162306a36Sopenharmony_ci/* Software floating-point emulation. 262306a36Sopenharmony_ci Basic one-word fraction declaration and manipulation. 362306a36Sopenharmony_ci Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. 462306a36Sopenharmony_ci This file is part of the GNU C Library. 562306a36Sopenharmony_ci Contributed by Richard Henderson (rth@cygnus.com), 662306a36Sopenharmony_ci Jakub Jelinek (jj@ultra.linux.cz), 762306a36Sopenharmony_ci David S. Miller (davem@redhat.com) and 862306a36Sopenharmony_ci Peter Maydell (pmaydell@chiark.greenend.org.uk). 962306a36Sopenharmony_ci 1062306a36Sopenharmony_ci The GNU C Library is free software; you can redistribute it and/or 1162306a36Sopenharmony_ci modify it under the terms of the GNU Library General Public License as 1262306a36Sopenharmony_ci published by the Free Software Foundation; either version 2 of the 1362306a36Sopenharmony_ci License, or (at your option) any later version. 1462306a36Sopenharmony_ci 1562306a36Sopenharmony_ci The GNU C Library is distributed in the hope that it will be useful, 1662306a36Sopenharmony_ci but WITHOUT ANY WARRANTY; without even the implied warranty of 1762306a36Sopenharmony_ci MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 1862306a36Sopenharmony_ci Library General Public License for more details. 1962306a36Sopenharmony_ci 2062306a36Sopenharmony_ci You should have received a copy of the GNU Library General Public 2162306a36Sopenharmony_ci License along with the GNU C Library; see the file COPYING.LIB. If 2262306a36Sopenharmony_ci not, write to the Free Software Foundation, Inc., 2362306a36Sopenharmony_ci 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ 2462306a36Sopenharmony_ci 2562306a36Sopenharmony_ci#ifndef __MATH_EMU_OP_1_H__ 2662306a36Sopenharmony_ci#define __MATH_EMU_OP_1_H__ 2762306a36Sopenharmony_ci 2862306a36Sopenharmony_ci#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f=0 2962306a36Sopenharmony_ci#define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f) 3062306a36Sopenharmony_ci#define _FP_FRAC_SET_1(X,I) (X##_f = I) 3162306a36Sopenharmony_ci#define _FP_FRAC_HIGH_1(X) (X##_f) 3262306a36Sopenharmony_ci#define _FP_FRAC_LOW_1(X) (X##_f) 3362306a36Sopenharmony_ci#define _FP_FRAC_WORD_1(X,w) (X##_f) 3462306a36Sopenharmony_ci 3562306a36Sopenharmony_ci#define _FP_FRAC_ADDI_1(X,I) (X##_f += I) 3662306a36Sopenharmony_ci#define _FP_FRAC_SLL_1(X,N) \ 3762306a36Sopenharmony_ci do { \ 3862306a36Sopenharmony_ci if (__builtin_constant_p(N) && (N) == 1) \ 3962306a36Sopenharmony_ci X##_f += X##_f; \ 4062306a36Sopenharmony_ci else \ 4162306a36Sopenharmony_ci X##_f <<= (N); \ 4262306a36Sopenharmony_ci } while (0) 4362306a36Sopenharmony_ci#define _FP_FRAC_SRL_1(X,N) (X##_f >>= N) 4462306a36Sopenharmony_ci 4562306a36Sopenharmony_ci/* Right shift with sticky-lsb. */ 4662306a36Sopenharmony_ci#define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz) 4762306a36Sopenharmony_ci 4862306a36Sopenharmony_ci#define __FP_FRAC_SRS_1(X,N,sz) \ 4962306a36Sopenharmony_ci (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \ 5062306a36Sopenharmony_ci ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci#define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f) 5362306a36Sopenharmony_ci#define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f) 5462306a36Sopenharmony_ci#define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f) 5562306a36Sopenharmony_ci#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f) 5662306a36Sopenharmony_ci 5762306a36Sopenharmony_ci/* Predicates */ 5862306a36Sopenharmony_ci#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0) 5962306a36Sopenharmony_ci#define _FP_FRAC_ZEROP_1(X) (X##_f == 0) 6062306a36Sopenharmony_ci#define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs) 6162306a36Sopenharmony_ci#define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs) 6262306a36Sopenharmony_ci#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f) 6362306a36Sopenharmony_ci#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f) 6462306a36Sopenharmony_ci#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f) 6562306a36Sopenharmony_ci 6662306a36Sopenharmony_ci#define _FP_ZEROFRAC_1 0 6762306a36Sopenharmony_ci#define _FP_MINFRAC_1 1 6862306a36Sopenharmony_ci#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0) 6962306a36Sopenharmony_ci 7062306a36Sopenharmony_ci/* 7162306a36Sopenharmony_ci * Unpack the raw bits of a native fp value. Do not classify or 7262306a36Sopenharmony_ci * normalize the data. 7362306a36Sopenharmony_ci */ 7462306a36Sopenharmony_ci 7562306a36Sopenharmony_ci#define _FP_UNPACK_RAW_1(fs, X, val) \ 7662306a36Sopenharmony_ci do { \ 7762306a36Sopenharmony_ci union _FP_UNION_##fs _flo; _flo.flt = (val); \ 7862306a36Sopenharmony_ci \ 7962306a36Sopenharmony_ci X##_f = _flo.bits.frac; \ 8062306a36Sopenharmony_ci X##_e = _flo.bits.exp; \ 8162306a36Sopenharmony_ci X##_s = _flo.bits.sign; \ 8262306a36Sopenharmony_ci } while (0) 8362306a36Sopenharmony_ci 8462306a36Sopenharmony_ci#define _FP_UNPACK_RAW_1_P(fs, X, val) \ 8562306a36Sopenharmony_ci do { \ 8662306a36Sopenharmony_ci union _FP_UNION_##fs *_flo = \ 8762306a36Sopenharmony_ci (union _FP_UNION_##fs *)(val); \ 8862306a36Sopenharmony_ci \ 8962306a36Sopenharmony_ci X##_f = _flo->bits.frac; \ 9062306a36Sopenharmony_ci X##_e = _flo->bits.exp; \ 9162306a36Sopenharmony_ci X##_s = _flo->bits.sign; \ 9262306a36Sopenharmony_ci } while (0) 9362306a36Sopenharmony_ci 9462306a36Sopenharmony_ci/* 9562306a36Sopenharmony_ci * Repack the raw bits of a native fp value. 9662306a36Sopenharmony_ci */ 9762306a36Sopenharmony_ci 9862306a36Sopenharmony_ci#define _FP_PACK_RAW_1(fs, val, X) \ 9962306a36Sopenharmony_ci do { \ 10062306a36Sopenharmony_ci union _FP_UNION_##fs _flo; \ 10162306a36Sopenharmony_ci \ 10262306a36Sopenharmony_ci _flo.bits.frac = X##_f; \ 10362306a36Sopenharmony_ci _flo.bits.exp = X##_e; \ 10462306a36Sopenharmony_ci _flo.bits.sign = X##_s; \ 10562306a36Sopenharmony_ci \ 10662306a36Sopenharmony_ci (val) = _flo.flt; \ 10762306a36Sopenharmony_ci } while (0) 10862306a36Sopenharmony_ci 10962306a36Sopenharmony_ci#define _FP_PACK_RAW_1_P(fs, val, X) \ 11062306a36Sopenharmony_ci do { \ 11162306a36Sopenharmony_ci union _FP_UNION_##fs *_flo = \ 11262306a36Sopenharmony_ci (union _FP_UNION_##fs *)(val); \ 11362306a36Sopenharmony_ci \ 11462306a36Sopenharmony_ci _flo->bits.frac = X##_f; \ 11562306a36Sopenharmony_ci _flo->bits.exp = X##_e; \ 11662306a36Sopenharmony_ci _flo->bits.sign = X##_s; \ 11762306a36Sopenharmony_ci } while (0) 11862306a36Sopenharmony_ci 11962306a36Sopenharmony_ci 12062306a36Sopenharmony_ci/* 12162306a36Sopenharmony_ci * Multiplication algorithms: 12262306a36Sopenharmony_ci */ 12362306a36Sopenharmony_ci 12462306a36Sopenharmony_ci/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the 12562306a36Sopenharmony_ci multiplication immediately. */ 12662306a36Sopenharmony_ci 12762306a36Sopenharmony_ci#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \ 12862306a36Sopenharmony_ci do { \ 12962306a36Sopenharmony_ci R##_f = X##_f * Y##_f; \ 13062306a36Sopenharmony_ci /* Normalize since we know where the msb of the multiplicands \ 13162306a36Sopenharmony_ci were (bit B), we know that the msb of the of the product is \ 13262306a36Sopenharmony_ci at either 2B or 2B-1. */ \ 13362306a36Sopenharmony_ci _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \ 13462306a36Sopenharmony_ci } while (0) 13562306a36Sopenharmony_ci 13662306a36Sopenharmony_ci/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */ 13762306a36Sopenharmony_ci 13862306a36Sopenharmony_ci#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \ 13962306a36Sopenharmony_ci do { \ 14062306a36Sopenharmony_ci _FP_W_TYPE _Z_f0, _Z_f1; \ 14162306a36Sopenharmony_ci doit(_Z_f1, _Z_f0, X##_f, Y##_f); \ 14262306a36Sopenharmony_ci /* Normalize since we know where the msb of the multiplicands \ 14362306a36Sopenharmony_ci were (bit B), we know that the msb of the of the product is \ 14462306a36Sopenharmony_ci at either 2B or 2B-1. */ \ 14562306a36Sopenharmony_ci _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \ 14662306a36Sopenharmony_ci R##_f = _Z_f0; \ 14762306a36Sopenharmony_ci } while (0) 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci/* Finally, a simple widening multiply algorithm. What fun! */ 15062306a36Sopenharmony_ci 15162306a36Sopenharmony_ci#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \ 15262306a36Sopenharmony_ci do { \ 15362306a36Sopenharmony_ci _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \ 15462306a36Sopenharmony_ci \ 15562306a36Sopenharmony_ci /* split the words in half */ \ 15662306a36Sopenharmony_ci _xh = X##_f >> (_FP_W_TYPE_SIZE/2); \ 15762306a36Sopenharmony_ci _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ 15862306a36Sopenharmony_ci _yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \ 15962306a36Sopenharmony_ci _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \ 16062306a36Sopenharmony_ci \ 16162306a36Sopenharmony_ci /* multiply the pieces */ \ 16262306a36Sopenharmony_ci _z_f0 = _xl * _yl; \ 16362306a36Sopenharmony_ci _a_f0 = _xh * _yl; \ 16462306a36Sopenharmony_ci _a_f1 = _xl * _yh; \ 16562306a36Sopenharmony_ci _z_f1 = _xh * _yh; \ 16662306a36Sopenharmony_ci \ 16762306a36Sopenharmony_ci /* reassemble into two full words */ \ 16862306a36Sopenharmony_ci if ((_a_f0 += _a_f1) < _a_f1) \ 16962306a36Sopenharmony_ci _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \ 17062306a36Sopenharmony_ci _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \ 17162306a36Sopenharmony_ci _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \ 17262306a36Sopenharmony_ci _FP_FRAC_ADD_2(_z, _z, _a); \ 17362306a36Sopenharmony_ci \ 17462306a36Sopenharmony_ci /* normalize */ \ 17562306a36Sopenharmony_ci _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \ 17662306a36Sopenharmony_ci R##_f = _z_f0; \ 17762306a36Sopenharmony_ci } while (0) 17862306a36Sopenharmony_ci 17962306a36Sopenharmony_ci 18062306a36Sopenharmony_ci/* 18162306a36Sopenharmony_ci * Division algorithms: 18262306a36Sopenharmony_ci */ 18362306a36Sopenharmony_ci 18462306a36Sopenharmony_ci/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the 18562306a36Sopenharmony_ci division immediately. Give this macro either _FP_DIV_HELP_imm for 18662306a36Sopenharmony_ci C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you 18762306a36Sopenharmony_ci choose will depend on what the compiler does with divrem4. */ 18862306a36Sopenharmony_ci 18962306a36Sopenharmony_ci#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \ 19062306a36Sopenharmony_ci do { \ 19162306a36Sopenharmony_ci _FP_W_TYPE _q, _r; \ 19262306a36Sopenharmony_ci X##_f <<= (X##_f < Y##_f \ 19362306a36Sopenharmony_ci ? R##_e--, _FP_WFRACBITS_##fs \ 19462306a36Sopenharmony_ci : _FP_WFRACBITS_##fs - 1); \ 19562306a36Sopenharmony_ci doit(_q, _r, X##_f, Y##_f); \ 19662306a36Sopenharmony_ci R##_f = _q | (_r != 0); \ 19762306a36Sopenharmony_ci } while (0) 19862306a36Sopenharmony_ci 19962306a36Sopenharmony_ci/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd 20062306a36Sopenharmony_ci that may be useful in this situation. This first is for a primitive 20162306a36Sopenharmony_ci that requires normalization, the second for one that does not. Look 20262306a36Sopenharmony_ci for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */ 20362306a36Sopenharmony_ci 20462306a36Sopenharmony_ci#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \ 20562306a36Sopenharmony_ci do { \ 20662306a36Sopenharmony_ci _FP_W_TYPE _nh, _nl, _q, _r, _y; \ 20762306a36Sopenharmony_ci \ 20862306a36Sopenharmony_ci /* Normalize Y -- i.e. make the most significant bit set. */ \ 20962306a36Sopenharmony_ci _y = Y##_f << _FP_WFRACXBITS_##fs; \ 21062306a36Sopenharmony_ci \ 21162306a36Sopenharmony_ci /* Shift X op correspondingly high, that is, up one full word. */ \ 21262306a36Sopenharmony_ci if (X##_f < Y##_f) \ 21362306a36Sopenharmony_ci { \ 21462306a36Sopenharmony_ci R##_e--; \ 21562306a36Sopenharmony_ci _nl = 0; \ 21662306a36Sopenharmony_ci _nh = X##_f; \ 21762306a36Sopenharmony_ci } \ 21862306a36Sopenharmony_ci else \ 21962306a36Sopenharmony_ci { \ 22062306a36Sopenharmony_ci _nl = X##_f << (_FP_W_TYPE_SIZE - 1); \ 22162306a36Sopenharmony_ci _nh = X##_f >> 1; \ 22262306a36Sopenharmony_ci } \ 22362306a36Sopenharmony_ci \ 22462306a36Sopenharmony_ci udiv_qrnnd(_q, _r, _nh, _nl, _y); \ 22562306a36Sopenharmony_ci R##_f = _q | (_r != 0); \ 22662306a36Sopenharmony_ci } while (0) 22762306a36Sopenharmony_ci 22862306a36Sopenharmony_ci#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \ 22962306a36Sopenharmony_ci do { \ 23062306a36Sopenharmony_ci _FP_W_TYPE _nh, _nl, _q, _r; \ 23162306a36Sopenharmony_ci if (X##_f < Y##_f) \ 23262306a36Sopenharmony_ci { \ 23362306a36Sopenharmony_ci R##_e--; \ 23462306a36Sopenharmony_ci _nl = X##_f << _FP_WFRACBITS_##fs; \ 23562306a36Sopenharmony_ci _nh = X##_f >> _FP_WFRACXBITS_##fs; \ 23662306a36Sopenharmony_ci } \ 23762306a36Sopenharmony_ci else \ 23862306a36Sopenharmony_ci { \ 23962306a36Sopenharmony_ci _nl = X##_f << (_FP_WFRACBITS_##fs - 1); \ 24062306a36Sopenharmony_ci _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \ 24162306a36Sopenharmony_ci } \ 24262306a36Sopenharmony_ci udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \ 24362306a36Sopenharmony_ci R##_f = _q | (_r != 0); \ 24462306a36Sopenharmony_ci } while (0) 24562306a36Sopenharmony_ci 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci/* 24862306a36Sopenharmony_ci * Square root algorithms: 24962306a36Sopenharmony_ci * We have just one right now, maybe Newton approximation 25062306a36Sopenharmony_ci * should be added for those machines where division is fast. 25162306a36Sopenharmony_ci */ 25262306a36Sopenharmony_ci 25362306a36Sopenharmony_ci#define _FP_SQRT_MEAT_1(R, S, T, X, q) \ 25462306a36Sopenharmony_ci do { \ 25562306a36Sopenharmony_ci while (q != _FP_WORK_ROUND) \ 25662306a36Sopenharmony_ci { \ 25762306a36Sopenharmony_ci T##_f = S##_f + q; \ 25862306a36Sopenharmony_ci if (T##_f <= X##_f) \ 25962306a36Sopenharmony_ci { \ 26062306a36Sopenharmony_ci S##_f = T##_f + q; \ 26162306a36Sopenharmony_ci X##_f -= T##_f; \ 26262306a36Sopenharmony_ci R##_f += q; \ 26362306a36Sopenharmony_ci } \ 26462306a36Sopenharmony_ci _FP_FRAC_SLL_1(X, 1); \ 26562306a36Sopenharmony_ci q >>= 1; \ 26662306a36Sopenharmony_ci } \ 26762306a36Sopenharmony_ci if (X##_f) \ 26862306a36Sopenharmony_ci { \ 26962306a36Sopenharmony_ci if (S##_f < X##_f) \ 27062306a36Sopenharmony_ci R##_f |= _FP_WORK_ROUND; \ 27162306a36Sopenharmony_ci R##_f |= _FP_WORK_STICKY; \ 27262306a36Sopenharmony_ci } \ 27362306a36Sopenharmony_ci } while (0) 27462306a36Sopenharmony_ci 27562306a36Sopenharmony_ci/* 27662306a36Sopenharmony_ci * Assembly/disassembly for converting to/from integral types. 27762306a36Sopenharmony_ci * No shifting or overflow handled here. 27862306a36Sopenharmony_ci */ 27962306a36Sopenharmony_ci 28062306a36Sopenharmony_ci#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f) 28162306a36Sopenharmony_ci#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r) 28262306a36Sopenharmony_ci 28362306a36Sopenharmony_ci 28462306a36Sopenharmony_ci/* 28562306a36Sopenharmony_ci * Convert FP values between word sizes 28662306a36Sopenharmony_ci */ 28762306a36Sopenharmony_ci 28862306a36Sopenharmony_ci#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \ 28962306a36Sopenharmony_ci do { \ 29062306a36Sopenharmony_ci D##_f = S##_f; \ 29162306a36Sopenharmony_ci if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \ 29262306a36Sopenharmony_ci { \ 29362306a36Sopenharmony_ci if (S##_c != FP_CLS_NAN) \ 29462306a36Sopenharmony_ci _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \ 29562306a36Sopenharmony_ci _FP_WFRACBITS_##sfs); \ 29662306a36Sopenharmony_ci else \ 29762306a36Sopenharmony_ci _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \ 29862306a36Sopenharmony_ci } \ 29962306a36Sopenharmony_ci else \ 30062306a36Sopenharmony_ci D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \ 30162306a36Sopenharmony_ci } while (0) 30262306a36Sopenharmony_ci 30362306a36Sopenharmony_ci#endif /* __MATH_EMU_OP_1_H__ */ 304