xref: /kernel/linux/linux-6.6/fs/xfs/xfs_trans.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
4 * Copyright (C) 2010 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_extent_busy.h"
15#include "xfs_quota.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_defer.h"
23#include "xfs_inode.h"
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
26#include "xfs_icache.h"
27
28struct kmem_cache	*xfs_trans_cache;
29
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33	struct xfs_mount	*mp)
34{
35	struct xfs_trans_res	*res;
36	struct xfs_trans_res	*end_res;
37	int			i;
38
39	res = (struct xfs_trans_res *)M_RES(mp);
40	end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41	for (i = 0; res < end_res; i++, res++)
42		trace_xfs_trans_resv_calc(mp, i, res);
43}
44#else
45# define xfs_trans_trace_reservations(mp)
46#endif
47
48/*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52void
53xfs_trans_init(
54	struct xfs_mount	*mp)
55{
56	xfs_trans_resv_calc(mp, M_RES(mp));
57	xfs_trans_trace_reservations(mp);
58}
59
60/*
61 * Free the transaction structure.  If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64STATIC void
65xfs_trans_free(
66	struct xfs_trans	*tp)
67{
68	xfs_extent_busy_sort(&tp->t_busy);
69	xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
70
71	trace_xfs_trans_free(tp, _RET_IP_);
72	xfs_trans_clear_context(tp);
73	if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
74		sb_end_intwrite(tp->t_mountp->m_super);
75	xfs_trans_free_dqinfo(tp);
76	kmem_cache_free(xfs_trans_cache, tp);
77}
78
79/*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction.  The remaining
82 * unused block and rt extent reservations are also inherited.  This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks.  Locks and log items, however, are no inherited.  They must
85 * be added to the new transaction explicitly.
86 */
87STATIC struct xfs_trans *
88xfs_trans_dup(
89	struct xfs_trans	*tp)
90{
91	struct xfs_trans	*ntp;
92
93	trace_xfs_trans_dup(tp, _RET_IP_);
94
95	ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
96
97	/*
98	 * Initialize the new transaction structure.
99	 */
100	ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
101	ntp->t_mountp = tp->t_mountp;
102	INIT_LIST_HEAD(&ntp->t_items);
103	INIT_LIST_HEAD(&ntp->t_busy);
104	INIT_LIST_HEAD(&ntp->t_dfops);
105	ntp->t_highest_agno = NULLAGNUMBER;
106
107	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
108	ASSERT(tp->t_ticket != NULL);
109
110	ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111		       (tp->t_flags & XFS_TRANS_RESERVE) |
112		       (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113		       (tp->t_flags & XFS_TRANS_RES_FDBLKS);
114	/* We gave our writer reference to the new transaction */
115	tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
116	ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
117
118	ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
119	ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120	tp->t_blk_res = tp->t_blk_res_used;
121
122	ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123	tp->t_rtx_res = tp->t_rtx_res_used;
124
125	xfs_trans_switch_context(tp, ntp);
126
127	/* move deferred ops over to the new tp */
128	xfs_defer_move(ntp, tp);
129
130	xfs_trans_dup_dqinfo(tp, ntp);
131	return ntp;
132}
133
134/*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction.  This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions.  If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
148static int
149xfs_trans_reserve(
150	struct xfs_trans	*tp,
151	struct xfs_trans_res	*resp,
152	uint			blocks,
153	uint			rtextents)
154{
155	struct xfs_mount	*mp = tp->t_mountp;
156	int			error = 0;
157	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
158
159	/*
160	 * Attempt to reserve the needed disk blocks by decrementing
161	 * the number needed from the number available.  This will
162	 * fail if the count would go below zero.
163	 */
164	if (blocks > 0) {
165		error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
166		if (error != 0)
167			return -ENOSPC;
168		tp->t_blk_res += blocks;
169	}
170
171	/*
172	 * Reserve the log space needed for this transaction.
173	 */
174	if (resp->tr_logres > 0) {
175		bool	permanent = false;
176
177		ASSERT(tp->t_log_res == 0 ||
178		       tp->t_log_res == resp->tr_logres);
179		ASSERT(tp->t_log_count == 0 ||
180		       tp->t_log_count == resp->tr_logcount);
181
182		if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
183			tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
184			permanent = true;
185		} else {
186			ASSERT(tp->t_ticket == NULL);
187			ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
188		}
189
190		if (tp->t_ticket != NULL) {
191			ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
192			error = xfs_log_regrant(mp, tp->t_ticket);
193		} else {
194			error = xfs_log_reserve(mp, resp->tr_logres,
195						resp->tr_logcount,
196						&tp->t_ticket, permanent);
197		}
198
199		if (error)
200			goto undo_blocks;
201
202		tp->t_log_res = resp->tr_logres;
203		tp->t_log_count = resp->tr_logcount;
204	}
205
206	/*
207	 * Attempt to reserve the needed realtime extents by decrementing
208	 * the number needed from the number available.  This will
209	 * fail if the count would go below zero.
210	 */
211	if (rtextents > 0) {
212		error = xfs_mod_frextents(mp, -((int64_t)rtextents));
213		if (error) {
214			error = -ENOSPC;
215			goto undo_log;
216		}
217		tp->t_rtx_res += rtextents;
218	}
219
220	return 0;
221
222	/*
223	 * Error cases jump to one of these labels to undo any
224	 * reservations which have already been performed.
225	 */
226undo_log:
227	if (resp->tr_logres > 0) {
228		xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
229		tp->t_ticket = NULL;
230		tp->t_log_res = 0;
231		tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232	}
233
234undo_blocks:
235	if (blocks > 0) {
236		xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
237		tp->t_blk_res = 0;
238	}
239	return error;
240}
241
242int
243xfs_trans_alloc(
244	struct xfs_mount	*mp,
245	struct xfs_trans_res	*resp,
246	uint			blocks,
247	uint			rtextents,
248	uint			flags,
249	struct xfs_trans	**tpp)
250{
251	struct xfs_trans	*tp;
252	bool			want_retry = true;
253	int			error;
254
255	/*
256	 * Allocate the handle before we do our freeze accounting and setting up
257	 * GFP_NOFS allocation context so that we avoid lockdep false positives
258	 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259	 */
260retry:
261	tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
262	if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263		sb_start_intwrite(mp->m_super);
264	xfs_trans_set_context(tp);
265
266	/*
267	 * Zero-reservation ("empty") transactions can't modify anything, so
268	 * they're allowed to run while we're frozen.
269	 */
270	WARN_ON(resp->tr_logres > 0 &&
271		mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
272	ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
273	       xfs_has_lazysbcount(mp));
274
275	tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276	tp->t_flags = flags;
277	tp->t_mountp = mp;
278	INIT_LIST_HEAD(&tp->t_items);
279	INIT_LIST_HEAD(&tp->t_busy);
280	INIT_LIST_HEAD(&tp->t_dfops);
281	tp->t_highest_agno = NULLAGNUMBER;
282
283	error = xfs_trans_reserve(tp, resp, blocks, rtextents);
284	if (error == -ENOSPC && want_retry) {
285		xfs_trans_cancel(tp);
286
287		/*
288		 * We weren't able to reserve enough space for the transaction.
289		 * Flush the other speculative space allocations to free space.
290		 * Do not perform a synchronous scan because callers can hold
291		 * other locks.
292		 */
293		error = xfs_blockgc_flush_all(mp);
294		if (error)
295			return error;
296		want_retry = false;
297		goto retry;
298	}
299	if (error) {
300		xfs_trans_cancel(tp);
301		return error;
302	}
303
304	trace_xfs_trans_alloc(tp, _RET_IP_);
305
306	*tpp = tp;
307	return 0;
308}
309
310/*
311 * Create an empty transaction with no reservation.  This is a defensive
312 * mechanism for routines that query metadata without actually modifying them --
313 * if the metadata being queried is somehow cross-linked (think a btree block
314 * pointer that points higher in the tree), we risk deadlock.  However, blocks
315 * grabbed as part of a transaction can be re-grabbed.  The verifiers will
316 * notice the corrupt block and the operation will fail back to userspace
317 * without deadlocking.
318 *
319 * Note the zero-length reservation; this transaction MUST be cancelled without
320 * any dirty data.
321 *
322 * Callers should obtain freeze protection to avoid a conflict with fs freezing
323 * where we can be grabbing buffers at the same time that freeze is trying to
324 * drain the buffer LRU list.
325 */
326int
327xfs_trans_alloc_empty(
328	struct xfs_mount		*mp,
329	struct xfs_trans		**tpp)
330{
331	struct xfs_trans_res		resv = {0};
332
333	return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
334}
335
336/*
337 * Record the indicated change to the given field for application
338 * to the file system's superblock when the transaction commits.
339 * For now, just store the change in the transaction structure.
340 *
341 * Mark the transaction structure to indicate that the superblock
342 * needs to be updated before committing.
343 *
344 * Because we may not be keeping track of allocated/free inodes and
345 * used filesystem blocks in the superblock, we do not mark the
346 * superblock dirty in this transaction if we modify these fields.
347 * We still need to update the transaction deltas so that they get
348 * applied to the incore superblock, but we don't want them to
349 * cause the superblock to get locked and logged if these are the
350 * only fields in the superblock that the transaction modifies.
351 */
352void
353xfs_trans_mod_sb(
354	xfs_trans_t	*tp,
355	uint		field,
356	int64_t		delta)
357{
358	uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
359	xfs_mount_t	*mp = tp->t_mountp;
360
361	switch (field) {
362	case XFS_TRANS_SB_ICOUNT:
363		tp->t_icount_delta += delta;
364		if (xfs_has_lazysbcount(mp))
365			flags &= ~XFS_TRANS_SB_DIRTY;
366		break;
367	case XFS_TRANS_SB_IFREE:
368		tp->t_ifree_delta += delta;
369		if (xfs_has_lazysbcount(mp))
370			flags &= ~XFS_TRANS_SB_DIRTY;
371		break;
372	case XFS_TRANS_SB_FDBLOCKS:
373		/*
374		 * Track the number of blocks allocated in the transaction.
375		 * Make sure it does not exceed the number reserved. If so,
376		 * shutdown as this can lead to accounting inconsistency.
377		 */
378		if (delta < 0) {
379			tp->t_blk_res_used += (uint)-delta;
380			if (tp->t_blk_res_used > tp->t_blk_res)
381				xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
382		} else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
383			int64_t	blkres_delta;
384
385			/*
386			 * Return freed blocks directly to the reservation
387			 * instead of the global pool, being careful not to
388			 * overflow the trans counter. This is used to preserve
389			 * reservation across chains of transaction rolls that
390			 * repeatedly free and allocate blocks.
391			 */
392			blkres_delta = min_t(int64_t, delta,
393					     UINT_MAX - tp->t_blk_res);
394			tp->t_blk_res += blkres_delta;
395			delta -= blkres_delta;
396		}
397		tp->t_fdblocks_delta += delta;
398		if (xfs_has_lazysbcount(mp))
399			flags &= ~XFS_TRANS_SB_DIRTY;
400		break;
401	case XFS_TRANS_SB_RES_FDBLOCKS:
402		/*
403		 * The allocation has already been applied to the
404		 * in-core superblock's counter.  This should only
405		 * be applied to the on-disk superblock.
406		 */
407		tp->t_res_fdblocks_delta += delta;
408		if (xfs_has_lazysbcount(mp))
409			flags &= ~XFS_TRANS_SB_DIRTY;
410		break;
411	case XFS_TRANS_SB_FREXTENTS:
412		/*
413		 * Track the number of blocks allocated in the
414		 * transaction.  Make sure it does not exceed the
415		 * number reserved.
416		 */
417		if (delta < 0) {
418			tp->t_rtx_res_used += (uint)-delta;
419			ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
420		}
421		tp->t_frextents_delta += delta;
422		break;
423	case XFS_TRANS_SB_RES_FREXTENTS:
424		/*
425		 * The allocation has already been applied to the
426		 * in-core superblock's counter.  This should only
427		 * be applied to the on-disk superblock.
428		 */
429		ASSERT(delta < 0);
430		tp->t_res_frextents_delta += delta;
431		break;
432	case XFS_TRANS_SB_DBLOCKS:
433		tp->t_dblocks_delta += delta;
434		break;
435	case XFS_TRANS_SB_AGCOUNT:
436		ASSERT(delta > 0);
437		tp->t_agcount_delta += delta;
438		break;
439	case XFS_TRANS_SB_IMAXPCT:
440		tp->t_imaxpct_delta += delta;
441		break;
442	case XFS_TRANS_SB_REXTSIZE:
443		tp->t_rextsize_delta += delta;
444		break;
445	case XFS_TRANS_SB_RBMBLOCKS:
446		tp->t_rbmblocks_delta += delta;
447		break;
448	case XFS_TRANS_SB_RBLOCKS:
449		tp->t_rblocks_delta += delta;
450		break;
451	case XFS_TRANS_SB_REXTENTS:
452		tp->t_rextents_delta += delta;
453		break;
454	case XFS_TRANS_SB_REXTSLOG:
455		tp->t_rextslog_delta += delta;
456		break;
457	default:
458		ASSERT(0);
459		return;
460	}
461
462	tp->t_flags |= flags;
463}
464
465/*
466 * xfs_trans_apply_sb_deltas() is called from the commit code
467 * to bring the superblock buffer into the current transaction
468 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
469 *
470 * For now we just look at each field allowed to change and change
471 * it if necessary.
472 */
473STATIC void
474xfs_trans_apply_sb_deltas(
475	xfs_trans_t	*tp)
476{
477	struct xfs_dsb	*sbp;
478	struct xfs_buf	*bp;
479	int		whole = 0;
480
481	bp = xfs_trans_getsb(tp);
482	sbp = bp->b_addr;
483
484	/*
485	 * Only update the superblock counters if we are logging them
486	 */
487	if (!xfs_has_lazysbcount((tp->t_mountp))) {
488		if (tp->t_icount_delta)
489			be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
490		if (tp->t_ifree_delta)
491			be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
492		if (tp->t_fdblocks_delta)
493			be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
494		if (tp->t_res_fdblocks_delta)
495			be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
496	}
497
498	/*
499	 * Updating frextents requires careful handling because it does not
500	 * behave like the lazysb counters because we cannot rely on log
501	 * recovery in older kenels to recompute the value from the rtbitmap.
502	 * This means that the ondisk frextents must be consistent with the
503	 * rtbitmap.
504	 *
505	 * Therefore, log the frextents change to the ondisk superblock and
506	 * update the incore superblock so that future calls to xfs_log_sb
507	 * write the correct value ondisk.
508	 *
509	 * Don't touch m_frextents because it includes incore reservations,
510	 * and those are handled by the unreserve function.
511	 */
512	if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
513		struct xfs_mount	*mp = tp->t_mountp;
514		int64_t			rtxdelta;
515
516		rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
517
518		spin_lock(&mp->m_sb_lock);
519		be64_add_cpu(&sbp->sb_frextents, rtxdelta);
520		mp->m_sb.sb_frextents += rtxdelta;
521		spin_unlock(&mp->m_sb_lock);
522	}
523
524	if (tp->t_dblocks_delta) {
525		be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
526		whole = 1;
527	}
528	if (tp->t_agcount_delta) {
529		be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
530		whole = 1;
531	}
532	if (tp->t_imaxpct_delta) {
533		sbp->sb_imax_pct += tp->t_imaxpct_delta;
534		whole = 1;
535	}
536	if (tp->t_rextsize_delta) {
537		be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
538		whole = 1;
539	}
540	if (tp->t_rbmblocks_delta) {
541		be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
542		whole = 1;
543	}
544	if (tp->t_rblocks_delta) {
545		be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
546		whole = 1;
547	}
548	if (tp->t_rextents_delta) {
549		be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
550		whole = 1;
551	}
552	if (tp->t_rextslog_delta) {
553		sbp->sb_rextslog += tp->t_rextslog_delta;
554		whole = 1;
555	}
556
557	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
558	if (whole)
559		/*
560		 * Log the whole thing, the fields are noncontiguous.
561		 */
562		xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
563	else
564		/*
565		 * Since all the modifiable fields are contiguous, we
566		 * can get away with this.
567		 */
568		xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
569				  offsetof(struct xfs_dsb, sb_frextents) +
570				  sizeof(sbp->sb_frextents) - 1);
571}
572
573/*
574 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
575 * apply superblock counter changes to the in-core superblock.  The
576 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
577 * applied to the in-core superblock.  The idea is that that has already been
578 * done.
579 *
580 * If we are not logging superblock counters, then the inode allocated/free and
581 * used block counts are not updated in the on disk superblock. In this case,
582 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
583 * still need to update the incore superblock with the changes.
584 *
585 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
586 * so we don't need to take the counter lock on every update.
587 */
588#define XFS_ICOUNT_BATCH	128
589
590void
591xfs_trans_unreserve_and_mod_sb(
592	struct xfs_trans	*tp)
593{
594	struct xfs_mount	*mp = tp->t_mountp;
595	bool			rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
596	int64_t			blkdelta = 0;
597	int64_t			rtxdelta = 0;
598	int64_t			idelta = 0;
599	int64_t			ifreedelta = 0;
600	int			error;
601
602	/* calculate deltas */
603	if (tp->t_blk_res > 0)
604		blkdelta = tp->t_blk_res;
605	if ((tp->t_fdblocks_delta != 0) &&
606	    (xfs_has_lazysbcount(mp) ||
607	     (tp->t_flags & XFS_TRANS_SB_DIRTY)))
608	        blkdelta += tp->t_fdblocks_delta;
609
610	if (tp->t_rtx_res > 0)
611		rtxdelta = tp->t_rtx_res;
612	if ((tp->t_frextents_delta != 0) &&
613	    (tp->t_flags & XFS_TRANS_SB_DIRTY))
614		rtxdelta += tp->t_frextents_delta;
615
616	if (xfs_has_lazysbcount(mp) ||
617	     (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
618		idelta = tp->t_icount_delta;
619		ifreedelta = tp->t_ifree_delta;
620	}
621
622	/* apply the per-cpu counters */
623	if (blkdelta) {
624		error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
625		ASSERT(!error);
626	}
627
628	if (idelta)
629		percpu_counter_add_batch(&mp->m_icount, idelta,
630					 XFS_ICOUNT_BATCH);
631
632	if (ifreedelta)
633		percpu_counter_add(&mp->m_ifree, ifreedelta);
634
635	if (rtxdelta) {
636		error = xfs_mod_frextents(mp, rtxdelta);
637		ASSERT(!error);
638	}
639
640	if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
641		return;
642
643	/* apply remaining deltas */
644	spin_lock(&mp->m_sb_lock);
645	mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
646	mp->m_sb.sb_icount += idelta;
647	mp->m_sb.sb_ifree += ifreedelta;
648	/*
649	 * Do not touch sb_frextents here because we are dealing with incore
650	 * reservation.  sb_frextents is not part of the lazy sb counters so it
651	 * must be consistent with the ondisk rtbitmap and must never include
652	 * incore reservations.
653	 */
654	mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
655	mp->m_sb.sb_agcount += tp->t_agcount_delta;
656	mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
657	mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
658	mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
659	mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
660	mp->m_sb.sb_rextents += tp->t_rextents_delta;
661	mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
662	spin_unlock(&mp->m_sb_lock);
663
664	/*
665	 * Debug checks outside of the spinlock so they don't lock up the
666	 * machine if they fail.
667	 */
668	ASSERT(mp->m_sb.sb_imax_pct >= 0);
669	ASSERT(mp->m_sb.sb_rextslog >= 0);
670	return;
671}
672
673/* Add the given log item to the transaction's list of log items. */
674void
675xfs_trans_add_item(
676	struct xfs_trans	*tp,
677	struct xfs_log_item	*lip)
678{
679	ASSERT(lip->li_log == tp->t_mountp->m_log);
680	ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
681	ASSERT(list_empty(&lip->li_trans));
682	ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
683
684	list_add_tail(&lip->li_trans, &tp->t_items);
685	trace_xfs_trans_add_item(tp, _RET_IP_);
686}
687
688/*
689 * Unlink the log item from the transaction. the log item is no longer
690 * considered dirty in this transaction, as the linked transaction has
691 * finished, either by abort or commit completion.
692 */
693void
694xfs_trans_del_item(
695	struct xfs_log_item	*lip)
696{
697	clear_bit(XFS_LI_DIRTY, &lip->li_flags);
698	list_del_init(&lip->li_trans);
699}
700
701/* Detach and unlock all of the items in a transaction */
702static void
703xfs_trans_free_items(
704	struct xfs_trans	*tp,
705	bool			abort)
706{
707	struct xfs_log_item	*lip, *next;
708
709	trace_xfs_trans_free_items(tp, _RET_IP_);
710
711	list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
712		xfs_trans_del_item(lip);
713		if (abort)
714			set_bit(XFS_LI_ABORTED, &lip->li_flags);
715		if (lip->li_ops->iop_release)
716			lip->li_ops->iop_release(lip);
717	}
718}
719
720static inline void
721xfs_log_item_batch_insert(
722	struct xfs_ail		*ailp,
723	struct xfs_ail_cursor	*cur,
724	struct xfs_log_item	**log_items,
725	int			nr_items,
726	xfs_lsn_t		commit_lsn)
727{
728	int	i;
729
730	spin_lock(&ailp->ail_lock);
731	/* xfs_trans_ail_update_bulk drops ailp->ail_lock */
732	xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
733
734	for (i = 0; i < nr_items; i++) {
735		struct xfs_log_item *lip = log_items[i];
736
737		if (lip->li_ops->iop_unpin)
738			lip->li_ops->iop_unpin(lip, 0);
739	}
740}
741
742/*
743 * Bulk operation version of xfs_trans_committed that takes a log vector of
744 * items to insert into the AIL. This uses bulk AIL insertion techniques to
745 * minimise lock traffic.
746 *
747 * If we are called with the aborted flag set, it is because a log write during
748 * a CIL checkpoint commit has failed. In this case, all the items in the
749 * checkpoint have already gone through iop_committed and iop_committing, which
750 * means that checkpoint commit abort handling is treated exactly the same
751 * as an iclog write error even though we haven't started any IO yet. Hence in
752 * this case all we need to do is iop_committed processing, followed by an
753 * iop_unpin(aborted) call.
754 *
755 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
756 * at the end of the AIL, the insert cursor avoids the need to walk
757 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
758 * call. This saves a lot of needless list walking and is a net win, even
759 * though it slightly increases that amount of AIL lock traffic to set it up
760 * and tear it down.
761 */
762void
763xfs_trans_committed_bulk(
764	struct xfs_ail		*ailp,
765	struct list_head	*lv_chain,
766	xfs_lsn_t		commit_lsn,
767	bool			aborted)
768{
769#define LOG_ITEM_BATCH_SIZE	32
770	struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE];
771	struct xfs_log_vec	*lv;
772	struct xfs_ail_cursor	cur;
773	int			i = 0;
774
775	spin_lock(&ailp->ail_lock);
776	xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
777	spin_unlock(&ailp->ail_lock);
778
779	/* unpin all the log items */
780	list_for_each_entry(lv, lv_chain, lv_list) {
781		struct xfs_log_item	*lip = lv->lv_item;
782		xfs_lsn_t		item_lsn;
783
784		if (aborted)
785			set_bit(XFS_LI_ABORTED, &lip->li_flags);
786
787		if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
788			lip->li_ops->iop_release(lip);
789			continue;
790		}
791
792		if (lip->li_ops->iop_committed)
793			item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
794		else
795			item_lsn = commit_lsn;
796
797		/* item_lsn of -1 means the item needs no further processing */
798		if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
799			continue;
800
801		/*
802		 * if we are aborting the operation, no point in inserting the
803		 * object into the AIL as we are in a shutdown situation.
804		 */
805		if (aborted) {
806			ASSERT(xlog_is_shutdown(ailp->ail_log));
807			if (lip->li_ops->iop_unpin)
808				lip->li_ops->iop_unpin(lip, 1);
809			continue;
810		}
811
812		if (item_lsn != commit_lsn) {
813
814			/*
815			 * Not a bulk update option due to unusual item_lsn.
816			 * Push into AIL immediately, rechecking the lsn once
817			 * we have the ail lock. Then unpin the item. This does
818			 * not affect the AIL cursor the bulk insert path is
819			 * using.
820			 */
821			spin_lock(&ailp->ail_lock);
822			if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
823				xfs_trans_ail_update(ailp, lip, item_lsn);
824			else
825				spin_unlock(&ailp->ail_lock);
826			if (lip->li_ops->iop_unpin)
827				lip->li_ops->iop_unpin(lip, 0);
828			continue;
829		}
830
831		/* Item is a candidate for bulk AIL insert.  */
832		log_items[i++] = lv->lv_item;
833		if (i >= LOG_ITEM_BATCH_SIZE) {
834			xfs_log_item_batch_insert(ailp, &cur, log_items,
835					LOG_ITEM_BATCH_SIZE, commit_lsn);
836			i = 0;
837		}
838	}
839
840	/* make sure we insert the remainder! */
841	if (i)
842		xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
843
844	spin_lock(&ailp->ail_lock);
845	xfs_trans_ail_cursor_done(&cur);
846	spin_unlock(&ailp->ail_lock);
847}
848
849/*
850 * Sort transaction items prior to running precommit operations. This will
851 * attempt to order the items such that they will always be locked in the same
852 * order. Items that have no sort function are moved to the end of the list
853 * and so are locked last.
854 *
855 * This may need refinement as different types of objects add sort functions.
856 *
857 * Function is more complex than it needs to be because we are comparing 64 bit
858 * values and the function only returns 32 bit values.
859 */
860static int
861xfs_trans_precommit_sort(
862	void			*unused_arg,
863	const struct list_head	*a,
864	const struct list_head	*b)
865{
866	struct xfs_log_item	*lia = container_of(a,
867					struct xfs_log_item, li_trans);
868	struct xfs_log_item	*lib = container_of(b,
869					struct xfs_log_item, li_trans);
870	int64_t			diff;
871
872	/*
873	 * If both items are non-sortable, leave them alone. If only one is
874	 * sortable, move the non-sortable item towards the end of the list.
875	 */
876	if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
877		return 0;
878	if (!lia->li_ops->iop_sort)
879		return 1;
880	if (!lib->li_ops->iop_sort)
881		return -1;
882
883	diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
884	if (diff < 0)
885		return -1;
886	if (diff > 0)
887		return 1;
888	return 0;
889}
890
891/*
892 * Run transaction precommit functions.
893 *
894 * If there is an error in any of the callouts, then stop immediately and
895 * trigger a shutdown to abort the transaction. There is no recovery possible
896 * from errors at this point as the transaction is dirty....
897 */
898static int
899xfs_trans_run_precommits(
900	struct xfs_trans	*tp)
901{
902	struct xfs_mount	*mp = tp->t_mountp;
903	struct xfs_log_item	*lip, *n;
904	int			error = 0;
905
906	/*
907	 * Sort the item list to avoid ABBA deadlocks with other transactions
908	 * running precommit operations that lock multiple shared items such as
909	 * inode cluster buffers.
910	 */
911	list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
912
913	/*
914	 * Precommit operations can remove the log item from the transaction
915	 * if the log item exists purely to delay modifications until they
916	 * can be ordered against other operations. Hence we have to use
917	 * list_for_each_entry_safe() here.
918	 */
919	list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
920		if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
921			continue;
922		if (lip->li_ops->iop_precommit) {
923			error = lip->li_ops->iop_precommit(tp, lip);
924			if (error)
925				break;
926		}
927	}
928	if (error)
929		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
930	return error;
931}
932
933/*
934 * Commit the given transaction to the log.
935 *
936 * XFS disk error handling mechanism is not based on a typical
937 * transaction abort mechanism. Logically after the filesystem
938 * gets marked 'SHUTDOWN', we can't let any new transactions
939 * be durable - ie. committed to disk - because some metadata might
940 * be inconsistent. In such cases, this returns an error, and the
941 * caller may assume that all locked objects joined to the transaction
942 * have already been unlocked as if the commit had succeeded.
943 * Do not reference the transaction structure after this call.
944 */
945static int
946__xfs_trans_commit(
947	struct xfs_trans	*tp,
948	bool			regrant)
949{
950	struct xfs_mount	*mp = tp->t_mountp;
951	struct xlog		*log = mp->m_log;
952	xfs_csn_t		commit_seq = 0;
953	int			error = 0;
954	int			sync = tp->t_flags & XFS_TRANS_SYNC;
955
956	trace_xfs_trans_commit(tp, _RET_IP_);
957
958	error = xfs_trans_run_precommits(tp);
959	if (error) {
960		if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
961			xfs_defer_cancel(tp);
962		goto out_unreserve;
963	}
964
965	/*
966	 * Finish deferred items on final commit. Only permanent transactions
967	 * should ever have deferred ops.
968	 */
969	WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
970		     !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
971	if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
972		error = xfs_defer_finish_noroll(&tp);
973		if (error)
974			goto out_unreserve;
975
976		/* Run precommits from final tx in defer chain. */
977		error = xfs_trans_run_precommits(tp);
978		if (error)
979			goto out_unreserve;
980	}
981
982	/*
983	 * If there is nothing to be logged by the transaction,
984	 * then unlock all of the items associated with the
985	 * transaction and free the transaction structure.
986	 * Also make sure to return any reserved blocks to
987	 * the free pool.
988	 */
989	if (!(tp->t_flags & XFS_TRANS_DIRTY))
990		goto out_unreserve;
991
992	/*
993	 * We must check against log shutdown here because we cannot abort log
994	 * items and leave them dirty, inconsistent and unpinned in memory while
995	 * the log is active. This leaves them open to being written back to
996	 * disk, and that will lead to on-disk corruption.
997	 */
998	if (xlog_is_shutdown(log)) {
999		error = -EIO;
1000		goto out_unreserve;
1001	}
1002
1003	ASSERT(tp->t_ticket != NULL);
1004
1005	/*
1006	 * If we need to update the superblock, then do it now.
1007	 */
1008	if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1009		xfs_trans_apply_sb_deltas(tp);
1010	xfs_trans_apply_dquot_deltas(tp);
1011
1012	xlog_cil_commit(log, tp, &commit_seq, regrant);
1013
1014	xfs_trans_free(tp);
1015
1016	/*
1017	 * If the transaction needs to be synchronous, then force the
1018	 * log out now and wait for it.
1019	 */
1020	if (sync) {
1021		error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
1022		XFS_STATS_INC(mp, xs_trans_sync);
1023	} else {
1024		XFS_STATS_INC(mp, xs_trans_async);
1025	}
1026
1027	return error;
1028
1029out_unreserve:
1030	xfs_trans_unreserve_and_mod_sb(tp);
1031
1032	/*
1033	 * It is indeed possible for the transaction to be not dirty but
1034	 * the dqinfo portion to be.  All that means is that we have some
1035	 * (non-persistent) quota reservations that need to be unreserved.
1036	 */
1037	xfs_trans_unreserve_and_mod_dquots(tp);
1038	if (tp->t_ticket) {
1039		if (regrant && !xlog_is_shutdown(log))
1040			xfs_log_ticket_regrant(log, tp->t_ticket);
1041		else
1042			xfs_log_ticket_ungrant(log, tp->t_ticket);
1043		tp->t_ticket = NULL;
1044	}
1045	xfs_trans_free_items(tp, !!error);
1046	xfs_trans_free(tp);
1047
1048	XFS_STATS_INC(mp, xs_trans_empty);
1049	return error;
1050}
1051
1052int
1053xfs_trans_commit(
1054	struct xfs_trans	*tp)
1055{
1056	return __xfs_trans_commit(tp, false);
1057}
1058
1059/*
1060 * Unlock all of the transaction's items and free the transaction.  If the
1061 * transaction is dirty, we must shut down the filesystem because there is no
1062 * way to restore them to their previous state.
1063 *
1064 * If the transaction has made a log reservation, make sure to release it as
1065 * well.
1066 *
1067 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1068 * be called after the transaction has effectively been aborted due to the mount
1069 * being shut down. However, if the mount has not been shut down and the
1070 * transaction is dirty we will shut the mount down and, in doing so, that
1071 * guarantees that the log is shut down, too. Hence we don't need to be as
1072 * careful with shutdown state and dirty items here as we need to be in
1073 * xfs_trans_commit().
1074 */
1075void
1076xfs_trans_cancel(
1077	struct xfs_trans	*tp)
1078{
1079	struct xfs_mount	*mp = tp->t_mountp;
1080	struct xlog		*log = mp->m_log;
1081	bool			dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1082
1083	trace_xfs_trans_cancel(tp, _RET_IP_);
1084
1085	/*
1086	 * It's never valid to cancel a transaction with deferred ops attached,
1087	 * because the transaction is effectively dirty.  Complain about this
1088	 * loudly before freeing the in-memory defer items and shutting down the
1089	 * filesystem.
1090	 */
1091	if (!list_empty(&tp->t_dfops)) {
1092		ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1093		dirty = true;
1094		xfs_defer_cancel(tp);
1095	}
1096
1097	/*
1098	 * See if the caller is relying on us to shut down the filesystem. We
1099	 * only want an error report if there isn't already a shutdown in
1100	 * progress, so we only need to check against the mount shutdown state
1101	 * here.
1102	 */
1103	if (dirty && !xfs_is_shutdown(mp)) {
1104		XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
1105		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1106	}
1107#ifdef DEBUG
1108	/* Log items need to be consistent until the log is shut down. */
1109	if (!dirty && !xlog_is_shutdown(log)) {
1110		struct xfs_log_item *lip;
1111
1112		list_for_each_entry(lip, &tp->t_items, li_trans)
1113			ASSERT(!xlog_item_is_intent_done(lip));
1114	}
1115#endif
1116	xfs_trans_unreserve_and_mod_sb(tp);
1117	xfs_trans_unreserve_and_mod_dquots(tp);
1118
1119	if (tp->t_ticket) {
1120		xfs_log_ticket_ungrant(log, tp->t_ticket);
1121		tp->t_ticket = NULL;
1122	}
1123
1124	xfs_trans_free_items(tp, dirty);
1125	xfs_trans_free(tp);
1126}
1127
1128/*
1129 * Roll from one trans in the sequence of PERMANENT transactions to
1130 * the next: permanent transactions are only flushed out when
1131 * committed with xfs_trans_commit(), but we still want as soon
1132 * as possible to let chunks of it go to the log. So we commit the
1133 * chunk we've been working on and get a new transaction to continue.
1134 */
1135int
1136xfs_trans_roll(
1137	struct xfs_trans	**tpp)
1138{
1139	struct xfs_trans	*trans = *tpp;
1140	struct xfs_trans_res	tres;
1141	int			error;
1142
1143	trace_xfs_trans_roll(trans, _RET_IP_);
1144
1145	/*
1146	 * Copy the critical parameters from one trans to the next.
1147	 */
1148	tres.tr_logres = trans->t_log_res;
1149	tres.tr_logcount = trans->t_log_count;
1150
1151	*tpp = xfs_trans_dup(trans);
1152
1153	/*
1154	 * Commit the current transaction.
1155	 * If this commit failed, then it'd just unlock those items that
1156	 * are not marked ihold. That also means that a filesystem shutdown
1157	 * is in progress. The caller takes the responsibility to cancel
1158	 * the duplicate transaction that gets returned.
1159	 */
1160	error = __xfs_trans_commit(trans, true);
1161	if (error)
1162		return error;
1163
1164	/*
1165	 * Reserve space in the log for the next transaction.
1166	 * This also pushes items in the "AIL", the list of logged items,
1167	 * out to disk if they are taking up space at the tail of the log
1168	 * that we want to use.  This requires that either nothing be locked
1169	 * across this call, or that anything that is locked be logged in
1170	 * the prior and the next transactions.
1171	 */
1172	tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1173	return xfs_trans_reserve(*tpp, &tres, 0, 0);
1174}
1175
1176/*
1177 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1178 *
1179 * The caller must ensure that the on-disk dquots attached to this inode have
1180 * already been allocated and initialized.  The caller is responsible for
1181 * releasing ILOCK_EXCL if a new transaction is returned.
1182 */
1183int
1184xfs_trans_alloc_inode(
1185	struct xfs_inode	*ip,
1186	struct xfs_trans_res	*resv,
1187	unsigned int		dblocks,
1188	unsigned int		rblocks,
1189	bool			force,
1190	struct xfs_trans	**tpp)
1191{
1192	struct xfs_trans	*tp;
1193	struct xfs_mount	*mp = ip->i_mount;
1194	bool			retried = false;
1195	int			error;
1196
1197retry:
1198	error = xfs_trans_alloc(mp, resv, dblocks,
1199			rblocks / mp->m_sb.sb_rextsize,
1200			force ? XFS_TRANS_RESERVE : 0, &tp);
1201	if (error)
1202		return error;
1203
1204	xfs_ilock(ip, XFS_ILOCK_EXCL);
1205	xfs_trans_ijoin(tp, ip, 0);
1206
1207	error = xfs_qm_dqattach_locked(ip, false);
1208	if (error) {
1209		/* Caller should have allocated the dquots! */
1210		ASSERT(error != -ENOENT);
1211		goto out_cancel;
1212	}
1213
1214	error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
1215	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1216		xfs_trans_cancel(tp);
1217		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1218		xfs_blockgc_free_quota(ip, 0);
1219		retried = true;
1220		goto retry;
1221	}
1222	if (error)
1223		goto out_cancel;
1224
1225	*tpp = tp;
1226	return 0;
1227
1228out_cancel:
1229	xfs_trans_cancel(tp);
1230	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1231	return error;
1232}
1233
1234/*
1235 * Allocate an transaction in preparation for inode creation by reserving quota
1236 * against the given dquots.  Callers are not required to hold any inode locks.
1237 */
1238int
1239xfs_trans_alloc_icreate(
1240	struct xfs_mount	*mp,
1241	struct xfs_trans_res	*resv,
1242	struct xfs_dquot	*udqp,
1243	struct xfs_dquot	*gdqp,
1244	struct xfs_dquot	*pdqp,
1245	unsigned int		dblocks,
1246	struct xfs_trans	**tpp)
1247{
1248	struct xfs_trans	*tp;
1249	bool			retried = false;
1250	int			error;
1251
1252retry:
1253	error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1254	if (error)
1255		return error;
1256
1257	error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
1258	if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1259		xfs_trans_cancel(tp);
1260		xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1261		retried = true;
1262		goto retry;
1263	}
1264	if (error) {
1265		xfs_trans_cancel(tp);
1266		return error;
1267	}
1268
1269	*tpp = tp;
1270	return 0;
1271}
1272
1273/*
1274 * Allocate an transaction, lock and join the inode to it, and reserve quota
1275 * in preparation for inode attribute changes that include uid, gid, or prid
1276 * changes.
1277 *
1278 * The caller must ensure that the on-disk dquots attached to this inode have
1279 * already been allocated and initialized.  The ILOCK will be dropped when the
1280 * transaction is committed or cancelled.
1281 */
1282int
1283xfs_trans_alloc_ichange(
1284	struct xfs_inode	*ip,
1285	struct xfs_dquot	*new_udqp,
1286	struct xfs_dquot	*new_gdqp,
1287	struct xfs_dquot	*new_pdqp,
1288	bool			force,
1289	struct xfs_trans	**tpp)
1290{
1291	struct xfs_trans	*tp;
1292	struct xfs_mount	*mp = ip->i_mount;
1293	struct xfs_dquot	*udqp;
1294	struct xfs_dquot	*gdqp;
1295	struct xfs_dquot	*pdqp;
1296	bool			retried = false;
1297	int			error;
1298
1299retry:
1300	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1301	if (error)
1302		return error;
1303
1304	xfs_ilock(ip, XFS_ILOCK_EXCL);
1305	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1306
1307	error = xfs_qm_dqattach_locked(ip, false);
1308	if (error) {
1309		/* Caller should have allocated the dquots! */
1310		ASSERT(error != -ENOENT);
1311		goto out_cancel;
1312	}
1313
1314	/*
1315	 * For each quota type, skip quota reservations if the inode's dquots
1316	 * now match the ones that came from the caller, or the caller didn't
1317	 * pass one in.  The inode's dquots can change if we drop the ILOCK to
1318	 * perform a blockgc scan, so we must preserve the caller's arguments.
1319	 */
1320	udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1321	gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1322	pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
1323	if (udqp || gdqp || pdqp) {
1324		unsigned int	qflags = XFS_QMOPT_RES_REGBLKS;
1325
1326		if (force)
1327			qflags |= XFS_QMOPT_FORCE_RES;
1328
1329		/*
1330		 * Reserve enough quota to handle blocks on disk and reserved
1331		 * for a delayed allocation.  We'll actually transfer the
1332		 * delalloc reservation between dquots at chown time, even
1333		 * though that part is only semi-transactional.
1334		 */
1335		error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
1336				pdqp, ip->i_nblocks + ip->i_delayed_blks,
1337				1, qflags);
1338		if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1339			xfs_trans_cancel(tp);
1340			xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1341			retried = true;
1342			goto retry;
1343		}
1344		if (error)
1345			goto out_cancel;
1346	}
1347
1348	*tpp = tp;
1349	return 0;
1350
1351out_cancel:
1352	xfs_trans_cancel(tp);
1353	return error;
1354}
1355
1356/*
1357 * Allocate an transaction, lock and join the directory and child inodes to it,
1358 * and reserve quota for a directory update.  If there isn't sufficient space,
1359 * @dblocks will be set to zero for a reservationless directory update and
1360 * @nospace_error will be set to a negative errno describing the space
1361 * constraint we hit.
1362 *
1363 * The caller must ensure that the on-disk dquots attached to this inode have
1364 * already been allocated and initialized.  The ILOCKs will be dropped when the
1365 * transaction is committed or cancelled.
1366 */
1367int
1368xfs_trans_alloc_dir(
1369	struct xfs_inode	*dp,
1370	struct xfs_trans_res	*resv,
1371	struct xfs_inode	*ip,
1372	unsigned int		*dblocks,
1373	struct xfs_trans	**tpp,
1374	int			*nospace_error)
1375{
1376	struct xfs_trans	*tp;
1377	struct xfs_mount	*mp = ip->i_mount;
1378	unsigned int		resblks;
1379	bool			retried = false;
1380	int			error;
1381
1382retry:
1383	*nospace_error = 0;
1384	resblks = *dblocks;
1385	error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1386	if (error == -ENOSPC) {
1387		*nospace_error = error;
1388		resblks = 0;
1389		error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1390	}
1391	if (error)
1392		return error;
1393
1394	xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1395
1396	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1397	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1398
1399	error = xfs_qm_dqattach_locked(dp, false);
1400	if (error) {
1401		/* Caller should have allocated the dquots! */
1402		ASSERT(error != -ENOENT);
1403		goto out_cancel;
1404	}
1405
1406	error = xfs_qm_dqattach_locked(ip, false);
1407	if (error) {
1408		/* Caller should have allocated the dquots! */
1409		ASSERT(error != -ENOENT);
1410		goto out_cancel;
1411	}
1412
1413	if (resblks == 0)
1414		goto done;
1415
1416	error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1417	if (error == -EDQUOT || error == -ENOSPC) {
1418		if (!retried) {
1419			xfs_trans_cancel(tp);
1420			xfs_blockgc_free_quota(dp, 0);
1421			retried = true;
1422			goto retry;
1423		}
1424
1425		*nospace_error = error;
1426		resblks = 0;
1427		error = 0;
1428	}
1429	if (error)
1430		goto out_cancel;
1431
1432done:
1433	*tpp = tp;
1434	*dblocks = resblks;
1435	return 0;
1436
1437out_cancel:
1438	xfs_trans_cancel(tp);
1439	return error;
1440}
1441