xref: /kernel/linux/linux-6.6/fs/xfs/xfs_inode_item.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_trace.h"
17#include "xfs_trans_priv.h"
18#include "xfs_buf_item.h"
19#include "xfs_log.h"
20#include "xfs_log_priv.h"
21#include "xfs_error.h"
22
23#include <linux/iversion.h>
24
25struct kmem_cache	*xfs_ili_cache;		/* inode log item */
26
27static inline struct xfs_inode_log_item *INODE_ITEM(struct xfs_log_item *lip)
28{
29	return container_of(lip, struct xfs_inode_log_item, ili_item);
30}
31
32static uint64_t
33xfs_inode_item_sort(
34	struct xfs_log_item	*lip)
35{
36	return INODE_ITEM(lip)->ili_inode->i_ino;
37}
38
39/*
40 * Prior to finally logging the inode, we have to ensure that all the
41 * per-modification inode state changes are applied. This includes VFS inode
42 * state updates, format conversions, verifier state synchronisation and
43 * ensuring the inode buffer remains in memory whilst the inode is dirty.
44 *
45 * We have to be careful when we grab the inode cluster buffer due to lock
46 * ordering constraints. The unlinked inode modifications (xfs_iunlink_item)
47 * require AGI -> inode cluster buffer lock order. The inode cluster buffer is
48 * not locked until ->precommit, so it happens after everything else has been
49 * modified.
50 *
51 * Further, we have AGI -> AGF lock ordering, and with O_TMPFILE handling we
52 * have AGI -> AGF -> iunlink item -> inode cluster buffer lock order. Hence we
53 * cannot safely lock the inode cluster buffer in xfs_trans_log_inode() because
54 * it can be called on a inode (e.g. via bumplink/droplink) before we take the
55 * AGF lock modifying directory blocks.
56 *
57 * Rather than force a complete rework of all the transactions to call
58 * xfs_trans_log_inode() once and once only at the end of every transaction, we
59 * move the pinning of the inode cluster buffer to a ->precommit operation. This
60 * matches how the xfs_iunlink_item locks the inode cluster buffer, and it
61 * ensures that the inode cluster buffer locking is always done last in a
62 * transaction. i.e. we ensure the lock order is always AGI -> AGF -> inode
63 * cluster buffer.
64 *
65 * If we return the inode number as the precommit sort key then we'll also
66 * guarantee that the order all inode cluster buffer locking is the same all the
67 * inodes and unlink items in the transaction.
68 */
69static int
70xfs_inode_item_precommit(
71	struct xfs_trans	*tp,
72	struct xfs_log_item	*lip)
73{
74	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
75	struct xfs_inode	*ip = iip->ili_inode;
76	struct inode		*inode = VFS_I(ip);
77	unsigned int		flags = iip->ili_dirty_flags;
78
79	/*
80	 * Don't bother with i_lock for the I_DIRTY_TIME check here, as races
81	 * don't matter - we either will need an extra transaction in 24 hours
82	 * to log the timestamps, or will clear already cleared fields in the
83	 * worst case.
84	 */
85	if (inode->i_state & I_DIRTY_TIME) {
86		spin_lock(&inode->i_lock);
87		inode->i_state &= ~I_DIRTY_TIME;
88		spin_unlock(&inode->i_lock);
89	}
90
91	/*
92	 * If we're updating the inode core or the timestamps and it's possible
93	 * to upgrade this inode to bigtime format, do so now.
94	 */
95	if ((flags & (XFS_ILOG_CORE | XFS_ILOG_TIMESTAMP)) &&
96	    xfs_has_bigtime(ip->i_mount) &&
97	    !xfs_inode_has_bigtime(ip)) {
98		ip->i_diflags2 |= XFS_DIFLAG2_BIGTIME;
99		flags |= XFS_ILOG_CORE;
100	}
101
102	/*
103	 * Inode verifiers do not check that the extent size hint is an integer
104	 * multiple of the rt extent size on a directory with both rtinherit
105	 * and extszinherit flags set.  If we're logging a directory that is
106	 * misconfigured in this way, clear the hint.
107	 */
108	if ((ip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
109	    (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) &&
110	    (ip->i_extsize % ip->i_mount->m_sb.sb_rextsize) > 0) {
111		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
112				   XFS_DIFLAG_EXTSZINHERIT);
113		ip->i_extsize = 0;
114		flags |= XFS_ILOG_CORE;
115	}
116
117	/*
118	 * Record the specific change for fdatasync optimisation. This allows
119	 * fdatasync to skip log forces for inodes that are only timestamp
120	 * dirty. Once we've processed the XFS_ILOG_IVERSION flag, convert it
121	 * to XFS_ILOG_CORE so that the actual on-disk dirty tracking
122	 * (ili_fields) correctly tracks that the version has changed.
123	 */
124	spin_lock(&iip->ili_lock);
125	iip->ili_fsync_fields |= (flags & ~XFS_ILOG_IVERSION);
126	if (flags & XFS_ILOG_IVERSION)
127		flags = ((flags & ~XFS_ILOG_IVERSION) | XFS_ILOG_CORE);
128
129	if (!iip->ili_item.li_buf) {
130		struct xfs_buf	*bp;
131		int		error;
132
133		/*
134		 * We hold the ILOCK here, so this inode is not going to be
135		 * flushed while we are here. Further, because there is no
136		 * buffer attached to the item, we know that there is no IO in
137		 * progress, so nothing will clear the ili_fields while we read
138		 * in the buffer. Hence we can safely drop the spin lock and
139		 * read the buffer knowing that the state will not change from
140		 * here.
141		 */
142		spin_unlock(&iip->ili_lock);
143		error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &bp);
144		if (error)
145			return error;
146
147		/*
148		 * We need an explicit buffer reference for the log item but
149		 * don't want the buffer to remain attached to the transaction.
150		 * Hold the buffer but release the transaction reference once
151		 * we've attached the inode log item to the buffer log item
152		 * list.
153		 */
154		xfs_buf_hold(bp);
155		spin_lock(&iip->ili_lock);
156		iip->ili_item.li_buf = bp;
157		bp->b_flags |= _XBF_INODES;
158		list_add_tail(&iip->ili_item.li_bio_list, &bp->b_li_list);
159		xfs_trans_brelse(tp, bp);
160	}
161
162	/*
163	 * Always OR in the bits from the ili_last_fields field.  This is to
164	 * coordinate with the xfs_iflush() and xfs_buf_inode_iodone() routines
165	 * in the eventual clearing of the ili_fields bits.  See the big comment
166	 * in xfs_iflush() for an explanation of this coordination mechanism.
167	 */
168	iip->ili_fields |= (flags | iip->ili_last_fields);
169	spin_unlock(&iip->ili_lock);
170
171	/*
172	 * We are done with the log item transaction dirty state, so clear it so
173	 * that it doesn't pollute future transactions.
174	 */
175	iip->ili_dirty_flags = 0;
176	return 0;
177}
178
179/*
180 * The logged size of an inode fork is always the current size of the inode
181 * fork. This means that when an inode fork is relogged, the size of the logged
182 * region is determined by the current state, not the combination of the
183 * previously logged state + the current state. This is different relogging
184 * behaviour to most other log items which will retain the size of the
185 * previously logged changes when smaller regions are relogged.
186 *
187 * Hence operations that remove data from the inode fork (e.g. shortform
188 * dir/attr remove, extent form extent removal, etc), the size of the relogged
189 * inode gets -smaller- rather than stays the same size as the previously logged
190 * size and this can result in the committing transaction reducing the amount of
191 * space being consumed by the CIL.
192 */
193STATIC void
194xfs_inode_item_data_fork_size(
195	struct xfs_inode_log_item *iip,
196	int			*nvecs,
197	int			*nbytes)
198{
199	struct xfs_inode	*ip = iip->ili_inode;
200
201	switch (ip->i_df.if_format) {
202	case XFS_DINODE_FMT_EXTENTS:
203		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
204		    ip->i_df.if_nextents > 0 &&
205		    ip->i_df.if_bytes > 0) {
206			/* worst case, doesn't subtract delalloc extents */
207			*nbytes += xfs_inode_data_fork_size(ip);
208			*nvecs += 1;
209		}
210		break;
211	case XFS_DINODE_FMT_BTREE:
212		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
213		    ip->i_df.if_broot_bytes > 0) {
214			*nbytes += ip->i_df.if_broot_bytes;
215			*nvecs += 1;
216		}
217		break;
218	case XFS_DINODE_FMT_LOCAL:
219		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
220		    ip->i_df.if_bytes > 0) {
221			*nbytes += xlog_calc_iovec_len(ip->i_df.if_bytes);
222			*nvecs += 1;
223		}
224		break;
225
226	case XFS_DINODE_FMT_DEV:
227		break;
228	default:
229		ASSERT(0);
230		break;
231	}
232}
233
234STATIC void
235xfs_inode_item_attr_fork_size(
236	struct xfs_inode_log_item *iip,
237	int			*nvecs,
238	int			*nbytes)
239{
240	struct xfs_inode	*ip = iip->ili_inode;
241
242	switch (ip->i_af.if_format) {
243	case XFS_DINODE_FMT_EXTENTS:
244		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
245		    ip->i_af.if_nextents > 0 &&
246		    ip->i_af.if_bytes > 0) {
247			/* worst case, doesn't subtract unused space */
248			*nbytes += xfs_inode_attr_fork_size(ip);
249			*nvecs += 1;
250		}
251		break;
252	case XFS_DINODE_FMT_BTREE:
253		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
254		    ip->i_af.if_broot_bytes > 0) {
255			*nbytes += ip->i_af.if_broot_bytes;
256			*nvecs += 1;
257		}
258		break;
259	case XFS_DINODE_FMT_LOCAL:
260		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
261		    ip->i_af.if_bytes > 0) {
262			*nbytes += xlog_calc_iovec_len(ip->i_af.if_bytes);
263			*nvecs += 1;
264		}
265		break;
266	default:
267		ASSERT(0);
268		break;
269	}
270}
271
272/*
273 * This returns the number of iovecs needed to log the given inode item.
274 *
275 * We need one iovec for the inode log format structure, one for the
276 * inode core, and possibly one for the inode data/extents/b-tree root
277 * and one for the inode attribute data/extents/b-tree root.
278 */
279STATIC void
280xfs_inode_item_size(
281	struct xfs_log_item	*lip,
282	int			*nvecs,
283	int			*nbytes)
284{
285	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
286	struct xfs_inode	*ip = iip->ili_inode;
287
288	*nvecs += 2;
289	*nbytes += sizeof(struct xfs_inode_log_format) +
290		   xfs_log_dinode_size(ip->i_mount);
291
292	xfs_inode_item_data_fork_size(iip, nvecs, nbytes);
293	if (xfs_inode_has_attr_fork(ip))
294		xfs_inode_item_attr_fork_size(iip, nvecs, nbytes);
295}
296
297STATIC void
298xfs_inode_item_format_data_fork(
299	struct xfs_inode_log_item *iip,
300	struct xfs_inode_log_format *ilf,
301	struct xfs_log_vec	*lv,
302	struct xfs_log_iovec	**vecp)
303{
304	struct xfs_inode	*ip = iip->ili_inode;
305	size_t			data_bytes;
306
307	switch (ip->i_df.if_format) {
308	case XFS_DINODE_FMT_EXTENTS:
309		iip->ili_fields &=
310			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
311
312		if ((iip->ili_fields & XFS_ILOG_DEXT) &&
313		    ip->i_df.if_nextents > 0 &&
314		    ip->i_df.if_bytes > 0) {
315			struct xfs_bmbt_rec *p;
316
317			ASSERT(xfs_iext_count(&ip->i_df) > 0);
318
319			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IEXT);
320			data_bytes = xfs_iextents_copy(ip, p, XFS_DATA_FORK);
321			xlog_finish_iovec(lv, *vecp, data_bytes);
322
323			ASSERT(data_bytes <= ip->i_df.if_bytes);
324
325			ilf->ilf_dsize = data_bytes;
326			ilf->ilf_size++;
327		} else {
328			iip->ili_fields &= ~XFS_ILOG_DEXT;
329		}
330		break;
331	case XFS_DINODE_FMT_BTREE:
332		iip->ili_fields &=
333			~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | XFS_ILOG_DEV);
334
335		if ((iip->ili_fields & XFS_ILOG_DBROOT) &&
336		    ip->i_df.if_broot_bytes > 0) {
337			ASSERT(ip->i_df.if_broot != NULL);
338			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IBROOT,
339					ip->i_df.if_broot,
340					ip->i_df.if_broot_bytes);
341			ilf->ilf_dsize = ip->i_df.if_broot_bytes;
342			ilf->ilf_size++;
343		} else {
344			ASSERT(!(iip->ili_fields &
345				 XFS_ILOG_DBROOT));
346			iip->ili_fields &= ~XFS_ILOG_DBROOT;
347		}
348		break;
349	case XFS_DINODE_FMT_LOCAL:
350		iip->ili_fields &=
351			~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | XFS_ILOG_DEV);
352		if ((iip->ili_fields & XFS_ILOG_DDATA) &&
353		    ip->i_df.if_bytes > 0) {
354			ASSERT(ip->i_df.if_u1.if_data != NULL);
355			ASSERT(ip->i_disk_size > 0);
356			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_ILOCAL,
357					ip->i_df.if_u1.if_data,
358					ip->i_df.if_bytes);
359			ilf->ilf_dsize = (unsigned)ip->i_df.if_bytes;
360			ilf->ilf_size++;
361		} else {
362			iip->ili_fields &= ~XFS_ILOG_DDATA;
363		}
364		break;
365	case XFS_DINODE_FMT_DEV:
366		iip->ili_fields &=
367			~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | XFS_ILOG_DEXT);
368		if (iip->ili_fields & XFS_ILOG_DEV)
369			ilf->ilf_u.ilfu_rdev = sysv_encode_dev(VFS_I(ip)->i_rdev);
370		break;
371	default:
372		ASSERT(0);
373		break;
374	}
375}
376
377STATIC void
378xfs_inode_item_format_attr_fork(
379	struct xfs_inode_log_item *iip,
380	struct xfs_inode_log_format *ilf,
381	struct xfs_log_vec	*lv,
382	struct xfs_log_iovec	**vecp)
383{
384	struct xfs_inode	*ip = iip->ili_inode;
385	size_t			data_bytes;
386
387	switch (ip->i_af.if_format) {
388	case XFS_DINODE_FMT_EXTENTS:
389		iip->ili_fields &=
390			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT);
391
392		if ((iip->ili_fields & XFS_ILOG_AEXT) &&
393		    ip->i_af.if_nextents > 0 &&
394		    ip->i_af.if_bytes > 0) {
395			struct xfs_bmbt_rec *p;
396
397			ASSERT(xfs_iext_count(&ip->i_af) ==
398				ip->i_af.if_nextents);
399
400			p = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_EXT);
401			data_bytes = xfs_iextents_copy(ip, p, XFS_ATTR_FORK);
402			xlog_finish_iovec(lv, *vecp, data_bytes);
403
404			ilf->ilf_asize = data_bytes;
405			ilf->ilf_size++;
406		} else {
407			iip->ili_fields &= ~XFS_ILOG_AEXT;
408		}
409		break;
410	case XFS_DINODE_FMT_BTREE:
411		iip->ili_fields &=
412			~(XFS_ILOG_ADATA | XFS_ILOG_AEXT);
413
414		if ((iip->ili_fields & XFS_ILOG_ABROOT) &&
415		    ip->i_af.if_broot_bytes > 0) {
416			ASSERT(ip->i_af.if_broot != NULL);
417
418			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_BROOT,
419					ip->i_af.if_broot,
420					ip->i_af.if_broot_bytes);
421			ilf->ilf_asize = ip->i_af.if_broot_bytes;
422			ilf->ilf_size++;
423		} else {
424			iip->ili_fields &= ~XFS_ILOG_ABROOT;
425		}
426		break;
427	case XFS_DINODE_FMT_LOCAL:
428		iip->ili_fields &=
429			~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT);
430
431		if ((iip->ili_fields & XFS_ILOG_ADATA) &&
432		    ip->i_af.if_bytes > 0) {
433			ASSERT(ip->i_af.if_u1.if_data != NULL);
434			xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_IATTR_LOCAL,
435					ip->i_af.if_u1.if_data,
436					ip->i_af.if_bytes);
437			ilf->ilf_asize = (unsigned)ip->i_af.if_bytes;
438			ilf->ilf_size++;
439		} else {
440			iip->ili_fields &= ~XFS_ILOG_ADATA;
441		}
442		break;
443	default:
444		ASSERT(0);
445		break;
446	}
447}
448
449/*
450 * Convert an incore timestamp to a log timestamp.  Note that the log format
451 * specifies host endian format!
452 */
453static inline xfs_log_timestamp_t
454xfs_inode_to_log_dinode_ts(
455	struct xfs_inode		*ip,
456	const struct timespec64		tv)
457{
458	struct xfs_log_legacy_timestamp	*lits;
459	xfs_log_timestamp_t		its;
460
461	if (xfs_inode_has_bigtime(ip))
462		return xfs_inode_encode_bigtime(tv);
463
464	lits = (struct xfs_log_legacy_timestamp *)&its;
465	lits->t_sec = tv.tv_sec;
466	lits->t_nsec = tv.tv_nsec;
467
468	return its;
469}
470
471/*
472 * The legacy DMAPI fields are only present in the on-disk and in-log inodes,
473 * but not in the in-memory one.  But we are guaranteed to have an inode buffer
474 * in memory when logging an inode, so we can just copy it from the on-disk
475 * inode to the in-log inode here so that recovery of file system with these
476 * fields set to non-zero values doesn't lose them.  For all other cases we zero
477 * the fields.
478 */
479static void
480xfs_copy_dm_fields_to_log_dinode(
481	struct xfs_inode	*ip,
482	struct xfs_log_dinode	*to)
483{
484	struct xfs_dinode	*dip;
485
486	dip = xfs_buf_offset(ip->i_itemp->ili_item.li_buf,
487			     ip->i_imap.im_boffset);
488
489	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS)) {
490		to->di_dmevmask = be32_to_cpu(dip->di_dmevmask);
491		to->di_dmstate = be16_to_cpu(dip->di_dmstate);
492	} else {
493		to->di_dmevmask = 0;
494		to->di_dmstate = 0;
495	}
496}
497
498static inline void
499xfs_inode_to_log_dinode_iext_counters(
500	struct xfs_inode	*ip,
501	struct xfs_log_dinode	*to)
502{
503	if (xfs_inode_has_large_extent_counts(ip)) {
504		to->di_big_nextents = xfs_ifork_nextents(&ip->i_df);
505		to->di_big_anextents = xfs_ifork_nextents(&ip->i_af);
506		to->di_nrext64_pad = 0;
507	} else {
508		to->di_nextents = xfs_ifork_nextents(&ip->i_df);
509		to->di_anextents = xfs_ifork_nextents(&ip->i_af);
510	}
511}
512
513static void
514xfs_inode_to_log_dinode(
515	struct xfs_inode	*ip,
516	struct xfs_log_dinode	*to,
517	xfs_lsn_t		lsn)
518{
519	struct inode		*inode = VFS_I(ip);
520
521	to->di_magic = XFS_DINODE_MAGIC;
522	to->di_format = xfs_ifork_format(&ip->i_df);
523	to->di_uid = i_uid_read(inode);
524	to->di_gid = i_gid_read(inode);
525	to->di_projid_lo = ip->i_projid & 0xffff;
526	to->di_projid_hi = ip->i_projid >> 16;
527
528	memset(to->di_pad3, 0, sizeof(to->di_pad3));
529	to->di_atime = xfs_inode_to_log_dinode_ts(ip, inode->i_atime);
530	to->di_mtime = xfs_inode_to_log_dinode_ts(ip, inode->i_mtime);
531	to->di_ctime = xfs_inode_to_log_dinode_ts(ip, inode_get_ctime(inode));
532	to->di_nlink = inode->i_nlink;
533	to->di_gen = inode->i_generation;
534	to->di_mode = inode->i_mode;
535
536	to->di_size = ip->i_disk_size;
537	to->di_nblocks = ip->i_nblocks;
538	to->di_extsize = ip->i_extsize;
539	to->di_forkoff = ip->i_forkoff;
540	to->di_aformat = xfs_ifork_format(&ip->i_af);
541	to->di_flags = ip->i_diflags;
542
543	xfs_copy_dm_fields_to_log_dinode(ip, to);
544
545	/* log a dummy value to ensure log structure is fully initialised */
546	to->di_next_unlinked = NULLAGINO;
547
548	if (xfs_has_v3inodes(ip->i_mount)) {
549		to->di_version = 3;
550		to->di_changecount = inode_peek_iversion(inode);
551		to->di_crtime = xfs_inode_to_log_dinode_ts(ip, ip->i_crtime);
552		to->di_flags2 = ip->i_diflags2;
553		to->di_cowextsize = ip->i_cowextsize;
554		to->di_ino = ip->i_ino;
555		to->di_lsn = lsn;
556		memset(to->di_pad2, 0, sizeof(to->di_pad2));
557		uuid_copy(&to->di_uuid, &ip->i_mount->m_sb.sb_meta_uuid);
558		to->di_v3_pad = 0;
559	} else {
560		to->di_version = 2;
561		to->di_flushiter = ip->i_flushiter;
562		memset(to->di_v2_pad, 0, sizeof(to->di_v2_pad));
563	}
564
565	xfs_inode_to_log_dinode_iext_counters(ip, to);
566}
567
568/*
569 * Format the inode core. Current timestamp data is only in the VFS inode
570 * fields, so we need to grab them from there. Hence rather than just copying
571 * the XFS inode core structure, format the fields directly into the iovec.
572 */
573static void
574xfs_inode_item_format_core(
575	struct xfs_inode	*ip,
576	struct xfs_log_vec	*lv,
577	struct xfs_log_iovec	**vecp)
578{
579	struct xfs_log_dinode	*dic;
580
581	dic = xlog_prepare_iovec(lv, vecp, XLOG_REG_TYPE_ICORE);
582	xfs_inode_to_log_dinode(ip, dic, ip->i_itemp->ili_item.li_lsn);
583	xlog_finish_iovec(lv, *vecp, xfs_log_dinode_size(ip->i_mount));
584}
585
586/*
587 * This is called to fill in the vector of log iovecs for the given inode
588 * log item.  It fills the first item with an inode log format structure,
589 * the second with the on-disk inode structure, and a possible third and/or
590 * fourth with the inode data/extents/b-tree root and inode attributes
591 * data/extents/b-tree root.
592 *
593 * Note: Always use the 64 bit inode log format structure so we don't
594 * leave an uninitialised hole in the format item on 64 bit systems. Log
595 * recovery on 32 bit systems handles this just fine, so there's no reason
596 * for not using an initialising the properly padded structure all the time.
597 */
598STATIC void
599xfs_inode_item_format(
600	struct xfs_log_item	*lip,
601	struct xfs_log_vec	*lv)
602{
603	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
604	struct xfs_inode	*ip = iip->ili_inode;
605	struct xfs_log_iovec	*vecp = NULL;
606	struct xfs_inode_log_format *ilf;
607
608	ilf = xlog_prepare_iovec(lv, &vecp, XLOG_REG_TYPE_IFORMAT);
609	ilf->ilf_type = XFS_LI_INODE;
610	ilf->ilf_ino = ip->i_ino;
611	ilf->ilf_blkno = ip->i_imap.im_blkno;
612	ilf->ilf_len = ip->i_imap.im_len;
613	ilf->ilf_boffset = ip->i_imap.im_boffset;
614	ilf->ilf_fields = XFS_ILOG_CORE;
615	ilf->ilf_size = 2; /* format + core */
616
617	/*
618	 * make sure we don't leak uninitialised data into the log in the case
619	 * when we don't log every field in the inode.
620	 */
621	ilf->ilf_dsize = 0;
622	ilf->ilf_asize = 0;
623	ilf->ilf_pad = 0;
624	memset(&ilf->ilf_u, 0, sizeof(ilf->ilf_u));
625
626	xlog_finish_iovec(lv, vecp, sizeof(*ilf));
627
628	xfs_inode_item_format_core(ip, lv, &vecp);
629	xfs_inode_item_format_data_fork(iip, ilf, lv, &vecp);
630	if (xfs_inode_has_attr_fork(ip)) {
631		xfs_inode_item_format_attr_fork(iip, ilf, lv, &vecp);
632	} else {
633		iip->ili_fields &=
634			~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT);
635	}
636
637	/* update the format with the exact fields we actually logged */
638	ilf->ilf_fields |= (iip->ili_fields & ~XFS_ILOG_TIMESTAMP);
639}
640
641/*
642 * This is called to pin the inode associated with the inode log
643 * item in memory so it cannot be written out.
644 */
645STATIC void
646xfs_inode_item_pin(
647	struct xfs_log_item	*lip)
648{
649	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
650
651	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
652	ASSERT(lip->li_buf);
653
654	trace_xfs_inode_pin(ip, _RET_IP_);
655	atomic_inc(&ip->i_pincount);
656}
657
658
659/*
660 * This is called to unpin the inode associated with the inode log
661 * item which was previously pinned with a call to xfs_inode_item_pin().
662 *
663 * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0.
664 *
665 * Note that unpin can race with inode cluster buffer freeing marking the buffer
666 * stale. In that case, flush completions are run from the buffer unpin call,
667 * which may happen before the inode is unpinned. If we lose the race, there
668 * will be no buffer attached to the log item, but the inode will be marked
669 * XFS_ISTALE.
670 */
671STATIC void
672xfs_inode_item_unpin(
673	struct xfs_log_item	*lip,
674	int			remove)
675{
676	struct xfs_inode	*ip = INODE_ITEM(lip)->ili_inode;
677
678	trace_xfs_inode_unpin(ip, _RET_IP_);
679	ASSERT(lip->li_buf || xfs_iflags_test(ip, XFS_ISTALE));
680	ASSERT(atomic_read(&ip->i_pincount) > 0);
681	if (atomic_dec_and_test(&ip->i_pincount))
682		wake_up_bit(&ip->i_flags, __XFS_IPINNED_BIT);
683}
684
685STATIC uint
686xfs_inode_item_push(
687	struct xfs_log_item	*lip,
688	struct list_head	*buffer_list)
689		__releases(&lip->li_ailp->ail_lock)
690		__acquires(&lip->li_ailp->ail_lock)
691{
692	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
693	struct xfs_inode	*ip = iip->ili_inode;
694	struct xfs_buf		*bp = lip->li_buf;
695	uint			rval = XFS_ITEM_SUCCESS;
696	int			error;
697
698	if (!bp || (ip->i_flags & XFS_ISTALE)) {
699		/*
700		 * Inode item/buffer is being aborted due to cluster
701		 * buffer deletion. Trigger a log force to have that operation
702		 * completed and items removed from the AIL before the next push
703		 * attempt.
704		 */
705		return XFS_ITEM_PINNED;
706	}
707
708	if (xfs_ipincount(ip) > 0 || xfs_buf_ispinned(bp))
709		return XFS_ITEM_PINNED;
710
711	if (xfs_iflags_test(ip, XFS_IFLUSHING))
712		return XFS_ITEM_FLUSHING;
713
714	if (!xfs_buf_trylock(bp))
715		return XFS_ITEM_LOCKED;
716
717	spin_unlock(&lip->li_ailp->ail_lock);
718
719	/*
720	 * We need to hold a reference for flushing the cluster buffer as it may
721	 * fail the buffer without IO submission. In which case, we better get a
722	 * reference for that completion because otherwise we don't get a
723	 * reference for IO until we queue the buffer for delwri submission.
724	 */
725	xfs_buf_hold(bp);
726	error = xfs_iflush_cluster(bp);
727	if (!error) {
728		if (!xfs_buf_delwri_queue(bp, buffer_list))
729			rval = XFS_ITEM_FLUSHING;
730		xfs_buf_relse(bp);
731	} else {
732		/*
733		 * Release the buffer if we were unable to flush anything. On
734		 * any other error, the buffer has already been released.
735		 */
736		if (error == -EAGAIN)
737			xfs_buf_relse(bp);
738		rval = XFS_ITEM_LOCKED;
739	}
740
741	spin_lock(&lip->li_ailp->ail_lock);
742	return rval;
743}
744
745/*
746 * Unlock the inode associated with the inode log item.
747 */
748STATIC void
749xfs_inode_item_release(
750	struct xfs_log_item	*lip)
751{
752	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
753	struct xfs_inode	*ip = iip->ili_inode;
754	unsigned short		lock_flags;
755
756	ASSERT(ip->i_itemp != NULL);
757	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
758
759	lock_flags = iip->ili_lock_flags;
760	iip->ili_lock_flags = 0;
761	if (lock_flags)
762		xfs_iunlock(ip, lock_flags);
763}
764
765/*
766 * This is called to find out where the oldest active copy of the inode log
767 * item in the on disk log resides now that the last log write of it completed
768 * at the given lsn.  Since we always re-log all dirty data in an inode, the
769 * latest copy in the on disk log is the only one that matters.  Therefore,
770 * simply return the given lsn.
771 *
772 * If the inode has been marked stale because the cluster is being freed, we
773 * don't want to (re-)insert this inode into the AIL. There is a race condition
774 * where the cluster buffer may be unpinned before the inode is inserted into
775 * the AIL during transaction committed processing. If the buffer is unpinned
776 * before the inode item has been committed and inserted, then it is possible
777 * for the buffer to be written and IO completes before the inode is inserted
778 * into the AIL. In that case, we'd be inserting a clean, stale inode into the
779 * AIL which will never get removed. It will, however, get reclaimed which
780 * triggers an assert in xfs_inode_free() complaining about freein an inode
781 * still in the AIL.
782 *
783 * To avoid this, just unpin the inode directly and return a LSN of -1 so the
784 * transaction committed code knows that it does not need to do any further
785 * processing on the item.
786 */
787STATIC xfs_lsn_t
788xfs_inode_item_committed(
789	struct xfs_log_item	*lip,
790	xfs_lsn_t		lsn)
791{
792	struct xfs_inode_log_item *iip = INODE_ITEM(lip);
793	struct xfs_inode	*ip = iip->ili_inode;
794
795	if (xfs_iflags_test(ip, XFS_ISTALE)) {
796		xfs_inode_item_unpin(lip, 0);
797		return -1;
798	}
799	return lsn;
800}
801
802STATIC void
803xfs_inode_item_committing(
804	struct xfs_log_item	*lip,
805	xfs_csn_t		seq)
806{
807	INODE_ITEM(lip)->ili_commit_seq = seq;
808	return xfs_inode_item_release(lip);
809}
810
811static const struct xfs_item_ops xfs_inode_item_ops = {
812	.iop_sort	= xfs_inode_item_sort,
813	.iop_precommit	= xfs_inode_item_precommit,
814	.iop_size	= xfs_inode_item_size,
815	.iop_format	= xfs_inode_item_format,
816	.iop_pin	= xfs_inode_item_pin,
817	.iop_unpin	= xfs_inode_item_unpin,
818	.iop_release	= xfs_inode_item_release,
819	.iop_committed	= xfs_inode_item_committed,
820	.iop_push	= xfs_inode_item_push,
821	.iop_committing	= xfs_inode_item_committing,
822};
823
824
825/*
826 * Initialize the inode log item for a newly allocated (in-core) inode.
827 */
828void
829xfs_inode_item_init(
830	struct xfs_inode	*ip,
831	struct xfs_mount	*mp)
832{
833	struct xfs_inode_log_item *iip;
834
835	ASSERT(ip->i_itemp == NULL);
836	iip = ip->i_itemp = kmem_cache_zalloc(xfs_ili_cache,
837					      GFP_KERNEL | __GFP_NOFAIL);
838
839	iip->ili_inode = ip;
840	spin_lock_init(&iip->ili_lock);
841	xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE,
842						&xfs_inode_item_ops);
843}
844
845/*
846 * Free the inode log item and any memory hanging off of it.
847 */
848void
849xfs_inode_item_destroy(
850	struct xfs_inode	*ip)
851{
852	struct xfs_inode_log_item *iip = ip->i_itemp;
853
854	ASSERT(iip->ili_item.li_buf == NULL);
855
856	ip->i_itemp = NULL;
857	kmem_free(iip->ili_item.li_lv_shadow);
858	kmem_cache_free(xfs_ili_cache, iip);
859}
860
861
862/*
863 * We only want to pull the item from the AIL if it is actually there
864 * and its location in the log has not changed since we started the
865 * flush.  Thus, we only bother if the inode's lsn has not changed.
866 */
867static void
868xfs_iflush_ail_updates(
869	struct xfs_ail		*ailp,
870	struct list_head	*list)
871{
872	struct xfs_log_item	*lip;
873	xfs_lsn_t		tail_lsn = 0;
874
875	/* this is an opencoded batch version of xfs_trans_ail_delete */
876	spin_lock(&ailp->ail_lock);
877	list_for_each_entry(lip, list, li_bio_list) {
878		xfs_lsn_t	lsn;
879
880		clear_bit(XFS_LI_FAILED, &lip->li_flags);
881		if (INODE_ITEM(lip)->ili_flush_lsn != lip->li_lsn)
882			continue;
883
884		/*
885		 * dgc: Not sure how this happens, but it happens very
886		 * occassionaly via generic/388.  xfs_iflush_abort() also
887		 * silently handles this same "under writeback but not in AIL at
888		 * shutdown" condition via xfs_trans_ail_delete().
889		 */
890		if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
891			ASSERT(xlog_is_shutdown(lip->li_log));
892			continue;
893		}
894
895		lsn = xfs_ail_delete_one(ailp, lip);
896		if (!tail_lsn && lsn)
897			tail_lsn = lsn;
898	}
899	xfs_ail_update_finish(ailp, tail_lsn);
900}
901
902/*
903 * Walk the list of inodes that have completed their IOs. If they are clean
904 * remove them from the list and dissociate them from the buffer. Buffers that
905 * are still dirty remain linked to the buffer and on the list. Caller must
906 * handle them appropriately.
907 */
908static void
909xfs_iflush_finish(
910	struct xfs_buf		*bp,
911	struct list_head	*list)
912{
913	struct xfs_log_item	*lip, *n;
914
915	list_for_each_entry_safe(lip, n, list, li_bio_list) {
916		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
917		bool	drop_buffer = false;
918
919		spin_lock(&iip->ili_lock);
920
921		/*
922		 * Remove the reference to the cluster buffer if the inode is
923		 * clean in memory and drop the buffer reference once we've
924		 * dropped the locks we hold.
925		 */
926		ASSERT(iip->ili_item.li_buf == bp);
927		if (!iip->ili_fields) {
928			iip->ili_item.li_buf = NULL;
929			list_del_init(&lip->li_bio_list);
930			drop_buffer = true;
931		}
932		iip->ili_last_fields = 0;
933		iip->ili_flush_lsn = 0;
934		spin_unlock(&iip->ili_lock);
935		xfs_iflags_clear(iip->ili_inode, XFS_IFLUSHING);
936		if (drop_buffer)
937			xfs_buf_rele(bp);
938	}
939}
940
941/*
942 * Inode buffer IO completion routine.  It is responsible for removing inodes
943 * attached to the buffer from the AIL if they have not been re-logged and
944 * completing the inode flush.
945 */
946void
947xfs_buf_inode_iodone(
948	struct xfs_buf		*bp)
949{
950	struct xfs_log_item	*lip, *n;
951	LIST_HEAD(flushed_inodes);
952	LIST_HEAD(ail_updates);
953
954	/*
955	 * Pull the attached inodes from the buffer one at a time and take the
956	 * appropriate action on them.
957	 */
958	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
959		struct xfs_inode_log_item *iip = INODE_ITEM(lip);
960
961		if (xfs_iflags_test(iip->ili_inode, XFS_ISTALE)) {
962			xfs_iflush_abort(iip->ili_inode);
963			continue;
964		}
965		if (!iip->ili_last_fields)
966			continue;
967
968		/* Do an unlocked check for needing the AIL lock. */
969		if (iip->ili_flush_lsn == lip->li_lsn ||
970		    test_bit(XFS_LI_FAILED, &lip->li_flags))
971			list_move_tail(&lip->li_bio_list, &ail_updates);
972		else
973			list_move_tail(&lip->li_bio_list, &flushed_inodes);
974	}
975
976	if (!list_empty(&ail_updates)) {
977		xfs_iflush_ail_updates(bp->b_mount->m_ail, &ail_updates);
978		list_splice_tail(&ail_updates, &flushed_inodes);
979	}
980
981	xfs_iflush_finish(bp, &flushed_inodes);
982	if (!list_empty(&flushed_inodes))
983		list_splice_tail(&flushed_inodes, &bp->b_li_list);
984}
985
986void
987xfs_buf_inode_io_fail(
988	struct xfs_buf		*bp)
989{
990	struct xfs_log_item	*lip;
991
992	list_for_each_entry(lip, &bp->b_li_list, li_bio_list)
993		set_bit(XFS_LI_FAILED, &lip->li_flags);
994}
995
996/*
997 * Clear the inode logging fields so no more flushes are attempted.  If we are
998 * on a buffer list, it is now safe to remove it because the buffer is
999 * guaranteed to be locked. The caller will drop the reference to the buffer
1000 * the log item held.
1001 */
1002static void
1003xfs_iflush_abort_clean(
1004	struct xfs_inode_log_item *iip)
1005{
1006	iip->ili_last_fields = 0;
1007	iip->ili_fields = 0;
1008	iip->ili_fsync_fields = 0;
1009	iip->ili_flush_lsn = 0;
1010	iip->ili_item.li_buf = NULL;
1011	list_del_init(&iip->ili_item.li_bio_list);
1012}
1013
1014/*
1015 * Abort flushing the inode from a context holding the cluster buffer locked.
1016 *
1017 * This is the normal runtime method of aborting writeback of an inode that is
1018 * attached to a cluster buffer. It occurs when the inode and the backing
1019 * cluster buffer have been freed (i.e. inode is XFS_ISTALE), or when cluster
1020 * flushing or buffer IO completion encounters a log shutdown situation.
1021 *
1022 * If we need to abort inode writeback and we don't already hold the buffer
1023 * locked, call xfs_iflush_shutdown_abort() instead as this should only ever be
1024 * necessary in a shutdown situation.
1025 */
1026void
1027xfs_iflush_abort(
1028	struct xfs_inode	*ip)
1029{
1030	struct xfs_inode_log_item *iip = ip->i_itemp;
1031	struct xfs_buf		*bp;
1032
1033	if (!iip) {
1034		/* clean inode, nothing to do */
1035		xfs_iflags_clear(ip, XFS_IFLUSHING);
1036		return;
1037	}
1038
1039	/*
1040	 * Remove the inode item from the AIL before we clear its internal
1041	 * state. Whilst the inode is in the AIL, it should have a valid buffer
1042	 * pointer for push operations to access - it is only safe to remove the
1043	 * inode from the buffer once it has been removed from the AIL.
1044	 *
1045	 * We also clear the failed bit before removing the item from the AIL
1046	 * as xfs_trans_ail_delete()->xfs_clear_li_failed() will release buffer
1047	 * references the inode item owns and needs to hold until we've fully
1048	 * aborted the inode log item and detached it from the buffer.
1049	 */
1050	clear_bit(XFS_LI_FAILED, &iip->ili_item.li_flags);
1051	xfs_trans_ail_delete(&iip->ili_item, 0);
1052
1053	/*
1054	 * Grab the inode buffer so can we release the reference the inode log
1055	 * item holds on it.
1056	 */
1057	spin_lock(&iip->ili_lock);
1058	bp = iip->ili_item.li_buf;
1059	xfs_iflush_abort_clean(iip);
1060	spin_unlock(&iip->ili_lock);
1061
1062	xfs_iflags_clear(ip, XFS_IFLUSHING);
1063	if (bp)
1064		xfs_buf_rele(bp);
1065}
1066
1067/*
1068 * Abort an inode flush in the case of a shutdown filesystem. This can be called
1069 * from anywhere with just an inode reference and does not require holding the
1070 * inode cluster buffer locked. If the inode is attached to a cluster buffer,
1071 * it will grab and lock it safely, then abort the inode flush.
1072 */
1073void
1074xfs_iflush_shutdown_abort(
1075	struct xfs_inode	*ip)
1076{
1077	struct xfs_inode_log_item *iip = ip->i_itemp;
1078	struct xfs_buf		*bp;
1079
1080	if (!iip) {
1081		/* clean inode, nothing to do */
1082		xfs_iflags_clear(ip, XFS_IFLUSHING);
1083		return;
1084	}
1085
1086	spin_lock(&iip->ili_lock);
1087	bp = iip->ili_item.li_buf;
1088	if (!bp) {
1089		spin_unlock(&iip->ili_lock);
1090		xfs_iflush_abort(ip);
1091		return;
1092	}
1093
1094	/*
1095	 * We have to take a reference to the buffer so that it doesn't get
1096	 * freed when we drop the ili_lock and then wait to lock the buffer.
1097	 * We'll clean up the extra reference after we pick up the ili_lock
1098	 * again.
1099	 */
1100	xfs_buf_hold(bp);
1101	spin_unlock(&iip->ili_lock);
1102	xfs_buf_lock(bp);
1103
1104	spin_lock(&iip->ili_lock);
1105	if (!iip->ili_item.li_buf) {
1106		/*
1107		 * Raced with another removal, hold the only reference
1108		 * to bp now. Inode should not be in the AIL now, so just clean
1109		 * up and return;
1110		 */
1111		ASSERT(list_empty(&iip->ili_item.li_bio_list));
1112		ASSERT(!test_bit(XFS_LI_IN_AIL, &iip->ili_item.li_flags));
1113		xfs_iflush_abort_clean(iip);
1114		spin_unlock(&iip->ili_lock);
1115		xfs_iflags_clear(ip, XFS_IFLUSHING);
1116		xfs_buf_relse(bp);
1117		return;
1118	}
1119
1120	/*
1121	 * Got two references to bp. The first will get dropped by
1122	 * xfs_iflush_abort() when the item is removed from the buffer list, but
1123	 * we can't drop our reference until _abort() returns because we have to
1124	 * unlock the buffer as well. Hence we abort and then unlock and release
1125	 * our reference to the buffer.
1126	 */
1127	ASSERT(iip->ili_item.li_buf == bp);
1128	spin_unlock(&iip->ili_lock);
1129	xfs_iflush_abort(ip);
1130	xfs_buf_relse(bp);
1131}
1132
1133
1134/*
1135 * convert an xfs_inode_log_format struct from the old 32 bit version
1136 * (which can have different field alignments) to the native 64 bit version
1137 */
1138int
1139xfs_inode_item_format_convert(
1140	struct xfs_log_iovec		*buf,
1141	struct xfs_inode_log_format	*in_f)
1142{
1143	struct xfs_inode_log_format_32	*in_f32 = buf->i_addr;
1144
1145	if (buf->i_len != sizeof(*in_f32)) {
1146		XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
1147		return -EFSCORRUPTED;
1148	}
1149
1150	in_f->ilf_type = in_f32->ilf_type;
1151	in_f->ilf_size = in_f32->ilf_size;
1152	in_f->ilf_fields = in_f32->ilf_fields;
1153	in_f->ilf_asize = in_f32->ilf_asize;
1154	in_f->ilf_dsize = in_f32->ilf_dsize;
1155	in_f->ilf_ino = in_f32->ilf_ino;
1156	memcpy(&in_f->ilf_u, &in_f32->ilf_u, sizeof(in_f->ilf_u));
1157	in_f->ilf_blkno = in_f32->ilf_blkno;
1158	in_f->ilf_len = in_f32->ilf_len;
1159	in_f->ilf_boffset = in_f32->ilf_boffset;
1160	return 0;
1161}
1162