162306a36Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
262306a36Sopenharmony_ci#ifndef _ASM_GENERIC_DIV64_H
362306a36Sopenharmony_ci#define _ASM_GENERIC_DIV64_H
462306a36Sopenharmony_ci/*
562306a36Sopenharmony_ci * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
662306a36Sopenharmony_ci * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h
762306a36Sopenharmony_ci *
862306a36Sopenharmony_ci * Optimization for constant divisors on 32-bit machines:
962306a36Sopenharmony_ci * Copyright (C) 2006-2015 Nicolas Pitre
1062306a36Sopenharmony_ci *
1162306a36Sopenharmony_ci * The semantics of do_div() is, in C++ notation, observing that the name
1262306a36Sopenharmony_ci * is a function-like macro and the n parameter has the semantics of a C++
1362306a36Sopenharmony_ci * reference:
1462306a36Sopenharmony_ci *
1562306a36Sopenharmony_ci * uint32_t do_div(uint64_t &n, uint32_t base)
1662306a36Sopenharmony_ci * {
1762306a36Sopenharmony_ci * 	uint32_t remainder = n % base;
1862306a36Sopenharmony_ci * 	n = n / base;
1962306a36Sopenharmony_ci * 	return remainder;
2062306a36Sopenharmony_ci * }
2162306a36Sopenharmony_ci *
2262306a36Sopenharmony_ci * NOTE: macro parameter n is evaluated multiple times,
2362306a36Sopenharmony_ci *       beware of side effects!
2462306a36Sopenharmony_ci */
2562306a36Sopenharmony_ci
2662306a36Sopenharmony_ci#include <linux/types.h>
2762306a36Sopenharmony_ci#include <linux/compiler.h>
2862306a36Sopenharmony_ci
2962306a36Sopenharmony_ci#if BITS_PER_LONG == 64
3062306a36Sopenharmony_ci
3162306a36Sopenharmony_ci/**
3262306a36Sopenharmony_ci * do_div - returns 2 values: calculate remainder and update new dividend
3362306a36Sopenharmony_ci * @n: uint64_t dividend (will be updated)
3462306a36Sopenharmony_ci * @base: uint32_t divisor
3562306a36Sopenharmony_ci *
3662306a36Sopenharmony_ci * Summary:
3762306a36Sopenharmony_ci * ``uint32_t remainder = n % base;``
3862306a36Sopenharmony_ci * ``n = n / base;``
3962306a36Sopenharmony_ci *
4062306a36Sopenharmony_ci * Return: (uint32_t)remainder
4162306a36Sopenharmony_ci *
4262306a36Sopenharmony_ci * NOTE: macro parameter @n is evaluated multiple times,
4362306a36Sopenharmony_ci * beware of side effects!
4462306a36Sopenharmony_ci */
4562306a36Sopenharmony_ci# define do_div(n,base) ({					\
4662306a36Sopenharmony_ci	uint32_t __base = (base);				\
4762306a36Sopenharmony_ci	uint32_t __rem;						\
4862306a36Sopenharmony_ci	__rem = ((uint64_t)(n)) % __base;			\
4962306a36Sopenharmony_ci	(n) = ((uint64_t)(n)) / __base;				\
5062306a36Sopenharmony_ci	__rem;							\
5162306a36Sopenharmony_ci })
5262306a36Sopenharmony_ci
5362306a36Sopenharmony_ci#elif BITS_PER_LONG == 32
5462306a36Sopenharmony_ci
5562306a36Sopenharmony_ci#include <linux/log2.h>
5662306a36Sopenharmony_ci
5762306a36Sopenharmony_ci/*
5862306a36Sopenharmony_ci * If the divisor happens to be constant, we determine the appropriate
5962306a36Sopenharmony_ci * inverse at compile time to turn the division into a few inline
6062306a36Sopenharmony_ci * multiplications which ought to be much faster.
6162306a36Sopenharmony_ci *
6262306a36Sopenharmony_ci * (It is unfortunate that gcc doesn't perform all this internally.)
6362306a36Sopenharmony_ci */
6462306a36Sopenharmony_ci
6562306a36Sopenharmony_ci#define __div64_const32(n, ___b)					\
6662306a36Sopenharmony_ci({									\
6762306a36Sopenharmony_ci	/*								\
6862306a36Sopenharmony_ci	 * Multiplication by reciprocal of b: n / b = n * (p / b) / p	\
6962306a36Sopenharmony_ci	 *								\
7062306a36Sopenharmony_ci	 * We rely on the fact that most of this code gets optimized	\
7162306a36Sopenharmony_ci	 * away at compile time due to constant propagation and only	\
7262306a36Sopenharmony_ci	 * a few multiplication instructions should remain.		\
7362306a36Sopenharmony_ci	 * Hence this monstrous macro (static inline doesn't always	\
7462306a36Sopenharmony_ci	 * do the trick here).						\
7562306a36Sopenharmony_ci	 */								\
7662306a36Sopenharmony_ci	uint64_t ___res, ___x, ___t, ___m, ___n = (n);			\
7762306a36Sopenharmony_ci	uint32_t ___p, ___bias;						\
7862306a36Sopenharmony_ci									\
7962306a36Sopenharmony_ci	/* determine MSB of b */					\
8062306a36Sopenharmony_ci	___p = 1 << ilog2(___b);					\
8162306a36Sopenharmony_ci									\
8262306a36Sopenharmony_ci	/* compute m = ((p << 64) + b - 1) / b */			\
8362306a36Sopenharmony_ci	___m = (~0ULL / ___b) * ___p;					\
8462306a36Sopenharmony_ci	___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b;	\
8562306a36Sopenharmony_ci									\
8662306a36Sopenharmony_ci	/* one less than the dividend with highest result */		\
8762306a36Sopenharmony_ci	___x = ~0ULL / ___b * ___b - 1;					\
8862306a36Sopenharmony_ci									\
8962306a36Sopenharmony_ci	/* test our ___m with res = m * x / (p << 64) */		\
9062306a36Sopenharmony_ci	___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32;	\
9162306a36Sopenharmony_ci	___t = ___res += (___m & 0xffffffff) * (___x >> 32);		\
9262306a36Sopenharmony_ci	___res += (___x & 0xffffffff) * (___m >> 32);			\
9362306a36Sopenharmony_ci	___t = (___res < ___t) ? (1ULL << 32) : 0;			\
9462306a36Sopenharmony_ci	___res = (___res >> 32) + ___t;					\
9562306a36Sopenharmony_ci	___res += (___m >> 32) * (___x >> 32);				\
9662306a36Sopenharmony_ci	___res /= ___p;							\
9762306a36Sopenharmony_ci									\
9862306a36Sopenharmony_ci	/* Now sanitize and optimize what we've got. */			\
9962306a36Sopenharmony_ci	if (~0ULL % (___b / (___b & -___b)) == 0) {			\
10062306a36Sopenharmony_ci		/* special case, can be simplified to ... */		\
10162306a36Sopenharmony_ci		___n /= (___b & -___b);					\
10262306a36Sopenharmony_ci		___m = ~0ULL / (___b / (___b & -___b));			\
10362306a36Sopenharmony_ci		___p = 1;						\
10462306a36Sopenharmony_ci		___bias = 1;						\
10562306a36Sopenharmony_ci	} else if (___res != ___x / ___b) {				\
10662306a36Sopenharmony_ci		/*							\
10762306a36Sopenharmony_ci		 * We can't get away without a bias to compensate	\
10862306a36Sopenharmony_ci		 * for bit truncation errors.  To avoid it we'd need an	\
10962306a36Sopenharmony_ci		 * additional bit to represent m which would overflow	\
11062306a36Sopenharmony_ci		 * a 64-bit variable.					\
11162306a36Sopenharmony_ci		 *							\
11262306a36Sopenharmony_ci		 * Instead we do m = p / b and n / b = (n * m + m) / p.	\
11362306a36Sopenharmony_ci		 */							\
11462306a36Sopenharmony_ci		___bias = 1;						\
11562306a36Sopenharmony_ci		/* Compute m = (p << 64) / b */				\
11662306a36Sopenharmony_ci		___m = (~0ULL / ___b) * ___p;				\
11762306a36Sopenharmony_ci		___m += ((~0ULL % ___b + 1) * ___p) / ___b;		\
11862306a36Sopenharmony_ci	} else {							\
11962306a36Sopenharmony_ci		/*							\
12062306a36Sopenharmony_ci		 * Reduce m / p, and try to clear bit 31 of m when	\
12162306a36Sopenharmony_ci		 * possible, otherwise that'll need extra overflow	\
12262306a36Sopenharmony_ci		 * handling later.					\
12362306a36Sopenharmony_ci		 */							\
12462306a36Sopenharmony_ci		uint32_t ___bits = -(___m & -___m);			\
12562306a36Sopenharmony_ci		___bits |= ___m >> 32;					\
12662306a36Sopenharmony_ci		___bits = (~___bits) << 1;				\
12762306a36Sopenharmony_ci		/*							\
12862306a36Sopenharmony_ci		 * If ___bits == 0 then setting bit 31 is  unavoidable.	\
12962306a36Sopenharmony_ci		 * Simply apply the maximum possible reduction in that	\
13062306a36Sopenharmony_ci		 * case. Otherwise the MSB of ___bits indicates the	\
13162306a36Sopenharmony_ci		 * best reduction we should apply.			\
13262306a36Sopenharmony_ci		 */							\
13362306a36Sopenharmony_ci		if (!___bits) {						\
13462306a36Sopenharmony_ci			___p /= (___m & -___m);				\
13562306a36Sopenharmony_ci			___m /= (___m & -___m);				\
13662306a36Sopenharmony_ci		} else {						\
13762306a36Sopenharmony_ci			___p >>= ilog2(___bits);			\
13862306a36Sopenharmony_ci			___m >>= ilog2(___bits);			\
13962306a36Sopenharmony_ci		}							\
14062306a36Sopenharmony_ci		/* No bias needed. */					\
14162306a36Sopenharmony_ci		___bias = 0;						\
14262306a36Sopenharmony_ci	}								\
14362306a36Sopenharmony_ci									\
14462306a36Sopenharmony_ci	/*								\
14562306a36Sopenharmony_ci	 * Now we have a combination of 2 conditions:			\
14662306a36Sopenharmony_ci	 *								\
14762306a36Sopenharmony_ci	 * 1) whether or not we need to apply a bias, and		\
14862306a36Sopenharmony_ci	 *								\
14962306a36Sopenharmony_ci	 * 2) whether or not there might be an overflow in the cross	\
15062306a36Sopenharmony_ci	 *    product determined by (___m & ((1 << 63) | (1 << 31))).	\
15162306a36Sopenharmony_ci	 *								\
15262306a36Sopenharmony_ci	 * Select the best way to do (m_bias + m * n) / (1 << 64).	\
15362306a36Sopenharmony_ci	 * From now on there will be actual runtime code generated.	\
15462306a36Sopenharmony_ci	 */								\
15562306a36Sopenharmony_ci	___res = __arch_xprod_64(___m, ___n, ___bias);			\
15662306a36Sopenharmony_ci									\
15762306a36Sopenharmony_ci	___res /= ___p;							\
15862306a36Sopenharmony_ci})
15962306a36Sopenharmony_ci
16062306a36Sopenharmony_ci#ifndef __arch_xprod_64
16162306a36Sopenharmony_ci/*
16262306a36Sopenharmony_ci * Default C implementation for __arch_xprod_64()
16362306a36Sopenharmony_ci *
16462306a36Sopenharmony_ci * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
16562306a36Sopenharmony_ci * Semantic:  retval = ((bias ? m : 0) + m * n) >> 64
16662306a36Sopenharmony_ci *
16762306a36Sopenharmony_ci * The product is a 128-bit value, scaled down to 64 bits.
16862306a36Sopenharmony_ci * Assuming constant propagation to optimize away unused conditional code.
16962306a36Sopenharmony_ci * Architectures may provide their own optimized assembly implementation.
17062306a36Sopenharmony_ci */
17162306a36Sopenharmony_cistatic inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias)
17262306a36Sopenharmony_ci{
17362306a36Sopenharmony_ci	uint32_t m_lo = m;
17462306a36Sopenharmony_ci	uint32_t m_hi = m >> 32;
17562306a36Sopenharmony_ci	uint32_t n_lo = n;
17662306a36Sopenharmony_ci	uint32_t n_hi = n >> 32;
17762306a36Sopenharmony_ci	uint64_t res;
17862306a36Sopenharmony_ci	uint32_t res_lo, res_hi, tmp;
17962306a36Sopenharmony_ci
18062306a36Sopenharmony_ci	if (!bias) {
18162306a36Sopenharmony_ci		res = ((uint64_t)m_lo * n_lo) >> 32;
18262306a36Sopenharmony_ci	} else if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
18362306a36Sopenharmony_ci		/* there can't be any overflow here */
18462306a36Sopenharmony_ci		res = (m + (uint64_t)m_lo * n_lo) >> 32;
18562306a36Sopenharmony_ci	} else {
18662306a36Sopenharmony_ci		res = m + (uint64_t)m_lo * n_lo;
18762306a36Sopenharmony_ci		res_lo = res >> 32;
18862306a36Sopenharmony_ci		res_hi = (res_lo < m_hi);
18962306a36Sopenharmony_ci		res = res_lo | ((uint64_t)res_hi << 32);
19062306a36Sopenharmony_ci	}
19162306a36Sopenharmony_ci
19262306a36Sopenharmony_ci	if (!(m & ((1ULL << 63) | (1ULL << 31)))) {
19362306a36Sopenharmony_ci		/* there can't be any overflow here */
19462306a36Sopenharmony_ci		res += (uint64_t)m_lo * n_hi;
19562306a36Sopenharmony_ci		res += (uint64_t)m_hi * n_lo;
19662306a36Sopenharmony_ci		res >>= 32;
19762306a36Sopenharmony_ci	} else {
19862306a36Sopenharmony_ci		res += (uint64_t)m_lo * n_hi;
19962306a36Sopenharmony_ci		tmp = res >> 32;
20062306a36Sopenharmony_ci		res += (uint64_t)m_hi * n_lo;
20162306a36Sopenharmony_ci		res_lo = res >> 32;
20262306a36Sopenharmony_ci		res_hi = (res_lo < tmp);
20362306a36Sopenharmony_ci		res = res_lo | ((uint64_t)res_hi << 32);
20462306a36Sopenharmony_ci	}
20562306a36Sopenharmony_ci
20662306a36Sopenharmony_ci	res += (uint64_t)m_hi * n_hi;
20762306a36Sopenharmony_ci
20862306a36Sopenharmony_ci	return res;
20962306a36Sopenharmony_ci}
21062306a36Sopenharmony_ci#endif
21162306a36Sopenharmony_ci
21262306a36Sopenharmony_ci#ifndef __div64_32
21362306a36Sopenharmony_ciextern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor);
21462306a36Sopenharmony_ci#endif
21562306a36Sopenharmony_ci
21662306a36Sopenharmony_ci/* The unnecessary pointer compare is there
21762306a36Sopenharmony_ci * to check for type safety (n must be 64bit)
21862306a36Sopenharmony_ci */
21962306a36Sopenharmony_ci# define do_div(n,base) ({				\
22062306a36Sopenharmony_ci	uint32_t __base = (base);			\
22162306a36Sopenharmony_ci	uint32_t __rem;					\
22262306a36Sopenharmony_ci	(void)(((typeof((n)) *)0) == ((uint64_t *)0));	\
22362306a36Sopenharmony_ci	if (__builtin_constant_p(__base) &&		\
22462306a36Sopenharmony_ci	    is_power_of_2(__base)) {			\
22562306a36Sopenharmony_ci		__rem = (n) & (__base - 1);		\
22662306a36Sopenharmony_ci		(n) >>= ilog2(__base);			\
22762306a36Sopenharmony_ci	} else if (__builtin_constant_p(__base) &&	\
22862306a36Sopenharmony_ci		   __base != 0) {			\
22962306a36Sopenharmony_ci		uint32_t __res_lo, __n_lo = (n);	\
23062306a36Sopenharmony_ci		(n) = __div64_const32(n, __base);	\
23162306a36Sopenharmony_ci		/* the remainder can be computed with 32-bit regs */ \
23262306a36Sopenharmony_ci		__res_lo = (n);				\
23362306a36Sopenharmony_ci		__rem = __n_lo - __res_lo * __base;	\
23462306a36Sopenharmony_ci	} else if (likely(((n) >> 32) == 0)) {		\
23562306a36Sopenharmony_ci		__rem = (uint32_t)(n) % __base;		\
23662306a36Sopenharmony_ci		(n) = (uint32_t)(n) / __base;		\
23762306a36Sopenharmony_ci	} else {					\
23862306a36Sopenharmony_ci		__rem = __div64_32(&(n), __base);	\
23962306a36Sopenharmony_ci	}						\
24062306a36Sopenharmony_ci	__rem;						\
24162306a36Sopenharmony_ci })
24262306a36Sopenharmony_ci
24362306a36Sopenharmony_ci#else /* BITS_PER_LONG == ?? */
24462306a36Sopenharmony_ci
24562306a36Sopenharmony_ci# error do_div() does not yet support the C64
24662306a36Sopenharmony_ci
24762306a36Sopenharmony_ci#endif /* BITS_PER_LONG */
24862306a36Sopenharmony_ci
24962306a36Sopenharmony_ci#endif /* _ASM_GENERIC_DIV64_H */
250