ib_qp	       *qp;
1760	struct ib_device       *dev;
1761	/* Hold this mutex when changing port and pkey settings. */
1762	struct mutex		mutex;
1763	struct ib_ports_pkeys  *ports_pkeys;
1764	/* A list of all open shared QP handles.  Required to enforce security
1765	 * properly for all users of a shared QP.
1766	 */
1767	struct list_head        shared_qp_list;
1768	void                   *security;
1769	bool			destroying;
1770	atomic_t		error_list_count;
1771	struct completion	error_complete;
1772	int			error_comps_pending;
1773};
1774
1775/*
1776 * @max_write_sge: Maximum SGE elements per RDMA WRITE request.
1777 * @max_read_sge:  Maximum SGE elements per RDMA READ request.
1778 */
1779struct ib_qp {
1780	struct ib_device       *device;
1781	struct ib_pd	       *pd;
1782	struct ib_cq	       *send_cq;
1783	struct ib_cq	       *recv_cq;
1784	spinlock_t		mr_lock;
1785	int			mrs_used;
1786	struct list_head	rdma_mrs;
1787	struct list_head	sig_mrs;
1788	struct ib_srq	       *srq;
1789	struct ib_xrcd	       *xrcd; /* XRC TGT QPs only */
1790	struct list_head	xrcd_list;
1791
1792	/* count times opened, mcast attaches, flow attaches */
1793	atomic_t		usecnt;
1794	struct list_head	open_list;
1795	struct ib_qp           *real_qp;
1796	struct ib_uqp_object   *uobject;
1797	void                  (*event_handler)(struct ib_event *, void *);
1798	void		       *qp_context;
1799	/* sgid_attrs associated with the AV's */
1800	const struct ib_gid_attr *av_sgid_attr;
1801	const struct ib_gid_attr *alt_path_sgid_attr;
1802	u32			qp_num;
1803	u32			max_write_sge;
1804	u32			max_read_sge;
1805	enum ib_qp_type		qp_type;
1806	struct ib_rwq_ind_table *rwq_ind_tbl;
1807	struct ib_qp_security  *qp_sec;
1808	u32			port;
1809
1810	bool			integrity_en;
1811	/*
1812	 * Implementation details of the RDMA core, don't use in drivers:
1813	 */
1814	struct rdma_restrack_entry     res;
1815
1816	/* The counter the qp is bind to */
1817	struct rdma_counter    *counter;
1818};
1819
1820struct ib_dm {
1821	struct ib_device  *device;
1822	u32		   length;
1823	u32		   flags;
1824	struct ib_uobject *uobject;
1825	atomic_t	   usecnt;
1826};
1827
1828struct ib_mr {
1829	struct ib_device  *device;
1830	struct ib_pd	  *pd;
1831	u32		   lkey;
1832	u32		   rkey;
1833	u64		   iova;
1834	u64		   length;
1835	unsigned int	   page_size;
1836	enum ib_mr_type	   type;
1837	bool		   need_inval;
1838	union {
1839		struct ib_uobject	*uobject;	/* user */
1840		struct list_head	qp_entry;	/* FR */
1841	};
1842
1843	struct ib_dm      *dm;
1844	struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */
1845	/*
1846	 * Implementation details of the RDMA core, don't use in drivers:
1847	 */
1848	struct rdma_restrack_entry res;
1849};
1850
1851struct ib_mw {
1852	struct ib_device	*device;
1853	struct ib_pd		*pd;
1854	struct ib_uobject	*uobject;
1855	u32			rkey;
1856	enum ib_mw_type         type;
1857};
1858
1859/* Supported steering options */
1860enum ib_flow_attr_type {
1861	/* steering according to rule specifications */
1862	IB_FLOW_ATTR_NORMAL		= 0x0,
1863	/* default unicast and multicast rule -
1864	 * receive all Eth traffic which isn't steered to any QP
1865	 */
1866	IB_FLOW_ATTR_ALL_DEFAULT	= 0x1,
1867	/* default multicast rule -
1868	 * receive all Eth multicast traffic which isn't steered to any QP
1869	 */
1870	IB_FLOW_ATTR_MC_DEFAULT		= 0x2,
1871	/* sniffer rule - receive all port traffic */
1872	IB_FLOW_ATTR_SNIFFER		= 0x3
1873};
1874
1875/* Supported steering header types */
1876enum ib_flow_spec_type {
1877	/* L2 headers*/
1878	IB_FLOW_SPEC_ETH		= 0x20,
1879	IB_FLOW_SPEC_IB			= 0x22,
1880	/* L3 header*/
1881	IB_FLOW_SPEC_IPV4		= 0x30,
1882	IB_FLOW_SPEC_IPV6		= 0x31,
1883	IB_FLOW_SPEC_ESP                = 0x34,
1884	/* L4 headers*/
1885	IB_FLOW_SPEC_TCP		= 0x40,
1886	IB_FLOW_SPEC_UDP		= 0x41,
1887	IB_FLOW_SPEC_VXLAN_TUNNEL	= 0x50,
1888	IB_FLOW_SPEC_GRE		= 0x51,
1889	IB_FLOW_SPEC_MPLS		= 0x60,
1890	IB_FLOW_SPEC_INNER		= 0x100,
1891	/* Actions */
1892	IB_FLOW_SPEC_ACTION_TAG         = 0x1000,
1893	IB_FLOW_SPEC_ACTION_DROP        = 0x1001,
1894	IB_FLOW_SPEC_ACTION_HANDLE	= 0x1002,
1895	IB_FLOW_SPEC_ACTION_COUNT       = 0x1003,
1896};
1897#define IB_FLOW_SPEC_LAYER_MASK	0xF0
1898#define IB_FLOW_SPEC_SUPPORT_LAYERS 10
1899
1900enum ib_flow_flags {
1901	IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */
1902	IB_FLOW_ATTR_FLAGS_EGRESS = 1UL << 2, /* Egress flow */
1903	IB_FLOW_ATTR_FLAGS_RESERVED  = 1UL << 3  /* Must be last */
1904};
1905
1906struct ib_flow_eth_filter {
1907	u8	dst_mac[6];
1908	u8	src_mac[6];
1909	__be16	ether_type;
1910	__be16	vlan_tag;
1911	/* Must be last */
1912	u8	real_sz[];
1913};
1914
1915struct ib_flow_spec_eth {
1916	u32			  type;
1917	u16			  size;
1918	struct ib_flow_eth_filter val;
1919	struct ib_flow_eth_filter mask;
1920};
1921
1922struct ib_flow_ib_filter {
1923	__be16 dlid;
1924	__u8   sl;
1925	/* Must be last */
1926	u8	real_sz[];
1927};
1928
1929struct ib_flow_spec_ib {
1930	u32			 type;
1931	u16			 size;
1932	struct ib_flow_ib_filter val;
1933	struct ib_flow_ib_filter mask;
1934};
1935
1936/* IPv4 header flags */
1937enum ib_ipv4_flags {
1938	IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */
1939	IB_IPV4_MORE_FRAG = 0X4  /* For All fragmented packets except the
1940				    last have this flag set */
1941};
1942
1943struct ib_flow_ipv4_filter {
1944	__be32	src_ip;
1945	__be32	dst_ip;
1946	u8	proto;
1947	u8	tos;
1948	u8	ttl;
1949	u8	flags;
1950	/* Must be last */
1951	u8	real_sz[];
1952};
1953
1954struct ib_flow_spec_ipv4 {
1955	u32			   type;
1956	u16			   size;
1957	struct ib_flow_ipv4_filter val;
1958	struct ib_flow_ipv4_filter mask;
1959};
1960
1961struct ib_flow_ipv6_filter {
1962	u8	src_ip[16];
1963	u8	dst_ip[16];
1964	__be32	flow_label;
1965	u8	next_hdr;
1966	u8	traffic_class;
1967	u8	hop_limit;
1968	/* Must be last */
1969	u8	real_sz[];
1970};
1971
1972struct ib_flow_spec_ipv6 {
1973	u32			   type;
1974	u16			   size;
1975	struct ib_flow_ipv6_filter val;
1976	struct ib_flow_ipv6_filter mask;
1977};
1978
1979struct ib_flow_tcp_udp_filter {
1980	__be16	dst_port;
1981	__be16	src_port;
1982	/* Must be last */
1983	u8	real_sz[];
1984};
1985
1986struct ib_flow_spec_tcp_udp {
1987	u32			      type;
1988	u16			      size;
1989	struct ib_flow_tcp_udp_filter val;
1990	struct ib_flow_tcp_udp_filter mask;
1991};
1992
1993struct ib_flow_tunnel_filter {
1994	__be32	tunnel_id;
1995	u8	real_sz[];
1996};
1997
1998/* ib_flow_spec_tunnel describes the Vxlan tunnel
1999 * the tunnel_id from val has the vni value
2000 */
2001struct ib_flow_spec_tunnel {
2002	u32			      type;
2003	u16			      size;
2004	struct ib_flow_tunnel_filter  val;
2005	struct ib_flow_tunnel_filter  mask;
2006};
2007
2008struct ib_flow_esp_filter {
2009	__be32	spi;
2010	__be32  seq;
2011	/* Must be last */
2012	u8	real_sz[];
2013};
2014
2015struct ib_flow_spec_esp {
2016	u32                           type;
2017	u16			      size;
2018	struct ib_flow_esp_filter     val;
2019	struct ib_flow_esp_filter     mask;
2020};
2021
2022struct ib_flow_gre_filter {
2023	__be16 c_ks_res0_ver;
2024	__be16 protocol;
2025	__be32 key;
2026	/* Must be last */
2027	u8	real_sz[];
2028};
2029
2030struct ib_flow_spec_gre {
2031	u32                           type;
2032	u16			      size;
2033	struct ib_flow_gre_filter     val;
2034	struct ib_flow_gre_filter     mask;
2035};
2036
2037struct ib_flow_mpls_filter {
2038	__be32 tag;
2039	/* Must be last */
2040	u8	real_sz[];
2041};
2042
2043struct ib_flow_spec_mpls {
2044	u32                           type;
2045	u16			      size;
2046	struct ib_flow_mpls_filter     val;
2047	struct ib_flow_mpls_filter     mask;
2048};
2049
2050struct ib_flow_spec_action_tag {
2051	enum ib_flow_spec_type	      type;
2052	u16			      size;
2053	u32                           tag_id;
2054};
2055
2056struct ib_flow_spec_action_drop {
2057	enum ib_flow_spec_type	      type;
2058	u16			      size;
2059};
2060
2061struct ib_flow_spec_action_handle {
2062	enum ib_flow_spec_type	      type;
2063	u16			      size;
2064	struct ib_flow_action	     *act;
2065};
2066
2067enum ib_counters_description {
2068	IB_COUNTER_PACKETS,
2069	IB_COUNTER_BYTES,
2070};
2071
2072struct ib_flow_spec_action_count {
2073	enum ib_flow_spec_type type;
2074	u16 size;
2075	struct ib_counters *counters;
2076};
2077
2078union ib_flow_spec {
2079	struct {
2080		u32			type;
2081		u16			size;
2082	};
2083	struct ib_flow_spec_eth		eth;
2084	struct ib_flow_spec_ib		ib;
2085	struct ib_flow_spec_ipv4        ipv4;
2086	struct ib_flow_spec_tcp_udp	tcp_udp;
2087	struct ib_flow_spec_ipv6        ipv6;
2088	struct ib_flow_spec_tunnel      tunnel;
2089	struct ib_flow_spec_esp		esp;
2090	struct ib_flow_spec_gre		gre;
2091	struct ib_flow_spec_mpls	mpls;
2092	struct ib_flow_spec_action_tag  flow_tag;
2093	struct ib_flow_spec_action_drop drop;
2094	struct ib_flow_spec_action_handle action;
2095	struct ib_flow_spec_action_count flow_count;
2096};
2097
2098struct ib_flow_attr {
2099	enum ib_flow_attr_type type;
2100	u16	     size;
2101	u16	     priority;
2102	u32	     flags;
2103	u8	     num_of_specs;
2104	u32	     port;
2105	union ib_flow_spec flows[];
2106};
2107
2108struct ib_flow {
2109	struct ib_qp		*qp;
2110	struct ib_device	*device;
2111	struct ib_uobject	*uobject;
2112};
2113
2114enum ib_flow_action_type {
2115	IB_FLOW_ACTION_UNSPECIFIED,
2116	IB_FLOW_ACTION_ESP = 1,
2117};
2118
2119struct ib_flow_action_attrs_esp_keymats {
2120	enum ib_uverbs_flow_action_esp_keymat			protocol;
2121	union {
2122		struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm;
2123	} keymat;
2124};
2125
2126struct ib_flow_action_attrs_esp_replays {
2127	enum ib_uverbs_flow_action_esp_replay			protocol;
2128	union {
2129		struct ib_uverbs_flow_action_esp_replay_bmp	bmp;
2130	} replay;
2131};
2132
2133enum ib_flow_action_attrs_esp_flags {
2134	/* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags
2135	 * This is done in order to share the same flags between user-space and
2136	 * kernel and spare an unnecessary translation.
2137	 */
2138
2139	/* Kernel flags */
2140	IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED	= 1ULL << 32,
2141	IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS	= 1ULL << 33,
2142};
2143
2144struct ib_flow_spec_list {
2145	struct ib_flow_spec_list	*next;
2146	union ib_flow_spec		spec;
2147};
2148
2149struct ib_flow_action_attrs_esp {
2150	struct ib_flow_action_attrs_esp_keymats		*keymat;
2151	struct ib_flow_action_attrs_esp_replays		*replay;
2152	struct ib_flow_spec_list			*encap;
2153	/* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled.
2154	 * Value of 0 is a valid value.
2155	 */
2156	u32						esn;
2157	u32						spi;
2158	u32						seq;
2159	u32						tfc_pad;
2160	/* Use enum ib_flow_action_attrs_esp_flags */
2161	u64						flags;
2162	u64						hard_limit_pkts;
2163};
2164
2165struct ib_flow_action {
2166	struct ib_device		*device;
2167	struct ib_uobject		*uobject;
2168	enum ib_flow_action_type	type;
2169	atomic_t			usecnt;
2170};
2171
2172struct ib_mad;
2173
2174enum ib_process_mad_flags {
2175	IB_MAD_IGNORE_MKEY	= 1,
2176	IB_MAD_IGNORE_BKEY	= 2,
2177	IB_MAD_IGNORE_ALL	= IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
2178};
2179
2180enum ib_mad_result {
2181	IB_MAD_RESULT_FAILURE  = 0,      /* (!SUCCESS is the important flag) */
2182	IB_MAD_RESULT_SUCCESS  = 1 << 0, /* MAD was successfully processed   */
2183	IB_MAD_RESULT_REPLY    = 1 << 1, /* Reply packet needs to be sent    */
2184	IB_MAD_RESULT_CONSUMED = 1 << 2  /* Packet consumed: stop processing */
2185};
2186
2187struct ib_port_cache {
2188	u64		      subnet_prefix;
2189	struct ib_pkey_cache  *pkey;
2190	struct ib_gid_table   *gid;
2191	u8                     lmc;
2192	enum ib_port_state     port_state;
2193};
2194
2195struct ib_port_immutable {
2196	int                           pkey_tbl_len;
2197	int                           gid_tbl_len;
2198	u32                           core_cap_flags;
2199	u32                           max_mad_size;
2200};
2201
2202struct ib_port_data {
2203	struct ib_device *ib_dev;
2204
2205	struct ib_port_immutable immutable;
2206
2207	spinlock_t pkey_list_lock;
2208
2209	spinlock_t netdev_lock;
2210
2211	struct list_head pkey_list;
2212
2213	struct ib_port_cache cache;
2214
2215	struct net_device __rcu *netdev;
2216	netdevice_tracker netdev_tracker;
2217	struct hlist_node ndev_hash_link;
2218	struct rdma_port_counter port_counter;
2219	struct ib_port *sysfs;
2220};
2221
2222/* rdma netdev type - specifies protocol type */
2223enum rdma_netdev_t {
2224	RDMA_NETDEV_OPA_VNIC,
2225	RDMA_NETDEV_IPOIB,
2226};
2227
2228/**
2229 * struct rdma_netdev - rdma netdev
2230 * For cases where netstack interfacing is required.
2231 */
2232struct rdma_netdev {
2233	void              *clnt_priv;
2234	struct ib_device  *hca;
2235	u32		   port_num;
2236	int                mtu;
2237
2238	/*
2239	 * cleanup function must be specified.
2240	 * FIXME: This is only used for OPA_VNIC and that usage should be
2241	 * removed too.
2242	 */
2243	void (*free_rdma_netdev)(struct net_device *netdev);
2244
2245	/* control functions */
2246	void (*set_id)(struct net_device *netdev, int id);
2247	/* send packet */
2248	int (*send)(struct net_device *dev, struct sk_buff *skb,
2249		    struct ib_ah *address, u32 dqpn);
2250	/* multicast */
2251	int (*attach_mcast)(struct net_device *dev, struct ib_device *hca,
2252			    union ib_gid *gid, u16 mlid,
2253			    int set_qkey, u32 qkey);
2254	int (*detach_mcast)(struct net_device *dev, struct ib_device *hca,
2255			    union ib_gid *gid, u16 mlid);
2256	/* timeout */
2257	void (*tx_timeout)(struct net_device *dev, unsigned int txqueue);
2258};
2259
2260struct rdma_netdev_alloc_params {
2261	size_t sizeof_priv;
2262	unsigned int txqs;
2263	unsigned int rxqs;
2264	void *param;
2265
2266	int (*initialize_rdma_netdev)(struct ib_device *device, u32 port_num,
2267				      struct net_device *netdev, void *param);
2268};
2269
2270struct ib_odp_counters {
2271	atomic64_t faults;
2272	atomic64_t invalidations;
2273	atomic64_t prefetch;
2274};
2275
2276struct ib_counters {
2277	struct ib_device	*device;
2278	struct ib_uobject	*uobject;
2279	/* num of objects attached */
2280	atomic_t	usecnt;
2281};
2282
2283struct ib_counters_read_attr {
2284	u64	*counters_buff;
2285	u32	ncounters;
2286	u32	flags; /* use enum ib_read_counters_flags */
2287};
2288
2289struct uverbs_attr_bundle;
2290struct iw_cm_id;
2291struct iw_cm_conn_param;
2292
2293#define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member)                      \
2294	.size_##ib_struct =                                                    \
2295		(sizeof(struct drv_struct) +                                   \
2296		 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) +      \
2297		 BUILD_BUG_ON_ZERO(                                            \
2298			 !__same_type(((struct drv_struct *)NULL)->member,     \
2299				      struct ib_struct)))
2300
2301#define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp)                          \
2302	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2303					   gfp, false))
2304
2305#define rdma_zalloc_drv_obj_numa(ib_dev, ib_type)                              \
2306	((struct ib_type *)rdma_zalloc_obj(ib_dev, ib_dev->ops.size_##ib_type, \
2307					   GFP_KERNEL, true))
2308
2309#define rdma_zalloc_drv_obj(ib_dev, ib_type)                                   \
2310	rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL)
2311
2312#define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct
2313
2314struct rdma_user_mmap_entry {
2315	struct kref ref;
2316	struct ib_ucontext *ucontext;
2317	unsigned long start_pgoff;
2318	size_t npages;
2319	bool driver_removed;
2320};
2321
2322/* Return the offset (in bytes) the user should pass to libc's mmap() */
2323static inline u64
2324rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry)
2325{
2326	return (u64)entry->start_pgoff << PAGE_SHIFT;
2327}
2328
2329/**
2330 * struct ib_device_ops - InfiniBand device operations
2331 * This structure defines all the InfiniBand device operations, providers will
2332 * need to define the supported operations, otherwise they will be set to null.
2333 */
2334struct ib_device_ops {
2335	struct module *owner;
2336	enum rdma_driver_id driver_id;
2337	u32 uverbs_abi_ver;
2338	unsigned int uverbs_no_driver_id_binding:1;
2339
2340	/*
2341	 * NOTE: New drivers should not make use of device_group; instead new
2342	 * device parameter should be exposed via netlink command. This
2343	 * mechanism exists only for existing drivers.
2344	 */
2345	const struct attribute_group *device_group;
2346	const struct attribute_group **port_groups;
2347
2348	int (*post_send)(struct ib_qp *qp, const struct ib_send_wr *send_wr,
2349			 const struct ib_send_wr **bad_send_wr);
2350	int (*post_recv)(struct ib_qp *qp, const struct ib_recv_wr *recv_wr,
2351			 const struct ib_recv_wr **bad_recv_wr);
2352	void (*drain_rq)(struct ib_qp *qp);
2353	void (*drain_sq)(struct ib_qp *qp);
2354	int (*poll_cq)(struct ib_cq *cq, int num_entries, struct ib_wc *wc);
2355	int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
2356	int (*req_notify_cq)(struct ib_cq *cq, enum ib_cq_notify_flags flags);
2357	int (*post_srq_recv)(struct ib_srq *srq,
2358			     const struct ib_recv_wr *recv_wr,
2359			     const struct ib_recv_wr **bad_recv_wr);
2360	int (*process_mad)(struct ib_device *device, int process_mad_flags,
2361			   u32 port_num, const struct ib_wc *in_wc,
2362			   const struct ib_grh *in_grh,
2363			   const struct ib_mad *in_mad, struct ib_mad *out_mad,
2364			   size_t *out_mad_size, u16 *out_mad_pkey_index);
2365	int (*query_device)(struct ib_device *device,
2366			    struct ib_device_attr *device_attr,
2367			    struct ib_udata *udata);
2368	int (*modify_device)(struct ib_device *device, int device_modify_mask,
2369			     struct ib_device_modify *device_modify);
2370	void (*get_dev_fw_str)(struct ib_device *device, char *str);
2371	const struct cpumask *(*get_vector_affinity)(struct ib_device *ibdev,
2372						     int comp_vector);
2373	int (*query_port)(struct ib_device *device, u32 port_num,
2374			  struct ib_port_attr *port_attr);
2375	int (*modify_port)(struct ib_device *device, u32 port_num,
2376			   int port_modify_mask,
2377			   struct ib_port_modify *port_modify);
2378	/**
2379	 * The following mandatory functions are used only at device
2380	 * registration.  Keep functions such as these at the end of this
2381	 * structure to avoid cache line misses when accessing struct ib_device
2382	 * in fast paths.
2383	 */
2384	int (*get_port_immutable)(struct ib_device *device, u32 port_num,
2385				  struct ib_port_immutable *immutable);
2386	enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
2387					       u32 port_num);
2388	/**
2389	 * When calling get_netdev, the HW vendor's driver should return the
2390	 * net device of device @device at port @port_num or NULL if such
2391	 * a net device doesn't exist. The vendor driver should call dev_hold
2392	 * on this net device. The HW vendor's device driver must guarantee
2393	 * that this function returns NULL before the net device has finished
2394	 * NETDEV_UNREGISTER state.
2395	 */
2396	struct net_device *(*get_netdev)(struct ib_device *device,
2397					 u32 port_num);
2398	/**
2399	 * rdma netdev operation
2400	 *
2401	 * Driver implementing alloc_rdma_netdev or rdma_netdev_get_params
2402	 * must return -EOPNOTSUPP if it doesn't support the specified type.
2403	 */
2404	struct net_device *(*alloc_rdma_netdev)(
2405		struct ib_device *device, u32 port_num, enum rdma_netdev_t type,
2406		const char *name, unsigned char name_assign_type,
2407		void (*setup)(struct net_device *));
2408
2409	int (*rdma_netdev_get_params)(struct ib_device *device, u32 port_num,
2410				      enum rdma_netdev_t type,
2411				      struct rdma_netdev_alloc_params *params);
2412	/**
2413	 * query_gid should be return GID value for @device, when @port_num
2414	 * link layer is either IB or iWarp. It is no-op if @port_num port
2415	 * is RoCE link layer.
2416	 */
2417	int (*query_gid)(struct ib_device *device, u32 port_num, int index,
2418			 union ib_gid *gid);
2419	/**
2420	 * When calling add_gid, the HW vendor's driver should add the gid
2421	 * of device of port at gid index available at @attr. Meta-info of
2422	 * that gid (for example, the network device related to this gid) is
2423	 * available at @attr. @context allows the HW vendor driver to store
2424	 * extra information together with a GID entry. The HW vendor driver may
2425	 * allocate memory to contain this information and store it in @context
2426	 * when a new GID entry is written to. Params are consistent until the
2427	 * next call of add_gid or delete_gid. The function should return 0 on
2428	 * success or error otherwise. The function could be called
2429	 * concurrently for different ports. This function is only called when
2430	 * roce_gid_table is used.
2431	 */
2432	int (*add_gid)(const struct ib_gid_attr *attr, void **context);
2433	/**
2434	 * When calling del_gid, the HW vendor's driver should delete the
2435	 * gid of device @device at gid index gid_index of port port_num
2436	 * available in @attr.
2437	 * Upon the deletion of a GID entry, the HW vendor must free any
2438	 * allocated memory. The caller will clear @context afterwards.
2439	 * This function is only called when roce_gid_table is used.
2440	 */
2441	int (*del_gid)(const struct ib_gid_attr *attr, void **context);
2442	int (*query_pkey)(struct ib_device *device, u32 port_num, u16 index,
2443			  u16 *pkey);
2444	int (*alloc_ucontext)(struct ib_ucontext *context,
2445			      struct ib_udata *udata);
2446	void (*dealloc_ucontext)(struct ib_ucontext *context);
2447	int (*mmap)(struct ib_ucontext *context, struct vm_area_struct *vma);
2448	/**
2449	 * This will be called once refcount of an entry in mmap_xa reaches
2450	 * zero. The type of the memory that was mapped may differ between
2451	 * entries and is opaque to the rdma_user_mmap interface.
2452	 * Therefore needs to be implemented by the driver in mmap_free.
2453	 */
2454	void (*mmap_free)(struct rdma_user_mmap_entry *entry);
2455	void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
2456	int (*alloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2457	int (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata);
2458	int (*create_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2459			 struct ib_udata *udata);
2460	int (*create_user_ah)(struct ib_ah *ah, struct rdma_ah_init_attr *attr,
2461			      struct ib_udata *udata);
2462	int (*modify_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2463	int (*query_ah)(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
2464	int (*destroy_ah)(struct ib_ah *ah, u32 flags);
2465	int (*create_srq)(struct ib_srq *srq,
2466			  struct ib_srq_init_attr *srq_init_attr,
2467			  struct ib_udata *udata);
2468	int (*modify_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr,
2469			  enum ib_srq_attr_mask srq_attr_mask,
2470			  struct ib_udata *udata);
2471	int (*query_srq)(struct ib_srq *srq, struct ib_srq_attr *srq_attr);
2472	int (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata);
2473	int (*create_qp)(struct ib_qp *qp, struct ib_qp_init_attr *qp_init_attr,
2474			 struct ib_udata *udata);
2475	int (*modify_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2476			 int qp_attr_mask, struct ib_udata *udata);
2477	int (*query_qp)(struct ib_qp *qp, struct ib_qp_attr *qp_attr,
2478			int qp_attr_mask, struct ib_qp_init_attr *qp_init_attr);
2479	int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata);
2480	int (*create_cq)(struct ib_cq *cq, const struct ib_cq_init_attr *attr,
2481			 struct ib_udata *udata);
2482	int (*modify_cq)(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2483	int (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata);
2484	int (*resize_cq)(struct ib_cq *cq, int cqe, struct ib_udata *udata);
2485	struct ib_mr *(*get_dma_mr)(struct ib_pd *pd, int mr_access_flags);
2486	struct ib_mr *(*reg_user_mr)(struct ib_pd *pd, u64 start, u64 length,
2487				     u64 virt_addr, int mr_access_flags,
2488				     struct ib_udata *udata);
2489	struct ib_mr *(*reg_user_mr_dmabuf)(struct ib_pd *pd, u64 offset,
2490					    u64 length, u64 virt_addr, int fd,
2491					    int mr_access_flags,
2492					    struct ib_udata *udata);
2493	struct ib_mr *(*rereg_user_mr)(struct ib_mr *mr, int flags, u64 start,
2494				       u64 length, u64 virt_addr,
2495				       int mr_access_flags, struct ib_pd *pd,
2496				       struct ib_udata *udata);
2497	int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata);
2498	struct ib_mr *(*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type,
2499				  u32 max_num_sg);
2500	struct ib_mr *(*alloc_mr_integrity)(struct ib_pd *pd,
2501					    u32 max_num_data_sg,
2502					    u32 max_num_meta_sg);
2503	int (*advise_mr)(struct ib_pd *pd,
2504			 enum ib_uverbs_advise_mr_advice advice, u32 flags,
2505			 struct ib_sge *sg_list, u32 num_sge,
2506			 struct uverbs_attr_bundle *attrs);
2507
2508	/*
2509	 * Kernel users should universally support relaxed ordering (RO), as
2510	 * they are designed to read data only after observing the CQE and use
2511	 * the DMA API correctly.
2512	 *
2513	 * Some drivers implicitly enable RO if platform supports it.
2514	 */
2515	int (*map_mr_sg)(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2516			 unsigned int *sg_offset);
2517	int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
2518			       struct ib_mr_status *mr_status);
2519	int (*alloc_mw)(struct ib_mw *mw, struct ib_udata *udata);
2520	int (*dealloc_mw)(struct ib_mw *mw);
2521	int (*attach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2522	int (*detach_mcast)(struct ib_qp *qp, union ib_gid *gid, u16 lid);
2523	int (*alloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2524	int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata);
2525	struct ib_flow *(*create_flow)(struct ib_qp *qp,
2526				       struct ib_flow_attr *flow_attr,
2527				       struct ib_udata *udata);
2528	int (*destroy_flow)(struct ib_flow *flow_id);
2529	int (*destroy_flow_action)(struct ib_flow_action *action);
2530	int (*set_vf_link_state)(struct ib_device *device, int vf, u32 port,
2531				 int state);
2532	int (*get_vf_config)(struct ib_device *device, int vf, u32 port,
2533			     struct ifla_vf_info *ivf);
2534	int (*get_vf_stats)(struct ib_device *device, int vf, u32 port,
2535			    struct ifla_vf_stats *stats);
2536	int (*get_vf_guid)(struct ib_device *device, int vf, u32 port,
2537			    struct ifla_vf_guid *node_guid,
2538			    struct ifla_vf_guid *port_guid);
2539	int (*set_vf_guid)(struct ib_device *device, int vf, u32 port, u64 guid,
2540			   int type);
2541	struct ib_wq *(*create_wq)(struct ib_pd *pd,
2542				   struct ib_wq_init_attr *init_attr,
2543				   struct ib_udata *udata);
2544	int (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata);
2545	int (*modify_wq)(struct ib_wq *wq, struct ib_wq_attr *attr,
2546			 u32 wq_attr_mask, struct ib_udata *udata);
2547	int (*create_rwq_ind_table)(struct ib_rwq_ind_table *ib_rwq_ind_table,
2548				    struct ib_rwq_ind_table_init_attr *init_attr,
2549				    struct ib_udata *udata);
2550	int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table);
2551	struct ib_dm *(*alloc_dm)(struct ib_device *device,
2552				  struct ib_ucontext *context,
2553				  struct ib_dm_alloc_attr *attr,
2554				  struct uverbs_attr_bundle *attrs);
2555	int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs);
2556	struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm,
2557				   struct ib_dm_mr_attr *attr,
2558				   struct uverbs_attr_bundle *attrs);
2559	int (*create_counters)(struct ib_counters *counters,
2560			       struct uverbs_attr_bundle *attrs);
2561	int (*destroy_counters)(struct ib_counters *counters);
2562	int (*read_counters)(struct ib_counters *counters,
2563			     struct ib_counters_read_attr *counters_read_attr,
2564			     struct uverbs_attr_bundle *attrs);
2565	int (*map_mr_sg_pi)(struct ib_mr *mr, struct scatterlist *data_sg,
2566			    int data_sg_nents, unsigned int *data_sg_offset,
2567			    struct scatterlist *meta_sg, int meta_sg_nents,
2568			    unsigned int *meta_sg_offset);
2569
2570	/**
2571	 * alloc_hw_[device,port]_stats - Allocate a struct rdma_hw_stats and
2572	 *   fill in the driver initialized data.  The struct is kfree()'ed by
2573	 *   the sysfs core when the device is removed.  A lifespan of -1 in the
2574	 *   return struct tells the core to set a default lifespan.
2575	 */
2576	struct rdma_hw_stats *(*alloc_hw_device_stats)(struct ib_device *device);
2577	struct rdma_hw_stats *(*alloc_hw_port_stats)(struct ib_device *device,
2578						     u32 port_num);
2579	/**
2580	 * get_hw_stats - Fill in the counter value(s) in the stats struct.
2581	 * @index - The index in the value array we wish to have updated, or
2582	 *   num_counters if we want all stats updated
2583	 * Return codes -
2584	 *   < 0 - Error, no counters updated
2585	 *   index - Updated the single counter pointed to by index
2586	 *   num_counters - Updated all counters (will reset the timestamp
2587	 *     and prevent further calls for lifespan milliseconds)
2588	 * Drivers are allowed to update all counters in leiu of just the
2589	 *   one given in index at their option
2590	 */
2591	int (*get_hw_stats)(struct ib_device *device,
2592			    struct rdma_hw_stats *stats, u32 port, int index);
2593
2594	/**
2595	 * modify_hw_stat - Modify the counter configuration
2596	 * @enable: true/false when enable/disable a counter
2597	 * Return codes - 0 on success or error code otherwise.
2598	 */
2599	int (*modify_hw_stat)(struct ib_device *device, u32 port,
2600			      unsigned int counter_index, bool enable);
2601	/**
2602	 * Allows rdma drivers to add their own restrack attributes.
2603	 */
2604	int (*fill_res_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2605	int (*fill_res_mr_entry_raw)(struct sk_buff *msg, struct ib_mr *ibmr);
2606	int (*fill_res_cq_entry)(struct sk_buff *msg, struct ib_cq *ibcq);
2607	int (*fill_res_cq_entry_raw)(struct sk_buff *msg, struct ib_cq *ibcq);
2608	int (*fill_res_qp_entry)(struct sk_buff *msg, struct ib_qp *ibqp);
2609	int (*fill_res_qp_entry_raw)(struct sk_buff *msg, struct ib_qp *ibqp);
2610	int (*fill_res_cm_id_entry)(struct sk_buff *msg, struct rdma_cm_id *id);
2611
2612	/* Device lifecycle callbacks */
2613	/*
2614	 * Called after the device becomes registered, before clients are
2615	 * attached
2616	 */
2617	int (*enable_driver)(struct ib_device *dev);
2618	/*
2619	 * This is called as part of ib_dealloc_device().
2620	 */
2621	void (*dealloc_driver)(struct ib_device *dev);
2622
2623	/* iWarp CM callbacks */
2624	void (*iw_add_ref)(struct ib_qp *qp);
2625	void (*iw_rem_ref)(struct ib_qp *qp);
2626	struct ib_qp *(*iw_get_qp)(struct ib_device *device, int qpn);
2627	int (*iw_connect)(struct iw_cm_id *cm_id,
2628			  struct iw_cm_conn_param *conn_param);
2629	int (*iw_accept)(struct iw_cm_id *cm_id,
2630			 struct iw_cm_conn_param *conn_param);
2631	int (*iw_reject)(struct iw_cm_id *cm_id, const void *pdata,
2632			 u8 pdata_len);
2633	int (*iw_create_listen)(struct iw_cm_id *cm_id, int backlog);
2634	int (*iw_destroy_listen)(struct iw_cm_id *cm_id);
2635	/**
2636	 * counter_bind_qp - Bind a QP to a counter.
2637	 * @counter - The counter to be bound. If counter->id is zero then
2638	 *   the driver needs to allocate a new counter and set counter->id
2639	 */
2640	int (*counter_bind_qp)(struct rdma_counter *counter, struct ib_qp *qp);
2641	/**
2642	 * counter_unbind_qp - Unbind the qp from the dynamically-allocated
2643	 *   counter and bind it onto the default one
2644	 */
2645	int (*counter_unbind_qp)(struct ib_qp *qp);
2646	/**
2647	 * counter_dealloc -De-allocate the hw counter
2648	 */
2649	int (*counter_dealloc)(struct rdma_counter *counter);
2650	/**
2651	 * counter_alloc_stats - Allocate a struct rdma_hw_stats and fill in
2652	 * the driver initialized data.
2653	 */
2654	struct rdma_hw_stats *(*counter_alloc_stats)(
2655		struct rdma_counter *counter);
2656	/**
2657	 * counter_update_stats - Query the stats value of this counter
2658	 */
2659	int (*counter_update_stats)(struct rdma_counter *counter);
2660
2661	/**
2662	 * Allows rdma drivers to add their own restrack attributes
2663	 * dumped via 'rdma stat' iproute2 command.
2664	 */
2665	int (*fill_stat_mr_entry)(struct sk_buff *msg, struct ib_mr *ibmr);
2666
2667	/* query driver for its ucontext properties */
2668	int (*query_ucontext)(struct ib_ucontext *context,
2669			      struct uverbs_attr_bundle *attrs);
2670
2671	/*
2672	 * Provide NUMA node. This API exists for rdmavt/hfi1 only.
2673	 * Everyone else relies on Linux memory management model.
2674	 */
2675	int (*get_numa_node)(struct ib_device *dev);
2676
2677	DECLARE_RDMA_OBJ_SIZE(ib_ah);
2678	DECLARE_RDMA_OBJ_SIZE(ib_counters);
2679	DECLARE_RDMA_OBJ_SIZE(ib_cq);
2680	DECLARE_RDMA_OBJ_SIZE(ib_mw);
2681	DECLARE_RDMA_OBJ_SIZE(ib_pd);
2682	DECLARE_RDMA_OBJ_SIZE(ib_qp);
2683	DECLARE_RDMA_OBJ_SIZE(ib_rwq_ind_table);
2684	DECLARE_RDMA_OBJ_SIZE(ib_srq);
2685	DECLARE_RDMA_OBJ_SIZE(ib_ucontext);
2686	DECLARE_RDMA_OBJ_SIZE(ib_xrcd);
2687};
2688
2689struct ib_core_device {
2690	/* device must be the first element in structure until,
2691	 * union of ib_core_device and device exists in ib_device.
2692	 */
2693	struct device dev;
2694	possible_net_t rdma_net;
2695	struct kobject *ports_kobj;
2696	struct list_head port_list;
2697	struct ib_device *owner; /* reach back to owner ib_device */
2698};
2699
2700struct rdma_restrack_root;
2701struct ib_device {
2702	/* Do not access @dma_device directly from ULP nor from HW drivers. */
2703	struct device                *dma_device;
2704	struct ib_device_ops	     ops;
2705	char                          name[IB_DEVICE_NAME_MAX];
2706	struct rcu_head rcu_head;
2707
2708	struct list_head              event_handler_list;
2709	/* Protects event_handler_list */
2710	struct rw_semaphore event_handler_rwsem;
2711
2712	/* Protects QP's event_handler calls and open_qp list */
2713	spinlock_t qp_open_list_lock;
2714
2715	struct rw_semaphore	      client_data_rwsem;
2716	struct xarray                 client_data;
2717	struct mutex                  unregistration_lock;
2718
2719	/* Synchronize GID, Pkey cache entries, subnet prefix, LMC */
2720	rwlock_t cache_lock;
2721	/**
2722	 * port_data is indexed by port number
2723	 */
2724	struct ib_port_data *port_data;
2725
2726	int			      num_comp_vectors;
2727
2728	union {
2729		struct device		dev;
2730		struct ib_core_device	coredev;
2731	};
2732
2733	/* First group is for device attributes,
2734	 * Second group is for driver provided attributes (optional).
2735	 * Third group is for the hw_stats
2736	 * It is a NULL terminated array.
2737	 */
2738	const struct attribute_group	*groups[4];
2739
2740	u64			     uverbs_cmd_mask;
2741
2742	char			     node_desc[IB_DEVICE_NODE_DESC_MAX];
2743	__be64			     node_guid;
2744	u32			     local_dma_lkey;
2745	u16                          is_switch:1;
2746	/* Indicates kernel verbs support, should not be used in drivers */
2747	u16                          kverbs_provider:1;
2748	/* CQ adaptive moderation (RDMA DIM) */
2749	u16                          use_cq_dim:1;
2750	u8                           node_type;
2751	u32			     phys_port_cnt;
2752	struct ib_device_attr        attrs;
2753	struct hw_stats_device_data *hw_stats_data;
2754
2755#ifdef CONFIG_CGROUP_RDMA
2756	struct rdmacg_device         cg_device;
2757#endif
2758
2759	u32                          index;
2760
2761	spinlock_t                   cq_pools_lock;
2762	struct list_head             cq_pools[IB_POLL_LAST_POOL_TYPE + 1];
2763
2764	struct rdma_restrack_root *res;
2765
2766	const struct uapi_definition   *driver_def;
2767
2768	/*
2769	 * Positive refcount indicates that the device is currently
2770	 * registered and cannot be unregistered.
2771	 */
2772	refcount_t refcount;
2773	struct completion unreg_completion;
2774	struct work_struct unregistration_work;
2775
2776	const struct rdma_link_ops *link_ops;
2777
2778	/* Protects compat_devs xarray modifications */
2779	struct mutex compat_devs_mutex;
2780	/* Maintains compat devices for each net namespace */
2781	struct xarray compat_devs;
2782
2783	/* Used by iWarp CM */
2784	char iw_ifname[IFNAMSIZ];
2785	u32 iw_driver_flags;
2786	u32 lag_flags;
2787};
2788
2789static inline void *rdma_zalloc_obj(struct ib_device *dev, size_t size,
2790				    gfp_t gfp, bool is_numa_aware)
2791{
2792	if (is_numa_aware && dev->ops.get_numa_node)
2793		return kzalloc_node(size, gfp, dev->ops.get_numa_node(dev));
2794
2795	return kzalloc(size, gfp);
2796}
2797
2798struct ib_client_nl_info;
2799struct ib_client {
2800	const char *name;
2801	int (*add)(struct ib_device *ibdev);
2802	void (*remove)(struct ib_device *, void *client_data);
2803	void (*rename)(struct ib_device *dev, void *client_data);
2804	int (*get_nl_info)(struct ib_device *ibdev, void *client_data,
2805			   struct ib_client_nl_info *res);
2806	int (*get_global_nl_info)(struct ib_client_nl_info *res);
2807
2808	/* Returns the net_dev belonging to this ib_client and matching the
2809	 * given parameters.
2810	 * @dev:	 An RDMA device that the net_dev use for communication.
2811	 * @port:	 A physical port number on the RDMA device.
2812	 * @pkey:	 P_Key that the net_dev uses if applicable.
2813	 * @gid:	 A GID that the net_dev uses to communicate.
2814	 * @addr:	 An IP address the net_dev is configured with.
2815	 * @client_data: The device's client data set by ib_set_client_data().
2816	 *
2817	 * An ib_client that implements a net_dev on top of RDMA devices
2818	 * (such as IP over IB) should implement this callback, allowing the
2819	 * rdma_cm module to find the right net_dev for a given request.
2820	 *
2821	 * The caller is responsible for calling dev_put on the returned
2822	 * netdev. */
2823	struct net_device *(*get_net_dev_by_params)(
2824			struct ib_device *dev,
2825			u32 port,
2826			u16 pkey,
2827			const union ib_gid *gid,
2828			const struct sockaddr *addr,
2829			void *client_data);
2830
2831	refcount_t uses;
2832	struct completion uses_zero;
2833	u32 client_id;
2834
2835	/* kverbs are not required by the client */
2836	u8 no_kverbs_req:1;
2837};
2838
2839/*
2840 * IB block DMA iterator
2841 *
2842 * Iterates the DMA-mapped SGL in contiguous memory blocks aligned
2843 * to a HW supported page size.
2844 */
2845struct ib_block_iter {
2846	/* internal states */
2847	struct scatterlist *__sg;	/* sg holding the current aligned block */
2848	dma_addr_t __dma_addr;		/* unaligned DMA address of this block */
2849	size_t __sg_numblocks;		/* ib_umem_num_dma_blocks() */
2850	unsigned int __sg_nents;	/* number of SG entries */
2851	unsigned int __sg_advance;	/* number of bytes to advance in sg in next step */
2852	unsigned int __pg_bit;		/* alignment of current block */
2853};
2854
2855struct ib_device *_ib_alloc_device(size_t size);
2856#define ib_alloc_device(drv_struct, member)                                    \
2857	container_of(_ib_alloc_device(sizeof(struct drv_struct) +              \
2858				      BUILD_BUG_ON_ZERO(offsetof(              \
2859					      struct drv_struct, member))),    \
2860		     struct drv_struct, member)
2861
2862void ib_dealloc_device(struct ib_device *device);
2863
2864void ib_get_device_fw_str(struct ib_device *device, char *str);
2865
2866int ib_register_device(struct ib_device *device, const char *name,
2867		       struct device *dma_device);
2868void ib_unregister_device(struct ib_device *device);
2869void ib_unregister_driver(enum rdma_driver_id driver_id);
2870void ib_unregister_device_and_put(struct ib_device *device);
2871void ib_unregister_device_queued(struct ib_device *ib_dev);
2872
2873int ib_register_client   (struct ib_client *client);
2874void ib_unregister_client(struct ib_client *client);
2875
2876void __rdma_block_iter_start(struct ib_block_iter *biter,
2877			     struct scatterlist *sglist,
2878			     unsigned int nents,
2879			     unsigned long pgsz);
2880bool __rdma_block_iter_next(struct ib_block_iter *biter);
2881
2882/**
2883 * rdma_block_iter_dma_address - get the aligned dma address of the current
2884 * block held by the block iterator.
2885 * @biter: block iterator holding the memory block
2886 */
2887static inline dma_addr_t
2888rdma_block_iter_dma_address(struct ib_block_iter *biter)
2889{
2890	return biter->__dma_addr & ~(BIT_ULL(biter->__pg_bit) - 1);
2891}
2892
2893/**
2894 * rdma_for_each_block - iterate over contiguous memory blocks of the sg list
2895 * @sglist: sglist to iterate over
2896 * @biter: block iterator holding the memory block
2897 * @nents: maximum number of sg entries to iterate over
2898 * @pgsz: best HW supported page size to use
2899 *
2900 * Callers may use rdma_block_iter_dma_address() to get each
2901 * blocks aligned DMA address.
2902 */
2903#define rdma_for_each_block(sglist, biter, nents, pgsz)		\
2904	for (__rdma_block_iter_start(biter, sglist, nents,	\
2905				     pgsz);			\
2906	     __rdma_block_iter_next(biter);)
2907
2908/**
2909 * ib_get_client_data - Get IB client context
2910 * @device:Device to get context for
2911 * @client:Client to get context for
2912 *
2913 * ib_get_client_data() returns the client context data set with
2914 * ib_set_client_data(). This can only be called while the client is
2915 * registered to the device, once the ib_client remove() callback returns this
2916 * cannot be called.
2917 */
2918static inline void *ib_get_client_data(struct ib_device *device,
2919				       struct ib_client *client)
2920{
2921	return xa_load(&device->client_data, client->client_id);
2922}
2923void  ib_set_client_data(struct ib_device *device, struct ib_client *client,
2924			 void *data);
2925void ib_set_device_ops(struct ib_device *device,
2926		       const struct ib_device_ops *ops);
2927
2928int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma,
2929		      unsigned long pfn, unsigned long size, pgprot_t prot,
2930		      struct rdma_user_mmap_entry *entry);
2931int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext,
2932				struct rdma_user_mmap_entry *entry,
2933				size_t length);
2934int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext,
2935				      struct rdma_user_mmap_entry *entry,
2936				      size_t length, u32 min_pgoff,
2937				      u32 max_pgoff);
2938
2939static inline int
2940rdma_user_mmap_entry_insert_exact(struct ib_ucontext *ucontext,
2941				  struct rdma_user_mmap_entry *entry,
2942				  size_t length, u32 pgoff)
2943{
2944	return rdma_user_mmap_entry_insert_range(ucontext, entry, length, pgoff,
2945						 pgoff);
2946}
2947
2948struct rdma_user_mmap_entry *
2949rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext,
2950			       unsigned long pgoff);
2951struct rdma_user_mmap_entry *
2952rdma_user_mmap_entry_get(struct ib_ucontext *ucontext,
2953			 struct vm_area_struct *vma);
2954void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry);
2955
2956void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry);
2957
2958static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
2959{
2960	return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
2961}
2962
2963static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
2964{
2965	return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
2966}
2967
2968static inline bool ib_is_buffer_cleared(const void __user *p,
2969					size_t len)
2970{
2971	bool ret;
2972	u8 *buf;
2973
2974	if (len > USHRT_MAX)
2975		return false;
2976
2977	buf = memdup_user(p, len);
2978	if (IS_ERR(buf))
2979		return false;
2980
2981	ret = !memchr_inv(buf, 0, len);
2982	kfree(buf);
2983	return ret;
2984}
2985
2986static inline bool ib_is_udata_cleared(struct ib_udata *udata,
2987				       size_t offset,
2988				       size_t len)
2989{
2990	return ib_is_buffer_cleared(udata->inbuf + offset, len);
2991}
2992
2993/**
2994 * ib_modify_qp_is_ok - Check that the supplied attribute mask
2995 * contains all required attributes and no attributes not allowed for
2996 * the given QP state transition.
2997 * @cur_state: Current QP state
2998 * @next_state: Next QP state
2999 * @type: QP type
3000 * @mask: Mask of supplied QP attributes
3001 *
3002 * This function is a helper function that a low-level driver's
3003 * modify_qp method can use to validate the consumer's input.  It
3004 * checks that cur_state and next_state are valid QP states, that a
3005 * transition from cur_state to next_state is allowed by the IB spec,
3006 * and that the attribute mask supplied is allowed for the transition.
3007 */
3008bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
3009			enum ib_qp_type type, enum ib_qp_attr_mask mask);
3010
3011void ib_register_event_handler(struct ib_event_handler *event_handler);
3012void ib_unregister_event_handler(struct ib_event_handler *event_handler);
3013void ib_dispatch_event(const struct ib_event *event);
3014
3015int ib_query_port(struct ib_device *device,
3016		  u32 port_num, struct ib_port_attr *port_attr);
3017
3018enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
3019					       u32 port_num);
3020
3021/**
3022 * rdma_cap_ib_switch - Check if the device is IB switch
3023 * @device: Device to check
3024 *
3025 * Device driver is responsible for setting is_switch bit on
3026 * in ib_device structure at init time.
3027 *
3028 * Return: true if the device is IB switch.
3029 */
3030static inline bool rdma_cap_ib_switch(const struct ib_device *device)
3031{
3032	return device->is_switch;
3033}
3034
3035/**
3036 * rdma_start_port - Return the first valid port number for the device
3037 * specified
3038 *
3039 * @device: Device to be checked
3040 *
3041 * Return start port number
3042 */
3043static inline u32 rdma_start_port(const struct ib_device *device)
3044{
3045	return rdma_cap_ib_switch(device) ? 0 : 1;
3046}
3047
3048/**
3049 * rdma_for_each_port - Iterate over all valid port numbers of the IB device
3050 * @device - The struct ib_device * to iterate over
3051 * @iter - The unsigned int to store the port number
3052 */
3053#define rdma_for_each_port(device, iter)                                       \
3054	for (iter = rdma_start_port(device +				       \
3055				    BUILD_BUG_ON_ZERO(!__same_type(u32,	       \
3056								   iter)));    \
3057	     iter <= rdma_end_port(device); iter++)
3058
3059/**
3060 * rdma_end_port - Return the last valid port number for the device
3061 * specified
3062 *
3063 * @device: Device to be checked
3064 *
3065 * Return last port number
3066 */
3067static inline u32 rdma_end_port(const struct ib_device *device)
3068{
3069	return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
3070}
3071
3072static inline int rdma_is_port_valid(const struct ib_device *device,
3073				     unsigned int port)
3074{
3075	return (port >= rdma_start_port(device) &&
3076		port <= rdma_end_port(device));
3077}
3078
3079static inline bool rdma_is_grh_required(const struct ib_device *device,
3080					u32 port_num)
3081{
3082	return device->port_data[port_num].immutable.core_cap_flags &
3083	       RDMA_CORE_PORT_IB_GRH_REQUIRED;
3084}
3085
3086static inline bool rdma_protocol_ib(const struct ib_device *device,
3087				    u32 port_num)
3088{
3089	return device->port_data[port_num].immutable.core_cap_flags &
3090	       RDMA_CORE_CAP_PROT_IB;
3091}
3092
3093static inline bool rdma_protocol_roce(const struct ib_device *device,
3094				      u32 port_num)
3095{
3096	return device->port_data[port_num].immutable.core_cap_flags &
3097	       (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
3098}
3099
3100static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device,
3101						u32 port_num)
3102{
3103	return device->port_data[port_num].immutable.core_cap_flags &
3104	       RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
3105}
3106
3107static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device,
3108						u32 port_num)
3109{
3110	return device->port_data[port_num].immutable.core_cap_flags &
3111	       RDMA_CORE_CAP_PROT_ROCE;
3112}
3113
3114static inline bool rdma_protocol_iwarp(const struct ib_device *device,
3115				       u32 port_num)
3116{
3117	return device->port_data[port_num].immutable.core_cap_flags &
3118	       RDMA_CORE_CAP_PROT_IWARP;
3119}
3120
3121static inline bool rdma_ib_or_roce(const struct ib_device *device,
3122				   u32 port_num)
3123{
3124	return rdma_protocol_ib(device, port_num) ||
3125		rdma_protocol_roce(device, port_num);
3126}
3127
3128static inline bool rdma_protocol_raw_packet(const struct ib_device *device,
3129					    u32 port_num)
3130{
3131	return device->port_data[port_num].immutable.core_cap_flags &
3132	       RDMA_CORE_CAP_PROT_RAW_PACKET;
3133}
3134
3135static inline bool rdma_protocol_usnic(const struct ib_device *device,
3136				       u32 port_num)
3137{
3138	return device->port_data[port_num].immutable.core_cap_flags &
3139	       RDMA_CORE_CAP_PROT_USNIC;
3140}
3141
3142/**
3143 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
3144 * Management Datagrams.
3145 * @device: Device to check
3146 * @port_num: Port number to check
3147 *
3148 * Management Datagrams (MAD) are a required part of the InfiniBand
3149 * specification and are supported on all InfiniBand devices.  A slightly
3150 * extended version are also supported on OPA interfaces.
3151 *
3152 * Return: true if the port supports sending/receiving of MAD packets.
3153 */
3154static inline bool rdma_cap_ib_mad(const struct ib_device *device, u32 port_num)
3155{
3156	return device->port_data[port_num].immutable.core_cap_flags &
3157	       RDMA_CORE_CAP_IB_MAD;
3158}
3159
3160/**
3161 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
3162 * Management Datagrams.
3163 * @device: Device to check
3164 * @port_num: Port number to check
3165 *
3166 * Intel OmniPath devices extend and/or replace the InfiniBand Management
3167 * datagrams with their own versions.  These OPA MADs share many but not all of
3168 * the characteristics of InfiniBand MADs.
3169 *
3170 * OPA MADs differ in the following ways:
3171 *
3172 *    1) MADs are variable size up to 2K
3173 *       IBTA defined MADs remain fixed at 256 bytes
3174 *    2) OPA SMPs must carry valid PKeys
3175 *    3) OPA SMP packets are a different format
3176 *
3177 * Return: true if the port supports OPA MAD packet formats.
3178 */
3179static inline bool rdma_cap_opa_mad(struct ib_device *device, u32 port_num)
3180{
3181	return device->port_data[port_num].immutable.core_cap_flags &
3182		RDMA_CORE_CAP_OPA_MAD;
3183}
3184
3185/**
3186 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
3187 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
3188 * @device: Device to check
3189 * @port_num: Port number to check
3190 *
3191 * Each InfiniBand node is required to provide a Subnet Management Agent
3192 * that the subnet manager can access.  Prior to the fabric being fully
3193 * configured by the subnet manager, the SMA is accessed via a well known
3194 * interface called the Subnet Management Interface (SMI).  This interface
3195 * uses directed route packets to communicate with the SM to get around the
3196 * chicken and egg problem of the SM needing to know what's on the fabric
3197 * in order to configure the fabric, and needing to configure the fabric in
3198 * order to send packets to the devices on the fabric.  These directed
3199 * route packets do not need the fabric fully configured in order to reach
3200 * their destination.  The SMI is the only method allowed to send
3201 * directed route packets on an InfiniBand fabric.
3202 *
3203 * Return: true if the port provides an SMI.
3204 */
3205static inline bool rdma_cap_ib_smi(const struct ib_device *device, u32 port_num)
3206{
3207	return device->port_data[port_num].immutable.core_cap_flags &
3208	       RDMA_CORE_CAP_IB_SMI;
3209}
3210
3211/**
3212 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
3213 * Communication Manager.
3214 * @device: Device to check
3215 * @port_num: Port number to check
3216 *
3217 * The InfiniBand Communication Manager is one of many pre-defined General
3218 * Service Agents (GSA) that are accessed via the General Service
3219 * Interface (GSI).  It's role is to facilitate establishment of connections
3220 * between nodes as well as other management related tasks for established
3221 * connections.
3222 *
3223 * Return: true if the port supports an IB CM (this does not guarantee that
3224 * a CM is actually running however).
3225 */
3226static inline bool rdma_cap_ib_cm(const struct ib_device *device, u32 port_num)
3227{
3228	return device->port_data[port_num].immutable.core_cap_flags &
3229	       RDMA_CORE_CAP_IB_CM;
3230}
3231
3232/**
3233 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
3234 * Communication Manager.
3235 * @device: Device to check
3236 * @port_num: Port number to check
3237 *
3238 * Similar to above, but specific to iWARP connections which have a different
3239 * managment protocol than InfiniBand.
3240 *
3241 * Return: true if the port supports an iWARP CM (this does not guarantee that
3242 * a CM is actually running however).
3243 */
3244static inline bool rdma_cap_iw_cm(const struct ib_device *device, u32 port_num)
3245{
3246	return device->port_data[port_num].immutable.core_cap_flags &
3247	       RDMA_CORE_CAP_IW_CM;
3248}
3249
3250/**
3251 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
3252 * Subnet Administration.
3253 * @device: Device to check
3254 * @port_num: Port number to check
3255 *
3256 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
3257 * Service Agent (GSA) provided by the Subnet Manager (SM).  On InfiniBand
3258 * fabrics, devices should resolve routes to other hosts by contacting the
3259 * SA to query the proper route.
3260 *
3261 * Return: true if the port should act as a client to the fabric Subnet
3262 * Administration interface.  This does not imply that the SA service is
3263 * running locally.
3264 */
3265static inline bool rdma_cap_ib_sa(const struct ib_device *device, u32 port_num)
3266{
3267	return device->port_data[port_num].immutable.core_cap_flags &
3268	       RDMA_CORE_CAP_IB_SA;
3269}
3270
3271/**
3272 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
3273 * Multicast.
3274 * @device: Device to check
3275 * @port_num: Port number to check
3276 *
3277 * InfiniBand multicast registration is more complex than normal IPv4 or
3278 * IPv6 multicast registration.  Each Host Channel Adapter must register
3279 * with the Subnet Manager when it wishes to join a multicast group.  It
3280 * should do so only once regardless of how many queue pairs it subscribes
3281 * to this group.  And it should leave the group only after all queue pairs
3282 * attached to the group have been detached.
3283 *
3284 * Return: true if the port must undertake the additional adminstrative
3285 * overhead of registering/unregistering with the SM and tracking of the
3286 * total number of queue pairs attached to the multicast group.
3287 */
3288static inline bool rdma_cap_ib_mcast(const struct ib_device *device,
3289				     u32 port_num)
3290{
3291	return rdma_cap_ib_sa(device, port_num);
3292}
3293
3294/**
3295 * rdma_cap_af_ib - Check if the port of device has the capability
3296 * Native Infiniband Address.
3297 * @device: Device to check
3298 * @port_num: Port number to check
3299 *
3300 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
3301 * GID.  RoCE uses a different mechanism, but still generates a GID via
3302 * a prescribed mechanism and port specific data.
3303 *
3304 * Return: true if the port uses a GID address to identify devices on the
3305 * network.
3306 */
3307static inline bool rdma_cap_af_ib(const struct ib_device *device, u32 port_num)
3308{
3309	return device->port_data[port_num].immutable.core_cap_flags &
3310	       RDMA_CORE_CAP_AF_IB;
3311}
3312
3313/**
3314 * rdma_cap_eth_ah - Check if the port of device has the capability
3315 * Ethernet Address Handle.
3316 * @device: Device to check
3317 * @port_num: Port number to check
3318 *
3319 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
3320 * to fabricate GIDs over Ethernet/IP specific addresses native to the
3321 * port.  Normally, packet headers are generated by the sending host
3322 * adapter, but when sending connectionless datagrams, we must manually
3323 * inject the proper headers for the fabric we are communicating over.
3324 *
3325 * Return: true if we are running as a RoCE port and must force the
3326 * addition of a Global Route Header built from our Ethernet Address
3327 * Handle into our header list for connectionless packets.
3328 */
3329static inline bool rdma_cap_eth_ah(const struct ib_device *device, u32 port_num)
3330{
3331	return device->port_data[port_num].immutable.core_cap_flags &
3332	       RDMA_CORE_CAP_ETH_AH;
3333}
3334
3335/**
3336 * rdma_cap_opa_ah - Check if the port of device supports
3337 * OPA Address handles
3338 * @device: Device to check
3339 * @port_num: Port number to check
3340 *
3341 * Return: true if we are running on an OPA device which supports
3342 * the extended OPA addressing.
3343 */
3344static inline bool rdma_cap_opa_ah(struct ib_device *device, u32 port_num)
3345{
3346	return (device->port_data[port_num].immutable.core_cap_flags &
3347		RDMA_CORE_CAP_OPA_AH) == RDMA_CORE_CAP_OPA_AH;
3348}
3349
3350/**
3351 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
3352 *
3353 * @device: Device
3354 * @port_num: Port number
3355 *
3356 * This MAD size includes the MAD headers and MAD payload.  No other headers
3357 * are included.
3358 *
3359 * Return the max MAD size required by the Port.  Will return 0 if the port
3360 * does not support MADs
3361 */
3362static inline size_t rdma_max_mad_size(const struct ib_device *device,
3363				       u32 port_num)
3364{
3365	return device->port_data[port_num].immutable.max_mad_size;
3366}
3367
3368/**
3369 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
3370 * @device: Device to check
3371 * @port_num: Port number to check
3372 *
3373 * RoCE GID table mechanism manages the various GIDs for a device.
3374 *
3375 * NOTE: if allocating the port's GID table has failed, this call will still
3376 * return true, but any RoCE GID table API will fail.
3377 *
3378 * Return: true if the port uses RoCE GID table mechanism in order to manage
3379 * its GIDs.
3380 */
3381static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
3382					   u32 port_num)
3383{
3384	return rdma_protocol_roce(device, port_num) &&
3385		device->ops.add_gid && device->ops.del_gid;
3386}
3387
3388/*
3389 * Check if the device supports READ W/ INVALIDATE.
3390 */
3391static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num)
3392{
3393	/*
3394	 * iWarp drivers must support READ W/ INVALIDATE.  No other protocol
3395	 * has support for it yet.
3396	 */
3397	return rdma_protocol_iwarp(dev, port_num);
3398}
3399
3400/**
3401 * rdma_core_cap_opa_port - Return whether the RDMA Port is OPA or not.
3402 * @device: Device
3403 * @port_num: 1 based Port number
3404 *
3405 * Return true if port is an Intel OPA port , false if not
3406 */
3407static inline bool rdma_core_cap_opa_port(struct ib_device *device,
3408					  u32 port_num)
3409{
3410	return (device->port_data[port_num].immutable.core_cap_flags &
3411		RDMA_CORE_PORT_INTEL_OPA) == RDMA_CORE_PORT_INTEL_OPA;
3412}
3413
3414/**
3415 * rdma_mtu_enum_to_int - Return the mtu of the port as an integer value.
3416 * @device: Device
3417 * @port_num: Port number
3418 * @mtu: enum value of MTU
3419 *
3420 * Return the MTU size supported by the port as an integer value. Will return
3421 * -1 if enum value of mtu is not supported.
3422 */
3423static inline int rdma_mtu_enum_to_int(struct ib_device *device, u32 port,
3424				       int mtu)
3425{
3426	if (rdma_core_cap_opa_port(device, port))
3427		return opa_mtu_enum_to_int((enum opa_mtu)mtu);
3428	else
3429		return ib_mtu_enum_to_int((enum ib_mtu)mtu);
3430}
3431
3432/**
3433 * rdma_mtu_from_attr - Return the mtu of the port from the port attribute.
3434 * @device: Device
3435 * @port_num: Port number
3436 * @attr: port attribute
3437 *
3438 * Return the MTU size supported by the port as an integer value.
3439 */
3440static inline int rdma_mtu_from_attr(struct ib_device *device, u32 port,
3441				     struct ib_port_attr *attr)
3442{
3443	if (rdma_core_cap_opa_port(device, port))
3444		return attr->phys_mtu;
3445	else
3446		return ib_mtu_enum_to_int(attr->max_mtu);
3447}
3448
3449int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
3450			 int state);
3451int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
3452		     struct ifla_vf_info *info);
3453int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
3454		    struct ifla_vf_stats *stats);
3455int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
3456		    struct ifla_vf_guid *node_guid,
3457		    struct ifla_vf_guid *port_guid);
3458int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
3459		   int type);
3460
3461int ib_query_pkey(struct ib_device *device,
3462		  u32 port_num, u16 index, u16 *pkey);
3463
3464int ib_modify_device(struct ib_device *device,
3465		     int device_modify_mask,
3466		     struct ib_device_modify *device_modify);
3467
3468int ib_modify_port(struct ib_device *device,
3469		   u32 port_num, int port_modify_mask,
3470		   struct ib_port_modify *port_modify);
3471
3472int ib_find_gid(struct ib_device *device, union ib_gid *gid,
3473		u32 *port_num, u16 *index);
3474
3475int ib_find_pkey(struct ib_device *device,
3476		 u32 port_num, u16 pkey, u16 *index);
3477
3478enum ib_pd_flags {
3479	/*
3480	 * Create a memory registration for all memory in the system and place
3481	 * the rkey for it into pd->unsafe_global_rkey.  This can be used by
3482	 * ULPs to avoid the overhead of dynamic MRs.
3483	 *
3484	 * This flag is generally considered unsafe and must only be used in
3485	 * extremly trusted environments.  Every use of it will log a warning
3486	 * in the kernel log.
3487	 */
3488	IB_PD_UNSAFE_GLOBAL_RKEY	= 0x01,
3489};
3490
3491struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
3492		const char *caller);
3493
3494/**
3495 * ib_alloc_pd - Allocates an unused protection domain.
3496 * @device: The device on which to allocate the protection domain.
3497 * @flags: protection domain flags
3498 *
3499 * A protection domain object provides an association between QPs, shared
3500 * receive queues, address handles, memory regions, and memory windows.
3501 *
3502 * Every PD has a local_dma_lkey which can be used as the lkey value for local
3503 * memory operations.
3504 */
3505#define ib_alloc_pd(device, flags) \
3506	__ib_alloc_pd((device), (flags), KBUILD_MODNAME)
3507
3508int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata);
3509
3510/**
3511 * ib_dealloc_pd - Deallocate kernel PD
3512 * @pd: The protection domain
3513 *
3514 * NOTE: for user PD use ib_dealloc_pd_user with valid udata!
3515 */
3516static inline void ib_dealloc_pd(struct ib_pd *pd)
3517{
3518	int ret = ib_dealloc_pd_user(pd, NULL);
3519
3520	WARN_ONCE(ret, "Destroy of kernel PD shouldn't fail");
3521}
3522
3523enum rdma_create_ah_flags {
3524	/* In a sleepable context */
3525	RDMA_CREATE_AH_SLEEPABLE = BIT(0),
3526};
3527
3528/**
3529 * rdma_create_ah - Creates an address handle for the given address vector.
3530 * @pd: The protection domain associated with the address handle.
3531 * @ah_attr: The attributes of the address vector.
3532 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
3533 *
3534 * The address handle is used to reference a local or global destination
3535 * in all UD QP post sends.
3536 */
3537struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
3538			     u32 flags);
3539
3540/**
3541 * rdma_create_user_ah - Creates an address handle for the given address vector.
3542 * It resolves destination mac address for ah attribute of RoCE type.
3543 * @pd: The protection domain associated with the address handle.
3544 * @ah_attr: The attributes of the address vector.
3545 * @udata: pointer to user's input output buffer information need by
3546 *         provider driver.
3547 *
3548 * It returns 0 on success and returns appropriate error code on error.
3549 * The address handle is used to reference a local or global destination
3550 * in all UD QP post sends.
3551 */
3552struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
3553				  struct rdma_ah_attr *ah_attr,
3554				  struct ib_udata *udata);
3555/**
3556 * ib_get_gids_from_rdma_hdr - Get sgid and dgid from GRH or IPv4 header
3557 *   work completion.
3558 * @hdr: the L3 header to parse
3559 * @net_type: type of header to parse
3560 * @sgid: place to store source gid
3561 * @dgid: place to store destination gid
3562 */
3563int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
3564			      enum rdma_network_type net_type,
3565			      union ib_gid *sgid, union ib_gid *dgid);
3566
3567/**
3568 * ib_get_rdma_header_version - Get the header version
3569 * @hdr: the L3 header to parse
3570 */
3571int ib_get_rdma_header_version(const union rdma_network_hdr *hdr);
3572
3573/**
3574 * ib_init_ah_attr_from_wc - Initializes address handle attributes from a
3575 *   work completion.
3576 * @device: Device on which the received message arrived.
3577 * @port_num: Port on which the received message arrived.
3578 * @wc: Work completion associated with the received message.
3579 * @grh: References the received global route header.  This parameter is
3580 *   ignored unless the work completion indicates that the GRH is valid.
3581 * @ah_attr: Returned attributes that can be used when creating an address
3582 *   handle for replying to the message.
3583 * When ib_init_ah_attr_from_wc() returns success,
3584 * (a) for IB link layer it optionally contains a reference to SGID attribute
3585 * when GRH is present for IB link layer.
3586 * (b) for RoCE link layer it contains a reference to SGID attribute.
3587 * User must invoke rdma_cleanup_ah_attr_gid_attr() to release reference to SGID
3588 * attributes which are initialized using ib_init_ah_attr_from_wc().
3589 *
3590 */
3591int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
3592			    const struct ib_wc *wc, const struct ib_grh *grh,
3593			    struct rdma_ah_attr *ah_attr);
3594
3595/**
3596 * ib_create_ah_from_wc - Creates an address handle associated with the
3597 *   sender of the specified work completion.
3598 * @pd: The protection domain associated with the address handle.
3599 * @wc: Work completion information associated with a received message.
3600 * @grh: References the received global route header.  This parameter is
3601 *   ignored unless the work completion indicates that the GRH is valid.
3602 * @port_num: The outbound port number to associate with the address.
3603 *
3604 * The address handle is used to reference a local or global destination
3605 * in all UD QP post sends.
3606 */
3607struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
3608				   const struct ib_grh *grh, u32 port_num);
3609
3610/**
3611 * rdma_modify_ah - Modifies the address vector associated with an address
3612 *   handle.
3613 * @ah: The address handle to modify.
3614 * @ah_attr: The new address vector attributes to associate with the
3615 *   address handle.
3616 */
3617int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3618
3619/**
3620 * rdma_query_ah - Queries the address vector associated with an address
3621 *   handle.
3622 * @ah: The address handle to query.
3623 * @ah_attr: The address vector attributes associated with the address
3624 *   handle.
3625 */
3626int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr);
3627
3628enum rdma_destroy_ah_flags {
3629	/* In a sleepable context */
3630	RDMA_DESTROY_AH_SLEEPABLE = BIT(0),
3631};
3632
3633/**
3634 * rdma_destroy_ah_user - Destroys an address handle.
3635 * @ah: The address handle to destroy.
3636 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3637 * @udata: Valid user data or NULL for kernel objects
3638 */
3639int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata);
3640
3641/**
3642 * rdma_destroy_ah - Destroys an kernel address handle.
3643 * @ah: The address handle to destroy.
3644 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags).
3645 *
3646 * NOTE: for user ah use rdma_destroy_ah_user with valid udata!
3647 */
3648static inline void rdma_destroy_ah(struct ib_ah *ah, u32 flags)
3649{
3650	int ret = rdma_destroy_ah_user(ah, flags, NULL);
3651
3652	WARN_ONCE(ret, "Destroy of kernel AH shouldn't fail");
3653}
3654
3655struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
3656				  struct ib_srq_init_attr *srq_init_attr,
3657				  struct ib_usrq_object *uobject,
3658				  struct ib_udata *udata);
3659static inline struct ib_srq *
3660ib_create_srq(struct ib_pd *pd, struct ib_srq_init_attr *srq_init_attr)
3661{
3662	if (!pd->device->ops.create_srq)
3663		return ERR_PTR(-EOPNOTSUPP);
3664
3665	return ib_create_srq_user(pd, srq_init_attr, NULL, NULL);
3666}
3667
3668/**
3669 * ib_modify_srq - Modifies the attributes for the specified SRQ.
3670 * @srq: The SRQ to modify.
3671 * @srq_attr: On input, specifies the SRQ attributes to modify.  On output,
3672 *   the current values of selected SRQ attributes are returned.
3673 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
3674 *   are being modified.
3675 *
3676 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
3677 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
3678 * the number of receives queued drops below the limit.
3679 */
3680int ib_modify_srq(struct ib_srq *srq,
3681		  struct ib_srq_attr *srq_attr,
3682		  enum ib_srq_attr_mask srq_attr_mask);
3683
3684/**
3685 * ib_query_srq - Returns the attribute list and current values for the
3686 *   specified SRQ.
3687 * @srq: The SRQ to query.
3688 * @srq_attr: The attributes of the specified SRQ.
3689 */
3690int ib_query_srq(struct ib_srq *srq,
3691		 struct ib_srq_attr *srq_attr);
3692
3693/**
3694 * ib_destroy_srq_user - Destroys the specified SRQ.
3695 * @srq: The SRQ to destroy.
3696 * @udata: Valid user data or NULL for kernel objects
3697 */
3698int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata);
3699
3700/**
3701 * ib_destroy_srq - Destroys the specified kernel SRQ.
3702 * @srq: The SRQ to destroy.
3703 *
3704 * NOTE: for user srq use ib_destroy_srq_user with valid udata!
3705 */
3706static inline void ib_destroy_srq(struct ib_srq *srq)
3707{
3708	int ret = ib_destroy_srq_user(srq, NULL);
3709
3710	WARN_ONCE(ret, "Destroy of kernel SRQ shouldn't fail");
3711}
3712
3713/**
3714 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
3715 * @srq: The SRQ to post the work request on.
3716 * @recv_wr: A list of work requests to post on the receive queue.
3717 * @bad_recv_wr: On an immediate failure, this parameter will reference
3718 *   the work request that failed to be posted on the QP.
3719 */
3720static inline int ib_post_srq_recv(struct ib_srq *srq,
3721				   const struct ib_recv_wr *recv_wr,
3722				   const struct ib_recv_wr **bad_recv_wr)
3723{
3724	const struct ib_recv_wr *dummy;
3725
3726	return srq->device->ops.post_srq_recv(srq, recv_wr,
3727					      bad_recv_wr ? : &dummy);
3728}
3729
3730struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
3731				  struct ib_qp_init_attr *qp_init_attr,
3732				  const char *caller);
3733/**
3734 * ib_create_qp - Creates a kernel QP associated with the specific protection
3735 * domain.
3736 * @pd: The protection domain associated with the QP.
3737 * @init_attr: A list of initial attributes required to create the
3738 *   QP.  If QP creation succeeds, then the attributes are updated to
3739 *   the actual capabilities of the created QP.
3740 */
3741static inline struct ib_qp *ib_create_qp(struct ib_pd *pd,
3742					 struct ib_qp_init_attr *init_attr)
3743{
3744	return ib_create_qp_kernel(pd, init_attr, KBUILD_MODNAME);
3745}
3746
3747/**
3748 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
3749 * @qp: The QP to modify.
3750 * @attr: On input, specifies the QP attributes to modify.  On output,
3751 *   the current values of selected QP attributes are returned.
3752 * @attr_mask: A bit-mask used to specify which attributes of the QP
3753 *   are being modified.
3754 * @udata: pointer to user's input output buffer information
3755 *   are being modified.
3756 * It returns 0 on success and returns appropriate error code on error.
3757 */
3758int ib_modify_qp_with_udata(struct ib_qp *qp,
3759			    struct ib_qp_attr *attr,
3760			    int attr_mask,
3761			    struct ib_udata *udata);
3762
3763/**
3764 * ib_modify_qp - Modifies the attributes for the specified QP and then
3765 *   transitions the QP to the given state.
3766 * @qp: The QP to modify.
3767 * @qp_attr: On input, specifies the QP attributes to modify.  On output,
3768 *   the current values of selected QP attributes are returned.
3769 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
3770 *   are being modified.
3771 */
3772int ib_modify_qp(struct ib_qp *qp,
3773		 struct ib_qp_attr *qp_attr,
3774		 int qp_attr_mask);
3775
3776/**
3777 * ib_query_qp - Returns the attribute list and current values for the
3778 *   specified QP.
3779 * @qp: The QP to query.
3780 * @qp_attr: The attributes of the specified QP.
3781 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
3782 * @qp_init_attr: Additional attributes of the selected QP.
3783 *
3784 * The qp_attr_mask may be used to limit the query to gathering only the
3785 * selected attributes.
3786 */
3787int ib_query_qp(struct ib_qp *qp,
3788		struct ib_qp_attr *qp_attr,
3789		int qp_attr_mask,
3790		struct ib_qp_init_attr *qp_init_attr);
3791
3792/**
3793 * ib_destroy_qp - Destroys the specified QP.
3794 * @qp: The QP to destroy.
3795 * @udata: Valid udata or NULL for kernel objects
3796 */
3797int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata);
3798
3799/**
3800 * ib_destroy_qp - Destroys the specified kernel QP.
3801 * @qp: The QP to destroy.
3802 *
3803 * NOTE: for user qp use ib_destroy_qp_user with valid udata!
3804 */
3805static inline int ib_destroy_qp(struct ib_qp *qp)
3806{
3807	return ib_destroy_qp_user(qp, NULL);
3808}
3809
3810/**
3811 * ib_open_qp - Obtain a reference to an existing sharable QP.
3812 * @xrcd - XRC domain
3813 * @qp_open_attr: Attributes identifying the QP to open.
3814 *
3815 * Returns a reference to a sharable QP.
3816 */
3817struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
3818			 struct ib_qp_open_attr *qp_open_attr);
3819
3820/**
3821 * ib_close_qp - Release an external reference to a QP.
3822 * @qp: The QP handle to release
3823 *
3824 * The opened QP handle is released by the caller.  The underlying
3825 * shared QP is not destroyed until all internal references are released.
3826 */
3827int ib_close_qp(struct ib_qp *qp);
3828
3829/**
3830 * ib_post_send - Posts a list of work requests to the send queue of
3831 *   the specified QP.
3832 * @qp: The QP to post the work request on.
3833 * @send_wr: A list of work requests to post on the send queue.
3834 * @bad_send_wr: On an immediate failure, this parameter will reference
3835 *   the work request that failed to be posted on the QP.
3836 *
3837 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
3838 * error is returned, the QP state shall not be affected,
3839 * ib_post_send() will return an immediate error after queueing any
3840 * earlier work requests in the list.
3841 */
3842static inline int ib_post_send(struct ib_qp *qp,
3843			       const struct ib_send_wr *send_wr,
3844			       const struct ib_send_wr **bad_send_wr)
3845{
3846	const struct ib_send_wr *dummy;
3847
3848	return qp->device->ops.post_send(qp, send_wr, bad_send_wr ? : &dummy);
3849}
3850
3851/**
3852 * ib_post_recv - Posts a list of work requests to the receive queue of
3853 *   the specified QP.
3854 * @qp: The QP to post the work request on.
3855 * @recv_wr: A list of work requests to post on the receive queue.
3856 * @bad_recv_wr: On an immediate failure, this parameter will reference
3857 *   the work request that failed to be posted on the QP.
3858 */
3859static inline int ib_post_recv(struct ib_qp *qp,
3860			       const struct ib_recv_wr *recv_wr,
3861			       const struct ib_recv_wr **bad_recv_wr)
3862{
3863	const struct ib_recv_wr *dummy;
3864
3865	return qp->device->ops.post_recv(qp, recv_wr, bad_recv_wr ? : &dummy);
3866}
3867
3868struct ib_cq *__ib_alloc_cq(struct ib_device *dev, void *private, int nr_cqe,
3869			    int comp_vector, enum ib_poll_context poll_ctx,
3870			    const char *caller);
3871static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
3872					int nr_cqe, int comp_vector,
3873					enum ib_poll_context poll_ctx)
3874{
3875	return __ib_alloc_cq(dev, private, nr_cqe, comp_vector, poll_ctx,
3876			     KBUILD_MODNAME);
3877}
3878
3879struct ib_cq *__ib_alloc_cq_any(struct ib_device *dev, void *private,
3880				int nr_cqe, enum ib_poll_context poll_ctx,
3881				const char *caller);
3882
3883/**
3884 * ib_alloc_cq_any: Allocate kernel CQ
3885 * @dev: The IB device
3886 * @private: Private data attached to the CQE
3887 * @nr_cqe: Number of CQEs in the CQ
3888 * @poll_ctx: Context used for polling the CQ
3889 */
3890static inline struct ib_cq *ib_alloc_cq_any(struct ib_device *dev,
3891					    void *private, int nr_cqe,
3892					    enum ib_poll_context poll_ctx)
3893{
3894	return __ib_alloc_cq_any(dev, private, nr_cqe, poll_ctx,
3895				 KBUILD_MODNAME);
3896}
3897
3898void ib_free_cq(struct ib_cq *cq);
3899int ib_process_cq_direct(struct ib_cq *cq, int budget);
3900
3901/**
3902 * ib_create_cq - Creates a CQ on the specified device.
3903 * @device: The device on which to create the CQ.
3904 * @comp_handler: A user-specified callback that is invoked when a
3905 *   completion event occurs on the CQ.
3906 * @event_handler: A user-specified callback that is invoked when an
3907 *   asynchronous event not associated with a completion occurs on the CQ.
3908 * @cq_context: Context associated with the CQ returned to the user via
3909 *   the associated completion and event handlers.
3910 * @cq_attr: The attributes the CQ should be created upon.
3911 *
3912 * Users can examine the cq structure to determine the actual CQ size.
3913 */
3914struct ib_cq *__ib_create_cq(struct ib_device *device,
3915			     ib_comp_handler comp_handler,
3916			     void (*event_handler)(struct ib_event *, void *),
3917			     void *cq_context,
3918			     const struct ib_cq_init_attr *cq_attr,
3919			     const char *caller);
3920#define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \
3921	__ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), KBUILD_MODNAME)
3922
3923/**
3924 * ib_resize_cq - Modifies the capacity of the CQ.
3925 * @cq: The CQ to resize.
3926 * @cqe: The minimum size of the CQ.
3927 *
3928 * Users can examine the cq structure to determine the actual CQ size.
3929 */
3930int ib_resize_cq(struct ib_cq *cq, int cqe);
3931
3932/**
3933 * rdma_set_cq_moderation - Modifies moderation params of the CQ
3934 * @cq: The CQ to modify.
3935 * @cq_count: number of CQEs that will trigger an event
3936 * @cq_period: max period of time in usec before triggering an event
3937 *
3938 */
3939int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period);
3940
3941/**
3942 * ib_destroy_cq_user - Destroys the specified CQ.
3943 * @cq: The CQ to destroy.
3944 * @udata: Valid user data or NULL for kernel objects
3945 */
3946int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata);
3947
3948/**
3949 * ib_destroy_cq - Destroys the specified kernel CQ.
3950 * @cq: The CQ to destroy.
3951 *
3952 * NOTE: for user cq use ib_destroy_cq_user with valid udata!
3953 */
3954static inline void ib_destroy_cq(struct ib_cq *cq)
3955{
3956	int ret = ib_destroy_cq_user(cq, NULL);
3957
3958	WARN_ONCE(ret, "Destroy of kernel CQ shouldn't fail");
3959}
3960
3961/**
3962 * ib_poll_cq - poll a CQ for completion(s)
3963 * @cq:the CQ being polled
3964 * @num_entries:maximum number of completions to return
3965 * @wc:array of at least @num_entries &struct ib_wc where completions
3966 *   will be returned
3967 *
3968 * Poll a CQ for (possibly multiple) completions.  If the return value
3969 * is < 0, an error occurred.  If the return value is >= 0, it is the
3970 * number of completions returned.  If the return value is
3971 * non-negative and < num_entries, then the CQ was emptied.
3972 */
3973static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
3974			     struct ib_wc *wc)
3975{
3976	return cq->device->ops.poll_cq(cq, num_entries, wc);
3977}
3978
3979/**
3980 * ib_req_notify_cq - Request completion notification on a CQ.
3981 * @cq: The CQ to generate an event for.
3982 * @flags:
3983 *   Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
3984 *   to request an event on the next solicited event or next work
3985 *   completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
3986 *   may also be |ed in to request a hint about missed events, as
3987 *   described below.
3988 *
3989 * Return Value:
3990 *    < 0 means an error occurred while requesting notification
3991 *   == 0 means notification was requested successfully, and if
3992 *        IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
3993 *        were missed and it is safe to wait for another event.  In
3994 *        this case is it guaranteed that any work completions added
3995 *        to the CQ since the last CQ poll will trigger a completion
3996 *        notification event.
3997 *    > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
3998 *        in.  It means that the consumer must poll the CQ again to
3999 *        make sure it is empty to avoid missing an event because of a
4000 *        race between requesting notification and an entry being
4001 *        added to the CQ.  This return value means it is possible
4002 *        (but not guaranteed) that a work completion has been added
4003 *        to the CQ since the last poll without triggering a
4004 *        completion notification event.
4005 */
4006static inline int ib_req_notify_cq(struct ib_cq *cq,
4007				   enum ib_cq_notify_flags flags)
4008{
4009	return cq->device->ops.req_notify_cq(cq, flags);
4010}
4011
4012struct ib_cq *ib_cq_pool_get(struct ib_device *dev, unsigned int nr_cqe,
4013			     int comp_vector_hint,
4014			     enum ib_poll_context poll_ctx);
4015
4016void ib_cq_pool_put(struct ib_cq *cq, unsigned int nr_cqe);
4017
4018/*
4019 * Drivers that don't need a DMA mapping at the RDMA layer, set dma_device to
4020 * NULL. This causes the ib_dma* helpers to just stash the kernel virtual
4021 * address into the dma address.
4022 */
4023static inline bool ib_uses_virt_dma(struct ib_device *dev)
4024{
4025	return IS_ENABLED(CONFIG_INFINIBAND_VIRT_DMA) && !dev->dma_device;
4026}
4027
4028/*
4029 * Check if a IB device's underlying DMA mapping supports P2PDMA transfers.
4030 */
4031static inline bool ib_dma_pci_p2p_dma_supported(struct ib_device *dev)
4032{
4033	if (ib_uses_virt_dma(dev))
4034		return false;
4035
4036	return dma_pci_p2pdma_supported(dev->dma_device);
4037}
4038
4039/**
4040 * ib_virt_dma_to_ptr - Convert a dma_addr to a kernel pointer
4041 * @dma_addr: The DMA address
4042 *
4043 * Used by ib_uses_virt_dma() devices to get back to the kernel pointer after
4044 * going through the dma_addr marshalling.
4045 */
4046static inline void *ib_virt_dma_to_ptr(u64 dma_addr)
4047{
4048	/* virt_dma mode maps the kvs's directly into the dma addr */
4049	return (void *)(uintptr_t)dma_addr;
4050}
4051
4052/**
4053 * ib_virt_dma_to_page - Convert a dma_addr to a struct page
4054 * @dma_addr: The DMA address
4055 *
4056 * Used by ib_uses_virt_dma() device to get back to the struct page after going
4057 * through the dma_addr marshalling.
4058 */
4059static inline struct page *ib_virt_dma_to_page(u64 dma_addr)
4060{
4061	return virt_to_page(ib_virt_dma_to_ptr(dma_addr));
4062}
4063
4064/**
4065 * ib_dma_mapping_error - check a DMA addr for error
4066 * @dev: The device for which the dma_addr was created
4067 * @dma_addr: The DMA address to check
4068 */
4069static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
4070{
4071	if (ib_uses_virt_dma(dev))
4072		return 0;
4073	return dma_mapping_error(dev->dma_device, dma_addr);
4074}
4075
4076/**
4077 * ib_dma_map_single - Map a kernel virtual address to DMA address
4078 * @dev: The device for which the dma_addr is to be created
4079 * @cpu_addr: The kernel virtual address
4080 * @size: The size of the region in bytes
4081 * @direction: The direction of the DMA
4082 */
4083static inline u64 ib_dma_map_single(struct ib_device *dev,
4084				    void *cpu_addr, size_t size,
4085				    enum dma_data_direction direction)
4086{
4087	if (ib_uses_virt_dma(dev))
4088		return (uintptr_t)cpu_addr;
4089	return dma_map_single(dev->dma_device, cpu_addr, size, direction);
4090}
4091
4092/**
4093 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
4094 * @dev: The device for which the DMA address was created
4095 * @addr: The DMA address
4096 * @size: The size of the region in bytes
4097 * @direction: The direction of the DMA
4098 */
4099static inline void ib_dma_unmap_single(struct ib_device *dev,
4100				       u64 addr, size_t size,
4101				       enum dma_data_direction direction)
4102{
4103	if (!ib_uses_virt_dma(dev))
4104		dma_unmap_single(dev->dma_device, addr, size, direction);
4105}
4106
4107/**
4108 * ib_dma_map_page - Map a physical page to DMA address
4109 * @dev: The device for which the dma_addr is to be created
4110 * @page: The page to be mapped
4111 * @offset: The offset within the page
4112 * @size: The size of the region in bytes
4113 * @direction: The direction of the DMA
4114 */
4115static inline u64 ib_dma_map_page(struct ib_device *dev,
4116				  struct page *page,
4117				  unsigned long offset,
4118				  size_t size,
4119					 enum dma_data_direction direction)
4120{
4121	if (ib_uses_virt_dma(dev))
4122		return (uintptr_t)(page_address(page) + offset);
4123	return dma_map_page(dev->dma_device, page, offset, size, direction);
4124}
4125
4126/**
4127 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
4128 * @dev: The device for which the DMA address was created
4129 * @addr: The DMA address
4130 * @size: The size of the region in bytes
4131 * @direction: The direction of the DMA
4132 */
4133static inline void ib_dma_unmap_page(struct ib_device *dev,
4134				     u64 addr, size_t size,
4135				     enum dma_data_direction direction)
4136{
4137	if (!ib_uses_virt_dma(dev))
4138		dma_unmap_page(dev->dma_device, addr, size, direction);
4139}
4140
4141int ib_dma_virt_map_sg(struct ib_device *dev, struct scatterlist *sg, int nents);
4142static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
4143				      struct scatterlist *sg, int nents,
4144				      enum dma_data_direction direction,
4145				      unsigned long dma_attrs)
4146{
4147	if (ib_uses_virt_dma(dev))
4148		return ib_dma_virt_map_sg(dev, sg, nents);
4149	return dma_map_sg_attrs(dev->dma_device, sg, nents, direction,
4150				dma_attrs);
4151}
4152
4153static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
4154					 struct scatterlist *sg, int nents,
4155					 enum dma_data_direction direction,
4156					 unsigned long dma_attrs)
4157{
4158	if (!ib_uses_virt_dma(dev))
4159		dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction,
4160				   dma_attrs);
4161}
4162
4163/**
4164 * ib_dma_map_sgtable_attrs - Map a scatter/gather table to DMA addresses
4165 * @dev: The device for which the DMA addresses are to be created
4166 * @sg: The sg_table object describing the buffer
4167 * @direction: The direction of the DMA
4168 * @attrs: Optional DMA attributes for the map operation
4169 */
4170static inline int ib_dma_map_sgtable_attrs(struct ib_device *dev,
4171					   struct sg_table *sgt,
4172					   enum dma_data_direction direction,
4173					   unsigned long dma_attrs)
4174{
4175	int nents;
4176
4177	if (ib_uses_virt_dma(dev)) {
4178		nents = ib_dma_virt_map_sg(dev, sgt->sgl, sgt->orig_nents);
4179		if (!nents)
4180			return -EIO;
4181		sgt->nents = nents;
4182		return 0;
4183	}
4184	return dma_map_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4185}
4186
4187static inline void ib_dma_unmap_sgtable_attrs(struct ib_device *dev,
4188					      struct sg_table *sgt,
4189					      enum dma_data_direction direction,
4190					      unsigned long dma_attrs)
4191{
4192	if (!ib_uses_virt_dma(dev))
4193		dma_unmap_sgtable(dev->dma_device, sgt, direction, dma_attrs);
4194}
4195
4196/**
4197 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
4198 * @dev: The device for which the DMA addresses are to be created
4199 * @sg: The array of scatter/gather entries
4200 * @nents: The number of scatter/gather entries
4201 * @direction: The direction of the DMA
4202 */
4203static inline int ib_dma_map_sg(struct ib_device *dev,
4204				struct scatterlist *sg, int nents,
4205				enum dma_data_direction direction)
4206{
4207	return ib_dma_map_sg_attrs(dev, sg, nents, direction, 0);
4208}
4209
4210/**
4211 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
4212 * @dev: The device for which the DMA addresses were created
4213 * @sg: The array of scatter/gather entries
4214 * @nents: The number of scatter/gather entries
4215 * @direction: The direction of the DMA
4216 */
4217static inline void ib_dma_unmap_sg(struct ib_device *dev,
4218				   struct scatterlist *sg, int nents,
4219				   enum dma_data_direction direction)
4220{
4221	ib_dma_unmap_sg_attrs(dev, sg, nents, direction, 0);
4222}
4223
4224/**
4225 * ib_dma_max_seg_size - Return the size limit of a single DMA transfer
4226 * @dev: The device to query
4227 *
4228 * The returned value represents a size in bytes.
4229 */
4230static inline unsigned int ib_dma_max_seg_size(struct ib_device *dev)
4231{
4232	if (ib_uses_virt_dma(dev))
4233		return UINT_MAX;
4234	return dma_get_max_seg_size(dev->dma_device);
4235}
4236
4237/**
4238 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
4239 * @dev: The device for which the DMA address was created
4240 * @addr: The DMA address
4241 * @size: The size of the region in bytes
4242 * @dir: The direction of the DMA
4243 */
4244static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
4245					      u64 addr,
4246					      size_t size,
4247					      enum dma_data_direction dir)
4248{
4249	if (!ib_uses_virt_dma(dev))
4250		dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
4251}
4252
4253/**
4254 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
4255 * @dev: The device for which the DMA address was created
4256 * @addr: The DMA address
4257 * @size: The size of the region in bytes
4258 * @dir: The direction of the DMA
4259 */
4260static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
4261						 u64 addr,
4262						 size_t size,
4263						 enum dma_data_direction dir)
4264{
4265	if (!ib_uses_virt_dma(dev))
4266		dma_sync_single_for_device(dev->dma_device, addr, size, dir);
4267}
4268
4269/* ib_reg_user_mr - register a memory region for virtual addresses from kernel
4270 * space. This function should be called when 'current' is the owning MM.
4271 */
4272struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
4273			     u64 virt_addr, int mr_access_flags);
4274
4275/* ib_advise_mr -  give an advice about an address range in a memory region */
4276int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
4277		 u32 flags, struct ib_sge *sg_list, u32 num_sge);
4278/**
4279 * ib_dereg_mr_user - Deregisters a memory region and removes it from the
4280 *   HCA translation table.
4281 * @mr: The memory region to deregister.
4282 * @udata: Valid user data or NULL for kernel object
4283 *
4284 * This function can fail, if the memory region has memory windows bound to it.
4285 */
4286int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata);
4287
4288/**
4289 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the
4290 *   HCA translation table.
4291 * @mr: The memory region to deregister.
4292 *
4293 * This function can fail, if the memory region has memory windows bound to it.
4294 *
4295 * NOTE: for user mr use ib_dereg_mr_user with valid udata!
4296 */
4297static inline int ib_dereg_mr(struct ib_mr *mr)
4298{
4299	return ib_dereg_mr_user(mr, NULL);
4300}
4301
4302struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
4303			  u32 max_num_sg);
4304
4305struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
4306				    u32 max_num_data_sg,
4307				    u32 max_num_meta_sg);
4308
4309/**
4310 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
4311 *   R_Key and L_Key.
4312 * @mr - struct ib_mr pointer to be updated.
4313 * @newkey - new key to be used.
4314 */
4315static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
4316{
4317	mr->lkey = (mr->lkey & 0xffffff00) | newkey;
4318	mr->rkey = (mr->rkey & 0xffffff00) | newkey;
4319}
4320
4321/**
4322 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
4323 * for calculating a new rkey for type 2 memory windows.
4324 * @rkey - the rkey to increment.
4325 */
4326static inline u32 ib_inc_rkey(u32 rkey)
4327{
4328	const u32 mask = 0x000000ff;
4329	return ((rkey + 1) & mask) | (rkey & ~mask);
4330}
4331
4332/**
4333 * ib_attach_mcast - Attaches the specified QP to a multicast group.
4334 * @qp: QP to attach to the multicast group.  The QP must be type
4335 *   IB_QPT_UD.
4336 * @gid: Multicast group GID.
4337 * @lid: Multicast group LID in host byte order.
4338 *
4339 * In order to send and receive multicast packets, subnet
4340 * administration must have created the multicast group and configured
4341 * the fabric appropriately.  The port associated with the specified
4342 * QP must also be a member of the multicast group.
4343 */
4344int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4345
4346/**
4347 * ib_detach_mcast - Detaches the specified QP from a multicast group.
4348 * @qp: QP to detach from the multicast group.
4349 * @gid: Multicast group GID.
4350 * @lid: Multicast group LID in host byte order.
4351 */
4352int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
4353
4354struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
4355				   struct inode *inode, struct ib_udata *udata);
4356int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata);
4357
4358static inline int ib_check_mr_access(struct ib_device *ib_dev,
4359				     unsigned int flags)
4360{
4361	u64 device_cap = ib_dev->attrs.device_cap_flags;
4362
4363	/*
4364	 * Local write permission is required if remote write or
4365	 * remote atomic permission is also requested.
4366	 */
4367	if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
4368	    !(flags & IB_ACCESS_LOCAL_WRITE))
4369		return -EINVAL;
4370
4371	if (flags & ~IB_ACCESS_SUPPORTED)
4372		return -EINVAL;
4373
4374	if (flags & IB_ACCESS_ON_DEMAND &&
4375	    !(ib_dev->attrs.kernel_cap_flags & IBK_ON_DEMAND_PAGING))
4376		return -EOPNOTSUPP;
4377
4378	if ((flags & IB_ACCESS_FLUSH_GLOBAL &&
4379	    !(device_cap & IB_DEVICE_FLUSH_GLOBAL)) ||
4380	    (flags & IB_ACCESS_FLUSH_PERSISTENT &&
4381	    !(device_cap & IB_DEVICE_FLUSH_PERSISTENT)))
4382		return -EOPNOTSUPP;
4383
4384	return 0;
4385}
4386
4387static inline bool ib_access_writable(int access_flags)
4388{
4389	/*
4390	 * We have writable memory backing the MR if any of the following
4391	 * access flags are set.  "Local write" and "remote write" obviously
4392	 * require write access.  "Remote atomic" can do things like fetch and
4393	 * add, which will modify memory, and "MW bind" can change permissions
4394	 * by binding a window.
4395	 */
4396	return access_flags &
4397		(IB_ACCESS_LOCAL_WRITE   | IB_ACCESS_REMOTE_WRITE |
4398		 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND);
4399}
4400
4401/**
4402 * ib_check_mr_status: lightweight check of MR status.
4403 *     This routine may provide status checks on a selected
4404 *     ib_mr. first use is for signature status check.
4405 *
4406 * @mr: A memory region.
4407 * @check_mask: Bitmask of which checks to perform from
4408 *     ib_mr_status_check enumeration.
4409 * @mr_status: The container of relevant status checks.
4410 *     failed checks will be indicated in the status bitmask
4411 *     and the relevant info shall be in the error item.
4412 */
4413int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
4414		       struct ib_mr_status *mr_status);
4415
4416/**
4417 * ib_device_try_get: Hold a registration lock
4418 * device: The device to lock
4419 *
4420 * A device under an active registration lock cannot become unregistered. It
4421 * is only possible to obtain a registration lock on a device that is fully
4422 * registered, otherwise this function returns false.
4423 *
4424 * The registration lock is only necessary for actions which require the
4425 * device to still be registered. Uses that only require the device pointer to
4426 * be valid should use get_device(&ibdev->dev) to hold the memory.
4427 *
4428 */
4429static inline bool ib_device_try_get(struct ib_device *dev)
4430{
4431	return refcount_inc_not_zero(&dev->refcount);
4432}
4433
4434void ib_device_put(struct ib_device *device);
4435struct ib_device *ib_device_get_by_netdev(struct net_device *ndev,
4436					  enum rdma_driver_id driver_id);
4437struct ib_device *ib_device_get_by_name(const char *name,
4438					enum rdma_driver_id driver_id);
4439struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u32 port,
4440					    u16 pkey, const union ib_gid *gid,
4441					    const struct sockaddr *addr);
4442int ib_device_set_netdev(struct ib_device *ib_dev, struct net_device *ndev,
4443			 unsigned int port);
4444struct ib_wq *ib_create_wq(struct ib_pd *pd,
4445			   struct ib_wq_init_attr *init_attr);
4446int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata);
4447
4448int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4449		 unsigned int *sg_offset, unsigned int page_size);
4450int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
4451		    int data_sg_nents, unsigned int *data_sg_offset,
4452		    struct scatterlist *meta_sg, int meta_sg_nents,
4453		    unsigned int *meta_sg_offset, unsigned int page_size);
4454
4455static inline int
4456ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
4457		  unsigned int *sg_offset, unsigned int page_size)
4458{
4459	int n;
4460
4461	n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size);
4462	mr->iova = 0;
4463
4464	return n;
4465}
4466
4467int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
4468		unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64));
4469
4470void ib_drain_rq(struct ib_qp *qp);
4471void ib_drain_sq(struct ib_qp *qp);
4472void ib_drain_qp(struct ib_qp *qp);
4473
4474int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed,
4475		     u8 *width);
4476
4477static inline u8 *rdma_ah_retrieve_dmac(struct rdma_ah_attr *attr)
4478{
4479	if (attr->type == RDMA_AH_ATTR_TYPE_ROCE)
4480		return attr->roce.dmac;
4481	return NULL;
4482}
4483
4484static inline void rdma_ah_set_dlid(struct rdma_ah_attr *attr, u32 dlid)
4485{
4486	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4487		attr->ib.dlid = (u16)dlid;
4488	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4489		attr->opa.dlid = dlid;
4490}
4491
4492static inline u32 rdma_ah_get_dlid(const struct rdma_ah_attr *attr)
4493{
4494	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4495		return attr->ib.dlid;
4496	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4497		return attr->opa.dlid;
4498	return 0;
4499}
4500
4501static inline void rdma_ah_set_sl(struct rdma_ah_attr *attr, u8 sl)
4502{
4503	attr->sl = sl;
4504}
4505
4506static inline u8 rdma_ah_get_sl(const struct rdma_ah_attr *attr)
4507{
4508	return attr->sl;
4509}
4510
4511static inline void rdma_ah_set_path_bits(struct rdma_ah_attr *attr,
4512					 u8 src_path_bits)
4513{
4514	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4515		attr->ib.src_path_bits = src_path_bits;
4516	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4517		attr->opa.src_path_bits = src_path_bits;
4518}
4519
4520static inline u8 rdma_ah_get_path_bits(const struct rdma_ah_attr *attr)
4521{
4522	if (attr->type == RDMA_AH_ATTR_TYPE_IB)
4523		return attr->ib.src_path_bits;
4524	else if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4525		return attr->opa.src_path_bits;
4526	return 0;
4527}
4528
4529static inline void rdma_ah_set_make_grd(struct rdma_ah_attr *attr,
4530					bool make_grd)
4531{
4532	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4533		attr->opa.make_grd = make_grd;
4534}
4535
4536static inline bool rdma_ah_get_make_grd(const struct rdma_ah_attr *attr)
4537{
4538	if (attr->type == RDMA_AH_ATTR_TYPE_OPA)
4539		return attr->opa.make_grd;
4540	return false;
4541}
4542
4543static inline void rdma_ah_set_port_num(struct rdma_ah_attr *attr, u32 port_num)
4544{
4545	attr->port_num = port_num;
4546}
4547
4548static inline u32 rdma_ah_get_port_num(const struct rdma_ah_attr *attr)
4549{
4550	return attr->port_num;
4551}
4552
4553static inline void rdma_ah_set_static_rate(struct rdma_ah_attr *attr,
4554					   u8 static_rate)
4555{
4556	attr->static_rate = static_rate;
4557}
4558
4559static inline u8 rdma_ah_get_static_rate(const struct rdma_ah_attr *attr)
4560{
4561	return attr->static_rate;
4562}
4563
4564static inline void rdma_ah_set_ah_flags(struct rdma_ah_attr *attr,
4565					enum ib_ah_flags flag)
4566{
4567	attr->ah_flags = flag;
4568}
4569
4570static inline enum ib_ah_flags
4571		rdma_ah_get_ah_flags(const struct rdma_ah_attr *attr)
4572{
4573	return attr->ah_flags;
4574}
4575
4576static inline const struct ib_global_route
4577		*rdma_ah_read_grh(const struct rdma_ah_attr *attr)
4578{
4579	return &attr->grh;
4580}
4581
4582/*To retrieve and modify the grh */
4583static inline struct ib_global_route
4584		*rdma_ah_retrieve_grh(struct rdma_ah_attr *attr)
4585{
4586	return &attr->grh;
4587}
4588
4589static inline void rdma_ah_set_dgid_raw(struct rdma_ah_attr *attr, void *dgid)
4590{
4591	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4592
4593	memcpy(grh->dgid.raw, dgid, sizeof(grh->dgid));
4594}
4595
4596static inline void rdma_ah_set_subnet_prefix(struct rdma_ah_attr *attr,
4597					     __be64 prefix)
4598{
4599	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4600
4601	grh->dgid.global.subnet_prefix = prefix;
4602}
4603
4604static inline void rdma_ah_set_interface_id(struct rdma_ah_attr *attr,
4605					    __be64 if_id)
4606{
4607	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4608
4609	grh->dgid.global.interface_id = if_id;
4610}
4611
4612static inline void rdma_ah_set_grh(struct rdma_ah_attr *attr,
4613				   union ib_gid *dgid, u32 flow_label,
4614				   u8 sgid_index, u8 hop_limit,
4615				   u8 traffic_class)
4616{
4617	struct ib_global_route *grh = rdma_ah_retrieve_grh(attr);
4618
4619	attr->ah_flags = IB_AH_GRH;
4620	if (dgid)
4621		grh->dgid = *dgid;
4622	grh->flow_label = flow_label;
4623	grh->sgid_index = sgid_index;
4624	grh->hop_limit = hop_limit;
4625	grh->traffic_class = traffic_class;
4626	grh->sgid_attr = NULL;
4627}
4628
4629void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr);
4630void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
4631			     u32 flow_label, u8 hop_limit, u8 traffic_class,
4632			     const struct ib_gid_attr *sgid_attr);
4633void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
4634		       const struct rdma_ah_attr *src);
4635void rdma_replace_ah_attr(struct rdma_ah_attr *old,
4636			  const struct rdma_ah_attr *new);
4637void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src);
4638
4639/**
4640 * rdma_ah_find_type - Return address handle type.
4641 *
4642 * @dev: Device to be checked
4643 * @port_num: Port number
4644 */
4645static inline enum rdma_ah_attr_type rdma_ah_find_type(struct ib_device *dev,
4646						       u32 port_num)
4647{
4648	if (rdma_protocol_roce(dev, port_num))
4649		return RDMA_AH_ATTR_TYPE_ROCE;
4650	if (rdma_protocol_ib(dev, port_num)) {
4651		if (rdma_cap_opa_ah(dev, port_num))
4652			return RDMA_AH_ATTR_TYPE_OPA;
4653		return RDMA_AH_ATTR_TYPE_IB;
4654	}
4655
4656	return RDMA_AH_ATTR_TYPE_UNDEFINED;
4657}
4658
4659/**
4660 * ib_lid_cpu16 - Return lid in 16bit CPU encoding.
4661 *     In the current implementation the only way to
4662 *     get the 32bit lid is from other sources for OPA.
4663 *     For IB, lids will always be 16bits so cast the
4664 *     value accordingly.
4665 *
4666 * @lid: A 32bit LID
4667 */
4668static inline u16 ib_lid_cpu16(u32 lid)
4669{
4670	WARN_ON_ONCE(lid & 0xFFFF0000);
4671	return (u16)lid;
4672}
4673
4674/**
4675 * ib_lid_be16 - Return lid in 16bit BE encoding.
4676 *
4677 * @lid: A 32bit LID
4678 */
4679static inline __be16 ib_lid_be16(u32 lid)
4680{
4681	WARN_ON_ONCE(lid & 0xFFFF0000);
4682	return cpu_to_be16((u16)lid);
4683}
4684
4685/**
4686 * ib_get_vector_affinity - Get the affinity mappings of a given completion
4687 *   vector
4688 * @device:         the rdma device
4689 * @comp_vector:    index of completion vector
4690 *
4691 * Returns NULL on failure, otherwise a corresponding cpu map of the
4692 * completion vector (returns all-cpus map if the device driver doesn't
4693 * implement get_vector_affinity).
4694 */
4695static inline const struct cpumask *
4696ib_get_vector_affinity(struct ib_device *device, int comp_vector)
4697{
4698	if (comp_vector < 0 || comp_vector >= device->num_comp_vectors ||
4699	    !device->ops.get_vector_affinity)
4700		return NULL;
4701
4702	return device->ops.get_vector_affinity(device, comp_vector);
4703
4704}
4705
4706/**
4707 * rdma_roce_rescan_device - Rescan all of the network devices in the system
4708 * and add their gids, as needed, to the relevant RoCE devices.
4709 *
4710 * @device:         the rdma device
4711 */
4712void rdma_roce_rescan_device(struct ib_device *ibdev);
4713
4714struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile);
4715
4716int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs);
4717
4718struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
4719				     enum rdma_netdev_t type, const char *name,
4720				     unsigned char name_assign_type,
4721				     void (*setup)(struct net_device *));
4722
4723int rdma_init_netdev(struct ib_device *device, u32 port_num,
4724		     enum rdma_netdev_t type, const char *name,
4725		     unsigned char name_assign_type,
4726		     void (*setup)(struct net_device *),
4727		     struct net_device *netdev);
4728
4729/**
4730 * rdma_device_to_ibdev - Get ib_device pointer from device pointer
4731 *
4732 * @device:	device pointer for which ib_device pointer to retrieve
4733 *
4734 * rdma_device_to_ibdev() retrieves ib_device pointer from device.
4735 *
4736 */
4737static inline struct ib_device *rdma_device_to_ibdev(struct device *device)
4738{
4739	struct ib_core_device *coredev =
4740		container_of(device, struct ib_core_device, dev);
4741
4742	return coredev->owner;
4743}
4744
4745/**
4746 * ibdev_to_node - return the NUMA node for a given ib_device
4747 * @dev:	device to get the NUMA node for.
4748 */
4749static inline int ibdev_to_node(struct ib_device *ibdev)
4750{
4751	struct device *parent = ibdev->dev.parent;
4752
4753	if (!parent)
4754		return NUMA_NO_NODE;
4755	return dev_to_node(parent);
4756}
4757
4758/**
4759 * rdma_device_to_drv_device - Helper macro to reach back to driver's
4760 *			       ib_device holder structure from device pointer.
4761 *
4762 * NOTE: New drivers should not make use of this API; This API is only for
4763 * existing drivers who have exposed sysfs entries using
4764 * ops->device_group.
4765 */
4766#define rdma_device_to_drv_device(dev, drv_dev_struct, ibdev_member)           \
4767	container_of(rdma_device_to_ibdev(dev), drv_dev_struct, ibdev_member)
4768
4769bool rdma_dev_access_netns(const struct ib_device *device,
4770			   const struct net *net);
4771
4772#define IB_ROCE_UDP_ENCAP_VALID_PORT_MIN (0xC000)
4773#define IB_ROCE_UDP_ENCAP_VALID_PORT_MAX (0xFFFF)
4774#define IB_GRH_FLOWLABEL_MASK (0x000FFFFF)
4775
4776/**
4777 * rdma_flow_label_to_udp_sport - generate a RoCE v2 UDP src port value based
4778 *                               on the flow_label
4779 *
4780 * This function will convert the 20 bit flow_label input to a valid RoCE v2
4781 * UDP src port 14 bit value. All RoCE V2 drivers should use this same
4782 * convention.
4783 */
4784static inline u16 rdma_flow_label_to_udp_sport(u32 fl)
4785{
4786	u32 fl_low = fl & 0x03fff, fl_high = fl & 0xFC000;
4787
4788	fl_low ^= fl_high >> 14;
4789	return (u16)(fl_low | IB_ROCE_UDP_ENCAP_VALID_PORT_MIN);
4790}
4791
4792/**
4793 * rdma_calc_flow_label - generate a RDMA symmetric flow label value based on
4794 *                        local and remote qpn values
4795 *
4796 * This function folded the multiplication results of two qpns, 24 bit each,
4797 * fields, and converts it to a 20 bit results.
4798 *
4799 * This function will create symmetric flow_label value based on the local
4800 * and remote qpn values. this will allow both the requester and responder
4801 * to calculate the same flow_label for a given connection.
4802 *
4803 * This helper function should be used by driver in case the upper layer
4804 * provide a zero flow_label value. This is to improve entropy of RDMA
4805 * traffic in the network.
4806 */
4807static inline u32 rdma_calc_flow_label(u32 lqpn, u32 rqpn)
4808{
4809	u64 v = (u64)lqpn * rqpn;
4810
4811	v ^= v >> 20;
4812	v ^= v >> 40;
4813
4814	return (u32)(v & IB_GRH_FLOWLABEL_MASK);
4815}
4816
4817/**
4818 * rdma_get_udp_sport - Calculate and set UDP source port based on the flow
4819 *                      label. If flow label is not defined in GRH then
4820 *                      calculate it based on lqpn/rqpn.
4821 *
4822 * @fl:                 flow label from GRH
4823 * @lqpn:               local qp number
4824 * @rqpn:               remote qp number
4825 */
4826static inline u16 rdma_get_udp_sport(u32 fl, u32 lqpn, u32 rqpn)
4827{
4828	if (!fl)
4829		fl = rdma_calc_flow_label(lqpn, rqpn);
4830
4831	return rdma_flow_label_to_udp_sport(fl);
4832}
4833
4834const struct ib_port_immutable*
4835ib_port_immutable_read(struct ib_device *dev, unsigned int port);
4836#endif /* IB_VERBS_H */
4837