1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Symmetric key ciphers.
4 *
5 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8#ifndef _CRYPTO_SKCIPHER_H
9#define _CRYPTO_SKCIPHER_H
10
11#include <linux/atomic.h>
12#include <linux/container_of.h>
13#include <linux/crypto.h>
14#include <linux/slab.h>
15#include <linux/string.h>
16#include <linux/types.h>
17
18struct scatterlist;
19
20/**
21 *	struct skcipher_request - Symmetric key cipher request
22 *	@cryptlen: Number of bytes to encrypt or decrypt
23 *	@iv: Initialisation Vector
24 *	@src: Source SG list
25 *	@dst: Destination SG list
26 *	@base: Underlying async request
27 *	@__ctx: Start of private context data
28 */
29struct skcipher_request {
30	unsigned int cryptlen;
31
32	u8 *iv;
33
34	struct scatterlist *src;
35	struct scatterlist *dst;
36
37	struct crypto_async_request base;
38
39	void *__ctx[] CRYPTO_MINALIGN_ATTR;
40};
41
42struct crypto_skcipher {
43	unsigned int reqsize;
44
45	struct crypto_tfm base;
46};
47
48struct crypto_sync_skcipher {
49	struct crypto_skcipher base;
50};
51
52/*
53 * struct crypto_istat_cipher - statistics for cipher algorithm
54 * @encrypt_cnt:	number of encrypt requests
55 * @encrypt_tlen:	total data size handled by encrypt requests
56 * @decrypt_cnt:	number of decrypt requests
57 * @decrypt_tlen:	total data size handled by decrypt requests
58 * @err_cnt:		number of error for cipher requests
59 */
60struct crypto_istat_cipher {
61	atomic64_t encrypt_cnt;
62	atomic64_t encrypt_tlen;
63	atomic64_t decrypt_cnt;
64	atomic64_t decrypt_tlen;
65	atomic64_t err_cnt;
66};
67
68/**
69 * struct skcipher_alg - symmetric key cipher definition
70 * @min_keysize: Minimum key size supported by the transformation. This is the
71 *		 smallest key length supported by this transformation algorithm.
72 *		 This must be set to one of the pre-defined values as this is
73 *		 not hardware specific. Possible values for this field can be
74 *		 found via git grep "_MIN_KEY_SIZE" include/crypto/
75 * @max_keysize: Maximum key size supported by the transformation. This is the
76 *		 largest key length supported by this transformation algorithm.
77 *		 This must be set to one of the pre-defined values as this is
78 *		 not hardware specific. Possible values for this field can be
79 *		 found via git grep "_MAX_KEY_SIZE" include/crypto/
80 * @setkey: Set key for the transformation. This function is used to either
81 *	    program a supplied key into the hardware or store the key in the
82 *	    transformation context for programming it later. Note that this
83 *	    function does modify the transformation context. This function can
84 *	    be called multiple times during the existence of the transformation
85 *	    object, so one must make sure the key is properly reprogrammed into
86 *	    the hardware. This function is also responsible for checking the key
87 *	    length for validity. In case a software fallback was put in place in
88 *	    the @cra_init call, this function might need to use the fallback if
89 *	    the algorithm doesn't support all of the key sizes.
90 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
91 *	     the supplied scatterlist containing the blocks of data. The crypto
92 *	     API consumer is responsible for aligning the entries of the
93 *	     scatterlist properly and making sure the chunks are correctly
94 *	     sized. In case a software fallback was put in place in the
95 *	     @cra_init call, this function might need to use the fallback if
96 *	     the algorithm doesn't support all of the key sizes. In case the
97 *	     key was stored in transformation context, the key might need to be
98 *	     re-programmed into the hardware in this function. This function
99 *	     shall not modify the transformation context, as this function may
100 *	     be called in parallel with the same transformation object.
101 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
102 *	     and the conditions are exactly the same.
103 * @init: Initialize the cryptographic transformation object. This function
104 *	  is used to initialize the cryptographic transformation object.
105 *	  This function is called only once at the instantiation time, right
106 *	  after the transformation context was allocated. In case the
107 *	  cryptographic hardware has some special requirements which need to
108 *	  be handled by software, this function shall check for the precise
109 *	  requirement of the transformation and put any software fallbacks
110 *	  in place.
111 * @exit: Deinitialize the cryptographic transformation object. This is a
112 *	  counterpart to @init, used to remove various changes set in
113 *	  @init.
114 * @ivsize: IV size applicable for transformation. The consumer must provide an
115 *	    IV of exactly that size to perform the encrypt or decrypt operation.
116 * @chunksize: Equal to the block size except for stream ciphers such as
117 *	       CTR where it is set to the underlying block size.
118 * @walksize: Equal to the chunk size except in cases where the algorithm is
119 * 	      considerably more efficient if it can operate on multiple chunks
120 * 	      in parallel. Should be a multiple of chunksize.
121 * @stat: Statistics for cipher algorithm
122 * @base: Definition of a generic crypto algorithm.
123 *
124 * All fields except @ivsize are mandatory and must be filled.
125 */
126struct skcipher_alg {
127	int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
128	              unsigned int keylen);
129	int (*encrypt)(struct skcipher_request *req);
130	int (*decrypt)(struct skcipher_request *req);
131	int (*init)(struct crypto_skcipher *tfm);
132	void (*exit)(struct crypto_skcipher *tfm);
133
134	unsigned int min_keysize;
135	unsigned int max_keysize;
136	unsigned int ivsize;
137	unsigned int chunksize;
138	unsigned int walksize;
139
140#ifdef CONFIG_CRYPTO_STATS
141	struct crypto_istat_cipher stat;
142#endif
143
144	struct crypto_alg base;
145};
146
147#define MAX_SYNC_SKCIPHER_REQSIZE      384
148/*
149 * This performs a type-check against the "tfm" argument to make sure
150 * all users have the correct skcipher tfm for doing on-stack requests.
151 */
152#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
153	char __##name##_desc[sizeof(struct skcipher_request) + \
154			     MAX_SYNC_SKCIPHER_REQSIZE + \
155			     (!(sizeof((struct crypto_sync_skcipher *)1 == \
156				       (typeof(tfm))1))) \
157			    ] CRYPTO_MINALIGN_ATTR; \
158	struct skcipher_request *name = (void *)__##name##_desc
159
160/**
161 * DOC: Symmetric Key Cipher API
162 *
163 * Symmetric key cipher API is used with the ciphers of type
164 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
165 *
166 * Asynchronous cipher operations imply that the function invocation for a
167 * cipher request returns immediately before the completion of the operation.
168 * The cipher request is scheduled as a separate kernel thread and therefore
169 * load-balanced on the different CPUs via the process scheduler. To allow
170 * the kernel crypto API to inform the caller about the completion of a cipher
171 * request, the caller must provide a callback function. That function is
172 * invoked with the cipher handle when the request completes.
173 *
174 * To support the asynchronous operation, additional information than just the
175 * cipher handle must be supplied to the kernel crypto API. That additional
176 * information is given by filling in the skcipher_request data structure.
177 *
178 * For the symmetric key cipher API, the state is maintained with the tfm
179 * cipher handle. A single tfm can be used across multiple calls and in
180 * parallel. For asynchronous block cipher calls, context data supplied and
181 * only used by the caller can be referenced the request data structure in
182 * addition to the IV used for the cipher request. The maintenance of such
183 * state information would be important for a crypto driver implementer to
184 * have, because when calling the callback function upon completion of the
185 * cipher operation, that callback function may need some information about
186 * which operation just finished if it invoked multiple in parallel. This
187 * state information is unused by the kernel crypto API.
188 */
189
190static inline struct crypto_skcipher *__crypto_skcipher_cast(
191	struct crypto_tfm *tfm)
192{
193	return container_of(tfm, struct crypto_skcipher, base);
194}
195
196/**
197 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
198 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
199 *	      skcipher cipher
200 * @type: specifies the type of the cipher
201 * @mask: specifies the mask for the cipher
202 *
203 * Allocate a cipher handle for an skcipher. The returned struct
204 * crypto_skcipher is the cipher handle that is required for any subsequent
205 * API invocation for that skcipher.
206 *
207 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
208 *	   of an error, PTR_ERR() returns the error code.
209 */
210struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
211					      u32 type, u32 mask);
212
213struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
214					      u32 type, u32 mask);
215
216static inline struct crypto_tfm *crypto_skcipher_tfm(
217	struct crypto_skcipher *tfm)
218{
219	return &tfm->base;
220}
221
222/**
223 * crypto_free_skcipher() - zeroize and free cipher handle
224 * @tfm: cipher handle to be freed
225 *
226 * If @tfm is a NULL or error pointer, this function does nothing.
227 */
228static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
229{
230	crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
231}
232
233static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
234{
235	crypto_free_skcipher(&tfm->base);
236}
237
238/**
239 * crypto_has_skcipher() - Search for the availability of an skcipher.
240 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
241 *	      skcipher
242 * @type: specifies the type of the skcipher
243 * @mask: specifies the mask for the skcipher
244 *
245 * Return: true when the skcipher is known to the kernel crypto API; false
246 *	   otherwise
247 */
248int crypto_has_skcipher(const char *alg_name, u32 type, u32 mask);
249
250static inline const char *crypto_skcipher_driver_name(
251	struct crypto_skcipher *tfm)
252{
253	return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
254}
255
256static inline struct skcipher_alg *crypto_skcipher_alg(
257	struct crypto_skcipher *tfm)
258{
259	return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
260			    struct skcipher_alg, base);
261}
262
263static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
264{
265	return alg->ivsize;
266}
267
268/**
269 * crypto_skcipher_ivsize() - obtain IV size
270 * @tfm: cipher handle
271 *
272 * The size of the IV for the skcipher referenced by the cipher handle is
273 * returned. This IV size may be zero if the cipher does not need an IV.
274 *
275 * Return: IV size in bytes
276 */
277static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
278{
279	return crypto_skcipher_alg(tfm)->ivsize;
280}
281
282static inline unsigned int crypto_sync_skcipher_ivsize(
283	struct crypto_sync_skcipher *tfm)
284{
285	return crypto_skcipher_ivsize(&tfm->base);
286}
287
288/**
289 * crypto_skcipher_blocksize() - obtain block size of cipher
290 * @tfm: cipher handle
291 *
292 * The block size for the skcipher referenced with the cipher handle is
293 * returned. The caller may use that information to allocate appropriate
294 * memory for the data returned by the encryption or decryption operation
295 *
296 * Return: block size of cipher
297 */
298static inline unsigned int crypto_skcipher_blocksize(
299	struct crypto_skcipher *tfm)
300{
301	return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
302}
303
304static inline unsigned int crypto_skcipher_alg_chunksize(
305	struct skcipher_alg *alg)
306{
307	return alg->chunksize;
308}
309
310/**
311 * crypto_skcipher_chunksize() - obtain chunk size
312 * @tfm: cipher handle
313 *
314 * The block size is set to one for ciphers such as CTR.  However,
315 * you still need to provide incremental updates in multiples of
316 * the underlying block size as the IV does not have sub-block
317 * granularity.  This is known in this API as the chunk size.
318 *
319 * Return: chunk size in bytes
320 */
321static inline unsigned int crypto_skcipher_chunksize(
322	struct crypto_skcipher *tfm)
323{
324	return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
325}
326
327static inline unsigned int crypto_sync_skcipher_blocksize(
328	struct crypto_sync_skcipher *tfm)
329{
330	return crypto_skcipher_blocksize(&tfm->base);
331}
332
333static inline unsigned int crypto_skcipher_alignmask(
334	struct crypto_skcipher *tfm)
335{
336	return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
337}
338
339static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
340{
341	return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
342}
343
344static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
345					       u32 flags)
346{
347	crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
348}
349
350static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
351						 u32 flags)
352{
353	crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
354}
355
356static inline u32 crypto_sync_skcipher_get_flags(
357	struct crypto_sync_skcipher *tfm)
358{
359	return crypto_skcipher_get_flags(&tfm->base);
360}
361
362static inline void crypto_sync_skcipher_set_flags(
363	struct crypto_sync_skcipher *tfm, u32 flags)
364{
365	crypto_skcipher_set_flags(&tfm->base, flags);
366}
367
368static inline void crypto_sync_skcipher_clear_flags(
369	struct crypto_sync_skcipher *tfm, u32 flags)
370{
371	crypto_skcipher_clear_flags(&tfm->base, flags);
372}
373
374/**
375 * crypto_skcipher_setkey() - set key for cipher
376 * @tfm: cipher handle
377 * @key: buffer holding the key
378 * @keylen: length of the key in bytes
379 *
380 * The caller provided key is set for the skcipher referenced by the cipher
381 * handle.
382 *
383 * Note, the key length determines the cipher type. Many block ciphers implement
384 * different cipher modes depending on the key size, such as AES-128 vs AES-192
385 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
386 * is performed.
387 *
388 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
389 */
390int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
391			   const u8 *key, unsigned int keylen);
392
393static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
394					 const u8 *key, unsigned int keylen)
395{
396	return crypto_skcipher_setkey(&tfm->base, key, keylen);
397}
398
399static inline unsigned int crypto_skcipher_min_keysize(
400	struct crypto_skcipher *tfm)
401{
402	return crypto_skcipher_alg(tfm)->min_keysize;
403}
404
405static inline unsigned int crypto_skcipher_max_keysize(
406	struct crypto_skcipher *tfm)
407{
408	return crypto_skcipher_alg(tfm)->max_keysize;
409}
410
411/**
412 * crypto_skcipher_reqtfm() - obtain cipher handle from request
413 * @req: skcipher_request out of which the cipher handle is to be obtained
414 *
415 * Return the crypto_skcipher handle when furnishing an skcipher_request
416 * data structure.
417 *
418 * Return: crypto_skcipher handle
419 */
420static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
421	struct skcipher_request *req)
422{
423	return __crypto_skcipher_cast(req->base.tfm);
424}
425
426static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
427	struct skcipher_request *req)
428{
429	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
430
431	return container_of(tfm, struct crypto_sync_skcipher, base);
432}
433
434/**
435 * crypto_skcipher_encrypt() - encrypt plaintext
436 * @req: reference to the skcipher_request handle that holds all information
437 *	 needed to perform the cipher operation
438 *
439 * Encrypt plaintext data using the skcipher_request handle. That data
440 * structure and how it is filled with data is discussed with the
441 * skcipher_request_* functions.
442 *
443 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
444 */
445int crypto_skcipher_encrypt(struct skcipher_request *req);
446
447/**
448 * crypto_skcipher_decrypt() - decrypt ciphertext
449 * @req: reference to the skcipher_request handle that holds all information
450 *	 needed to perform the cipher operation
451 *
452 * Decrypt ciphertext data using the skcipher_request handle. That data
453 * structure and how it is filled with data is discussed with the
454 * skcipher_request_* functions.
455 *
456 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
457 */
458int crypto_skcipher_decrypt(struct skcipher_request *req);
459
460/**
461 * DOC: Symmetric Key Cipher Request Handle
462 *
463 * The skcipher_request data structure contains all pointers to data
464 * required for the symmetric key cipher operation. This includes the cipher
465 * handle (which can be used by multiple skcipher_request instances), pointer
466 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
467 * as a handle to the skcipher_request_* API calls in a similar way as
468 * skcipher handle to the crypto_skcipher_* API calls.
469 */
470
471/**
472 * crypto_skcipher_reqsize() - obtain size of the request data structure
473 * @tfm: cipher handle
474 *
475 * Return: number of bytes
476 */
477static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
478{
479	return tfm->reqsize;
480}
481
482/**
483 * skcipher_request_set_tfm() - update cipher handle reference in request
484 * @req: request handle to be modified
485 * @tfm: cipher handle that shall be added to the request handle
486 *
487 * Allow the caller to replace the existing skcipher handle in the request
488 * data structure with a different one.
489 */
490static inline void skcipher_request_set_tfm(struct skcipher_request *req,
491					    struct crypto_skcipher *tfm)
492{
493	req->base.tfm = crypto_skcipher_tfm(tfm);
494}
495
496static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
497					    struct crypto_sync_skcipher *tfm)
498{
499	skcipher_request_set_tfm(req, &tfm->base);
500}
501
502static inline struct skcipher_request *skcipher_request_cast(
503	struct crypto_async_request *req)
504{
505	return container_of(req, struct skcipher_request, base);
506}
507
508/**
509 * skcipher_request_alloc() - allocate request data structure
510 * @tfm: cipher handle to be registered with the request
511 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
512 *
513 * Allocate the request data structure that must be used with the skcipher
514 * encrypt and decrypt API calls. During the allocation, the provided skcipher
515 * handle is registered in the request data structure.
516 *
517 * Return: allocated request handle in case of success, or NULL if out of memory
518 */
519static inline struct skcipher_request *skcipher_request_alloc(
520	struct crypto_skcipher *tfm, gfp_t gfp)
521{
522	struct skcipher_request *req;
523
524	req = kmalloc(sizeof(struct skcipher_request) +
525		      crypto_skcipher_reqsize(tfm), gfp);
526
527	if (likely(req))
528		skcipher_request_set_tfm(req, tfm);
529
530	return req;
531}
532
533/**
534 * skcipher_request_free() - zeroize and free request data structure
535 * @req: request data structure cipher handle to be freed
536 */
537static inline void skcipher_request_free(struct skcipher_request *req)
538{
539	kfree_sensitive(req);
540}
541
542static inline void skcipher_request_zero(struct skcipher_request *req)
543{
544	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
545
546	memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
547}
548
549/**
550 * skcipher_request_set_callback() - set asynchronous callback function
551 * @req: request handle
552 * @flags: specify zero or an ORing of the flags
553 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
554 *	   increase the wait queue beyond the initial maximum size;
555 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
556 * @compl: callback function pointer to be registered with the request handle
557 * @data: The data pointer refers to memory that is not used by the kernel
558 *	  crypto API, but provided to the callback function for it to use. Here,
559 *	  the caller can provide a reference to memory the callback function can
560 *	  operate on. As the callback function is invoked asynchronously to the
561 *	  related functionality, it may need to access data structures of the
562 *	  related functionality which can be referenced using this pointer. The
563 *	  callback function can access the memory via the "data" field in the
564 *	  crypto_async_request data structure provided to the callback function.
565 *
566 * This function allows setting the callback function that is triggered once the
567 * cipher operation completes.
568 *
569 * The callback function is registered with the skcipher_request handle and
570 * must comply with the following template::
571 *
572 *	void callback_function(struct crypto_async_request *req, int error)
573 */
574static inline void skcipher_request_set_callback(struct skcipher_request *req,
575						 u32 flags,
576						 crypto_completion_t compl,
577						 void *data)
578{
579	req->base.complete = compl;
580	req->base.data = data;
581	req->base.flags = flags;
582}
583
584/**
585 * skcipher_request_set_crypt() - set data buffers
586 * @req: request handle
587 * @src: source scatter / gather list
588 * @dst: destination scatter / gather list
589 * @cryptlen: number of bytes to process from @src
590 * @iv: IV for the cipher operation which must comply with the IV size defined
591 *      by crypto_skcipher_ivsize
592 *
593 * This function allows setting of the source data and destination data
594 * scatter / gather lists.
595 *
596 * For encryption, the source is treated as the plaintext and the
597 * destination is the ciphertext. For a decryption operation, the use is
598 * reversed - the source is the ciphertext and the destination is the plaintext.
599 */
600static inline void skcipher_request_set_crypt(
601	struct skcipher_request *req,
602	struct scatterlist *src, struct scatterlist *dst,
603	unsigned int cryptlen, void *iv)
604{
605	req->src = src;
606	req->dst = dst;
607	req->cryptlen = cryptlen;
608	req->iv = iv;
609}
610
611#endif	/* _CRYPTO_SKCIPHER_H */
612
613