xref: /kernel/linux/linux-6.6/include/crypto/hash.h (revision 62306a36)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Hash: Hash algorithms under the crypto API
4 *
5 * Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
6 */
7
8#ifndef _CRYPTO_HASH_H
9#define _CRYPTO_HASH_H
10
11#include <linux/atomic.h>
12#include <linux/crypto.h>
13#include <linux/string.h>
14
15struct crypto_ahash;
16
17/**
18 * DOC: Message Digest Algorithm Definitions
19 *
20 * These data structures define modular message digest algorithm
21 * implementations, managed via crypto_register_ahash(),
22 * crypto_register_shash(), crypto_unregister_ahash() and
23 * crypto_unregister_shash().
24 */
25
26/*
27 * struct crypto_istat_hash - statistics for has algorithm
28 * @hash_cnt:		number of hash requests
29 * @hash_tlen:		total data size hashed
30 * @err_cnt:		number of error for hash requests
31 */
32struct crypto_istat_hash {
33	atomic64_t hash_cnt;
34	atomic64_t hash_tlen;
35	atomic64_t err_cnt;
36};
37
38#ifdef CONFIG_CRYPTO_STATS
39#define HASH_ALG_COMMON_STAT struct crypto_istat_hash stat;
40#else
41#define HASH_ALG_COMMON_STAT
42#endif
43
44/*
45 * struct hash_alg_common - define properties of message digest
46 * @stat: Statistics for hash algorithm.
47 * @digestsize: Size of the result of the transformation. A buffer of this size
48 *	        must be available to the @final and @finup calls, so they can
49 *	        store the resulting hash into it. For various predefined sizes,
50 *	        search include/crypto/ using
51 *	        git grep _DIGEST_SIZE include/crypto.
52 * @statesize: Size of the block for partial state of the transformation. A
53 *	       buffer of this size must be passed to the @export function as it
54 *	       will save the partial state of the transformation into it. On the
55 *	       other side, the @import function will load the state from a
56 *	       buffer of this size as well.
57 * @base: Start of data structure of cipher algorithm. The common data
58 *	  structure of crypto_alg contains information common to all ciphers.
59 *	  The hash_alg_common data structure now adds the hash-specific
60 *	  information.
61 */
62#define HASH_ALG_COMMON {		\
63	HASH_ALG_COMMON_STAT		\
64					\
65	unsigned int digestsize;	\
66	unsigned int statesize;		\
67					\
68	struct crypto_alg base;		\
69}
70struct hash_alg_common HASH_ALG_COMMON;
71
72struct ahash_request {
73	struct crypto_async_request base;
74
75	unsigned int nbytes;
76	struct scatterlist *src;
77	u8 *result;
78
79	/* This field may only be used by the ahash API code. */
80	void *priv;
81
82	void *__ctx[] CRYPTO_MINALIGN_ATTR;
83};
84
85/**
86 * struct ahash_alg - asynchronous message digest definition
87 * @init: **[mandatory]** Initialize the transformation context. Intended only to initialize the
88 *	  state of the HASH transformation at the beginning. This shall fill in
89 *	  the internal structures used during the entire duration of the whole
90 *	  transformation. No data processing happens at this point. Driver code
91 *	  implementation must not use req->result.
92 * @update: **[mandatory]** Push a chunk of data into the driver for transformation. This
93 *	   function actually pushes blocks of data from upper layers into the
94 *	   driver, which then passes those to the hardware as seen fit. This
95 *	   function must not finalize the HASH transformation by calculating the
96 *	   final message digest as this only adds more data into the
97 *	   transformation. This function shall not modify the transformation
98 *	   context, as this function may be called in parallel with the same
99 *	   transformation object. Data processing can happen synchronously
100 *	   [SHASH] or asynchronously [AHASH] at this point. Driver must not use
101 *	   req->result.
102 * @final: **[mandatory]** Retrieve result from the driver. This function finalizes the
103 *	   transformation and retrieves the resulting hash from the driver and
104 *	   pushes it back to upper layers. No data processing happens at this
105 *	   point unless hardware requires it to finish the transformation
106 *	   (then the data buffered by the device driver is processed).
107 * @finup: **[optional]** Combination of @update and @final. This function is effectively a
108 *	   combination of @update and @final calls issued in sequence. As some
109 *	   hardware cannot do @update and @final separately, this callback was
110 *	   added to allow such hardware to be used at least by IPsec. Data
111 *	   processing can happen synchronously [SHASH] or asynchronously [AHASH]
112 *	   at this point.
113 * @digest: Combination of @init and @update and @final. This function
114 *	    effectively behaves as the entire chain of operations, @init,
115 *	    @update and @final issued in sequence. Just like @finup, this was
116 *	    added for hardware which cannot do even the @finup, but can only do
117 *	    the whole transformation in one run. Data processing can happen
118 *	    synchronously [SHASH] or asynchronously [AHASH] at this point.
119 * @setkey: Set optional key used by the hashing algorithm. Intended to push
120 *	    optional key used by the hashing algorithm from upper layers into
121 *	    the driver. This function can store the key in the transformation
122 *	    context or can outright program it into the hardware. In the former
123 *	    case, one must be careful to program the key into the hardware at
124 *	    appropriate time and one must be careful that .setkey() can be
125 *	    called multiple times during the existence of the transformation
126 *	    object. Not  all hashing algorithms do implement this function as it
127 *	    is only needed for keyed message digests. SHAx/MDx/CRCx do NOT
128 *	    implement this function. HMAC(MDx)/HMAC(SHAx)/CMAC(AES) do implement
129 *	    this function. This function must be called before any other of the
130 *	    @init, @update, @final, @finup, @digest is called. No data
131 *	    processing happens at this point.
132 * @export: Export partial state of the transformation. This function dumps the
133 *	    entire state of the ongoing transformation into a provided block of
134 *	    data so it can be @import 'ed back later on. This is useful in case
135 *	    you want to save partial result of the transformation after
136 *	    processing certain amount of data and reload this partial result
137 *	    multiple times later on for multiple re-use. No data processing
138 *	    happens at this point. Driver must not use req->result.
139 * @import: Import partial state of the transformation. This function loads the
140 *	    entire state of the ongoing transformation from a provided block of
141 *	    data so the transformation can continue from this point onward. No
142 *	    data processing happens at this point. Driver must not use
143 *	    req->result.
144 * @init_tfm: Initialize the cryptographic transformation object.
145 *	      This function is called only once at the instantiation
146 *	      time, right after the transformation context was
147 *	      allocated. In case the cryptographic hardware has
148 *	      some special requirements which need to be handled
149 *	      by software, this function shall check for the precise
150 *	      requirement of the transformation and put any software
151 *	      fallbacks in place.
152 * @exit_tfm: Deinitialize the cryptographic transformation object.
153 *	      This is a counterpart to @init_tfm, used to remove
154 *	      various changes set in @init_tfm.
155 * @clone_tfm: Copy transform into new object, may allocate memory.
156 * @halg: see struct hash_alg_common
157 */
158struct ahash_alg {
159	int (*init)(struct ahash_request *req);
160	int (*update)(struct ahash_request *req);
161	int (*final)(struct ahash_request *req);
162	int (*finup)(struct ahash_request *req);
163	int (*digest)(struct ahash_request *req);
164	int (*export)(struct ahash_request *req, void *out);
165	int (*import)(struct ahash_request *req, const void *in);
166	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
167		      unsigned int keylen);
168	int (*init_tfm)(struct crypto_ahash *tfm);
169	void (*exit_tfm)(struct crypto_ahash *tfm);
170	int (*clone_tfm)(struct crypto_ahash *dst, struct crypto_ahash *src);
171
172	struct hash_alg_common halg;
173};
174
175struct shash_desc {
176	struct crypto_shash *tfm;
177	void *__ctx[] __aligned(ARCH_SLAB_MINALIGN);
178};
179
180#define HASH_MAX_DIGESTSIZE	 64
181
182/*
183 * Worst case is hmac(sha3-224-generic).  Its context is a nested 'shash_desc'
184 * containing a 'struct sha3_state'.
185 */
186#define HASH_MAX_DESCSIZE	(sizeof(struct shash_desc) + 360)
187
188#define SHASH_DESC_ON_STACK(shash, ctx)					     \
189	char __##shash##_desc[sizeof(struct shash_desc) + HASH_MAX_DESCSIZE] \
190		__aligned(__alignof__(struct shash_desc));		     \
191	struct shash_desc *shash = (struct shash_desc *)__##shash##_desc
192
193/**
194 * struct shash_alg - synchronous message digest definition
195 * @init: see struct ahash_alg
196 * @update: see struct ahash_alg
197 * @final: see struct ahash_alg
198 * @finup: see struct ahash_alg
199 * @digest: see struct ahash_alg
200 * @export: see struct ahash_alg
201 * @import: see struct ahash_alg
202 * @setkey: see struct ahash_alg
203 * @init_tfm: Initialize the cryptographic transformation object.
204 *	      This function is called only once at the instantiation
205 *	      time, right after the transformation context was
206 *	      allocated. In case the cryptographic hardware has
207 *	      some special requirements which need to be handled
208 *	      by software, this function shall check for the precise
209 *	      requirement of the transformation and put any software
210 *	      fallbacks in place.
211 * @exit_tfm: Deinitialize the cryptographic transformation object.
212 *	      This is a counterpart to @init_tfm, used to remove
213 *	      various changes set in @init_tfm.
214 * @clone_tfm: Copy transform into new object, may allocate memory.
215 * @digestsize: see struct ahash_alg
216 * @statesize: see struct ahash_alg
217 * @descsize: Size of the operational state for the message digest. This state
218 * 	      size is the memory size that needs to be allocated for
219 *	      shash_desc.__ctx
220 * @stat: Statistics for hash algorithm.
221 * @base: internally used
222 * @halg: see struct hash_alg_common
223 * @HASH_ALG_COMMON: see struct hash_alg_common
224 */
225struct shash_alg {
226	int (*init)(struct shash_desc *desc);
227	int (*update)(struct shash_desc *desc, const u8 *data,
228		      unsigned int len);
229	int (*final)(struct shash_desc *desc, u8 *out);
230	int (*finup)(struct shash_desc *desc, const u8 *data,
231		     unsigned int len, u8 *out);
232	int (*digest)(struct shash_desc *desc, const u8 *data,
233		      unsigned int len, u8 *out);
234	int (*export)(struct shash_desc *desc, void *out);
235	int (*import)(struct shash_desc *desc, const void *in);
236	int (*setkey)(struct crypto_shash *tfm, const u8 *key,
237		      unsigned int keylen);
238	int (*init_tfm)(struct crypto_shash *tfm);
239	void (*exit_tfm)(struct crypto_shash *tfm);
240	int (*clone_tfm)(struct crypto_shash *dst, struct crypto_shash *src);
241
242	unsigned int descsize;
243
244	union {
245		struct HASH_ALG_COMMON;
246		struct hash_alg_common halg;
247	};
248};
249#undef HASH_ALG_COMMON
250#undef HASH_ALG_COMMON_STAT
251
252struct crypto_ahash {
253	int (*init)(struct ahash_request *req);
254	int (*update)(struct ahash_request *req);
255	int (*final)(struct ahash_request *req);
256	int (*finup)(struct ahash_request *req);
257	int (*digest)(struct ahash_request *req);
258	int (*export)(struct ahash_request *req, void *out);
259	int (*import)(struct ahash_request *req, const void *in);
260	int (*setkey)(struct crypto_ahash *tfm, const u8 *key,
261		      unsigned int keylen);
262
263	unsigned int statesize;
264	unsigned int reqsize;
265	struct crypto_tfm base;
266};
267
268struct crypto_shash {
269	unsigned int descsize;
270	struct crypto_tfm base;
271};
272
273/**
274 * DOC: Asynchronous Message Digest API
275 *
276 * The asynchronous message digest API is used with the ciphers of type
277 * CRYPTO_ALG_TYPE_AHASH (listed as type "ahash" in /proc/crypto)
278 *
279 * The asynchronous cipher operation discussion provided for the
280 * CRYPTO_ALG_TYPE_SKCIPHER API applies here as well.
281 */
282
283static inline struct crypto_ahash *__crypto_ahash_cast(struct crypto_tfm *tfm)
284{
285	return container_of(tfm, struct crypto_ahash, base);
286}
287
288/**
289 * crypto_alloc_ahash() - allocate ahash cipher handle
290 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
291 *	      ahash cipher
292 * @type: specifies the type of the cipher
293 * @mask: specifies the mask for the cipher
294 *
295 * Allocate a cipher handle for an ahash. The returned struct
296 * crypto_ahash is the cipher handle that is required for any subsequent
297 * API invocation for that ahash.
298 *
299 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
300 *	   of an error, PTR_ERR() returns the error code.
301 */
302struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
303					u32 mask);
304
305struct crypto_ahash *crypto_clone_ahash(struct crypto_ahash *tfm);
306
307static inline struct crypto_tfm *crypto_ahash_tfm(struct crypto_ahash *tfm)
308{
309	return &tfm->base;
310}
311
312/**
313 * crypto_free_ahash() - zeroize and free the ahash handle
314 * @tfm: cipher handle to be freed
315 *
316 * If @tfm is a NULL or error pointer, this function does nothing.
317 */
318static inline void crypto_free_ahash(struct crypto_ahash *tfm)
319{
320	crypto_destroy_tfm(tfm, crypto_ahash_tfm(tfm));
321}
322
323/**
324 * crypto_has_ahash() - Search for the availability of an ahash.
325 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
326 *	      ahash
327 * @type: specifies the type of the ahash
328 * @mask: specifies the mask for the ahash
329 *
330 * Return: true when the ahash is known to the kernel crypto API; false
331 *	   otherwise
332 */
333int crypto_has_ahash(const char *alg_name, u32 type, u32 mask);
334
335static inline const char *crypto_ahash_alg_name(struct crypto_ahash *tfm)
336{
337	return crypto_tfm_alg_name(crypto_ahash_tfm(tfm));
338}
339
340static inline const char *crypto_ahash_driver_name(struct crypto_ahash *tfm)
341{
342	return crypto_tfm_alg_driver_name(crypto_ahash_tfm(tfm));
343}
344
345static inline unsigned int crypto_ahash_alignmask(
346	struct crypto_ahash *tfm)
347{
348	return crypto_tfm_alg_alignmask(crypto_ahash_tfm(tfm));
349}
350
351/**
352 * crypto_ahash_blocksize() - obtain block size for cipher
353 * @tfm: cipher handle
354 *
355 * The block size for the message digest cipher referenced with the cipher
356 * handle is returned.
357 *
358 * Return: block size of cipher
359 */
360static inline unsigned int crypto_ahash_blocksize(struct crypto_ahash *tfm)
361{
362	return crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
363}
364
365static inline struct hash_alg_common *__crypto_hash_alg_common(
366	struct crypto_alg *alg)
367{
368	return container_of(alg, struct hash_alg_common, base);
369}
370
371static inline struct hash_alg_common *crypto_hash_alg_common(
372	struct crypto_ahash *tfm)
373{
374	return __crypto_hash_alg_common(crypto_ahash_tfm(tfm)->__crt_alg);
375}
376
377/**
378 * crypto_ahash_digestsize() - obtain message digest size
379 * @tfm: cipher handle
380 *
381 * The size for the message digest created by the message digest cipher
382 * referenced with the cipher handle is returned.
383 *
384 *
385 * Return: message digest size of cipher
386 */
387static inline unsigned int crypto_ahash_digestsize(struct crypto_ahash *tfm)
388{
389	return crypto_hash_alg_common(tfm)->digestsize;
390}
391
392/**
393 * crypto_ahash_statesize() - obtain size of the ahash state
394 * @tfm: cipher handle
395 *
396 * Return the size of the ahash state. With the crypto_ahash_export()
397 * function, the caller can export the state into a buffer whose size is
398 * defined with this function.
399 *
400 * Return: size of the ahash state
401 */
402static inline unsigned int crypto_ahash_statesize(struct crypto_ahash *tfm)
403{
404	return tfm->statesize;
405}
406
407static inline u32 crypto_ahash_get_flags(struct crypto_ahash *tfm)
408{
409	return crypto_tfm_get_flags(crypto_ahash_tfm(tfm));
410}
411
412static inline void crypto_ahash_set_flags(struct crypto_ahash *tfm, u32 flags)
413{
414	crypto_tfm_set_flags(crypto_ahash_tfm(tfm), flags);
415}
416
417static inline void crypto_ahash_clear_flags(struct crypto_ahash *tfm, u32 flags)
418{
419	crypto_tfm_clear_flags(crypto_ahash_tfm(tfm), flags);
420}
421
422/**
423 * crypto_ahash_reqtfm() - obtain cipher handle from request
424 * @req: asynchronous request handle that contains the reference to the ahash
425 *	 cipher handle
426 *
427 * Return the ahash cipher handle that is registered with the asynchronous
428 * request handle ahash_request.
429 *
430 * Return: ahash cipher handle
431 */
432static inline struct crypto_ahash *crypto_ahash_reqtfm(
433	struct ahash_request *req)
434{
435	return __crypto_ahash_cast(req->base.tfm);
436}
437
438/**
439 * crypto_ahash_reqsize() - obtain size of the request data structure
440 * @tfm: cipher handle
441 *
442 * Return: size of the request data
443 */
444static inline unsigned int crypto_ahash_reqsize(struct crypto_ahash *tfm)
445{
446	return tfm->reqsize;
447}
448
449static inline void *ahash_request_ctx(struct ahash_request *req)
450{
451	return req->__ctx;
452}
453
454/**
455 * crypto_ahash_setkey - set key for cipher handle
456 * @tfm: cipher handle
457 * @key: buffer holding the key
458 * @keylen: length of the key in bytes
459 *
460 * The caller provided key is set for the ahash cipher. The cipher
461 * handle must point to a keyed hash in order for this function to succeed.
462 *
463 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
464 */
465int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
466			unsigned int keylen);
467
468/**
469 * crypto_ahash_finup() - update and finalize message digest
470 * @req: reference to the ahash_request handle that holds all information
471 *	 needed to perform the cipher operation
472 *
473 * This function is a "short-hand" for the function calls of
474 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
475 * meaning as discussed for those separate functions.
476 *
477 * Return: see crypto_ahash_final()
478 */
479int crypto_ahash_finup(struct ahash_request *req);
480
481/**
482 * crypto_ahash_final() - calculate message digest
483 * @req: reference to the ahash_request handle that holds all information
484 *	 needed to perform the cipher operation
485 *
486 * Finalize the message digest operation and create the message digest
487 * based on all data added to the cipher handle. The message digest is placed
488 * into the output buffer registered with the ahash_request handle.
489 *
490 * Return:
491 * 0		if the message digest was successfully calculated;
492 * -EINPROGRESS	if data is fed into hardware (DMA) or queued for later;
493 * -EBUSY	if queue is full and request should be resubmitted later;
494 * other < 0	if an error occurred
495 */
496int crypto_ahash_final(struct ahash_request *req);
497
498/**
499 * crypto_ahash_digest() - calculate message digest for a buffer
500 * @req: reference to the ahash_request handle that holds all information
501 *	 needed to perform the cipher operation
502 *
503 * This function is a "short-hand" for the function calls of crypto_ahash_init,
504 * crypto_ahash_update and crypto_ahash_final. The parameters have the same
505 * meaning as discussed for those separate three functions.
506 *
507 * Return: see crypto_ahash_final()
508 */
509int crypto_ahash_digest(struct ahash_request *req);
510
511/**
512 * crypto_ahash_export() - extract current message digest state
513 * @req: reference to the ahash_request handle whose state is exported
514 * @out: output buffer of sufficient size that can hold the hash state
515 *
516 * This function exports the hash state of the ahash_request handle into the
517 * caller-allocated output buffer out which must have sufficient size (e.g. by
518 * calling crypto_ahash_statesize()).
519 *
520 * Return: 0 if the export was successful; < 0 if an error occurred
521 */
522static inline int crypto_ahash_export(struct ahash_request *req, void *out)
523{
524	return crypto_ahash_reqtfm(req)->export(req, out);
525}
526
527/**
528 * crypto_ahash_import() - import message digest state
529 * @req: reference to ahash_request handle the state is imported into
530 * @in: buffer holding the state
531 *
532 * This function imports the hash state into the ahash_request handle from the
533 * input buffer. That buffer should have been generated with the
534 * crypto_ahash_export function.
535 *
536 * Return: 0 if the import was successful; < 0 if an error occurred
537 */
538static inline int crypto_ahash_import(struct ahash_request *req, const void *in)
539{
540	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
541
542	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
543		return -ENOKEY;
544
545	return tfm->import(req, in);
546}
547
548/**
549 * crypto_ahash_init() - (re)initialize message digest handle
550 * @req: ahash_request handle that already is initialized with all necessary
551 *	 data using the ahash_request_* API functions
552 *
553 * The call (re-)initializes the message digest referenced by the ahash_request
554 * handle. Any potentially existing state created by previous operations is
555 * discarded.
556 *
557 * Return: see crypto_ahash_final()
558 */
559static inline int crypto_ahash_init(struct ahash_request *req)
560{
561	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
562
563	if (crypto_ahash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
564		return -ENOKEY;
565
566	return tfm->init(req);
567}
568
569static inline struct crypto_istat_hash *hash_get_stat(
570	struct hash_alg_common *alg)
571{
572#ifdef CONFIG_CRYPTO_STATS
573	return &alg->stat;
574#else
575	return NULL;
576#endif
577}
578
579static inline int crypto_hash_errstat(struct hash_alg_common *alg, int err)
580{
581	if (!IS_ENABLED(CONFIG_CRYPTO_STATS))
582		return err;
583
584	if (err && err != -EINPROGRESS && err != -EBUSY)
585		atomic64_inc(&hash_get_stat(alg)->err_cnt);
586
587	return err;
588}
589
590/**
591 * crypto_ahash_update() - add data to message digest for processing
592 * @req: ahash_request handle that was previously initialized with the
593 *	 crypto_ahash_init call.
594 *
595 * Updates the message digest state of the &ahash_request handle. The input data
596 * is pointed to by the scatter/gather list registered in the &ahash_request
597 * handle
598 *
599 * Return: see crypto_ahash_final()
600 */
601static inline int crypto_ahash_update(struct ahash_request *req)
602{
603	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
604	struct hash_alg_common *alg = crypto_hash_alg_common(tfm);
605
606	if (IS_ENABLED(CONFIG_CRYPTO_STATS))
607		atomic64_add(req->nbytes, &hash_get_stat(alg)->hash_tlen);
608
609	return crypto_hash_errstat(alg, tfm->update(req));
610}
611
612/**
613 * DOC: Asynchronous Hash Request Handle
614 *
615 * The &ahash_request data structure contains all pointers to data
616 * required for the asynchronous cipher operation. This includes the cipher
617 * handle (which can be used by multiple &ahash_request instances), pointer
618 * to plaintext and the message digest output buffer, asynchronous callback
619 * function, etc. It acts as a handle to the ahash_request_* API calls in a
620 * similar way as ahash handle to the crypto_ahash_* API calls.
621 */
622
623/**
624 * ahash_request_set_tfm() - update cipher handle reference in request
625 * @req: request handle to be modified
626 * @tfm: cipher handle that shall be added to the request handle
627 *
628 * Allow the caller to replace the existing ahash handle in the request
629 * data structure with a different one.
630 */
631static inline void ahash_request_set_tfm(struct ahash_request *req,
632					 struct crypto_ahash *tfm)
633{
634	req->base.tfm = crypto_ahash_tfm(tfm);
635}
636
637/**
638 * ahash_request_alloc() - allocate request data structure
639 * @tfm: cipher handle to be registered with the request
640 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
641 *
642 * Allocate the request data structure that must be used with the ahash
643 * message digest API calls. During
644 * the allocation, the provided ahash handle
645 * is registered in the request data structure.
646 *
647 * Return: allocated request handle in case of success, or NULL if out of memory
648 */
649static inline struct ahash_request *ahash_request_alloc(
650	struct crypto_ahash *tfm, gfp_t gfp)
651{
652	struct ahash_request *req;
653
654	req = kmalloc(sizeof(struct ahash_request) +
655		      crypto_ahash_reqsize(tfm), gfp);
656
657	if (likely(req))
658		ahash_request_set_tfm(req, tfm);
659
660	return req;
661}
662
663/**
664 * ahash_request_free() - zeroize and free the request data structure
665 * @req: request data structure cipher handle to be freed
666 */
667static inline void ahash_request_free(struct ahash_request *req)
668{
669	kfree_sensitive(req);
670}
671
672static inline void ahash_request_zero(struct ahash_request *req)
673{
674	memzero_explicit(req, sizeof(*req) +
675			      crypto_ahash_reqsize(crypto_ahash_reqtfm(req)));
676}
677
678static inline struct ahash_request *ahash_request_cast(
679	struct crypto_async_request *req)
680{
681	return container_of(req, struct ahash_request, base);
682}
683
684/**
685 * ahash_request_set_callback() - set asynchronous callback function
686 * @req: request handle
687 * @flags: specify zero or an ORing of the flags
688 *	   CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
689 *	   increase the wait queue beyond the initial maximum size;
690 *	   CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
691 * @compl: callback function pointer to be registered with the request handle
692 * @data: The data pointer refers to memory that is not used by the kernel
693 *	  crypto API, but provided to the callback function for it to use. Here,
694 *	  the caller can provide a reference to memory the callback function can
695 *	  operate on. As the callback function is invoked asynchronously to the
696 *	  related functionality, it may need to access data structures of the
697 *	  related functionality which can be referenced using this pointer. The
698 *	  callback function can access the memory via the "data" field in the
699 *	  &crypto_async_request data structure provided to the callback function.
700 *
701 * This function allows setting the callback function that is triggered once
702 * the cipher operation completes.
703 *
704 * The callback function is registered with the &ahash_request handle and
705 * must comply with the following template::
706 *
707 *	void callback_function(struct crypto_async_request *req, int error)
708 */
709static inline void ahash_request_set_callback(struct ahash_request *req,
710					      u32 flags,
711					      crypto_completion_t compl,
712					      void *data)
713{
714	req->base.complete = compl;
715	req->base.data = data;
716	req->base.flags = flags;
717}
718
719/**
720 * ahash_request_set_crypt() - set data buffers
721 * @req: ahash_request handle to be updated
722 * @src: source scatter/gather list
723 * @result: buffer that is filled with the message digest -- the caller must
724 *	    ensure that the buffer has sufficient space by, for example, calling
725 *	    crypto_ahash_digestsize()
726 * @nbytes: number of bytes to process from the source scatter/gather list
727 *
728 * By using this call, the caller references the source scatter/gather list.
729 * The source scatter/gather list points to the data the message digest is to
730 * be calculated for.
731 */
732static inline void ahash_request_set_crypt(struct ahash_request *req,
733					   struct scatterlist *src, u8 *result,
734					   unsigned int nbytes)
735{
736	req->src = src;
737	req->nbytes = nbytes;
738	req->result = result;
739}
740
741/**
742 * DOC: Synchronous Message Digest API
743 *
744 * The synchronous message digest API is used with the ciphers of type
745 * CRYPTO_ALG_TYPE_SHASH (listed as type "shash" in /proc/crypto)
746 *
747 * The message digest API is able to maintain state information for the
748 * caller.
749 *
750 * The synchronous message digest API can store user-related context in its
751 * shash_desc request data structure.
752 */
753
754/**
755 * crypto_alloc_shash() - allocate message digest handle
756 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
757 *	      message digest cipher
758 * @type: specifies the type of the cipher
759 * @mask: specifies the mask for the cipher
760 *
761 * Allocate a cipher handle for a message digest. The returned &struct
762 * crypto_shash is the cipher handle that is required for any subsequent
763 * API invocation for that message digest.
764 *
765 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
766 *	   of an error, PTR_ERR() returns the error code.
767 */
768struct crypto_shash *crypto_alloc_shash(const char *alg_name, u32 type,
769					u32 mask);
770
771struct crypto_shash *crypto_clone_shash(struct crypto_shash *tfm);
772
773int crypto_has_shash(const char *alg_name, u32 type, u32 mask);
774
775static inline struct crypto_tfm *crypto_shash_tfm(struct crypto_shash *tfm)
776{
777	return &tfm->base;
778}
779
780/**
781 * crypto_free_shash() - zeroize and free the message digest handle
782 * @tfm: cipher handle to be freed
783 *
784 * If @tfm is a NULL or error pointer, this function does nothing.
785 */
786static inline void crypto_free_shash(struct crypto_shash *tfm)
787{
788	crypto_destroy_tfm(tfm, crypto_shash_tfm(tfm));
789}
790
791static inline const char *crypto_shash_alg_name(struct crypto_shash *tfm)
792{
793	return crypto_tfm_alg_name(crypto_shash_tfm(tfm));
794}
795
796static inline const char *crypto_shash_driver_name(struct crypto_shash *tfm)
797{
798	return crypto_tfm_alg_driver_name(crypto_shash_tfm(tfm));
799}
800
801static inline unsigned int crypto_shash_alignmask(
802	struct crypto_shash *tfm)
803{
804	return crypto_tfm_alg_alignmask(crypto_shash_tfm(tfm));
805}
806
807/**
808 * crypto_shash_blocksize() - obtain block size for cipher
809 * @tfm: cipher handle
810 *
811 * The block size for the message digest cipher referenced with the cipher
812 * handle is returned.
813 *
814 * Return: block size of cipher
815 */
816static inline unsigned int crypto_shash_blocksize(struct crypto_shash *tfm)
817{
818	return crypto_tfm_alg_blocksize(crypto_shash_tfm(tfm));
819}
820
821static inline struct shash_alg *__crypto_shash_alg(struct crypto_alg *alg)
822{
823	return container_of(alg, struct shash_alg, base);
824}
825
826static inline struct shash_alg *crypto_shash_alg(struct crypto_shash *tfm)
827{
828	return __crypto_shash_alg(crypto_shash_tfm(tfm)->__crt_alg);
829}
830
831/**
832 * crypto_shash_digestsize() - obtain message digest size
833 * @tfm: cipher handle
834 *
835 * The size for the message digest created by the message digest cipher
836 * referenced with the cipher handle is returned.
837 *
838 * Return: digest size of cipher
839 */
840static inline unsigned int crypto_shash_digestsize(struct crypto_shash *tfm)
841{
842	return crypto_shash_alg(tfm)->digestsize;
843}
844
845static inline unsigned int crypto_shash_statesize(struct crypto_shash *tfm)
846{
847	return crypto_shash_alg(tfm)->statesize;
848}
849
850static inline u32 crypto_shash_get_flags(struct crypto_shash *tfm)
851{
852	return crypto_tfm_get_flags(crypto_shash_tfm(tfm));
853}
854
855static inline void crypto_shash_set_flags(struct crypto_shash *tfm, u32 flags)
856{
857	crypto_tfm_set_flags(crypto_shash_tfm(tfm), flags);
858}
859
860static inline void crypto_shash_clear_flags(struct crypto_shash *tfm, u32 flags)
861{
862	crypto_tfm_clear_flags(crypto_shash_tfm(tfm), flags);
863}
864
865/**
866 * crypto_shash_descsize() - obtain the operational state size
867 * @tfm: cipher handle
868 *
869 * The size of the operational state the cipher needs during operation is
870 * returned for the hash referenced with the cipher handle. This size is
871 * required to calculate the memory requirements to allow the caller allocating
872 * sufficient memory for operational state.
873 *
874 * The operational state is defined with struct shash_desc where the size of
875 * that data structure is to be calculated as
876 * sizeof(struct shash_desc) + crypto_shash_descsize(alg)
877 *
878 * Return: size of the operational state
879 */
880static inline unsigned int crypto_shash_descsize(struct crypto_shash *tfm)
881{
882	return tfm->descsize;
883}
884
885static inline void *shash_desc_ctx(struct shash_desc *desc)
886{
887	return desc->__ctx;
888}
889
890/**
891 * crypto_shash_setkey() - set key for message digest
892 * @tfm: cipher handle
893 * @key: buffer holding the key
894 * @keylen: length of the key in bytes
895 *
896 * The caller provided key is set for the keyed message digest cipher. The
897 * cipher handle must point to a keyed message digest cipher in order for this
898 * function to succeed.
899 *
900 * Context: Any context.
901 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
902 */
903int crypto_shash_setkey(struct crypto_shash *tfm, const u8 *key,
904			unsigned int keylen);
905
906/**
907 * crypto_shash_digest() - calculate message digest for buffer
908 * @desc: see crypto_shash_final()
909 * @data: see crypto_shash_update()
910 * @len: see crypto_shash_update()
911 * @out: see crypto_shash_final()
912 *
913 * This function is a "short-hand" for the function calls of crypto_shash_init,
914 * crypto_shash_update and crypto_shash_final. The parameters have the same
915 * meaning as discussed for those separate three functions.
916 *
917 * Context: Any context.
918 * Return: 0 if the message digest creation was successful; < 0 if an error
919 *	   occurred
920 */
921int crypto_shash_digest(struct shash_desc *desc, const u8 *data,
922			unsigned int len, u8 *out);
923
924/**
925 * crypto_shash_tfm_digest() - calculate message digest for buffer
926 * @tfm: hash transformation object
927 * @data: see crypto_shash_update()
928 * @len: see crypto_shash_update()
929 * @out: see crypto_shash_final()
930 *
931 * This is a simplified version of crypto_shash_digest() for users who don't
932 * want to allocate their own hash descriptor (shash_desc).  Instead,
933 * crypto_shash_tfm_digest() takes a hash transformation object (crypto_shash)
934 * directly, and it allocates a hash descriptor on the stack internally.
935 * Note that this stack allocation may be fairly large.
936 *
937 * Context: Any context.
938 * Return: 0 on success; < 0 if an error occurred.
939 */
940int crypto_shash_tfm_digest(struct crypto_shash *tfm, const u8 *data,
941			    unsigned int len, u8 *out);
942
943/**
944 * crypto_shash_export() - extract operational state for message digest
945 * @desc: reference to the operational state handle whose state is exported
946 * @out: output buffer of sufficient size that can hold the hash state
947 *
948 * This function exports the hash state of the operational state handle into the
949 * caller-allocated output buffer out which must have sufficient size (e.g. by
950 * calling crypto_shash_descsize).
951 *
952 * Context: Any context.
953 * Return: 0 if the export creation was successful; < 0 if an error occurred
954 */
955static inline int crypto_shash_export(struct shash_desc *desc, void *out)
956{
957	return crypto_shash_alg(desc->tfm)->export(desc, out);
958}
959
960/**
961 * crypto_shash_import() - import operational state
962 * @desc: reference to the operational state handle the state imported into
963 * @in: buffer holding the state
964 *
965 * This function imports the hash state into the operational state handle from
966 * the input buffer. That buffer should have been generated with the
967 * crypto_ahash_export function.
968 *
969 * Context: Any context.
970 * Return: 0 if the import was successful; < 0 if an error occurred
971 */
972static inline int crypto_shash_import(struct shash_desc *desc, const void *in)
973{
974	struct crypto_shash *tfm = desc->tfm;
975
976	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
977		return -ENOKEY;
978
979	return crypto_shash_alg(tfm)->import(desc, in);
980}
981
982/**
983 * crypto_shash_init() - (re)initialize message digest
984 * @desc: operational state handle that is already filled
985 *
986 * The call (re-)initializes the message digest referenced by the
987 * operational state handle. Any potentially existing state created by
988 * previous operations is discarded.
989 *
990 * Context: Any context.
991 * Return: 0 if the message digest initialization was successful; < 0 if an
992 *	   error occurred
993 */
994static inline int crypto_shash_init(struct shash_desc *desc)
995{
996	struct crypto_shash *tfm = desc->tfm;
997
998	if (crypto_shash_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
999		return -ENOKEY;
1000
1001	return crypto_shash_alg(tfm)->init(desc);
1002}
1003
1004/**
1005 * crypto_shash_update() - add data to message digest for processing
1006 * @desc: operational state handle that is already initialized
1007 * @data: input data to be added to the message digest
1008 * @len: length of the input data
1009 *
1010 * Updates the message digest state of the operational state handle.
1011 *
1012 * Context: Any context.
1013 * Return: 0 if the message digest update was successful; < 0 if an error
1014 *	   occurred
1015 */
1016int crypto_shash_update(struct shash_desc *desc, const u8 *data,
1017			unsigned int len);
1018
1019/**
1020 * crypto_shash_final() - calculate message digest
1021 * @desc: operational state handle that is already filled with data
1022 * @out: output buffer filled with the message digest
1023 *
1024 * Finalize the message digest operation and create the message digest
1025 * based on all data added to the cipher handle. The message digest is placed
1026 * into the output buffer. The caller must ensure that the output buffer is
1027 * large enough by using crypto_shash_digestsize.
1028 *
1029 * Context: Any context.
1030 * Return: 0 if the message digest creation was successful; < 0 if an error
1031 *	   occurred
1032 */
1033int crypto_shash_final(struct shash_desc *desc, u8 *out);
1034
1035/**
1036 * crypto_shash_finup() - calculate message digest of buffer
1037 * @desc: see crypto_shash_final()
1038 * @data: see crypto_shash_update()
1039 * @len: see crypto_shash_update()
1040 * @out: see crypto_shash_final()
1041 *
1042 * This function is a "short-hand" for the function calls of
1043 * crypto_shash_update and crypto_shash_final. The parameters have the same
1044 * meaning as discussed for those separate functions.
1045 *
1046 * Context: Any context.
1047 * Return: 0 if the message digest creation was successful; < 0 if an error
1048 *	   occurred
1049 */
1050int crypto_shash_finup(struct shash_desc *desc, const u8 *data,
1051		       unsigned int len, u8 *out);
1052
1053static inline void shash_desc_zero(struct shash_desc *desc)
1054{
1055	memzero_explicit(desc,
1056			 sizeof(*desc) + crypto_shash_descsize(desc->tfm));
1057}
1058
1059#endif	/* _CRYPTO_HASH_H */
1060