162306a36Sopenharmony_ci/* gf128mul.h - GF(2^128) multiplication functions 262306a36Sopenharmony_ci * 362306a36Sopenharmony_ci * Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. 462306a36Sopenharmony_ci * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> 562306a36Sopenharmony_ci * 662306a36Sopenharmony_ci * Based on Dr Brian Gladman's (GPL'd) work published at 762306a36Sopenharmony_ci * http://fp.gladman.plus.com/cryptography_technology/index.htm 862306a36Sopenharmony_ci * See the original copyright notice below. 962306a36Sopenharmony_ci * 1062306a36Sopenharmony_ci * This program is free software; you can redistribute it and/or modify it 1162306a36Sopenharmony_ci * under the terms of the GNU General Public License as published by the Free 1262306a36Sopenharmony_ci * Software Foundation; either version 2 of the License, or (at your option) 1362306a36Sopenharmony_ci * any later version. 1462306a36Sopenharmony_ci */ 1562306a36Sopenharmony_ci/* 1662306a36Sopenharmony_ci --------------------------------------------------------------------------- 1762306a36Sopenharmony_ci Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved. 1862306a36Sopenharmony_ci 1962306a36Sopenharmony_ci LICENSE TERMS 2062306a36Sopenharmony_ci 2162306a36Sopenharmony_ci The free distribution and use of this software in both source and binary 2262306a36Sopenharmony_ci form is allowed (with or without changes) provided that: 2362306a36Sopenharmony_ci 2462306a36Sopenharmony_ci 1. distributions of this source code include the above copyright 2562306a36Sopenharmony_ci notice, this list of conditions and the following disclaimer; 2662306a36Sopenharmony_ci 2762306a36Sopenharmony_ci 2. distributions in binary form include the above copyright 2862306a36Sopenharmony_ci notice, this list of conditions and the following disclaimer 2962306a36Sopenharmony_ci in the documentation and/or other associated materials; 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci 3. the copyright holder's name is not used to endorse products 3262306a36Sopenharmony_ci built using this software without specific written permission. 3362306a36Sopenharmony_ci 3462306a36Sopenharmony_ci ALTERNATIVELY, provided that this notice is retained in full, this product 3562306a36Sopenharmony_ci may be distributed under the terms of the GNU General Public License (GPL), 3662306a36Sopenharmony_ci in which case the provisions of the GPL apply INSTEAD OF those given above. 3762306a36Sopenharmony_ci 3862306a36Sopenharmony_ci DISCLAIMER 3962306a36Sopenharmony_ci 4062306a36Sopenharmony_ci This software is provided 'as is' with no explicit or implied warranties 4162306a36Sopenharmony_ci in respect of its properties, including, but not limited to, correctness 4262306a36Sopenharmony_ci and/or fitness for purpose. 4362306a36Sopenharmony_ci --------------------------------------------------------------------------- 4462306a36Sopenharmony_ci Issue Date: 31/01/2006 4562306a36Sopenharmony_ci 4662306a36Sopenharmony_ci An implementation of field multiplication in Galois Field GF(2^128) 4762306a36Sopenharmony_ci*/ 4862306a36Sopenharmony_ci 4962306a36Sopenharmony_ci#ifndef _CRYPTO_GF128MUL_H 5062306a36Sopenharmony_ci#define _CRYPTO_GF128MUL_H 5162306a36Sopenharmony_ci 5262306a36Sopenharmony_ci#include <asm/byteorder.h> 5362306a36Sopenharmony_ci#include <crypto/b128ops.h> 5462306a36Sopenharmony_ci#include <linux/slab.h> 5562306a36Sopenharmony_ci 5662306a36Sopenharmony_ci/* Comment by Rik: 5762306a36Sopenharmony_ci * 5862306a36Sopenharmony_ci * For some background on GF(2^128) see for example: 5962306a36Sopenharmony_ci * http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf 6062306a36Sopenharmony_ci * 6162306a36Sopenharmony_ci * The elements of GF(2^128) := GF(2)[X]/(X^128-X^7-X^2-X^1-1) can 6262306a36Sopenharmony_ci * be mapped to computer memory in a variety of ways. Let's examine 6362306a36Sopenharmony_ci * three common cases. 6462306a36Sopenharmony_ci * 6562306a36Sopenharmony_ci * Take a look at the 16 binary octets below in memory order. The msb's 6662306a36Sopenharmony_ci * are left and the lsb's are right. char b[16] is an array and b[0] is 6762306a36Sopenharmony_ci * the first octet. 6862306a36Sopenharmony_ci * 6962306a36Sopenharmony_ci * 10000000 00000000 00000000 00000000 .... 00000000 00000000 00000000 7062306a36Sopenharmony_ci * b[0] b[1] b[2] b[3] b[13] b[14] b[15] 7162306a36Sopenharmony_ci * 7262306a36Sopenharmony_ci * Every bit is a coefficient of some power of X. We can store the bits 7362306a36Sopenharmony_ci * in every byte in little-endian order and the bytes themselves also in 7462306a36Sopenharmony_ci * little endian order. I will call this lle (little-little-endian). 7562306a36Sopenharmony_ci * The above buffer represents the polynomial 1, and X^7+X^2+X^1+1 looks 7662306a36Sopenharmony_ci * like 11100001 00000000 .... 00000000 = { 0xE1, 0x00, }. 7762306a36Sopenharmony_ci * This format was originally implemented in gf128mul and is used 7862306a36Sopenharmony_ci * in GCM (Galois/Counter mode) and in ABL (Arbitrary Block Length). 7962306a36Sopenharmony_ci * 8062306a36Sopenharmony_ci * Another convention says: store the bits in bigendian order and the 8162306a36Sopenharmony_ci * bytes also. This is bbe (big-big-endian). Now the buffer above 8262306a36Sopenharmony_ci * represents X^127. X^7+X^2+X^1+1 looks like 00000000 .... 10000111, 8362306a36Sopenharmony_ci * b[15] = 0x87 and the rest is 0. LRW uses this convention and bbe 8462306a36Sopenharmony_ci * is partly implemented. 8562306a36Sopenharmony_ci * 8662306a36Sopenharmony_ci * Both of the above formats are easy to implement on big-endian 8762306a36Sopenharmony_ci * machines. 8862306a36Sopenharmony_ci * 8962306a36Sopenharmony_ci * XTS and EME (the latter of which is patent encumbered) use the ble 9062306a36Sopenharmony_ci * format (bits are stored in big endian order and the bytes in little 9162306a36Sopenharmony_ci * endian). The above buffer represents X^7 in this case and the 9262306a36Sopenharmony_ci * primitive polynomial is b[0] = 0x87. 9362306a36Sopenharmony_ci * 9462306a36Sopenharmony_ci * The common machine word-size is smaller than 128 bits, so to make 9562306a36Sopenharmony_ci * an efficient implementation we must split into machine word sizes. 9662306a36Sopenharmony_ci * This implementation uses 64-bit words for the moment. Machine 9762306a36Sopenharmony_ci * endianness comes into play. The lle format in relation to machine 9862306a36Sopenharmony_ci * endianness is discussed below by the original author of gf128mul Dr 9962306a36Sopenharmony_ci * Brian Gladman. 10062306a36Sopenharmony_ci * 10162306a36Sopenharmony_ci * Let's look at the bbe and ble format on a little endian machine. 10262306a36Sopenharmony_ci * 10362306a36Sopenharmony_ci * bbe on a little endian machine u32 x[4]: 10462306a36Sopenharmony_ci * 10562306a36Sopenharmony_ci * MS x[0] LS MS x[1] LS 10662306a36Sopenharmony_ci * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 10762306a36Sopenharmony_ci * 103..96 111.104 119.112 127.120 71...64 79...72 87...80 95...88 10862306a36Sopenharmony_ci * 10962306a36Sopenharmony_ci * MS x[2] LS MS x[3] LS 11062306a36Sopenharmony_ci * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 11162306a36Sopenharmony_ci * 39...32 47...40 55...48 63...56 07...00 15...08 23...16 31...24 11262306a36Sopenharmony_ci * 11362306a36Sopenharmony_ci * ble on a little endian machine 11462306a36Sopenharmony_ci * 11562306a36Sopenharmony_ci * MS x[0] LS MS x[1] LS 11662306a36Sopenharmony_ci * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 11762306a36Sopenharmony_ci * 31...24 23...16 15...08 07...00 63...56 55...48 47...40 39...32 11862306a36Sopenharmony_ci * 11962306a36Sopenharmony_ci * MS x[2] LS MS x[3] LS 12062306a36Sopenharmony_ci * ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 12162306a36Sopenharmony_ci * 95...88 87...80 79...72 71...64 127.120 199.112 111.104 103..96 12262306a36Sopenharmony_ci * 12362306a36Sopenharmony_ci * Multiplications in GF(2^128) are mostly bit-shifts, so you see why 12462306a36Sopenharmony_ci * ble (and lbe also) are easier to implement on a little-endian 12562306a36Sopenharmony_ci * machine than on a big-endian machine. The converse holds for bbe 12662306a36Sopenharmony_ci * and lle. 12762306a36Sopenharmony_ci * 12862306a36Sopenharmony_ci * Note: to have good alignment, it seems to me that it is sufficient 12962306a36Sopenharmony_ci * to keep elements of GF(2^128) in type u64[2]. On 32-bit wordsize 13062306a36Sopenharmony_ci * machines this will automatically aligned to wordsize and on a 64-bit 13162306a36Sopenharmony_ci * machine also. 13262306a36Sopenharmony_ci */ 13362306a36Sopenharmony_ci/* Multiply a GF(2^128) field element by x. Field elements are 13462306a36Sopenharmony_ci held in arrays of bytes in which field bits 8n..8n + 7 are held in 13562306a36Sopenharmony_ci byte[n], with lower indexed bits placed in the more numerically 13662306a36Sopenharmony_ci significant bit positions within bytes. 13762306a36Sopenharmony_ci 13862306a36Sopenharmony_ci On little endian machines the bit indexes translate into the bit 13962306a36Sopenharmony_ci positions within four 32-bit words in the following way 14062306a36Sopenharmony_ci 14162306a36Sopenharmony_ci MS x[0] LS MS x[1] LS 14262306a36Sopenharmony_ci ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 14362306a36Sopenharmony_ci 24...31 16...23 08...15 00...07 56...63 48...55 40...47 32...39 14462306a36Sopenharmony_ci 14562306a36Sopenharmony_ci MS x[2] LS MS x[3] LS 14662306a36Sopenharmony_ci ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 14762306a36Sopenharmony_ci 88...95 80...87 72...79 64...71 120.127 112.119 104.111 96..103 14862306a36Sopenharmony_ci 14962306a36Sopenharmony_ci On big endian machines the bit indexes translate into the bit 15062306a36Sopenharmony_ci positions within four 32-bit words in the following way 15162306a36Sopenharmony_ci 15262306a36Sopenharmony_ci MS x[0] LS MS x[1] LS 15362306a36Sopenharmony_ci ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 15462306a36Sopenharmony_ci 00...07 08...15 16...23 24...31 32...39 40...47 48...55 56...63 15562306a36Sopenharmony_ci 15662306a36Sopenharmony_ci MS x[2] LS MS x[3] LS 15762306a36Sopenharmony_ci ms ls ms ls ms ls ms ls ms ls ms ls ms ls ms ls 15862306a36Sopenharmony_ci 64...71 72...79 80...87 88...95 96..103 104.111 112.119 120.127 15962306a36Sopenharmony_ci*/ 16062306a36Sopenharmony_ci 16162306a36Sopenharmony_ci/* A slow generic version of gf_mul, implemented for lle and bbe 16262306a36Sopenharmony_ci * It multiplies a and b and puts the result in a */ 16362306a36Sopenharmony_civoid gf128mul_lle(be128 *a, const be128 *b); 16462306a36Sopenharmony_ci 16562306a36Sopenharmony_civoid gf128mul_bbe(be128 *a, const be128 *b); 16662306a36Sopenharmony_ci 16762306a36Sopenharmony_ci/* 16862306a36Sopenharmony_ci * The following functions multiply a field element by x in 16962306a36Sopenharmony_ci * the polynomial field representation. They use 64-bit word operations 17062306a36Sopenharmony_ci * to gain speed but compensate for machine endianness and hence work 17162306a36Sopenharmony_ci * correctly on both styles of machine. 17262306a36Sopenharmony_ci * 17362306a36Sopenharmony_ci * They are defined here for performance. 17462306a36Sopenharmony_ci */ 17562306a36Sopenharmony_ci 17662306a36Sopenharmony_cistatic inline u64 gf128mul_mask_from_bit(u64 x, int which) 17762306a36Sopenharmony_ci{ 17862306a36Sopenharmony_ci /* a constant-time version of 'x & ((u64)1 << which) ? (u64)-1 : 0' */ 17962306a36Sopenharmony_ci return ((s64)(x << (63 - which)) >> 63); 18062306a36Sopenharmony_ci} 18162306a36Sopenharmony_ci 18262306a36Sopenharmony_cistatic inline void gf128mul_x_lle(be128 *r, const be128 *x) 18362306a36Sopenharmony_ci{ 18462306a36Sopenharmony_ci u64 a = be64_to_cpu(x->a); 18562306a36Sopenharmony_ci u64 b = be64_to_cpu(x->b); 18662306a36Sopenharmony_ci 18762306a36Sopenharmony_ci /* equivalent to gf128mul_table_le[(b << 7) & 0xff] << 48 18862306a36Sopenharmony_ci * (see crypto/gf128mul.c): */ 18962306a36Sopenharmony_ci u64 _tt = gf128mul_mask_from_bit(b, 0) & ((u64)0xe1 << 56); 19062306a36Sopenharmony_ci 19162306a36Sopenharmony_ci r->b = cpu_to_be64((b >> 1) | (a << 63)); 19262306a36Sopenharmony_ci r->a = cpu_to_be64((a >> 1) ^ _tt); 19362306a36Sopenharmony_ci} 19462306a36Sopenharmony_ci 19562306a36Sopenharmony_cistatic inline void gf128mul_x_bbe(be128 *r, const be128 *x) 19662306a36Sopenharmony_ci{ 19762306a36Sopenharmony_ci u64 a = be64_to_cpu(x->a); 19862306a36Sopenharmony_ci u64 b = be64_to_cpu(x->b); 19962306a36Sopenharmony_ci 20062306a36Sopenharmony_ci /* equivalent to gf128mul_table_be[a >> 63] (see crypto/gf128mul.c): */ 20162306a36Sopenharmony_ci u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; 20262306a36Sopenharmony_ci 20362306a36Sopenharmony_ci r->a = cpu_to_be64((a << 1) | (b >> 63)); 20462306a36Sopenharmony_ci r->b = cpu_to_be64((b << 1) ^ _tt); 20562306a36Sopenharmony_ci} 20662306a36Sopenharmony_ci 20762306a36Sopenharmony_ci/* needed by XTS */ 20862306a36Sopenharmony_cistatic inline void gf128mul_x_ble(le128 *r, const le128 *x) 20962306a36Sopenharmony_ci{ 21062306a36Sopenharmony_ci u64 a = le64_to_cpu(x->a); 21162306a36Sopenharmony_ci u64 b = le64_to_cpu(x->b); 21262306a36Sopenharmony_ci 21362306a36Sopenharmony_ci /* equivalent to gf128mul_table_be[b >> 63] (see crypto/gf128mul.c): */ 21462306a36Sopenharmony_ci u64 _tt = gf128mul_mask_from_bit(a, 63) & 0x87; 21562306a36Sopenharmony_ci 21662306a36Sopenharmony_ci r->a = cpu_to_le64((a << 1) | (b >> 63)); 21762306a36Sopenharmony_ci r->b = cpu_to_le64((b << 1) ^ _tt); 21862306a36Sopenharmony_ci} 21962306a36Sopenharmony_ci 22062306a36Sopenharmony_ci/* 4k table optimization */ 22162306a36Sopenharmony_ci 22262306a36Sopenharmony_cistruct gf128mul_4k { 22362306a36Sopenharmony_ci be128 t[256]; 22462306a36Sopenharmony_ci}; 22562306a36Sopenharmony_ci 22662306a36Sopenharmony_cistruct gf128mul_4k *gf128mul_init_4k_lle(const be128 *g); 22762306a36Sopenharmony_cistruct gf128mul_4k *gf128mul_init_4k_bbe(const be128 *g); 22862306a36Sopenharmony_civoid gf128mul_4k_lle(be128 *a, const struct gf128mul_4k *t); 22962306a36Sopenharmony_civoid gf128mul_4k_bbe(be128 *a, const struct gf128mul_4k *t); 23062306a36Sopenharmony_civoid gf128mul_x8_ble(le128 *r, const le128 *x); 23162306a36Sopenharmony_cistatic inline void gf128mul_free_4k(struct gf128mul_4k *t) 23262306a36Sopenharmony_ci{ 23362306a36Sopenharmony_ci kfree_sensitive(t); 23462306a36Sopenharmony_ci} 23562306a36Sopenharmony_ci 23662306a36Sopenharmony_ci 23762306a36Sopenharmony_ci/* 64k table optimization, implemented for bbe */ 23862306a36Sopenharmony_ci 23962306a36Sopenharmony_cistruct gf128mul_64k { 24062306a36Sopenharmony_ci struct gf128mul_4k *t[16]; 24162306a36Sopenharmony_ci}; 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ci/* First initialize with the constant factor with which you 24462306a36Sopenharmony_ci * want to multiply and then call gf128mul_64k_bbe with the other 24562306a36Sopenharmony_ci * factor in the first argument, and the table in the second. 24662306a36Sopenharmony_ci * Afterwards, the result is stored in *a. 24762306a36Sopenharmony_ci */ 24862306a36Sopenharmony_cistruct gf128mul_64k *gf128mul_init_64k_bbe(const be128 *g); 24962306a36Sopenharmony_civoid gf128mul_free_64k(struct gf128mul_64k *t); 25062306a36Sopenharmony_civoid gf128mul_64k_bbe(be128 *a, const struct gf128mul_64k *t); 25162306a36Sopenharmony_ci 25262306a36Sopenharmony_ci#endif /* _CRYPTO_GF128MUL_H */ 253