xref: /kernel/linux/linux-6.6/fs/xfs/xfs_inode.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include <linux/iversion.h>
7
8#include "xfs.h"
9#include "xfs_fs.h"
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_dir2.h"
18#include "xfs_attr.h"
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
21#include "xfs_buf_item.h"
22#include "xfs_inode_item.h"
23#include "xfs_iunlink_item.h"
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
26#include "xfs_bmap_util.h"
27#include "xfs_errortag.h"
28#include "xfs_error.h"
29#include "xfs_quota.h"
30#include "xfs_filestream.h"
31#include "xfs_trace.h"
32#include "xfs_icache.h"
33#include "xfs_symlink.h"
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_reflink.h"
38#include "xfs_ag.h"
39#include "xfs_log_priv.h"
40
41struct kmem_cache *xfs_inode_cache;
42
43/*
44 * Used in xfs_itruncate_extents().  This is the maximum number of extents
45 * freed from a file in a single transaction.
46 */
47#define	XFS_ITRUNC_MAX_EXTENTS	2
48
49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51	struct xfs_inode *);
52
53/*
54 * helper function to extract extent size hint from inode
55 */
56xfs_extlen_t
57xfs_get_extsz_hint(
58	struct xfs_inode	*ip)
59{
60	/*
61	 * No point in aligning allocations if we need to COW to actually
62	 * write to them.
63	 */
64	if (xfs_is_always_cow_inode(ip))
65		return 0;
66	if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
67		return ip->i_extsize;
68	if (XFS_IS_REALTIME_INODE(ip))
69		return ip->i_mount->m_sb.sb_rextsize;
70	return 0;
71}
72
73/*
74 * Helper function to extract CoW extent size hint from inode.
75 * Between the extent size hint and the CoW extent size hint, we
76 * return the greater of the two.  If the value is zero (automatic),
77 * use the default size.
78 */
79xfs_extlen_t
80xfs_get_cowextsz_hint(
81	struct xfs_inode	*ip)
82{
83	xfs_extlen_t		a, b;
84
85	a = 0;
86	if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
87		a = ip->i_cowextsize;
88	b = xfs_get_extsz_hint(ip);
89
90	a = max(a, b);
91	if (a == 0)
92		return XFS_DEFAULT_COWEXTSZ_HINT;
93	return a;
94}
95
96/*
97 * These two are wrapper routines around the xfs_ilock() routine used to
98 * centralize some grungy code.  They are used in places that wish to lock the
99 * inode solely for reading the extents.  The reason these places can't just
100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101 * bringing in of the extents from disk for a file in b-tree format.  If the
102 * inode is in b-tree format, then we need to lock the inode exclusively until
103 * the extents are read in.  Locking it exclusively all the time would limit
104 * our parallelism unnecessarily, though.  What we do instead is check to see
105 * if the extents have been read in yet, and only lock the inode exclusively
106 * if they have not.
107 *
108 * The functions return a value which should be given to the corresponding
109 * xfs_iunlock() call.
110 */
111uint
112xfs_ilock_data_map_shared(
113	struct xfs_inode	*ip)
114{
115	uint			lock_mode = XFS_ILOCK_SHARED;
116
117	if (xfs_need_iread_extents(&ip->i_df))
118		lock_mode = XFS_ILOCK_EXCL;
119	xfs_ilock(ip, lock_mode);
120	return lock_mode;
121}
122
123uint
124xfs_ilock_attr_map_shared(
125	struct xfs_inode	*ip)
126{
127	uint			lock_mode = XFS_ILOCK_SHARED;
128
129	if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
130		lock_mode = XFS_ILOCK_EXCL;
131	xfs_ilock(ip, lock_mode);
132	return lock_mode;
133}
134
135/*
136 * You can't set both SHARED and EXCL for the same lock,
137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139 * to set in lock_flags.
140 */
141static inline void
142xfs_lock_flags_assert(
143	uint		lock_flags)
144{
145	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146		(XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148		(XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150		(XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152	ASSERT(lock_flags != 0);
153}
154
155/*
156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
157 * multi-reader locks: invalidate_lock and the i_lock.  This routine allows
158 * various combinations of the locks to be obtained.
159 *
160 * The 3 locks should always be ordered so that the IO lock is obtained first,
161 * the mmap lock second and the ilock last in order to prevent deadlock.
162 *
163 * Basic locking order:
164 *
165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
166 *
167 * mmap_lock locking order:
168 *
169 * i_rwsem -> page lock -> mmap_lock
170 * mmap_lock -> invalidate_lock -> page_lock
171 *
172 * The difference in mmap_lock locking order mean that we cannot hold the
173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174 * can fault in pages during copy in/out (for buffered IO) or require the
175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177 * fault because page faults already hold the mmap_lock.
178 *
179 * Hence to serialise fully against both syscall and mmap based IO, we need to
180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181 * both taken in places where we need to invalidate the page cache in a race
182 * free manner (e.g. truncate, hole punch and other extent manipulation
183 * functions).
184 */
185void
186xfs_ilock(
187	xfs_inode_t		*ip,
188	uint			lock_flags)
189{
190	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191
192	xfs_lock_flags_assert(lock_flags);
193
194	if (lock_flags & XFS_IOLOCK_EXCL) {
195		down_write_nested(&VFS_I(ip)->i_rwsem,
196				  XFS_IOLOCK_DEP(lock_flags));
197	} else if (lock_flags & XFS_IOLOCK_SHARED) {
198		down_read_nested(&VFS_I(ip)->i_rwsem,
199				 XFS_IOLOCK_DEP(lock_flags));
200	}
201
202	if (lock_flags & XFS_MMAPLOCK_EXCL) {
203		down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204				  XFS_MMAPLOCK_DEP(lock_flags));
205	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206		down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207				 XFS_MMAPLOCK_DEP(lock_flags));
208	}
209
210	if (lock_flags & XFS_ILOCK_EXCL)
211		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212	else if (lock_flags & XFS_ILOCK_SHARED)
213		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep.  It returns 1 if it gets
219 * the requested locks and 0 otherwise.  If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 *       to be locked.  See the comment for xfs_ilock() for a list
226 *	 of valid values.
227 */
228int
229xfs_ilock_nowait(
230	xfs_inode_t		*ip,
231	uint			lock_flags)
232{
233	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235	xfs_lock_flags_assert(lock_flags);
236
237	if (lock_flags & XFS_IOLOCK_EXCL) {
238		if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
239			goto out;
240	} else if (lock_flags & XFS_IOLOCK_SHARED) {
241		if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
242			goto out;
243	}
244
245	if (lock_flags & XFS_MMAPLOCK_EXCL) {
246		if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
247			goto out_undo_iolock;
248	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
249		if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
250			goto out_undo_iolock;
251	}
252
253	if (lock_flags & XFS_ILOCK_EXCL) {
254		if (!mrtryupdate(&ip->i_lock))
255			goto out_undo_mmaplock;
256	} else if (lock_flags & XFS_ILOCK_SHARED) {
257		if (!mrtryaccess(&ip->i_lock))
258			goto out_undo_mmaplock;
259	}
260	return 1;
261
262out_undo_mmaplock:
263	if (lock_flags & XFS_MMAPLOCK_EXCL)
264		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
265	else if (lock_flags & XFS_MMAPLOCK_SHARED)
266		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
267out_undo_iolock:
268	if (lock_flags & XFS_IOLOCK_EXCL)
269		up_write(&VFS_I(ip)->i_rwsem);
270	else if (lock_flags & XFS_IOLOCK_SHARED)
271		up_read(&VFS_I(ip)->i_rwsem);
272out:
273	return 0;
274}
275
276/*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 *       to be unlocked.  See the comment for xfs_ilock() for a list
285 *	 of valid values for this parameter.
286 *
287 */
288void
289xfs_iunlock(
290	xfs_inode_t		*ip,
291	uint			lock_flags)
292{
293	xfs_lock_flags_assert(lock_flags);
294
295	if (lock_flags & XFS_IOLOCK_EXCL)
296		up_write(&VFS_I(ip)->i_rwsem);
297	else if (lock_flags & XFS_IOLOCK_SHARED)
298		up_read(&VFS_I(ip)->i_rwsem);
299
300	if (lock_flags & XFS_MMAPLOCK_EXCL)
301		up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
302	else if (lock_flags & XFS_MMAPLOCK_SHARED)
303		up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
304
305	if (lock_flags & XFS_ILOCK_EXCL)
306		mrunlock_excl(&ip->i_lock);
307	else if (lock_flags & XFS_ILOCK_SHARED)
308		mrunlock_shared(&ip->i_lock);
309
310	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311}
312
313/*
314 * give up write locks.  the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317void
318xfs_ilock_demote(
319	xfs_inode_t		*ip,
320	uint			lock_flags)
321{
322	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323	ASSERT((lock_flags &
324		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
325
326	if (lock_flags & XFS_ILOCK_EXCL)
327		mrdemote(&ip->i_lock);
328	if (lock_flags & XFS_MMAPLOCK_EXCL)
329		downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
330	if (lock_flags & XFS_IOLOCK_EXCL)
331		downgrade_write(&VFS_I(ip)->i_rwsem);
332
333	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334}
335
336#if defined(DEBUG) || defined(XFS_WARN)
337static inline bool
338__xfs_rwsem_islocked(
339	struct rw_semaphore	*rwsem,
340	bool			shared)
341{
342	if (!debug_locks)
343		return rwsem_is_locked(rwsem);
344
345	if (!shared)
346		return lockdep_is_held_type(rwsem, 0);
347
348	/*
349	 * We are checking that the lock is held at least in shared
350	 * mode but don't care that it might be held exclusively
351	 * (i.e. shared | excl). Hence we check if the lock is held
352	 * in any mode rather than an explicit shared mode.
353	 */
354	return lockdep_is_held_type(rwsem, -1);
355}
356
357bool
358xfs_isilocked(
359	struct xfs_inode	*ip,
360	uint			lock_flags)
361{
362	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363		if (!(lock_flags & XFS_ILOCK_SHARED))
364			return !!ip->i_lock.mr_writer;
365		return rwsem_is_locked(&ip->i_lock.mr_lock);
366	}
367
368	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
369		return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370				(lock_flags & XFS_MMAPLOCK_SHARED));
371	}
372
373	if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374		return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375				(lock_flags & XFS_IOLOCK_SHARED));
376	}
377
378	ASSERT(0);
379	return false;
380}
381#endif
382
383/*
384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387 * errors and warnings.
388 */
389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
390static bool
391xfs_lockdep_subclass_ok(
392	int subclass)
393{
394	return subclass < MAX_LOCKDEP_SUBCLASSES;
395}
396#else
397#define xfs_lockdep_subclass_ok(subclass)	(true)
398#endif
399
400/*
401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
402 * value. This can be called for any type of inode lock combination, including
403 * parent locking. Care must be taken to ensure we don't overrun the subclass
404 * storage fields in the class mask we build.
405 */
406static inline uint
407xfs_lock_inumorder(
408	uint	lock_mode,
409	uint	subclass)
410{
411	uint	class = 0;
412
413	ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414			      XFS_ILOCK_RTSUM)));
415	ASSERT(xfs_lockdep_subclass_ok(subclass));
416
417	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
418		ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
419		class += subclass << XFS_IOLOCK_SHIFT;
420	}
421
422	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
423		ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424		class += subclass << XFS_MMAPLOCK_SHIFT;
425	}
426
427	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428		ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429		class += subclass << XFS_ILOCK_SHIFT;
430	}
431
432	return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
433}
434
435/*
436 * The following routine will lock n inodes in exclusive mode.  We assume the
437 * caller calls us with the inodes in i_ino order.
438 *
439 * We need to detect deadlock where an inode that we lock is in the AIL and we
440 * start waiting for another inode that is locked by a thread in a long running
441 * transaction (such as truncate). This can result in deadlock since the long
442 * running trans might need to wait for the inode we just locked in order to
443 * push the tail and free space in the log.
444 *
445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447 * lock more than one at a time, lockdep will report false positives saying we
448 * have violated locking orders.
449 */
450static void
451xfs_lock_inodes(
452	struct xfs_inode	**ips,
453	int			inodes,
454	uint			lock_mode)
455{
456	int			attempts = 0;
457	uint			i;
458	int			j;
459	bool			try_lock;
460	struct xfs_log_item	*lp;
461
462	/*
463	 * Currently supports between 2 and 5 inodes with exclusive locking.  We
464	 * support an arbitrary depth of locking here, but absolute limits on
465	 * inodes depend on the type of locking and the limits placed by
466	 * lockdep annotations in xfs_lock_inumorder.  These are all checked by
467	 * the asserts.
468	 */
469	ASSERT(ips && inodes >= 2 && inodes <= 5);
470	ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471			    XFS_ILOCK_EXCL));
472	ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473			      XFS_ILOCK_SHARED)));
474	ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475		inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476	ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477		inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479	if (lock_mode & XFS_IOLOCK_EXCL) {
480		ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481	} else if (lock_mode & XFS_MMAPLOCK_EXCL)
482		ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
483
484again:
485	try_lock = false;
486	i = 0;
487	for (; i < inodes; i++) {
488		ASSERT(ips[i]);
489
490		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
491			continue;
492
493		/*
494		 * If try_lock is not set yet, make sure all locked inodes are
495		 * not in the AIL.  If any are, set try_lock to be used later.
496		 */
497		if (!try_lock) {
498			for (j = (i - 1); j >= 0 && !try_lock; j--) {
499				lp = &ips[j]->i_itemp->ili_item;
500				if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
501					try_lock = true;
502			}
503		}
504
505		/*
506		 * If any of the previous locks we have locked is in the AIL,
507		 * we must TRY to get the second and subsequent locks. If
508		 * we can't get any, we must release all we have
509		 * and try again.
510		 */
511		if (!try_lock) {
512			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513			continue;
514		}
515
516		/* try_lock means we have an inode locked that is in the AIL. */
517		ASSERT(i != 0);
518		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519			continue;
520
521		/*
522		 * Unlock all previous guys and try again.  xfs_iunlock will try
523		 * to push the tail if the inode is in the AIL.
524		 */
525		attempts++;
526		for (j = i - 1; j >= 0; j--) {
527			/*
528			 * Check to see if we've already unlocked this one.  Not
529			 * the first one going back, and the inode ptr is the
530			 * same.
531			 */
532			if (j != (i - 1) && ips[j] == ips[j + 1])
533				continue;
534
535			xfs_iunlock(ips[j], lock_mode);
536		}
537
538		if ((attempts % 5) == 0) {
539			delay(1); /* Don't just spin the CPU */
540		}
541		goto again;
542	}
543}
544
545/*
546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547 * mmaplock must be double-locked separately since we use i_rwsem and
548 * invalidate_lock for that. We now support taking one lock EXCL and the
549 * other SHARED.
550 */
551void
552xfs_lock_two_inodes(
553	struct xfs_inode	*ip0,
554	uint			ip0_mode,
555	struct xfs_inode	*ip1,
556	uint			ip1_mode)
557{
558	int			attempts = 0;
559	struct xfs_log_item	*lp;
560
561	ASSERT(hweight32(ip0_mode) == 1);
562	ASSERT(hweight32(ip1_mode) == 1);
563	ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564	ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
565	ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566	ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
567	ASSERT(ip0->i_ino != ip1->i_ino);
568
569	if (ip0->i_ino > ip1->i_ino) {
570		swap(ip0, ip1);
571		swap(ip0_mode, ip1_mode);
572	}
573
574 again:
575	xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
576
577	/*
578	 * If the first lock we have locked is in the AIL, we must TRY to get
579	 * the second lock. If we can't get it, we must release the first one
580	 * and try again.
581	 */
582	lp = &ip0->i_itemp->ili_item;
583	if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
584		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585			xfs_iunlock(ip0, ip0_mode);
586			if ((++attempts % 5) == 0)
587				delay(1); /* Don't just spin the CPU */
588			goto again;
589		}
590	} else {
591		xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
592	}
593}
594
595uint
596xfs_ip2xflags(
597	struct xfs_inode	*ip)
598{
599	uint			flags = 0;
600
601	if (ip->i_diflags & XFS_DIFLAG_ANY) {
602		if (ip->i_diflags & XFS_DIFLAG_REALTIME)
603			flags |= FS_XFLAG_REALTIME;
604		if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
605			flags |= FS_XFLAG_PREALLOC;
606		if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
607			flags |= FS_XFLAG_IMMUTABLE;
608		if (ip->i_diflags & XFS_DIFLAG_APPEND)
609			flags |= FS_XFLAG_APPEND;
610		if (ip->i_diflags & XFS_DIFLAG_SYNC)
611			flags |= FS_XFLAG_SYNC;
612		if (ip->i_diflags & XFS_DIFLAG_NOATIME)
613			flags |= FS_XFLAG_NOATIME;
614		if (ip->i_diflags & XFS_DIFLAG_NODUMP)
615			flags |= FS_XFLAG_NODUMP;
616		if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
617			flags |= FS_XFLAG_RTINHERIT;
618		if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
619			flags |= FS_XFLAG_PROJINHERIT;
620		if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
621			flags |= FS_XFLAG_NOSYMLINKS;
622		if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
623			flags |= FS_XFLAG_EXTSIZE;
624		if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
625			flags |= FS_XFLAG_EXTSZINHERIT;
626		if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
627			flags |= FS_XFLAG_NODEFRAG;
628		if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
629			flags |= FS_XFLAG_FILESTREAM;
630	}
631
632	if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633		if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
634			flags |= FS_XFLAG_DAX;
635		if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
636			flags |= FS_XFLAG_COWEXTSIZE;
637	}
638
639	if (xfs_inode_has_attr_fork(ip))
640		flags |= FS_XFLAG_HASATTR;
641	return flags;
642}
643
644/*
645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
647 * ci_name->name will point to a the actual name (caller must free) or
648 * will be set to NULL if an exact match is found.
649 */
650int
651xfs_lookup(
652	struct xfs_inode	*dp,
653	const struct xfs_name	*name,
654	struct xfs_inode	**ipp,
655	struct xfs_name		*ci_name)
656{
657	xfs_ino_t		inum;
658	int			error;
659
660	trace_xfs_lookup(dp, name);
661
662	if (xfs_is_shutdown(dp->i_mount))
663		return -EIO;
664
665	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
666	if (error)
667		goto out_unlock;
668
669	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670	if (error)
671		goto out_free_name;
672
673	return 0;
674
675out_free_name:
676	if (ci_name)
677		kmem_free(ci_name->name);
678out_unlock:
679	*ipp = NULL;
680	return error;
681}
682
683/* Propagate di_flags from a parent inode to a child inode. */
684static void
685xfs_inode_inherit_flags(
686	struct xfs_inode	*ip,
687	const struct xfs_inode	*pip)
688{
689	unsigned int		di_flags = 0;
690	xfs_failaddr_t		failaddr;
691	umode_t			mode = VFS_I(ip)->i_mode;
692
693	if (S_ISDIR(mode)) {
694		if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
695			di_flags |= XFS_DIFLAG_RTINHERIT;
696		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
697			di_flags |= XFS_DIFLAG_EXTSZINHERIT;
698			ip->i_extsize = pip->i_extsize;
699		}
700		if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
701			di_flags |= XFS_DIFLAG_PROJINHERIT;
702	} else if (S_ISREG(mode)) {
703		if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
704		    xfs_has_realtime(ip->i_mount))
705			di_flags |= XFS_DIFLAG_REALTIME;
706		if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
707			di_flags |= XFS_DIFLAG_EXTSIZE;
708			ip->i_extsize = pip->i_extsize;
709		}
710	}
711	if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
712	    xfs_inherit_noatime)
713		di_flags |= XFS_DIFLAG_NOATIME;
714	if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
715	    xfs_inherit_nodump)
716		di_flags |= XFS_DIFLAG_NODUMP;
717	if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
718	    xfs_inherit_sync)
719		di_flags |= XFS_DIFLAG_SYNC;
720	if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
721	    xfs_inherit_nosymlinks)
722		di_flags |= XFS_DIFLAG_NOSYMLINKS;
723	if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
724	    xfs_inherit_nodefrag)
725		di_flags |= XFS_DIFLAG_NODEFRAG;
726	if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
727		di_flags |= XFS_DIFLAG_FILESTREAM;
728
729	ip->i_diflags |= di_flags;
730
731	/*
732	 * Inode verifiers on older kernels only check that the extent size
733	 * hint is an integer multiple of the rt extent size on realtime files.
734	 * They did not check the hint alignment on a directory with both
735	 * rtinherit and extszinherit flags set.  If the misaligned hint is
736	 * propagated from a directory into a new realtime file, new file
737	 * allocations will fail due to math errors in the rt allocator and/or
738	 * trip the verifiers.  Validate the hint settings in the new file so
739	 * that we don't let broken hints propagate.
740	 */
741	failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742			VFS_I(ip)->i_mode, ip->i_diflags);
743	if (failaddr) {
744		ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745				   XFS_DIFLAG_EXTSZINHERIT);
746		ip->i_extsize = 0;
747	}
748}
749
750/* Propagate di_flags2 from a parent inode to a child inode. */
751static void
752xfs_inode_inherit_flags2(
753	struct xfs_inode	*ip,
754	const struct xfs_inode	*pip)
755{
756	xfs_failaddr_t		failaddr;
757
758	if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759		ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
760		ip->i_cowextsize = pip->i_cowextsize;
761	}
762	if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763		ip->i_diflags2 |= XFS_DIFLAG2_DAX;
764
765	/* Don't let invalid cowextsize hints propagate. */
766	failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767			VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768	if (failaddr) {
769		ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770		ip->i_cowextsize = 0;
771	}
772}
773
774/*
775 * Initialise a newly allocated inode and return the in-core inode to the
776 * caller locked exclusively.
777 */
778int
779xfs_init_new_inode(
780	struct mnt_idmap	*idmap,
781	struct xfs_trans	*tp,
782	struct xfs_inode	*pip,
783	xfs_ino_t		ino,
784	umode_t			mode,
785	xfs_nlink_t		nlink,
786	dev_t			rdev,
787	prid_t			prid,
788	bool			init_xattrs,
789	struct xfs_inode	**ipp)
790{
791	struct inode		*dir = pip ? VFS_I(pip) : NULL;
792	struct xfs_mount	*mp = tp->t_mountp;
793	struct xfs_inode	*ip;
794	unsigned int		flags;
795	int			error;
796	struct timespec64	tv;
797	struct inode		*inode;
798
799	/*
800	 * Protect against obviously corrupt allocation btree records. Later
801	 * xfs_iget checks will catch re-allocation of other active in-memory
802	 * and on-disk inodes. If we don't catch reallocating the parent inode
803	 * here we will deadlock in xfs_iget() so we have to do these checks
804	 * first.
805	 */
806	if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807		xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808		return -EFSCORRUPTED;
809	}
810
811	/*
812	 * Get the in-core inode with the lock held exclusively to prevent
813	 * others from looking at until we're done.
814	 */
815	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
816	if (error)
817		return error;
818
819	ASSERT(ip != NULL);
820	inode = VFS_I(ip);
821	set_nlink(inode, nlink);
822	inode->i_rdev = rdev;
823	ip->i_projid = prid;
824
825	if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
826		inode_fsuid_set(inode, idmap);
827		inode->i_gid = dir->i_gid;
828		inode->i_mode = mode;
829	} else {
830		inode_init_owner(idmap, inode, dir, mode);
831	}
832
833	/*
834	 * If the group ID of the new file does not match the effective group
835	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836	 * (and only if the irix_sgid_inherit compatibility variable is set).
837	 */
838	if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
839	    !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
840		inode->i_mode &= ~S_ISGID;
841
842	ip->i_disk_size = 0;
843	ip->i_df.if_nextents = 0;
844	ASSERT(ip->i_nblocks == 0);
845
846	tv = inode_set_ctime_current(inode);
847	inode->i_mtime = tv;
848	inode->i_atime = tv;
849
850	ip->i_extsize = 0;
851	ip->i_diflags = 0;
852
853	if (xfs_has_v3inodes(mp)) {
854		inode_set_iversion(inode, 1);
855		ip->i_cowextsize = 0;
856		ip->i_crtime = tv;
857	}
858
859	flags = XFS_ILOG_CORE;
860	switch (mode & S_IFMT) {
861	case S_IFIFO:
862	case S_IFCHR:
863	case S_IFBLK:
864	case S_IFSOCK:
865		ip->i_df.if_format = XFS_DINODE_FMT_DEV;
866		flags |= XFS_ILOG_DEV;
867		break;
868	case S_IFREG:
869	case S_IFDIR:
870		if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
871			xfs_inode_inherit_flags(ip, pip);
872		if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
873			xfs_inode_inherit_flags2(ip, pip);
874		fallthrough;
875	case S_IFLNK:
876		ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
877		ip->i_df.if_bytes = 0;
878		ip->i_df.if_u1.if_root = NULL;
879		break;
880	default:
881		ASSERT(0);
882	}
883
884	/*
885	 * If we need to create attributes immediately after allocating the
886	 * inode, initialise an empty attribute fork right now. We use the
887	 * default fork offset for attributes here as we don't know exactly what
888	 * size or how many attributes we might be adding. We can do this
889	 * safely here because we know the data fork is completely empty and
890	 * this saves us from needing to run a separate transaction to set the
891	 * fork offset in the immediate future.
892	 */
893	if (init_xattrs && xfs_has_attr(mp)) {
894		ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
895		xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
896	}
897
898	/*
899	 * Log the new values stuffed into the inode.
900	 */
901	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
902	xfs_trans_log_inode(tp, ip, flags);
903
904	/* now that we have an i_mode we can setup the inode structure */
905	xfs_setup_inode(ip);
906
907	*ipp = ip;
908	return 0;
909}
910
911/*
912 * Decrement the link count on an inode & log the change.  If this causes the
913 * link count to go to zero, move the inode to AGI unlinked list so that it can
914 * be freed when the last active reference goes away via xfs_inactive().
915 */
916static int			/* error */
917xfs_droplink(
918	xfs_trans_t *tp,
919	xfs_inode_t *ip)
920{
921	if (VFS_I(ip)->i_nlink == 0) {
922		xfs_alert(ip->i_mount,
923			  "%s: Attempt to drop inode (%llu) with nlink zero.",
924			  __func__, ip->i_ino);
925		return -EFSCORRUPTED;
926	}
927
928	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
929
930	drop_nlink(VFS_I(ip));
931	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
932
933	if (VFS_I(ip)->i_nlink)
934		return 0;
935
936	return xfs_iunlink(tp, ip);
937}
938
939/*
940 * Increment the link count on an inode & log the change.
941 */
942static void
943xfs_bumplink(
944	xfs_trans_t *tp,
945	xfs_inode_t *ip)
946{
947	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
948
949	inc_nlink(VFS_I(ip));
950	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
951}
952
953int
954xfs_create(
955	struct mnt_idmap	*idmap,
956	xfs_inode_t		*dp,
957	struct xfs_name		*name,
958	umode_t			mode,
959	dev_t			rdev,
960	bool			init_xattrs,
961	xfs_inode_t		**ipp)
962{
963	int			is_dir = S_ISDIR(mode);
964	struct xfs_mount	*mp = dp->i_mount;
965	struct xfs_inode	*ip = NULL;
966	struct xfs_trans	*tp = NULL;
967	int			error;
968	bool                    unlock_dp_on_error = false;
969	prid_t			prid;
970	struct xfs_dquot	*udqp = NULL;
971	struct xfs_dquot	*gdqp = NULL;
972	struct xfs_dquot	*pdqp = NULL;
973	struct xfs_trans_res	*tres;
974	uint			resblks;
975	xfs_ino_t		ino;
976
977	trace_xfs_create(dp, name);
978
979	if (xfs_is_shutdown(mp))
980		return -EIO;
981
982	prid = xfs_get_initial_prid(dp);
983
984	/*
985	 * Make sure that we have allocated dquot(s) on disk.
986	 */
987	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
988			mapped_fsgid(idmap, &init_user_ns), prid,
989			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
990			&udqp, &gdqp, &pdqp);
991	if (error)
992		return error;
993
994	if (is_dir) {
995		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
996		tres = &M_RES(mp)->tr_mkdir;
997	} else {
998		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
999		tres = &M_RES(mp)->tr_create;
1000	}
1001
1002	/*
1003	 * Initially assume that the file does not exist and
1004	 * reserve the resources for that case.  If that is not
1005	 * the case we'll drop the one we have and get a more
1006	 * appropriate transaction later.
1007	 */
1008	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1009			&tp);
1010	if (error == -ENOSPC) {
1011		/* flush outstanding delalloc blocks and retry */
1012		xfs_flush_inodes(mp);
1013		error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1014				resblks, &tp);
1015	}
1016	if (error)
1017		goto out_release_dquots;
1018
1019	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1020	unlock_dp_on_error = true;
1021
1022	/*
1023	 * A newly created regular or special file just has one directory
1024	 * entry pointing to them, but a directory also the "." entry
1025	 * pointing to itself.
1026	 */
1027	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1028	if (!error)
1029		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1030				is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
1031	if (error)
1032		goto out_trans_cancel;
1033
1034	/*
1035	 * Now we join the directory inode to the transaction.  We do not do it
1036	 * earlier because xfs_dialloc might commit the previous transaction
1037	 * (and release all the locks).  An error from here on will result in
1038	 * the transaction cancel unlocking dp so don't do it explicitly in the
1039	 * error path.
1040	 */
1041	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1042	unlock_dp_on_error = false;
1043
1044	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1045					resblks - XFS_IALLOC_SPACE_RES(mp));
1046	if (error) {
1047		ASSERT(error != -ENOSPC);
1048		goto out_trans_cancel;
1049	}
1050	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1051	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1052
1053	if (is_dir) {
1054		error = xfs_dir_init(tp, ip, dp);
1055		if (error)
1056			goto out_trans_cancel;
1057
1058		xfs_bumplink(tp, dp);
1059	}
1060
1061	/*
1062	 * If this is a synchronous mount, make sure that the
1063	 * create transaction goes to disk before returning to
1064	 * the user.
1065	 */
1066	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1067		xfs_trans_set_sync(tp);
1068
1069	/*
1070	 * Attach the dquot(s) to the inodes and modify them incore.
1071	 * These ids of the inode couldn't have changed since the new
1072	 * inode has been locked ever since it was created.
1073	 */
1074	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1075
1076	error = xfs_trans_commit(tp);
1077	if (error)
1078		goto out_release_inode;
1079
1080	xfs_qm_dqrele(udqp);
1081	xfs_qm_dqrele(gdqp);
1082	xfs_qm_dqrele(pdqp);
1083
1084	*ipp = ip;
1085	return 0;
1086
1087 out_trans_cancel:
1088	xfs_trans_cancel(tp);
1089 out_release_inode:
1090	/*
1091	 * Wait until after the current transaction is aborted to finish the
1092	 * setup of the inode and release the inode.  This prevents recursive
1093	 * transactions and deadlocks from xfs_inactive.
1094	 */
1095	if (ip) {
1096		xfs_finish_inode_setup(ip);
1097		xfs_irele(ip);
1098	}
1099 out_release_dquots:
1100	xfs_qm_dqrele(udqp);
1101	xfs_qm_dqrele(gdqp);
1102	xfs_qm_dqrele(pdqp);
1103
1104	if (unlock_dp_on_error)
1105		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1106	return error;
1107}
1108
1109int
1110xfs_create_tmpfile(
1111	struct mnt_idmap	*idmap,
1112	struct xfs_inode	*dp,
1113	umode_t			mode,
1114	struct xfs_inode	**ipp)
1115{
1116	struct xfs_mount	*mp = dp->i_mount;
1117	struct xfs_inode	*ip = NULL;
1118	struct xfs_trans	*tp = NULL;
1119	int			error;
1120	prid_t                  prid;
1121	struct xfs_dquot	*udqp = NULL;
1122	struct xfs_dquot	*gdqp = NULL;
1123	struct xfs_dquot	*pdqp = NULL;
1124	struct xfs_trans_res	*tres;
1125	uint			resblks;
1126	xfs_ino_t		ino;
1127
1128	if (xfs_is_shutdown(mp))
1129		return -EIO;
1130
1131	prid = xfs_get_initial_prid(dp);
1132
1133	/*
1134	 * Make sure that we have allocated dquot(s) on disk.
1135	 */
1136	error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1137			mapped_fsgid(idmap, &init_user_ns), prid,
1138			XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1139			&udqp, &gdqp, &pdqp);
1140	if (error)
1141		return error;
1142
1143	resblks = XFS_IALLOC_SPACE_RES(mp);
1144	tres = &M_RES(mp)->tr_create_tmpfile;
1145
1146	error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1147			&tp);
1148	if (error)
1149		goto out_release_dquots;
1150
1151	error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1152	if (!error)
1153		error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
1154				0, 0, prid, false, &ip);
1155	if (error)
1156		goto out_trans_cancel;
1157
1158	if (xfs_has_wsync(mp))
1159		xfs_trans_set_sync(tp);
1160
1161	/*
1162	 * Attach the dquot(s) to the inodes and modify them incore.
1163	 * These ids of the inode couldn't have changed since the new
1164	 * inode has been locked ever since it was created.
1165	 */
1166	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1167
1168	error = xfs_iunlink(tp, ip);
1169	if (error)
1170		goto out_trans_cancel;
1171
1172	error = xfs_trans_commit(tp);
1173	if (error)
1174		goto out_release_inode;
1175
1176	xfs_qm_dqrele(udqp);
1177	xfs_qm_dqrele(gdqp);
1178	xfs_qm_dqrele(pdqp);
1179
1180	*ipp = ip;
1181	return 0;
1182
1183 out_trans_cancel:
1184	xfs_trans_cancel(tp);
1185 out_release_inode:
1186	/*
1187	 * Wait until after the current transaction is aborted to finish the
1188	 * setup of the inode and release the inode.  This prevents recursive
1189	 * transactions and deadlocks from xfs_inactive.
1190	 */
1191	if (ip) {
1192		xfs_finish_inode_setup(ip);
1193		xfs_irele(ip);
1194	}
1195 out_release_dquots:
1196	xfs_qm_dqrele(udqp);
1197	xfs_qm_dqrele(gdqp);
1198	xfs_qm_dqrele(pdqp);
1199
1200	return error;
1201}
1202
1203int
1204xfs_link(
1205	xfs_inode_t		*tdp,
1206	xfs_inode_t		*sip,
1207	struct xfs_name		*target_name)
1208{
1209	xfs_mount_t		*mp = tdp->i_mount;
1210	xfs_trans_t		*tp;
1211	int			error, nospace_error = 0;
1212	int			resblks;
1213
1214	trace_xfs_link(tdp, target_name);
1215
1216	ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1217
1218	if (xfs_is_shutdown(mp))
1219		return -EIO;
1220
1221	error = xfs_qm_dqattach(sip);
1222	if (error)
1223		goto std_return;
1224
1225	error = xfs_qm_dqattach(tdp);
1226	if (error)
1227		goto std_return;
1228
1229	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1230	error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1231			&tp, &nospace_error);
1232	if (error)
1233		goto std_return;
1234
1235	/*
1236	 * If we are using project inheritance, we only allow hard link
1237	 * creation in our tree when the project IDs are the same; else
1238	 * the tree quota mechanism could be circumvented.
1239	 */
1240	if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
1241		     tdp->i_projid != sip->i_projid)) {
1242		error = -EXDEV;
1243		goto error_return;
1244	}
1245
1246	if (!resblks) {
1247		error = xfs_dir_canenter(tp, tdp, target_name);
1248		if (error)
1249			goto error_return;
1250	}
1251
1252	/*
1253	 * Handle initial link state of O_TMPFILE inode
1254	 */
1255	if (VFS_I(sip)->i_nlink == 0) {
1256		struct xfs_perag	*pag;
1257
1258		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1259		error = xfs_iunlink_remove(tp, pag, sip);
1260		xfs_perag_put(pag);
1261		if (error)
1262			goto error_return;
1263	}
1264
1265	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1266				   resblks);
1267	if (error)
1268		goto error_return;
1269	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1270	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1271
1272	xfs_bumplink(tp, sip);
1273
1274	/*
1275	 * If this is a synchronous mount, make sure that the
1276	 * link transaction goes to disk before returning to
1277	 * the user.
1278	 */
1279	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
1280		xfs_trans_set_sync(tp);
1281
1282	return xfs_trans_commit(tp);
1283
1284 error_return:
1285	xfs_trans_cancel(tp);
1286 std_return:
1287	if (error == -ENOSPC && nospace_error)
1288		error = nospace_error;
1289	return error;
1290}
1291
1292/* Clear the reflink flag and the cowblocks tag if possible. */
1293static void
1294xfs_itruncate_clear_reflink_flags(
1295	struct xfs_inode	*ip)
1296{
1297	struct xfs_ifork	*dfork;
1298	struct xfs_ifork	*cfork;
1299
1300	if (!xfs_is_reflink_inode(ip))
1301		return;
1302	dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1303	cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
1304	if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1305		ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
1306	if (cfork->if_bytes == 0)
1307		xfs_inode_clear_cowblocks_tag(ip);
1308}
1309
1310/*
1311 * Free up the underlying blocks past new_size.  The new size must be smaller
1312 * than the current size.  This routine can be used both for the attribute and
1313 * data fork, and does not modify the inode size, which is left to the caller.
1314 *
1315 * The transaction passed to this routine must have made a permanent log
1316 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1317 * given transaction and start new ones, so make sure everything involved in
1318 * the transaction is tidy before calling here.  Some transaction will be
1319 * returned to the caller to be committed.  The incoming transaction must
1320 * already include the inode, and both inode locks must be held exclusively.
1321 * The inode must also be "held" within the transaction.  On return the inode
1322 * will be "held" within the returned transaction.  This routine does NOT
1323 * require any disk space to be reserved for it within the transaction.
1324 *
1325 * If we get an error, we must return with the inode locked and linked into the
1326 * current transaction. This keeps things simple for the higher level code,
1327 * because it always knows that the inode is locked and held in the transaction
1328 * that returns to it whether errors occur or not.  We don't mark the inode
1329 * dirty on error so that transactions can be easily aborted if possible.
1330 */
1331int
1332xfs_itruncate_extents_flags(
1333	struct xfs_trans	**tpp,
1334	struct xfs_inode	*ip,
1335	int			whichfork,
1336	xfs_fsize_t		new_size,
1337	int			flags)
1338{
1339	struct xfs_mount	*mp = ip->i_mount;
1340	struct xfs_trans	*tp = *tpp;
1341	xfs_fileoff_t		first_unmap_block;
1342	xfs_filblks_t		unmap_len;
1343	int			error = 0;
1344
1345	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1346	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1347	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1348	ASSERT(new_size <= XFS_ISIZE(ip));
1349	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1350	ASSERT(ip->i_itemp != NULL);
1351	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1352	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1353
1354	trace_xfs_itruncate_extents_start(ip, new_size);
1355
1356	flags |= xfs_bmapi_aflag(whichfork);
1357
1358	/*
1359	 * Since it is possible for space to become allocated beyond
1360	 * the end of the file (in a crash where the space is allocated
1361	 * but the inode size is not yet updated), simply remove any
1362	 * blocks which show up between the new EOF and the maximum
1363	 * possible file size.
1364	 *
1365	 * We have to free all the blocks to the bmbt maximum offset, even if
1366	 * the page cache can't scale that far.
1367	 */
1368	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1369	if (!xfs_verify_fileoff(mp, first_unmap_block)) {
1370		WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
1371		return 0;
1372	}
1373
1374	unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1375	while (unmap_len > 0) {
1376		ASSERT(tp->t_highest_agno == NULLAGNUMBER);
1377		error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1378				flags, XFS_ITRUNC_MAX_EXTENTS);
1379		if (error)
1380			goto out;
1381
1382		/* free the just unmapped extents */
1383		error = xfs_defer_finish(&tp);
1384		if (error)
1385			goto out;
1386	}
1387
1388	if (whichfork == XFS_DATA_FORK) {
1389		/* Remove all pending CoW reservations. */
1390		error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1391				first_unmap_block, XFS_MAX_FILEOFF, true);
1392		if (error)
1393			goto out;
1394
1395		xfs_itruncate_clear_reflink_flags(ip);
1396	}
1397
1398	/*
1399	 * Always re-log the inode so that our permanent transaction can keep
1400	 * on rolling it forward in the log.
1401	 */
1402	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1403
1404	trace_xfs_itruncate_extents_end(ip, new_size);
1405
1406out:
1407	*tpp = tp;
1408	return error;
1409}
1410
1411int
1412xfs_release(
1413	xfs_inode_t	*ip)
1414{
1415	xfs_mount_t	*mp = ip->i_mount;
1416	int		error = 0;
1417
1418	if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1419		return 0;
1420
1421	/* If this is a read-only mount, don't do this (would generate I/O) */
1422	if (xfs_is_readonly(mp))
1423		return 0;
1424
1425	if (!xfs_is_shutdown(mp)) {
1426		int truncated;
1427
1428		/*
1429		 * If we previously truncated this file and removed old data
1430		 * in the process, we want to initiate "early" writeout on
1431		 * the last close.  This is an attempt to combat the notorious
1432		 * NULL files problem which is particularly noticeable from a
1433		 * truncate down, buffered (re-)write (delalloc), followed by
1434		 * a crash.  What we are effectively doing here is
1435		 * significantly reducing the time window where we'd otherwise
1436		 * be exposed to that problem.
1437		 */
1438		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1439		if (truncated) {
1440			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1441			if (ip->i_delayed_blks > 0) {
1442				error = filemap_flush(VFS_I(ip)->i_mapping);
1443				if (error)
1444					return error;
1445			}
1446		}
1447	}
1448
1449	if (VFS_I(ip)->i_nlink == 0)
1450		return 0;
1451
1452	/*
1453	 * If we can't get the iolock just skip truncating the blocks past EOF
1454	 * because we could deadlock with the mmap_lock otherwise. We'll get
1455	 * another chance to drop them once the last reference to the inode is
1456	 * dropped, so we'll never leak blocks permanently.
1457	 */
1458	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1459		return 0;
1460
1461	if (xfs_can_free_eofblocks(ip, false)) {
1462		/*
1463		 * Check if the inode is being opened, written and closed
1464		 * frequently and we have delayed allocation blocks outstanding
1465		 * (e.g. streaming writes from the NFS server), truncating the
1466		 * blocks past EOF will cause fragmentation to occur.
1467		 *
1468		 * In this case don't do the truncation, but we have to be
1469		 * careful how we detect this case. Blocks beyond EOF show up as
1470		 * i_delayed_blks even when the inode is clean, so we need to
1471		 * truncate them away first before checking for a dirty release.
1472		 * Hence on the first dirty close we will still remove the
1473		 * speculative allocation, but after that we will leave it in
1474		 * place.
1475		 */
1476		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1477			goto out_unlock;
1478
1479		error = xfs_free_eofblocks(ip);
1480		if (error)
1481			goto out_unlock;
1482
1483		/* delalloc blocks after truncation means it really is dirty */
1484		if (ip->i_delayed_blks)
1485			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1486	}
1487
1488out_unlock:
1489	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1490	return error;
1491}
1492
1493/*
1494 * xfs_inactive_truncate
1495 *
1496 * Called to perform a truncate when an inode becomes unlinked.
1497 */
1498STATIC int
1499xfs_inactive_truncate(
1500	struct xfs_inode *ip)
1501{
1502	struct xfs_mount	*mp = ip->i_mount;
1503	struct xfs_trans	*tp;
1504	int			error;
1505
1506	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1507	if (error) {
1508		ASSERT(xfs_is_shutdown(mp));
1509		return error;
1510	}
1511	xfs_ilock(ip, XFS_ILOCK_EXCL);
1512	xfs_trans_ijoin(tp, ip, 0);
1513
1514	/*
1515	 * Log the inode size first to prevent stale data exposure in the event
1516	 * of a system crash before the truncate completes. See the related
1517	 * comment in xfs_vn_setattr_size() for details.
1518	 */
1519	ip->i_disk_size = 0;
1520	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1521
1522	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1523	if (error)
1524		goto error_trans_cancel;
1525
1526	ASSERT(ip->i_df.if_nextents == 0);
1527
1528	error = xfs_trans_commit(tp);
1529	if (error)
1530		goto error_unlock;
1531
1532	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533	return 0;
1534
1535error_trans_cancel:
1536	xfs_trans_cancel(tp);
1537error_unlock:
1538	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1539	return error;
1540}
1541
1542/*
1543 * xfs_inactive_ifree()
1544 *
1545 * Perform the inode free when an inode is unlinked.
1546 */
1547STATIC int
1548xfs_inactive_ifree(
1549	struct xfs_inode *ip)
1550{
1551	struct xfs_mount	*mp = ip->i_mount;
1552	struct xfs_trans	*tp;
1553	int			error;
1554
1555	/*
1556	 * We try to use a per-AG reservation for any block needed by the finobt
1557	 * tree, but as the finobt feature predates the per-AG reservation
1558	 * support a degraded file system might not have enough space for the
1559	 * reservation at mount time.  In that case try to dip into the reserved
1560	 * pool and pray.
1561	 *
1562	 * Send a warning if the reservation does happen to fail, as the inode
1563	 * now remains allocated and sits on the unlinked list until the fs is
1564	 * repaired.
1565	 */
1566	if (unlikely(mp->m_finobt_nores)) {
1567		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1568				XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1569				&tp);
1570	} else {
1571		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1572	}
1573	if (error) {
1574		if (error == -ENOSPC) {
1575			xfs_warn_ratelimited(mp,
1576			"Failed to remove inode(s) from unlinked list. "
1577			"Please free space, unmount and run xfs_repair.");
1578		} else {
1579			ASSERT(xfs_is_shutdown(mp));
1580		}
1581		return error;
1582	}
1583
1584	/*
1585	 * We do not hold the inode locked across the entire rolling transaction
1586	 * here. We only need to hold it for the first transaction that
1587	 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1588	 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1589	 * here breaks the relationship between cluster buffer invalidation and
1590	 * stale inode invalidation on cluster buffer item journal commit
1591	 * completion, and can result in leaving dirty stale inodes hanging
1592	 * around in memory.
1593	 *
1594	 * We have no need for serialising this inode operation against other
1595	 * operations - we freed the inode and hence reallocation is required
1596	 * and that will serialise on reallocating the space the deferops need
1597	 * to free. Hence we can unlock the inode on the first commit of
1598	 * the transaction rather than roll it right through the deferops. This
1599	 * avoids relogging the XFS_ISTALE inode.
1600	 *
1601	 * We check that xfs_ifree() hasn't grown an internal transaction roll
1602	 * by asserting that the inode is still locked when it returns.
1603	 */
1604	xfs_ilock(ip, XFS_ILOCK_EXCL);
1605	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1606
1607	error = xfs_ifree(tp, ip);
1608	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1609	if (error) {
1610		/*
1611		 * If we fail to free the inode, shut down.  The cancel
1612		 * might do that, we need to make sure.  Otherwise the
1613		 * inode might be lost for a long time or forever.
1614		 */
1615		if (!xfs_is_shutdown(mp)) {
1616			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1617				__func__, error);
1618			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1619		}
1620		xfs_trans_cancel(tp);
1621		return error;
1622	}
1623
1624	/*
1625	 * Credit the quota account(s). The inode is gone.
1626	 */
1627	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1628
1629	return xfs_trans_commit(tp);
1630}
1631
1632/*
1633 * Returns true if we need to update the on-disk metadata before we can free
1634 * the memory used by this inode.  Updates include freeing post-eof
1635 * preallocations; freeing COW staging extents; and marking the inode free in
1636 * the inobt if it is on the unlinked list.
1637 */
1638bool
1639xfs_inode_needs_inactive(
1640	struct xfs_inode	*ip)
1641{
1642	struct xfs_mount	*mp = ip->i_mount;
1643	struct xfs_ifork	*cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
1644
1645	/*
1646	 * If the inode is already free, then there can be nothing
1647	 * to clean up here.
1648	 */
1649	if (VFS_I(ip)->i_mode == 0)
1650		return false;
1651
1652	/*
1653	 * If this is a read-only mount, don't do this (would generate I/O)
1654	 * unless we're in log recovery and cleaning the iunlinked list.
1655	 */
1656	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1657		return false;
1658
1659	/* If the log isn't running, push inodes straight to reclaim. */
1660	if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
1661		return false;
1662
1663	/* Metadata inodes require explicit resource cleanup. */
1664	if (xfs_is_metadata_inode(ip))
1665		return false;
1666
1667	/* Want to clean out the cow blocks if there are any. */
1668	if (cow_ifp && cow_ifp->if_bytes > 0)
1669		return true;
1670
1671	/* Unlinked files must be freed. */
1672	if (VFS_I(ip)->i_nlink == 0)
1673		return true;
1674
1675	/*
1676	 * This file isn't being freed, so check if there are post-eof blocks
1677	 * to free.  @force is true because we are evicting an inode from the
1678	 * cache.  Post-eof blocks must be freed, lest we end up with broken
1679	 * free space accounting.
1680	 *
1681	 * Note: don't bother with iolock here since lockdep complains about
1682	 * acquiring it in reclaim context. We have the only reference to the
1683	 * inode at this point anyways.
1684	 */
1685	return xfs_can_free_eofblocks(ip, true);
1686}
1687
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero.  If the file has been unlinked, then it must
1693 * now be truncated.  Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
1696int
1697xfs_inactive(
1698	xfs_inode_t	*ip)
1699{
1700	struct xfs_mount	*mp;
1701	int			error = 0;
1702	int			truncate = 0;
1703
1704	/*
1705	 * If the inode is already free, then there can be nothing
1706	 * to clean up here.
1707	 */
1708	if (VFS_I(ip)->i_mode == 0) {
1709		ASSERT(ip->i_df.if_broot_bytes == 0);
1710		goto out;
1711	}
1712
1713	mp = ip->i_mount;
1714	ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1715
1716	/*
1717	 * If this is a read-only mount, don't do this (would generate I/O)
1718	 * unless we're in log recovery and cleaning the iunlinked list.
1719	 */
1720	if (xfs_is_readonly(mp) && !xlog_recovery_needed(mp->m_log))
1721		goto out;
1722
1723	/* Metadata inodes require explicit resource cleanup. */
1724	if (xfs_is_metadata_inode(ip))
1725		goto out;
1726
1727	/* Try to clean out the cow blocks if there are any. */
1728	if (xfs_inode_has_cow_data(ip))
1729		xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1730
1731	if (VFS_I(ip)->i_nlink != 0) {
1732		/*
1733		 * force is true because we are evicting an inode from the
1734		 * cache. Post-eof blocks must be freed, lest we end up with
1735		 * broken free space accounting.
1736		 *
1737		 * Note: don't bother with iolock here since lockdep complains
1738		 * about acquiring it in reclaim context. We have the only
1739		 * reference to the inode at this point anyways.
1740		 */
1741		if (xfs_can_free_eofblocks(ip, true))
1742			error = xfs_free_eofblocks(ip);
1743
1744		goto out;
1745	}
1746
1747	if (S_ISREG(VFS_I(ip)->i_mode) &&
1748	    (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
1749	     ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
1750		truncate = 1;
1751
1752	if (xfs_iflags_test(ip, XFS_IQUOTAUNCHECKED)) {
1753		/*
1754		 * If this inode is being inactivated during a quotacheck and
1755		 * has not yet been scanned by quotacheck, we /must/ remove
1756		 * the dquots from the inode before inactivation changes the
1757		 * block and inode counts.  Most probably this is a result of
1758		 * reloading the incore iunlinked list to purge unrecovered
1759		 * unlinked inodes.
1760		 */
1761		xfs_qm_dqdetach(ip);
1762	} else {
1763		error = xfs_qm_dqattach(ip);
1764		if (error)
1765			goto out;
1766	}
1767
1768	if (S_ISLNK(VFS_I(ip)->i_mode))
1769		error = xfs_inactive_symlink(ip);
1770	else if (truncate)
1771		error = xfs_inactive_truncate(ip);
1772	if (error)
1773		goto out;
1774
1775	/*
1776	 * If there are attributes associated with the file then blow them away
1777	 * now.  The code calls a routine that recursively deconstructs the
1778	 * attribute fork. If also blows away the in-core attribute fork.
1779	 */
1780	if (xfs_inode_has_attr_fork(ip)) {
1781		error = xfs_attr_inactive(ip);
1782		if (error)
1783			goto out;
1784	}
1785
1786	ASSERT(ip->i_forkoff == 0);
1787
1788	/*
1789	 * Free the inode.
1790	 */
1791	error = xfs_inactive_ifree(ip);
1792
1793out:
1794	/*
1795	 * We're done making metadata updates for this inode, so we can release
1796	 * the attached dquots.
1797	 */
1798	xfs_qm_dqdetach(ip);
1799	return error;
1800}
1801
1802/*
1803 * In-Core Unlinked List Lookups
1804 * =============================
1805 *
1806 * Every inode is supposed to be reachable from some other piece of metadata
1807 * with the exception of the root directory.  Inodes with a connection to a
1808 * file descriptor but not linked from anywhere in the on-disk directory tree
1809 * are collectively known as unlinked inodes, though the filesystem itself
1810 * maintains links to these inodes so that on-disk metadata are consistent.
1811 *
1812 * XFS implements a per-AG on-disk hash table of unlinked inodes.  The AGI
1813 * header contains a number of buckets that point to an inode, and each inode
1814 * record has a pointer to the next inode in the hash chain.  This
1815 * singly-linked list causes scaling problems in the iunlink remove function
1816 * because we must walk that list to find the inode that points to the inode
1817 * being removed from the unlinked hash bucket list.
1818 *
1819 * Hence we keep an in-memory double linked list to link each inode on an
1820 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1821 * based lists would require having 64 list heads in the perag, one for each
1822 * list. This is expensive in terms of memory (think millions of AGs) and cache
1823 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1824 * must be referenced at the VFS level to keep them on the list and hence we
1825 * have an existence guarantee for inodes on the unlinked list.
1826 *
1827 * Given we have an existence guarantee, we can use lockless inode cache lookups
1828 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1829 * for the double linked unlinked list, and we don't need any extra locking to
1830 * keep the list safe as all manipulations are done under the AGI buffer lock.
1831 * Keeping the list up to date does not require memory allocation, just finding
1832 * the XFS inode and updating the next/prev unlinked list aginos.
1833 */
1834
1835/*
1836 * Find an inode on the unlinked list. This does not take references to the
1837 * inode as we have existence guarantees by holding the AGI buffer lock and that
1838 * only unlinked, referenced inodes can be on the unlinked inode list.  If we
1839 * don't find the inode in cache, then let the caller handle the situation.
1840 */
1841static struct xfs_inode *
1842xfs_iunlink_lookup(
1843	struct xfs_perag	*pag,
1844	xfs_agino_t		agino)
1845{
1846	struct xfs_inode	*ip;
1847
1848	rcu_read_lock();
1849	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
1850	if (!ip) {
1851		/* Caller can handle inode not being in memory. */
1852		rcu_read_unlock();
1853		return NULL;
1854	}
1855
1856	/*
1857	 * Inode in RCU freeing limbo should not happen.  Warn about this and
1858	 * let the caller handle the failure.
1859	 */
1860	if (WARN_ON_ONCE(!ip->i_ino)) {
1861		rcu_read_unlock();
1862		return NULL;
1863	}
1864	ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1865	rcu_read_unlock();
1866	return ip;
1867}
1868
1869/*
1870 * Update the prev pointer of the next agino.  Returns -ENOLINK if the inode
1871 * is not in cache.
1872 */
1873static int
1874xfs_iunlink_update_backref(
1875	struct xfs_perag	*pag,
1876	xfs_agino_t		prev_agino,
1877	xfs_agino_t		next_agino)
1878{
1879	struct xfs_inode	*ip;
1880
1881	/* No update necessary if we are at the end of the list. */
1882	if (next_agino == NULLAGINO)
1883		return 0;
1884
1885	ip = xfs_iunlink_lookup(pag, next_agino);
1886	if (!ip)
1887		return -ENOLINK;
1888
1889	ip->i_prev_unlinked = prev_agino;
1890	return 0;
1891}
1892
1893/*
1894 * Point the AGI unlinked bucket at an inode and log the results.  The caller
1895 * is responsible for validating the old value.
1896 */
1897STATIC int
1898xfs_iunlink_update_bucket(
1899	struct xfs_trans	*tp,
1900	struct xfs_perag	*pag,
1901	struct xfs_buf		*agibp,
1902	unsigned int		bucket_index,
1903	xfs_agino_t		new_agino)
1904{
1905	struct xfs_agi		*agi = agibp->b_addr;
1906	xfs_agino_t		old_value;
1907	int			offset;
1908
1909	ASSERT(xfs_verify_agino_or_null(pag, new_agino));
1910
1911	old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1912	trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
1913			old_value, new_agino);
1914
1915	/*
1916	 * We should never find the head of the list already set to the value
1917	 * passed in because either we're adding or removing ourselves from the
1918	 * head of the list.
1919	 */
1920	if (old_value == new_agino) {
1921		xfs_buf_mark_corrupt(agibp);
1922		return -EFSCORRUPTED;
1923	}
1924
1925	agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1926	offset = offsetof(struct xfs_agi, agi_unlinked) +
1927			(sizeof(xfs_agino_t) * bucket_index);
1928	xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1929	return 0;
1930}
1931
1932/*
1933 * Load the inode @next_agino into the cache and set its prev_unlinked pointer
1934 * to @prev_agino.  Caller must hold the AGI to synchronize with other changes
1935 * to the unlinked list.
1936 */
1937STATIC int
1938xfs_iunlink_reload_next(
1939	struct xfs_trans	*tp,
1940	struct xfs_buf		*agibp,
1941	xfs_agino_t		prev_agino,
1942	xfs_agino_t		next_agino)
1943{
1944	struct xfs_perag	*pag = agibp->b_pag;
1945	struct xfs_mount	*mp = pag->pag_mount;
1946	struct xfs_inode	*next_ip = NULL;
1947	xfs_ino_t		ino;
1948	int			error;
1949
1950	ASSERT(next_agino != NULLAGINO);
1951
1952#ifdef DEBUG
1953	rcu_read_lock();
1954	next_ip = radix_tree_lookup(&pag->pag_ici_root, next_agino);
1955	ASSERT(next_ip == NULL);
1956	rcu_read_unlock();
1957#endif
1958
1959	xfs_info_ratelimited(mp,
1960 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating recovery.",
1961			next_agino, pag->pag_agno);
1962
1963	/*
1964	 * Use an untrusted lookup just to be cautious in case the AGI has been
1965	 * corrupted and now points at a free inode.  That shouldn't happen,
1966	 * but we'd rather shut down now since we're already running in a weird
1967	 * situation.
1968	 */
1969	ino = XFS_AGINO_TO_INO(mp, pag->pag_agno, next_agino);
1970	error = xfs_iget(mp, tp, ino, XFS_IGET_UNTRUSTED, 0, &next_ip);
1971	if (error)
1972		return error;
1973
1974	/* If this is not an unlinked inode, something is very wrong. */
1975	if (VFS_I(next_ip)->i_nlink != 0) {
1976		error = -EFSCORRUPTED;
1977		goto rele;
1978	}
1979
1980	next_ip->i_prev_unlinked = prev_agino;
1981	trace_xfs_iunlink_reload_next(next_ip);
1982rele:
1983	ASSERT(!(VFS_I(next_ip)->i_state & I_DONTCACHE));
1984	if (xfs_is_quotacheck_running(mp) && next_ip)
1985		xfs_iflags_set(next_ip, XFS_IQUOTAUNCHECKED);
1986	xfs_irele(next_ip);
1987	return error;
1988}
1989
1990static int
1991xfs_iunlink_insert_inode(
1992	struct xfs_trans	*tp,
1993	struct xfs_perag	*pag,
1994	struct xfs_buf		*agibp,
1995	struct xfs_inode	*ip)
1996{
1997	struct xfs_mount	*mp = tp->t_mountp;
1998	struct xfs_agi		*agi = agibp->b_addr;
1999	xfs_agino_t		next_agino;
2000	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2001	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2002	int			error;
2003
2004	/*
2005	 * Get the index into the agi hash table for the list this inode will
2006	 * go on.  Make sure the pointer isn't garbage and that this inode
2007	 * isn't already on the list.
2008	 */
2009	next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2010	if (next_agino == agino ||
2011	    !xfs_verify_agino_or_null(pag, next_agino)) {
2012		xfs_buf_mark_corrupt(agibp);
2013		return -EFSCORRUPTED;
2014	}
2015
2016	/*
2017	 * Update the prev pointer in the next inode to point back to this
2018	 * inode.
2019	 */
2020	error = xfs_iunlink_update_backref(pag, agino, next_agino);
2021	if (error == -ENOLINK)
2022		error = xfs_iunlink_reload_next(tp, agibp, agino, next_agino);
2023	if (error)
2024		return error;
2025
2026	if (next_agino != NULLAGINO) {
2027		/*
2028		 * There is already another inode in the bucket, so point this
2029		 * inode to the current head of the list.
2030		 */
2031		error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
2032		if (error)
2033			return error;
2034		ip->i_next_unlinked = next_agino;
2035	}
2036
2037	/* Point the head of the list to point to this inode. */
2038	ip->i_prev_unlinked = NULLAGINO;
2039	return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2040}
2041
2042/*
2043 * This is called when the inode's link count has gone to 0 or we are creating
2044 * a tmpfile via O_TMPFILE.  The inode @ip must have nlink == 0.
2045 *
2046 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
2047 * list when the inode is freed.
2048 */
2049STATIC int
2050xfs_iunlink(
2051	struct xfs_trans	*tp,
2052	struct xfs_inode	*ip)
2053{
2054	struct xfs_mount	*mp = tp->t_mountp;
2055	struct xfs_perag	*pag;
2056	struct xfs_buf		*agibp;
2057	int			error;
2058
2059	ASSERT(VFS_I(ip)->i_nlink == 0);
2060	ASSERT(VFS_I(ip)->i_mode != 0);
2061	trace_xfs_iunlink(ip);
2062
2063	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2064
2065	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2066	error = xfs_read_agi(pag, tp, &agibp);
2067	if (error)
2068		goto out;
2069
2070	error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
2071out:
2072	xfs_perag_put(pag);
2073	return error;
2074}
2075
2076static int
2077xfs_iunlink_remove_inode(
2078	struct xfs_trans	*tp,
2079	struct xfs_perag	*pag,
2080	struct xfs_buf		*agibp,
2081	struct xfs_inode	*ip)
2082{
2083	struct xfs_mount	*mp = tp->t_mountp;
2084	struct xfs_agi		*agi = agibp->b_addr;
2085	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2086	xfs_agino_t		head_agino;
2087	short			bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2088	int			error;
2089
2090	trace_xfs_iunlink_remove(ip);
2091
2092	/*
2093	 * Get the index into the agi hash table for the list this inode will
2094	 * go on.  Make sure the head pointer isn't garbage.
2095	 */
2096	head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2097	if (!xfs_verify_agino(pag, head_agino)) {
2098		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2099				agi, sizeof(*agi));
2100		return -EFSCORRUPTED;
2101	}
2102
2103	/*
2104	 * Set our inode's next_unlinked pointer to NULL and then return
2105	 * the old pointer value so that we can update whatever was previous
2106	 * to us in the list to point to whatever was next in the list.
2107	 */
2108	error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
2109	if (error)
2110		return error;
2111
2112	/*
2113	 * Update the prev pointer in the next inode to point back to previous
2114	 * inode in the chain.
2115	 */
2116	error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2117			ip->i_next_unlinked);
2118	if (error == -ENOLINK)
2119		error = xfs_iunlink_reload_next(tp, agibp, ip->i_prev_unlinked,
2120				ip->i_next_unlinked);
2121	if (error)
2122		return error;
2123
2124	if (head_agino != agino) {
2125		struct xfs_inode	*prev_ip;
2126
2127		prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2128		if (!prev_ip)
2129			return -EFSCORRUPTED;
2130
2131		error = xfs_iunlink_log_inode(tp, prev_ip, pag,
2132				ip->i_next_unlinked);
2133		prev_ip->i_next_unlinked = ip->i_next_unlinked;
2134	} else {
2135		/* Point the head of the list to the next unlinked inode. */
2136		error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2137				ip->i_next_unlinked);
2138	}
2139
2140	ip->i_next_unlinked = NULLAGINO;
2141	ip->i_prev_unlinked = 0;
2142	return error;
2143}
2144
2145/*
2146 * Pull the on-disk inode from the AGI unlinked list.
2147 */
2148STATIC int
2149xfs_iunlink_remove(
2150	struct xfs_trans	*tp,
2151	struct xfs_perag	*pag,
2152	struct xfs_inode	*ip)
2153{
2154	struct xfs_buf		*agibp;
2155	int			error;
2156
2157	trace_xfs_iunlink_remove(ip);
2158
2159	/* Get the agi buffer first.  It ensures lock ordering on the list. */
2160	error = xfs_read_agi(pag, tp, &agibp);
2161	if (error)
2162		return error;
2163
2164	return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
2165}
2166
2167/*
2168 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2169 * mark it stale. We should only find clean inodes in this lookup that aren't
2170 * already stale.
2171 */
2172static void
2173xfs_ifree_mark_inode_stale(
2174	struct xfs_perag	*pag,
2175	struct xfs_inode	*free_ip,
2176	xfs_ino_t		inum)
2177{
2178	struct xfs_mount	*mp = pag->pag_mount;
2179	struct xfs_inode_log_item *iip;
2180	struct xfs_inode	*ip;
2181
2182retry:
2183	rcu_read_lock();
2184	ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2185
2186	/* Inode not in memory, nothing to do */
2187	if (!ip) {
2188		rcu_read_unlock();
2189		return;
2190	}
2191
2192	/*
2193	 * because this is an RCU protected lookup, we could find a recently
2194	 * freed or even reallocated inode during the lookup. We need to check
2195	 * under the i_flags_lock for a valid inode here. Skip it if it is not
2196	 * valid, the wrong inode or stale.
2197	 */
2198	spin_lock(&ip->i_flags_lock);
2199	if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2200		goto out_iflags_unlock;
2201
2202	/*
2203	 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2204	 * other inodes that we did not find in the list attached to the buffer
2205	 * and are not already marked stale. If we can't lock it, back off and
2206	 * retry.
2207	 */
2208	if (ip != free_ip) {
2209		if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2210			spin_unlock(&ip->i_flags_lock);
2211			rcu_read_unlock();
2212			delay(1);
2213			goto retry;
2214		}
2215	}
2216	ip->i_flags |= XFS_ISTALE;
2217
2218	/*
2219	 * If the inode is flushing, it is already attached to the buffer.  All
2220	 * we needed to do here is mark the inode stale so buffer IO completion
2221	 * will remove it from the AIL.
2222	 */
2223	iip = ip->i_itemp;
2224	if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
2225		ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2226		ASSERT(iip->ili_last_fields);
2227		goto out_iunlock;
2228	}
2229
2230	/*
2231	 * Inodes not attached to the buffer can be released immediately.
2232	 * Everything else has to go through xfs_iflush_abort() on journal
2233	 * commit as the flock synchronises removal of the inode from the
2234	 * cluster buffer against inode reclaim.
2235	 */
2236	if (!iip || list_empty(&iip->ili_item.li_bio_list))
2237		goto out_iunlock;
2238
2239	__xfs_iflags_set(ip, XFS_IFLUSHING);
2240	spin_unlock(&ip->i_flags_lock);
2241	rcu_read_unlock();
2242
2243	/* we have a dirty inode in memory that has not yet been flushed. */
2244	spin_lock(&iip->ili_lock);
2245	iip->ili_last_fields = iip->ili_fields;
2246	iip->ili_fields = 0;
2247	iip->ili_fsync_fields = 0;
2248	spin_unlock(&iip->ili_lock);
2249	ASSERT(iip->ili_last_fields);
2250
2251	if (ip != free_ip)
2252		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2253	return;
2254
2255out_iunlock:
2256	if (ip != free_ip)
2257		xfs_iunlock(ip, XFS_ILOCK_EXCL);
2258out_iflags_unlock:
2259	spin_unlock(&ip->i_flags_lock);
2260	rcu_read_unlock();
2261}
2262
2263/*
2264 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2265 * inodes that are in memory - they all must be marked stale and attached to
2266 * the cluster buffer.
2267 */
2268static int
2269xfs_ifree_cluster(
2270	struct xfs_trans	*tp,
2271	struct xfs_perag	*pag,
2272	struct xfs_inode	*free_ip,
2273	struct xfs_icluster	*xic)
2274{
2275	struct xfs_mount	*mp = free_ip->i_mount;
2276	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
2277	struct xfs_buf		*bp;
2278	xfs_daddr_t		blkno;
2279	xfs_ino_t		inum = xic->first_ino;
2280	int			nbufs;
2281	int			i, j;
2282	int			ioffset;
2283	int			error;
2284
2285	nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
2286
2287	for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
2288		/*
2289		 * The allocation bitmap tells us which inodes of the chunk were
2290		 * physically allocated. Skip the cluster if an inode falls into
2291		 * a sparse region.
2292		 */
2293		ioffset = inum - xic->first_ino;
2294		if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2295			ASSERT(ioffset % igeo->inodes_per_cluster == 0);
2296			continue;
2297		}
2298
2299		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2300					 XFS_INO_TO_AGBNO(mp, inum));
2301
2302		/*
2303		 * We obtain and lock the backing buffer first in the process
2304		 * here to ensure dirty inodes attached to the buffer remain in
2305		 * the flushing state while we mark them stale.
2306		 *
2307		 * If we scan the in-memory inodes first, then buffer IO can
2308		 * complete before we get a lock on it, and hence we may fail
2309		 * to mark all the active inodes on the buffer stale.
2310		 */
2311		error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2312				mp->m_bsize * igeo->blocks_per_cluster,
2313				XBF_UNMAPPED, &bp);
2314		if (error)
2315			return error;
2316
2317		/*
2318		 * This buffer may not have been correctly initialised as we
2319		 * didn't read it from disk. That's not important because we are
2320		 * only using to mark the buffer as stale in the log, and to
2321		 * attach stale cached inodes on it. That means it will never be
2322		 * dispatched for IO. If it is, we want to know about it, and we
2323		 * want it to fail. We can acheive this by adding a write
2324		 * verifier to the buffer.
2325		 */
2326		bp->b_ops = &xfs_inode_buf_ops;
2327
2328		/*
2329		 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2330		 * too. This requires lookups, and will skip inodes that we've
2331		 * already marked XFS_ISTALE.
2332		 */
2333		for (i = 0; i < igeo->inodes_per_cluster; i++)
2334			xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
2335
2336		xfs_trans_stale_inode_buf(tp, bp);
2337		xfs_trans_binval(tp, bp);
2338	}
2339	return 0;
2340}
2341
2342/*
2343 * This is called to return an inode to the inode free list.  The inode should
2344 * already be truncated to 0 length and have no pages associated with it.  This
2345 * routine also assumes that the inode is already a part of the transaction.
2346 *
2347 * The on-disk copy of the inode will have been added to the list of unlinked
2348 * inodes in the AGI. We need to remove the inode from that list atomically with
2349 * respect to freeing it here.
2350 */
2351int
2352xfs_ifree(
2353	struct xfs_trans	*tp,
2354	struct xfs_inode	*ip)
2355{
2356	struct xfs_mount	*mp = ip->i_mount;
2357	struct xfs_perag	*pag;
2358	struct xfs_icluster	xic = { 0 };
2359	struct xfs_inode_log_item *iip = ip->i_itemp;
2360	int			error;
2361
2362	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2363	ASSERT(VFS_I(ip)->i_nlink == 0);
2364	ASSERT(ip->i_df.if_nextents == 0);
2365	ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2366	ASSERT(ip->i_nblocks == 0);
2367
2368	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2369
2370	/*
2371	 * Free the inode first so that we guarantee that the AGI lock is going
2372	 * to be taken before we remove the inode from the unlinked list. This
2373	 * makes the AGI lock -> unlinked list modification order the same as
2374	 * used in O_TMPFILE creation.
2375	 */
2376	error = xfs_difree(tp, pag, ip->i_ino, &xic);
2377	if (error)
2378		goto out;
2379
2380	error = xfs_iunlink_remove(tp, pag, ip);
2381	if (error)
2382		goto out;
2383
2384	/*
2385	 * Free any local-format data sitting around before we reset the
2386	 * data fork to extents format.  Note that the attr fork data has
2387	 * already been freed by xfs_attr_inactive.
2388	 */
2389	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
2390		kmem_free(ip->i_df.if_u1.if_data);
2391		ip->i_df.if_u1.if_data = NULL;
2392		ip->i_df.if_bytes = 0;
2393	}
2394
2395	VFS_I(ip)->i_mode = 0;		/* mark incore inode as free */
2396	ip->i_diflags = 0;
2397	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
2398	ip->i_forkoff = 0;		/* mark the attr fork not in use */
2399	ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
2400	if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2401		xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
2402
2403	/* Don't attempt to replay owner changes for a deleted inode */
2404	spin_lock(&iip->ili_lock);
2405	iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2406	spin_unlock(&iip->ili_lock);
2407
2408	/*
2409	 * Bump the generation count so no one will be confused
2410	 * by reincarnations of this inode.
2411	 */
2412	VFS_I(ip)->i_generation++;
2413	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2414
2415	if (xic.deleted)
2416		error = xfs_ifree_cluster(tp, pag, ip, &xic);
2417out:
2418	xfs_perag_put(pag);
2419	return error;
2420}
2421
2422/*
2423 * This is called to unpin an inode.  The caller must have the inode locked
2424 * in at least shared mode so that the buffer cannot be subsequently pinned
2425 * once someone is waiting for it to be unpinned.
2426 */
2427static void
2428xfs_iunpin(
2429	struct xfs_inode	*ip)
2430{
2431	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2432
2433	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2434
2435	/* Give the log a push to start the unpinning I/O */
2436	xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
2437
2438}
2439
2440static void
2441__xfs_iunpin_wait(
2442	struct xfs_inode	*ip)
2443{
2444	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2445	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2446
2447	xfs_iunpin(ip);
2448
2449	do {
2450		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2451		if (xfs_ipincount(ip))
2452			io_schedule();
2453	} while (xfs_ipincount(ip));
2454	finish_wait(wq, &wait.wq_entry);
2455}
2456
2457void
2458xfs_iunpin_wait(
2459	struct xfs_inode	*ip)
2460{
2461	if (xfs_ipincount(ip))
2462		__xfs_iunpin_wait(ip);
2463}
2464
2465/*
2466 * Removing an inode from the namespace involves removing the directory entry
2467 * and dropping the link count on the inode. Removing the directory entry can
2468 * result in locking an AGF (directory blocks were freed) and removing a link
2469 * count can result in placing the inode on an unlinked list which results in
2470 * locking an AGI.
2471 *
2472 * The big problem here is that we have an ordering constraint on AGF and AGI
2473 * locking - inode allocation locks the AGI, then can allocate a new extent for
2474 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2475 * removes the inode from the unlinked list, requiring that we lock the AGI
2476 * first, and then freeing the inode can result in an inode chunk being freed
2477 * and hence freeing disk space requiring that we lock an AGF.
2478 *
2479 * Hence the ordering that is imposed by other parts of the code is AGI before
2480 * AGF. This means we cannot remove the directory entry before we drop the inode
2481 * reference count and put it on the unlinked list as this results in a lock
2482 * order of AGF then AGI, and this can deadlock against inode allocation and
2483 * freeing. Therefore we must drop the link counts before we remove the
2484 * directory entry.
2485 *
2486 * This is still safe from a transactional point of view - it is not until we
2487 * get to xfs_defer_finish() that we have the possibility of multiple
2488 * transactions in this operation. Hence as long as we remove the directory
2489 * entry and drop the link count in the first transaction of the remove
2490 * operation, there are no transactional constraints on the ordering here.
2491 */
2492int
2493xfs_remove(
2494	xfs_inode_t             *dp,
2495	struct xfs_name		*name,
2496	xfs_inode_t		*ip)
2497{
2498	xfs_mount_t		*mp = dp->i_mount;
2499	xfs_trans_t             *tp = NULL;
2500	int			is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2501	int			dontcare;
2502	int                     error = 0;
2503	uint			resblks;
2504
2505	trace_xfs_remove(dp, name);
2506
2507	if (xfs_is_shutdown(mp))
2508		return -EIO;
2509
2510	error = xfs_qm_dqattach(dp);
2511	if (error)
2512		goto std_return;
2513
2514	error = xfs_qm_dqattach(ip);
2515	if (error)
2516		goto std_return;
2517
2518	/*
2519	 * We try to get the real space reservation first, allowing for
2520	 * directory btree deletion(s) implying possible bmap insert(s).  If we
2521	 * can't get the space reservation then we use 0 instead, and avoid the
2522	 * bmap btree insert(s) in the directory code by, if the bmap insert
2523	 * tries to happen, instead trimming the LAST block from the directory.
2524	 *
2525	 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2526	 * the directory code can handle a reservationless update and we don't
2527	 * want to prevent a user from trying to free space by deleting things.
2528	 */
2529	resblks = XFS_REMOVE_SPACE_RES(mp);
2530	error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2531			&tp, &dontcare);
2532	if (error) {
2533		ASSERT(error != -ENOSPC);
2534		goto std_return;
2535	}
2536
2537	/*
2538	 * If we're removing a directory perform some additional validation.
2539	 */
2540	if (is_dir) {
2541		ASSERT(VFS_I(ip)->i_nlink >= 2);
2542		if (VFS_I(ip)->i_nlink != 2) {
2543			error = -ENOTEMPTY;
2544			goto out_trans_cancel;
2545		}
2546		if (!xfs_dir_isempty(ip)) {
2547			error = -ENOTEMPTY;
2548			goto out_trans_cancel;
2549		}
2550
2551		/* Drop the link from ip's "..".  */
2552		error = xfs_droplink(tp, dp);
2553		if (error)
2554			goto out_trans_cancel;
2555
2556		/* Drop the "." link from ip to self.  */
2557		error = xfs_droplink(tp, ip);
2558		if (error)
2559			goto out_trans_cancel;
2560
2561		/*
2562		 * Point the unlinked child directory's ".." entry to the root
2563		 * directory to eliminate back-references to inodes that may
2564		 * get freed before the child directory is closed.  If the fs
2565		 * gets shrunk, this can lead to dirent inode validation errors.
2566		 */
2567		if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2568			error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2569					tp->t_mountp->m_sb.sb_rootino, 0);
2570			if (error)
2571				goto out_trans_cancel;
2572		}
2573	} else {
2574		/*
2575		 * When removing a non-directory we need to log the parent
2576		 * inode here.  For a directory this is done implicitly
2577		 * by the xfs_droplink call for the ".." entry.
2578		 */
2579		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2580	}
2581	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2582
2583	/* Drop the link from dp to ip. */
2584	error = xfs_droplink(tp, ip);
2585	if (error)
2586		goto out_trans_cancel;
2587
2588	error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2589	if (error) {
2590		ASSERT(error != -ENOENT);
2591		goto out_trans_cancel;
2592	}
2593
2594	/*
2595	 * If this is a synchronous mount, make sure that the
2596	 * remove transaction goes to disk before returning to
2597	 * the user.
2598	 */
2599	if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
2600		xfs_trans_set_sync(tp);
2601
2602	error = xfs_trans_commit(tp);
2603	if (error)
2604		goto std_return;
2605
2606	if (is_dir && xfs_inode_is_filestream(ip))
2607		xfs_filestream_deassociate(ip);
2608
2609	return 0;
2610
2611 out_trans_cancel:
2612	xfs_trans_cancel(tp);
2613 std_return:
2614	return error;
2615}
2616
2617/*
2618 * Enter all inodes for a rename transaction into a sorted array.
2619 */
2620#define __XFS_SORT_INODES	5
2621STATIC void
2622xfs_sort_for_rename(
2623	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2624	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2625	struct xfs_inode	*ip1,	/* in: inode of old entry */
2626	struct xfs_inode	*ip2,	/* in: inode of new entry */
2627	struct xfs_inode	*wip,	/* in: whiteout inode */
2628	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2629	int			*num_inodes)  /* in/out: inodes in array */
2630{
2631	int			i, j;
2632
2633	ASSERT(*num_inodes == __XFS_SORT_INODES);
2634	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2635
2636	/*
2637	 * i_tab contains a list of pointers to inodes.  We initialize
2638	 * the table here & we'll sort it.  We will then use it to
2639	 * order the acquisition of the inode locks.
2640	 *
2641	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2642	 */
2643	i = 0;
2644	i_tab[i++] = dp1;
2645	i_tab[i++] = dp2;
2646	i_tab[i++] = ip1;
2647	if (ip2)
2648		i_tab[i++] = ip2;
2649	if (wip)
2650		i_tab[i++] = wip;
2651	*num_inodes = i;
2652
2653	/*
2654	 * Sort the elements via bubble sort.  (Remember, there are at
2655	 * most 5 elements to sort, so this is adequate.)
2656	 */
2657	for (i = 0; i < *num_inodes; i++) {
2658		for (j = 1; j < *num_inodes; j++) {
2659			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2660				struct xfs_inode *temp = i_tab[j];
2661				i_tab[j] = i_tab[j-1];
2662				i_tab[j-1] = temp;
2663			}
2664		}
2665	}
2666}
2667
2668static int
2669xfs_finish_rename(
2670	struct xfs_trans	*tp)
2671{
2672	/*
2673	 * If this is a synchronous mount, make sure that the rename transaction
2674	 * goes to disk before returning to the user.
2675	 */
2676	if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
2677		xfs_trans_set_sync(tp);
2678
2679	return xfs_trans_commit(tp);
2680}
2681
2682/*
2683 * xfs_cross_rename()
2684 *
2685 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
2686 */
2687STATIC int
2688xfs_cross_rename(
2689	struct xfs_trans	*tp,
2690	struct xfs_inode	*dp1,
2691	struct xfs_name		*name1,
2692	struct xfs_inode	*ip1,
2693	struct xfs_inode	*dp2,
2694	struct xfs_name		*name2,
2695	struct xfs_inode	*ip2,
2696	int			spaceres)
2697{
2698	int		error = 0;
2699	int		ip1_flags = 0;
2700	int		ip2_flags = 0;
2701	int		dp2_flags = 0;
2702
2703	/* Swap inode number for dirent in first parent */
2704	error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2705	if (error)
2706		goto out_trans_abort;
2707
2708	/* Swap inode number for dirent in second parent */
2709	error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2710	if (error)
2711		goto out_trans_abort;
2712
2713	/*
2714	 * If we're renaming one or more directories across different parents,
2715	 * update the respective ".." entries (and link counts) to match the new
2716	 * parents.
2717	 */
2718	if (dp1 != dp2) {
2719		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2720
2721		if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2722			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2723						dp1->i_ino, spaceres);
2724			if (error)
2725				goto out_trans_abort;
2726
2727			/* transfer ip2 ".." reference to dp1 */
2728			if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2729				error = xfs_droplink(tp, dp2);
2730				if (error)
2731					goto out_trans_abort;
2732				xfs_bumplink(tp, dp1);
2733			}
2734
2735			/*
2736			 * Although ip1 isn't changed here, userspace needs
2737			 * to be warned about the change, so that applications
2738			 * relying on it (like backup ones), will properly
2739			 * notify the change
2740			 */
2741			ip1_flags |= XFS_ICHGTIME_CHG;
2742			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2743		}
2744
2745		if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2746			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2747						dp2->i_ino, spaceres);
2748			if (error)
2749				goto out_trans_abort;
2750
2751			/* transfer ip1 ".." reference to dp2 */
2752			if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2753				error = xfs_droplink(tp, dp1);
2754				if (error)
2755					goto out_trans_abort;
2756				xfs_bumplink(tp, dp2);
2757			}
2758
2759			/*
2760			 * Although ip2 isn't changed here, userspace needs
2761			 * to be warned about the change, so that applications
2762			 * relying on it (like backup ones), will properly
2763			 * notify the change
2764			 */
2765			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2766			ip2_flags |= XFS_ICHGTIME_CHG;
2767		}
2768	}
2769
2770	if (ip1_flags) {
2771		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2772		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2773	}
2774	if (ip2_flags) {
2775		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2776		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2777	}
2778	if (dp2_flags) {
2779		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2780		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2781	}
2782	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2783	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2784	return xfs_finish_rename(tp);
2785
2786out_trans_abort:
2787	xfs_trans_cancel(tp);
2788	return error;
2789}
2790
2791/*
2792 * xfs_rename_alloc_whiteout()
2793 *
2794 * Return a referenced, unlinked, unlocked inode that can be used as a
2795 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2796 * crash between allocating the inode and linking it into the rename transaction
2797 * recovery will free the inode and we won't leak it.
2798 */
2799static int
2800xfs_rename_alloc_whiteout(
2801	struct mnt_idmap	*idmap,
2802	struct xfs_name		*src_name,
2803	struct xfs_inode	*dp,
2804	struct xfs_inode	**wip)
2805{
2806	struct xfs_inode	*tmpfile;
2807	struct qstr		name;
2808	int			error;
2809
2810	error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
2811				   &tmpfile);
2812	if (error)
2813		return error;
2814
2815	name.name = src_name->name;
2816	name.len = src_name->len;
2817	error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2818	if (error) {
2819		xfs_finish_inode_setup(tmpfile);
2820		xfs_irele(tmpfile);
2821		return error;
2822	}
2823
2824	/*
2825	 * Prepare the tmpfile inode as if it were created through the VFS.
2826	 * Complete the inode setup and flag it as linkable.  nlink is already
2827	 * zero, so we can skip the drop_nlink.
2828	 */
2829	xfs_setup_iops(tmpfile);
2830	xfs_finish_inode_setup(tmpfile);
2831	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2832
2833	*wip = tmpfile;
2834	return 0;
2835}
2836
2837/*
2838 * xfs_rename
2839 */
2840int
2841xfs_rename(
2842	struct mnt_idmap	*idmap,
2843	struct xfs_inode	*src_dp,
2844	struct xfs_name		*src_name,
2845	struct xfs_inode	*src_ip,
2846	struct xfs_inode	*target_dp,
2847	struct xfs_name		*target_name,
2848	struct xfs_inode	*target_ip,
2849	unsigned int		flags)
2850{
2851	struct xfs_mount	*mp = src_dp->i_mount;
2852	struct xfs_trans	*tp;
2853	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2854	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2855	int			i;
2856	int			num_inodes = __XFS_SORT_INODES;
2857	bool			new_parent = (src_dp != target_dp);
2858	bool			src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2859	int			spaceres;
2860	bool			retried = false;
2861	int			error, nospace_error = 0;
2862
2863	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2864
2865	if ((flags & RENAME_EXCHANGE) && !target_ip)
2866		return -EINVAL;
2867
2868	/*
2869	 * If we are doing a whiteout operation, allocate the whiteout inode
2870	 * we will be placing at the target and ensure the type is set
2871	 * appropriately.
2872	 */
2873	if (flags & RENAME_WHITEOUT) {
2874		error = xfs_rename_alloc_whiteout(idmap, src_name,
2875						  target_dp, &wip);
2876		if (error)
2877			return error;
2878
2879		/* setup target dirent info as whiteout */
2880		src_name->type = XFS_DIR3_FT_CHRDEV;
2881	}
2882
2883	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2884				inodes, &num_inodes);
2885
2886retry:
2887	nospace_error = 0;
2888	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2889	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2890	if (error == -ENOSPC) {
2891		nospace_error = error;
2892		spaceres = 0;
2893		error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2894				&tp);
2895	}
2896	if (error)
2897		goto out_release_wip;
2898
2899	/*
2900	 * Attach the dquots to the inodes
2901	 */
2902	error = xfs_qm_vop_rename_dqattach(inodes);
2903	if (error)
2904		goto out_trans_cancel;
2905
2906	/*
2907	 * Lock all the participating inodes. Depending upon whether
2908	 * the target_name exists in the target directory, and
2909	 * whether the target directory is the same as the source
2910	 * directory, we can lock from 2 to 5 inodes.
2911	 */
2912	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2913
2914	/*
2915	 * Join all the inodes to the transaction. From this point on,
2916	 * we can rely on either trans_commit or trans_cancel to unlock
2917	 * them.
2918	 */
2919	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2920	if (new_parent)
2921		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2922	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2923	if (target_ip)
2924		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2925	if (wip)
2926		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2927
2928	/*
2929	 * If we are using project inheritance, we only allow renames
2930	 * into our tree when the project IDs are the same; else the
2931	 * tree quota mechanism would be circumvented.
2932	 */
2933	if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
2934		     target_dp->i_projid != src_ip->i_projid)) {
2935		error = -EXDEV;
2936		goto out_trans_cancel;
2937	}
2938
2939	/* RENAME_EXCHANGE is unique from here on. */
2940	if (flags & RENAME_EXCHANGE)
2941		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2942					target_dp, target_name, target_ip,
2943					spaceres);
2944
2945	/*
2946	 * Try to reserve quota to handle an expansion of the target directory.
2947	 * We'll allow the rename to continue in reservationless mode if we hit
2948	 * a space usage constraint.  If we trigger reservationless mode, save
2949	 * the errno if there isn't any free space in the target directory.
2950	 */
2951	if (spaceres != 0) {
2952		error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2953				0, false);
2954		if (error == -EDQUOT || error == -ENOSPC) {
2955			if (!retried) {
2956				xfs_trans_cancel(tp);
2957				xfs_blockgc_free_quota(target_dp, 0);
2958				retried = true;
2959				goto retry;
2960			}
2961
2962			nospace_error = error;
2963			spaceres = 0;
2964			error = 0;
2965		}
2966		if (error)
2967			goto out_trans_cancel;
2968	}
2969
2970	/*
2971	 * Check for expected errors before we dirty the transaction
2972	 * so we can return an error without a transaction abort.
2973	 */
2974	if (target_ip == NULL) {
2975		/*
2976		 * If there's no space reservation, check the entry will
2977		 * fit before actually inserting it.
2978		 */
2979		if (!spaceres) {
2980			error = xfs_dir_canenter(tp, target_dp, target_name);
2981			if (error)
2982				goto out_trans_cancel;
2983		}
2984	} else {
2985		/*
2986		 * If target exists and it's a directory, check that whether
2987		 * it can be destroyed.
2988		 */
2989		if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2990		    (!xfs_dir_isempty(target_ip) ||
2991		     (VFS_I(target_ip)->i_nlink > 2))) {
2992			error = -EEXIST;
2993			goto out_trans_cancel;
2994		}
2995	}
2996
2997	/*
2998	 * Lock the AGI buffers we need to handle bumping the nlink of the
2999	 * whiteout inode off the unlinked list and to handle dropping the
3000	 * nlink of the target inode.  Per locking order rules, do this in
3001	 * increasing AG order and before directory block allocation tries to
3002	 * grab AGFs because we grab AGIs before AGFs.
3003	 *
3004	 * The (vfs) caller must ensure that if src is a directory then
3005	 * target_ip is either null or an empty directory.
3006	 */
3007	for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3008		if (inodes[i] == wip ||
3009		    (inodes[i] == target_ip &&
3010		     (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3011			struct xfs_perag	*pag;
3012			struct xfs_buf		*bp;
3013
3014			pag = xfs_perag_get(mp,
3015					XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
3016			error = xfs_read_agi(pag, tp, &bp);
3017			xfs_perag_put(pag);
3018			if (error)
3019				goto out_trans_cancel;
3020		}
3021	}
3022
3023	/*
3024	 * Directory entry creation below may acquire the AGF. Remove
3025	 * the whiteout from the unlinked list first to preserve correct
3026	 * AGI/AGF locking order. This dirties the transaction so failures
3027	 * after this point will abort and log recovery will clean up the
3028	 * mess.
3029	 *
3030	 * For whiteouts, we need to bump the link count on the whiteout
3031	 * inode. After this point, we have a real link, clear the tmpfile
3032	 * state flag from the inode so it doesn't accidentally get misused
3033	 * in future.
3034	 */
3035	if (wip) {
3036		struct xfs_perag	*pag;
3037
3038		ASSERT(VFS_I(wip)->i_nlink == 0);
3039
3040		pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3041		error = xfs_iunlink_remove(tp, pag, wip);
3042		xfs_perag_put(pag);
3043		if (error)
3044			goto out_trans_cancel;
3045
3046		xfs_bumplink(tp, wip);
3047		VFS_I(wip)->i_state &= ~I_LINKABLE;
3048	}
3049
3050	/*
3051	 * Set up the target.
3052	 */
3053	if (target_ip == NULL) {
3054		/*
3055		 * If target does not exist and the rename crosses
3056		 * directories, adjust the target directory link count
3057		 * to account for the ".." reference from the new entry.
3058		 */
3059		error = xfs_dir_createname(tp, target_dp, target_name,
3060					   src_ip->i_ino, spaceres);
3061		if (error)
3062			goto out_trans_cancel;
3063
3064		xfs_trans_ichgtime(tp, target_dp,
3065					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3066
3067		if (new_parent && src_is_directory) {
3068			xfs_bumplink(tp, target_dp);
3069		}
3070	} else { /* target_ip != NULL */
3071		/*
3072		 * Link the source inode under the target name.
3073		 * If the source inode is a directory and we are moving
3074		 * it across directories, its ".." entry will be
3075		 * inconsistent until we replace that down below.
3076		 *
3077		 * In case there is already an entry with the same
3078		 * name at the destination directory, remove it first.
3079		 */
3080		error = xfs_dir_replace(tp, target_dp, target_name,
3081					src_ip->i_ino, spaceres);
3082		if (error)
3083			goto out_trans_cancel;
3084
3085		xfs_trans_ichgtime(tp, target_dp,
3086					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3087
3088		/*
3089		 * Decrement the link count on the target since the target
3090		 * dir no longer points to it.
3091		 */
3092		error = xfs_droplink(tp, target_ip);
3093		if (error)
3094			goto out_trans_cancel;
3095
3096		if (src_is_directory) {
3097			/*
3098			 * Drop the link from the old "." entry.
3099			 */
3100			error = xfs_droplink(tp, target_ip);
3101			if (error)
3102				goto out_trans_cancel;
3103		}
3104	} /* target_ip != NULL */
3105
3106	/*
3107	 * Remove the source.
3108	 */
3109	if (new_parent && src_is_directory) {
3110		/*
3111		 * Rewrite the ".." entry to point to the new
3112		 * directory.
3113		 */
3114		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3115					target_dp->i_ino, spaceres);
3116		ASSERT(error != -EEXIST);
3117		if (error)
3118			goto out_trans_cancel;
3119	}
3120
3121	/*
3122	 * We always want to hit the ctime on the source inode.
3123	 *
3124	 * This isn't strictly required by the standards since the source
3125	 * inode isn't really being changed, but old unix file systems did
3126	 * it and some incremental backup programs won't work without it.
3127	 */
3128	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3129	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3130
3131	/*
3132	 * Adjust the link count on src_dp.  This is necessary when
3133	 * renaming a directory, either within one parent when
3134	 * the target existed, or across two parent directories.
3135	 */
3136	if (src_is_directory && (new_parent || target_ip != NULL)) {
3137
3138		/*
3139		 * Decrement link count on src_directory since the
3140		 * entry that's moved no longer points to it.
3141		 */
3142		error = xfs_droplink(tp, src_dp);
3143		if (error)
3144			goto out_trans_cancel;
3145	}
3146
3147	/*
3148	 * For whiteouts, we only need to update the source dirent with the
3149	 * inode number of the whiteout inode rather than removing it
3150	 * altogether.
3151	 */
3152	if (wip)
3153		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3154					spaceres);
3155	else
3156		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3157					   spaceres);
3158
3159	if (error)
3160		goto out_trans_cancel;
3161
3162	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3163	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3164	if (new_parent)
3165		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3166
3167	error = xfs_finish_rename(tp);
3168	if (wip)
3169		xfs_irele(wip);
3170	return error;
3171
3172out_trans_cancel:
3173	xfs_trans_cancel(tp);
3174out_release_wip:
3175	if (wip)
3176		xfs_irele(wip);
3177	if (error == -ENOSPC && nospace_error)
3178		error = nospace_error;
3179	return error;
3180}
3181
3182static int
3183xfs_iflush(
3184	struct xfs_inode	*ip,
3185	struct xfs_buf		*bp)
3186{
3187	struct xfs_inode_log_item *iip = ip->i_itemp;
3188	struct xfs_dinode	*dip;
3189	struct xfs_mount	*mp = ip->i_mount;
3190	int			error;
3191
3192	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3193	ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
3194	ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
3195	       ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3196	ASSERT(iip->ili_item.li_buf == bp);
3197
3198	dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3199
3200	/*
3201	 * We don't flush the inode if any of the following checks fail, but we
3202	 * do still update the log item and attach to the backing buffer as if
3203	 * the flush happened. This is a formality to facilitate predictable
3204	 * error handling as the caller will shutdown and fail the buffer.
3205	 */
3206	error = -EFSCORRUPTED;
3207	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3208			       mp, XFS_ERRTAG_IFLUSH_1)) {
3209		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3210			"%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
3211			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3212		goto flush_out;
3213	}
3214	if (S_ISREG(VFS_I(ip)->i_mode)) {
3215		if (XFS_TEST_ERROR(
3216		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3217		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
3218		    mp, XFS_ERRTAG_IFLUSH_3)) {
3219			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3220				"%s: Bad regular inode %llu, ptr "PTR_FMT,
3221				__func__, ip->i_ino, ip);
3222			goto flush_out;
3223		}
3224	} else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3225		if (XFS_TEST_ERROR(
3226		    ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3227		    ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3228		    ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
3229		    mp, XFS_ERRTAG_IFLUSH_4)) {
3230			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3231				"%s: Bad directory inode %llu, ptr "PTR_FMT,
3232				__func__, ip->i_ino, ip);
3233			goto flush_out;
3234		}
3235	}
3236	if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
3237				ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3238		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3239			"%s: detected corrupt incore inode %llu, "
3240			"total extents = %llu nblocks = %lld, ptr "PTR_FMT,
3241			__func__, ip->i_ino,
3242			ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
3243			ip->i_nblocks, ip);
3244		goto flush_out;
3245	}
3246	if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
3247				mp, XFS_ERRTAG_IFLUSH_6)) {
3248		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3249			"%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
3250			__func__, ip->i_ino, ip->i_forkoff, ip);
3251		goto flush_out;
3252	}
3253
3254	/*
3255	 * Inode item log recovery for v2 inodes are dependent on the flushiter
3256	 * count for correct sequencing.  We bump the flush iteration count so
3257	 * we can detect flushes which postdate a log record during recovery.
3258	 * This is redundant as we now log every change and hence this can't
3259	 * happen but we need to still do it to ensure backwards compatibility
3260	 * with old kernels that predate logging all inode changes.
3261	 */
3262	if (!xfs_has_v3inodes(mp))
3263		ip->i_flushiter++;
3264
3265	/*
3266	 * If there are inline format data / attr forks attached to this inode,
3267	 * make sure they are not corrupt.
3268	 */
3269	if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
3270	    xfs_ifork_verify_local_data(ip))
3271		goto flush_out;
3272	if (xfs_inode_has_attr_fork(ip) &&
3273	    ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
3274	    xfs_ifork_verify_local_attr(ip))
3275		goto flush_out;
3276
3277	/*
3278	 * Copy the dirty parts of the inode into the on-disk inode.  We always
3279	 * copy out the core of the inode, because if the inode is dirty at all
3280	 * the core must be.
3281	 */
3282	xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3283
3284	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3285	if (!xfs_has_v3inodes(mp)) {
3286		if (ip->i_flushiter == DI_MAX_FLUSH)
3287			ip->i_flushiter = 0;
3288	}
3289
3290	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3291	if (xfs_inode_has_attr_fork(ip))
3292		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3293
3294	/*
3295	 * We've recorded everything logged in the inode, so we'd like to clear
3296	 * the ili_fields bits so we don't log and flush things unnecessarily.
3297	 * However, we can't stop logging all this information until the data
3298	 * we've copied into the disk buffer is written to disk.  If we did we
3299	 * might overwrite the copy of the inode in the log with all the data
3300	 * after re-logging only part of it, and in the face of a crash we
3301	 * wouldn't have all the data we need to recover.
3302	 *
3303	 * What we do is move the bits to the ili_last_fields field.  When
3304	 * logging the inode, these bits are moved back to the ili_fields field.
3305	 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3306	 * we know that the information those bits represent is permanently on
3307	 * disk.  As long as the flush completes before the inode is logged
3308	 * again, then both ili_fields and ili_last_fields will be cleared.
3309	 */
3310	error = 0;
3311flush_out:
3312	spin_lock(&iip->ili_lock);
3313	iip->ili_last_fields = iip->ili_fields;
3314	iip->ili_fields = 0;
3315	iip->ili_fsync_fields = 0;
3316	spin_unlock(&iip->ili_lock);
3317
3318	/*
3319	 * Store the current LSN of the inode so that we can tell whether the
3320	 * item has moved in the AIL from xfs_buf_inode_iodone().
3321	 */
3322	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3323				&iip->ili_item.li_lsn);
3324
3325	/* generate the checksum. */
3326	xfs_dinode_calc_crc(mp, dip);
3327	return error;
3328}
3329
3330/*
3331 * Non-blocking flush of dirty inode metadata into the backing buffer.
3332 *
3333 * The caller must have a reference to the inode and hold the cluster buffer
3334 * locked. The function will walk across all the inodes on the cluster buffer it
3335 * can find and lock without blocking, and flush them to the cluster buffer.
3336 *
3337 * On successful flushing of at least one inode, the caller must write out the
3338 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3339 * the caller needs to release the buffer. On failure, the filesystem will be
3340 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3341 * will be returned.
3342 */
3343int
3344xfs_iflush_cluster(
3345	struct xfs_buf		*bp)
3346{
3347	struct xfs_mount	*mp = bp->b_mount;
3348	struct xfs_log_item	*lip, *n;
3349	struct xfs_inode	*ip;
3350	struct xfs_inode_log_item *iip;
3351	int			clcount = 0;
3352	int			error = 0;
3353
3354	/*
3355	 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3356	 * will remove itself from the list.
3357	 */
3358	list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3359		iip = (struct xfs_inode_log_item *)lip;
3360		ip = iip->ili_inode;
3361
3362		/*
3363		 * Quick and dirty check to avoid locks if possible.
3364		 */
3365		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
3366			continue;
3367		if (xfs_ipincount(ip))
3368			continue;
3369
3370		/*
3371		 * The inode is still attached to the buffer, which means it is
3372		 * dirty but reclaim might try to grab it. Check carefully for
3373		 * that, and grab the ilock while still holding the i_flags_lock
3374		 * to guarantee reclaim will not be able to reclaim this inode
3375		 * once we drop the i_flags_lock.
3376		 */
3377		spin_lock(&ip->i_flags_lock);
3378		ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
3379		if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
3380			spin_unlock(&ip->i_flags_lock);
3381			continue;
3382		}
3383
3384		/*
3385		 * ILOCK will pin the inode against reclaim and prevent
3386		 * concurrent transactions modifying the inode while we are
3387		 * flushing the inode. If we get the lock, set the flushing
3388		 * state before we drop the i_flags_lock.
3389		 */
3390		if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3391			spin_unlock(&ip->i_flags_lock);
3392			continue;
3393		}
3394		__xfs_iflags_set(ip, XFS_IFLUSHING);
3395		spin_unlock(&ip->i_flags_lock);
3396
3397		/*
3398		 * Abort flushing this inode if we are shut down because the
3399		 * inode may not currently be in the AIL. This can occur when
3400		 * log I/O failure unpins the inode without inserting into the
3401		 * AIL, leaving a dirty/unpinned inode attached to the buffer
3402		 * that otherwise looks like it should be flushed.
3403		 */
3404		if (xlog_is_shutdown(mp->m_log)) {
3405			xfs_iunpin_wait(ip);
3406			xfs_iflush_abort(ip);
3407			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3408			error = -EIO;
3409			continue;
3410		}
3411
3412		/* don't block waiting on a log force to unpin dirty inodes */
3413		if (xfs_ipincount(ip)) {
3414			xfs_iflags_clear(ip, XFS_IFLUSHING);
3415			xfs_iunlock(ip, XFS_ILOCK_SHARED);
3416			continue;
3417		}
3418
3419		if (!xfs_inode_clean(ip))
3420			error = xfs_iflush(ip, bp);
3421		else
3422			xfs_iflags_clear(ip, XFS_IFLUSHING);
3423		xfs_iunlock(ip, XFS_ILOCK_SHARED);
3424		if (error)
3425			break;
3426		clcount++;
3427	}
3428
3429	if (error) {
3430		/*
3431		 * Shutdown first so we kill the log before we release this
3432		 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3433		 * of the log, failing it before the _log_ is shut down can
3434		 * result in the log tail being moved forward in the journal
3435		 * on disk because log writes can still be taking place. Hence
3436		 * unpinning the tail will allow the ICREATE intent to be
3437		 * removed from the log an recovery will fail with uninitialised
3438		 * inode cluster buffers.
3439		 */
3440		xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3441		bp->b_flags |= XBF_ASYNC;
3442		xfs_buf_ioend_fail(bp);
3443		return error;
3444	}
3445
3446	if (!clcount)
3447		return -EAGAIN;
3448
3449	XFS_STATS_INC(mp, xs_icluster_flushcnt);
3450	XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3451	return 0;
3452
3453}
3454
3455/* Release an inode. */
3456void
3457xfs_irele(
3458	struct xfs_inode	*ip)
3459{
3460	trace_xfs_irele(ip, _RET_IP_);
3461	iput(VFS_I(ip));
3462}
3463
3464/*
3465 * Ensure all commited transactions touching the inode are written to the log.
3466 */
3467int
3468xfs_log_force_inode(
3469	struct xfs_inode	*ip)
3470{
3471	xfs_csn_t		seq = 0;
3472
3473	xfs_ilock(ip, XFS_ILOCK_SHARED);
3474	if (xfs_ipincount(ip))
3475		seq = ip->i_itemp->ili_commit_seq;
3476	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3477
3478	if (!seq)
3479		return 0;
3480	return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
3481}
3482
3483/*
3484 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3485 * abide vfs locking order (lowest pointer value goes first) and breaking the
3486 * layout leases before proceeding.  The loop is needed because we cannot call
3487 * the blocking break_layout() with the iolocks held, and therefore have to
3488 * back out both locks.
3489 */
3490static int
3491xfs_iolock_two_inodes_and_break_layout(
3492	struct inode		*src,
3493	struct inode		*dest)
3494{
3495	int			error;
3496
3497	if (src > dest)
3498		swap(src, dest);
3499
3500retry:
3501	/* Wait to break both inodes' layouts before we start locking. */
3502	error = break_layout(src, true);
3503	if (error)
3504		return error;
3505	if (src != dest) {
3506		error = break_layout(dest, true);
3507		if (error)
3508			return error;
3509	}
3510
3511	/* Lock one inode and make sure nobody got in and leased it. */
3512	inode_lock(src);
3513	error = break_layout(src, false);
3514	if (error) {
3515		inode_unlock(src);
3516		if (error == -EWOULDBLOCK)
3517			goto retry;
3518		return error;
3519	}
3520
3521	if (src == dest)
3522		return 0;
3523
3524	/* Lock the other inode and make sure nobody got in and leased it. */
3525	inode_lock_nested(dest, I_MUTEX_NONDIR2);
3526	error = break_layout(dest, false);
3527	if (error) {
3528		inode_unlock(src);
3529		inode_unlock(dest);
3530		if (error == -EWOULDBLOCK)
3531			goto retry;
3532		return error;
3533	}
3534
3535	return 0;
3536}
3537
3538static int
3539xfs_mmaplock_two_inodes_and_break_dax_layout(
3540	struct xfs_inode	*ip1,
3541	struct xfs_inode	*ip2)
3542{
3543	int			error;
3544	bool			retry;
3545	struct page		*page;
3546
3547	if (ip1->i_ino > ip2->i_ino)
3548		swap(ip1, ip2);
3549
3550again:
3551	retry = false;
3552	/* Lock the first inode */
3553	xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3554	error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3555	if (error || retry) {
3556		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3557		if (error == 0 && retry)
3558			goto again;
3559		return error;
3560	}
3561
3562	if (ip1 == ip2)
3563		return 0;
3564
3565	/* Nested lock the second inode */
3566	xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3567	/*
3568	 * We cannot use xfs_break_dax_layouts() directly here because it may
3569	 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3570	 * for this nested lock case.
3571	 */
3572	page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3573	if (page && page_ref_count(page) != 1) {
3574		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3575		xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3576		goto again;
3577	}
3578
3579	return 0;
3580}
3581
3582/*
3583 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3584 * mmap activity.
3585 */
3586int
3587xfs_ilock2_io_mmap(
3588	struct xfs_inode	*ip1,
3589	struct xfs_inode	*ip2)
3590{
3591	int			ret;
3592
3593	ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3594	if (ret)
3595		return ret;
3596
3597	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3598		ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3599		if (ret) {
3600			inode_unlock(VFS_I(ip2));
3601			if (ip1 != ip2)
3602				inode_unlock(VFS_I(ip1));
3603			return ret;
3604		}
3605	} else
3606		filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3607					    VFS_I(ip2)->i_mapping);
3608
3609	return 0;
3610}
3611
3612/* Unlock both inodes to allow IO and mmap activity. */
3613void
3614xfs_iunlock2_io_mmap(
3615	struct xfs_inode	*ip1,
3616	struct xfs_inode	*ip2)
3617{
3618	if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3619		xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3620		if (ip1 != ip2)
3621			xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3622	} else
3623		filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3624					      VFS_I(ip2)->i_mapping);
3625
3626	inode_unlock(VFS_I(ip2));
3627	if (ip1 != ip2)
3628		inode_unlock(VFS_I(ip1));
3629}
3630
3631/* Drop the MMAPLOCK and the IOLOCK after a remap completes. */
3632void
3633xfs_iunlock2_remapping(
3634	struct xfs_inode	*ip1,
3635	struct xfs_inode	*ip2)
3636{
3637	xfs_iflags_clear(ip1, XFS_IREMAPPING);
3638
3639	if (ip1 != ip2)
3640		xfs_iunlock(ip1, XFS_MMAPLOCK_SHARED);
3641	xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3642
3643	if (ip1 != ip2)
3644		inode_unlock_shared(VFS_I(ip1));
3645	inode_unlock(VFS_I(ip2));
3646}
3647
3648/*
3649 * Reload the incore inode list for this inode.  Caller should ensure that
3650 * the link count cannot change, either by taking ILOCK_SHARED or otherwise
3651 * preventing other threads from executing.
3652 */
3653int
3654xfs_inode_reload_unlinked_bucket(
3655	struct xfs_trans	*tp,
3656	struct xfs_inode	*ip)
3657{
3658	struct xfs_mount	*mp = tp->t_mountp;
3659	struct xfs_buf		*agibp;
3660	struct xfs_agi		*agi;
3661	struct xfs_perag	*pag;
3662	xfs_agnumber_t		agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
3663	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
3664	xfs_agino_t		prev_agino, next_agino;
3665	unsigned int		bucket;
3666	bool			foundit = false;
3667	int			error;
3668
3669	/* Grab the first inode in the list */
3670	pag = xfs_perag_get(mp, agno);
3671	error = xfs_ialloc_read_agi(pag, tp, &agibp);
3672	xfs_perag_put(pag);
3673	if (error)
3674		return error;
3675
3676	/*
3677	 * We've taken ILOCK_SHARED and the AGI buffer lock to stabilize the
3678	 * incore unlinked list pointers for this inode.  Check once more to
3679	 * see if we raced with anyone else to reload the unlinked list.
3680	 */
3681	if (!xfs_inode_unlinked_incomplete(ip)) {
3682		foundit = true;
3683		goto out_agibp;
3684	}
3685
3686	bucket = agino % XFS_AGI_UNLINKED_BUCKETS;
3687	agi = agibp->b_addr;
3688
3689	trace_xfs_inode_reload_unlinked_bucket(ip);
3690
3691	xfs_info_ratelimited(mp,
3692 "Found unrecovered unlinked inode 0x%x in AG 0x%x.  Initiating list recovery.",
3693			agino, agno);
3694
3695	prev_agino = NULLAGINO;
3696	next_agino = be32_to_cpu(agi->agi_unlinked[bucket]);
3697	while (next_agino != NULLAGINO) {
3698		struct xfs_inode	*next_ip = NULL;
3699
3700		/* Found this caller's inode, set its backlink. */
3701		if (next_agino == agino) {
3702			next_ip = ip;
3703			next_ip->i_prev_unlinked = prev_agino;
3704			foundit = true;
3705			goto next_inode;
3706		}
3707
3708		/* Try in-memory lookup first. */
3709		next_ip = xfs_iunlink_lookup(pag, next_agino);
3710		if (next_ip)
3711			goto next_inode;
3712
3713		/* Inode not in memory, try reloading it. */
3714		error = xfs_iunlink_reload_next(tp, agibp, prev_agino,
3715				next_agino);
3716		if (error)
3717			break;
3718
3719		/* Grab the reloaded inode. */
3720		next_ip = xfs_iunlink_lookup(pag, next_agino);
3721		if (!next_ip) {
3722			/* No incore inode at all?  We reloaded it... */
3723			ASSERT(next_ip != NULL);
3724			error = -EFSCORRUPTED;
3725			break;
3726		}
3727
3728next_inode:
3729		prev_agino = next_agino;
3730		next_agino = next_ip->i_next_unlinked;
3731	}
3732
3733out_agibp:
3734	xfs_trans_brelse(tp, agibp);
3735	/* Should have found this inode somewhere in the iunlinked bucket. */
3736	if (!error && !foundit)
3737		error = -EFSCORRUPTED;
3738	return error;
3739}
3740
3741/* Decide if this inode is missing its unlinked list and reload it. */
3742int
3743xfs_inode_reload_unlinked(
3744	struct xfs_inode	*ip)
3745{
3746	struct xfs_trans	*tp;
3747	int			error;
3748
3749	error = xfs_trans_alloc_empty(ip->i_mount, &tp);
3750	if (error)
3751		return error;
3752
3753	xfs_ilock(ip, XFS_ILOCK_SHARED);
3754	if (xfs_inode_unlinked_incomplete(ip))
3755		error = xfs_inode_reload_unlinked_bucket(tp, ip);
3756	xfs_iunlock(ip, XFS_ILOCK_SHARED);
3757	xfs_trans_cancel(tp);
3758
3759	return error;
3760}
3761