1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_bit.h"
12#include "xfs_shared.h"
13#include "xfs_mount.h"
14#include "xfs_ag.h"
15#include "xfs_defer.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_extfree_item.h"
19#include "xfs_log.h"
20#include "xfs_btree.h"
21#include "xfs_rmap.h"
22#include "xfs_alloc.h"
23#include "xfs_bmap.h"
24#include "xfs_trace.h"
25#include "xfs_error.h"
26#include "xfs_log_priv.h"
27#include "xfs_log_recover.h"
28
29struct kmem_cache	*xfs_efi_cache;
30struct kmem_cache	*xfs_efd_cache;
31
32static const struct xfs_item_ops xfs_efi_item_ops;
33
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36	return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
38
39STATIC void
40xfs_efi_item_free(
41	struct xfs_efi_log_item	*efip)
42{
43	kmem_free(efip->efi_item.li_lv_shadow);
44	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45		kmem_free(efip);
46	else
47		kmem_cache_free(xfs_efi_cache, efip);
48}
49
50/*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57STATIC void
58xfs_efi_release(
59	struct xfs_efi_log_item	*efip)
60{
61	ASSERT(atomic_read(&efip->efi_refcount) > 0);
62	if (!atomic_dec_and_test(&efip->efi_refcount))
63		return;
64
65	xfs_trans_ail_delete(&efip->efi_item, 0);
66	xfs_efi_item_free(efip);
67}
68
69STATIC void
70xfs_efi_item_size(
71	struct xfs_log_item	*lip,
72	int			*nvecs,
73	int			*nbytes)
74{
75	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
76
77	*nvecs += 1;
78	*nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79}
80
81/*
82 * This is called to fill in the vector of log iovecs for the
83 * given efi log item. We use only 1 iovec, and we point that
84 * at the efi_log_format structure embedded in the efi item.
85 * It is at this point that we assert that all of the extent
86 * slots in the efi item have been filled.
87 */
88STATIC void
89xfs_efi_item_format(
90	struct xfs_log_item	*lip,
91	struct xfs_log_vec	*lv)
92{
93	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
94	struct xfs_log_iovec	*vecp = NULL;
95
96	ASSERT(atomic_read(&efip->efi_next_extent) ==
97				efip->efi_format.efi_nextents);
98
99	efip->efi_format.efi_type = XFS_LI_EFI;
100	efip->efi_format.efi_size = 1;
101
102	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103			&efip->efi_format,
104			xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105}
106
107
108/*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116STATIC void
117xfs_efi_item_unpin(
118	struct xfs_log_item	*lip,
119	int			remove)
120{
121	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
122	xfs_efi_release(efip);
123}
124
125/*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130STATIC void
131xfs_efi_item_release(
132	struct xfs_log_item	*lip)
133{
134	xfs_efi_release(EFI_ITEM(lip));
135}
136
137/*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140STATIC struct xfs_efi_log_item *
141xfs_efi_init(
142	struct xfs_mount	*mp,
143	uint			nextents)
144
145{
146	struct xfs_efi_log_item	*efip;
147
148	ASSERT(nextents > 0);
149	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150		efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151				GFP_KERNEL | __GFP_NOFAIL);
152	} else {
153		efip = kmem_cache_zalloc(xfs_efi_cache,
154					 GFP_KERNEL | __GFP_NOFAIL);
155	}
156
157	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158	efip->efi_format.efi_nextents = nextents;
159	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160	atomic_set(&efip->efi_next_extent, 0);
161	atomic_set(&efip->efi_refcount, 2);
162
163	return efip;
164}
165
166/*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173STATIC int
174xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175{
176	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177	uint i;
178	uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179	uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180	uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182	if (buf->i_len == len) {
183		memcpy(dst_efi_fmt, src_efi_fmt,
184		       offsetof(struct xfs_efi_log_format, efi_extents));
185		for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186			memcpy(&dst_efi_fmt->efi_extents[i],
187			       &src_efi_fmt->efi_extents[i],
188			       sizeof(struct xfs_extent));
189		return 0;
190	} else if (buf->i_len == len32) {
191		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
194		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
195		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
197		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198			dst_efi_fmt->efi_extents[i].ext_start =
199				src_efi_fmt_32->efi_extents[i].ext_start;
200			dst_efi_fmt->efi_extents[i].ext_len =
201				src_efi_fmt_32->efi_extents[i].ext_len;
202		}
203		return 0;
204	} else if (buf->i_len == len64) {
205		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
208		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
209		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
211		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212			dst_efi_fmt->efi_extents[i].ext_start =
213				src_efi_fmt_64->efi_extents[i].ext_start;
214			dst_efi_fmt->efi_extents[i].ext_len =
215				src_efi_fmt_64->efi_extents[i].ext_len;
216		}
217		return 0;
218	}
219	XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220			buf->i_len);
221	return -EFSCORRUPTED;
222}
223
224static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225{
226	return container_of(lip, struct xfs_efd_log_item, efd_item);
227}
228
229STATIC void
230xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231{
232	kmem_free(efdp->efd_item.li_lv_shadow);
233	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234		kmem_free(efdp);
235	else
236		kmem_cache_free(xfs_efd_cache, efdp);
237}
238
239STATIC void
240xfs_efd_item_size(
241	struct xfs_log_item	*lip,
242	int			*nvecs,
243	int			*nbytes)
244{
245	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
246
247	*nvecs += 1;
248	*nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249}
250
251/*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258STATIC void
259xfs_efd_item_format(
260	struct xfs_log_item	*lip,
261	struct xfs_log_vec	*lv)
262{
263	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
264	struct xfs_log_iovec	*vecp = NULL;
265
266	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267
268	efdp->efd_format.efd_type = XFS_LI_EFD;
269	efdp->efd_format.efd_size = 1;
270
271	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272			&efdp->efd_format,
273			xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274}
275
276/*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280STATIC void
281xfs_efd_item_release(
282	struct xfs_log_item	*lip)
283{
284	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
285
286	xfs_efi_release(efdp->efd_efip);
287	xfs_efd_item_free(efdp);
288}
289
290static struct xfs_log_item *
291xfs_efd_item_intent(
292	struct xfs_log_item	*lip)
293{
294	return &EFD_ITEM(lip)->efd_efip->efi_item;
295}
296
297static const struct xfs_item_ops xfs_efd_item_ops = {
298	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED |
299			  XFS_ITEM_INTENT_DONE,
300	.iop_size	= xfs_efd_item_size,
301	.iop_format	= xfs_efd_item_format,
302	.iop_release	= xfs_efd_item_release,
303	.iop_intent	= xfs_efd_item_intent,
304};
305
306/*
307 * Allocate an "extent free done" log item that will hold nextents worth of
308 * extents.  The caller must use all nextents extents, because we are not
309 * flexible about this at all.
310 */
311static struct xfs_efd_log_item *
312xfs_trans_get_efd(
313	struct xfs_trans		*tp,
314	struct xfs_efi_log_item		*efip,
315	unsigned int			nextents)
316{
317	struct xfs_efd_log_item		*efdp;
318
319	ASSERT(nextents > 0);
320
321	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
322		efdp = kzalloc(xfs_efd_log_item_sizeof(nextents),
323				GFP_KERNEL | __GFP_NOFAIL);
324	} else {
325		efdp = kmem_cache_zalloc(xfs_efd_cache,
326					GFP_KERNEL | __GFP_NOFAIL);
327	}
328
329	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
330			  &xfs_efd_item_ops);
331	efdp->efd_efip = efip;
332	efdp->efd_format.efd_nextents = nextents;
333	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
334
335	xfs_trans_add_item(tp, &efdp->efd_item);
336	return efdp;
337}
338
339/*
340 * Fill the EFD with all extents from the EFI when we need to roll the
341 * transaction and continue with a new EFI.
342 *
343 * This simply copies all the extents in the EFI to the EFD rather than make
344 * assumptions about which extents in the EFI have already been processed. We
345 * currently keep the xefi list in the same order as the EFI extent list, but
346 * that may not always be the case. Copying everything avoids leaving a landmine
347 * were we fail to cancel all the extents in an EFI if the xefi list is
348 * processed in a different order to the extents in the EFI.
349 */
350static void
351xfs_efd_from_efi(
352	struct xfs_efd_log_item	*efdp)
353{
354	struct xfs_efi_log_item *efip = efdp->efd_efip;
355	uint                    i;
356
357	ASSERT(efip->efi_format.efi_nextents > 0);
358	ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
359
360	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
361	       efdp->efd_format.efd_extents[i] =
362		       efip->efi_format.efi_extents[i];
363	}
364	efdp->efd_next_extent = efip->efi_format.efi_nextents;
365}
366
367/*
368 * Free an extent and log it to the EFD. Note that the transaction is marked
369 * dirty regardless of whether the extent free succeeds or fails to support the
370 * EFI/EFD lifecycle rules.
371 */
372static int
373xfs_trans_free_extent(
374	struct xfs_trans		*tp,
375	struct xfs_efd_log_item		*efdp,
376	struct xfs_extent_free_item	*xefi)
377{
378	struct xfs_owner_info		oinfo = { };
379	struct xfs_mount		*mp = tp->t_mountp;
380	struct xfs_extent		*extp;
381	uint				next_extent;
382	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
383							xefi->xefi_startblock);
384	int				error;
385
386	oinfo.oi_owner = xefi->xefi_owner;
387	if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
388		oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
389	if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
390		oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
391
392	trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
393			agbno, xefi->xefi_blockcount);
394
395	error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
396			xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
397			xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
398
399	/*
400	 * Mark the transaction dirty, even on error. This ensures the
401	 * transaction is aborted, which:
402	 *
403	 * 1.) releases the EFI and frees the EFD
404	 * 2.) shuts down the filesystem
405	 */
406	tp->t_flags |= XFS_TRANS_DIRTY | XFS_TRANS_HAS_INTENT_DONE;
407	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
408
409	/*
410	 * If we need a new transaction to make progress, the caller will log a
411	 * new EFI with the current contents. It will also log an EFD to cancel
412	 * the existing EFI, and so we need to copy all the unprocessed extents
413	 * in this EFI to the EFD so this works correctly.
414	 */
415	if (error == -EAGAIN) {
416		xfs_efd_from_efi(efdp);
417		return error;
418	}
419
420	next_extent = efdp->efd_next_extent;
421	ASSERT(next_extent < efdp->efd_format.efd_nextents);
422	extp = &(efdp->efd_format.efd_extents[next_extent]);
423	extp->ext_start = xefi->xefi_startblock;
424	extp->ext_len = xefi->xefi_blockcount;
425	efdp->efd_next_extent++;
426
427	return error;
428}
429
430/* Sort bmap items by AG. */
431static int
432xfs_extent_free_diff_items(
433	void				*priv,
434	const struct list_head		*a,
435	const struct list_head		*b)
436{
437	struct xfs_extent_free_item	*ra;
438	struct xfs_extent_free_item	*rb;
439
440	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
441	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
442
443	return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
444}
445
446/* Log a free extent to the intent item. */
447STATIC void
448xfs_extent_free_log_item(
449	struct xfs_trans		*tp,
450	struct xfs_efi_log_item		*efip,
451	struct xfs_extent_free_item	*xefi)
452{
453	uint				next_extent;
454	struct xfs_extent		*extp;
455
456	tp->t_flags |= XFS_TRANS_DIRTY;
457	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
458
459	/*
460	 * atomic_inc_return gives us the value after the increment;
461	 * we want to use it as an array index so we need to subtract 1 from
462	 * it.
463	 */
464	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
465	ASSERT(next_extent < efip->efi_format.efi_nextents);
466	extp = &efip->efi_format.efi_extents[next_extent];
467	extp->ext_start = xefi->xefi_startblock;
468	extp->ext_len = xefi->xefi_blockcount;
469}
470
471static struct xfs_log_item *
472xfs_extent_free_create_intent(
473	struct xfs_trans		*tp,
474	struct list_head		*items,
475	unsigned int			count,
476	bool				sort)
477{
478	struct xfs_mount		*mp = tp->t_mountp;
479	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
480	struct xfs_extent_free_item	*xefi;
481
482	ASSERT(count > 0);
483
484	xfs_trans_add_item(tp, &efip->efi_item);
485	if (sort)
486		list_sort(mp, items, xfs_extent_free_diff_items);
487	list_for_each_entry(xefi, items, xefi_list)
488		xfs_extent_free_log_item(tp, efip, xefi);
489	return &efip->efi_item;
490}
491
492/* Get an EFD so we can process all the free extents. */
493static struct xfs_log_item *
494xfs_extent_free_create_done(
495	struct xfs_trans		*tp,
496	struct xfs_log_item		*intent,
497	unsigned int			count)
498{
499	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
500}
501
502/* Take a passive ref to the AG containing the space we're freeing. */
503void
504xfs_extent_free_get_group(
505	struct xfs_mount		*mp,
506	struct xfs_extent_free_item	*xefi)
507{
508	xfs_agnumber_t			agno;
509
510	agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
511	xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
512}
513
514/* Release a passive AG ref after some freeing work. */
515static inline void
516xfs_extent_free_put_group(
517	struct xfs_extent_free_item	*xefi)
518{
519	xfs_perag_intent_put(xefi->xefi_pag);
520}
521
522/* Process a free extent. */
523STATIC int
524xfs_extent_free_finish_item(
525	struct xfs_trans		*tp,
526	struct xfs_log_item		*done,
527	struct list_head		*item,
528	struct xfs_btree_cur		**state)
529{
530	struct xfs_extent_free_item	*xefi;
531	int				error;
532
533	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
534
535	error = xfs_trans_free_extent(tp, EFD_ITEM(done), xefi);
536
537	/*
538	 * Don't free the XEFI if we need a new transaction to complete
539	 * processing of it.
540	 */
541	if (error == -EAGAIN)
542		return error;
543
544	xfs_extent_free_put_group(xefi);
545	kmem_cache_free(xfs_extfree_item_cache, xefi);
546	return error;
547}
548
549/* Abort all pending EFIs. */
550STATIC void
551xfs_extent_free_abort_intent(
552	struct xfs_log_item		*intent)
553{
554	xfs_efi_release(EFI_ITEM(intent));
555}
556
557/* Cancel a free extent. */
558STATIC void
559xfs_extent_free_cancel_item(
560	struct list_head		*item)
561{
562	struct xfs_extent_free_item	*xefi;
563
564	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
565
566	xfs_extent_free_put_group(xefi);
567	kmem_cache_free(xfs_extfree_item_cache, xefi);
568}
569
570const struct xfs_defer_op_type xfs_extent_free_defer_type = {
571	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
572	.create_intent	= xfs_extent_free_create_intent,
573	.abort_intent	= xfs_extent_free_abort_intent,
574	.create_done	= xfs_extent_free_create_done,
575	.finish_item	= xfs_extent_free_finish_item,
576	.cancel_item	= xfs_extent_free_cancel_item,
577};
578
579/*
580 * AGFL blocks are accounted differently in the reserve pools and are not
581 * inserted into the busy extent list.
582 */
583STATIC int
584xfs_agfl_free_finish_item(
585	struct xfs_trans		*tp,
586	struct xfs_log_item		*done,
587	struct list_head		*item,
588	struct xfs_btree_cur		**state)
589{
590	struct xfs_owner_info		oinfo = { };
591	struct xfs_mount		*mp = tp->t_mountp;
592	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
593	struct xfs_extent_free_item	*xefi;
594	struct xfs_extent		*extp;
595	struct xfs_buf			*agbp;
596	int				error;
597	xfs_agblock_t			agbno;
598	uint				next_extent;
599
600	xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
601	ASSERT(xefi->xefi_blockcount == 1);
602	agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
603	oinfo.oi_owner = xefi->xefi_owner;
604
605	trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
606			xefi->xefi_blockcount);
607
608	error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
609	if (!error)
610		error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
611				agbno, agbp, &oinfo);
612
613	/*
614	 * Mark the transaction dirty, even on error. This ensures the
615	 * transaction is aborted, which:
616	 *
617	 * 1.) releases the EFI and frees the EFD
618	 * 2.) shuts down the filesystem
619	 */
620	tp->t_flags |= XFS_TRANS_DIRTY;
621	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
622
623	next_extent = efdp->efd_next_extent;
624	ASSERT(next_extent < efdp->efd_format.efd_nextents);
625	extp = &(efdp->efd_format.efd_extents[next_extent]);
626	extp->ext_start = xefi->xefi_startblock;
627	extp->ext_len = xefi->xefi_blockcount;
628	efdp->efd_next_extent++;
629
630	xfs_extent_free_put_group(xefi);
631	kmem_cache_free(xfs_extfree_item_cache, xefi);
632	return error;
633}
634
635/* sub-type with special handling for AGFL deferred frees */
636const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
637	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
638	.create_intent	= xfs_extent_free_create_intent,
639	.abort_intent	= xfs_extent_free_abort_intent,
640	.create_done	= xfs_extent_free_create_done,
641	.finish_item	= xfs_agfl_free_finish_item,
642	.cancel_item	= xfs_extent_free_cancel_item,
643};
644
645/* Is this recovered EFI ok? */
646static inline bool
647xfs_efi_validate_ext(
648	struct xfs_mount		*mp,
649	struct xfs_extent		*extp)
650{
651	return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
652}
653
654/*
655 * Process an extent free intent item that was recovered from
656 * the log.  We need to free the extents that it describes.
657 */
658STATIC int
659xfs_efi_item_recover(
660	struct xfs_log_item		*lip,
661	struct list_head		*capture_list)
662{
663	struct xfs_trans_res		resv;
664	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
665	struct xfs_mount		*mp = lip->li_log->l_mp;
666	struct xfs_efd_log_item		*efdp;
667	struct xfs_trans		*tp;
668	int				i;
669	int				error = 0;
670	bool				requeue_only = false;
671
672	/*
673	 * First check the validity of the extents described by the
674	 * EFI.  If any are bad, then assume that all are bad and
675	 * just toss the EFI.
676	 */
677	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
678		if (!xfs_efi_validate_ext(mp,
679					&efip->efi_format.efi_extents[i])) {
680			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
681					&efip->efi_format,
682					sizeof(efip->efi_format));
683			return -EFSCORRUPTED;
684		}
685	}
686
687	resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
688	error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
689	if (error)
690		return error;
691	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
692
693	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
694		struct xfs_extent_free_item	fake = {
695			.xefi_owner		= XFS_RMAP_OWN_UNKNOWN,
696			.xefi_agresv		= XFS_AG_RESV_NONE,
697		};
698		struct xfs_extent		*extp;
699
700		extp = &efip->efi_format.efi_extents[i];
701
702		fake.xefi_startblock = extp->ext_start;
703		fake.xefi_blockcount = extp->ext_len;
704
705		if (!requeue_only) {
706			xfs_extent_free_get_group(mp, &fake);
707			error = xfs_trans_free_extent(tp, efdp, &fake);
708			xfs_extent_free_put_group(&fake);
709		}
710
711		/*
712		 * If we can't free the extent without potentially deadlocking,
713		 * requeue the rest of the extents to a new so that they get
714		 * run again later with a new transaction context.
715		 */
716		if (error == -EAGAIN || requeue_only) {
717			error = xfs_free_extent_later(tp, fake.xefi_startblock,
718					fake.xefi_blockcount,
719					&XFS_RMAP_OINFO_ANY_OWNER,
720					fake.xefi_agresv);
721			if (!error) {
722				requeue_only = true;
723				continue;
724			}
725		}
726
727		if (error == -EFSCORRUPTED)
728			XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
729					extp, sizeof(*extp));
730		if (error)
731			goto abort_error;
732
733	}
734
735	return xfs_defer_ops_capture_and_commit(tp, capture_list);
736
737abort_error:
738	xfs_trans_cancel(tp);
739	return error;
740}
741
742STATIC bool
743xfs_efi_item_match(
744	struct xfs_log_item	*lip,
745	uint64_t		intent_id)
746{
747	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
748}
749
750/* Relog an intent item to push the log tail forward. */
751static struct xfs_log_item *
752xfs_efi_item_relog(
753	struct xfs_log_item		*intent,
754	struct xfs_trans		*tp)
755{
756	struct xfs_efd_log_item		*efdp;
757	struct xfs_efi_log_item		*efip;
758	struct xfs_extent		*extp;
759	unsigned int			count;
760
761	count = EFI_ITEM(intent)->efi_format.efi_nextents;
762	extp = EFI_ITEM(intent)->efi_format.efi_extents;
763
764	tp->t_flags |= XFS_TRANS_DIRTY;
765	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
766	efdp->efd_next_extent = count;
767	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
768	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
769
770	efip = xfs_efi_init(tp->t_mountp, count);
771	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
772	atomic_set(&efip->efi_next_extent, count);
773	xfs_trans_add_item(tp, &efip->efi_item);
774	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
775	return &efip->efi_item;
776}
777
778static const struct xfs_item_ops xfs_efi_item_ops = {
779	.flags		= XFS_ITEM_INTENT,
780	.iop_size	= xfs_efi_item_size,
781	.iop_format	= xfs_efi_item_format,
782	.iop_unpin	= xfs_efi_item_unpin,
783	.iop_release	= xfs_efi_item_release,
784	.iop_recover	= xfs_efi_item_recover,
785	.iop_match	= xfs_efi_item_match,
786	.iop_relog	= xfs_efi_item_relog,
787};
788
789/*
790 * This routine is called to create an in-core extent free intent
791 * item from the efi format structure which was logged on disk.
792 * It allocates an in-core efi, copies the extents from the format
793 * structure into it, and adds the efi to the AIL with the given
794 * LSN.
795 */
796STATIC int
797xlog_recover_efi_commit_pass2(
798	struct xlog			*log,
799	struct list_head		*buffer_list,
800	struct xlog_recover_item	*item,
801	xfs_lsn_t			lsn)
802{
803	struct xfs_mount		*mp = log->l_mp;
804	struct xfs_efi_log_item		*efip;
805	struct xfs_efi_log_format	*efi_formatp;
806	int				error;
807
808	efi_formatp = item->ri_buf[0].i_addr;
809
810	if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
811		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
812				item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
813		return -EFSCORRUPTED;
814	}
815
816	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
817	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
818	if (error) {
819		xfs_efi_item_free(efip);
820		return error;
821	}
822	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
823	/*
824	 * Insert the intent into the AIL directly and drop one reference so
825	 * that finishing or canceling the work will drop the other.
826	 */
827	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
828	xfs_efi_release(efip);
829	return 0;
830}
831
832const struct xlog_recover_item_ops xlog_efi_item_ops = {
833	.item_type		= XFS_LI_EFI,
834	.commit_pass2		= xlog_recover_efi_commit_pass2,
835};
836
837/*
838 * This routine is called when an EFD format structure is found in a committed
839 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
840 * was still in the log. To do this it searches the AIL for the EFI with an id
841 * equal to that in the EFD format structure. If we find it we drop the EFD
842 * reference, which removes the EFI from the AIL and frees it.
843 */
844STATIC int
845xlog_recover_efd_commit_pass2(
846	struct xlog			*log,
847	struct list_head		*buffer_list,
848	struct xlog_recover_item	*item,
849	xfs_lsn_t			lsn)
850{
851	struct xfs_efd_log_format	*efd_formatp;
852	int				buflen = item->ri_buf[0].i_len;
853
854	efd_formatp = item->ri_buf[0].i_addr;
855
856	if (buflen < sizeof(struct xfs_efd_log_format)) {
857		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
858				efd_formatp, buflen);
859		return -EFSCORRUPTED;
860	}
861
862	if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
863						efd_formatp->efd_nextents) &&
864	    item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
865						efd_formatp->efd_nextents)) {
866		XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
867				efd_formatp, buflen);
868		return -EFSCORRUPTED;
869	}
870
871	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
872	return 0;
873}
874
875const struct xlog_recover_item_ops xlog_efd_item_ops = {
876	.item_type		= XFS_LI_EFD,
877	.commit_pass2		= xlog_recover_efd_commit_pass2,
878};
879