xref: /kernel/linux/linux-6.6/fs/xfs/xfs_buf.c (revision 62306a36)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include <linux/backing-dev.h>
8#include <linux/dax.h>
9
10#include "xfs_shared.h"
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
14#include "xfs_mount.h"
15#include "xfs_trace.h"
16#include "xfs_log.h"
17#include "xfs_log_recover.h"
18#include "xfs_log_priv.h"
19#include "xfs_trans.h"
20#include "xfs_buf_item.h"
21#include "xfs_errortag.h"
22#include "xfs_error.h"
23#include "xfs_ag.h"
24
25struct kmem_cache *xfs_buf_cache;
26
27/*
28 * Locking orders
29 *
30 * xfs_buf_ioacct_inc:
31 * xfs_buf_ioacct_dec:
32 *	b_sema (caller holds)
33 *	  b_lock
34 *
35 * xfs_buf_stale:
36 *	b_sema (caller holds)
37 *	  b_lock
38 *	    lru_lock
39 *
40 * xfs_buf_rele:
41 *	b_lock
42 *	  pag_buf_lock
43 *	    lru_lock
44 *
45 * xfs_buftarg_drain_rele
46 *	lru_lock
47 *	  b_lock (trylock due to inversion)
48 *
49 * xfs_buftarg_isolate
50 *	lru_lock
51 *	  b_lock (trylock due to inversion)
52 */
53
54static int __xfs_buf_submit(struct xfs_buf *bp, bool wait);
55
56static inline int
57xfs_buf_submit(
58	struct xfs_buf		*bp)
59{
60	return __xfs_buf_submit(bp, !(bp->b_flags & XBF_ASYNC));
61}
62
63static inline int
64xfs_buf_is_vmapped(
65	struct xfs_buf	*bp)
66{
67	/*
68	 * Return true if the buffer is vmapped.
69	 *
70	 * b_addr is null if the buffer is not mapped, but the code is clever
71	 * enough to know it doesn't have to map a single page, so the check has
72	 * to be both for b_addr and bp->b_page_count > 1.
73	 */
74	return bp->b_addr && bp->b_page_count > 1;
75}
76
77static inline int
78xfs_buf_vmap_len(
79	struct xfs_buf	*bp)
80{
81	return (bp->b_page_count * PAGE_SIZE);
82}
83
84/*
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
92 *
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
96 */
97static inline void
98xfs_buf_ioacct_inc(
99	struct xfs_buf	*bp)
100{
101	if (bp->b_flags & XBF_NO_IOACCT)
102		return;
103
104	ASSERT(bp->b_flags & XBF_ASYNC);
105	spin_lock(&bp->b_lock);
106	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108		percpu_counter_inc(&bp->b_target->bt_io_count);
109	}
110	spin_unlock(&bp->b_lock);
111}
112
113/*
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
116 */
117static inline void
118__xfs_buf_ioacct_dec(
119	struct xfs_buf	*bp)
120{
121	lockdep_assert_held(&bp->b_lock);
122
123	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125		percpu_counter_dec(&bp->b_target->bt_io_count);
126	}
127}
128
129static inline void
130xfs_buf_ioacct_dec(
131	struct xfs_buf	*bp)
132{
133	spin_lock(&bp->b_lock);
134	__xfs_buf_ioacct_dec(bp);
135	spin_unlock(&bp->b_lock);
136}
137
138/*
139 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
140 * b_lru_ref count so that the buffer is freed immediately when the buffer
141 * reference count falls to zero. If the buffer is already on the LRU, we need
142 * to remove the reference that LRU holds on the buffer.
143 *
144 * This prevents build-up of stale buffers on the LRU.
145 */
146void
147xfs_buf_stale(
148	struct xfs_buf	*bp)
149{
150	ASSERT(xfs_buf_islocked(bp));
151
152	bp->b_flags |= XBF_STALE;
153
154	/*
155	 * Clear the delwri status so that a delwri queue walker will not
156	 * flush this buffer to disk now that it is stale. The delwri queue has
157	 * a reference to the buffer, so this is safe to do.
158	 */
159	bp->b_flags &= ~_XBF_DELWRI_Q;
160
161	/*
162	 * Once the buffer is marked stale and unlocked, a subsequent lookup
163	 * could reset b_flags. There is no guarantee that the buffer is
164	 * unaccounted (released to LRU) before that occurs. Drop in-flight
165	 * status now to preserve accounting consistency.
166	 */
167	spin_lock(&bp->b_lock);
168	__xfs_buf_ioacct_dec(bp);
169
170	atomic_set(&bp->b_lru_ref, 0);
171	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
172	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
173		atomic_dec(&bp->b_hold);
174
175	ASSERT(atomic_read(&bp->b_hold) >= 1);
176	spin_unlock(&bp->b_lock);
177}
178
179static int
180xfs_buf_get_maps(
181	struct xfs_buf		*bp,
182	int			map_count)
183{
184	ASSERT(bp->b_maps == NULL);
185	bp->b_map_count = map_count;
186
187	if (map_count == 1) {
188		bp->b_maps = &bp->__b_map;
189		return 0;
190	}
191
192	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
193				KM_NOFS);
194	if (!bp->b_maps)
195		return -ENOMEM;
196	return 0;
197}
198
199/*
200 *	Frees b_pages if it was allocated.
201 */
202static void
203xfs_buf_free_maps(
204	struct xfs_buf	*bp)
205{
206	if (bp->b_maps != &bp->__b_map) {
207		kmem_free(bp->b_maps);
208		bp->b_maps = NULL;
209	}
210}
211
212static int
213_xfs_buf_alloc(
214	struct xfs_buftarg	*target,
215	struct xfs_buf_map	*map,
216	int			nmaps,
217	xfs_buf_flags_t		flags,
218	struct xfs_buf		**bpp)
219{
220	struct xfs_buf		*bp;
221	int			error;
222	int			i;
223
224	*bpp = NULL;
225	bp = kmem_cache_zalloc(xfs_buf_cache, GFP_NOFS | __GFP_NOFAIL);
226
227	/*
228	 * We don't want certain flags to appear in b_flags unless they are
229	 * specifically set by later operations on the buffer.
230	 */
231	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
232
233	atomic_set(&bp->b_hold, 1);
234	atomic_set(&bp->b_lru_ref, 1);
235	init_completion(&bp->b_iowait);
236	INIT_LIST_HEAD(&bp->b_lru);
237	INIT_LIST_HEAD(&bp->b_list);
238	INIT_LIST_HEAD(&bp->b_li_list);
239	sema_init(&bp->b_sema, 0); /* held, no waiters */
240	spin_lock_init(&bp->b_lock);
241	bp->b_target = target;
242	bp->b_mount = target->bt_mount;
243	bp->b_flags = flags;
244
245	/*
246	 * Set length and io_length to the same value initially.
247	 * I/O routines should use io_length, which will be the same in
248	 * most cases but may be reset (e.g. XFS recovery).
249	 */
250	error = xfs_buf_get_maps(bp, nmaps);
251	if (error)  {
252		kmem_cache_free(xfs_buf_cache, bp);
253		return error;
254	}
255
256	bp->b_rhash_key = map[0].bm_bn;
257	bp->b_length = 0;
258	for (i = 0; i < nmaps; i++) {
259		bp->b_maps[i].bm_bn = map[i].bm_bn;
260		bp->b_maps[i].bm_len = map[i].bm_len;
261		bp->b_length += map[i].bm_len;
262	}
263
264	atomic_set(&bp->b_pin_count, 0);
265	init_waitqueue_head(&bp->b_waiters);
266
267	XFS_STATS_INC(bp->b_mount, xb_create);
268	trace_xfs_buf_init(bp, _RET_IP_);
269
270	*bpp = bp;
271	return 0;
272}
273
274static void
275xfs_buf_free_pages(
276	struct xfs_buf	*bp)
277{
278	uint		i;
279
280	ASSERT(bp->b_flags & _XBF_PAGES);
281
282	if (xfs_buf_is_vmapped(bp))
283		vm_unmap_ram(bp->b_addr, bp->b_page_count);
284
285	for (i = 0; i < bp->b_page_count; i++) {
286		if (bp->b_pages[i])
287			__free_page(bp->b_pages[i]);
288	}
289	mm_account_reclaimed_pages(bp->b_page_count);
290
291	if (bp->b_pages != bp->b_page_array)
292		kmem_free(bp->b_pages);
293	bp->b_pages = NULL;
294	bp->b_flags &= ~_XBF_PAGES;
295}
296
297static void
298xfs_buf_free_callback(
299	struct callback_head	*cb)
300{
301	struct xfs_buf		*bp = container_of(cb, struct xfs_buf, b_rcu);
302
303	xfs_buf_free_maps(bp);
304	kmem_cache_free(xfs_buf_cache, bp);
305}
306
307static void
308xfs_buf_free(
309	struct xfs_buf		*bp)
310{
311	trace_xfs_buf_free(bp, _RET_IP_);
312
313	ASSERT(list_empty(&bp->b_lru));
314
315	if (bp->b_flags & _XBF_PAGES)
316		xfs_buf_free_pages(bp);
317	else if (bp->b_flags & _XBF_KMEM)
318		kmem_free(bp->b_addr);
319
320	call_rcu(&bp->b_rcu, xfs_buf_free_callback);
321}
322
323static int
324xfs_buf_alloc_kmem(
325	struct xfs_buf	*bp,
326	xfs_buf_flags_t	flags)
327{
328	xfs_km_flags_t	kmflag_mask = KM_NOFS;
329	size_t		size = BBTOB(bp->b_length);
330
331	/* Assure zeroed buffer for non-read cases. */
332	if (!(flags & XBF_READ))
333		kmflag_mask |= KM_ZERO;
334
335	bp->b_addr = kmem_alloc(size, kmflag_mask);
336	if (!bp->b_addr)
337		return -ENOMEM;
338
339	if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
340	    ((unsigned long)bp->b_addr & PAGE_MASK)) {
341		/* b_addr spans two pages - use alloc_page instead */
342		kmem_free(bp->b_addr);
343		bp->b_addr = NULL;
344		return -ENOMEM;
345	}
346	bp->b_offset = offset_in_page(bp->b_addr);
347	bp->b_pages = bp->b_page_array;
348	bp->b_pages[0] = kmem_to_page(bp->b_addr);
349	bp->b_page_count = 1;
350	bp->b_flags |= _XBF_KMEM;
351	return 0;
352}
353
354static int
355xfs_buf_alloc_pages(
356	struct xfs_buf	*bp,
357	xfs_buf_flags_t	flags)
358{
359	gfp_t		gfp_mask = __GFP_NOWARN;
360	long		filled = 0;
361
362	if (flags & XBF_READ_AHEAD)
363		gfp_mask |= __GFP_NORETRY;
364	else
365		gfp_mask |= GFP_NOFS;
366
367	/* Make sure that we have a page list */
368	bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
369	if (bp->b_page_count <= XB_PAGES) {
370		bp->b_pages = bp->b_page_array;
371	} else {
372		bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
373					gfp_mask);
374		if (!bp->b_pages)
375			return -ENOMEM;
376	}
377	bp->b_flags |= _XBF_PAGES;
378
379	/* Assure zeroed buffer for non-read cases. */
380	if (!(flags & XBF_READ))
381		gfp_mask |= __GFP_ZERO;
382
383	/*
384	 * Bulk filling of pages can take multiple calls. Not filling the entire
385	 * array is not an allocation failure, so don't back off if we get at
386	 * least one extra page.
387	 */
388	for (;;) {
389		long	last = filled;
390
391		filled = alloc_pages_bulk_array(gfp_mask, bp->b_page_count,
392						bp->b_pages);
393		if (filled == bp->b_page_count) {
394			XFS_STATS_INC(bp->b_mount, xb_page_found);
395			break;
396		}
397
398		if (filled != last)
399			continue;
400
401		if (flags & XBF_READ_AHEAD) {
402			xfs_buf_free_pages(bp);
403			return -ENOMEM;
404		}
405
406		XFS_STATS_INC(bp->b_mount, xb_page_retries);
407		memalloc_retry_wait(gfp_mask);
408	}
409	return 0;
410}
411
412/*
413 *	Map buffer into kernel address-space if necessary.
414 */
415STATIC int
416_xfs_buf_map_pages(
417	struct xfs_buf		*bp,
418	xfs_buf_flags_t		flags)
419{
420	ASSERT(bp->b_flags & _XBF_PAGES);
421	if (bp->b_page_count == 1) {
422		/* A single page buffer is always mappable */
423		bp->b_addr = page_address(bp->b_pages[0]);
424	} else if (flags & XBF_UNMAPPED) {
425		bp->b_addr = NULL;
426	} else {
427		int retried = 0;
428		unsigned nofs_flag;
429
430		/*
431		 * vm_map_ram() will allocate auxiliary structures (e.g.
432		 * pagetables) with GFP_KERNEL, yet we are likely to be under
433		 * GFP_NOFS context here. Hence we need to tell memory reclaim
434		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
435		 * memory reclaim re-entering the filesystem here and
436		 * potentially deadlocking.
437		 */
438		nofs_flag = memalloc_nofs_save();
439		do {
440			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
441						-1);
442			if (bp->b_addr)
443				break;
444			vm_unmap_aliases();
445		} while (retried++ <= 1);
446		memalloc_nofs_restore(nofs_flag);
447
448		if (!bp->b_addr)
449			return -ENOMEM;
450	}
451
452	return 0;
453}
454
455/*
456 *	Finding and Reading Buffers
457 */
458static int
459_xfs_buf_obj_cmp(
460	struct rhashtable_compare_arg	*arg,
461	const void			*obj)
462{
463	const struct xfs_buf_map	*map = arg->key;
464	const struct xfs_buf		*bp = obj;
465
466	/*
467	 * The key hashing in the lookup path depends on the key being the
468	 * first element of the compare_arg, make sure to assert this.
469	 */
470	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
471
472	if (bp->b_rhash_key != map->bm_bn)
473		return 1;
474
475	if (unlikely(bp->b_length != map->bm_len)) {
476		/*
477		 * found a block number match. If the range doesn't
478		 * match, the only way this is allowed is if the buffer
479		 * in the cache is stale and the transaction that made
480		 * it stale has not yet committed. i.e. we are
481		 * reallocating a busy extent. Skip this buffer and
482		 * continue searching for an exact match.
483		 */
484		if (!(map->bm_flags & XBM_LIVESCAN))
485			ASSERT(bp->b_flags & XBF_STALE);
486		return 1;
487	}
488	return 0;
489}
490
491static const struct rhashtable_params xfs_buf_hash_params = {
492	.min_size		= 32,	/* empty AGs have minimal footprint */
493	.nelem_hint		= 16,
494	.key_len		= sizeof(xfs_daddr_t),
495	.key_offset		= offsetof(struct xfs_buf, b_rhash_key),
496	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
497	.automatic_shrinking	= true,
498	.obj_cmpfn		= _xfs_buf_obj_cmp,
499};
500
501int
502xfs_buf_hash_init(
503	struct xfs_perag	*pag)
504{
505	spin_lock_init(&pag->pag_buf_lock);
506	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
507}
508
509void
510xfs_buf_hash_destroy(
511	struct xfs_perag	*pag)
512{
513	rhashtable_destroy(&pag->pag_buf_hash);
514}
515
516static int
517xfs_buf_map_verify(
518	struct xfs_buftarg	*btp,
519	struct xfs_buf_map	*map)
520{
521	xfs_daddr_t		eofs;
522
523	/* Check for IOs smaller than the sector size / not sector aligned */
524	ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525	ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
526
527	/*
528	 * Corrupted block numbers can get through to here, unfortunately, so we
529	 * have to check that the buffer falls within the filesystem bounds.
530	 */
531	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532	if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533		xfs_alert(btp->bt_mount,
534			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535			  __func__, map->bm_bn, eofs);
536		WARN_ON(1);
537		return -EFSCORRUPTED;
538	}
539	return 0;
540}
541
542static int
543xfs_buf_find_lock(
544	struct xfs_buf          *bp,
545	xfs_buf_flags_t		flags)
546{
547	if (flags & XBF_TRYLOCK) {
548		if (!xfs_buf_trylock(bp)) {
549			XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550			return -EAGAIN;
551		}
552	} else {
553		xfs_buf_lock(bp);
554		XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
555	}
556
557	/*
558	 * if the buffer is stale, clear all the external state associated with
559	 * it. We need to keep flags such as how we allocated the buffer memory
560	 * intact here.
561	 */
562	if (bp->b_flags & XBF_STALE) {
563		if (flags & XBF_LIVESCAN) {
564			xfs_buf_unlock(bp);
565			return -ENOENT;
566		}
567		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569		bp->b_ops = NULL;
570	}
571	return 0;
572}
573
574static inline int
575xfs_buf_lookup(
576	struct xfs_perag	*pag,
577	struct xfs_buf_map	*map,
578	xfs_buf_flags_t		flags,
579	struct xfs_buf		**bpp)
580{
581	struct xfs_buf          *bp;
582	int			error;
583
584	rcu_read_lock();
585	bp = rhashtable_lookup(&pag->pag_buf_hash, map, xfs_buf_hash_params);
586	if (!bp || !atomic_inc_not_zero(&bp->b_hold)) {
587		rcu_read_unlock();
588		return -ENOENT;
589	}
590	rcu_read_unlock();
591
592	error = xfs_buf_find_lock(bp, flags);
593	if (error) {
594		xfs_buf_rele(bp);
595		return error;
596	}
597
598	trace_xfs_buf_find(bp, flags, _RET_IP_);
599	*bpp = bp;
600	return 0;
601}
602
603/*
604 * Insert the new_bp into the hash table. This consumes the perag reference
605 * taken for the lookup regardless of the result of the insert.
606 */
607static int
608xfs_buf_find_insert(
609	struct xfs_buftarg	*btp,
610	struct xfs_perag	*pag,
611	struct xfs_buf_map	*cmap,
612	struct xfs_buf_map	*map,
613	int			nmaps,
614	xfs_buf_flags_t		flags,
615	struct xfs_buf		**bpp)
616{
617	struct xfs_buf		*new_bp;
618	struct xfs_buf		*bp;
619	int			error;
620
621	error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
622	if (error)
623		goto out_drop_pag;
624
625	/*
626	 * For buffers that fit entirely within a single page, first attempt to
627	 * allocate the memory from the heap to minimise memory usage. If we
628	 * can't get heap memory for these small buffers, we fall back to using
629	 * the page allocator.
630	 */
631	if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
632	    xfs_buf_alloc_kmem(new_bp, flags) < 0) {
633		error = xfs_buf_alloc_pages(new_bp, flags);
634		if (error)
635			goto out_free_buf;
636	}
637
638	spin_lock(&pag->pag_buf_lock);
639	bp = rhashtable_lookup_get_insert_fast(&pag->pag_buf_hash,
640			&new_bp->b_rhash_head, xfs_buf_hash_params);
641	if (IS_ERR(bp)) {
642		error = PTR_ERR(bp);
643		spin_unlock(&pag->pag_buf_lock);
644		goto out_free_buf;
645	}
646	if (bp) {
647		/* found an existing buffer */
648		atomic_inc(&bp->b_hold);
649		spin_unlock(&pag->pag_buf_lock);
650		error = xfs_buf_find_lock(bp, flags);
651		if (error)
652			xfs_buf_rele(bp);
653		else
654			*bpp = bp;
655		goto out_free_buf;
656	}
657
658	/* The new buffer keeps the perag reference until it is freed. */
659	new_bp->b_pag = pag;
660	spin_unlock(&pag->pag_buf_lock);
661	*bpp = new_bp;
662	return 0;
663
664out_free_buf:
665	xfs_buf_free(new_bp);
666out_drop_pag:
667	xfs_perag_put(pag);
668	return error;
669}
670
671/*
672 * Assembles a buffer covering the specified range. The code is optimised for
673 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
674 * more hits than misses.
675 */
676int
677xfs_buf_get_map(
678	struct xfs_buftarg	*btp,
679	struct xfs_buf_map	*map,
680	int			nmaps,
681	xfs_buf_flags_t		flags,
682	struct xfs_buf		**bpp)
683{
684	struct xfs_perag	*pag;
685	struct xfs_buf		*bp = NULL;
686	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
687	int			error;
688	int			i;
689
690	if (flags & XBF_LIVESCAN)
691		cmap.bm_flags |= XBM_LIVESCAN;
692	for (i = 0; i < nmaps; i++)
693		cmap.bm_len += map[i].bm_len;
694
695	error = xfs_buf_map_verify(btp, &cmap);
696	if (error)
697		return error;
698
699	pag = xfs_perag_get(btp->bt_mount,
700			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
701
702	error = xfs_buf_lookup(pag, &cmap, flags, &bp);
703	if (error && error != -ENOENT)
704		goto out_put_perag;
705
706	/* cache hits always outnumber misses by at least 10:1 */
707	if (unlikely(!bp)) {
708		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
709
710		if (flags & XBF_INCORE)
711			goto out_put_perag;
712
713		/* xfs_buf_find_insert() consumes the perag reference. */
714		error = xfs_buf_find_insert(btp, pag, &cmap, map, nmaps,
715				flags, &bp);
716		if (error)
717			return error;
718	} else {
719		XFS_STATS_INC(btp->bt_mount, xb_get_locked);
720		xfs_perag_put(pag);
721	}
722
723	/* We do not hold a perag reference anymore. */
724	if (!bp->b_addr) {
725		error = _xfs_buf_map_pages(bp, flags);
726		if (unlikely(error)) {
727			xfs_warn_ratelimited(btp->bt_mount,
728				"%s: failed to map %u pages", __func__,
729				bp->b_page_count);
730			xfs_buf_relse(bp);
731			return error;
732		}
733	}
734
735	/*
736	 * Clear b_error if this is a lookup from a caller that doesn't expect
737	 * valid data to be found in the buffer.
738	 */
739	if (!(flags & XBF_READ))
740		xfs_buf_ioerror(bp, 0);
741
742	XFS_STATS_INC(btp->bt_mount, xb_get);
743	trace_xfs_buf_get(bp, flags, _RET_IP_);
744	*bpp = bp;
745	return 0;
746
747out_put_perag:
748	xfs_perag_put(pag);
749	return error;
750}
751
752int
753_xfs_buf_read(
754	struct xfs_buf		*bp,
755	xfs_buf_flags_t		flags)
756{
757	ASSERT(!(flags & XBF_WRITE));
758	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
759
760	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
761	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
762
763	return xfs_buf_submit(bp);
764}
765
766/*
767 * Reverify a buffer found in cache without an attached ->b_ops.
768 *
769 * If the caller passed an ops structure and the buffer doesn't have ops
770 * assigned, set the ops and use it to verify the contents. If verification
771 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
772 * already in XBF_DONE state on entry.
773 *
774 * Under normal operations, every in-core buffer is verified on read I/O
775 * completion. There are two scenarios that can lead to in-core buffers without
776 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
777 * filesystem, though these buffers are purged at the end of recovery. The
778 * other is online repair, which intentionally reads with a NULL buffer ops to
779 * run several verifiers across an in-core buffer in order to establish buffer
780 * type.  If repair can't establish that, the buffer will be left in memory
781 * with NULL buffer ops.
782 */
783int
784xfs_buf_reverify(
785	struct xfs_buf		*bp,
786	const struct xfs_buf_ops *ops)
787{
788	ASSERT(bp->b_flags & XBF_DONE);
789	ASSERT(bp->b_error == 0);
790
791	if (!ops || bp->b_ops)
792		return 0;
793
794	bp->b_ops = ops;
795	bp->b_ops->verify_read(bp);
796	if (bp->b_error)
797		bp->b_flags &= ~XBF_DONE;
798	return bp->b_error;
799}
800
801int
802xfs_buf_read_map(
803	struct xfs_buftarg	*target,
804	struct xfs_buf_map	*map,
805	int			nmaps,
806	xfs_buf_flags_t		flags,
807	struct xfs_buf		**bpp,
808	const struct xfs_buf_ops *ops,
809	xfs_failaddr_t		fa)
810{
811	struct xfs_buf		*bp;
812	int			error;
813
814	flags |= XBF_READ;
815	*bpp = NULL;
816
817	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
818	if (error)
819		return error;
820
821	trace_xfs_buf_read(bp, flags, _RET_IP_);
822
823	if (!(bp->b_flags & XBF_DONE)) {
824		/* Initiate the buffer read and wait. */
825		XFS_STATS_INC(target->bt_mount, xb_get_read);
826		bp->b_ops = ops;
827		error = _xfs_buf_read(bp, flags);
828
829		/* Readahead iodone already dropped the buffer, so exit. */
830		if (flags & XBF_ASYNC)
831			return 0;
832	} else {
833		/* Buffer already read; all we need to do is check it. */
834		error = xfs_buf_reverify(bp, ops);
835
836		/* Readahead already finished; drop the buffer and exit. */
837		if (flags & XBF_ASYNC) {
838			xfs_buf_relse(bp);
839			return 0;
840		}
841
842		/* We do not want read in the flags */
843		bp->b_flags &= ~XBF_READ;
844		ASSERT(bp->b_ops != NULL || ops == NULL);
845	}
846
847	/*
848	 * If we've had a read error, then the contents of the buffer are
849	 * invalid and should not be used. To ensure that a followup read tries
850	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
851	 * mark the buffer stale. This ensures that anyone who has a current
852	 * reference to the buffer will interpret it's contents correctly and
853	 * future cache lookups will also treat it as an empty, uninitialised
854	 * buffer.
855	 */
856	if (error) {
857		/*
858		 * Check against log shutdown for error reporting because
859		 * metadata writeback may require a read first and we need to
860		 * report errors in metadata writeback until the log is shut
861		 * down. High level transaction read functions already check
862		 * against mount shutdown, anyway, so we only need to be
863		 * concerned about low level IO interactions here.
864		 */
865		if (!xlog_is_shutdown(target->bt_mount->m_log))
866			xfs_buf_ioerror_alert(bp, fa);
867
868		bp->b_flags &= ~XBF_DONE;
869		xfs_buf_stale(bp);
870		xfs_buf_relse(bp);
871
872		/* bad CRC means corrupted metadata */
873		if (error == -EFSBADCRC)
874			error = -EFSCORRUPTED;
875		return error;
876	}
877
878	*bpp = bp;
879	return 0;
880}
881
882/*
883 *	If we are not low on memory then do the readahead in a deadlock
884 *	safe manner.
885 */
886void
887xfs_buf_readahead_map(
888	struct xfs_buftarg	*target,
889	struct xfs_buf_map	*map,
890	int			nmaps,
891	const struct xfs_buf_ops *ops)
892{
893	struct xfs_buf		*bp;
894
895	xfs_buf_read_map(target, map, nmaps,
896		     XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
897		     __this_address);
898}
899
900/*
901 * Read an uncached buffer from disk. Allocates and returns a locked
902 * buffer containing the disk contents or nothing. Uncached buffers always have
903 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
904 * is cached or uncached during fault diagnosis.
905 */
906int
907xfs_buf_read_uncached(
908	struct xfs_buftarg	*target,
909	xfs_daddr_t		daddr,
910	size_t			numblks,
911	xfs_buf_flags_t		flags,
912	struct xfs_buf		**bpp,
913	const struct xfs_buf_ops *ops)
914{
915	struct xfs_buf		*bp;
916	int			error;
917
918	*bpp = NULL;
919
920	error = xfs_buf_get_uncached(target, numblks, flags, &bp);
921	if (error)
922		return error;
923
924	/* set up the buffer for a read IO */
925	ASSERT(bp->b_map_count == 1);
926	bp->b_rhash_key = XFS_BUF_DADDR_NULL;
927	bp->b_maps[0].bm_bn = daddr;
928	bp->b_flags |= XBF_READ;
929	bp->b_ops = ops;
930
931	xfs_buf_submit(bp);
932	if (bp->b_error) {
933		error = bp->b_error;
934		xfs_buf_relse(bp);
935		return error;
936	}
937
938	*bpp = bp;
939	return 0;
940}
941
942int
943xfs_buf_get_uncached(
944	struct xfs_buftarg	*target,
945	size_t			numblks,
946	xfs_buf_flags_t		flags,
947	struct xfs_buf		**bpp)
948{
949	int			error;
950	struct xfs_buf		*bp;
951	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
952
953	*bpp = NULL;
954
955	/* flags might contain irrelevant bits, pass only what we care about */
956	error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
957	if (error)
958		return error;
959
960	error = xfs_buf_alloc_pages(bp, flags);
961	if (error)
962		goto fail_free_buf;
963
964	error = _xfs_buf_map_pages(bp, 0);
965	if (unlikely(error)) {
966		xfs_warn(target->bt_mount,
967			"%s: failed to map pages", __func__);
968		goto fail_free_buf;
969	}
970
971	trace_xfs_buf_get_uncached(bp, _RET_IP_);
972	*bpp = bp;
973	return 0;
974
975fail_free_buf:
976	xfs_buf_free(bp);
977	return error;
978}
979
980/*
981 *	Increment reference count on buffer, to hold the buffer concurrently
982 *	with another thread which may release (free) the buffer asynchronously.
983 *	Must hold the buffer already to call this function.
984 */
985void
986xfs_buf_hold(
987	struct xfs_buf		*bp)
988{
989	trace_xfs_buf_hold(bp, _RET_IP_);
990	atomic_inc(&bp->b_hold);
991}
992
993/*
994 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
995 * placed on LRU or freed (depending on b_lru_ref).
996 */
997void
998xfs_buf_rele(
999	struct xfs_buf		*bp)
1000{
1001	struct xfs_perag	*pag = bp->b_pag;
1002	bool			release;
1003	bool			freebuf = false;
1004
1005	trace_xfs_buf_rele(bp, _RET_IP_);
1006
1007	if (!pag) {
1008		ASSERT(list_empty(&bp->b_lru));
1009		if (atomic_dec_and_test(&bp->b_hold)) {
1010			xfs_buf_ioacct_dec(bp);
1011			xfs_buf_free(bp);
1012		}
1013		return;
1014	}
1015
1016	ASSERT(atomic_read(&bp->b_hold) > 0);
1017
1018	/*
1019	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1020	 * calls. The pag_buf_lock being taken on the last reference only
1021	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1022	 * to last reference we drop here is not serialised against the last
1023	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1024	 * first, the last "release" reference can win the race to the lock and
1025	 * free the buffer before the second-to-last reference is processed,
1026	 * leading to a use-after-free scenario.
1027	 */
1028	spin_lock(&bp->b_lock);
1029	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1030	if (!release) {
1031		/*
1032		 * Drop the in-flight state if the buffer is already on the LRU
1033		 * and it holds the only reference. This is racy because we
1034		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1035		 * ensures the decrement occurs only once per-buf.
1036		 */
1037		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1038			__xfs_buf_ioacct_dec(bp);
1039		goto out_unlock;
1040	}
1041
1042	/* the last reference has been dropped ... */
1043	__xfs_buf_ioacct_dec(bp);
1044	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1045		/*
1046		 * If the buffer is added to the LRU take a new reference to the
1047		 * buffer for the LRU and clear the (now stale) dispose list
1048		 * state flag
1049		 */
1050		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1051			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1052			atomic_inc(&bp->b_hold);
1053		}
1054		spin_unlock(&pag->pag_buf_lock);
1055	} else {
1056		/*
1057		 * most of the time buffers will already be removed from the
1058		 * LRU, so optimise that case by checking for the
1059		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1060		 * was on was the disposal list
1061		 */
1062		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1063			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1064		} else {
1065			ASSERT(list_empty(&bp->b_lru));
1066		}
1067
1068		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1069		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1070				       xfs_buf_hash_params);
1071		spin_unlock(&pag->pag_buf_lock);
1072		xfs_perag_put(pag);
1073		freebuf = true;
1074	}
1075
1076out_unlock:
1077	spin_unlock(&bp->b_lock);
1078
1079	if (freebuf)
1080		xfs_buf_free(bp);
1081}
1082
1083
1084/*
1085 *	Lock a buffer object, if it is not already locked.
1086 *
1087 *	If we come across a stale, pinned, locked buffer, we know that we are
1088 *	being asked to lock a buffer that has been reallocated. Because it is
1089 *	pinned, we know that the log has not been pushed to disk and hence it
1090 *	will still be locked.  Rather than continuing to have trylock attempts
1091 *	fail until someone else pushes the log, push it ourselves before
1092 *	returning.  This means that the xfsaild will not get stuck trying
1093 *	to push on stale inode buffers.
1094 */
1095int
1096xfs_buf_trylock(
1097	struct xfs_buf		*bp)
1098{
1099	int			locked;
1100
1101	locked = down_trylock(&bp->b_sema) == 0;
1102	if (locked)
1103		trace_xfs_buf_trylock(bp, _RET_IP_);
1104	else
1105		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1106	return locked;
1107}
1108
1109/*
1110 *	Lock a buffer object.
1111 *
1112 *	If we come across a stale, pinned, locked buffer, we know that we
1113 *	are being asked to lock a buffer that has been reallocated. Because
1114 *	it is pinned, we know that the log has not been pushed to disk and
1115 *	hence it will still be locked. Rather than sleeping until someone
1116 *	else pushes the log, push it ourselves before trying to get the lock.
1117 */
1118void
1119xfs_buf_lock(
1120	struct xfs_buf		*bp)
1121{
1122	trace_xfs_buf_lock(bp, _RET_IP_);
1123
1124	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1125		xfs_log_force(bp->b_mount, 0);
1126	down(&bp->b_sema);
1127
1128	trace_xfs_buf_lock_done(bp, _RET_IP_);
1129}
1130
1131void
1132xfs_buf_unlock(
1133	struct xfs_buf		*bp)
1134{
1135	ASSERT(xfs_buf_islocked(bp));
1136
1137	up(&bp->b_sema);
1138	trace_xfs_buf_unlock(bp, _RET_IP_);
1139}
1140
1141STATIC void
1142xfs_buf_wait_unpin(
1143	struct xfs_buf		*bp)
1144{
1145	DECLARE_WAITQUEUE	(wait, current);
1146
1147	if (atomic_read(&bp->b_pin_count) == 0)
1148		return;
1149
1150	add_wait_queue(&bp->b_waiters, &wait);
1151	for (;;) {
1152		set_current_state(TASK_UNINTERRUPTIBLE);
1153		if (atomic_read(&bp->b_pin_count) == 0)
1154			break;
1155		io_schedule();
1156	}
1157	remove_wait_queue(&bp->b_waiters, &wait);
1158	set_current_state(TASK_RUNNING);
1159}
1160
1161static void
1162xfs_buf_ioerror_alert_ratelimited(
1163	struct xfs_buf		*bp)
1164{
1165	static unsigned long	lasttime;
1166	static struct xfs_buftarg *lasttarg;
1167
1168	if (bp->b_target != lasttarg ||
1169	    time_after(jiffies, (lasttime + 5*HZ))) {
1170		lasttime = jiffies;
1171		xfs_buf_ioerror_alert(bp, __this_address);
1172	}
1173	lasttarg = bp->b_target;
1174}
1175
1176/*
1177 * Account for this latest trip around the retry handler, and decide if
1178 * we've failed enough times to constitute a permanent failure.
1179 */
1180static bool
1181xfs_buf_ioerror_permanent(
1182	struct xfs_buf		*bp,
1183	struct xfs_error_cfg	*cfg)
1184{
1185	struct xfs_mount	*mp = bp->b_mount;
1186
1187	if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1188	    ++bp->b_retries > cfg->max_retries)
1189		return true;
1190	if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1191	    time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1192		return true;
1193
1194	/* At unmount we may treat errors differently */
1195	if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1196		return true;
1197
1198	return false;
1199}
1200
1201/*
1202 * On a sync write or shutdown we just want to stale the buffer and let the
1203 * caller handle the error in bp->b_error appropriately.
1204 *
1205 * If the write was asynchronous then no one will be looking for the error.  If
1206 * this is the first failure of this type, clear the error state and write the
1207 * buffer out again. This means we always retry an async write failure at least
1208 * once, but we also need to set the buffer up to behave correctly now for
1209 * repeated failures.
1210 *
1211 * If we get repeated async write failures, then we take action according to the
1212 * error configuration we have been set up to use.
1213 *
1214 * Returns true if this function took care of error handling and the caller must
1215 * not touch the buffer again.  Return false if the caller should proceed with
1216 * normal I/O completion handling.
1217 */
1218static bool
1219xfs_buf_ioend_handle_error(
1220	struct xfs_buf		*bp)
1221{
1222	struct xfs_mount	*mp = bp->b_mount;
1223	struct xfs_error_cfg	*cfg;
1224
1225	/*
1226	 * If we've already shutdown the journal because of I/O errors, there's
1227	 * no point in giving this a retry.
1228	 */
1229	if (xlog_is_shutdown(mp->m_log))
1230		goto out_stale;
1231
1232	xfs_buf_ioerror_alert_ratelimited(bp);
1233
1234	/*
1235	 * We're not going to bother about retrying this during recovery.
1236	 * One strike!
1237	 */
1238	if (bp->b_flags & _XBF_LOGRECOVERY) {
1239		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1240		return false;
1241	}
1242
1243	/*
1244	 * Synchronous writes will have callers process the error.
1245	 */
1246	if (!(bp->b_flags & XBF_ASYNC))
1247		goto out_stale;
1248
1249	trace_xfs_buf_iodone_async(bp, _RET_IP_);
1250
1251	cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1252	if (bp->b_last_error != bp->b_error ||
1253	    !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1254		bp->b_last_error = bp->b_error;
1255		if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1256		    !bp->b_first_retry_time)
1257			bp->b_first_retry_time = jiffies;
1258		goto resubmit;
1259	}
1260
1261	/*
1262	 * Permanent error - we need to trigger a shutdown if we haven't already
1263	 * to indicate that inconsistency will result from this action.
1264	 */
1265	if (xfs_buf_ioerror_permanent(bp, cfg)) {
1266		xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1267		goto out_stale;
1268	}
1269
1270	/* Still considered a transient error. Caller will schedule retries. */
1271	if (bp->b_flags & _XBF_INODES)
1272		xfs_buf_inode_io_fail(bp);
1273	else if (bp->b_flags & _XBF_DQUOTS)
1274		xfs_buf_dquot_io_fail(bp);
1275	else
1276		ASSERT(list_empty(&bp->b_li_list));
1277	xfs_buf_ioerror(bp, 0);
1278	xfs_buf_relse(bp);
1279	return true;
1280
1281resubmit:
1282	xfs_buf_ioerror(bp, 0);
1283	bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1284	xfs_buf_submit(bp);
1285	return true;
1286out_stale:
1287	xfs_buf_stale(bp);
1288	bp->b_flags |= XBF_DONE;
1289	bp->b_flags &= ~XBF_WRITE;
1290	trace_xfs_buf_error_relse(bp, _RET_IP_);
1291	return false;
1292}
1293
1294static void
1295xfs_buf_ioend(
1296	struct xfs_buf	*bp)
1297{
1298	trace_xfs_buf_iodone(bp, _RET_IP_);
1299
1300	/*
1301	 * Pull in IO completion errors now. We are guaranteed to be running
1302	 * single threaded, so we don't need the lock to read b_io_error.
1303	 */
1304	if (!bp->b_error && bp->b_io_error)
1305		xfs_buf_ioerror(bp, bp->b_io_error);
1306
1307	if (bp->b_flags & XBF_READ) {
1308		if (!bp->b_error && bp->b_ops)
1309			bp->b_ops->verify_read(bp);
1310		if (!bp->b_error)
1311			bp->b_flags |= XBF_DONE;
1312	} else {
1313		if (!bp->b_error) {
1314			bp->b_flags &= ~XBF_WRITE_FAIL;
1315			bp->b_flags |= XBF_DONE;
1316		}
1317
1318		if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1319			return;
1320
1321		/* clear the retry state */
1322		bp->b_last_error = 0;
1323		bp->b_retries = 0;
1324		bp->b_first_retry_time = 0;
1325
1326		/*
1327		 * Note that for things like remote attribute buffers, there may
1328		 * not be a buffer log item here, so processing the buffer log
1329		 * item must remain optional.
1330		 */
1331		if (bp->b_log_item)
1332			xfs_buf_item_done(bp);
1333
1334		if (bp->b_flags & _XBF_INODES)
1335			xfs_buf_inode_iodone(bp);
1336		else if (bp->b_flags & _XBF_DQUOTS)
1337			xfs_buf_dquot_iodone(bp);
1338
1339	}
1340
1341	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1342			 _XBF_LOGRECOVERY);
1343
1344	if (bp->b_flags & XBF_ASYNC)
1345		xfs_buf_relse(bp);
1346	else
1347		complete(&bp->b_iowait);
1348}
1349
1350static void
1351xfs_buf_ioend_work(
1352	struct work_struct	*work)
1353{
1354	struct xfs_buf		*bp =
1355		container_of(work, struct xfs_buf, b_ioend_work);
1356
1357	xfs_buf_ioend(bp);
1358}
1359
1360static void
1361xfs_buf_ioend_async(
1362	struct xfs_buf	*bp)
1363{
1364	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1365	queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1366}
1367
1368void
1369__xfs_buf_ioerror(
1370	struct xfs_buf		*bp,
1371	int			error,
1372	xfs_failaddr_t		failaddr)
1373{
1374	ASSERT(error <= 0 && error >= -1000);
1375	bp->b_error = error;
1376	trace_xfs_buf_ioerror(bp, error, failaddr);
1377}
1378
1379void
1380xfs_buf_ioerror_alert(
1381	struct xfs_buf		*bp,
1382	xfs_failaddr_t		func)
1383{
1384	xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1385		"metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1386				  func, (uint64_t)xfs_buf_daddr(bp),
1387				  bp->b_length, -bp->b_error);
1388}
1389
1390/*
1391 * To simulate an I/O failure, the buffer must be locked and held with at least
1392 * three references. The LRU reference is dropped by the stale call. The buf
1393 * item reference is dropped via ioend processing. The third reference is owned
1394 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1395 */
1396void
1397xfs_buf_ioend_fail(
1398	struct xfs_buf	*bp)
1399{
1400	bp->b_flags &= ~XBF_DONE;
1401	xfs_buf_stale(bp);
1402	xfs_buf_ioerror(bp, -EIO);
1403	xfs_buf_ioend(bp);
1404}
1405
1406int
1407xfs_bwrite(
1408	struct xfs_buf		*bp)
1409{
1410	int			error;
1411
1412	ASSERT(xfs_buf_islocked(bp));
1413
1414	bp->b_flags |= XBF_WRITE;
1415	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1416			 XBF_DONE);
1417
1418	error = xfs_buf_submit(bp);
1419	if (error)
1420		xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1421	return error;
1422}
1423
1424static void
1425xfs_buf_bio_end_io(
1426	struct bio		*bio)
1427{
1428	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1429
1430	if (!bio->bi_status &&
1431	    (bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1432	    XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1433		bio->bi_status = BLK_STS_IOERR;
1434
1435	/*
1436	 * don't overwrite existing errors - otherwise we can lose errors on
1437	 * buffers that require multiple bios to complete.
1438	 */
1439	if (bio->bi_status) {
1440		int error = blk_status_to_errno(bio->bi_status);
1441
1442		cmpxchg(&bp->b_io_error, 0, error);
1443	}
1444
1445	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1446		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1447
1448	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1449		xfs_buf_ioend_async(bp);
1450	bio_put(bio);
1451}
1452
1453static void
1454xfs_buf_ioapply_map(
1455	struct xfs_buf	*bp,
1456	int		map,
1457	int		*buf_offset,
1458	int		*count,
1459	blk_opf_t	op)
1460{
1461	int		page_index;
1462	unsigned int	total_nr_pages = bp->b_page_count;
1463	int		nr_pages;
1464	struct bio	*bio;
1465	sector_t	sector =  bp->b_maps[map].bm_bn;
1466	int		size;
1467	int		offset;
1468
1469	/* skip the pages in the buffer before the start offset */
1470	page_index = 0;
1471	offset = *buf_offset;
1472	while (offset >= PAGE_SIZE) {
1473		page_index++;
1474		offset -= PAGE_SIZE;
1475	}
1476
1477	/*
1478	 * Limit the IO size to the length of the current vector, and update the
1479	 * remaining IO count for the next time around.
1480	 */
1481	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1482	*count -= size;
1483	*buf_offset += size;
1484
1485next_chunk:
1486	atomic_inc(&bp->b_io_remaining);
1487	nr_pages = bio_max_segs(total_nr_pages);
1488
1489	bio = bio_alloc(bp->b_target->bt_bdev, nr_pages, op, GFP_NOIO);
1490	bio->bi_iter.bi_sector = sector;
1491	bio->bi_end_io = xfs_buf_bio_end_io;
1492	bio->bi_private = bp;
1493
1494	for (; size && nr_pages; nr_pages--, page_index++) {
1495		int	rbytes, nbytes = PAGE_SIZE - offset;
1496
1497		if (nbytes > size)
1498			nbytes = size;
1499
1500		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1501				      offset);
1502		if (rbytes < nbytes)
1503			break;
1504
1505		offset = 0;
1506		sector += BTOBB(nbytes);
1507		size -= nbytes;
1508		total_nr_pages--;
1509	}
1510
1511	if (likely(bio->bi_iter.bi_size)) {
1512		if (xfs_buf_is_vmapped(bp)) {
1513			flush_kernel_vmap_range(bp->b_addr,
1514						xfs_buf_vmap_len(bp));
1515		}
1516		submit_bio(bio);
1517		if (size)
1518			goto next_chunk;
1519	} else {
1520		/*
1521		 * This is guaranteed not to be the last io reference count
1522		 * because the caller (xfs_buf_submit) holds a count itself.
1523		 */
1524		atomic_dec(&bp->b_io_remaining);
1525		xfs_buf_ioerror(bp, -EIO);
1526		bio_put(bio);
1527	}
1528
1529}
1530
1531STATIC void
1532_xfs_buf_ioapply(
1533	struct xfs_buf	*bp)
1534{
1535	struct blk_plug	plug;
1536	blk_opf_t	op;
1537	int		offset;
1538	int		size;
1539	int		i;
1540
1541	/*
1542	 * Make sure we capture only current IO errors rather than stale errors
1543	 * left over from previous use of the buffer (e.g. failed readahead).
1544	 */
1545	bp->b_error = 0;
1546
1547	if (bp->b_flags & XBF_WRITE) {
1548		op = REQ_OP_WRITE;
1549
1550		/*
1551		 * Run the write verifier callback function if it exists. If
1552		 * this function fails it will mark the buffer with an error and
1553		 * the IO should not be dispatched.
1554		 */
1555		if (bp->b_ops) {
1556			bp->b_ops->verify_write(bp);
1557			if (bp->b_error) {
1558				xfs_force_shutdown(bp->b_mount,
1559						   SHUTDOWN_CORRUPT_INCORE);
1560				return;
1561			}
1562		} else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1563			struct xfs_mount *mp = bp->b_mount;
1564
1565			/*
1566			 * non-crc filesystems don't attach verifiers during
1567			 * log recovery, so don't warn for such filesystems.
1568			 */
1569			if (xfs_has_crc(mp)) {
1570				xfs_warn(mp,
1571					"%s: no buf ops on daddr 0x%llx len %d",
1572					__func__, xfs_buf_daddr(bp),
1573					bp->b_length);
1574				xfs_hex_dump(bp->b_addr,
1575						XFS_CORRUPTION_DUMP_LEN);
1576				dump_stack();
1577			}
1578		}
1579	} else {
1580		op = REQ_OP_READ;
1581		if (bp->b_flags & XBF_READ_AHEAD)
1582			op |= REQ_RAHEAD;
1583	}
1584
1585	/* we only use the buffer cache for meta-data */
1586	op |= REQ_META;
1587
1588	/*
1589	 * Walk all the vectors issuing IO on them. Set up the initial offset
1590	 * into the buffer and the desired IO size before we start -
1591	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1592	 * subsequent call.
1593	 */
1594	offset = bp->b_offset;
1595	size = BBTOB(bp->b_length);
1596	blk_start_plug(&plug);
1597	for (i = 0; i < bp->b_map_count; i++) {
1598		xfs_buf_ioapply_map(bp, i, &offset, &size, op);
1599		if (bp->b_error)
1600			break;
1601		if (size <= 0)
1602			break;	/* all done */
1603	}
1604	blk_finish_plug(&plug);
1605}
1606
1607/*
1608 * Wait for I/O completion of a sync buffer and return the I/O error code.
1609 */
1610static int
1611xfs_buf_iowait(
1612	struct xfs_buf	*bp)
1613{
1614	ASSERT(!(bp->b_flags & XBF_ASYNC));
1615
1616	trace_xfs_buf_iowait(bp, _RET_IP_);
1617	wait_for_completion(&bp->b_iowait);
1618	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1619
1620	return bp->b_error;
1621}
1622
1623/*
1624 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1625 * the buffer lock ownership and the current reference to the IO. It is not
1626 * safe to reference the buffer after a call to this function unless the caller
1627 * holds an additional reference itself.
1628 */
1629static int
1630__xfs_buf_submit(
1631	struct xfs_buf	*bp,
1632	bool		wait)
1633{
1634	int		error = 0;
1635
1636	trace_xfs_buf_submit(bp, _RET_IP_);
1637
1638	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1639
1640	/*
1641	 * On log shutdown we stale and complete the buffer immediately. We can
1642	 * be called to read the superblock before the log has been set up, so
1643	 * be careful checking the log state.
1644	 *
1645	 * Checking the mount shutdown state here can result in the log tail
1646	 * moving inappropriately on disk as the log may not yet be shut down.
1647	 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1648	 * and move the tail of the log forwards without having written this
1649	 * buffer to disk. This corrupts the log tail state in memory, and
1650	 * because the log may not be shut down yet, it can then be propagated
1651	 * to disk before the log is shutdown. Hence we check log shutdown
1652	 * state here rather than mount state to avoid corrupting the log tail
1653	 * on shutdown.
1654	 */
1655	if (bp->b_mount->m_log &&
1656	    xlog_is_shutdown(bp->b_mount->m_log)) {
1657		xfs_buf_ioend_fail(bp);
1658		return -EIO;
1659	}
1660
1661	/*
1662	 * Grab a reference so the buffer does not go away underneath us. For
1663	 * async buffers, I/O completion drops the callers reference, which
1664	 * could occur before submission returns.
1665	 */
1666	xfs_buf_hold(bp);
1667
1668	if (bp->b_flags & XBF_WRITE)
1669		xfs_buf_wait_unpin(bp);
1670
1671	/* clear the internal error state to avoid spurious errors */
1672	bp->b_io_error = 0;
1673
1674	/*
1675	 * Set the count to 1 initially, this will stop an I/O completion
1676	 * callout which happens before we have started all the I/O from calling
1677	 * xfs_buf_ioend too early.
1678	 */
1679	atomic_set(&bp->b_io_remaining, 1);
1680	if (bp->b_flags & XBF_ASYNC)
1681		xfs_buf_ioacct_inc(bp);
1682	_xfs_buf_ioapply(bp);
1683
1684	/*
1685	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1686	 * reference we took above. If we drop it to zero, run completion so
1687	 * that we don't return to the caller with completion still pending.
1688	 */
1689	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1690		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1691			xfs_buf_ioend(bp);
1692		else
1693			xfs_buf_ioend_async(bp);
1694	}
1695
1696	if (wait)
1697		error = xfs_buf_iowait(bp);
1698
1699	/*
1700	 * Release the hold that keeps the buffer referenced for the entire
1701	 * I/O. Note that if the buffer is async, it is not safe to reference
1702	 * after this release.
1703	 */
1704	xfs_buf_rele(bp);
1705	return error;
1706}
1707
1708void *
1709xfs_buf_offset(
1710	struct xfs_buf		*bp,
1711	size_t			offset)
1712{
1713	struct page		*page;
1714
1715	if (bp->b_addr)
1716		return bp->b_addr + offset;
1717
1718	page = bp->b_pages[offset >> PAGE_SHIFT];
1719	return page_address(page) + (offset & (PAGE_SIZE-1));
1720}
1721
1722void
1723xfs_buf_zero(
1724	struct xfs_buf		*bp,
1725	size_t			boff,
1726	size_t			bsize)
1727{
1728	size_t			bend;
1729
1730	bend = boff + bsize;
1731	while (boff < bend) {
1732		struct page	*page;
1733		int		page_index, page_offset, csize;
1734
1735		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1736		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1737		page = bp->b_pages[page_index];
1738		csize = min_t(size_t, PAGE_SIZE - page_offset,
1739				      BBTOB(bp->b_length) - boff);
1740
1741		ASSERT((csize + page_offset) <= PAGE_SIZE);
1742
1743		memset(page_address(page) + page_offset, 0, csize);
1744
1745		boff += csize;
1746	}
1747}
1748
1749/*
1750 * Log a message about and stale a buffer that a caller has decided is corrupt.
1751 *
1752 * This function should be called for the kinds of metadata corruption that
1753 * cannot be detect from a verifier, such as incorrect inter-block relationship
1754 * data.  Do /not/ call this function from a verifier function.
1755 *
1756 * The buffer must be XBF_DONE prior to the call.  Afterwards, the buffer will
1757 * be marked stale, but b_error will not be set.  The caller is responsible for
1758 * releasing the buffer or fixing it.
1759 */
1760void
1761__xfs_buf_mark_corrupt(
1762	struct xfs_buf		*bp,
1763	xfs_failaddr_t		fa)
1764{
1765	ASSERT(bp->b_flags & XBF_DONE);
1766
1767	xfs_buf_corruption_error(bp, fa);
1768	xfs_buf_stale(bp);
1769}
1770
1771/*
1772 *	Handling of buffer targets (buftargs).
1773 */
1774
1775/*
1776 * Wait for any bufs with callbacks that have been submitted but have not yet
1777 * returned. These buffers will have an elevated hold count, so wait on those
1778 * while freeing all the buffers only held by the LRU.
1779 */
1780static enum lru_status
1781xfs_buftarg_drain_rele(
1782	struct list_head	*item,
1783	struct list_lru_one	*lru,
1784	spinlock_t		*lru_lock,
1785	void			*arg)
1786
1787{
1788	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1789	struct list_head	*dispose = arg;
1790
1791	if (atomic_read(&bp->b_hold) > 1) {
1792		/* need to wait, so skip it this pass */
1793		trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1794		return LRU_SKIP;
1795	}
1796	if (!spin_trylock(&bp->b_lock))
1797		return LRU_SKIP;
1798
1799	/*
1800	 * clear the LRU reference count so the buffer doesn't get
1801	 * ignored in xfs_buf_rele().
1802	 */
1803	atomic_set(&bp->b_lru_ref, 0);
1804	bp->b_state |= XFS_BSTATE_DISPOSE;
1805	list_lru_isolate_move(lru, item, dispose);
1806	spin_unlock(&bp->b_lock);
1807	return LRU_REMOVED;
1808}
1809
1810/*
1811 * Wait for outstanding I/O on the buftarg to complete.
1812 */
1813void
1814xfs_buftarg_wait(
1815	struct xfs_buftarg	*btp)
1816{
1817	/*
1818	 * First wait on the buftarg I/O count for all in-flight buffers to be
1819	 * released. This is critical as new buffers do not make the LRU until
1820	 * they are released.
1821	 *
1822	 * Next, flush the buffer workqueue to ensure all completion processing
1823	 * has finished. Just waiting on buffer locks is not sufficient for
1824	 * async IO as the reference count held over IO is not released until
1825	 * after the buffer lock is dropped. Hence we need to ensure here that
1826	 * all reference counts have been dropped before we start walking the
1827	 * LRU list.
1828	 */
1829	while (percpu_counter_sum(&btp->bt_io_count))
1830		delay(100);
1831	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1832}
1833
1834void
1835xfs_buftarg_drain(
1836	struct xfs_buftarg	*btp)
1837{
1838	LIST_HEAD(dispose);
1839	int			loop = 0;
1840	bool			write_fail = false;
1841
1842	xfs_buftarg_wait(btp);
1843
1844	/* loop until there is nothing left on the lru list. */
1845	while (list_lru_count(&btp->bt_lru)) {
1846		list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1847			      &dispose, LONG_MAX);
1848
1849		while (!list_empty(&dispose)) {
1850			struct xfs_buf *bp;
1851			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1852			list_del_init(&bp->b_lru);
1853			if (bp->b_flags & XBF_WRITE_FAIL) {
1854				write_fail = true;
1855				xfs_buf_alert_ratelimited(bp,
1856					"XFS: Corruption Alert",
1857"Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1858					(long long)xfs_buf_daddr(bp));
1859			}
1860			xfs_buf_rele(bp);
1861		}
1862		if (loop++ != 0)
1863			delay(100);
1864	}
1865
1866	/*
1867	 * If one or more failed buffers were freed, that means dirty metadata
1868	 * was thrown away. This should only ever happen after I/O completion
1869	 * handling has elevated I/O error(s) to permanent failures and shuts
1870	 * down the journal.
1871	 */
1872	if (write_fail) {
1873		ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1874		xfs_alert(btp->bt_mount,
1875	      "Please run xfs_repair to determine the extent of the problem.");
1876	}
1877}
1878
1879static enum lru_status
1880xfs_buftarg_isolate(
1881	struct list_head	*item,
1882	struct list_lru_one	*lru,
1883	spinlock_t		*lru_lock,
1884	void			*arg)
1885{
1886	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1887	struct list_head	*dispose = arg;
1888
1889	/*
1890	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1891	 * If we fail to get the lock, just skip it.
1892	 */
1893	if (!spin_trylock(&bp->b_lock))
1894		return LRU_SKIP;
1895	/*
1896	 * Decrement the b_lru_ref count unless the value is already
1897	 * zero. If the value is already zero, we need to reclaim the
1898	 * buffer, otherwise it gets another trip through the LRU.
1899	 */
1900	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1901		spin_unlock(&bp->b_lock);
1902		return LRU_ROTATE;
1903	}
1904
1905	bp->b_state |= XFS_BSTATE_DISPOSE;
1906	list_lru_isolate_move(lru, item, dispose);
1907	spin_unlock(&bp->b_lock);
1908	return LRU_REMOVED;
1909}
1910
1911static unsigned long
1912xfs_buftarg_shrink_scan(
1913	struct shrinker		*shrink,
1914	struct shrink_control	*sc)
1915{
1916	struct xfs_buftarg	*btp = container_of(shrink,
1917					struct xfs_buftarg, bt_shrinker);
1918	LIST_HEAD(dispose);
1919	unsigned long		freed;
1920
1921	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1922				     xfs_buftarg_isolate, &dispose);
1923
1924	while (!list_empty(&dispose)) {
1925		struct xfs_buf *bp;
1926		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1927		list_del_init(&bp->b_lru);
1928		xfs_buf_rele(bp);
1929	}
1930
1931	return freed;
1932}
1933
1934static unsigned long
1935xfs_buftarg_shrink_count(
1936	struct shrinker		*shrink,
1937	struct shrink_control	*sc)
1938{
1939	struct xfs_buftarg	*btp = container_of(shrink,
1940					struct xfs_buftarg, bt_shrinker);
1941	return list_lru_shrink_count(&btp->bt_lru, sc);
1942}
1943
1944void
1945xfs_free_buftarg(
1946	struct xfs_buftarg	*btp)
1947{
1948	struct block_device	*bdev = btp->bt_bdev;
1949
1950	unregister_shrinker(&btp->bt_shrinker);
1951	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1952	percpu_counter_destroy(&btp->bt_io_count);
1953	list_lru_destroy(&btp->bt_lru);
1954
1955	fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1956	/* the main block device is closed by kill_block_super */
1957	if (bdev != btp->bt_mount->m_super->s_bdev)
1958		blkdev_put(bdev, btp->bt_mount->m_super);
1959
1960	kmem_free(btp);
1961}
1962
1963int
1964xfs_setsize_buftarg(
1965	xfs_buftarg_t		*btp,
1966	unsigned int		sectorsize)
1967{
1968	/* Set up metadata sector size info */
1969	btp->bt_meta_sectorsize = sectorsize;
1970	btp->bt_meta_sectormask = sectorsize - 1;
1971
1972	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1973		xfs_warn(btp->bt_mount,
1974			"Cannot set_blocksize to %u on device %pg",
1975			sectorsize, btp->bt_bdev);
1976		return -EINVAL;
1977	}
1978
1979	/* Set up device logical sector size mask */
1980	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1981	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1982
1983	return 0;
1984}
1985
1986/*
1987 * When allocating the initial buffer target we have not yet
1988 * read in the superblock, so don't know what sized sectors
1989 * are being used at this early stage.  Play safe.
1990 */
1991STATIC int
1992xfs_setsize_buftarg_early(
1993	xfs_buftarg_t		*btp,
1994	struct block_device	*bdev)
1995{
1996	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1997}
1998
1999struct xfs_buftarg *
2000xfs_alloc_buftarg(
2001	struct xfs_mount	*mp,
2002	struct block_device	*bdev)
2003{
2004	xfs_buftarg_t		*btp;
2005	const struct dax_holder_operations *ops = NULL;
2006
2007#if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
2008	ops = &xfs_dax_holder_operations;
2009#endif
2010	btp = kmem_zalloc(sizeof(*btp), KM_NOFS);
2011
2012	btp->bt_mount = mp;
2013	btp->bt_dev =  bdev->bd_dev;
2014	btp->bt_bdev = bdev;
2015	btp->bt_daxdev = fs_dax_get_by_bdev(bdev, &btp->bt_dax_part_off,
2016					    mp, ops);
2017
2018	/*
2019	 * Buffer IO error rate limiting. Limit it to no more than 10 messages
2020	 * per 30 seconds so as to not spam logs too much on repeated errors.
2021	 */
2022	ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
2023			     DEFAULT_RATELIMIT_BURST);
2024
2025	if (xfs_setsize_buftarg_early(btp, bdev))
2026		goto error_free;
2027
2028	if (list_lru_init(&btp->bt_lru))
2029		goto error_free;
2030
2031	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
2032		goto error_lru;
2033
2034	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
2035	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
2036	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
2037	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
2038	if (register_shrinker(&btp->bt_shrinker, "xfs-buf:%s",
2039			      mp->m_super->s_id))
2040		goto error_pcpu;
2041	return btp;
2042
2043error_pcpu:
2044	percpu_counter_destroy(&btp->bt_io_count);
2045error_lru:
2046	list_lru_destroy(&btp->bt_lru);
2047error_free:
2048	kmem_free(btp);
2049	return NULL;
2050}
2051
2052/*
2053 * Cancel a delayed write list.
2054 *
2055 * Remove each buffer from the list, clear the delwri queue flag and drop the
2056 * associated buffer reference.
2057 */
2058void
2059xfs_buf_delwri_cancel(
2060	struct list_head	*list)
2061{
2062	struct xfs_buf		*bp;
2063
2064	while (!list_empty(list)) {
2065		bp = list_first_entry(list, struct xfs_buf, b_list);
2066
2067		xfs_buf_lock(bp);
2068		bp->b_flags &= ~_XBF_DELWRI_Q;
2069		list_del_init(&bp->b_list);
2070		xfs_buf_relse(bp);
2071	}
2072}
2073
2074/*
2075 * Add a buffer to the delayed write list.
2076 *
2077 * This queues a buffer for writeout if it hasn't already been.  Note that
2078 * neither this routine nor the buffer list submission functions perform
2079 * any internal synchronization.  It is expected that the lists are thread-local
2080 * to the callers.
2081 *
2082 * Returns true if we queued up the buffer, or false if it already had
2083 * been on the buffer list.
2084 */
2085bool
2086xfs_buf_delwri_queue(
2087	struct xfs_buf		*bp,
2088	struct list_head	*list)
2089{
2090	ASSERT(xfs_buf_islocked(bp));
2091	ASSERT(!(bp->b_flags & XBF_READ));
2092
2093	/*
2094	 * If the buffer is already marked delwri it already is queued up
2095	 * by someone else for imediate writeout.  Just ignore it in that
2096	 * case.
2097	 */
2098	if (bp->b_flags & _XBF_DELWRI_Q) {
2099		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2100		return false;
2101	}
2102
2103	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2104
2105	/*
2106	 * If a buffer gets written out synchronously or marked stale while it
2107	 * is on a delwri list we lazily remove it. To do this, the other party
2108	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2109	 * It remains referenced and on the list.  In a rare corner case it
2110	 * might get readded to a delwri list after the synchronous writeout, in
2111	 * which case we need just need to re-add the flag here.
2112	 */
2113	bp->b_flags |= _XBF_DELWRI_Q;
2114	if (list_empty(&bp->b_list)) {
2115		atomic_inc(&bp->b_hold);
2116		list_add_tail(&bp->b_list, list);
2117	}
2118
2119	return true;
2120}
2121
2122/*
2123 * Compare function is more complex than it needs to be because
2124 * the return value is only 32 bits and we are doing comparisons
2125 * on 64 bit values
2126 */
2127static int
2128xfs_buf_cmp(
2129	void			*priv,
2130	const struct list_head	*a,
2131	const struct list_head	*b)
2132{
2133	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
2134	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
2135	xfs_daddr_t		diff;
2136
2137	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2138	if (diff < 0)
2139		return -1;
2140	if (diff > 0)
2141		return 1;
2142	return 0;
2143}
2144
2145/*
2146 * Submit buffers for write. If wait_list is specified, the buffers are
2147 * submitted using sync I/O and placed on the wait list such that the caller can
2148 * iowait each buffer. Otherwise async I/O is used and the buffers are released
2149 * at I/O completion time. In either case, buffers remain locked until I/O
2150 * completes and the buffer is released from the queue.
2151 */
2152static int
2153xfs_buf_delwri_submit_buffers(
2154	struct list_head	*buffer_list,
2155	struct list_head	*wait_list)
2156{
2157	struct xfs_buf		*bp, *n;
2158	int			pinned = 0;
2159	struct blk_plug		plug;
2160
2161	list_sort(NULL, buffer_list, xfs_buf_cmp);
2162
2163	blk_start_plug(&plug);
2164	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2165		if (!wait_list) {
2166			if (!xfs_buf_trylock(bp))
2167				continue;
2168			if (xfs_buf_ispinned(bp)) {
2169				xfs_buf_unlock(bp);
2170				pinned++;
2171				continue;
2172			}
2173		} else {
2174			xfs_buf_lock(bp);
2175		}
2176
2177		/*
2178		 * Someone else might have written the buffer synchronously or
2179		 * marked it stale in the meantime.  In that case only the
2180		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
2181		 * reference and remove it from the list here.
2182		 */
2183		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2184			list_del_init(&bp->b_list);
2185			xfs_buf_relse(bp);
2186			continue;
2187		}
2188
2189		trace_xfs_buf_delwri_split(bp, _RET_IP_);
2190
2191		/*
2192		 * If we have a wait list, each buffer (and associated delwri
2193		 * queue reference) transfers to it and is submitted
2194		 * synchronously. Otherwise, drop the buffer from the delwri
2195		 * queue and submit async.
2196		 */
2197		bp->b_flags &= ~_XBF_DELWRI_Q;
2198		bp->b_flags |= XBF_WRITE;
2199		if (wait_list) {
2200			bp->b_flags &= ~XBF_ASYNC;
2201			list_move_tail(&bp->b_list, wait_list);
2202		} else {
2203			bp->b_flags |= XBF_ASYNC;
2204			list_del_init(&bp->b_list);
2205		}
2206		__xfs_buf_submit(bp, false);
2207	}
2208	blk_finish_plug(&plug);
2209
2210	return pinned;
2211}
2212
2213/*
2214 * Write out a buffer list asynchronously.
2215 *
2216 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2217 * out and not wait for I/O completion on any of the buffers.  This interface
2218 * is only safely useable for callers that can track I/O completion by higher
2219 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2220 * function.
2221 *
2222 * Note: this function will skip buffers it would block on, and in doing so
2223 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2224 * it is up to the caller to ensure that the buffer list is fully submitted or
2225 * cancelled appropriately when they are finished with the list. Failure to
2226 * cancel or resubmit the list until it is empty will result in leaked buffers
2227 * at unmount time.
2228 */
2229int
2230xfs_buf_delwri_submit_nowait(
2231	struct list_head	*buffer_list)
2232{
2233	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2234}
2235
2236/*
2237 * Write out a buffer list synchronously.
2238 *
2239 * This will take the @buffer_list, write all buffers out and wait for I/O
2240 * completion on all of the buffers. @buffer_list is consumed by the function,
2241 * so callers must have some other way of tracking buffers if they require such
2242 * functionality.
2243 */
2244int
2245xfs_buf_delwri_submit(
2246	struct list_head	*buffer_list)
2247{
2248	LIST_HEAD		(wait_list);
2249	int			error = 0, error2;
2250	struct xfs_buf		*bp;
2251
2252	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2253
2254	/* Wait for IO to complete. */
2255	while (!list_empty(&wait_list)) {
2256		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2257
2258		list_del_init(&bp->b_list);
2259
2260		/*
2261		 * Wait on the locked buffer, check for errors and unlock and
2262		 * release the delwri queue reference.
2263		 */
2264		error2 = xfs_buf_iowait(bp);
2265		xfs_buf_relse(bp);
2266		if (!error)
2267			error = error2;
2268	}
2269
2270	return error;
2271}
2272
2273/*
2274 * Push a single buffer on a delwri queue.
2275 *
2276 * The purpose of this function is to submit a single buffer of a delwri queue
2277 * and return with the buffer still on the original queue. The waiting delwri
2278 * buffer submission infrastructure guarantees transfer of the delwri queue
2279 * buffer reference to a temporary wait list. We reuse this infrastructure to
2280 * transfer the buffer back to the original queue.
2281 *
2282 * Note the buffer transitions from the queued state, to the submitted and wait
2283 * listed state and back to the queued state during this call. The buffer
2284 * locking and queue management logic between _delwri_pushbuf() and
2285 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2286 * before returning.
2287 */
2288int
2289xfs_buf_delwri_pushbuf(
2290	struct xfs_buf		*bp,
2291	struct list_head	*buffer_list)
2292{
2293	LIST_HEAD		(submit_list);
2294	int			error;
2295
2296	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2297
2298	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2299
2300	/*
2301	 * Isolate the buffer to a new local list so we can submit it for I/O
2302	 * independently from the rest of the original list.
2303	 */
2304	xfs_buf_lock(bp);
2305	list_move(&bp->b_list, &submit_list);
2306	xfs_buf_unlock(bp);
2307
2308	/*
2309	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2310	 * the buffer on the wait list with the original reference. Rather than
2311	 * bounce the buffer from a local wait list back to the original list
2312	 * after I/O completion, reuse the original list as the wait list.
2313	 */
2314	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2315
2316	/*
2317	 * The buffer is now locked, under I/O and wait listed on the original
2318	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2319	 * return with the buffer unlocked and on the original queue.
2320	 */
2321	error = xfs_buf_iowait(bp);
2322	bp->b_flags |= _XBF_DELWRI_Q;
2323	xfs_buf_unlock(bp);
2324
2325	return error;
2326}
2327
2328void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2329{
2330	/*
2331	 * Set the lru reference count to 0 based on the error injection tag.
2332	 * This allows userspace to disrupt buffer caching for debug/testing
2333	 * purposes.
2334	 */
2335	if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2336		lru_ref = 0;
2337
2338	atomic_set(&bp->b_lru_ref, lru_ref);
2339}
2340
2341/*
2342 * Verify an on-disk magic value against the magic value specified in the
2343 * verifier structure. The verifier magic is in disk byte order so the caller is
2344 * expected to pass the value directly from disk.
2345 */
2346bool
2347xfs_verify_magic(
2348	struct xfs_buf		*bp,
2349	__be32			dmagic)
2350{
2351	struct xfs_mount	*mp = bp->b_mount;
2352	int			idx;
2353
2354	idx = xfs_has_crc(mp);
2355	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2356		return false;
2357	return dmagic == bp->b_ops->magic[idx];
2358}
2359/*
2360 * Verify an on-disk magic value against the magic value specified in the
2361 * verifier structure. The verifier magic is in disk byte order so the caller is
2362 * expected to pass the value directly from disk.
2363 */
2364bool
2365xfs_verify_magic16(
2366	struct xfs_buf		*bp,
2367	__be16			dmagic)
2368{
2369	struct xfs_mount	*mp = bp->b_mount;
2370	int			idx;
2371
2372	idx = xfs_has_crc(mp);
2373	if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2374		return false;
2375	return dmagic == bp->b_ops->magic16[idx];
2376}
2377