xref: /kernel/linux/linux-6.6/include/net/tcp.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the TCP module.
8 *
9 * Version:	@(#)tcp.h	1.0.5	05/23/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42#include <net/mptcp.h>
43
44#include <linux/seq_file.h>
45#include <linux/memcontrol.h>
46#include <linux/bpf-cgroup.h>
47#include <linux/siphash.h>
48
49extern struct inet_hashinfo tcp_hashinfo;
50
51DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
52int tcp_orphan_count_sum(void);
53
54void tcp_time_wait(struct sock *sk, int state, int timeo);
55
56#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
57#define MAX_TCP_OPTION_SPACE 40
58#define TCP_MIN_SND_MSS		48
59#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
60
61/*
62 * Never offer a window over 32767 without using window scaling. Some
63 * poor stacks do signed 16bit maths!
64 */
65#define MAX_TCP_WINDOW		32767U
66
67/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
68#define TCP_MIN_MSS		88U
69
70/* The initial MTU to use for probing */
71#define TCP_BASE_MSS		1024
72
73/* probing interval, default to 10 minutes as per RFC4821 */
74#define TCP_PROBE_INTERVAL	600
75
76/* Specify interval when tcp mtu probing will stop */
77#define TCP_PROBE_THRESHOLD	8
78
79/* After receiving this amount of duplicate ACKs fast retransmit starts. */
80#define TCP_FASTRETRANS_THRESH 3
81
82/* Maximal number of ACKs sent quickly to accelerate slow-start. */
83#define TCP_MAX_QUICKACKS	16U
84
85/* Maximal number of window scale according to RFC1323 */
86#define TCP_MAX_WSCALE		14U
87
88/* urg_data states */
89#define TCP_URG_VALID	0x0100
90#define TCP_URG_NOTYET	0x0200
91#define TCP_URG_READ	0x0400
92
93#define TCP_RETR1	3	/*
94				 * This is how many retries it does before it
95				 * tries to figure out if the gateway is
96				 * down. Minimal RFC value is 3; it corresponds
97				 * to ~3sec-8min depending on RTO.
98				 */
99
100#define TCP_RETR2	15	/*
101				 * This should take at least
102				 * 90 minutes to time out.
103				 * RFC1122 says that the limit is 100 sec.
104				 * 15 is ~13-30min depending on RTO.
105				 */
106
107#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
108				 * when active opening a connection.
109				 * RFC1122 says the minimum retry MUST
110				 * be at least 180secs.  Nevertheless
111				 * this value is corresponding to
112				 * 63secs of retransmission with the
113				 * current initial RTO.
114				 */
115
116#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
117				 * when passive opening a connection.
118				 * This is corresponding to 31secs of
119				 * retransmission with the current
120				 * initial RTO.
121				 */
122
123#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
124				  * state, about 60 seconds	*/
125#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
126                                 /* BSD style FIN_WAIT2 deadlock breaker.
127				  * It used to be 3min, new value is 60sec,
128				  * to combine FIN-WAIT-2 timeout with
129				  * TIME-WAIT timer.
130				  */
131#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
132
133#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
134#if HZ >= 100
135#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
136#define TCP_ATO_MIN	((unsigned)(HZ/25))
137#else
138#define TCP_DELACK_MIN	4U
139#define TCP_ATO_MIN	4U
140#endif
141#define TCP_RTO_MAX	((unsigned)(120*HZ))
142#define TCP_RTO_MIN	((unsigned)(HZ/5))
143#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
144
145#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
146
147#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
148#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
149						 * used as a fallback RTO for the
150						 * initial data transmission if no
151						 * valid RTT sample has been acquired,
152						 * most likely due to retrans in 3WHS.
153						 */
154
155#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
156					                 * for local resources.
157					                 */
158#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
159#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
160#define TCP_KEEPALIVE_INTVL	(75*HZ)
161
162#define MAX_TCP_KEEPIDLE	32767
163#define MAX_TCP_KEEPINTVL	32767
164#define MAX_TCP_KEEPCNT		127
165#define MAX_TCP_SYNCNT		127
166
167#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
168#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
169					 * after this time. It should be equal
170					 * (or greater than) TCP_TIMEWAIT_LEN
171					 * to provide reliability equal to one
172					 * provided by timewait state.
173					 */
174#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
175					 * timestamps. It must be less than
176					 * minimal timewait lifetime.
177					 */
178/*
179 *	TCP option
180 */
181
182#define TCPOPT_NOP		1	/* Padding */
183#define TCPOPT_EOL		0	/* End of options */
184#define TCPOPT_MSS		2	/* Segment size negotiating */
185#define TCPOPT_WINDOW		3	/* Window scaling */
186#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
187#define TCPOPT_SACK             5       /* SACK Block */
188#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
189#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
190#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
191#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
192#define TCPOPT_EXP		254	/* Experimental */
193/* Magic number to be after the option value for sharing TCP
194 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
195 */
196#define TCPOPT_FASTOPEN_MAGIC	0xF989
197#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
198
199/*
200 *     TCP option lengths
201 */
202
203#define TCPOLEN_MSS            4
204#define TCPOLEN_WINDOW         3
205#define TCPOLEN_SACK_PERM      2
206#define TCPOLEN_TIMESTAMP      10
207#define TCPOLEN_MD5SIG         18
208#define TCPOLEN_FASTOPEN_BASE  2
209#define TCPOLEN_EXP_FASTOPEN_BASE  4
210#define TCPOLEN_EXP_SMC_BASE   6
211
212/* But this is what stacks really send out. */
213#define TCPOLEN_TSTAMP_ALIGNED		12
214#define TCPOLEN_WSCALE_ALIGNED		4
215#define TCPOLEN_SACKPERM_ALIGNED	4
216#define TCPOLEN_SACK_BASE		2
217#define TCPOLEN_SACK_BASE_ALIGNED	4
218#define TCPOLEN_SACK_PERBLOCK		8
219#define TCPOLEN_MD5SIG_ALIGNED		20
220#define TCPOLEN_MSS_ALIGNED		4
221#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
222
223/* Flags in tp->nonagle */
224#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
225#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
226#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
227
228/* TCP thin-stream limits */
229#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
230
231/* TCP initial congestion window as per rfc6928 */
232#define TCP_INIT_CWND		10
233
234/* Bit Flags for sysctl_tcp_fastopen */
235#define	TFO_CLIENT_ENABLE	1
236#define	TFO_SERVER_ENABLE	2
237#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
238
239/* Accept SYN data w/o any cookie option */
240#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
241
242/* Force enable TFO on all listeners, i.e., not requiring the
243 * TCP_FASTOPEN socket option.
244 */
245#define	TFO_SERVER_WO_SOCKOPT1	0x400
246
247
248/* sysctl variables for tcp */
249extern int sysctl_tcp_max_orphans;
250extern long sysctl_tcp_mem[3];
251
252#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
253#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
254#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
255
256extern atomic_long_t tcp_memory_allocated;
257DECLARE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
258
259extern struct percpu_counter tcp_sockets_allocated;
260extern unsigned long tcp_memory_pressure;
261
262/* optimized version of sk_under_memory_pressure() for TCP sockets */
263static inline bool tcp_under_memory_pressure(const struct sock *sk)
264{
265	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
266	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
267		return true;
268
269	return READ_ONCE(tcp_memory_pressure);
270}
271/*
272 * The next routines deal with comparing 32 bit unsigned ints
273 * and worry about wraparound (automatic with unsigned arithmetic).
274 */
275
276static inline bool before(__u32 seq1, __u32 seq2)
277{
278        return (__s32)(seq1-seq2) < 0;
279}
280#define after(seq2, seq1) 	before(seq1, seq2)
281
282/* is s2<=s1<=s3 ? */
283static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
284{
285	return seq3 - seq2 >= seq1 - seq2;
286}
287
288static inline bool tcp_out_of_memory(struct sock *sk)
289{
290	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
291	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
292		return true;
293	return false;
294}
295
296static inline void tcp_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
297{
298	sk_wmem_queued_add(sk, -skb->truesize);
299	if (!skb_zcopy_pure(skb))
300		sk_mem_uncharge(sk, skb->truesize);
301	else
302		sk_mem_uncharge(sk, SKB_TRUESIZE(skb_end_offset(skb)));
303	__kfree_skb(skb);
304}
305
306void sk_forced_mem_schedule(struct sock *sk, int size);
307
308bool tcp_check_oom(struct sock *sk, int shift);
309
310
311extern struct proto tcp_prot;
312
313#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
314#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
315#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
316#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
317
318void tcp_tasklet_init(void);
319
320int tcp_v4_err(struct sk_buff *skb, u32);
321
322void tcp_shutdown(struct sock *sk, int how);
323
324int tcp_v4_early_demux(struct sk_buff *skb);
325int tcp_v4_rcv(struct sk_buff *skb);
326
327void tcp_remove_empty_skb(struct sock *sk);
328int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
329int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
330int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
331			 size_t size, struct ubuf_info *uarg);
332void tcp_splice_eof(struct socket *sock);
333int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
334int tcp_wmem_schedule(struct sock *sk, int copy);
335void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
336	      int size_goal);
337void tcp_release_cb(struct sock *sk);
338void tcp_wfree(struct sk_buff *skb);
339void tcp_write_timer_handler(struct sock *sk);
340void tcp_delack_timer_handler(struct sock *sk);
341int tcp_ioctl(struct sock *sk, int cmd, int *karg);
342int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
343void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
344void tcp_rcv_space_adjust(struct sock *sk);
345int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
346void tcp_twsk_destructor(struct sock *sk);
347void tcp_twsk_purge(struct list_head *net_exit_list, int family);
348ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
349			struct pipe_inode_info *pipe, size_t len,
350			unsigned int flags);
351struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
352				     bool force_schedule);
353
354static inline void tcp_dec_quickack_mode(struct sock *sk)
355{
356	struct inet_connection_sock *icsk = inet_csk(sk);
357
358	if (icsk->icsk_ack.quick) {
359		/* How many ACKs S/ACKing new data have we sent? */
360		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
361
362		if (pkts >= icsk->icsk_ack.quick) {
363			icsk->icsk_ack.quick = 0;
364			/* Leaving quickack mode we deflate ATO. */
365			icsk->icsk_ack.ato   = TCP_ATO_MIN;
366		} else
367			icsk->icsk_ack.quick -= pkts;
368	}
369}
370
371#define	TCP_ECN_OK		1
372#define	TCP_ECN_QUEUE_CWR	2
373#define	TCP_ECN_DEMAND_CWR	4
374#define	TCP_ECN_SEEN		8
375
376enum tcp_tw_status {
377	TCP_TW_SUCCESS = 0,
378	TCP_TW_RST = 1,
379	TCP_TW_ACK = 2,
380	TCP_TW_SYN = 3
381};
382
383
384enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
385					      struct sk_buff *skb,
386					      const struct tcphdr *th);
387struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
388			   struct request_sock *req, bool fastopen,
389			   bool *lost_race);
390int tcp_child_process(struct sock *parent, struct sock *child,
391		      struct sk_buff *skb);
392void tcp_enter_loss(struct sock *sk);
393void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int newly_lost, int flag);
394void tcp_clear_retrans(struct tcp_sock *tp);
395void tcp_update_metrics(struct sock *sk);
396void tcp_init_metrics(struct sock *sk);
397void tcp_metrics_init(void);
398bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
399void __tcp_close(struct sock *sk, long timeout);
400void tcp_close(struct sock *sk, long timeout);
401void tcp_init_sock(struct sock *sk);
402void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
403__poll_t tcp_poll(struct file *file, struct socket *sock,
404		      struct poll_table_struct *wait);
405int do_tcp_getsockopt(struct sock *sk, int level,
406		      int optname, sockptr_t optval, sockptr_t optlen);
407int tcp_getsockopt(struct sock *sk, int level, int optname,
408		   char __user *optval, int __user *optlen);
409bool tcp_bpf_bypass_getsockopt(int level, int optname);
410int do_tcp_setsockopt(struct sock *sk, int level, int optname,
411		      sockptr_t optval, unsigned int optlen);
412int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
413		   unsigned int optlen);
414void tcp_set_keepalive(struct sock *sk, int val);
415void tcp_syn_ack_timeout(const struct request_sock *req);
416int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
417		int flags, int *addr_len);
418int tcp_set_rcvlowat(struct sock *sk, int val);
419int tcp_set_window_clamp(struct sock *sk, int val);
420void tcp_update_recv_tstamps(struct sk_buff *skb,
421			     struct scm_timestamping_internal *tss);
422void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
423			struct scm_timestamping_internal *tss);
424void tcp_data_ready(struct sock *sk);
425#ifdef CONFIG_MMU
426int tcp_mmap(struct file *file, struct socket *sock,
427	     struct vm_area_struct *vma);
428#endif
429void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
430		       struct tcp_options_received *opt_rx,
431		       int estab, struct tcp_fastopen_cookie *foc);
432const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
433
434/*
435 *	BPF SKB-less helpers
436 */
437u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
438			 struct tcphdr *th, u32 *cookie);
439u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
440			 struct tcphdr *th, u32 *cookie);
441u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss);
442u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
443			  const struct tcp_request_sock_ops *af_ops,
444			  struct sock *sk, struct tcphdr *th);
445/*
446 *	TCP v4 functions exported for the inet6 API
447 */
448
449void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
450void tcp_v4_mtu_reduced(struct sock *sk);
451void tcp_req_err(struct sock *sk, u32 seq, bool abort);
452void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
453int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
454struct sock *tcp_create_openreq_child(const struct sock *sk,
455				      struct request_sock *req,
456				      struct sk_buff *skb);
457void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
458struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
459				  struct request_sock *req,
460				  struct dst_entry *dst,
461				  struct request_sock *req_unhash,
462				  bool *own_req);
463int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
464int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
465int tcp_connect(struct sock *sk);
466enum tcp_synack_type {
467	TCP_SYNACK_NORMAL,
468	TCP_SYNACK_FASTOPEN,
469	TCP_SYNACK_COOKIE,
470};
471struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
472				struct request_sock *req,
473				struct tcp_fastopen_cookie *foc,
474				enum tcp_synack_type synack_type,
475				struct sk_buff *syn_skb);
476int tcp_disconnect(struct sock *sk, int flags);
477
478void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
479int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
480void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
481
482/* From syncookies.c */
483struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
484				 struct request_sock *req,
485				 struct dst_entry *dst, u32 tsoff);
486int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
487		      u32 cookie);
488struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
489struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
490					    const struct tcp_request_sock_ops *af_ops,
491					    struct sock *sk, struct sk_buff *skb);
492#ifdef CONFIG_SYN_COOKIES
493
494/* Syncookies use a monotonic timer which increments every 60 seconds.
495 * This counter is used both as a hash input and partially encoded into
496 * the cookie value.  A cookie is only validated further if the delta
497 * between the current counter value and the encoded one is less than this,
498 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
499 * the counter advances immediately after a cookie is generated).
500 */
501#define MAX_SYNCOOKIE_AGE	2
502#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
503#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
504
505/* syncookies: remember time of last synqueue overflow
506 * But do not dirty this field too often (once per second is enough)
507 * It is racy as we do not hold a lock, but race is very minor.
508 */
509static inline void tcp_synq_overflow(const struct sock *sk)
510{
511	unsigned int last_overflow;
512	unsigned int now = jiffies;
513
514	if (sk->sk_reuseport) {
515		struct sock_reuseport *reuse;
516
517		reuse = rcu_dereference(sk->sk_reuseport_cb);
518		if (likely(reuse)) {
519			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520			if (!time_between32(now, last_overflow,
521					    last_overflow + HZ))
522				WRITE_ONCE(reuse->synq_overflow_ts, now);
523			return;
524		}
525	}
526
527	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
528	if (!time_between32(now, last_overflow, last_overflow + HZ))
529		WRITE_ONCE(tcp_sk_rw(sk)->rx_opt.ts_recent_stamp, now);
530}
531
532/* syncookies: no recent synqueue overflow on this listening socket? */
533static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
534{
535	unsigned int last_overflow;
536	unsigned int now = jiffies;
537
538	if (sk->sk_reuseport) {
539		struct sock_reuseport *reuse;
540
541		reuse = rcu_dereference(sk->sk_reuseport_cb);
542		if (likely(reuse)) {
543			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
544			return !time_between32(now, last_overflow - HZ,
545					       last_overflow +
546					       TCP_SYNCOOKIE_VALID);
547		}
548	}
549
550	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
551
552	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
553	 * then we're under synflood. However, we have to use
554	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
555	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
556	 * jiffies but before we store .ts_recent_stamp into last_overflow,
557	 * which could lead to rejecting a valid syncookie.
558	 */
559	return !time_between32(now, last_overflow - HZ,
560			       last_overflow + TCP_SYNCOOKIE_VALID);
561}
562
563static inline u32 tcp_cookie_time(void)
564{
565	u64 val = get_jiffies_64();
566
567	do_div(val, TCP_SYNCOOKIE_PERIOD);
568	return val;
569}
570
571u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
572			      u16 *mssp);
573__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
574u64 cookie_init_timestamp(struct request_sock *req, u64 now);
575bool cookie_timestamp_decode(const struct net *net,
576			     struct tcp_options_received *opt);
577bool cookie_ecn_ok(const struct tcp_options_received *opt,
578		   const struct net *net, const struct dst_entry *dst);
579
580/* From net/ipv6/syncookies.c */
581int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
582		      u32 cookie);
583struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
584
585u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
586			      const struct tcphdr *th, u16 *mssp);
587__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
588#endif
589/* tcp_output.c */
590
591void tcp_skb_entail(struct sock *sk, struct sk_buff *skb);
592void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb);
593void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
594			       int nonagle);
595int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
596int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
597void tcp_retransmit_timer(struct sock *sk);
598void tcp_xmit_retransmit_queue(struct sock *);
599void tcp_simple_retransmit(struct sock *);
600void tcp_enter_recovery(struct sock *sk, bool ece_ack);
601int tcp_trim_head(struct sock *, struct sk_buff *, u32);
602enum tcp_queue {
603	TCP_FRAG_IN_WRITE_QUEUE,
604	TCP_FRAG_IN_RTX_QUEUE,
605};
606int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
607		 struct sk_buff *skb, u32 len,
608		 unsigned int mss_now, gfp_t gfp);
609
610void tcp_send_probe0(struct sock *);
611int tcp_write_wakeup(struct sock *, int mib);
612void tcp_send_fin(struct sock *sk);
613void tcp_send_active_reset(struct sock *sk, gfp_t priority);
614int tcp_send_synack(struct sock *);
615void tcp_push_one(struct sock *, unsigned int mss_now);
616void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
617void tcp_send_ack(struct sock *sk);
618void tcp_send_delayed_ack(struct sock *sk);
619void tcp_send_loss_probe(struct sock *sk);
620bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
621void tcp_skb_collapse_tstamp(struct sk_buff *skb,
622			     const struct sk_buff *next_skb);
623
624/* tcp_input.c */
625void tcp_rearm_rto(struct sock *sk);
626void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
627void tcp_reset(struct sock *sk, struct sk_buff *skb);
628void tcp_fin(struct sock *sk);
629void tcp_check_space(struct sock *sk);
630void tcp_sack_compress_send_ack(struct sock *sk);
631
632/* tcp_timer.c */
633void tcp_init_xmit_timers(struct sock *);
634static inline void tcp_clear_xmit_timers(struct sock *sk)
635{
636	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
637		__sock_put(sk);
638
639	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
640		__sock_put(sk);
641
642	inet_csk_clear_xmit_timers(sk);
643}
644
645unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
646unsigned int tcp_current_mss(struct sock *sk);
647u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
648
649/* Bound MSS / TSO packet size with the half of the window */
650static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
651{
652	int cutoff;
653
654	/* When peer uses tiny windows, there is no use in packetizing
655	 * to sub-MSS pieces for the sake of SWS or making sure there
656	 * are enough packets in the pipe for fast recovery.
657	 *
658	 * On the other hand, for extremely large MSS devices, handling
659	 * smaller than MSS windows in this way does make sense.
660	 */
661	if (tp->max_window > TCP_MSS_DEFAULT)
662		cutoff = (tp->max_window >> 1);
663	else
664		cutoff = tp->max_window;
665
666	if (cutoff && pktsize > cutoff)
667		return max_t(int, cutoff, 68U - tp->tcp_header_len);
668	else
669		return pktsize;
670}
671
672/* tcp.c */
673void tcp_get_info(struct sock *, struct tcp_info *);
674
675/* Read 'sendfile()'-style from a TCP socket */
676int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
677		  sk_read_actor_t recv_actor);
678int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor);
679struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off);
680void tcp_read_done(struct sock *sk, size_t len);
681
682void tcp_initialize_rcv_mss(struct sock *sk);
683
684int tcp_mtu_to_mss(struct sock *sk, int pmtu);
685int tcp_mss_to_mtu(struct sock *sk, int mss);
686void tcp_mtup_init(struct sock *sk);
687
688static inline void tcp_bound_rto(const struct sock *sk)
689{
690	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
691		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
692}
693
694static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
695{
696	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
697}
698
699static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
700{
701	/* mptcp hooks are only on the slow path */
702	if (sk_is_mptcp((struct sock *)tp))
703		return;
704
705	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
706			       ntohl(TCP_FLAG_ACK) |
707			       snd_wnd);
708}
709
710static inline void tcp_fast_path_on(struct tcp_sock *tp)
711{
712	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
713}
714
715static inline void tcp_fast_path_check(struct sock *sk)
716{
717	struct tcp_sock *tp = tcp_sk(sk);
718
719	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
720	    tp->rcv_wnd &&
721	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
722	    !tp->urg_data)
723		tcp_fast_path_on(tp);
724}
725
726u32 tcp_delack_max(const struct sock *sk);
727
728/* Compute the actual rto_min value */
729static inline u32 tcp_rto_min(struct sock *sk)
730{
731	const struct dst_entry *dst = __sk_dst_get(sk);
732	u32 rto_min = inet_csk(sk)->icsk_rto_min;
733
734	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
735		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
736	return rto_min;
737}
738
739static inline u32 tcp_rto_min_us(struct sock *sk)
740{
741	return jiffies_to_usecs(tcp_rto_min(sk));
742}
743
744static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
745{
746	return dst_metric_locked(dst, RTAX_CC_ALGO);
747}
748
749/* Minimum RTT in usec. ~0 means not available. */
750static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
751{
752	return minmax_get(&tp->rtt_min);
753}
754
755/* Compute the actual receive window we are currently advertising.
756 * Rcv_nxt can be after the window if our peer push more data
757 * than the offered window.
758 */
759static inline u32 tcp_receive_window(const struct tcp_sock *tp)
760{
761	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
762
763	if (win < 0)
764		win = 0;
765	return (u32) win;
766}
767
768/* Choose a new window, without checks for shrinking, and without
769 * scaling applied to the result.  The caller does these things
770 * if necessary.  This is a "raw" window selection.
771 */
772u32 __tcp_select_window(struct sock *sk);
773
774void tcp_send_window_probe(struct sock *sk);
775
776/* TCP uses 32bit jiffies to save some space.
777 * Note that this is different from tcp_time_stamp, which
778 * historically has been the same until linux-4.13.
779 */
780#define tcp_jiffies32 ((u32)jiffies)
781
782/*
783 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
784 * It is no longer tied to jiffies, but to 1 ms clock.
785 * Note: double check if you want to use tcp_jiffies32 instead of this.
786 */
787#define TCP_TS_HZ	1000
788
789static inline u64 tcp_clock_ns(void)
790{
791	return ktime_get_ns();
792}
793
794static inline u64 tcp_clock_us(void)
795{
796	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
797}
798
799/* This should only be used in contexts where tp->tcp_mstamp is up to date */
800static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
801{
802	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
803}
804
805/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
806static inline u64 tcp_ns_to_ts(u64 ns)
807{
808	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
809}
810
811/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
812static inline u32 tcp_time_stamp_raw(void)
813{
814	return tcp_ns_to_ts(tcp_clock_ns());
815}
816
817void tcp_mstamp_refresh(struct tcp_sock *tp);
818
819static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
820{
821	return max_t(s64, t1 - t0, 0);
822}
823
824static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
825{
826	return tcp_ns_to_ts(skb->skb_mstamp_ns);
827}
828
829/* provide the departure time in us unit */
830static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
831{
832	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
833}
834
835
836#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
837
838#define TCPHDR_FIN 0x01
839#define TCPHDR_SYN 0x02
840#define TCPHDR_RST 0x04
841#define TCPHDR_PSH 0x08
842#define TCPHDR_ACK 0x10
843#define TCPHDR_URG 0x20
844#define TCPHDR_ECE 0x40
845#define TCPHDR_CWR 0x80
846
847#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
848
849/* This is what the send packet queuing engine uses to pass
850 * TCP per-packet control information to the transmission code.
851 * We also store the host-order sequence numbers in here too.
852 * This is 44 bytes if IPV6 is enabled.
853 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
854 */
855struct tcp_skb_cb {
856	__u32		seq;		/* Starting sequence number	*/
857	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
858	union {
859		/* Note : tcp_tw_isn is used in input path only
860		 *	  (isn chosen by tcp_timewait_state_process())
861		 *
862		 * 	  tcp_gso_segs/size are used in write queue only,
863		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
864		 */
865		__u32		tcp_tw_isn;
866		struct {
867			u16	tcp_gso_segs;
868			u16	tcp_gso_size;
869		};
870	};
871	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
872
873	__u8		sacked;		/* State flags for SACK.	*/
874#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
875#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
876#define TCPCB_LOST		0x04	/* SKB is lost			*/
877#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
878#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
879#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
880#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
881				TCPCB_REPAIRED)
882
883	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
884	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
885			eor:1,		/* Is skb MSG_EOR marked? */
886			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
887			unused:5;
888	__u32		ack_seq;	/* Sequence number ACK'd	*/
889	union {
890		struct {
891#define TCPCB_DELIVERED_CE_MASK ((1U<<20) - 1)
892			/* There is space for up to 24 bytes */
893			__u32 is_app_limited:1, /* cwnd not fully used? */
894			      delivered_ce:20,
895			      unused:11;
896			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
897			__u32 delivered;
898			/* start of send pipeline phase */
899			u64 first_tx_mstamp;
900			/* when we reached the "delivered" count */
901			u64 delivered_mstamp;
902		} tx;   /* only used for outgoing skbs */
903		union {
904			struct inet_skb_parm	h4;
905#if IS_ENABLED(CONFIG_IPV6)
906			struct inet6_skb_parm	h6;
907#endif
908		} header;	/* For incoming skbs */
909	};
910};
911
912#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
913
914extern const struct inet_connection_sock_af_ops ipv4_specific;
915
916#if IS_ENABLED(CONFIG_IPV6)
917/* This is the variant of inet6_iif() that must be used by TCP,
918 * as TCP moves IP6CB into a different location in skb->cb[]
919 */
920static inline int tcp_v6_iif(const struct sk_buff *skb)
921{
922	return TCP_SKB_CB(skb)->header.h6.iif;
923}
924
925static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
926{
927	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
928
929	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
930}
931
932/* TCP_SKB_CB reference means this can not be used from early demux */
933static inline int tcp_v6_sdif(const struct sk_buff *skb)
934{
935#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
936	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
937		return TCP_SKB_CB(skb)->header.h6.iif;
938#endif
939	return 0;
940}
941
942extern const struct inet_connection_sock_af_ops ipv6_specific;
943
944INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
945INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
946void tcp_v6_early_demux(struct sk_buff *skb);
947
948#endif
949
950/* TCP_SKB_CB reference means this can not be used from early demux */
951static inline int tcp_v4_sdif(struct sk_buff *skb)
952{
953#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
954	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
955		return TCP_SKB_CB(skb)->header.h4.iif;
956#endif
957	return 0;
958}
959
960/* Due to TSO, an SKB can be composed of multiple actual
961 * packets.  To keep these tracked properly, we use this.
962 */
963static inline int tcp_skb_pcount(const struct sk_buff *skb)
964{
965	return TCP_SKB_CB(skb)->tcp_gso_segs;
966}
967
968static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
969{
970	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
971}
972
973static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
974{
975	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
976}
977
978/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
979static inline int tcp_skb_mss(const struct sk_buff *skb)
980{
981	return TCP_SKB_CB(skb)->tcp_gso_size;
982}
983
984static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
985{
986	return likely(!TCP_SKB_CB(skb)->eor);
987}
988
989static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
990					const struct sk_buff *from)
991{
992	return likely(tcp_skb_can_collapse_to(to) &&
993		      mptcp_skb_can_collapse(to, from) &&
994		      skb_pure_zcopy_same(to, from));
995}
996
997/* Events passed to congestion control interface */
998enum tcp_ca_event {
999	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1000	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1001	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1002	CA_EVENT_LOSS,		/* loss timeout */
1003	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1004	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1005};
1006
1007/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1008enum tcp_ca_ack_event_flags {
1009	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1010	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1011	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1012};
1013
1014/*
1015 * Interface for adding new TCP congestion control handlers
1016 */
1017#define TCP_CA_NAME_MAX	16
1018#define TCP_CA_MAX	128
1019#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1020
1021#define TCP_CA_UNSPEC	0
1022
1023/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1024#define TCP_CONG_NON_RESTRICTED 0x1
1025/* Requires ECN/ECT set on all packets */
1026#define TCP_CONG_NEEDS_ECN	0x2
1027#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1028
1029union tcp_cc_info;
1030
1031struct ack_sample {
1032	u32 pkts_acked;
1033	s32 rtt_us;
1034	u32 in_flight;
1035};
1036
1037/* A rate sample measures the number of (original/retransmitted) data
1038 * packets delivered "delivered" over an interval of time "interval_us".
1039 * The tcp_rate.c code fills in the rate sample, and congestion
1040 * control modules that define a cong_control function to run at the end
1041 * of ACK processing can optionally chose to consult this sample when
1042 * setting cwnd and pacing rate.
1043 * A sample is invalid if "delivered" or "interval_us" is negative.
1044 */
1045struct rate_sample {
1046	u64  prior_mstamp; /* starting timestamp for interval */
1047	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1048	u32  prior_delivered_ce;/* tp->delivered_ce at "prior_mstamp" */
1049	s32  delivered;		/* number of packets delivered over interval */
1050	s32  delivered_ce;	/* number of packets delivered w/ CE marks*/
1051	long interval_us;	/* time for tp->delivered to incr "delivered" */
1052	u32 snd_interval_us;	/* snd interval for delivered packets */
1053	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1054	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1055	int  losses;		/* number of packets marked lost upon ACK */
1056	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1057	u32  prior_in_flight;	/* in flight before this ACK */
1058	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1059	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1060	bool is_retrans;	/* is sample from retransmission? */
1061	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1062};
1063
1064struct tcp_congestion_ops {
1065/* fast path fields are put first to fill one cache line */
1066
1067	/* return slow start threshold (required) */
1068	u32 (*ssthresh)(struct sock *sk);
1069
1070	/* do new cwnd calculation (required) */
1071	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1072
1073	/* call before changing ca_state (optional) */
1074	void (*set_state)(struct sock *sk, u8 new_state);
1075
1076	/* call when cwnd event occurs (optional) */
1077	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1078
1079	/* call when ack arrives (optional) */
1080	void (*in_ack_event)(struct sock *sk, u32 flags);
1081
1082	/* hook for packet ack accounting (optional) */
1083	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1084
1085	/* override sysctl_tcp_min_tso_segs */
1086	u32 (*min_tso_segs)(struct sock *sk);
1087
1088	/* call when packets are delivered to update cwnd and pacing rate,
1089	 * after all the ca_state processing. (optional)
1090	 */
1091	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1092
1093
1094	/* new value of cwnd after loss (required) */
1095	u32  (*undo_cwnd)(struct sock *sk);
1096	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1097	u32 (*sndbuf_expand)(struct sock *sk);
1098
1099/* control/slow paths put last */
1100	/* get info for inet_diag (optional) */
1101	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1102			   union tcp_cc_info *info);
1103
1104	char 			name[TCP_CA_NAME_MAX];
1105	struct module		*owner;
1106	struct list_head	list;
1107	u32			key;
1108	u32			flags;
1109
1110	/* initialize private data (optional) */
1111	void (*init)(struct sock *sk);
1112	/* cleanup private data  (optional) */
1113	void (*release)(struct sock *sk);
1114} ____cacheline_aligned_in_smp;
1115
1116int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1117void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1118int tcp_update_congestion_control(struct tcp_congestion_ops *type,
1119				  struct tcp_congestion_ops *old_type);
1120int tcp_validate_congestion_control(struct tcp_congestion_ops *ca);
1121
1122void tcp_assign_congestion_control(struct sock *sk);
1123void tcp_init_congestion_control(struct sock *sk);
1124void tcp_cleanup_congestion_control(struct sock *sk);
1125int tcp_set_default_congestion_control(struct net *net, const char *name);
1126void tcp_get_default_congestion_control(struct net *net, char *name);
1127void tcp_get_available_congestion_control(char *buf, size_t len);
1128void tcp_get_allowed_congestion_control(char *buf, size_t len);
1129int tcp_set_allowed_congestion_control(char *allowed);
1130int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1131			       bool cap_net_admin);
1132u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1133void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1134
1135u32 tcp_reno_ssthresh(struct sock *sk);
1136u32 tcp_reno_undo_cwnd(struct sock *sk);
1137void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1138extern struct tcp_congestion_ops tcp_reno;
1139
1140struct tcp_congestion_ops *tcp_ca_find(const char *name);
1141struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1142u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1143#ifdef CONFIG_INET
1144char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1145#else
1146static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1147{
1148	return NULL;
1149}
1150#endif
1151
1152static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1153{
1154	const struct inet_connection_sock *icsk = inet_csk(sk);
1155
1156	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1157}
1158
1159static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1160{
1161	const struct inet_connection_sock *icsk = inet_csk(sk);
1162
1163	if (icsk->icsk_ca_ops->cwnd_event)
1164		icsk->icsk_ca_ops->cwnd_event(sk, event);
1165}
1166
1167/* From tcp_cong.c */
1168void tcp_set_ca_state(struct sock *sk, const u8 ca_state);
1169
1170/* From tcp_rate.c */
1171void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1172void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1173			    struct rate_sample *rs);
1174void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1175		  bool is_sack_reneg, struct rate_sample *rs);
1176void tcp_rate_check_app_limited(struct sock *sk);
1177
1178static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1179{
1180	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1181}
1182
1183/* These functions determine how the current flow behaves in respect of SACK
1184 * handling. SACK is negotiated with the peer, and therefore it can vary
1185 * between different flows.
1186 *
1187 * tcp_is_sack - SACK enabled
1188 * tcp_is_reno - No SACK
1189 */
1190static inline int tcp_is_sack(const struct tcp_sock *tp)
1191{
1192	return likely(tp->rx_opt.sack_ok);
1193}
1194
1195static inline bool tcp_is_reno(const struct tcp_sock *tp)
1196{
1197	return !tcp_is_sack(tp);
1198}
1199
1200static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1201{
1202	return tp->sacked_out + tp->lost_out;
1203}
1204
1205/* This determines how many packets are "in the network" to the best
1206 * of our knowledge.  In many cases it is conservative, but where
1207 * detailed information is available from the receiver (via SACK
1208 * blocks etc.) we can make more aggressive calculations.
1209 *
1210 * Use this for decisions involving congestion control, use just
1211 * tp->packets_out to determine if the send queue is empty or not.
1212 *
1213 * Read this equation as:
1214 *
1215 *	"Packets sent once on transmission queue" MINUS
1216 *	"Packets left network, but not honestly ACKed yet" PLUS
1217 *	"Packets fast retransmitted"
1218 */
1219static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1220{
1221	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1222}
1223
1224#define TCP_INFINITE_SSTHRESH	0x7fffffff
1225
1226static inline u32 tcp_snd_cwnd(const struct tcp_sock *tp)
1227{
1228	return tp->snd_cwnd;
1229}
1230
1231static inline void tcp_snd_cwnd_set(struct tcp_sock *tp, u32 val)
1232{
1233	WARN_ON_ONCE((int)val <= 0);
1234	tp->snd_cwnd = val;
1235}
1236
1237static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1238{
1239	return tcp_snd_cwnd(tp) < tp->snd_ssthresh;
1240}
1241
1242static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1243{
1244	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1245}
1246
1247static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1248{
1249	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1250	       (1 << inet_csk(sk)->icsk_ca_state);
1251}
1252
1253/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1254 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1255 * ssthresh.
1256 */
1257static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1258{
1259	const struct tcp_sock *tp = tcp_sk(sk);
1260
1261	if (tcp_in_cwnd_reduction(sk))
1262		return tp->snd_ssthresh;
1263	else
1264		return max(tp->snd_ssthresh,
1265			   ((tcp_snd_cwnd(tp) >> 1) +
1266			    (tcp_snd_cwnd(tp) >> 2)));
1267}
1268
1269/* Use define here intentionally to get WARN_ON location shown at the caller */
1270#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1271
1272void tcp_enter_cwr(struct sock *sk);
1273__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1274
1275/* The maximum number of MSS of available cwnd for which TSO defers
1276 * sending if not using sysctl_tcp_tso_win_divisor.
1277 */
1278static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1279{
1280	return 3;
1281}
1282
1283/* Returns end sequence number of the receiver's advertised window */
1284static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1285{
1286	return tp->snd_una + tp->snd_wnd;
1287}
1288
1289/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1290 * flexible approach. The RFC suggests cwnd should not be raised unless
1291 * it was fully used previously. And that's exactly what we do in
1292 * congestion avoidance mode. But in slow start we allow cwnd to grow
1293 * as long as the application has used half the cwnd.
1294 * Example :
1295 *    cwnd is 10 (IW10), but application sends 9 frames.
1296 *    We allow cwnd to reach 18 when all frames are ACKed.
1297 * This check is safe because it's as aggressive as slow start which already
1298 * risks 100% overshoot. The advantage is that we discourage application to
1299 * either send more filler packets or data to artificially blow up the cwnd
1300 * usage, and allow application-limited process to probe bw more aggressively.
1301 */
1302static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1303{
1304	const struct tcp_sock *tp = tcp_sk(sk);
1305
1306	if (tp->is_cwnd_limited)
1307		return true;
1308
1309	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1310	if (tcp_in_slow_start(tp))
1311		return tcp_snd_cwnd(tp) < 2 * tp->max_packets_out;
1312
1313	return false;
1314}
1315
1316/* BBR congestion control needs pacing.
1317 * Same remark for SO_MAX_PACING_RATE.
1318 * sch_fq packet scheduler is efficiently handling pacing,
1319 * but is not always installed/used.
1320 * Return true if TCP stack should pace packets itself.
1321 */
1322static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1323{
1324	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1325}
1326
1327/* Estimates in how many jiffies next packet for this flow can be sent.
1328 * Scheduling a retransmit timer too early would be silly.
1329 */
1330static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1331{
1332	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1333
1334	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1335}
1336
1337static inline void tcp_reset_xmit_timer(struct sock *sk,
1338					const int what,
1339					unsigned long when,
1340					const unsigned long max_when)
1341{
1342	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1343				  max_when);
1344}
1345
1346/* Something is really bad, we could not queue an additional packet,
1347 * because qdisc is full or receiver sent a 0 window, or we are paced.
1348 * We do not want to add fuel to the fire, or abort too early,
1349 * so make sure the timer we arm now is at least 200ms in the future,
1350 * regardless of current icsk_rto value (as it could be ~2ms)
1351 */
1352static inline unsigned long tcp_probe0_base(const struct sock *sk)
1353{
1354	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1355}
1356
1357/* Variant of inet_csk_rto_backoff() used for zero window probes */
1358static inline unsigned long tcp_probe0_when(const struct sock *sk,
1359					    unsigned long max_when)
1360{
1361	u8 backoff = min_t(u8, ilog2(TCP_RTO_MAX / TCP_RTO_MIN) + 1,
1362			   inet_csk(sk)->icsk_backoff);
1363	u64 when = (u64)tcp_probe0_base(sk) << backoff;
1364
1365	return (unsigned long)min_t(u64, when, max_when);
1366}
1367
1368static inline void tcp_check_probe_timer(struct sock *sk)
1369{
1370	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1371		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1372				     tcp_probe0_base(sk), TCP_RTO_MAX);
1373}
1374
1375static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1376{
1377	tp->snd_wl1 = seq;
1378}
1379
1380static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1381{
1382	tp->snd_wl1 = seq;
1383}
1384
1385/*
1386 * Calculate(/check) TCP checksum
1387 */
1388static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1389				   __be32 daddr, __wsum base)
1390{
1391	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1392}
1393
1394static inline bool tcp_checksum_complete(struct sk_buff *skb)
1395{
1396	return !skb_csum_unnecessary(skb) &&
1397		__skb_checksum_complete(skb);
1398}
1399
1400bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb,
1401		     enum skb_drop_reason *reason);
1402
1403
1404int tcp_filter(struct sock *sk, struct sk_buff *skb);
1405void tcp_set_state(struct sock *sk, int state);
1406void tcp_done(struct sock *sk);
1407int tcp_abort(struct sock *sk, int err);
1408
1409static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1410{
1411	rx_opt->dsack = 0;
1412	rx_opt->num_sacks = 0;
1413}
1414
1415void tcp_cwnd_restart(struct sock *sk, s32 delta);
1416
1417static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1418{
1419	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1420	struct tcp_sock *tp = tcp_sk(sk);
1421	s32 delta;
1422
1423	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1424	    tp->packets_out || ca_ops->cong_control)
1425		return;
1426	delta = tcp_jiffies32 - tp->lsndtime;
1427	if (delta > inet_csk(sk)->icsk_rto)
1428		tcp_cwnd_restart(sk, delta);
1429}
1430
1431/* Determine a window scaling and initial window to offer. */
1432void tcp_select_initial_window(const struct sock *sk, int __space,
1433			       __u32 mss, __u32 *rcv_wnd,
1434			       __u32 *window_clamp, int wscale_ok,
1435			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1436
1437static inline int __tcp_win_from_space(u8 scaling_ratio, int space)
1438{
1439	s64 scaled_space = (s64)space * scaling_ratio;
1440
1441	return scaled_space >> TCP_RMEM_TO_WIN_SCALE;
1442}
1443
1444static inline int tcp_win_from_space(const struct sock *sk, int space)
1445{
1446	return __tcp_win_from_space(tcp_sk(sk)->scaling_ratio, space);
1447}
1448
1449/* inverse of __tcp_win_from_space() */
1450static inline int __tcp_space_from_win(u8 scaling_ratio, int win)
1451{
1452	u64 val = (u64)win << TCP_RMEM_TO_WIN_SCALE;
1453
1454	do_div(val, scaling_ratio);
1455	return val;
1456}
1457
1458static inline int tcp_space_from_win(const struct sock *sk, int win)
1459{
1460	return __tcp_space_from_win(tcp_sk(sk)->scaling_ratio, win);
1461}
1462
1463static inline void tcp_scaling_ratio_init(struct sock *sk)
1464{
1465	/* Assume a conservative default of 1200 bytes of payload per 4K page.
1466	 * This may be adjusted later in tcp_measure_rcv_mss().
1467	 */
1468	tcp_sk(sk)->scaling_ratio = (1200 << TCP_RMEM_TO_WIN_SCALE) /
1469				    SKB_TRUESIZE(4096);
1470}
1471
1472/* Note: caller must be prepared to deal with negative returns */
1473static inline int tcp_space(const struct sock *sk)
1474{
1475	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1476				  READ_ONCE(sk->sk_backlog.len) -
1477				  atomic_read(&sk->sk_rmem_alloc));
1478}
1479
1480static inline int tcp_full_space(const struct sock *sk)
1481{
1482	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1483}
1484
1485static inline void __tcp_adjust_rcv_ssthresh(struct sock *sk, u32 new_ssthresh)
1486{
1487	int unused_mem = sk_unused_reserved_mem(sk);
1488	struct tcp_sock *tp = tcp_sk(sk);
1489
1490	tp->rcv_ssthresh = min(tp->rcv_ssthresh, new_ssthresh);
1491	if (unused_mem)
1492		tp->rcv_ssthresh = max_t(u32, tp->rcv_ssthresh,
1493					 tcp_win_from_space(sk, unused_mem));
1494}
1495
1496static inline void tcp_adjust_rcv_ssthresh(struct sock *sk)
1497{
1498	__tcp_adjust_rcv_ssthresh(sk, 4U * tcp_sk(sk)->advmss);
1499}
1500
1501void tcp_cleanup_rbuf(struct sock *sk, int copied);
1502void __tcp_cleanup_rbuf(struct sock *sk, int copied);
1503
1504
1505/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1506 * If 87.5 % (7/8) of the space has been consumed, we want to override
1507 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1508 * len/truesize ratio.
1509 */
1510static inline bool tcp_rmem_pressure(const struct sock *sk)
1511{
1512	int rcvbuf, threshold;
1513
1514	if (tcp_under_memory_pressure(sk))
1515		return true;
1516
1517	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1518	threshold = rcvbuf - (rcvbuf >> 3);
1519
1520	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1521}
1522
1523static inline bool tcp_epollin_ready(const struct sock *sk, int target)
1524{
1525	const struct tcp_sock *tp = tcp_sk(sk);
1526	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
1527
1528	if (avail <= 0)
1529		return false;
1530
1531	return (avail >= target) || tcp_rmem_pressure(sk) ||
1532	       (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss);
1533}
1534
1535extern void tcp_openreq_init_rwin(struct request_sock *req,
1536				  const struct sock *sk_listener,
1537				  const struct dst_entry *dst);
1538
1539void tcp_enter_memory_pressure(struct sock *sk);
1540void tcp_leave_memory_pressure(struct sock *sk);
1541
1542static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1543{
1544	struct net *net = sock_net((struct sock *)tp);
1545	int val;
1546
1547	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1548	 * and do_tcp_setsockopt().
1549	 */
1550	val = READ_ONCE(tp->keepalive_intvl);
1551
1552	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1553}
1554
1555static inline int keepalive_time_when(const struct tcp_sock *tp)
1556{
1557	struct net *net = sock_net((struct sock *)tp);
1558	int val;
1559
1560	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1561	val = READ_ONCE(tp->keepalive_time);
1562
1563	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1564}
1565
1566static inline int keepalive_probes(const struct tcp_sock *tp)
1567{
1568	struct net *net = sock_net((struct sock *)tp);
1569	int val;
1570
1571	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1572	 * and do_tcp_setsockopt().
1573	 */
1574	val = READ_ONCE(tp->keepalive_probes);
1575
1576	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1577}
1578
1579static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1580{
1581	const struct inet_connection_sock *icsk = &tp->inet_conn;
1582
1583	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1584			  tcp_jiffies32 - tp->rcv_tstamp);
1585}
1586
1587static inline int tcp_fin_time(const struct sock *sk)
1588{
1589	int fin_timeout = tcp_sk(sk)->linger2 ? :
1590		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1591	const int rto = inet_csk(sk)->icsk_rto;
1592
1593	if (fin_timeout < (rto << 2) - (rto >> 1))
1594		fin_timeout = (rto << 2) - (rto >> 1);
1595
1596	return fin_timeout;
1597}
1598
1599static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1600				  int paws_win)
1601{
1602	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1603		return true;
1604	if (unlikely(!time_before32(ktime_get_seconds(),
1605				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1606		return true;
1607	/*
1608	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1609	 * then following tcp messages have valid values. Ignore 0 value,
1610	 * or else 'negative' tsval might forbid us to accept their packets.
1611	 */
1612	if (!rx_opt->ts_recent)
1613		return true;
1614	return false;
1615}
1616
1617static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1618				   int rst)
1619{
1620	if (tcp_paws_check(rx_opt, 0))
1621		return false;
1622
1623	/* RST segments are not recommended to carry timestamp,
1624	   and, if they do, it is recommended to ignore PAWS because
1625	   "their cleanup function should take precedence over timestamps."
1626	   Certainly, it is mistake. It is necessary to understand the reasons
1627	   of this constraint to relax it: if peer reboots, clock may go
1628	   out-of-sync and half-open connections will not be reset.
1629	   Actually, the problem would be not existing if all
1630	   the implementations followed draft about maintaining clock
1631	   via reboots. Linux-2.2 DOES NOT!
1632
1633	   However, we can relax time bounds for RST segments to MSL.
1634	 */
1635	if (rst && !time_before32(ktime_get_seconds(),
1636				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1637		return false;
1638	return true;
1639}
1640
1641bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1642			  int mib_idx, u32 *last_oow_ack_time);
1643
1644static inline void tcp_mib_init(struct net *net)
1645{
1646	/* See RFC 2012 */
1647	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1648	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1649	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1650	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1651}
1652
1653/* from STCP */
1654static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1655{
1656	tp->lost_skb_hint = NULL;
1657}
1658
1659static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1660{
1661	tcp_clear_retrans_hints_partial(tp);
1662	tp->retransmit_skb_hint = NULL;
1663}
1664
1665union tcp_md5_addr {
1666	struct in_addr  a4;
1667#if IS_ENABLED(CONFIG_IPV6)
1668	struct in6_addr	a6;
1669#endif
1670};
1671
1672/* - key database */
1673struct tcp_md5sig_key {
1674	struct hlist_node	node;
1675	u8			keylen;
1676	u8			family; /* AF_INET or AF_INET6 */
1677	u8			prefixlen;
1678	u8			flags;
1679	union tcp_md5_addr	addr;
1680	int			l3index; /* set if key added with L3 scope */
1681	u8			key[TCP_MD5SIG_MAXKEYLEN];
1682	struct rcu_head		rcu;
1683};
1684
1685/* - sock block */
1686struct tcp_md5sig_info {
1687	struct hlist_head	head;
1688	struct rcu_head		rcu;
1689};
1690
1691/* - pseudo header */
1692struct tcp4_pseudohdr {
1693	__be32		saddr;
1694	__be32		daddr;
1695	__u8		pad;
1696	__u8		protocol;
1697	__be16		len;
1698};
1699
1700struct tcp6_pseudohdr {
1701	struct in6_addr	saddr;
1702	struct in6_addr daddr;
1703	__be32		len;
1704	__be32		protocol;	/* including padding */
1705};
1706
1707union tcp_md5sum_block {
1708	struct tcp4_pseudohdr ip4;
1709#if IS_ENABLED(CONFIG_IPV6)
1710	struct tcp6_pseudohdr ip6;
1711#endif
1712};
1713
1714/* - pool: digest algorithm, hash description and scratch buffer */
1715struct tcp_md5sig_pool {
1716	struct ahash_request	*md5_req;
1717	void			*scratch;
1718};
1719
1720/* - functions */
1721int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1722			const struct sock *sk, const struct sk_buff *skb);
1723int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1724		   int family, u8 prefixlen, int l3index, u8 flags,
1725		   const u8 *newkey, u8 newkeylen);
1726int tcp_md5_key_copy(struct sock *sk, const union tcp_md5_addr *addr,
1727		     int family, u8 prefixlen, int l3index,
1728		     struct tcp_md5sig_key *key);
1729
1730int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1731		   int family, u8 prefixlen, int l3index, u8 flags);
1732struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1733					 const struct sock *addr_sk);
1734
1735#ifdef CONFIG_TCP_MD5SIG
1736#include <linux/jump_label.h>
1737extern struct static_key_false_deferred tcp_md5_needed;
1738struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1739					   const union tcp_md5_addr *addr,
1740					   int family);
1741static inline struct tcp_md5sig_key *
1742tcp_md5_do_lookup(const struct sock *sk, int l3index,
1743		  const union tcp_md5_addr *addr, int family)
1744{
1745	if (!static_branch_unlikely(&tcp_md5_needed.key))
1746		return NULL;
1747	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1748}
1749
1750enum skb_drop_reason
1751tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1752		     const void *saddr, const void *daddr,
1753		     int family, int dif, int sdif);
1754
1755
1756#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1757#else
1758static inline struct tcp_md5sig_key *
1759tcp_md5_do_lookup(const struct sock *sk, int l3index,
1760		  const union tcp_md5_addr *addr, int family)
1761{
1762	return NULL;
1763}
1764
1765static inline enum skb_drop_reason
1766tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
1767		     const void *saddr, const void *daddr,
1768		     int family, int dif, int sdif)
1769{
1770	return SKB_NOT_DROPPED_YET;
1771}
1772#define tcp_twsk_md5_key(twsk)	NULL
1773#endif
1774
1775bool tcp_alloc_md5sig_pool(void);
1776
1777struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1778static inline void tcp_put_md5sig_pool(void)
1779{
1780	local_bh_enable();
1781}
1782
1783int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1784			  unsigned int header_len);
1785int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1786		     const struct tcp_md5sig_key *key);
1787
1788/* From tcp_fastopen.c */
1789void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1790			    struct tcp_fastopen_cookie *cookie);
1791void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1792			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1793			    u16 try_exp);
1794struct tcp_fastopen_request {
1795	/* Fast Open cookie. Size 0 means a cookie request */
1796	struct tcp_fastopen_cookie	cookie;
1797	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1798	size_t				size;
1799	int				copied;	/* queued in tcp_connect() */
1800	struct ubuf_info		*uarg;
1801};
1802void tcp_free_fastopen_req(struct tcp_sock *tp);
1803void tcp_fastopen_destroy_cipher(struct sock *sk);
1804void tcp_fastopen_ctx_destroy(struct net *net);
1805int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1806			      void *primary_key, void *backup_key);
1807int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1808			    u64 *key);
1809void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1810struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1811			      struct request_sock *req,
1812			      struct tcp_fastopen_cookie *foc,
1813			      const struct dst_entry *dst);
1814void tcp_fastopen_init_key_once(struct net *net);
1815bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1816			     struct tcp_fastopen_cookie *cookie);
1817bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1818#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1819#define TCP_FASTOPEN_KEY_MAX 2
1820#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1821	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1822
1823/* Fastopen key context */
1824struct tcp_fastopen_context {
1825	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1826	int		num;
1827	struct rcu_head	rcu;
1828};
1829
1830void tcp_fastopen_active_disable(struct sock *sk);
1831bool tcp_fastopen_active_should_disable(struct sock *sk);
1832void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1833void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1834
1835/* Caller needs to wrap with rcu_read_(un)lock() */
1836static inline
1837struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1838{
1839	struct tcp_fastopen_context *ctx;
1840
1841	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1842	if (!ctx)
1843		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1844	return ctx;
1845}
1846
1847static inline
1848bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1849			       const struct tcp_fastopen_cookie *orig)
1850{
1851	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1852	    orig->len == foc->len &&
1853	    !memcmp(orig->val, foc->val, foc->len))
1854		return true;
1855	return false;
1856}
1857
1858static inline
1859int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1860{
1861	return ctx->num;
1862}
1863
1864/* Latencies incurred by various limits for a sender. They are
1865 * chronograph-like stats that are mutually exclusive.
1866 */
1867enum tcp_chrono {
1868	TCP_CHRONO_UNSPEC,
1869	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1870	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1871	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1872	__TCP_CHRONO_MAX,
1873};
1874
1875void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1876void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1877
1878/* This helper is needed, because skb->tcp_tsorted_anchor uses
1879 * the same memory storage than skb->destructor/_skb_refdst
1880 */
1881static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1882{
1883	skb->destructor = NULL;
1884	skb->_skb_refdst = 0UL;
1885}
1886
1887#define tcp_skb_tsorted_save(skb) {		\
1888	unsigned long _save = skb->_skb_refdst;	\
1889	skb->_skb_refdst = 0UL;
1890
1891#define tcp_skb_tsorted_restore(skb)		\
1892	skb->_skb_refdst = _save;		\
1893}
1894
1895void tcp_write_queue_purge(struct sock *sk);
1896
1897static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1898{
1899	return skb_rb_first(&sk->tcp_rtx_queue);
1900}
1901
1902static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1903{
1904	return skb_rb_last(&sk->tcp_rtx_queue);
1905}
1906
1907static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1908{
1909	return skb_peek_tail(&sk->sk_write_queue);
1910}
1911
1912#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1913	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1914
1915static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1916{
1917	return skb_peek(&sk->sk_write_queue);
1918}
1919
1920static inline bool tcp_skb_is_last(const struct sock *sk,
1921				   const struct sk_buff *skb)
1922{
1923	return skb_queue_is_last(&sk->sk_write_queue, skb);
1924}
1925
1926/**
1927 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1928 * @sk: socket
1929 *
1930 * Since the write queue can have a temporary empty skb in it,
1931 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1932 */
1933static inline bool tcp_write_queue_empty(const struct sock *sk)
1934{
1935	const struct tcp_sock *tp = tcp_sk(sk);
1936
1937	return tp->write_seq == tp->snd_nxt;
1938}
1939
1940static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1941{
1942	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1943}
1944
1945static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1946{
1947	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1948}
1949
1950static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1951{
1952	__skb_queue_tail(&sk->sk_write_queue, skb);
1953
1954	/* Queue it, remembering where we must start sending. */
1955	if (sk->sk_write_queue.next == skb)
1956		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1957}
1958
1959/* Insert new before skb on the write queue of sk.  */
1960static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1961						  struct sk_buff *skb,
1962						  struct sock *sk)
1963{
1964	__skb_queue_before(&sk->sk_write_queue, skb, new);
1965}
1966
1967static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1968{
1969	tcp_skb_tsorted_anchor_cleanup(skb);
1970	__skb_unlink(skb, &sk->sk_write_queue);
1971}
1972
1973void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1974
1975static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1976{
1977	tcp_skb_tsorted_anchor_cleanup(skb);
1978	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1979}
1980
1981static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1982{
1983	list_del(&skb->tcp_tsorted_anchor);
1984	tcp_rtx_queue_unlink(skb, sk);
1985	tcp_wmem_free_skb(sk, skb);
1986}
1987
1988static inline void tcp_push_pending_frames(struct sock *sk)
1989{
1990	if (tcp_send_head(sk)) {
1991		struct tcp_sock *tp = tcp_sk(sk);
1992
1993		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1994	}
1995}
1996
1997/* Start sequence of the skb just after the highest skb with SACKed
1998 * bit, valid only if sacked_out > 0 or when the caller has ensured
1999 * validity by itself.
2000 */
2001static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
2002{
2003	if (!tp->sacked_out)
2004		return tp->snd_una;
2005
2006	if (tp->highest_sack == NULL)
2007		return tp->snd_nxt;
2008
2009	return TCP_SKB_CB(tp->highest_sack)->seq;
2010}
2011
2012static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
2013{
2014	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
2015}
2016
2017static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
2018{
2019	return tcp_sk(sk)->highest_sack;
2020}
2021
2022static inline void tcp_highest_sack_reset(struct sock *sk)
2023{
2024	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
2025}
2026
2027/* Called when old skb is about to be deleted and replaced by new skb */
2028static inline void tcp_highest_sack_replace(struct sock *sk,
2029					    struct sk_buff *old,
2030					    struct sk_buff *new)
2031{
2032	if (old == tcp_highest_sack(sk))
2033		tcp_sk(sk)->highest_sack = new;
2034}
2035
2036/* This helper checks if socket has IP_TRANSPARENT set */
2037static inline bool inet_sk_transparent(const struct sock *sk)
2038{
2039	switch (sk->sk_state) {
2040	case TCP_TIME_WAIT:
2041		return inet_twsk(sk)->tw_transparent;
2042	case TCP_NEW_SYN_RECV:
2043		return inet_rsk(inet_reqsk(sk))->no_srccheck;
2044	}
2045	return inet_test_bit(TRANSPARENT, sk);
2046}
2047
2048/* Determines whether this is a thin stream (which may suffer from
2049 * increased latency). Used to trigger latency-reducing mechanisms.
2050 */
2051static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
2052{
2053	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
2054}
2055
2056/* /proc */
2057enum tcp_seq_states {
2058	TCP_SEQ_STATE_LISTENING,
2059	TCP_SEQ_STATE_ESTABLISHED,
2060};
2061
2062void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
2063void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2064void tcp_seq_stop(struct seq_file *seq, void *v);
2065
2066struct tcp_seq_afinfo {
2067	sa_family_t			family;
2068};
2069
2070struct tcp_iter_state {
2071	struct seq_net_private	p;
2072	enum tcp_seq_states	state;
2073	struct sock		*syn_wait_sk;
2074	int			bucket, offset, sbucket, num;
2075	loff_t			last_pos;
2076};
2077
2078extern struct request_sock_ops tcp_request_sock_ops;
2079extern struct request_sock_ops tcp6_request_sock_ops;
2080
2081void tcp_v4_destroy_sock(struct sock *sk);
2082
2083struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
2084				netdev_features_t features);
2085struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
2086INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
2087INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
2088INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
2089INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
2090void tcp_gro_complete(struct sk_buff *skb);
2091
2092void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
2093
2094static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2095{
2096	struct net *net = sock_net((struct sock *)tp);
2097	u32 val;
2098
2099	val = READ_ONCE(tp->notsent_lowat);
2100
2101	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2102}
2103
2104bool tcp_stream_memory_free(const struct sock *sk, int wake);
2105
2106#ifdef CONFIG_PROC_FS
2107int tcp4_proc_init(void);
2108void tcp4_proc_exit(void);
2109#endif
2110
2111int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2112int tcp_conn_request(struct request_sock_ops *rsk_ops,
2113		     const struct tcp_request_sock_ops *af_ops,
2114		     struct sock *sk, struct sk_buff *skb);
2115
2116/* TCP af-specific functions */
2117struct tcp_sock_af_ops {
2118#ifdef CONFIG_TCP_MD5SIG
2119	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2120						const struct sock *addr_sk);
2121	int		(*calc_md5_hash)(char *location,
2122					 const struct tcp_md5sig_key *md5,
2123					 const struct sock *sk,
2124					 const struct sk_buff *skb);
2125	int		(*md5_parse)(struct sock *sk,
2126				     int optname,
2127				     sockptr_t optval,
2128				     int optlen);
2129#endif
2130};
2131
2132struct tcp_request_sock_ops {
2133	u16 mss_clamp;
2134#ifdef CONFIG_TCP_MD5SIG
2135	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2136						 const struct sock *addr_sk);
2137	int		(*calc_md5_hash) (char *location,
2138					  const struct tcp_md5sig_key *md5,
2139					  const struct sock *sk,
2140					  const struct sk_buff *skb);
2141#endif
2142#ifdef CONFIG_SYN_COOKIES
2143	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2144				 __u16 *mss);
2145#endif
2146	struct dst_entry *(*route_req)(const struct sock *sk,
2147				       struct sk_buff *skb,
2148				       struct flowi *fl,
2149				       struct request_sock *req);
2150	u32 (*init_seq)(const struct sk_buff *skb);
2151	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2152	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2153			   struct flowi *fl, struct request_sock *req,
2154			   struct tcp_fastopen_cookie *foc,
2155			   enum tcp_synack_type synack_type,
2156			   struct sk_buff *syn_skb);
2157};
2158
2159extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2160#if IS_ENABLED(CONFIG_IPV6)
2161extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2162#endif
2163
2164#ifdef CONFIG_SYN_COOKIES
2165static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2166					 const struct sock *sk, struct sk_buff *skb,
2167					 __u16 *mss)
2168{
2169	tcp_synq_overflow(sk);
2170	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2171	return ops->cookie_init_seq(skb, mss);
2172}
2173#else
2174static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2175					 const struct sock *sk, struct sk_buff *skb,
2176					 __u16 *mss)
2177{
2178	return 0;
2179}
2180#endif
2181
2182int tcpv4_offload_init(void);
2183
2184void tcp_v4_init(void);
2185void tcp_init(void);
2186
2187/* tcp_recovery.c */
2188void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2189void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2190extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2191				u32 reo_wnd);
2192extern bool tcp_rack_mark_lost(struct sock *sk);
2193extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2194			     u64 xmit_time);
2195extern void tcp_rack_reo_timeout(struct sock *sk);
2196extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2197
2198/* tcp_plb.c */
2199
2200/*
2201 * Scaling factor for fractions in PLB. For example, tcp_plb_update_state
2202 * expects cong_ratio which represents fraction of traffic that experienced
2203 * congestion over a single RTT. In order to avoid floating point operations,
2204 * this fraction should be mapped to (1 << TCP_PLB_SCALE) and passed in.
2205 */
2206#define TCP_PLB_SCALE 8
2207
2208/* State for PLB (Protective Load Balancing) for a single TCP connection. */
2209struct tcp_plb_state {
2210	u8	consec_cong_rounds:5, /* consecutive congested rounds */
2211		unused:3;
2212	u32	pause_until; /* jiffies32 when PLB can resume rerouting */
2213};
2214
2215static inline void tcp_plb_init(const struct sock *sk,
2216				struct tcp_plb_state *plb)
2217{
2218	plb->consec_cong_rounds = 0;
2219	plb->pause_until = 0;
2220}
2221void tcp_plb_update_state(const struct sock *sk, struct tcp_plb_state *plb,
2222			  const int cong_ratio);
2223void tcp_plb_check_rehash(struct sock *sk, struct tcp_plb_state *plb);
2224void tcp_plb_update_state_upon_rto(struct sock *sk, struct tcp_plb_state *plb);
2225
2226/* At how many usecs into the future should the RTO fire? */
2227static inline s64 tcp_rto_delta_us(const struct sock *sk)
2228{
2229	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2230	u32 rto = inet_csk(sk)->icsk_rto;
2231	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2232
2233	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2234}
2235
2236/*
2237 * Save and compile IPv4 options, return a pointer to it
2238 */
2239static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2240							 struct sk_buff *skb)
2241{
2242	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2243	struct ip_options_rcu *dopt = NULL;
2244
2245	if (opt->optlen) {
2246		int opt_size = sizeof(*dopt) + opt->optlen;
2247
2248		dopt = kmalloc(opt_size, GFP_ATOMIC);
2249		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2250			kfree(dopt);
2251			dopt = NULL;
2252		}
2253	}
2254	return dopt;
2255}
2256
2257/* locally generated TCP pure ACKs have skb->truesize == 2
2258 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2259 * This is much faster than dissecting the packet to find out.
2260 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2261 */
2262static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2263{
2264	return skb->truesize == 2;
2265}
2266
2267static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2268{
2269	skb->truesize = 2;
2270}
2271
2272static inline int tcp_inq(struct sock *sk)
2273{
2274	struct tcp_sock *tp = tcp_sk(sk);
2275	int answ;
2276
2277	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2278		answ = 0;
2279	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2280		   !tp->urg_data ||
2281		   before(tp->urg_seq, tp->copied_seq) ||
2282		   !before(tp->urg_seq, tp->rcv_nxt)) {
2283
2284		answ = tp->rcv_nxt - tp->copied_seq;
2285
2286		/* Subtract 1, if FIN was received */
2287		if (answ && sock_flag(sk, SOCK_DONE))
2288			answ--;
2289	} else {
2290		answ = tp->urg_seq - tp->copied_seq;
2291	}
2292
2293	return answ;
2294}
2295
2296int tcp_peek_len(struct socket *sock);
2297
2298static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2299{
2300	u16 segs_in;
2301
2302	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2303
2304	/* We update these fields while other threads might
2305	 * read them from tcp_get_info()
2306	 */
2307	WRITE_ONCE(tp->segs_in, tp->segs_in + segs_in);
2308	if (skb->len > tcp_hdrlen(skb))
2309		WRITE_ONCE(tp->data_segs_in, tp->data_segs_in + segs_in);
2310}
2311
2312/*
2313 * TCP listen path runs lockless.
2314 * We forced "struct sock" to be const qualified to make sure
2315 * we don't modify one of its field by mistake.
2316 * Here, we increment sk_drops which is an atomic_t, so we can safely
2317 * make sock writable again.
2318 */
2319static inline void tcp_listendrop(const struct sock *sk)
2320{
2321	atomic_inc(&((struct sock *)sk)->sk_drops);
2322	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2323}
2324
2325enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2326
2327/*
2328 * Interface for adding Upper Level Protocols over TCP
2329 */
2330
2331#define TCP_ULP_NAME_MAX	16
2332#define TCP_ULP_MAX		128
2333#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2334
2335struct tcp_ulp_ops {
2336	struct list_head	list;
2337
2338	/* initialize ulp */
2339	int (*init)(struct sock *sk);
2340	/* update ulp */
2341	void (*update)(struct sock *sk, struct proto *p,
2342		       void (*write_space)(struct sock *sk));
2343	/* cleanup ulp */
2344	void (*release)(struct sock *sk);
2345	/* diagnostic */
2346	int (*get_info)(struct sock *sk, struct sk_buff *skb);
2347	size_t (*get_info_size)(const struct sock *sk);
2348	/* clone ulp */
2349	void (*clone)(const struct request_sock *req, struct sock *newsk,
2350		      const gfp_t priority);
2351
2352	char		name[TCP_ULP_NAME_MAX];
2353	struct module	*owner;
2354};
2355int tcp_register_ulp(struct tcp_ulp_ops *type);
2356void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2357int tcp_set_ulp(struct sock *sk, const char *name);
2358void tcp_get_available_ulp(char *buf, size_t len);
2359void tcp_cleanup_ulp(struct sock *sk);
2360void tcp_update_ulp(struct sock *sk, struct proto *p,
2361		    void (*write_space)(struct sock *sk));
2362
2363#define MODULE_ALIAS_TCP_ULP(name)				\
2364	__MODULE_INFO(alias, alias_userspace, name);		\
2365	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2366
2367#ifdef CONFIG_NET_SOCK_MSG
2368struct sk_msg;
2369struct sk_psock;
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int tcp_bpf_update_proto(struct sock *sk, struct sk_psock *psock, bool restore);
2373void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2374#endif /* CONFIG_BPF_SYSCALL */
2375
2376#ifdef CONFIG_INET
2377void tcp_eat_skb(struct sock *sk, struct sk_buff *skb);
2378#else
2379static inline void tcp_eat_skb(struct sock *sk, struct sk_buff *skb)
2380{
2381}
2382#endif
2383
2384int tcp_bpf_sendmsg_redir(struct sock *sk, bool ingress,
2385			  struct sk_msg *msg, u32 bytes, int flags);
2386#endif /* CONFIG_NET_SOCK_MSG */
2387
2388#if !defined(CONFIG_BPF_SYSCALL) || !defined(CONFIG_NET_SOCK_MSG)
2389static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2390{
2391}
2392#endif
2393
2394#ifdef CONFIG_CGROUP_BPF
2395static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2396				      struct sk_buff *skb,
2397				      unsigned int end_offset)
2398{
2399	skops->skb = skb;
2400	skops->skb_data_end = skb->data + end_offset;
2401}
2402#else
2403static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2404				      struct sk_buff *skb,
2405				      unsigned int end_offset)
2406{
2407}
2408#endif
2409
2410/* Call BPF_SOCK_OPS program that returns an int. If the return value
2411 * is < 0, then the BPF op failed (for example if the loaded BPF
2412 * program does not support the chosen operation or there is no BPF
2413 * program loaded).
2414 */
2415#ifdef CONFIG_BPF
2416static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2417{
2418	struct bpf_sock_ops_kern sock_ops;
2419	int ret;
2420
2421	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2422	if (sk_fullsock(sk)) {
2423		sock_ops.is_fullsock = 1;
2424		sock_owned_by_me(sk);
2425	}
2426
2427	sock_ops.sk = sk;
2428	sock_ops.op = op;
2429	if (nargs > 0)
2430		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2431
2432	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2433	if (ret == 0)
2434		ret = sock_ops.reply;
2435	else
2436		ret = -1;
2437	return ret;
2438}
2439
2440static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2441{
2442	u32 args[2] = {arg1, arg2};
2443
2444	return tcp_call_bpf(sk, op, 2, args);
2445}
2446
2447static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2448				    u32 arg3)
2449{
2450	u32 args[3] = {arg1, arg2, arg3};
2451
2452	return tcp_call_bpf(sk, op, 3, args);
2453}
2454
2455#else
2456static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2457{
2458	return -EPERM;
2459}
2460
2461static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2462{
2463	return -EPERM;
2464}
2465
2466static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2467				    u32 arg3)
2468{
2469	return -EPERM;
2470}
2471
2472#endif
2473
2474static inline u32 tcp_timeout_init(struct sock *sk)
2475{
2476	int timeout;
2477
2478	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2479
2480	if (timeout <= 0)
2481		timeout = TCP_TIMEOUT_INIT;
2482	return min_t(int, timeout, TCP_RTO_MAX);
2483}
2484
2485static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2486{
2487	int rwnd;
2488
2489	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2490
2491	if (rwnd < 0)
2492		rwnd = 0;
2493	return rwnd;
2494}
2495
2496static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2497{
2498	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2499}
2500
2501static inline void tcp_bpf_rtt(struct sock *sk)
2502{
2503	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2504		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2505}
2506
2507#if IS_ENABLED(CONFIG_SMC)
2508extern struct static_key_false tcp_have_smc;
2509#endif
2510
2511#if IS_ENABLED(CONFIG_TLS_DEVICE)
2512void clean_acked_data_enable(struct inet_connection_sock *icsk,
2513			     void (*cad)(struct sock *sk, u32 ack_seq));
2514void clean_acked_data_disable(struct inet_connection_sock *icsk);
2515void clean_acked_data_flush(void);
2516#endif
2517
2518DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2519static inline void tcp_add_tx_delay(struct sk_buff *skb,
2520				    const struct tcp_sock *tp)
2521{
2522	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2523		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2524}
2525
2526/* Compute Earliest Departure Time for some control packets
2527 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2528 */
2529static inline u64 tcp_transmit_time(const struct sock *sk)
2530{
2531	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2532		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2533			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2534
2535		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2536	}
2537	return 0;
2538}
2539
2540#endif	/* _TCP_H */
2541