xref: /kernel/linux/linux-6.6/fs/xfs/xfs_icache.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_inode_item.h"
17#include "xfs_quota.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_bmap_util.h"
21#include "xfs_dquot_item.h"
22#include "xfs_dquot.h"
23#include "xfs_reflink.h"
24#include "xfs_ialloc.h"
25#include "xfs_ag.h"
26#include "xfs_log_priv.h"
27
28#include <linux/iversion.h>
29
30/* Radix tree tags for incore inode tree. */
31
32/* inode is to be reclaimed */
33#define XFS_ICI_RECLAIM_TAG	0
34/* Inode has speculative preallocations (posteof or cow) to clean. */
35#define XFS_ICI_BLOCKGC_TAG	1
36
37/*
38 * The goal for walking incore inodes.  These can correspond with incore inode
39 * radix tree tags when convenient.  Avoid existing XFS_IWALK namespace.
40 */
41enum xfs_icwalk_goal {
42	/* Goals directly associated with tagged inodes. */
43	XFS_ICWALK_BLOCKGC	= XFS_ICI_BLOCKGC_TAG,
44	XFS_ICWALK_RECLAIM	= XFS_ICI_RECLAIM_TAG,
45};
46
47static int xfs_icwalk(struct xfs_mount *mp,
48		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
49static int xfs_icwalk_ag(struct xfs_perag *pag,
50		enum xfs_icwalk_goal goal, struct xfs_icwalk *icw);
51
52/*
53 * Private inode cache walk flags for struct xfs_icwalk.  Must not
54 * coincide with XFS_ICWALK_FLAGS_VALID.
55 */
56
57/* Stop scanning after icw_scan_limit inodes. */
58#define XFS_ICWALK_FLAG_SCAN_LIMIT	(1U << 28)
59
60#define XFS_ICWALK_FLAG_RECLAIM_SICK	(1U << 27)
61#define XFS_ICWALK_FLAG_UNION		(1U << 26) /* union filter algorithm */
62
63#define XFS_ICWALK_PRIVATE_FLAGS	(XFS_ICWALK_FLAG_SCAN_LIMIT | \
64					 XFS_ICWALK_FLAG_RECLAIM_SICK | \
65					 XFS_ICWALK_FLAG_UNION)
66
67/*
68 * Allocate and initialise an xfs_inode.
69 */
70struct xfs_inode *
71xfs_inode_alloc(
72	struct xfs_mount	*mp,
73	xfs_ino_t		ino)
74{
75	struct xfs_inode	*ip;
76
77	/*
78	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
79	 * and return NULL here on ENOMEM.
80	 */
81	ip = alloc_inode_sb(mp->m_super, xfs_inode_cache, GFP_KERNEL | __GFP_NOFAIL);
82
83	if (inode_init_always(mp->m_super, VFS_I(ip))) {
84		kmem_cache_free(xfs_inode_cache, ip);
85		return NULL;
86	}
87
88	/* VFS doesn't initialise i_mode or i_state! */
89	VFS_I(ip)->i_mode = 0;
90	VFS_I(ip)->i_state = 0;
91	mapping_set_large_folios(VFS_I(ip)->i_mapping);
92
93	XFS_STATS_INC(mp, vn_active);
94	ASSERT(atomic_read(&ip->i_pincount) == 0);
95	ASSERT(ip->i_ino == 0);
96
97	/* initialise the xfs inode */
98	ip->i_ino = ino;
99	ip->i_mount = mp;
100	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
101	ip->i_cowfp = NULL;
102	memset(&ip->i_af, 0, sizeof(ip->i_af));
103	ip->i_af.if_format = XFS_DINODE_FMT_EXTENTS;
104	memset(&ip->i_df, 0, sizeof(ip->i_df));
105	ip->i_flags = 0;
106	ip->i_delayed_blks = 0;
107	ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
108	ip->i_nblocks = 0;
109	ip->i_forkoff = 0;
110	ip->i_sick = 0;
111	ip->i_checked = 0;
112	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
113	INIT_LIST_HEAD(&ip->i_ioend_list);
114	spin_lock_init(&ip->i_ioend_lock);
115	ip->i_next_unlinked = NULLAGINO;
116	ip->i_prev_unlinked = 0;
117
118	return ip;
119}
120
121STATIC void
122xfs_inode_free_callback(
123	struct rcu_head		*head)
124{
125	struct inode		*inode = container_of(head, struct inode, i_rcu);
126	struct xfs_inode	*ip = XFS_I(inode);
127
128	switch (VFS_I(ip)->i_mode & S_IFMT) {
129	case S_IFREG:
130	case S_IFDIR:
131	case S_IFLNK:
132		xfs_idestroy_fork(&ip->i_df);
133		break;
134	}
135
136	xfs_ifork_zap_attr(ip);
137
138	if (ip->i_cowfp) {
139		xfs_idestroy_fork(ip->i_cowfp);
140		kmem_cache_free(xfs_ifork_cache, ip->i_cowfp);
141	}
142	if (ip->i_itemp) {
143		ASSERT(!test_bit(XFS_LI_IN_AIL,
144				 &ip->i_itemp->ili_item.li_flags));
145		xfs_inode_item_destroy(ip);
146		ip->i_itemp = NULL;
147	}
148
149	kmem_cache_free(xfs_inode_cache, ip);
150}
151
152static void
153__xfs_inode_free(
154	struct xfs_inode	*ip)
155{
156	/* asserts to verify all state is correct here */
157	ASSERT(atomic_read(&ip->i_pincount) == 0);
158	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
159	XFS_STATS_DEC(ip->i_mount, vn_active);
160
161	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
162}
163
164void
165xfs_inode_free(
166	struct xfs_inode	*ip)
167{
168	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
169
170	/*
171	 * Because we use RCU freeing we need to ensure the inode always
172	 * appears to be reclaimed with an invalid inode number when in the
173	 * free state. The ip->i_flags_lock provides the barrier against lookup
174	 * races.
175	 */
176	spin_lock(&ip->i_flags_lock);
177	ip->i_flags = XFS_IRECLAIM;
178	ip->i_ino = 0;
179	spin_unlock(&ip->i_flags_lock);
180
181	__xfs_inode_free(ip);
182}
183
184/*
185 * Queue background inode reclaim work if there are reclaimable inodes and there
186 * isn't reclaim work already scheduled or in progress.
187 */
188static void
189xfs_reclaim_work_queue(
190	struct xfs_mount        *mp)
191{
192
193	rcu_read_lock();
194	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
195		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
196			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
197	}
198	rcu_read_unlock();
199}
200
201/*
202 * Background scanning to trim preallocated space. This is queued based on the
203 * 'speculative_prealloc_lifetime' tunable (5m by default).
204 */
205static inline void
206xfs_blockgc_queue(
207	struct xfs_perag	*pag)
208{
209	struct xfs_mount	*mp = pag->pag_mount;
210
211	if (!xfs_is_blockgc_enabled(mp))
212		return;
213
214	rcu_read_lock();
215	if (radix_tree_tagged(&pag->pag_ici_root, XFS_ICI_BLOCKGC_TAG))
216		queue_delayed_work(pag->pag_mount->m_blockgc_wq,
217				   &pag->pag_blockgc_work,
218				   msecs_to_jiffies(xfs_blockgc_secs * 1000));
219	rcu_read_unlock();
220}
221
222/* Set a tag on both the AG incore inode tree and the AG radix tree. */
223static void
224xfs_perag_set_inode_tag(
225	struct xfs_perag	*pag,
226	xfs_agino_t		agino,
227	unsigned int		tag)
228{
229	struct xfs_mount	*mp = pag->pag_mount;
230	bool			was_tagged;
231
232	lockdep_assert_held(&pag->pag_ici_lock);
233
234	was_tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
235	radix_tree_tag_set(&pag->pag_ici_root, agino, tag);
236
237	if (tag == XFS_ICI_RECLAIM_TAG)
238		pag->pag_ici_reclaimable++;
239
240	if (was_tagged)
241		return;
242
243	/* propagate the tag up into the perag radix tree */
244	spin_lock(&mp->m_perag_lock);
245	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno, tag);
246	spin_unlock(&mp->m_perag_lock);
247
248	/* start background work */
249	switch (tag) {
250	case XFS_ICI_RECLAIM_TAG:
251		xfs_reclaim_work_queue(mp);
252		break;
253	case XFS_ICI_BLOCKGC_TAG:
254		xfs_blockgc_queue(pag);
255		break;
256	}
257
258	trace_xfs_perag_set_inode_tag(pag, _RET_IP_);
259}
260
261/* Clear a tag on both the AG incore inode tree and the AG radix tree. */
262static void
263xfs_perag_clear_inode_tag(
264	struct xfs_perag	*pag,
265	xfs_agino_t		agino,
266	unsigned int		tag)
267{
268	struct xfs_mount	*mp = pag->pag_mount;
269
270	lockdep_assert_held(&pag->pag_ici_lock);
271
272	/*
273	 * Reclaim can signal (with a null agino) that it cleared its own tag
274	 * by removing the inode from the radix tree.
275	 */
276	if (agino != NULLAGINO)
277		radix_tree_tag_clear(&pag->pag_ici_root, agino, tag);
278	else
279		ASSERT(tag == XFS_ICI_RECLAIM_TAG);
280
281	if (tag == XFS_ICI_RECLAIM_TAG)
282		pag->pag_ici_reclaimable--;
283
284	if (radix_tree_tagged(&pag->pag_ici_root, tag))
285		return;
286
287	/* clear the tag from the perag radix tree */
288	spin_lock(&mp->m_perag_lock);
289	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno, tag);
290	spin_unlock(&mp->m_perag_lock);
291
292	trace_xfs_perag_clear_inode_tag(pag, _RET_IP_);
293}
294
295/*
296 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
297 * part of the structure. This is made more complex by the fact we store
298 * information about the on-disk values in the VFS inode and so we can't just
299 * overwrite the values unconditionally. Hence we save the parameters we
300 * need to retain across reinitialisation, and rewrite them into the VFS inode
301 * after reinitialisation even if it fails.
302 */
303static int
304xfs_reinit_inode(
305	struct xfs_mount	*mp,
306	struct inode		*inode)
307{
308	int			error;
309	uint32_t		nlink = inode->i_nlink;
310	uint32_t		generation = inode->i_generation;
311	uint64_t		version = inode_peek_iversion(inode);
312	umode_t			mode = inode->i_mode;
313	dev_t			dev = inode->i_rdev;
314	kuid_t			uid = inode->i_uid;
315	kgid_t			gid = inode->i_gid;
316
317	error = inode_init_always(mp->m_super, inode);
318
319	set_nlink(inode, nlink);
320	inode->i_generation = generation;
321	inode_set_iversion_queried(inode, version);
322	inode->i_mode = mode;
323	inode->i_rdev = dev;
324	inode->i_uid = uid;
325	inode->i_gid = gid;
326	mapping_set_large_folios(inode->i_mapping);
327	return error;
328}
329
330/*
331 * Carefully nudge an inode whose VFS state has been torn down back into a
332 * usable state.  Drops the i_flags_lock and the rcu read lock.
333 */
334static int
335xfs_iget_recycle(
336	struct xfs_perag	*pag,
337	struct xfs_inode	*ip) __releases(&ip->i_flags_lock)
338{
339	struct xfs_mount	*mp = ip->i_mount;
340	struct inode		*inode = VFS_I(ip);
341	int			error;
342
343	trace_xfs_iget_recycle(ip);
344
345	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
346		return -EAGAIN;
347
348	/*
349	 * We need to make it look like the inode is being reclaimed to prevent
350	 * the actual reclaim workers from stomping over us while we recycle
351	 * the inode.  We can't clear the radix tree tag yet as it requires
352	 * pag_ici_lock to be held exclusive.
353	 */
354	ip->i_flags |= XFS_IRECLAIM;
355
356	spin_unlock(&ip->i_flags_lock);
357	rcu_read_unlock();
358
359	ASSERT(!rwsem_is_locked(&inode->i_rwsem));
360	error = xfs_reinit_inode(mp, inode);
361	xfs_iunlock(ip, XFS_ILOCK_EXCL);
362	if (error) {
363		/*
364		 * Re-initializing the inode failed, and we are in deep
365		 * trouble.  Try to re-add it to the reclaim list.
366		 */
367		rcu_read_lock();
368		spin_lock(&ip->i_flags_lock);
369		ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
370		ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
371		spin_unlock(&ip->i_flags_lock);
372		rcu_read_unlock();
373
374		trace_xfs_iget_recycle_fail(ip);
375		return error;
376	}
377
378	spin_lock(&pag->pag_ici_lock);
379	spin_lock(&ip->i_flags_lock);
380
381	/*
382	 * Clear the per-lifetime state in the inode as we are now effectively
383	 * a new inode and need to return to the initial state before reuse
384	 * occurs.
385	 */
386	ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
387	ip->i_flags |= XFS_INEW;
388	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
389			XFS_ICI_RECLAIM_TAG);
390	inode->i_state = I_NEW;
391	spin_unlock(&ip->i_flags_lock);
392	spin_unlock(&pag->pag_ici_lock);
393
394	return 0;
395}
396
397/*
398 * If we are allocating a new inode, then check what was returned is
399 * actually a free, empty inode. If we are not allocating an inode,
400 * then check we didn't find a free inode.
401 *
402 * Returns:
403 *	0		if the inode free state matches the lookup context
404 *	-ENOENT		if the inode is free and we are not allocating
405 *	-EFSCORRUPTED	if there is any state mismatch at all
406 */
407static int
408xfs_iget_check_free_state(
409	struct xfs_inode	*ip,
410	int			flags)
411{
412	if (flags & XFS_IGET_CREATE) {
413		/* should be a free inode */
414		if (VFS_I(ip)->i_mode != 0) {
415			xfs_warn(ip->i_mount,
416"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
417				ip->i_ino, VFS_I(ip)->i_mode);
418			return -EFSCORRUPTED;
419		}
420
421		if (ip->i_nblocks != 0) {
422			xfs_warn(ip->i_mount,
423"Corruption detected! Free inode 0x%llx has blocks allocated!",
424				ip->i_ino);
425			return -EFSCORRUPTED;
426		}
427		return 0;
428	}
429
430	/* should be an allocated inode */
431	if (VFS_I(ip)->i_mode == 0)
432		return -ENOENT;
433
434	return 0;
435}
436
437/* Make all pending inactivation work start immediately. */
438static bool
439xfs_inodegc_queue_all(
440	struct xfs_mount	*mp)
441{
442	struct xfs_inodegc	*gc;
443	int			cpu;
444	bool			ret = false;
445
446	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
447		gc = per_cpu_ptr(mp->m_inodegc, cpu);
448		if (!llist_empty(&gc->list)) {
449			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
450			ret = true;
451		}
452	}
453
454	return ret;
455}
456
457/* Wait for all queued work and collect errors */
458static int
459xfs_inodegc_wait_all(
460	struct xfs_mount	*mp)
461{
462	int			cpu;
463	int			error = 0;
464
465	flush_workqueue(mp->m_inodegc_wq);
466	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
467		struct xfs_inodegc	*gc;
468
469		gc = per_cpu_ptr(mp->m_inodegc, cpu);
470		if (gc->error && !error)
471			error = gc->error;
472		gc->error = 0;
473	}
474
475	return error;
476}
477
478/*
479 * Check the validity of the inode we just found it the cache
480 */
481static int
482xfs_iget_cache_hit(
483	struct xfs_perag	*pag,
484	struct xfs_inode	*ip,
485	xfs_ino_t		ino,
486	int			flags,
487	int			lock_flags) __releases(RCU)
488{
489	struct inode		*inode = VFS_I(ip);
490	struct xfs_mount	*mp = ip->i_mount;
491	int			error;
492
493	/*
494	 * check for re-use of an inode within an RCU grace period due to the
495	 * radix tree nodes not being updated yet. We monitor for this by
496	 * setting the inode number to zero before freeing the inode structure.
497	 * If the inode has been reallocated and set up, then the inode number
498	 * will not match, so check for that, too.
499	 */
500	spin_lock(&ip->i_flags_lock);
501	if (ip->i_ino != ino)
502		goto out_skip;
503
504	/*
505	 * If we are racing with another cache hit that is currently
506	 * instantiating this inode or currently recycling it out of
507	 * reclaimable state, wait for the initialisation to complete
508	 * before continuing.
509	 *
510	 * If we're racing with the inactivation worker we also want to wait.
511	 * If we're creating a new file, it's possible that the worker
512	 * previously marked the inode as free on disk but hasn't finished
513	 * updating the incore state yet.  The AGI buffer will be dirty and
514	 * locked to the icreate transaction, so a synchronous push of the
515	 * inodegc workers would result in deadlock.  For a regular iget, the
516	 * worker is running already, so we might as well wait.
517	 *
518	 * XXX(hch): eventually we should do something equivalent to
519	 *	     wait_on_inode to wait for these flags to be cleared
520	 *	     instead of polling for it.
521	 */
522	if (ip->i_flags & (XFS_INEW | XFS_IRECLAIM | XFS_INACTIVATING))
523		goto out_skip;
524
525	if (ip->i_flags & XFS_NEED_INACTIVE) {
526		/* Unlinked inodes cannot be re-grabbed. */
527		if (VFS_I(ip)->i_nlink == 0) {
528			error = -ENOENT;
529			goto out_error;
530		}
531		goto out_inodegc_flush;
532	}
533
534	/*
535	 * Check the inode free state is valid. This also detects lookup
536	 * racing with unlinks.
537	 */
538	error = xfs_iget_check_free_state(ip, flags);
539	if (error)
540		goto out_error;
541
542	/* Skip inodes that have no vfs state. */
543	if ((flags & XFS_IGET_INCORE) &&
544	    (ip->i_flags & XFS_IRECLAIMABLE))
545		goto out_skip;
546
547	/* The inode fits the selection criteria; process it. */
548	if (ip->i_flags & XFS_IRECLAIMABLE) {
549		/* Drops i_flags_lock and RCU read lock. */
550		error = xfs_iget_recycle(pag, ip);
551		if (error == -EAGAIN)
552			goto out_skip;
553		if (error)
554			return error;
555	} else {
556		/* If the VFS inode is being torn down, pause and try again. */
557		if (!igrab(inode))
558			goto out_skip;
559
560		/* We've got a live one. */
561		spin_unlock(&ip->i_flags_lock);
562		rcu_read_unlock();
563		trace_xfs_iget_hit(ip);
564	}
565
566	if (lock_flags != 0)
567		xfs_ilock(ip, lock_flags);
568
569	if (!(flags & XFS_IGET_INCORE))
570		xfs_iflags_clear(ip, XFS_ISTALE);
571	XFS_STATS_INC(mp, xs_ig_found);
572
573	return 0;
574
575out_skip:
576	trace_xfs_iget_skip(ip);
577	XFS_STATS_INC(mp, xs_ig_frecycle);
578	error = -EAGAIN;
579out_error:
580	spin_unlock(&ip->i_flags_lock);
581	rcu_read_unlock();
582	return error;
583
584out_inodegc_flush:
585	spin_unlock(&ip->i_flags_lock);
586	rcu_read_unlock();
587	/*
588	 * Do not wait for the workers, because the caller could hold an AGI
589	 * buffer lock.  We're just going to sleep in a loop anyway.
590	 */
591	if (xfs_is_inodegc_enabled(mp))
592		xfs_inodegc_queue_all(mp);
593	return -EAGAIN;
594}
595
596static int
597xfs_iget_cache_miss(
598	struct xfs_mount	*mp,
599	struct xfs_perag	*pag,
600	xfs_trans_t		*tp,
601	xfs_ino_t		ino,
602	struct xfs_inode	**ipp,
603	int			flags,
604	int			lock_flags)
605{
606	struct xfs_inode	*ip;
607	int			error;
608	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
609	int			iflags;
610
611	ip = xfs_inode_alloc(mp, ino);
612	if (!ip)
613		return -ENOMEM;
614
615	error = xfs_imap(pag, tp, ip->i_ino, &ip->i_imap, flags);
616	if (error)
617		goto out_destroy;
618
619	/*
620	 * For version 5 superblocks, if we are initialising a new inode and we
621	 * are not utilising the XFS_FEAT_IKEEP inode cluster mode, we can
622	 * simply build the new inode core with a random generation number.
623	 *
624	 * For version 4 (and older) superblocks, log recovery is dependent on
625	 * the i_flushiter field being initialised from the current on-disk
626	 * value and hence we must also read the inode off disk even when
627	 * initializing new inodes.
628	 */
629	if (xfs_has_v3inodes(mp) &&
630	    (flags & XFS_IGET_CREATE) && !xfs_has_ikeep(mp)) {
631		VFS_I(ip)->i_generation = get_random_u32();
632	} else {
633		struct xfs_buf		*bp;
634
635		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp);
636		if (error)
637			goto out_destroy;
638
639		error = xfs_inode_from_disk(ip,
640				xfs_buf_offset(bp, ip->i_imap.im_boffset));
641		if (!error)
642			xfs_buf_set_ref(bp, XFS_INO_REF);
643		xfs_trans_brelse(tp, bp);
644
645		if (error)
646			goto out_destroy;
647	}
648
649	trace_xfs_iget_miss(ip);
650
651	/*
652	 * Check the inode free state is valid. This also detects lookup
653	 * racing with unlinks.
654	 */
655	error = xfs_iget_check_free_state(ip, flags);
656	if (error)
657		goto out_destroy;
658
659	/*
660	 * Preload the radix tree so we can insert safely under the
661	 * write spinlock. Note that we cannot sleep inside the preload
662	 * region. Since we can be called from transaction context, don't
663	 * recurse into the file system.
664	 */
665	if (radix_tree_preload(GFP_NOFS)) {
666		error = -EAGAIN;
667		goto out_destroy;
668	}
669
670	/*
671	 * Because the inode hasn't been added to the radix-tree yet it can't
672	 * be found by another thread, so we can do the non-sleeping lock here.
673	 */
674	if (lock_flags) {
675		if (!xfs_ilock_nowait(ip, lock_flags))
676			BUG();
677	}
678
679	/*
680	 * These values must be set before inserting the inode into the radix
681	 * tree as the moment it is inserted a concurrent lookup (allowed by the
682	 * RCU locking mechanism) can find it and that lookup must see that this
683	 * is an inode currently under construction (i.e. that XFS_INEW is set).
684	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
685	 * memory barrier that ensures this detection works correctly at lookup
686	 * time.
687	 */
688	iflags = XFS_INEW;
689	if (flags & XFS_IGET_DONTCACHE)
690		d_mark_dontcache(VFS_I(ip));
691	ip->i_udquot = NULL;
692	ip->i_gdquot = NULL;
693	ip->i_pdquot = NULL;
694	xfs_iflags_set(ip, iflags);
695
696	/* insert the new inode */
697	spin_lock(&pag->pag_ici_lock);
698	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
699	if (unlikely(error)) {
700		WARN_ON(error != -EEXIST);
701		XFS_STATS_INC(mp, xs_ig_dup);
702		error = -EAGAIN;
703		goto out_preload_end;
704	}
705	spin_unlock(&pag->pag_ici_lock);
706	radix_tree_preload_end();
707
708	*ipp = ip;
709	return 0;
710
711out_preload_end:
712	spin_unlock(&pag->pag_ici_lock);
713	radix_tree_preload_end();
714	if (lock_flags)
715		xfs_iunlock(ip, lock_flags);
716out_destroy:
717	__destroy_inode(VFS_I(ip));
718	xfs_inode_free(ip);
719	return error;
720}
721
722/*
723 * Look up an inode by number in the given file system.  The inode is looked up
724 * in the cache held in each AG.  If the inode is found in the cache, initialise
725 * the vfs inode if necessary.
726 *
727 * If it is not in core, read it in from the file system's device, add it to the
728 * cache and initialise the vfs inode.
729 *
730 * The inode is locked according to the value of the lock_flags parameter.
731 * Inode lookup is only done during metadata operations and not as part of the
732 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
733 */
734int
735xfs_iget(
736	struct xfs_mount	*mp,
737	struct xfs_trans	*tp,
738	xfs_ino_t		ino,
739	uint			flags,
740	uint			lock_flags,
741	struct xfs_inode	**ipp)
742{
743	struct xfs_inode	*ip;
744	struct xfs_perag	*pag;
745	xfs_agino_t		agino;
746	int			error;
747
748	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
749
750	/* reject inode numbers outside existing AGs */
751	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
752		return -EINVAL;
753
754	XFS_STATS_INC(mp, xs_ig_attempts);
755
756	/* get the perag structure and ensure that it's inode capable */
757	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
758	agino = XFS_INO_TO_AGINO(mp, ino);
759
760again:
761	error = 0;
762	rcu_read_lock();
763	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
764
765	if (ip) {
766		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
767		if (error)
768			goto out_error_or_again;
769	} else {
770		rcu_read_unlock();
771		if (flags & XFS_IGET_INCORE) {
772			error = -ENODATA;
773			goto out_error_or_again;
774		}
775		XFS_STATS_INC(mp, xs_ig_missed);
776
777		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
778							flags, lock_flags);
779		if (error)
780			goto out_error_or_again;
781	}
782	xfs_perag_put(pag);
783
784	*ipp = ip;
785
786	/*
787	 * If we have a real type for an on-disk inode, we can setup the inode
788	 * now.	 If it's a new inode being created, xfs_init_new_inode will
789	 * handle it.
790	 */
791	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
792		xfs_setup_existing_inode(ip);
793	return 0;
794
795out_error_or_again:
796	if (!(flags & (XFS_IGET_INCORE | XFS_IGET_NORETRY)) &&
797	    error == -EAGAIN) {
798		delay(1);
799		goto again;
800	}
801	xfs_perag_put(pag);
802	return error;
803}
804
805/*
806 * Grab the inode for reclaim exclusively.
807 *
808 * We have found this inode via a lookup under RCU, so the inode may have
809 * already been freed, or it may be in the process of being recycled by
810 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
811 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
812 * will not be set. Hence we need to check for both these flag conditions to
813 * avoid inodes that are no longer reclaim candidates.
814 *
815 * Note: checking for other state flags here, under the i_flags_lock or not, is
816 * racy and should be avoided. Those races should be resolved only after we have
817 * ensured that we are able to reclaim this inode and the world can see that we
818 * are going to reclaim it.
819 *
820 * Return true if we grabbed it, false otherwise.
821 */
822static bool
823xfs_reclaim_igrab(
824	struct xfs_inode	*ip,
825	struct xfs_icwalk	*icw)
826{
827	ASSERT(rcu_read_lock_held());
828
829	spin_lock(&ip->i_flags_lock);
830	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
831	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
832		/* not a reclaim candidate. */
833		spin_unlock(&ip->i_flags_lock);
834		return false;
835	}
836
837	/* Don't reclaim a sick inode unless the caller asked for it. */
838	if (ip->i_sick &&
839	    (!icw || !(icw->icw_flags & XFS_ICWALK_FLAG_RECLAIM_SICK))) {
840		spin_unlock(&ip->i_flags_lock);
841		return false;
842	}
843
844	__xfs_iflags_set(ip, XFS_IRECLAIM);
845	spin_unlock(&ip->i_flags_lock);
846	return true;
847}
848
849/*
850 * Inode reclaim is non-blocking, so the default action if progress cannot be
851 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
852 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
853 * blocking anymore and hence we can wait for the inode to be able to reclaim
854 * it.
855 *
856 * We do no IO here - if callers require inodes to be cleaned they must push the
857 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
858 * done in the background in a non-blocking manner, and enables memory reclaim
859 * to make progress without blocking.
860 */
861static void
862xfs_reclaim_inode(
863	struct xfs_inode	*ip,
864	struct xfs_perag	*pag)
865{
866	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
867
868	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
869		goto out;
870	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
871		goto out_iunlock;
872
873	/*
874	 * Check for log shutdown because aborting the inode can move the log
875	 * tail and corrupt in memory state. This is fine if the log is shut
876	 * down, but if the log is still active and only the mount is shut down
877	 * then the in-memory log tail movement caused by the abort can be
878	 * incorrectly propagated to disk.
879	 */
880	if (xlog_is_shutdown(ip->i_mount->m_log)) {
881		xfs_iunpin_wait(ip);
882		xfs_iflush_shutdown_abort(ip);
883		goto reclaim;
884	}
885	if (xfs_ipincount(ip))
886		goto out_clear_flush;
887	if (!xfs_inode_clean(ip))
888		goto out_clear_flush;
889
890	xfs_iflags_clear(ip, XFS_IFLUSHING);
891reclaim:
892	trace_xfs_inode_reclaiming(ip);
893
894	/*
895	 * Because we use RCU freeing we need to ensure the inode always appears
896	 * to be reclaimed with an invalid inode number when in the free state.
897	 * We do this as early as possible under the ILOCK so that
898	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
899	 * detect races with us here. By doing this, we guarantee that once
900	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
901	 * it will see either a valid inode that will serialise correctly, or it
902	 * will see an invalid inode that it can skip.
903	 */
904	spin_lock(&ip->i_flags_lock);
905	ip->i_flags = XFS_IRECLAIM;
906	ip->i_ino = 0;
907	ip->i_sick = 0;
908	ip->i_checked = 0;
909	spin_unlock(&ip->i_flags_lock);
910
911	ASSERT(!ip->i_itemp || ip->i_itemp->ili_item.li_buf == NULL);
912	xfs_iunlock(ip, XFS_ILOCK_EXCL);
913
914	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
915	/*
916	 * Remove the inode from the per-AG radix tree.
917	 *
918	 * Because radix_tree_delete won't complain even if the item was never
919	 * added to the tree assert that it's been there before to catch
920	 * problems with the inode life time early on.
921	 */
922	spin_lock(&pag->pag_ici_lock);
923	if (!radix_tree_delete(&pag->pag_ici_root,
924				XFS_INO_TO_AGINO(ip->i_mount, ino)))
925		ASSERT(0);
926	xfs_perag_clear_inode_tag(pag, NULLAGINO, XFS_ICI_RECLAIM_TAG);
927	spin_unlock(&pag->pag_ici_lock);
928
929	/*
930	 * Here we do an (almost) spurious inode lock in order to coordinate
931	 * with inode cache radix tree lookups.  This is because the lookup
932	 * can reference the inodes in the cache without taking references.
933	 *
934	 * We make that OK here by ensuring that we wait until the inode is
935	 * unlocked after the lookup before we go ahead and free it.
936	 */
937	xfs_ilock(ip, XFS_ILOCK_EXCL);
938	ASSERT(!ip->i_udquot && !ip->i_gdquot && !ip->i_pdquot);
939	xfs_iunlock(ip, XFS_ILOCK_EXCL);
940	ASSERT(xfs_inode_clean(ip));
941
942	__xfs_inode_free(ip);
943	return;
944
945out_clear_flush:
946	xfs_iflags_clear(ip, XFS_IFLUSHING);
947out_iunlock:
948	xfs_iunlock(ip, XFS_ILOCK_EXCL);
949out:
950	xfs_iflags_clear(ip, XFS_IRECLAIM);
951}
952
953/* Reclaim sick inodes if we're unmounting or the fs went down. */
954static inline bool
955xfs_want_reclaim_sick(
956	struct xfs_mount	*mp)
957{
958	return xfs_is_unmounting(mp) || xfs_has_norecovery(mp) ||
959	       xfs_is_shutdown(mp);
960}
961
962void
963xfs_reclaim_inodes(
964	struct xfs_mount	*mp)
965{
966	struct xfs_icwalk	icw = {
967		.icw_flags	= 0,
968	};
969
970	if (xfs_want_reclaim_sick(mp))
971		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
972
973	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
974		xfs_ail_push_all_sync(mp->m_ail);
975		xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
976	}
977}
978
979/*
980 * The shrinker infrastructure determines how many inodes we should scan for
981 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
982 * push the AIL here. We also want to proactively free up memory if we can to
983 * minimise the amount of work memory reclaim has to do so we kick the
984 * background reclaim if it isn't already scheduled.
985 */
986long
987xfs_reclaim_inodes_nr(
988	struct xfs_mount	*mp,
989	unsigned long		nr_to_scan)
990{
991	struct xfs_icwalk	icw = {
992		.icw_flags	= XFS_ICWALK_FLAG_SCAN_LIMIT,
993		.icw_scan_limit	= min_t(unsigned long, LONG_MAX, nr_to_scan),
994	};
995
996	if (xfs_want_reclaim_sick(mp))
997		icw.icw_flags |= XFS_ICWALK_FLAG_RECLAIM_SICK;
998
999	/* kick background reclaimer and push the AIL */
1000	xfs_reclaim_work_queue(mp);
1001	xfs_ail_push_all(mp->m_ail);
1002
1003	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, &icw);
1004	return 0;
1005}
1006
1007/*
1008 * Return the number of reclaimable inodes in the filesystem for
1009 * the shrinker to determine how much to reclaim.
1010 */
1011long
1012xfs_reclaim_inodes_count(
1013	struct xfs_mount	*mp)
1014{
1015	struct xfs_perag	*pag;
1016	xfs_agnumber_t		ag = 0;
1017	long			reclaimable = 0;
1018
1019	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1020		ag = pag->pag_agno + 1;
1021		reclaimable += pag->pag_ici_reclaimable;
1022		xfs_perag_put(pag);
1023	}
1024	return reclaimable;
1025}
1026
1027STATIC bool
1028xfs_icwalk_match_id(
1029	struct xfs_inode	*ip,
1030	struct xfs_icwalk	*icw)
1031{
1032	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1033	    !uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1034		return false;
1035
1036	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1037	    !gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1038		return false;
1039
1040	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1041	    ip->i_projid != icw->icw_prid)
1042		return false;
1043
1044	return true;
1045}
1046
1047/*
1048 * A union-based inode filtering algorithm. Process the inode if any of the
1049 * criteria match. This is for global/internal scans only.
1050 */
1051STATIC bool
1052xfs_icwalk_match_id_union(
1053	struct xfs_inode	*ip,
1054	struct xfs_icwalk	*icw)
1055{
1056	if ((icw->icw_flags & XFS_ICWALK_FLAG_UID) &&
1057	    uid_eq(VFS_I(ip)->i_uid, icw->icw_uid))
1058		return true;
1059
1060	if ((icw->icw_flags & XFS_ICWALK_FLAG_GID) &&
1061	    gid_eq(VFS_I(ip)->i_gid, icw->icw_gid))
1062		return true;
1063
1064	if ((icw->icw_flags & XFS_ICWALK_FLAG_PRID) &&
1065	    ip->i_projid == icw->icw_prid)
1066		return true;
1067
1068	return false;
1069}
1070
1071/*
1072 * Is this inode @ip eligible for eof/cow block reclamation, given some
1073 * filtering parameters @icw?  The inode is eligible if @icw is null or
1074 * if the predicate functions match.
1075 */
1076static bool
1077xfs_icwalk_match(
1078	struct xfs_inode	*ip,
1079	struct xfs_icwalk	*icw)
1080{
1081	bool			match;
1082
1083	if (!icw)
1084		return true;
1085
1086	if (icw->icw_flags & XFS_ICWALK_FLAG_UNION)
1087		match = xfs_icwalk_match_id_union(ip, icw);
1088	else
1089		match = xfs_icwalk_match_id(ip, icw);
1090	if (!match)
1091		return false;
1092
1093	/* skip the inode if the file size is too small */
1094	if ((icw->icw_flags & XFS_ICWALK_FLAG_MINFILESIZE) &&
1095	    XFS_ISIZE(ip) < icw->icw_min_file_size)
1096		return false;
1097
1098	return true;
1099}
1100
1101/*
1102 * This is a fast pass over the inode cache to try to get reclaim moving on as
1103 * many inodes as possible in a short period of time. It kicks itself every few
1104 * seconds, as well as being kicked by the inode cache shrinker when memory
1105 * goes low.
1106 */
1107void
1108xfs_reclaim_worker(
1109	struct work_struct *work)
1110{
1111	struct xfs_mount *mp = container_of(to_delayed_work(work),
1112					struct xfs_mount, m_reclaim_work);
1113
1114	xfs_icwalk(mp, XFS_ICWALK_RECLAIM, NULL);
1115	xfs_reclaim_work_queue(mp);
1116}
1117
1118STATIC int
1119xfs_inode_free_eofblocks(
1120	struct xfs_inode	*ip,
1121	struct xfs_icwalk	*icw,
1122	unsigned int		*lockflags)
1123{
1124	bool			wait;
1125
1126	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1127
1128	if (!xfs_iflags_test(ip, XFS_IEOFBLOCKS))
1129		return 0;
1130
1131	/*
1132	 * If the mapping is dirty the operation can block and wait for some
1133	 * time. Unless we are waiting, skip it.
1134	 */
1135	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1136		return 0;
1137
1138	if (!xfs_icwalk_match(ip, icw))
1139		return 0;
1140
1141	/*
1142	 * If the caller is waiting, return -EAGAIN to keep the background
1143	 * scanner moving and revisit the inode in a subsequent pass.
1144	 */
1145	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1146		if (wait)
1147			return -EAGAIN;
1148		return 0;
1149	}
1150	*lockflags |= XFS_IOLOCK_EXCL;
1151
1152	if (xfs_can_free_eofblocks(ip, false))
1153		return xfs_free_eofblocks(ip);
1154
1155	/* inode could be preallocated or append-only */
1156	trace_xfs_inode_free_eofblocks_invalid(ip);
1157	xfs_inode_clear_eofblocks_tag(ip);
1158	return 0;
1159}
1160
1161static void
1162xfs_blockgc_set_iflag(
1163	struct xfs_inode	*ip,
1164	unsigned long		iflag)
1165{
1166	struct xfs_mount	*mp = ip->i_mount;
1167	struct xfs_perag	*pag;
1168
1169	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1170
1171	/*
1172	 * Don't bother locking the AG and looking up in the radix trees
1173	 * if we already know that we have the tag set.
1174	 */
1175	if (ip->i_flags & iflag)
1176		return;
1177	spin_lock(&ip->i_flags_lock);
1178	ip->i_flags |= iflag;
1179	spin_unlock(&ip->i_flags_lock);
1180
1181	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1182	spin_lock(&pag->pag_ici_lock);
1183
1184	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1185			XFS_ICI_BLOCKGC_TAG);
1186
1187	spin_unlock(&pag->pag_ici_lock);
1188	xfs_perag_put(pag);
1189}
1190
1191void
1192xfs_inode_set_eofblocks_tag(
1193	xfs_inode_t	*ip)
1194{
1195	trace_xfs_inode_set_eofblocks_tag(ip);
1196	return xfs_blockgc_set_iflag(ip, XFS_IEOFBLOCKS);
1197}
1198
1199static void
1200xfs_blockgc_clear_iflag(
1201	struct xfs_inode	*ip,
1202	unsigned long		iflag)
1203{
1204	struct xfs_mount	*mp = ip->i_mount;
1205	struct xfs_perag	*pag;
1206	bool			clear_tag;
1207
1208	ASSERT((iflag & ~(XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0);
1209
1210	spin_lock(&ip->i_flags_lock);
1211	ip->i_flags &= ~iflag;
1212	clear_tag = (ip->i_flags & (XFS_IEOFBLOCKS | XFS_ICOWBLOCKS)) == 0;
1213	spin_unlock(&ip->i_flags_lock);
1214
1215	if (!clear_tag)
1216		return;
1217
1218	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1219	spin_lock(&pag->pag_ici_lock);
1220
1221	xfs_perag_clear_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1222			XFS_ICI_BLOCKGC_TAG);
1223
1224	spin_unlock(&pag->pag_ici_lock);
1225	xfs_perag_put(pag);
1226}
1227
1228void
1229xfs_inode_clear_eofblocks_tag(
1230	xfs_inode_t	*ip)
1231{
1232	trace_xfs_inode_clear_eofblocks_tag(ip);
1233	return xfs_blockgc_clear_iflag(ip, XFS_IEOFBLOCKS);
1234}
1235
1236/*
1237 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1238 * then we can bail out quickly, but otherwise we must back off if the file
1239 * is undergoing some kind of write.
1240 */
1241static bool
1242xfs_prep_free_cowblocks(
1243	struct xfs_inode	*ip)
1244{
1245	/*
1246	 * Just clear the tag if we have an empty cow fork or none at all. It's
1247	 * possible the inode was fully unshared since it was originally tagged.
1248	 */
1249	if (!xfs_inode_has_cow_data(ip)) {
1250		trace_xfs_inode_free_cowblocks_invalid(ip);
1251		xfs_inode_clear_cowblocks_tag(ip);
1252		return false;
1253	}
1254
1255	/*
1256	 * If the mapping is dirty or under writeback we cannot touch the
1257	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1258	 */
1259	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1260	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1261	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1262	    atomic_read(&VFS_I(ip)->i_dio_count))
1263		return false;
1264
1265	return true;
1266}
1267
1268/*
1269 * Automatic CoW Reservation Freeing
1270 *
1271 * These functions automatically garbage collect leftover CoW reservations
1272 * that were made on behalf of a cowextsize hint when we start to run out
1273 * of quota or when the reservations sit around for too long.  If the file
1274 * has dirty pages or is undergoing writeback, its CoW reservations will
1275 * be retained.
1276 *
1277 * The actual garbage collection piggybacks off the same code that runs
1278 * the speculative EOF preallocation garbage collector.
1279 */
1280STATIC int
1281xfs_inode_free_cowblocks(
1282	struct xfs_inode	*ip,
1283	struct xfs_icwalk	*icw,
1284	unsigned int		*lockflags)
1285{
1286	bool			wait;
1287	int			ret = 0;
1288
1289	wait = icw && (icw->icw_flags & XFS_ICWALK_FLAG_SYNC);
1290
1291	if (!xfs_iflags_test(ip, XFS_ICOWBLOCKS))
1292		return 0;
1293
1294	if (!xfs_prep_free_cowblocks(ip))
1295		return 0;
1296
1297	if (!xfs_icwalk_match(ip, icw))
1298		return 0;
1299
1300	/*
1301	 * If the caller is waiting, return -EAGAIN to keep the background
1302	 * scanner moving and revisit the inode in a subsequent pass.
1303	 */
1304	if (!(*lockflags & XFS_IOLOCK_EXCL) &&
1305	    !xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1306		if (wait)
1307			return -EAGAIN;
1308		return 0;
1309	}
1310	*lockflags |= XFS_IOLOCK_EXCL;
1311
1312	if (!xfs_ilock_nowait(ip, XFS_MMAPLOCK_EXCL)) {
1313		if (wait)
1314			return -EAGAIN;
1315		return 0;
1316	}
1317	*lockflags |= XFS_MMAPLOCK_EXCL;
1318
1319	/*
1320	 * Check again, nobody else should be able to dirty blocks or change
1321	 * the reflink iflag now that we have the first two locks held.
1322	 */
1323	if (xfs_prep_free_cowblocks(ip))
1324		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1325	return ret;
1326}
1327
1328void
1329xfs_inode_set_cowblocks_tag(
1330	xfs_inode_t	*ip)
1331{
1332	trace_xfs_inode_set_cowblocks_tag(ip);
1333	return xfs_blockgc_set_iflag(ip, XFS_ICOWBLOCKS);
1334}
1335
1336void
1337xfs_inode_clear_cowblocks_tag(
1338	xfs_inode_t	*ip)
1339{
1340	trace_xfs_inode_clear_cowblocks_tag(ip);
1341	return xfs_blockgc_clear_iflag(ip, XFS_ICOWBLOCKS);
1342}
1343
1344/* Disable post-EOF and CoW block auto-reclamation. */
1345void
1346xfs_blockgc_stop(
1347	struct xfs_mount	*mp)
1348{
1349	struct xfs_perag	*pag;
1350	xfs_agnumber_t		agno;
1351
1352	if (!xfs_clear_blockgc_enabled(mp))
1353		return;
1354
1355	for_each_perag(mp, agno, pag)
1356		cancel_delayed_work_sync(&pag->pag_blockgc_work);
1357	trace_xfs_blockgc_stop(mp, __return_address);
1358}
1359
1360/* Enable post-EOF and CoW block auto-reclamation. */
1361void
1362xfs_blockgc_start(
1363	struct xfs_mount	*mp)
1364{
1365	struct xfs_perag	*pag;
1366	xfs_agnumber_t		agno;
1367
1368	if (xfs_set_blockgc_enabled(mp))
1369		return;
1370
1371	trace_xfs_blockgc_start(mp, __return_address);
1372	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1373		xfs_blockgc_queue(pag);
1374}
1375
1376/* Don't try to run block gc on an inode that's in any of these states. */
1377#define XFS_BLOCKGC_NOGRAB_IFLAGS	(XFS_INEW | \
1378					 XFS_NEED_INACTIVE | \
1379					 XFS_INACTIVATING | \
1380					 XFS_IRECLAIMABLE | \
1381					 XFS_IRECLAIM)
1382/*
1383 * Decide if the given @ip is eligible for garbage collection of speculative
1384 * preallocations, and grab it if so.  Returns true if it's ready to go or
1385 * false if we should just ignore it.
1386 */
1387static bool
1388xfs_blockgc_igrab(
1389	struct xfs_inode	*ip)
1390{
1391	struct inode		*inode = VFS_I(ip);
1392
1393	ASSERT(rcu_read_lock_held());
1394
1395	/* Check for stale RCU freed inode */
1396	spin_lock(&ip->i_flags_lock);
1397	if (!ip->i_ino)
1398		goto out_unlock_noent;
1399
1400	if (ip->i_flags & XFS_BLOCKGC_NOGRAB_IFLAGS)
1401		goto out_unlock_noent;
1402	spin_unlock(&ip->i_flags_lock);
1403
1404	/* nothing to sync during shutdown */
1405	if (xfs_is_shutdown(ip->i_mount))
1406		return false;
1407
1408	/* If we can't grab the inode, it must on it's way to reclaim. */
1409	if (!igrab(inode))
1410		return false;
1411
1412	/* inode is valid */
1413	return true;
1414
1415out_unlock_noent:
1416	spin_unlock(&ip->i_flags_lock);
1417	return false;
1418}
1419
1420/* Scan one incore inode for block preallocations that we can remove. */
1421static int
1422xfs_blockgc_scan_inode(
1423	struct xfs_inode	*ip,
1424	struct xfs_icwalk	*icw)
1425{
1426	unsigned int		lockflags = 0;
1427	int			error;
1428
1429	error = xfs_inode_free_eofblocks(ip, icw, &lockflags);
1430	if (error)
1431		goto unlock;
1432
1433	error = xfs_inode_free_cowblocks(ip, icw, &lockflags);
1434unlock:
1435	if (lockflags)
1436		xfs_iunlock(ip, lockflags);
1437	xfs_irele(ip);
1438	return error;
1439}
1440
1441/* Background worker that trims preallocated space. */
1442void
1443xfs_blockgc_worker(
1444	struct work_struct	*work)
1445{
1446	struct xfs_perag	*pag = container_of(to_delayed_work(work),
1447					struct xfs_perag, pag_blockgc_work);
1448	struct xfs_mount	*mp = pag->pag_mount;
1449	int			error;
1450
1451	trace_xfs_blockgc_worker(mp, __return_address);
1452
1453	error = xfs_icwalk_ag(pag, XFS_ICWALK_BLOCKGC, NULL);
1454	if (error)
1455		xfs_info(mp, "AG %u preallocation gc worker failed, err=%d",
1456				pag->pag_agno, error);
1457	xfs_blockgc_queue(pag);
1458}
1459
1460/*
1461 * Try to free space in the filesystem by purging inactive inodes, eofblocks
1462 * and cowblocks.
1463 */
1464int
1465xfs_blockgc_free_space(
1466	struct xfs_mount	*mp,
1467	struct xfs_icwalk	*icw)
1468{
1469	int			error;
1470
1471	trace_xfs_blockgc_free_space(mp, icw, _RET_IP_);
1472
1473	error = xfs_icwalk(mp, XFS_ICWALK_BLOCKGC, icw);
1474	if (error)
1475		return error;
1476
1477	return xfs_inodegc_flush(mp);
1478}
1479
1480/*
1481 * Reclaim all the free space that we can by scheduling the background blockgc
1482 * and inodegc workers immediately and waiting for them all to clear.
1483 */
1484int
1485xfs_blockgc_flush_all(
1486	struct xfs_mount	*mp)
1487{
1488	struct xfs_perag	*pag;
1489	xfs_agnumber_t		agno;
1490
1491	trace_xfs_blockgc_flush_all(mp, __return_address);
1492
1493	/*
1494	 * For each blockgc worker, move its queue time up to now.  If it
1495	 * wasn't queued, it will not be requeued.  Then flush whatever's
1496	 * left.
1497	 */
1498	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1499		mod_delayed_work(pag->pag_mount->m_blockgc_wq,
1500				&pag->pag_blockgc_work, 0);
1501
1502	for_each_perag_tag(mp, agno, pag, XFS_ICI_BLOCKGC_TAG)
1503		flush_delayed_work(&pag->pag_blockgc_work);
1504
1505	return xfs_inodegc_flush(mp);
1506}
1507
1508/*
1509 * Run cow/eofblocks scans on the supplied dquots.  We don't know exactly which
1510 * quota caused an allocation failure, so we make a best effort by including
1511 * each quota under low free space conditions (less than 1% free space) in the
1512 * scan.
1513 *
1514 * Callers must not hold any inode's ILOCK.  If requesting a synchronous scan
1515 * (XFS_ICWALK_FLAG_SYNC), the caller also must not hold any inode's IOLOCK or
1516 * MMAPLOCK.
1517 */
1518int
1519xfs_blockgc_free_dquots(
1520	struct xfs_mount	*mp,
1521	struct xfs_dquot	*udqp,
1522	struct xfs_dquot	*gdqp,
1523	struct xfs_dquot	*pdqp,
1524	unsigned int		iwalk_flags)
1525{
1526	struct xfs_icwalk	icw = {0};
1527	bool			do_work = false;
1528
1529	if (!udqp && !gdqp && !pdqp)
1530		return 0;
1531
1532	/*
1533	 * Run a scan to free blocks using the union filter to cover all
1534	 * applicable quotas in a single scan.
1535	 */
1536	icw.icw_flags = XFS_ICWALK_FLAG_UNION | iwalk_flags;
1537
1538	if (XFS_IS_UQUOTA_ENFORCED(mp) && udqp && xfs_dquot_lowsp(udqp)) {
1539		icw.icw_uid = make_kuid(mp->m_super->s_user_ns, udqp->q_id);
1540		icw.icw_flags |= XFS_ICWALK_FLAG_UID;
1541		do_work = true;
1542	}
1543
1544	if (XFS_IS_UQUOTA_ENFORCED(mp) && gdqp && xfs_dquot_lowsp(gdqp)) {
1545		icw.icw_gid = make_kgid(mp->m_super->s_user_ns, gdqp->q_id);
1546		icw.icw_flags |= XFS_ICWALK_FLAG_GID;
1547		do_work = true;
1548	}
1549
1550	if (XFS_IS_PQUOTA_ENFORCED(mp) && pdqp && xfs_dquot_lowsp(pdqp)) {
1551		icw.icw_prid = pdqp->q_id;
1552		icw.icw_flags |= XFS_ICWALK_FLAG_PRID;
1553		do_work = true;
1554	}
1555
1556	if (!do_work)
1557		return 0;
1558
1559	return xfs_blockgc_free_space(mp, &icw);
1560}
1561
1562/* Run cow/eofblocks scans on the quotas attached to the inode. */
1563int
1564xfs_blockgc_free_quota(
1565	struct xfs_inode	*ip,
1566	unsigned int		iwalk_flags)
1567{
1568	return xfs_blockgc_free_dquots(ip->i_mount,
1569			xfs_inode_dquot(ip, XFS_DQTYPE_USER),
1570			xfs_inode_dquot(ip, XFS_DQTYPE_GROUP),
1571			xfs_inode_dquot(ip, XFS_DQTYPE_PROJ), iwalk_flags);
1572}
1573
1574/* XFS Inode Cache Walking Code */
1575
1576/*
1577 * The inode lookup is done in batches to keep the amount of lock traffic and
1578 * radix tree lookups to a minimum. The batch size is a trade off between
1579 * lookup reduction and stack usage. This is in the reclaim path, so we can't
1580 * be too greedy.
1581 */
1582#define XFS_LOOKUP_BATCH	32
1583
1584
1585/*
1586 * Decide if we want to grab this inode in anticipation of doing work towards
1587 * the goal.
1588 */
1589static inline bool
1590xfs_icwalk_igrab(
1591	enum xfs_icwalk_goal	goal,
1592	struct xfs_inode	*ip,
1593	struct xfs_icwalk	*icw)
1594{
1595	switch (goal) {
1596	case XFS_ICWALK_BLOCKGC:
1597		return xfs_blockgc_igrab(ip);
1598	case XFS_ICWALK_RECLAIM:
1599		return xfs_reclaim_igrab(ip, icw);
1600	default:
1601		return false;
1602	}
1603}
1604
1605/*
1606 * Process an inode.  Each processing function must handle any state changes
1607 * made by the icwalk igrab function.  Return -EAGAIN to skip an inode.
1608 */
1609static inline int
1610xfs_icwalk_process_inode(
1611	enum xfs_icwalk_goal	goal,
1612	struct xfs_inode	*ip,
1613	struct xfs_perag	*pag,
1614	struct xfs_icwalk	*icw)
1615{
1616	int			error = 0;
1617
1618	switch (goal) {
1619	case XFS_ICWALK_BLOCKGC:
1620		error = xfs_blockgc_scan_inode(ip, icw);
1621		break;
1622	case XFS_ICWALK_RECLAIM:
1623		xfs_reclaim_inode(ip, pag);
1624		break;
1625	}
1626	return error;
1627}
1628
1629/*
1630 * For a given per-AG structure @pag and a goal, grab qualifying inodes and
1631 * process them in some manner.
1632 */
1633static int
1634xfs_icwalk_ag(
1635	struct xfs_perag	*pag,
1636	enum xfs_icwalk_goal	goal,
1637	struct xfs_icwalk	*icw)
1638{
1639	struct xfs_mount	*mp = pag->pag_mount;
1640	uint32_t		first_index;
1641	int			last_error = 0;
1642	int			skipped;
1643	bool			done;
1644	int			nr_found;
1645
1646restart:
1647	done = false;
1648	skipped = 0;
1649	if (goal == XFS_ICWALK_RECLAIM)
1650		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1651	else
1652		first_index = 0;
1653	nr_found = 0;
1654	do {
1655		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1656		int		error = 0;
1657		int		i;
1658
1659		rcu_read_lock();
1660
1661		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
1662				(void **) batch, first_index,
1663				XFS_LOOKUP_BATCH, goal);
1664		if (!nr_found) {
1665			done = true;
1666			rcu_read_unlock();
1667			break;
1668		}
1669
1670		/*
1671		 * Grab the inodes before we drop the lock. if we found
1672		 * nothing, nr == 0 and the loop will be skipped.
1673		 */
1674		for (i = 0; i < nr_found; i++) {
1675			struct xfs_inode *ip = batch[i];
1676
1677			if (done || !xfs_icwalk_igrab(goal, ip, icw))
1678				batch[i] = NULL;
1679
1680			/*
1681			 * Update the index for the next lookup. Catch
1682			 * overflows into the next AG range which can occur if
1683			 * we have inodes in the last block of the AG and we
1684			 * are currently pointing to the last inode.
1685			 *
1686			 * Because we may see inodes that are from the wrong AG
1687			 * due to RCU freeing and reallocation, only update the
1688			 * index if it lies in this AG. It was a race that lead
1689			 * us to see this inode, so another lookup from the
1690			 * same index will not find it again.
1691			 */
1692			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
1693				continue;
1694			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1695			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1696				done = true;
1697		}
1698
1699		/* unlock now we've grabbed the inodes. */
1700		rcu_read_unlock();
1701
1702		for (i = 0; i < nr_found; i++) {
1703			if (!batch[i])
1704				continue;
1705			error = xfs_icwalk_process_inode(goal, batch[i], pag,
1706					icw);
1707			if (error == -EAGAIN) {
1708				skipped++;
1709				continue;
1710			}
1711			if (error && last_error != -EFSCORRUPTED)
1712				last_error = error;
1713		}
1714
1715		/* bail out if the filesystem is corrupted.  */
1716		if (error == -EFSCORRUPTED)
1717			break;
1718
1719		cond_resched();
1720
1721		if (icw && (icw->icw_flags & XFS_ICWALK_FLAG_SCAN_LIMIT)) {
1722			icw->icw_scan_limit -= XFS_LOOKUP_BATCH;
1723			if (icw->icw_scan_limit <= 0)
1724				break;
1725		}
1726	} while (nr_found && !done);
1727
1728	if (goal == XFS_ICWALK_RECLAIM) {
1729		if (done)
1730			first_index = 0;
1731		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1732	}
1733
1734	if (skipped) {
1735		delay(1);
1736		goto restart;
1737	}
1738	return last_error;
1739}
1740
1741/* Walk all incore inodes to achieve a given goal. */
1742static int
1743xfs_icwalk(
1744	struct xfs_mount	*mp,
1745	enum xfs_icwalk_goal	goal,
1746	struct xfs_icwalk	*icw)
1747{
1748	struct xfs_perag	*pag;
1749	int			error = 0;
1750	int			last_error = 0;
1751	xfs_agnumber_t		agno;
1752
1753	for_each_perag_tag(mp, agno, pag, goal) {
1754		error = xfs_icwalk_ag(pag, goal, icw);
1755		if (error) {
1756			last_error = error;
1757			if (error == -EFSCORRUPTED) {
1758				xfs_perag_rele(pag);
1759				break;
1760			}
1761		}
1762	}
1763	return last_error;
1764	BUILD_BUG_ON(XFS_ICWALK_PRIVATE_FLAGS & XFS_ICWALK_FLAGS_VALID);
1765}
1766
1767#ifdef DEBUG
1768static void
1769xfs_check_delalloc(
1770	struct xfs_inode	*ip,
1771	int			whichfork)
1772{
1773	struct xfs_ifork	*ifp = xfs_ifork_ptr(ip, whichfork);
1774	struct xfs_bmbt_irec	got;
1775	struct xfs_iext_cursor	icur;
1776
1777	if (!ifp || !xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got))
1778		return;
1779	do {
1780		if (isnullstartblock(got.br_startblock)) {
1781			xfs_warn(ip->i_mount,
1782	"ino %llx %s fork has delalloc extent at [0x%llx:0x%llx]",
1783				ip->i_ino,
1784				whichfork == XFS_DATA_FORK ? "data" : "cow",
1785				got.br_startoff, got.br_blockcount);
1786		}
1787	} while (xfs_iext_next_extent(ifp, &icur, &got));
1788}
1789#else
1790#define xfs_check_delalloc(ip, whichfork)	do { } while (0)
1791#endif
1792
1793/* Schedule the inode for reclaim. */
1794static void
1795xfs_inodegc_set_reclaimable(
1796	struct xfs_inode	*ip)
1797{
1798	struct xfs_mount	*mp = ip->i_mount;
1799	struct xfs_perag	*pag;
1800
1801	if (!xfs_is_shutdown(mp) && ip->i_delayed_blks) {
1802		xfs_check_delalloc(ip, XFS_DATA_FORK);
1803		xfs_check_delalloc(ip, XFS_COW_FORK);
1804		ASSERT(0);
1805	}
1806
1807	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1808	spin_lock(&pag->pag_ici_lock);
1809	spin_lock(&ip->i_flags_lock);
1810
1811	trace_xfs_inode_set_reclaimable(ip);
1812	ip->i_flags &= ~(XFS_NEED_INACTIVE | XFS_INACTIVATING);
1813	ip->i_flags |= XFS_IRECLAIMABLE;
1814	xfs_perag_set_inode_tag(pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
1815			XFS_ICI_RECLAIM_TAG);
1816
1817	spin_unlock(&ip->i_flags_lock);
1818	spin_unlock(&pag->pag_ici_lock);
1819	xfs_perag_put(pag);
1820}
1821
1822/*
1823 * Free all speculative preallocations and possibly even the inode itself.
1824 * This is the last chance to make changes to an otherwise unreferenced file
1825 * before incore reclamation happens.
1826 */
1827static int
1828xfs_inodegc_inactivate(
1829	struct xfs_inode	*ip)
1830{
1831	int			error;
1832
1833	trace_xfs_inode_inactivating(ip);
1834	error = xfs_inactive(ip);
1835	xfs_inodegc_set_reclaimable(ip);
1836	return error;
1837
1838}
1839
1840void
1841xfs_inodegc_worker(
1842	struct work_struct	*work)
1843{
1844	struct xfs_inodegc	*gc = container_of(to_delayed_work(work),
1845						struct xfs_inodegc, work);
1846	struct llist_node	*node = llist_del_all(&gc->list);
1847	struct xfs_inode	*ip, *n;
1848	struct xfs_mount	*mp = gc->mp;
1849	unsigned int		nofs_flag;
1850
1851	/*
1852	 * Clear the cpu mask bit and ensure that we have seen the latest
1853	 * update of the gc structure associated with this CPU. This matches
1854	 * with the release semantics used when setting the cpumask bit in
1855	 * xfs_inodegc_queue.
1856	 */
1857	cpumask_clear_cpu(gc->cpu, &mp->m_inodegc_cpumask);
1858	smp_mb__after_atomic();
1859
1860	WRITE_ONCE(gc->items, 0);
1861
1862	if (!node)
1863		return;
1864
1865	/*
1866	 * We can allocate memory here while doing writeback on behalf of
1867	 * memory reclaim.  To avoid memory allocation deadlocks set the
1868	 * task-wide nofs context for the following operations.
1869	 */
1870	nofs_flag = memalloc_nofs_save();
1871
1872	ip = llist_entry(node, struct xfs_inode, i_gclist);
1873	trace_xfs_inodegc_worker(mp, READ_ONCE(gc->shrinker_hits));
1874
1875	WRITE_ONCE(gc->shrinker_hits, 0);
1876	llist_for_each_entry_safe(ip, n, node, i_gclist) {
1877		int	error;
1878
1879		xfs_iflags_set(ip, XFS_INACTIVATING);
1880		error = xfs_inodegc_inactivate(ip);
1881		if (error && !gc->error)
1882			gc->error = error;
1883	}
1884
1885	memalloc_nofs_restore(nofs_flag);
1886}
1887
1888/*
1889 * Expedite all pending inodegc work to run immediately. This does not wait for
1890 * completion of the work.
1891 */
1892void
1893xfs_inodegc_push(
1894	struct xfs_mount	*mp)
1895{
1896	if (!xfs_is_inodegc_enabled(mp))
1897		return;
1898	trace_xfs_inodegc_push(mp, __return_address);
1899	xfs_inodegc_queue_all(mp);
1900}
1901
1902/*
1903 * Force all currently queued inode inactivation work to run immediately and
1904 * wait for the work to finish.
1905 */
1906int
1907xfs_inodegc_flush(
1908	struct xfs_mount	*mp)
1909{
1910	xfs_inodegc_push(mp);
1911	trace_xfs_inodegc_flush(mp, __return_address);
1912	return xfs_inodegc_wait_all(mp);
1913}
1914
1915/*
1916 * Flush all the pending work and then disable the inode inactivation background
1917 * workers and wait for them to stop.  Caller must hold sb->s_umount to
1918 * coordinate changes in the inodegc_enabled state.
1919 */
1920void
1921xfs_inodegc_stop(
1922	struct xfs_mount	*mp)
1923{
1924	bool			rerun;
1925
1926	if (!xfs_clear_inodegc_enabled(mp))
1927		return;
1928
1929	/*
1930	 * Drain all pending inodegc work, including inodes that could be
1931	 * queued by racing xfs_inodegc_queue or xfs_inodegc_shrinker_scan
1932	 * threads that sample the inodegc state just prior to us clearing it.
1933	 * The inodegc flag state prevents new threads from queuing more
1934	 * inodes, so we queue pending work items and flush the workqueue until
1935	 * all inodegc lists are empty.  IOWs, we cannot use drain_workqueue
1936	 * here because it does not allow other unserialized mechanisms to
1937	 * reschedule inodegc work while this draining is in progress.
1938	 */
1939	xfs_inodegc_queue_all(mp);
1940	do {
1941		flush_workqueue(mp->m_inodegc_wq);
1942		rerun = xfs_inodegc_queue_all(mp);
1943	} while (rerun);
1944
1945	trace_xfs_inodegc_stop(mp, __return_address);
1946}
1947
1948/*
1949 * Enable the inode inactivation background workers and schedule deferred inode
1950 * inactivation work if there is any.  Caller must hold sb->s_umount to
1951 * coordinate changes in the inodegc_enabled state.
1952 */
1953void
1954xfs_inodegc_start(
1955	struct xfs_mount	*mp)
1956{
1957	if (xfs_set_inodegc_enabled(mp))
1958		return;
1959
1960	trace_xfs_inodegc_start(mp, __return_address);
1961	xfs_inodegc_queue_all(mp);
1962}
1963
1964#ifdef CONFIG_XFS_RT
1965static inline bool
1966xfs_inodegc_want_queue_rt_file(
1967	struct xfs_inode	*ip)
1968{
1969	struct xfs_mount	*mp = ip->i_mount;
1970
1971	if (!XFS_IS_REALTIME_INODE(ip))
1972		return false;
1973
1974	if (__percpu_counter_compare(&mp->m_frextents,
1975				mp->m_low_rtexts[XFS_LOWSP_5_PCNT],
1976				XFS_FDBLOCKS_BATCH) < 0)
1977		return true;
1978
1979	return false;
1980}
1981#else
1982# define xfs_inodegc_want_queue_rt_file(ip)	(false)
1983#endif /* CONFIG_XFS_RT */
1984
1985/*
1986 * Schedule the inactivation worker when:
1987 *
1988 *  - We've accumulated more than one inode cluster buffer's worth of inodes.
1989 *  - There is less than 5% free space left.
1990 *  - Any of the quotas for this inode are near an enforcement limit.
1991 */
1992static inline bool
1993xfs_inodegc_want_queue_work(
1994	struct xfs_inode	*ip,
1995	unsigned int		items)
1996{
1997	struct xfs_mount	*mp = ip->i_mount;
1998
1999	if (items > mp->m_ino_geo.inodes_per_cluster)
2000		return true;
2001
2002	if (__percpu_counter_compare(&mp->m_fdblocks,
2003				mp->m_low_space[XFS_LOWSP_5_PCNT],
2004				XFS_FDBLOCKS_BATCH) < 0)
2005		return true;
2006
2007	if (xfs_inodegc_want_queue_rt_file(ip))
2008		return true;
2009
2010	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_USER))
2011		return true;
2012
2013	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_GROUP))
2014		return true;
2015
2016	if (xfs_inode_near_dquot_enforcement(ip, XFS_DQTYPE_PROJ))
2017		return true;
2018
2019	return false;
2020}
2021
2022/*
2023 * Upper bound on the number of inodes in each AG that can be queued for
2024 * inactivation at any given time, to avoid monopolizing the workqueue.
2025 */
2026#define XFS_INODEGC_MAX_BACKLOG		(4 * XFS_INODES_PER_CHUNK)
2027
2028/*
2029 * Make the frontend wait for inactivations when:
2030 *
2031 *  - Memory shrinkers queued the inactivation worker and it hasn't finished.
2032 *  - The queue depth exceeds the maximum allowable percpu backlog.
2033 *
2034 * Note: If the current thread is running a transaction, we don't ever want to
2035 * wait for other transactions because that could introduce a deadlock.
2036 */
2037static inline bool
2038xfs_inodegc_want_flush_work(
2039	struct xfs_inode	*ip,
2040	unsigned int		items,
2041	unsigned int		shrinker_hits)
2042{
2043	if (current->journal_info)
2044		return false;
2045
2046	if (shrinker_hits > 0)
2047		return true;
2048
2049	if (items > XFS_INODEGC_MAX_BACKLOG)
2050		return true;
2051
2052	return false;
2053}
2054
2055/*
2056 * Queue a background inactivation worker if there are inodes that need to be
2057 * inactivated and higher level xfs code hasn't disabled the background
2058 * workers.
2059 */
2060static void
2061xfs_inodegc_queue(
2062	struct xfs_inode	*ip)
2063{
2064	struct xfs_mount	*mp = ip->i_mount;
2065	struct xfs_inodegc	*gc;
2066	int			items;
2067	unsigned int		shrinker_hits;
2068	unsigned int		cpu_nr;
2069	unsigned long		queue_delay = 1;
2070
2071	trace_xfs_inode_set_need_inactive(ip);
2072	spin_lock(&ip->i_flags_lock);
2073	ip->i_flags |= XFS_NEED_INACTIVE;
2074	spin_unlock(&ip->i_flags_lock);
2075
2076	cpu_nr = get_cpu();
2077	gc = this_cpu_ptr(mp->m_inodegc);
2078	llist_add(&ip->i_gclist, &gc->list);
2079	items = READ_ONCE(gc->items);
2080	WRITE_ONCE(gc->items, items + 1);
2081	shrinker_hits = READ_ONCE(gc->shrinker_hits);
2082
2083	/*
2084	 * Ensure the list add is always seen by anyone who finds the cpumask
2085	 * bit set. This effectively gives the cpumask bit set operation
2086	 * release ordering semantics.
2087	 */
2088	smp_mb__before_atomic();
2089	if (!cpumask_test_cpu(cpu_nr, &mp->m_inodegc_cpumask))
2090		cpumask_test_and_set_cpu(cpu_nr, &mp->m_inodegc_cpumask);
2091
2092	/*
2093	 * We queue the work while holding the current CPU so that the work
2094	 * is scheduled to run on this CPU.
2095	 */
2096	if (!xfs_is_inodegc_enabled(mp)) {
2097		put_cpu();
2098		return;
2099	}
2100
2101	if (xfs_inodegc_want_queue_work(ip, items))
2102		queue_delay = 0;
2103
2104	trace_xfs_inodegc_queue(mp, __return_address);
2105	mod_delayed_work_on(current_cpu(), mp->m_inodegc_wq, &gc->work,
2106			queue_delay);
2107	put_cpu();
2108
2109	if (xfs_inodegc_want_flush_work(ip, items, shrinker_hits)) {
2110		trace_xfs_inodegc_throttle(mp, __return_address);
2111		flush_delayed_work(&gc->work);
2112	}
2113}
2114
2115/*
2116 * We set the inode flag atomically with the radix tree tag.  Once we get tag
2117 * lookups on the radix tree, this inode flag can go away.
2118 *
2119 * We always use background reclaim here because even if the inode is clean, it
2120 * still may be under IO and hence we have wait for IO completion to occur
2121 * before we can reclaim the inode. The background reclaim path handles this
2122 * more efficiently than we can here, so simply let background reclaim tear down
2123 * all inodes.
2124 */
2125void
2126xfs_inode_mark_reclaimable(
2127	struct xfs_inode	*ip)
2128{
2129	struct xfs_mount	*mp = ip->i_mount;
2130	bool			need_inactive;
2131
2132	XFS_STATS_INC(mp, vn_reclaim);
2133
2134	/*
2135	 * We should never get here with any of the reclaim flags already set.
2136	 */
2137	ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_ALL_IRECLAIM_FLAGS));
2138
2139	need_inactive = xfs_inode_needs_inactive(ip);
2140	if (need_inactive) {
2141		xfs_inodegc_queue(ip);
2142		return;
2143	}
2144
2145	/* Going straight to reclaim, so drop the dquots. */
2146	xfs_qm_dqdetach(ip);
2147	xfs_inodegc_set_reclaimable(ip);
2148}
2149
2150/*
2151 * Register a phony shrinker so that we can run background inodegc sooner when
2152 * there's memory pressure.  Inactivation does not itself free any memory but
2153 * it does make inodes reclaimable, which eventually frees memory.
2154 *
2155 * The count function, seek value, and batch value are crafted to trigger the
2156 * scan function during the second round of scanning.  Hopefully this means
2157 * that we reclaimed enough memory that initiating metadata transactions won't
2158 * make things worse.
2159 */
2160#define XFS_INODEGC_SHRINKER_COUNT	(1UL << DEF_PRIORITY)
2161#define XFS_INODEGC_SHRINKER_BATCH	((XFS_INODEGC_SHRINKER_COUNT / 2) + 1)
2162
2163static unsigned long
2164xfs_inodegc_shrinker_count(
2165	struct shrinker		*shrink,
2166	struct shrink_control	*sc)
2167{
2168	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2169						   m_inodegc_shrinker);
2170	struct xfs_inodegc	*gc;
2171	int			cpu;
2172
2173	if (!xfs_is_inodegc_enabled(mp))
2174		return 0;
2175
2176	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2177		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2178		if (!llist_empty(&gc->list))
2179			return XFS_INODEGC_SHRINKER_COUNT;
2180	}
2181
2182	return 0;
2183}
2184
2185static unsigned long
2186xfs_inodegc_shrinker_scan(
2187	struct shrinker		*shrink,
2188	struct shrink_control	*sc)
2189{
2190	struct xfs_mount	*mp = container_of(shrink, struct xfs_mount,
2191						   m_inodegc_shrinker);
2192	struct xfs_inodegc	*gc;
2193	int			cpu;
2194	bool			no_items = true;
2195
2196	if (!xfs_is_inodegc_enabled(mp))
2197		return SHRINK_STOP;
2198
2199	trace_xfs_inodegc_shrinker_scan(mp, sc, __return_address);
2200
2201	for_each_cpu(cpu, &mp->m_inodegc_cpumask) {
2202		gc = per_cpu_ptr(mp->m_inodegc, cpu);
2203		if (!llist_empty(&gc->list)) {
2204			unsigned int	h = READ_ONCE(gc->shrinker_hits);
2205
2206			WRITE_ONCE(gc->shrinker_hits, h + 1);
2207			mod_delayed_work_on(cpu, mp->m_inodegc_wq, &gc->work, 0);
2208			no_items = false;
2209		}
2210	}
2211
2212	/*
2213	 * If there are no inodes to inactivate, we don't want the shrinker
2214	 * to think there's deferred work to call us back about.
2215	 */
2216	if (no_items)
2217		return LONG_MAX;
2218
2219	return SHRINK_STOP;
2220}
2221
2222/* Register a shrinker so we can accelerate inodegc and throttle queuing. */
2223int
2224xfs_inodegc_register_shrinker(
2225	struct xfs_mount	*mp)
2226{
2227	struct shrinker		*shrink = &mp->m_inodegc_shrinker;
2228
2229	shrink->count_objects = xfs_inodegc_shrinker_count;
2230	shrink->scan_objects = xfs_inodegc_shrinker_scan;
2231	shrink->seeks = 0;
2232	shrink->flags = SHRINKER_NONSLAB;
2233	shrink->batch = XFS_INODEGC_SHRINKER_BATCH;
2234
2235	return register_shrinker(shrink, "xfs-inodegc:%s", mp->m_super->s_id);
2236}
2237