162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 262306a36Sopenharmony_ci#ifndef _ASM_GENERIC_DIV64_H 362306a36Sopenharmony_ci#define _ASM_GENERIC_DIV64_H 462306a36Sopenharmony_ci/* 562306a36Sopenharmony_ci * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> 662306a36Sopenharmony_ci * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h 762306a36Sopenharmony_ci * 862306a36Sopenharmony_ci * Optimization for constant divisors on 32-bit machines: 962306a36Sopenharmony_ci * Copyright (C) 2006-2015 Nicolas Pitre 1062306a36Sopenharmony_ci * 1162306a36Sopenharmony_ci * The semantics of do_div() is, in C++ notation, observing that the name 1262306a36Sopenharmony_ci * is a function-like macro and the n parameter has the semantics of a C++ 1362306a36Sopenharmony_ci * reference: 1462306a36Sopenharmony_ci * 1562306a36Sopenharmony_ci * uint32_t do_div(uint64_t &n, uint32_t base) 1662306a36Sopenharmony_ci * { 1762306a36Sopenharmony_ci * uint32_t remainder = n % base; 1862306a36Sopenharmony_ci * n = n / base; 1962306a36Sopenharmony_ci * return remainder; 2062306a36Sopenharmony_ci * } 2162306a36Sopenharmony_ci * 2262306a36Sopenharmony_ci * NOTE: macro parameter n is evaluated multiple times, 2362306a36Sopenharmony_ci * beware of side effects! 2462306a36Sopenharmony_ci */ 2562306a36Sopenharmony_ci 2662306a36Sopenharmony_ci#include <linux/types.h> 2762306a36Sopenharmony_ci#include <linux/compiler.h> 2862306a36Sopenharmony_ci 2962306a36Sopenharmony_ci#if BITS_PER_LONG == 64 3062306a36Sopenharmony_ci 3162306a36Sopenharmony_ci/** 3262306a36Sopenharmony_ci * do_div - returns 2 values: calculate remainder and update new dividend 3362306a36Sopenharmony_ci * @n: uint64_t dividend (will be updated) 3462306a36Sopenharmony_ci * @base: uint32_t divisor 3562306a36Sopenharmony_ci * 3662306a36Sopenharmony_ci * Summary: 3762306a36Sopenharmony_ci * ``uint32_t remainder = n % base;`` 3862306a36Sopenharmony_ci * ``n = n / base;`` 3962306a36Sopenharmony_ci * 4062306a36Sopenharmony_ci * Return: (uint32_t)remainder 4162306a36Sopenharmony_ci * 4262306a36Sopenharmony_ci * NOTE: macro parameter @n is evaluated multiple times, 4362306a36Sopenharmony_ci * beware of side effects! 4462306a36Sopenharmony_ci */ 4562306a36Sopenharmony_ci# define do_div(n,base) ({ \ 4662306a36Sopenharmony_ci uint32_t __base = (base); \ 4762306a36Sopenharmony_ci uint32_t __rem; \ 4862306a36Sopenharmony_ci __rem = ((uint64_t)(n)) % __base; \ 4962306a36Sopenharmony_ci (n) = ((uint64_t)(n)) / __base; \ 5062306a36Sopenharmony_ci __rem; \ 5162306a36Sopenharmony_ci }) 5262306a36Sopenharmony_ci 5362306a36Sopenharmony_ci#elif BITS_PER_LONG == 32 5462306a36Sopenharmony_ci 5562306a36Sopenharmony_ci#include <linux/log2.h> 5662306a36Sopenharmony_ci 5762306a36Sopenharmony_ci/* 5862306a36Sopenharmony_ci * If the divisor happens to be constant, we determine the appropriate 5962306a36Sopenharmony_ci * inverse at compile time to turn the division into a few inline 6062306a36Sopenharmony_ci * multiplications which ought to be much faster. 6162306a36Sopenharmony_ci * 6262306a36Sopenharmony_ci * (It is unfortunate that gcc doesn't perform all this internally.) 6362306a36Sopenharmony_ci */ 6462306a36Sopenharmony_ci 6562306a36Sopenharmony_ci#define __div64_const32(n, ___b) \ 6662306a36Sopenharmony_ci({ \ 6762306a36Sopenharmony_ci /* \ 6862306a36Sopenharmony_ci * Multiplication by reciprocal of b: n / b = n * (p / b) / p \ 6962306a36Sopenharmony_ci * \ 7062306a36Sopenharmony_ci * We rely on the fact that most of this code gets optimized \ 7162306a36Sopenharmony_ci * away at compile time due to constant propagation and only \ 7262306a36Sopenharmony_ci * a few multiplication instructions should remain. \ 7362306a36Sopenharmony_ci * Hence this monstrous macro (static inline doesn't always \ 7462306a36Sopenharmony_ci * do the trick here). \ 7562306a36Sopenharmony_ci */ \ 7662306a36Sopenharmony_ci uint64_t ___res, ___x, ___t, ___m, ___n = (n); \ 7762306a36Sopenharmony_ci uint32_t ___p, ___bias; \ 7862306a36Sopenharmony_ci \ 7962306a36Sopenharmony_ci /* determine MSB of b */ \ 8062306a36Sopenharmony_ci ___p = 1 << ilog2(___b); \ 8162306a36Sopenharmony_ci \ 8262306a36Sopenharmony_ci /* compute m = ((p << 64) + b - 1) / b */ \ 8362306a36Sopenharmony_ci ___m = (~0ULL / ___b) * ___p; \ 8462306a36Sopenharmony_ci ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \ 8562306a36Sopenharmony_ci \ 8662306a36Sopenharmony_ci /* one less than the dividend with highest result */ \ 8762306a36Sopenharmony_ci ___x = ~0ULL / ___b * ___b - 1; \ 8862306a36Sopenharmony_ci \ 8962306a36Sopenharmony_ci /* test our ___m with res = m * x / (p << 64) */ \ 9062306a36Sopenharmony_ci ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \ 9162306a36Sopenharmony_ci ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \ 9262306a36Sopenharmony_ci ___res += (___x & 0xffffffff) * (___m >> 32); \ 9362306a36Sopenharmony_ci ___t = (___res < ___t) ? (1ULL << 32) : 0; \ 9462306a36Sopenharmony_ci ___res = (___res >> 32) + ___t; \ 9562306a36Sopenharmony_ci ___res += (___m >> 32) * (___x >> 32); \ 9662306a36Sopenharmony_ci ___res /= ___p; \ 9762306a36Sopenharmony_ci \ 9862306a36Sopenharmony_ci /* Now sanitize and optimize what we've got. */ \ 9962306a36Sopenharmony_ci if (~0ULL % (___b / (___b & -___b)) == 0) { \ 10062306a36Sopenharmony_ci /* special case, can be simplified to ... */ \ 10162306a36Sopenharmony_ci ___n /= (___b & -___b); \ 10262306a36Sopenharmony_ci ___m = ~0ULL / (___b / (___b & -___b)); \ 10362306a36Sopenharmony_ci ___p = 1; \ 10462306a36Sopenharmony_ci ___bias = 1; \ 10562306a36Sopenharmony_ci } else if (___res != ___x / ___b) { \ 10662306a36Sopenharmony_ci /* \ 10762306a36Sopenharmony_ci * We can't get away without a bias to compensate \ 10862306a36Sopenharmony_ci * for bit truncation errors. To avoid it we'd need an \ 10962306a36Sopenharmony_ci * additional bit to represent m which would overflow \ 11062306a36Sopenharmony_ci * a 64-bit variable. \ 11162306a36Sopenharmony_ci * \ 11262306a36Sopenharmony_ci * Instead we do m = p / b and n / b = (n * m + m) / p. \ 11362306a36Sopenharmony_ci */ \ 11462306a36Sopenharmony_ci ___bias = 1; \ 11562306a36Sopenharmony_ci /* Compute m = (p << 64) / b */ \ 11662306a36Sopenharmony_ci ___m = (~0ULL / ___b) * ___p; \ 11762306a36Sopenharmony_ci ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ 11862306a36Sopenharmony_ci } else { \ 11962306a36Sopenharmony_ci /* \ 12062306a36Sopenharmony_ci * Reduce m / p, and try to clear bit 31 of m when \ 12162306a36Sopenharmony_ci * possible, otherwise that'll need extra overflow \ 12262306a36Sopenharmony_ci * handling later. \ 12362306a36Sopenharmony_ci */ \ 12462306a36Sopenharmony_ci uint32_t ___bits = -(___m & -___m); \ 12562306a36Sopenharmony_ci ___bits |= ___m >> 32; \ 12662306a36Sopenharmony_ci ___bits = (~___bits) << 1; \ 12762306a36Sopenharmony_ci /* \ 12862306a36Sopenharmony_ci * If ___bits == 0 then setting bit 31 is unavoidable. \ 12962306a36Sopenharmony_ci * Simply apply the maximum possible reduction in that \ 13062306a36Sopenharmony_ci * case. Otherwise the MSB of ___bits indicates the \ 13162306a36Sopenharmony_ci * best reduction we should apply. \ 13262306a36Sopenharmony_ci */ \ 13362306a36Sopenharmony_ci if (!___bits) { \ 13462306a36Sopenharmony_ci ___p /= (___m & -___m); \ 13562306a36Sopenharmony_ci ___m /= (___m & -___m); \ 13662306a36Sopenharmony_ci } else { \ 13762306a36Sopenharmony_ci ___p >>= ilog2(___bits); \ 13862306a36Sopenharmony_ci ___m >>= ilog2(___bits); \ 13962306a36Sopenharmony_ci } \ 14062306a36Sopenharmony_ci /* No bias needed. */ \ 14162306a36Sopenharmony_ci ___bias = 0; \ 14262306a36Sopenharmony_ci } \ 14362306a36Sopenharmony_ci \ 14462306a36Sopenharmony_ci /* \ 14562306a36Sopenharmony_ci * Now we have a combination of 2 conditions: \ 14662306a36Sopenharmony_ci * \ 14762306a36Sopenharmony_ci * 1) whether or not we need to apply a bias, and \ 14862306a36Sopenharmony_ci * \ 14962306a36Sopenharmony_ci * 2) whether or not there might be an overflow in the cross \ 15062306a36Sopenharmony_ci * product determined by (___m & ((1 << 63) | (1 << 31))). \ 15162306a36Sopenharmony_ci * \ 15262306a36Sopenharmony_ci * Select the best way to do (m_bias + m * n) / (1 << 64). \ 15362306a36Sopenharmony_ci * From now on there will be actual runtime code generated. \ 15462306a36Sopenharmony_ci */ \ 15562306a36Sopenharmony_ci ___res = __arch_xprod_64(___m, ___n, ___bias); \ 15662306a36Sopenharmony_ci \ 15762306a36Sopenharmony_ci ___res /= ___p; \ 15862306a36Sopenharmony_ci}) 15962306a36Sopenharmony_ci 16062306a36Sopenharmony_ci#ifndef __arch_xprod_64 16162306a36Sopenharmony_ci/* 16262306a36Sopenharmony_ci * Default C implementation for __arch_xprod_64() 16362306a36Sopenharmony_ci * 16462306a36Sopenharmony_ci * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) 16562306a36Sopenharmony_ci * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 16662306a36Sopenharmony_ci * 16762306a36Sopenharmony_ci * The product is a 128-bit value, scaled down to 64 bits. 16862306a36Sopenharmony_ci * Assuming constant propagation to optimize away unused conditional code. 16962306a36Sopenharmony_ci * Architectures may provide their own optimized assembly implementation. 17062306a36Sopenharmony_ci */ 17162306a36Sopenharmony_cistatic inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) 17262306a36Sopenharmony_ci{ 17362306a36Sopenharmony_ci uint32_t m_lo = m; 17462306a36Sopenharmony_ci uint32_t m_hi = m >> 32; 17562306a36Sopenharmony_ci uint32_t n_lo = n; 17662306a36Sopenharmony_ci uint32_t n_hi = n >> 32; 17762306a36Sopenharmony_ci uint64_t res; 17862306a36Sopenharmony_ci uint32_t res_lo, res_hi, tmp; 17962306a36Sopenharmony_ci 18062306a36Sopenharmony_ci if (!bias) { 18162306a36Sopenharmony_ci res = ((uint64_t)m_lo * n_lo) >> 32; 18262306a36Sopenharmony_ci } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { 18362306a36Sopenharmony_ci /* there can't be any overflow here */ 18462306a36Sopenharmony_ci res = (m + (uint64_t)m_lo * n_lo) >> 32; 18562306a36Sopenharmony_ci } else { 18662306a36Sopenharmony_ci res = m + (uint64_t)m_lo * n_lo; 18762306a36Sopenharmony_ci res_lo = res >> 32; 18862306a36Sopenharmony_ci res_hi = (res_lo < m_hi); 18962306a36Sopenharmony_ci res = res_lo | ((uint64_t)res_hi << 32); 19062306a36Sopenharmony_ci } 19162306a36Sopenharmony_ci 19262306a36Sopenharmony_ci if (!(m & ((1ULL << 63) | (1ULL << 31)))) { 19362306a36Sopenharmony_ci /* there can't be any overflow here */ 19462306a36Sopenharmony_ci res += (uint64_t)m_lo * n_hi; 19562306a36Sopenharmony_ci res += (uint64_t)m_hi * n_lo; 19662306a36Sopenharmony_ci res >>= 32; 19762306a36Sopenharmony_ci } else { 19862306a36Sopenharmony_ci res += (uint64_t)m_lo * n_hi; 19962306a36Sopenharmony_ci tmp = res >> 32; 20062306a36Sopenharmony_ci res += (uint64_t)m_hi * n_lo; 20162306a36Sopenharmony_ci res_lo = res >> 32; 20262306a36Sopenharmony_ci res_hi = (res_lo < tmp); 20362306a36Sopenharmony_ci res = res_lo | ((uint64_t)res_hi << 32); 20462306a36Sopenharmony_ci } 20562306a36Sopenharmony_ci 20662306a36Sopenharmony_ci res += (uint64_t)m_hi * n_hi; 20762306a36Sopenharmony_ci 20862306a36Sopenharmony_ci return res; 20962306a36Sopenharmony_ci} 21062306a36Sopenharmony_ci#endif 21162306a36Sopenharmony_ci 21262306a36Sopenharmony_ci#ifndef __div64_32 21362306a36Sopenharmony_ciextern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); 21462306a36Sopenharmony_ci#endif 21562306a36Sopenharmony_ci 21662306a36Sopenharmony_ci/* The unnecessary pointer compare is there 21762306a36Sopenharmony_ci * to check for type safety (n must be 64bit) 21862306a36Sopenharmony_ci */ 21962306a36Sopenharmony_ci# define do_div(n,base) ({ \ 22062306a36Sopenharmony_ci uint32_t __base = (base); \ 22162306a36Sopenharmony_ci uint32_t __rem; \ 22262306a36Sopenharmony_ci (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ 22362306a36Sopenharmony_ci if (__builtin_constant_p(__base) && \ 22462306a36Sopenharmony_ci is_power_of_2(__base)) { \ 22562306a36Sopenharmony_ci __rem = (n) & (__base - 1); \ 22662306a36Sopenharmony_ci (n) >>= ilog2(__base); \ 22762306a36Sopenharmony_ci } else if (__builtin_constant_p(__base) && \ 22862306a36Sopenharmony_ci __base != 0) { \ 22962306a36Sopenharmony_ci uint32_t __res_lo, __n_lo = (n); \ 23062306a36Sopenharmony_ci (n) = __div64_const32(n, __base); \ 23162306a36Sopenharmony_ci /* the remainder can be computed with 32-bit regs */ \ 23262306a36Sopenharmony_ci __res_lo = (n); \ 23362306a36Sopenharmony_ci __rem = __n_lo - __res_lo * __base; \ 23462306a36Sopenharmony_ci } else if (likely(((n) >> 32) == 0)) { \ 23562306a36Sopenharmony_ci __rem = (uint32_t)(n) % __base; \ 23662306a36Sopenharmony_ci (n) = (uint32_t)(n) / __base; \ 23762306a36Sopenharmony_ci } else { \ 23862306a36Sopenharmony_ci __rem = __div64_32(&(n), __base); \ 23962306a36Sopenharmony_ci } \ 24062306a36Sopenharmony_ci __rem; \ 24162306a36Sopenharmony_ci }) 24262306a36Sopenharmony_ci 24362306a36Sopenharmony_ci#else /* BITS_PER_LONG == ?? */ 24462306a36Sopenharmony_ci 24562306a36Sopenharmony_ci# error do_div() does not yet support the C64 24662306a36Sopenharmony_ci 24762306a36Sopenharmony_ci#endif /* BITS_PER_LONG */ 24862306a36Sopenharmony_ci 24962306a36Sopenharmony_ci#endif /* _ASM_GENERIC_DIV64_H */ 250